Sample records for mtbe reference colorado

  1. Global developments in MTBE

    SciTech Connect (OSTI)

    Feller, L.W. [CMAI, Houston, TX (United States)

    1995-12-31T23:59:59.000Z

    This paper is intended to provide an overview of some of the recent developments in MTBE demand growth worldwide and the impact of these developments on MTBE demand in the future. It provides a perspective of the influence of developments in the US on the worldwide MTBE markets. The public`s outcry regarding oxygenates in gasoline, and specifically MTBE, that has been evolving in the US during the past several months is in response to a politically mandated requirement for a fuel that contains oxygen that is provided by MTBE or ethanol. This public unrest had negatively impacted the market price for MTBE at the time this paper was being prepared. However, the author believes that MTBE, because of its clean octane capabilities, will continue to be used as an octane blendstock for gasoline in increasing quantities worldwide as we move through lead phasedown in West Europe and other countries that are experiencing pollution problems relating to exhaust emissions from internal combustion engines. The objectives of this paper are as follows: review developments in MTBE demand 1990--2000; identify regions where MTBE demand growth will occur; review production growth for MTBE, both historical and forecast; examine world trade patterns during the period; assess methanol demand growth during the period; analyze MTBE`s regional price bias; and provide a forecast of future MTBE price trends.

  2. Evaluating nonmetallic materials` compatibility with MTBE and MTBE + gasoline service

    SciTech Connect (OSTI)

    Hotaling, A.C.

    1995-12-31T23:59:59.000Z

    Methyl-tertiary-butyl-ether (MTBE) has become the leading oxygenate in use in the petroleum industry. Since its introduction several years ago there has been premature deterioration of nonmetallic materials in both neat MTBE and MTBE + gasoline. This degradation is costly in several ways: maintenance, replacement, environmental, and product-loss. Identifying nonmetallic materials compatible with MTBE and MTBE + gasoline is important to the petroleum industry -- all the way from the refinery to the retail sale. Exposure tests have been conducted with different types of nonmetallics in neat MTBE, neat MTBE vapor, and 5% MTBE + 95% gasoline. As in previously reported tests, Teflon{reg_sign} laminates were the top performers, experiencing very little change in any of the properties tested. An ester and ether-based urethane laminate also exhibited only small property changes. Most materials displayed significant deterioration of one or more of the measured properties, even in MTBE condensing vapor and the 5% MTBE + 95% gasoline. The specific effects on each material need to be individually evaluated to determine the effect on service life.

  3. MTBE, methanol prices rise

    SciTech Connect (OSTI)

    Morris, G.D.L.; Cornitius, T.

    1995-12-20T23:59:59.000Z

    After several months of drifting lower in line with declining autumn gasoline prices, tabs for methyl tert-butyl ether (MTBE) have turned around. There has been no big demand surge, but consumers and traders are beginning to build up inventories in advance of a series of midwinter shutdowns and turnarounds by producers. Spot prices, which dropped as low as 75 cts/gal, have rebounded to 90 cts/gal fob. Eager for a positive glimmer, methanol producers posted a 3-cts/gal increase in contract prices this month. It marks the first upward idea since February. In that time contract prices have dropped 75% from $1.55/gal to 39 cts/gal. A hard winter has hit early in much of the US sending natural gas prices up sharply. At the same time, formaldehyde and acetic acid markets remain firm, and with MTBE rebounding, methanol producers feel entitled to a piece of the action. {open_quotes}I don`t buy into this claim that MTBE demand is up and I don`t think producers can justify even a 3-cts/gal increase,{close_quotes} says one. {open_quotes}There is nothing in the economy to warrant a run-up. Housing starts are weaker, and demand is down at least 80,000 bbl/day with the MTBE shutdown.{close_quotes}

  4. Drinking Water Problems: MTBE

    E-Print Network [OSTI]

    Dozier, Monty; Lesikar, Bruce J.

    2008-08-28T23:59:59.000Z

    Methyl tertiary-butyl ether, a gasoline additive commonly known as MTBE, can contaminate ground water and cause health problems for those exposed to it for a long time. However, filtering devices can remove this and other additives from well water...

  5. MTBE -- A global perspective

    SciTech Connect (OSTI)

    Ludlow, W.I.; Miller, K.D. Jr.; Liew, R.E. van [DeWitt and Co., Inc., Houston, TX (United States)

    1995-09-01T23:59:59.000Z

    Methyl tertiary butyl ether (MTBE) is a major and familiar component of Reformulated and Oxygenated gasoline in the US. As such, it is essential to the success of the Clean Air Act programs now reaching a crescendo in major urban areas. In less than ten years, US MTBE capacity has grown from about 4,000 B/D to more than 200,000 B/D. Outside of the USA, its role is less widely understood. Although MTBE markets elsewhere are much less driven by legislation, they have seen the same spectacular growth prospects. Overall, about as much MTBE is used today overseas as in the US. To date, this has to be one of the petrochemical industry`s major success stories. Yet today, the MTBE industry stands at a crossroads, with the direction of future development uncertain at best. DeWitt`s gasoline and oxygenates team has closely observed the ups and downs of this market during most of its turbulent history. In this paper, the authors shall try to set down the major developments and prospects, with the personal familiarity of having been there when things changed. The story begins with a brief historical sketch, leading up to the identification of four critical periods in which major changes took place. The causes of today`s uncertainty lie in all of these stages, and are in a very real sense an example of the ``Law of Unintended consequences.`` Having set the stage, a cautious set of predictions will be put forth. These are neither as promising as proponents would like, nor as unpromising as some would tend to believe.

  6. Snamprogetti signs MTBE contracts

    SciTech Connect (OSTI)

    Alperowicz, N.

    1992-04-15T23:59:59.000Z

    Snamprogetti (Milan) will use a Russian-developed dehydrogenation process in a world-scale methyl tert-butyl ether (MTBE) plant it is to build at Arzew, Algeria for a previously announced joint venture of Sonatrach (Algiers), Total (Paris), and Ecofuel (Milan). The 600,000-m.t./year plant will be the first in the West to use the improved Snamprogetti-Yarsintez fluidized-bed dehydrogenation (FBD) technology proven on a demonstration plant at Yaroslavl, Russia. The process has also been selected for use in Oxyfuel Corp.`s 500,000-m.t./year MTBE plant near Beaumont, TX. Although the environmental permit is already in place, final agreement for this project has not yet been signed.

  7. Saudi MTBE project revived

    SciTech Connect (OSTI)

    NONE

    1996-01-17T23:59:59.000Z

    Alujain Corp., a member of the Xenel group of Saudi Arabia, is going ahead with plans to build an 800,000-m.t./year methyl tert-butyl ether (MTBE) plant. Bechtel has been appointed project manager for the plant, which will be owned by a new company, National Fuel Additives (Tahseen). Bechtel will help evaluate proposals already submitted for the lump sum turnkey job.

  8. Canada could get three MTBE plants

    SciTech Connect (OSTI)

    Anderson, E

    1990-03-01T23:59:59.000Z

    This article reports on the proposed development of three methyl tert-butyl ether (MTBE) plants in Canada. MTBE is used as an oxygenated fuel additive. The author discusses how demand for MTBE is increasing due to the regulation of leaded gasoline by the U.S. and Canadian governments. The exportation of MTBE from Canada to the U.S. is highlighted.

  9. MTBE Production Economics

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14Biomass feedstocks and0216,JulyMTBE

  10. Economics of new MTBE design

    SciTech Connect (OSTI)

    Al-Jarallah, A.M.; Lee, A.K.K.

    1988-07-01T23:59:59.000Z

    Methyl Tertiary Butyl Ether (MTBE) is produced industrially by catalytic reaction between methanol and isobutene. The catalyst that is widely used is an acidic ion exchange resin. This article explores design and economics when sulfuric acid is the catalyst. The profitability of MTBE production depends mainly on the cost of butenes and methhanol. Thus, the example shows MTBE made with a catalyst of sulfuric acid was profitable at a Saudi Arabian location, even though it was not profitable at a U.S. Gulf Coast location.

  11. Statoil outlines MTBE development program

    SciTech Connect (OSTI)

    Not Available

    1991-11-25T23:59:59.000Z

    This paper reports that Norway's state oil company Den Norkse state Oljeselskap AS has outlined plans to become one of the major European producers of methyl tertiary butyl ether in the 1990s. Statoil predicts European demand for MTBE will jump to 4.5 million metric tons/year by 2000 from 2.5 million tons in 1990. Europe currently is a net importer of MTBE, with a productive capacity of 2.2 million tons/year.

  12. A review of treatment technologies for MTBE

    SciTech Connect (OSTI)

    Bass, D. [Groundwater Technology, Inc., Norwood, MA (United States)

    1995-12-31T23:59:59.000Z

    Available treatment technologies for methyl tertiary butyl ether (MTBE) contamination in soil, groundwater, and recovered groundwater are reviewed and assessed. MTBE contamination is becoming an important issue due to the increasing prevalence and regulation of this gasoline additive. In addition, MTBE is more soluble and more mobile in groundwater than most hydrocarbons, so it is usually the first gasoline constituent to reach sensitive receptors. Treatment of MTBE is complicated by its Henry`s constant, which is lower than most other gasoline constituents. Furthermore, evidence of biodegradability of MTBE is mixed, and MTBE does not degrade rapidly abiotically. Groundwater pumping is usually employed to contain and collect MTBE-contaminated groundwater, often successfully because of its high aqueous solubility. Air sparging/soil vapor extraction is also successfully employed to treat MTBE, but its effectiveness is reduced by the low Henry`s constant of MTBE. Sparging and other aerobic bioremediation approaches are hampered by the poor biodegradability of MTBE. Oxidation technologies, such as ozone injection, hold promise for rapid in situ remediation of MTBE. Treatment of recovered groundwater contaminated with MTBE is also problematic. MTBE adsorbs poorly to granular activated carbon; advanced oxidation processes are effective on MTBE, but entail high capital and operating costs; bioreactors are of questionable effectiveness on MTBE. Air stripping is usually the most cost-effective treatment technology for MTBE so long as the off gas from the air stripper can be discharged without treatment. However, off gas treatment is expensive, so groundwater is sometimes heated to reduce the requirement for stripping air.

  13. EPA proposal sets MTBE back

    SciTech Connect (OSTI)

    Lucas, A.

    1995-01-04T23:59:59.000Z

    Methyl tert-butyl ether (MTBE) producers were looking for a boost from the official New Year`s start of EPA`s reformulated gasoline (RFG) program. But that prospect has been dimmed by an EPA-proposal-in reaction to concerns about RFG prices-to allow states to withdraw from the program. The states that have opted to out make up 5%-6% of the total RFG pool says Arthur Zadronzy, director/government outreach for MTBE producer Arco Chemical. {open_quotes}This is not a major hit, but it is one we have felt,{close_quotes} he says. Despite the state and EPA actions, MTBE producers are not worried about long-term consequences.

  14. Role of Volatilization in Changing TBA and MTBE Concentrations at

    E-Print Network [OSTI]

    Role of Volatilization in Changing TBA and MTBE Concentrations at MTBE-Contaminated Sites J U A N tertiary butyl ether (MTBE) added to gasoline. Frequent observations of high TBA, and especially rising TBA/MTBE of MTBE to TBA. Typically overlooked is the role of volatilization in the attenuation of these chemicals

  15. The Social Costs of an MTBE Ban in California

    E-Print Network [OSTI]

    Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

    2005-01-01T23:59:59.000Z

    349 The Social Costs of an MTBE Ban in California REFERENCESD.E. Rolston. “Impacts of MTBE on California Groundwater. ”Environmental Assessment of MTBE, Vol. 4. A. Keller et al. ,

  16. Factors influencing biological treatment of MTBE contaminated ground water

    E-Print Network [OSTI]

    Stringfellow, William T.; Hines Jr., Robert D.; Cockrum, Dirk K.; Kilkenny, Scott T.

    2001-01-01T23:59:59.000Z

    Methyl tertiary-butyl ether (MTBE) biodegradation in batchCometabolic degradation of MTBE by a cyclohexane-oxidizingof 49 Biological Treatment of MTBE Fortin, N. Y. , and M. A.

  17. MTBE demand as a oxygenated fuel additive

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    The MTBE markets are in the state of flux. In the U.S. the demand has reached a plateau while in other parts of the world, it is increasing. The various factors why MTBE is experiencing a global shift will be examined and future volumes projected.

  18. The social costs of an MTBE ban in California (Condensed version)

    E-Print Network [OSTI]

    Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

    2002-01-01T23:59:59.000Z

    in Focus: Phasing Out MTBE in Gasoline," Annual Energyand P. J. Bartholomae, "MTBE and Benzene Plume Behavior: ASoil Sediment & Groundwater MTBE Special Issue, March, 43-

  19. Factors influencing biological treatment of MTBE contaminated ground water

    SciTech Connect (OSTI)

    Stringfellow, William T.; Hines Jr., Robert D.; Cockrum, Dirk K.; Kilkenny, Scott T.

    2001-09-14T23:59:59.000Z

    Methyl tert-butyl ether (MTBE) contamination has complicated the remediation of gasoline contaminated sites. Many sites are using biological processes for ground water treatment and would like to apply the same technology to MTBE. However, the efficiency and reliability of MTBE biological treatment is not well documented. The objective of this study was to examine the operational and environmental variables influencing MTBE biotreatment. A fluidized bed reactor was installed at a fuel transfer station and used to treat ground water contaminated with MTBE and gasoline hydrocarbons. A complete set of chemical and operational data was collected during this study and a statistical approach was used to determine what variables were influencing MTBE treatment efficiency. It was found that MTBE treatment was more sensitive to up-set than gasoline hydrocarbon treatment. Events, such as excess iron accumulation, inhibited MTBE treatment, but not hydrocarbon treatment. Multiple regression analysis identified biomass accumulation and temperature as the most important variables controlling the efficiency of MTBE treatment. The influent concentration and loading of hydrocarbons, but not MTBE, also impacted MTBE treatment efficiency. The results of this study suggest guidelines for improving MTBE treatment. Long cell retention times in the reactor are necessary for maintaining MTBE treatment. The onset of nitrification only occurs when long cell retention times have been reached and can be used as an indicator in fixed film reactors that conditions favorable to MTBE treatment exist. Conversely, if the reactor can not nitrify, it is unlikely to have stable MTBE treatment.

  20. Petrochem industry expands North American MTBE capacity

    SciTech Connect (OSTI)

    Not Available

    1992-10-05T23:59:59.000Z

    This paper reports that petrochemical manufacturers continue to increase methyl tertiary butyl ether (MTBE) capacity in North America. The action reflects refiners' reformulation of gasoline to help reduce auto emissions. Demand for gasoline blending oxygenates such as MTBE is expected to increase as U.S. refiners reconfigure processing trains to produce fuels meeting requirements of the Clean Air Act amendments of 1990. Recent progress includes plans to build an MTBE plant in Mexico and start-ups of plants on the U.S. Gulf Coast and in Canada.

  1. MTBE: Wild card in groundwater cleanup

    SciTech Connect (OSTI)

    Koenigsberg, S. [Regenesis Bioremediation Products, San Juan Capistrano, CA (United States)

    1997-11-01T23:59:59.000Z

    Subsurface releases of the gasoline oxygenate, methyl tertiary butyl ether (MTBE) seriously compromise the remediation and closure of properties that have ground water contaminated with BTEX and other conventional fuel hydrocarbon components. Although a manageable protocal for BTEX remediation is being set up, the MTBE problem continues to be difficult. This article discusses a new magnesium peroxide compound which could be part of the solution. Covered topics include oxygen release compound (ORC) enhance bioremediation and the role of oxygen and ORC in MTBE remediation. 1 fig.

  2. MTBE: The headache of cleaner air

    SciTech Connect (OSTI)

    Kneiss, J.

    1995-07-01T23:59:59.000Z

    Gasoline with methyl tertiary butyl ether (MTBE) has been sold in the United States since 1979, when it was added to fuels as an octane enhancer after lead was phased out of motor fuels. Recently it has been introduced as a means of reducing carbon monoxide emissions during the winter months in targeted US cities. However, there is concern over health complaints including headaches, dizziness and nausea from residents of some areas. These reports have launched an era of assidious research by scientists and public health officials across the country to learn more about MTBE`s short-term and long-term, and possibly carcinogenic, health effects. New research should help weigh the risk of MTBE as a possible carcinogen and the effectiveness of MTBE-blended fuels in reducing carbon monoxide levels. The question is whether, in minimizing one risk, is another risk - however small - being introduced?

  3. Evaluation and Optimization of MTBE Biodegradation in Aquifers, Final Report

    SciTech Connect (OSTI)

    Legler, T; Balser, L; Koester, C; Wilson, W

    2004-02-13T23:59:59.000Z

    This study was focused on meeting the following objectives concerning the process of methyl tertiary butyl ether (MTBE) biodegradation, with the goal of optimizing this process in situ: 1. Assess whether intrinsic bioattenuation of MTBE is feasible under aerobic conditions across several contaminated sites. 2. Determine the effect of co-contaminants, specifically water-soluble gasoline components (most notably benzene, toluene, ethylbenzene and xylenes [BTEX]) on MTBE biodegradation. 3. Determine whether microbial and/or chemical factors contribute to different MTBE degradative activities. 4. Isolate and characterize MTBE-degrading microorganisms from sediments in which MTBE biodegradation was observed.

  4. Removal of MTBE and other organic contaminants from water by sorption to high silica zeolites

    SciTech Connect (OSTI)

    Anderson, M.A.

    2000-02-15T23:59:59.000Z

    Select zeolites with high SiO{sub 2}/Al{sub 2}O{sub 3} ratios were shown to effectively remove methyl tert-butyl ether (MTBE), chloroform, and trichloroethylene (TCE) from water. In laboratory studies using batch sorption equilibria, high Si large-port mordenite and ZSM-5 (silicalite) were found to have sorption properties for MTBE and TCE superior to activated carbon. for example, at an equilibrium solution concentration of 100 {micro}g/L, high Si mordenite retained 8--12x more MTBE than either of two powdered activated carbons used as reference sorbents. Sorption results also highlight the importance of pore size and SiO{sub 2}/Al{sub 2}O{sub 3} ration on contaminant removal efficiencies by zeolites.

  5. Falling MTBE demand bursts the methanol bubble

    SciTech Connect (OSTI)

    Wiesmann, G.; Cornitius, T.

    1995-03-01T23:59:59.000Z

    Methanol spot markets in Europe and the US have been hit hard by weakening demand from methyl tert-butyl ether (MTBE) producers. In Europe, spot prices for domestic T2 product have dropped to DM620-DM630/m.t. fob from early-January prices above DM800/m.t. and US spot prices have slipped to $1.05/gal fob from $1.35/gal. While chemical applications for methanol show sustained demand, sharp methanol hikes during 1994 have priced MTBE out of the gasoline-additive market. {open_quotes}We`ve learned an important lesson. We killed [MTBE] applications in the rest of the world,{close_quotes} says one European methanol producer. Even with methanol currently at DM620/m.t., another manufacturer points out, MTBE production costs still total $300/m.t., $30/m.t. more than MTBE spot prices. Since late 1994, Europe`s 3.3-million m.t./year MTBE production has been cut back 30%.

  6. Add MTBE unit ahead of alkylation

    SciTech Connect (OSTI)

    Masters, K.R.; Prohaska, E.A.

    1988-08-01T23:59:59.000Z

    Approximately three years ago, the people at Diamond Shamrock's Sunray, Texas, refinery recognized a growing demand for high octane super premium unleaded gasoline in their regional marketing area. It was apparent that they would need to change their processing scheme to meet this growing demand. After investigating several options, they decided to install an MTBE (methyl tert-butyl ether) unit upstream of their existing sulfuric acid (H/sub 2/SO/sub 4/) aklylation unit. The new unit would process olefin feed before it entered the alkylation unit. The MTBE unit was expected to improve Diamond Shamrock's gasoline pool in two ways. First, the MTBE would be an additional high octane blending stock for the gasoline pool. Second, the MTBE unit would improve the quality of the olefin stream going to the alkylation unit. Diamond Shamrock brought their MTBE unit onstream in December, 1985. The results of the combined operation exceeded expectations, producing alkylate in excess of 98 RON (Research octane number) and MTBE of 118 RON. These components significantly upgraded the refinery's capability to produce a super premium unleaded gasoline.

  7. The Social Costs of an MTBE Ban in California

    E-Print Network [OSTI]

    Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

    2005-01-01T23:59:59.000Z

    85 MTBE is more soluble in water than BTEX, which means thatlong as BTEX plumes; and California Regional Water QualityMTBE than BTEX dissolves in a given quantity of water. This

  8. MTBE Production Economics (Released in the STEO April 2001)

    Reports and Publications (EIA)

    2001-01-01T23:59:59.000Z

    The purpose of this analysis is to evaluate the causes of methyl tertiary butyl ether (MTBE) price increases in 2000.

  9. UMass builds bugs to eat MTBE ByAuriaCimino

    E-Print Network [OSTI]

    Lovley, Derek

    UMass builds bugs to eat MTBE ByAuriaCimino STAfFWRITER An area university's process to destroy with methyl tertiary butyl ether (MTBE), which is found in gasoline. Once the first field trial is complete in particular has suffered from MTBE contamination because of the abundance of groundwater in the state, said

  10. Multivariable controller increased MTBE complex capacity

    SciTech Connect (OSTI)

    Robertson, D.; Peterson, T.J.; O`Connor, D. [DMC Corp., Houston, TX (United States); Payne, D.; Adams, V. [Valero Refining Co., Corpus Christi, TX (United States)

    1997-03-01T23:59:59.000Z

    Capacity increased by more than 4.6% when one dynamic matrix multivariable controller began operating in Valero Refining Company`s MTBE production complex in Corpus Christi, Texas. This was on a plant that was already running well above design capacity due to previously made process changes. A single controller was developed to cover an isobutane dehydrogenation (ID) unit and an MTBE reaction and fractionation plant with the intermediate isobutylene surge drum. The overall benefit is realized by a comprehensive constrained multivariable predictive controller that properly handles all sets of limits experienced by the complex, whether limited by the front-end ID or back-end MTBE units. The controller has 20 manipulated, 6 disturbance and 44 controlled variables, and covers widely varying dynamics with settling times ranging from twenty minutes to six hours. The controller executes each minute with a six hour time horizon. A unique achievement is intelligent surge drum level handling by the controller for higher average daily complex capacity as a whole. The ID unit often operates at simultaneous limits on reactor effluent compressor capacity, cold box temperature and hydrogen/hydrocarbon ratio, and the MTBE unit at impurity in butene column overhead as well as impurity in MTBE product. The paper discusses ether production, isobutane dehydrogenation, maximizing production, controller design, and controller performance.

  11. Refuel Colorado

    Broader source: Energy.gov (indexed) [DOE]

    * 4CORE * State Fleet * West Slope CNG Collaborative * EV Stakeholder Group * Colorado Propane Gas Association * Colorado Hydrogen Coalition Partners Colorado Energy Office |...

  12. Korean oxygenates rule sparks MTBE capacity plans

    SciTech Connect (OSTI)

    Kim, Hyung-Jin

    1994-06-15T23:59:59.000Z

    The Korean government`s strict standard for gasoline sold domestically is expected to have a significant impact on the methyl tert-butyl ether (MTBE) market. The mandate-requiring gasoline oxygen content of 0.5% this year, 0.75% by 1996, and 1.0% by 1998-has sparked a rush by Korean refineries to build new MTBE plants. If expansion plans are carried out, Korea`s MTBE capacity will increase from 280,000 m.t./year to 650,000 m.t./year by 1996, far surpassing predicted demand. Honam Oil, part of the Lucky Group, plans startup of a 100,000-m.t./year unit at Yeochon by early 1996. In addition, by the end of 1996 Ssangyong Oil will bring a 100,000-m.t./year unit onstream.

  13. Ecofuel plans MTBE plant in Italy

    SciTech Connect (OSTI)

    Alperowicz, N.

    1992-04-29T23:59:59.000Z

    Ecofuel (Milan), an ENI company, is evaluating construction of a new methyl tert-butyl ether (MTBE) plant in Italy, but has shelved plans for a world-scale MTBE unit in Mexico. The Italian unit is tied to ethylene expansion now under way. Later this year EniChem (Milan), a sister company, is due to complete construction of a 360,000-m.t./year cracker at Brindisi. The C{sub 4} stream available there and from the existing cracker at Priolo in Sicily should provide enough feed for a unit of up to 100,000 m.t./year of MTBE capacity. Some of the feedstock could also come from the Ravenna cracker.

  14. Veba in MTBE project, cutting aromatics

    SciTech Connect (OSTI)

    Young, I.; Roberts, M.

    1992-04-15T23:59:59.000Z

    The new owners of the refinery and petrochemical complex at Schwedt in eastern Germany-RWE-DEA (Hamburg), Veba Oel (Gelsenkirchen), Agip (Rome), Total (Paris), and Elf-Aquitaine (Paris)-plan to build a 60,000-m.t./year methyl tert-butyl ether (MTBE) plant at the site for 1994-1995 completion. The MTBE project forms part of the consortium`s announced DM1.5-billion ($500 million) investment program for the complex that aims to raise refinery throughput from 8 million m.t./year to 12 million m.t./year by 1994 and hike production of naphtha and benzene.

  15. Methanex considers methanol, MTBE in Qatar

    SciTech Connect (OSTI)

    NONE

    1995-12-13T23:59:59.000Z

    CW has learned that Methanex Corp. is considering entering one of two methanol and methyl tert-butyl ether (MTBE) projects in Qatar. Executive v.p. Michael Wilson says that part of the company`s New Zealand plant could be moved to a site in Qatar, which would lower capital costs for the possible project by $75 million-$100 million. Both Qatar General Petroleum Corp. and Qatar Fuel Additives are developing methanol and MTBE projects at Umm Said, Qatar. Methanex says its goal is to ensure low-cost feedstocks.

  16. Total to withdraw from Qatar methanol - MTBE?

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    Total is rumored to be withdrawing from the $700-million methanol and methyl tert-butyl ether (MTBE) Qatar Fuel Additives Co., (Qafac) project. The French company has a 12.5% stake in the project. Similar equity is held by three other foreign investors: Canada`s International Octane, Taiwan`s Chinese Petroleum Corp., and Lee Change Yung Chemical Industrial Corp. Total is said to want Qafac to concentrate on methanol only. The project involves plant unit sizes of 610,000 m.t./year of MTBE and 825,000 m.t./year of methanol. Total declines to comment.

  17. Motor Gasoline Outlook and State MTBE Bans

    Reports and Publications (EIA)

    2003-01-01T23:59:59.000Z

    The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending state bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year.

  18. MTBE still in poor health, despite the Clean Air Act

    SciTech Connect (OSTI)

    Wood, A.

    1994-05-25T23:59:59.000Z

    After the second winter oxygenated fuels program of the 1990 Clean Air Act, producers of methyl tert-butyl ether (MTBE) are still feeling the chill of poor profitability. Despite the strong demand growth for MTBE to meet oxygen requirements in reformulated gasoline (RFG), oversupply still dogs the market. That, combined with a run-up in feedstock prices, has seen margins for MTBE markers all but evaporate. And it seems matters are likely to get worse before they get better. This week, Belvieu Environmental Fuels (BEF; Houston) expects to startup its 15,000-bbl/day MTBE plant at Mont Belvieu, TX. In late July, Texaco will start up its 15,000-bbl/day MTBE/propylene oxide (PO) plant at Port Neches, TX. In addition, a rash of refinery-based MTBE and tert-amyl methyl ether projects are nearing completion. {open_quotes}Profitability in MTBE has been extremely poor,{close_quotes} says Marvin O. Schlanger, president of Arco Chemical Americas, the largest MTBE producer. There has, however, been some recent recovery on the spot market, with MTBE moving from less than 60 cts/gal to near cash-cost levels of 70 cts/gal. But contract prices remain depressed, and strength in butane and methanol pricing have all buy wiped out any gains in MTBE.

  19. Bureau of Land Management, Colorado collaborate to advance efficient...

    Open Energy Info (EERE)

    Colorado collaborate to advance efficient geothermal development Jump to: navigation, search OpenEI Reference LibraryAdd to library Memorandum: Bureau of Land Management, Colorado...

  20. MTBE from butadiene-rich C/sub 4/s

    SciTech Connect (OSTI)

    Ancillotti, F.; Pescarollo, E.; Szatmari, E.; Lazar, L.

    1987-12-01T23:59:59.000Z

    Methyl tert-butyl ether (MTBE), is made by reacting methanol with isobutylene. The preferred source of isobutylene is a steam cracker C/sub 4/ cut from which butadiene has been removed. However, moving the MTBE synthesis upstream of the butadiene extraction will improve the extraction step. The following is a review of conditions imposed on the MTBE unit's design and operation when placed in this new location.

  1. The MTBE solution: Octanes, technology, and refinery profitability

    SciTech Connect (OSTI)

    Lander, E.P.; Hubbard, J.N.; Smith, L.A.

    1983-03-01T23:59:59.000Z

    This paper has been developed to provide refiners with business decision insight regarding the production of methyl tertiary butyl ether (MTBE) from refinery - (FCC) produced isobutylene. The driving forces making MTBE an attractive investment are examined with regard to the increasing demand for higher octane unleaded gasolines. The decision to proceed with MTBE production depends on the profitability of such an investment and the refiner's ability to meet market demands using available processing equipment, refinery produced streams and external feedstocks. The factors affecting this decision are analyzed in this paper and include: industry ability to meet rising octane demand; profit potential realized by diverting isobutylene to MTBE; availability of technology for producing MTBE; and investment and operating costs required to produce MTBE. Chemical Research and Licensing and NEOCHEM have developed a simple, low cost process to produce MTBE, reducing the excessive equipment and high operating costs that were associated with conventional MTBE designs. The economics and process benefits of installing a CRandL/NEOCHEM MTBE process are examined within the framework of a generalized medium-sized refinery configuration.

  2. MTBE: Capacity boosts on hold amid demand concerns

    SciTech Connect (OSTI)

    NONE

    1995-05-03T23:59:59.000Z

    Uncertainty reigns in the methyl tert-butyl ether (MTBE) market. {open_quotes}We have no choice but to put our expansion plans on the back burner,{close_quotes} says one producer. {open_quotes}Because of government actions, there are no MTBE plants being built or expanded.{close_quotes} Spot MTBE prices have risen ti 82 cts- 83 cts/gal from 76 cts-78 cts/gal earlier this month as the demand for octane enhancement increases for the summer driving season. Some observers say EPA may relax different oxygen requirements for gasoline in different seasons. That would simplify production and supply for MTBE makers.

  3. MTBE, ethanol rules come under fire

    SciTech Connect (OSTI)

    Begley, R.

    1995-03-01T23:59:59.000Z

    EPA is facing stiff challenges to the mandates for methyl tert-butyl ether (MTBE) and ethanol in its reformulated gasoline (RFG) program. Wisconsin officials are receiving hundreds of complaints about the alleged health effects and other problems with MTBE added to gasoline, and Gov. Tommy Thompson is demanding that EPA suspend the RFG program until April 1. Rep. James Sensenbrenner (R., WI) is threatening to introduce a bill to repeal the program in Wisconsin if EPA does not comply. However, EPA administrator Carol Browner says the agency will {open_quotes}defer any decision{close_quotes} on the request. EPA has sent technical experts to Milwaukee to respond to and monitor citizens` complaints.

  4. Recovery of methanol in an MTBE process

    SciTech Connect (OSTI)

    Whisenhunt, D.E.; Byers, G.L.; Hattiangadi, U.S.

    1988-05-31T23:59:59.000Z

    In a process for the manufacture of methyltertiarybutylether (MTBE) in which methanol and a mixture of C/sub 4/ hydrocarbons containing isobutylene are contacted in a reaction zone containing an ion-exchange resin catalyst under suitable conditions to effect the reaction of methanol and isobutylene to produce a reaction product containing MTBE, unreacted methanol, unreacted isobutylene and other C/sub 4/ hydrocarbons, the reaction product is introduced to a fractionation zone wherein it is separated into a bottoms product comprising essentially MTBE and an overhead product containing unreacted methanol, unreacted isobutylene, and other C/sub 4/ hydrocarbons, and the overhead product is introduced to an absorption zone wherein the methanol is absorbed; the improvement is described which comprises utilizing silica gel as adsorbent and regenerating the silica gel adsorbent in a closed loop by contacting the silica gel absorbent with a desorption gas stream at an elevated temperature for a sufficient period of time to remove absorbed methanol, cooling the effluent from the adsorption zone to condense desorbed methanol removing desorbed methanol from the system and recycling the desorption gas to the adsorption zone.

  5. Meeting the challenge of MTBE biodegradation

    SciTech Connect (OSTI)

    Eweis, J.B.; Chang, D.P.Y.; Schroeder, E.D.; Scow, K.M. [Univ. of California, Davis, CA (United States); Morton, R.L.; Caballero, R.C. [Los Angeles County Sanitation Districts, Carson, CA (United States). Joint Water Pollution Control Plant

    1997-12-31T23:59:59.000Z

    Oxygenated and reformulated gasolines have been developed in response to air pollution control regulations targeted at reducing carbon monoxide emissions and photochemical air pollution. The 1990 Clean Air Act Amendments required the addition of fuel oxygenates to gasoline in areas where the level of carbon monoxide exceeded national ambient air quality standards. In the South Coast Air Basin gasoline containing oxygenated compounds has been in use since the late 1980`s. One oxygenated fuel additive most often selected by producers to meet the requirements is methyl tert-butyl ether (MTBE). However, large production numbers associated with MTBE production, combined with the compound`s high water solubility, chemical stability, and toxicity, make it a potentially important groundwater pollutant. The County Sanitation District of Los Angeles, Joint Water Pollution Control Plant in Carson, California is one of the few wastewater treatment plants in the nation that receives refinery wastewater discharge. It has operated several pilot-scale compost-based biofilters for control of various volatile organic contaminants throughout the plant since a 1991 joint study with the University of California, Davis. After one year of operation, one of the biofilters spontaneously developed the ability to degrade MTBE. The paper describes the collaborative efforts to determine the feasibility of transferring the degrading microbial population from the solid to liquid phase, without loss of activity, and to determine some of the environmental requirements necessary for survival of the microbial culture.

  6. Gas phase synthesis of MTBE from methanol and isobutene over dealuminated zeolites

    SciTech Connect (OSTI)

    Collignon, F.; Mariani, M.; Moreno, S.; Remy, M.; Poncelet, G. [Universite Catholique de Louvain (Belgium)] [Universite Catholique de Louvain (Belgium)

    1997-02-01T23:59:59.000Z

    Gas phase synthesis of MTBE from methanol and isobutene has been investigated over different zeolites. It is shown that bulk Si/Al ratio has a marked influence on the formation of MTBE. H-beta zeolite was found to be as active as acid Amberlyst-15 (reference catalyst), and noticeably superior to non- and dealuminated forms of H-Y, H-ZSM-5, zeolite omega, and H-mordenites. Screening test results obtained over other catalysts (SAPOs and pillared clays) are briefly commented. The contribution of the external surface of the zeolites to the reaction is discussed. In the case of H-Y zeolites, it is shown that extra framework Al species ({sup 27}Al NMR signal at 30 ppm) have a detrimental effect on the reaction. 64 refs., 12 figs., 3 tabs.

  7. MTBE still facing pressure from ethanol under latest fuel proposal

    SciTech Connect (OSTI)

    Lucas, A.

    1994-01-26T23:59:59.000Z

    The US EPA's finalized reformulated gasoline rule, part of Phase II of the 1990 Clean Air Act, signals a possible turnaround for the sluggish methyl tert-butyl ether (MTBE) market. But if a 30% renewable fuels proposal favoring ethanol passes, pressure could continue for MTBE.

  8. Ecological hazards of MTBE exposure: A research agenda

    SciTech Connect (OSTI)

    Carlsen, T.; Hall, L.; Rice, D.

    1997-03-01T23:59:59.000Z

    Fuel oxygenates are used in metropolitan areas across the United States in order to reduce the amount of carbon monoxide released into the atmosphere during the winter. The most commonly used fuel oxygenate is Methyl tert-butyl ether (MTBE). Its widespread use has resulted in releases into the environment. To date there has been only minimal effort to investigate ecological impacts caused by exposure to concentrations of MTBE typically found in environmental media. Research into the potential for MTBE to adversely affect ecological receptors is essential. Acquisition of such baselines data is especially critical in light of continuing inputs and potential accumulation of MTBE in environmental media. A research Agenda is included in this report and addresses: Assessing Ecological Impacts, Potential Ecological Impacts of MTBE (aquatic organisms, terrestrial organisms), Potential Ecological Endpoints, and A Summary of Research Needs.

  9. Measurement of methyl-tert-butyl-ether (MTBE) in raw drinking water

    SciTech Connect (OSTI)

    Davisson, M L; Koester, C J; Moran, J E

    1999-10-14T23:59:59.000Z

    In order to assess the pathways for human exposure to methyl-tert-butyl-ether (MTBE) and to understand the extent of MTBE contamination in watersheds, a purge and trap gas chromatographic mass spectrometric method to measure part-per-trillion (ppt) concentrations of MTBE in environmental waters was developed. A variety of California's raw drinking waters were analyzed. No detectable MTBE was found in deep groundwater (>1000 feet). However shallow groundwater ({approx}250 feet) contained MTBE concentrations of non-detect to 1300 ppt. MTBE concentrations measured in rivers and lakes ranged from non-detect to 3500 ppt. East (San Francisco) Bay area rain water contained approximately 80 ppt MTBE.

  10. Oxygenates du`jour...MTBE? Ethanol? ETBE?

    SciTech Connect (OSTI)

    Wolfe, R.

    1995-12-31T23:59:59.000Z

    There are many different liquids that contain oxygen which could be blended into gasoline. The ones that have been tried and make the most sense are in the alcohol (R-OH) and ether (R-O-R) chemical family. The alcohols considered are: methanol (MeOH), ethanol (EtOH), tertiary butyl alcohol (TBA). The ethers are: methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), tertiary amyl ethyl ether (TAEE), di-isopropyl ether (DIPE). Of the eight oxygenates listed above, the author describes the five that are still waiting for widespread marketing acceptance (methanol, TBA, TAME, TAEE, and DIPE). He then discusses the two most widely used oxygenates in the US, MTBE and ethanol, along with the up-and-coming ethanol ether, ETBE. Selected physical properties for all of these oxygenates can be found in Table 2 at the end of this paper. A figure shows a simplified alcohol/ether production flow chart for the oxygenates listed above and how they are interrelated.

  11. Health studies indicate MTBE is safe gasoline additive

    SciTech Connect (OSTI)

    Anderson, E.V.

    1993-09-01T23:59:59.000Z

    Implementation of the oxygenated fuels program by EPA in 39 metropolitan areas, including Fairbanks and Anchorage, Alaska, in the winter of 1992, encountered some unexpected difficulties. Complaints of headaches, dizziness, nausea, and irritated eyes started in Fairbanks, jumped to Anchorage, and popped up in various locations in the lower 48 states. The suspected culprit behind these complaints was the main additive for oxygenation of gasoline is methyl tert-butyl ether (MTBE). A test program, hastily organized in response to these complaints, has indicated that MTBE is a safe gasoline additive. However, official certification of the safety of MTBE is still awaited.

  12. MTBE growth limited despite lead phasedown in gasoline

    SciTech Connect (OSTI)

    Storck, W.

    1985-07-15T23:59:59.000Z

    This month's legislated reduction of the allowable amount of lead additives in gasoline will increase demand strongly for methyl-tert-butyl ether (MTBE) as an octane enhancer, but the economics of the refinery business and the likelihood of rapidly increasing high-octane gasoline imports probably will limit the size of the business in coming years. MTBE will be used to fill the octane gap now, but economics and imports of gasoline later on could hold down demand. The limited growth in sales of MTBE is discussed.

  13. Remediation of overlapping benzene/MTBE and MTBE-only plumes: A case study

    SciTech Connect (OSTI)

    Carpenter, P.L. [TolTest, Inc., Pittsburgh, PA (United States); Vinch, C.A. [Ryder Transportation Services, Lawrenceville, NJ (United States)

    1997-12-31T23:59:59.000Z

    Two overlapping dissolved hydrocarbon plumes were identified in the shallow water-bearing zone at a commercial vehicle service and fueling facility. Plume 1 originated from a pre-1993 gasoline product line/dispenser leak. This plume contained a relatively common mix of benzene, toluene, ethylbenzene, xylenes (BTEX), and methyl tert-butyl ether (MTBE); benzene and MTBE were identified as the Plume 1 contaminants of concern based on their detection at approximately 200 {mu}g/l each, which exceeded regulatory guidance. Plume 2, which was detected in the tank cavity during UST removal, resulted from gasoline line leaks/underground storage tank overfills. Although the majority of impacted soils in both the dispenser and tank cavity areas were removed during UST excavation, rainfall during impacted soil removal mobilized the MTBE contained in the soils to groundwater. As a result, Plume 2 contained approximately 900 {mu}g/l MTBE while BTEX compounds were non-detect. Although the impacted zone sustained an approximate yield of only 0.3 gallon per minute, Pennsylvania regulations dictate that this zone must be treated as an aquifer. The failure of remediating gasoline plumes using pump-and-treat has been predominantly due to BTEX`s tendency to adsorb onto soil, creating a residual-phase product layer which acts as a continuing source of dissolved-phase BTEX. Based on this experience, most groundwater and remediation professionals reject pump-and-treat as a viable remedial option, except in situations where controlling groundwater movement is the predominant goal.

  14. Feasibility of using bioaugmentation with bacterial strain PM1 for bioremediation of MTBE-contaminated vadose and groundwater environments

    E-Print Network [OSTI]

    Scow, Kate M; Hristova, Krassimira

    2001-01-01T23:59:59.000Z

    2000. "In Situ Treatment of MTBE by Biostimulation of NativeAmerican Petroleum Institute MTBE Biodegradation Workshop,Detection and Quantification of MTBE-degrading Strain PM1 by

  15. Feasibility of using bioaugmentation with bacterial strain PM1 for bioremediation of MTBE-contaminated vadose and groundwater environments

    E-Print Network [OSTI]

    Scow, Kate M; Hristova, Krassimira

    2001-01-01T23:59:59.000Z

    Tahoe City, CA. 9/18/00. Bioremediation of MTBE-Contaminated2000, DC Davis, CA Bioremediation of MTBE at Port HeuenemeRiverside. 5/31101 Bioremediation of MTBE through

  16. The Social Costs of an MTBE Ban in California

    E-Print Network [OSTI]

    Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

    2005-01-01T23:59:59.000Z

    in Gasoline. ” Annual Energy Outlook 2000. DOE/EIA-0383,in Gaso- line. ” Annual Energy Outlook 2000. DOE/EIA-0383,MTBE in Gasoline,” Annual Energy Outlook 2000, 2001a. Mazur,

  17. REFERENCE SHEET FOR SELECTED FIELDS OF ACQUISITIONS ORDER AND ITEM RECORDS BIBLIOGRAPHER LIST: http://ucblibraries.colorado.edu/services/bibliographers.htm

    E-Print Network [OSTI]

    Stowell, Michael

    ://ucblibraries.colorado.edu/services/bibliographers.htm CALL NUMBER/LOCATION CHART: http://ucblibraries.colorado.edu/about/classification.htm FIELD 01 ACQ TYPE materials h shared purchase scimo sci TS ENG g gov docs m spec membership spcmo spc TT ART j serials o s

  18. Colorado Air Pollution Control Division - Construction Permits...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Web Site: Colorado Air Pollution Control Division - Construction Permits Forms and Air Pollutant Emission Notices (APENs)...

  19. Modeling the atmospheric inputs of MTBE to groundwater systems

    SciTech Connect (OSTI)

    Pankow, J.F.; Johnson, R.L. [Oregon Graduate Inst., Portland, OR (United States). Dept. of Environmental Science and Engineering; Thomson, N.R. [Univ. of Waterloo, Ontario (Canada). Dept. of Civil Engineering

    1995-12-31T23:59:59.000Z

    A numerical transport model was used to calculate the movement of methyl-t-butyl ether (MTBE) and several other volatile organic compounds (VOCs) from the atmosphere downward through the unsaturated zone and into shallow groundwater. Simulations were carried out for periods as long as 10 years to investigate whether a gaseous atmospheric MTBE source at typical ambient concentrations could account for the presence of MTBE in shallow groundwater at the types of low ug/L levels that have been found during the National Water Quality Assessment Program currently being conducted by the US Geological Survey. The simulations indicate that downward movement of MTBE to shallow groundwater will be very slow when there is no net downward movement of water through the vadose zone. For example, for a vadose zone composed of fine sand, and assuming tens of cm of infiltration, then only a few years will be required for water at a water table that is 5.0 m below ground surface to attain MTBE levels that correspond to saturation with respect to the atmospheric source gaseous concentration. An on/off atmospheric source, as might occur in the seasonal use of MTBE, will lead to concentrations in shallow groundwater that correspond to saturation with the time-averaging atmospheric source concentration.

  20. The social costs of an MTBE ban in California (Long version)

    E-Print Network [OSTI]

    Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

    2002-01-01T23:59:59.000Z

    Ethanol, Non-oxy Case D'( p) MTBE Case D(p) U.S. Supply S(p)NO. 932 THE SOCIAL COSTS OF AN MTBE BAN IN CALIFORNIA (LONGMTBE .

  1. Colorado Regional Faults

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Colorado Geological Survey (CGS) Publication Date: 2012 Title: Regional Faults Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the regional faults of Colorado Spatial Domain: Extent: Top: 4543192.100000 m Left: 144385.020000 m Right: 754585.020000 m Bottom: 4094592.100000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  2. Colorado Electrical Transmission Grid

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Xcel Energy Publication Date: 2012 Title: Colorado XcelEnergy NonXcel Transmission Network Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains transmission network of Colorado Spatial Domain: Extent: Top: 4540689.017558 m Left: 160606.141934 m Right: 758715.946645 m Bottom: 4098910.893397m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shapefile

  3. Geothermal Prospects in Colorado

    Broader source: Energy.gov [DOE]

    Geothermal Prospects in Colorado presentation at the April 2013 peer review meeting held in Denver, Colorado.

  4. Author's personal copy Automobile proximity and indoor residential concentrations of BTEX and MTBE

    E-Print Network [OSTI]

    Siegel, Jeffrey

    Author's personal copy Automobile proximity and indoor residential concentrations of BTEX and MTBE to indoor benzene and MTBE concentrations appeared to have been dominated by car exhaust concentrations of other BTEX components and methyl tert-butyl ether (MTBE) have been reported [5,6]. Up until

  5. Biotreatment of groundwater contaminated with MTBE: interaction of common environmental co-contaminants

    E-Print Network [OSTI]

    Biotreatment of groundwater contaminated with MTBE: interaction of common environmental co November 2005 Key words: aerobic, biodegradation, BTEX, co-contaminant, MTBE, TBA Abstract Contamination of groundwater with the gasoline additive methyl tert-butyl ether (MTBE) is often accompanied by many aromatic

  6. Atmospheric Methyl Tertiary Butyl Ether (MTBE) at a Rural Mountain Site in California

    E-Print Network [OSTI]

    Cohen, Ronald C.

    Atmospheric Methyl Tertiary Butyl Ether (MTBE) at a Rural Mountain Site in California Gunnar W. Schade,* Gabrielle B. Dreyfus, and Allen H. Goldstein ABSTRACT (CARB) measured MTBE in urban regions in 1995­ 1996, reporting a range of 0.4 to 13.2 ppbv in the LosMethyl tertiary butyl ether (MTBE

  7. Atmosphere-Water Interaction of Chloroform, Toluene, and MTBE in Small Perennial Urban Streams

    E-Print Network [OSTI]

    Atmosphere-Water Interaction of Chloroform, Toluene, and MTBE in Small Perennial Urban Streams-butyl ether (MTBE) are frequently detected VOCs in the atmosphere, surface water, and ground water in urban not be the predominant source of chloroform and toluene in the two urban streams. In contrast, MTBE may be coming from

  8. Environmental Microbiology (2001) 3(6), 407416 Methyl tert-butyl ether (MTBE) degradation by a

    E-Print Network [OSTI]

    Environmental Microbiology (2001) 3(6), 407±416 Methyl tert-butyl ether (MTBE) degradation of California, Riverside, Riverside, CA 92521, USA. Summary The widespread use of methyl tert-butyl ether (MTBE is often proposed as the most promising alter- native after treatment. However, MTBE biodegradation appears

  9. IDENTIFYING THE USAGE PATTERNS OF METHYL TERT-BUTYL ETHER (MTBE) AND OTHER OXYGENATES IN GASOLINE USING GASOLINE

    E-Print Network [OSTI]

    IDENTIFYING THE USAGE PATTERNS OF METHYL TERT-BUTYL ETHER (MTBE) AND OTHER OXYGENATES IN GASOLINE 1608 Mt. View Rapid City, SD 57702 Methyl tert-butyl ether (MTBE) is commonly added to gasoline. In 1998, 11.9 billion liters of MTBE were produced in the U.S. MTBE has been detected frequently

  10. US refiners choose variety of routes to MTBE

    SciTech Connect (OSTI)

    Rhodes, A.K.

    1992-09-07T23:59:59.000Z

    This paper reports that refiners and merchant manufacturers in the U.S. are gearing up to produce the large volumes of methyl tertiary butyl ether (MTBE) needed to comply with oxygenated gasoline requirements. The 1990 U.S. Clean Air Act Amendments specify that, as of the first of this coming November, gasoline containing a minimum of 2.7 wt % oxygen must be sold in 39 CO-nonattainment cities. Refiners and others are scurrying to bring MTBE capacity on line in time to meet this requirement. Many U.S. refiners already have some operating MTBE capacity, but this will not be nearly enough to meet the looming increase in demand. As a result, additional capacity is being constructed worldwide.

  11. Effect of lower feedstock prices on economics of MTBE complex

    SciTech Connect (OSTI)

    Rahman, F.; Hamid, S.H.; Ali, M.A. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia)

    1996-01-01T23:59:59.000Z

    Economic evaluation of the methyl tertiary butyl ether (MTBE) complex was carried out starting from n-butane and by captive production of methanol from natural gas. The processing steps consist of isomerization of n-butane to isobutane, dehydrogenation of isobutane to make isobutene, and finally, the reaction of isobutene with methanol to produce MTBE. Two different plant sizes were considered, and the effect of 30% lower feedback prices on profitability was studied. It was found that the raw materials cost is a dominant component, composing about 55% of the total production cost. An internal rate of return of 19% could be realized for 500,000 tons per annum MTBE complex based on economic data in mid-1993. The payback period estimated at this capacity was 3.8 years, and the break-even capacity was 36.6%.

  12. Determination of methyl tert. butyl ether (MTBE) in gasoline

    SciTech Connect (OSTI)

    Feldman, J.; Orchin, M. (Univ. of Cincinnati, OH (United States))

    1993-02-01T23:59:59.000Z

    A GLC-acid extraction method is described for the determination of MTBE in gasolines. The method consists of a programmed GLC analysis starting at about room temperature conducted before and after extraction with cold 85% phosphoric acid. This treatment results in the preferential solubility of ethers and other oxygenated compounds while minimizing the reaction of olefins and aromatics which may be present in the gasolines. Plotting various known concentrations of MTBE in gasolines against the concentrations determined in the same samples by the authors methodology results in a straight line relationship. The concentration of MTBE in any sample of gasoline may thus be determined using their GLC-extraction procedure and the calibration line. The analysis can accommodate a wide choice of standard GLC columns and programs. 2 refs., 1 fig., 1 tab.

  13. MTBE, Oxygenates, and Motor Gasoline (Released in the STEO October 1999)

    Reports and Publications (EIA)

    1999-01-01T23:59:59.000Z

    The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an increase in MTBE production between 1990 and 1994. MTBE demand increased from 83,000 in 1990 to 161,000 barrels per day in 1994. The reformulated gasoline (RFG) program provided a further boost to oxygenate blending. The MTBE contained in motor gasoline increased to 269,000 barrels per day by 1997.

  14. The current status of the U.S. MTBE industry

    SciTech Connect (OSTI)

    Rose, G.M. [Global Octanes Corp., Houston, TX (United States)

    1995-12-31T23:59:59.000Z

    This paper reviews the status of the MTBE industry from its beginnings as a result of the Clean Air Act Amendments and the need for the use of oxygenates in non-attainment areas. During 1990--93 three world scale merchant plants were constructed and in 1994 two more were brought on stream. The paper tabulates reasons why MTBE gained the lion`s share of the oxygenates market. Finally the paper discusses the problems that now plague the industry and their causes.

  15. Colorado Potential Geothermal Pathways

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Colorado PRS Cool Fairways Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the weakened basement rocks. Isostatic gravity was utilized to identify structural basin areas, characterized by gravity low values reflecting weakened basement rocks. Together interpreted regional fault zones and basin outlines define geothermal "exploration fairways", where the potential exists for deep, superheated fluid flow in the absence of Pliocene or younger volcanic units Spatial Domain: Extent: Top: 4544698.569273 m Left: 144918.141004 m Right: 763728.391299 m Bottom: 4094070.397932 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  16. Heterogeneous models of tubular reactors packed with ion-exchange resins: Simulation of the MTBE synthesis

    SciTech Connect (OSTI)

    Quinta Ferreira, R.M.; Almeida-Costa, C.A. [Univ. of Coimbra (Portugal). Dept. of Chemical Engineering; Rodrigues, A.E. [Univ. of Porto (Portugal). Dept. of Chemical Engineering

    1996-11-01T23:59:59.000Z

    The study of behavior of fixed-bed reactors using ion-exchange resins as catalysts was carried out by making use of a complete bidimensional heterogeneous model for the reactor, which included the resistances inside the ion-exchange resin particles, considered with a macroreticular structure. The active sites were located inside the gel phase of the resin, represented by microspheres, and on the macropores walls. The overall efficiency of such heterogeneous catalyst particles was defined by the macroeffectiveness and microeffectiveness factors accounting for the process behavior on the macropores and inside the microspheres. The synthesis of methyl tert-butyl ether, MTBE, a liquid-phase reversible exothermic reaction between methanol and isobutene, was considered as a reference case. This system was studied in the temperature range of 313--338 K, and the effect of the thermodynamic equilibrium conditions was examined. The results predicted by the complete heterogeneous model were compared with those obtained with the simple pseudohomogeneous model, which revealed higher hot spots. Moreover, a comparison between bidimensional and unidimensional models was also performed. The orthogonal collocation method was used for the discretization of the differential equations inside the catalyst particles, which were reduced from three (corresponding to the three mass balances for the three compounds, isobutene, methanol, and MTBE) to only one differential equation, by using the concept of the generalized variable.

  17. Synthesis of MTBE during CO hydrogenation: Reaction sites required

    SciTech Connect (OSTI)

    Kazi, A.M.; Goodwin, J.G. Jr.; Marcelin, G.; Oukaci, R. [Univ. of Pittsburgh, PA (United States). Dept. of Chemical and Petroleum Engineering

    1995-03-01T23:59:59.000Z

    Synthesis of methyl tert-butyl ether (MTBE) during carbon monoxide (CO) hydrogenation has been studied with the following reaction schemes: (1) the addition of isobutylene during CO hydrogenation over metal catalysts active for methanol synthesis (Pd/SiO{sub 2} and Li-Pd/SiO{sub 2}) and (2) the addition of isobutylene during CO hydrogenation over a dual bed configuration consisting of Li-Pd/SiO{sub 2} and a zeolite (H-ZSM-5 or HY). The addition of isobutylene during methanol synthesis over the supported Pd catalysts indicated that MTBE cannot be formed on metal sites from a reaction of isobutylene with methanol precursors. However, addition of isobutylene to the syngas feed over a dual bed consisting of a methanol synthesis catalyst and an acid zeolite downstream of the methanol synthesis catalyst showed that MTBE can be synthesized during CO hydrogenation provided acid sites are available. In order to get higher conversions of methanol to MTBE, optimization of the acid catalyst and/or reaction conditions would be required to minimize formation of byproduct hydrocarbons.

  18. Reactant adsorption and its impact upon MTBE synthesis on zeolites

    SciTech Connect (OSTI)

    Kogelbauer, A.; Nikolopoulos, A.A.; Goodwin, J.G. Jr.; Marcelin, G. [Univ. of Pittsburgh, PA (United States)] [Univ. of Pittsburgh, PA (United States)

    1995-03-01T23:59:59.000Z

    Zeolites show interesting properties as catalysts for MTBE synthesis from methanol and isobutene such as a high selectivity to MTBE even at a low methanol/isobutene feed ratio. In order to explain this high selectivity, the adsorption behaviors of HY and HZSM-5 zeolites and their impact on activity and selectivity for MTBE synthesis were studied. Adsorption experiments, carried out under conditions similar to those used for reaction, showed that ca. 2.5 molecules of methanol were adsorbed per acid site on HZSM-5 and HY zeolites, whereas isobutene was found to form a 1:1 adsorption complex. The excess methanol adsorbed was found to be only weakly bonded, probably via hydrogen bonds. On a commercially used resin catalyst (Amberlyst-15) equal amounts of methanol and isobutene were adsorbed. The higher methanol uptake of the zeolites was paralleled by a higher selectivity to MTBE as compared to the resin catalyst. The increased adsorption of methanol on the zeolites was concluded to play a key role in suppressing the formation of by-products due to isobutene dimerization or oligomerization by decreasing the adsorption of isobutene on the active sites and thereby keeping these sites available for reaction. 40 refs., 5 figs., 3 tabs.

  19. aerobic mtbe biodegradation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aerobic mtbe biodegradation First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Aerobic Biodegradation of...

  20. New low energy process for MTBE and TAME

    SciTech Connect (OSTI)

    Herwig, J.; Schleppinghoff, B.; Schulwitz, S.

    1984-06-01T23:59:59.000Z

    Considered as new bulk petrochemicals of limited feedstocks MTBE (methyltertbutylether) and TAME (tertamylmethylether) need cheap and simple, minimum-cost production processes. The problems in optimizing the etherification are set by specifications for ether products and hydrocarbon raffinates. Working up reaction products from etherification processes containing hydrocarbons, methanol and ether to secure the pure main and side products is difficult because of azeotrope formation of methanol with ethers or hydrocarbons. At EC Erdolchemie GmbH, Cologne, a semicommercial unit with a capacity of 2,500 metric t/y has now been successfully operated for nearly one year producing high purity MTBE (> 99 wt.%) and a raffinate II with methanol content of < 0.05 wt.%. The TAME process has successfully been tested in a 3,000 kg/y TAME pilot plant for almost two years. Based on the operating experience, EC has prepared the engineering for a commercial multiproduct plant, including the production of 30,000 metric t/y MTBE, 15,000 metric t/y TAME and 6,000 metric t/y methylbutenes (TAME cracking product) in the first stage. EC has made application to the authorities for a construction permit. The process for MTBE and TAME will be licensed by EC Erdolchemie GmbH, Postfach 75 20 02, 5000 Cologne 71, West Germany or by Lurgi Kohle und Mineraloltechnik GmbH, Postfach 11 12 31, 6000 Frankfurt Main 2, West Germany.

  1. Impacts of Ethanol on Anaerobic Production of Tert-Butyl Alcohol (TBA) from Methyl Tert-Butyl Ether (MTBE) in Groundwater

    E-Print Network [OSTI]

    Scow, K M; MacKay, Douglas

    2008-01-01T23:59:59.000Z

    Methyl Tert-Butyl Ether (MTBE) in Groundwater P.I. names,Methyl tert-butyl ether (MTBE) is a contaminant of concernsubsurface environments. MTBE appears to be degraded readily

  2. 20052006ColoradoSchoolofMinesUndergraduateBulletin Office of Undergraduate Studies

    E-Print Network [OSTI]

    is for your use as a source of continuing reference. Please save it. Published by Colorado School of Mines

  3. Colorado School of Mines Undergraduate Bulletin 1999-2000 1 School of Mines

    E-Print Network [OSTI]

    This Bulletin is for your use as a source of continuing reference. Please save it. Published by Colorado School

  4. nitelluBetaudargrednUseniMfoloohcSodaroloC80-7002 Colorado School of Mines

    E-Print Network [OSTI]

    is for your use as a source of continuing reference. Please save it. Published by Colorado School of Mines

  5. Colorado School of Mines Undergraduate Bulletin 2001-2002 1 School of Mines

    E-Print Network [OSTI]

    This Bulletin is for your use as a source of continuing reference. Please save it. Published by Colorado School

  6. Colorado School of Mines Graduate Bulletin 1999-2000 1 School of Mines

    E-Print Network [OSTI]

    is for your use as a source of continuing reference. Please save it. Published by Colorado School of Mines

  7. State of the Watershed: Water Quality of Boulder Creek, Colorado

    E-Print Network [OSTI]

    State of the Watershed: Water Quality of Boulder Creek, Colorado By Sheila F. Murphy Prepared of the watershed : water quality of Boulder Creek, Colorado / by Sheila Murphy. p. cm. ­(USGS Circular ; 1284) Includes bibliographic references. 1. Water quality -- Colorado -- Boulder Creek Watershed (Boulder

  8. Remediation of MTBE in groundwater: A case where pump-and-treat works

    SciTech Connect (OSTI)

    Bass, D.H.; Riley, B. [Groundwater Technology, Inc., Norwood, MA (United States); Farrell, T. [Groundwater Technology, Inc., Trenton, NJ (United States)

    1994-12-31T23:59:59.000Z

    Two case studies are discussed in which groundwater pumping reduced levels of dissolved methyl tertiary butyl ether (MTBE) in groundwater by more than two orders of magnitude, in some cases to below detection limits. MTBE contamination in groundwater is becoming an important issue due to the increasing prevalence and regulation of this gasoline additive. In addition, MTBE is more mobile in groundwater than most hydrocarbons, so it is usually the first gasoline constituent to reach sensitive receptors. Since its Henry`s constant is low, in situ removal of MTBE from groundwater by air sparging is slow, and MTBE does not rapidly degrade, either biologically or abiotically. Therefore, groundwater pumping is usually employed to contain and collect MTBE-contaminated groundwater. Pumping groundwater can reduce MME levels to below detection limits within a few years, because MTBE in the subsurface is found mostly dissolved in groundwater. In contrast, the more hydrophobic gasoline hydrocarbons exist mostly in pockets of separate phase material and adsorbed to soil particles and dissolve slowly in groundwater. Hydrocarbon concentrations are rarely reduced to closure levels within a reasonable time frame by pumping. Sites in eastern Massachusetts and southern New Jersey, where groundwater was contaminated with MTBE due to releases of unleaded gasoline from underground storage tanks, are discussed. At these sites, average MTBE levels were reduced by two to three orders of magnitude, from several ppm or more to less than 10 ppb within three years by pumping groundwater at 10 to 30 gpm.

  9. MTBE will be a boon to U. S. gas processors

    SciTech Connect (OSTI)

    Otto, K.W. (Purvin and Gertz, Inc. Dallas, TX (United States))

    1993-01-11T23:59:59.000Z

    This paper reports that the advent of methyl tertiary butyl ether (MTBE) as the primary oxygenate blending component for oxygenated and reformulated motor fuels promises significant benefits for the U.S. gas-processing industry. Increased demand for isobutane as MTBE-plant feedstock will buoy both normal butane and isobutane pricing in U.S. gulf Coast during the 1990s. Elimination of the need to crack normal butane in U.S. olefin plants will also strengthen competitive feedstocks somewhat, including ethane and propane. And increased use of normal butane as isomerization feedstock will result in wider recognition of the premium quality of gas plant normal butane production compared to most refinery C[sub 4] production.

  10. The evolution of fuel: A dissertation on MTBE and elastomers

    SciTech Connect (OSTI)

    Smith, G.M. [General Valve Co., Brookshire, TX (United States)

    1995-12-31T23:59:59.000Z

    This paper begins with a history of the development of the internal combustion engine and the need for a fuel octane booster that would also be non-polluting. The use of ethers as fuel additives cause a compatibility problem with valve sealing materials. The main purpose of this presentation is to address this compatibility problem. The paper makes specific recommendations for the author`s General Twin Seal, describing the seal components (slip seal, bonnet and lower plate O-rings, gland O-rings, bearing retainer O-rings, and pressure relief device seals) and which materials these components should be manufactured from to be compatible with the following fuel additives: toluene, MTBE, and various mixtures of toluene and MTBE.

  11. MTBE movements between Texas Gulf Coast plants to be enhanced

    SciTech Connect (OSTI)

    Not Available

    1992-07-27T23:59:59.000Z

    This paper reports that Texas Eastern Products Pipeline Co. (Teppco), Houston, has begun construction of its shuttle pipeline, a 10-mile, 6 and 8-in. line to move methyl tertiary butyl ether (MTBE) between producers and refiners along the Houston Ship Channel. Funding for the project has been approved, rights-of-way are secured, and procurement of materials is under way, according to Teppco. The line will flow from the western edge of Shell's refinery eastward to storage facilities of Teppco's Baytown terminal. The shuttle pipeline anticipates the US requirement for oxygenated gasolines that takes effect Nov. 1. Approximately 70% of the available US merchant capacity for MTBE is located along the shuttle's path, Teppco says.

  12. Race to license new MTBE and TAME routes heats up

    SciTech Connect (OSTI)

    Rotman, D.

    1993-01-06T23:59:59.000Z

    With refineries and petrochemical manufacturers continuing to gear up production of oxygenates for use in reformulated fuels, new routes to methyl tert-butyl ether (MTBE) and tert-amyl methyl ether (TAME) are clearly hot items in the licensing market. And probably nowhere has the competition become as intense as in offerings for skeletal isomerization technologies to boost ethers production from fluid catalytic cracking and steam cracking.

  13. MTBE catalyst shows increased conversion in commercial unit

    SciTech Connect (OSTI)

    Not Available

    1994-10-10T23:59:59.000Z

    Rising demand for methyl tertiary butyl ether (MTBE) has spawned interest in finding a cost-effective means of increasing production from existing units. A commercial trial of an improved MTBE catalyst was conducted recently at Lyondell Petrochemical Co.'s Channelview, Tex., plant. The new catalyst called Amberlyst 35 Wet, enhanced oxygenate production in the Lyondell trial. The new catalyst changes the activity coefficients of at least one of the components of the MTBE reaction, resulting in higher equilibrium conversion relative to its first-generation counterpart. Key catalyst properties are: particle size, 0.4--1.25 mm; Apparent density, 0.82 g/ml; Surface area, 44 sq m/g; Moisture content, 56%; Concentration of acid sites, 1.9 meq/ml (5.4 meq/g); Porosity, 0.35 cc/g; and Average pore diameter, 300 [angstrom]. Suggested operating conditions are: maximum temperature, 284 F (140 C); minimum bed depth, 24 in. (0.61 m); and liquid hourly space velocity (LHSV), 1--5 hr[sup [minus]1].

  14. Watching ColoradoWatching Colorado WeatherWeather

    E-Print Network [OSTI]

    ­ Evapotranspiration #12;CoAgMet Southeast Colorado #12;Hoehne CoAgMet Weather Station #12;Hoehne Daily Temperatures #12;Hoehne Relative Humidity #12;Hoehne Solar Radiation #12;Hoehne Wind Speed #12;Hoehne ET Reference Hoehne ET Reference 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 Jan-04 Jan-04 Feb-04 M ar-04 M

  15. Pilot-scale evaluation of chemical oxidation for MTBE-contaminated soil

    SciTech Connect (OSTI)

    Rahman, M.; Schupp, D.A.; Krishnan, E.R.; Tafuri, A.N.; Chen, C.T.

    1999-07-01T23:59:59.000Z

    The US Environmental Protection Agency (USEPA) has tentatively classified MTBE as a possible human carcinogen, thus further emphasizing the importance for study of fate, transport, and environmental effects of MTBE. The treatment of subsurface contaminants (e.g., MTBE) from leaking underground storage tank (LUST) sites presents many complex challenges. Many techniques have been employed for the remediation of contaminants in soil and groundwater at LUST sites. Under sponsorship of US EPA's National Risk Management Research Laboratory, IT Corporation has conducted evaluations of chemical oxidation of MTBE contaminated soil using Fenton's Reagent (hydrogen peroxide catalyzed by ferrous sulfate), simulating both ex-situ and in-situ soil remediation. Bench-scale ex-situ tests have shown up to 90% degradation of MTBE within 12 hours. Pilot-scale MTBE oxidation tests were conducted in a stainless paddle-type mixer with a 10 cubic foot mixing volume. The reactor was designed with a heavy duty mixer shaft assembly to homogenize soil and included provisions for contaminant and reagent addition, mixing, and sample acquisition. The tests were performed by placing 400 pounds of a synthetic soil matrix (consisting of a mixture of top soil, sand, gravel and clay) in the reactor, spiking with 20 ppm of MTBE, and mixing thoroughly. The variables evaluated in the pilot-scale tests included reaction time, amount of hydrogen peroxide, and amount of ferrous sulfate. After 8 hours of reaction, using 4 times the stoichiometric quantity of hydrogen peroxide and a 10:1 hydrogen peroxide: ferrous iron weight ratio, approximately 60% MTBE degradation was observed. When 10 times the stoichiometric quantity of hydrogen peroxide was used (with the same ratio of hydrogen peroxide to ferrous iron), 90% MTBE degradation was observed. When the same test was performed without any ferrous iron addition, 75% MTBE degradation was observed.

  16. Detections of MTBE in surficial and bedrock aquifers in New England

    SciTech Connect (OSTI)

    Grady, S.J. [Geological Survey, Hartford, CT (United States)

    1995-12-31T23:59:59.000Z

    The gasoline additive methyl tert-butyl ether (MTBE) was detected in 24% of water samples collected from surficial and bedrock aquifers in areas of New England. MTBE was the most frequently detected volatile organic compound among the 60 volatile chemicals analyzed and was present in 33 of 133 wells sampled from July 1993 through September 1995. The median MTBE concentration measured in ground-water samples was 0.45 microgram per liter and concentrations ranged from 0.2 to 5.8 microgram per liter. The network of wells sampled for MTBE consisted of 103 monitoring wells screened in surficial sand-and-gravel aquifers and 30 domestic-supply wells in fractured crystalline bedrock aquifers. Seventy-seven percent of all MTBE detections were from 26 shallow monitoring wells screened in surficial aquifers. MTBE was detected in42% of monitoring wells in urban areas. In agricultural areas, MTBE was detected i 8% (2 of 24) of wells and was not detected in undeveloped areas. Sixty-two percent of the MTBE detections in surficial aquifers were from wells within 0.25 mile of gasoline stations or underground gasoline storage tanks; all but one of these wells were in Connecticut and Massachusetts, where reformulated gasoline is used. MTBE was detected in 23% of deep domestic-supply wells that tapped fractured bedrock aquifers. MTBE was detected in bedrock wells only in Connecticut and Massachusetts; land use near the wells was suburban to rural, and none of the sampled bedrock wells were within 0.25 mile of a gasoline station.

  17. Reference Buildings by Climate Zone and Representative City:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Reference Buildings by Climate Zone and Representative City: 5B Boulder, Colorado Reference Buildings by Climate Zone and Representative...

  18. A near infrared regression model for octane measurements in gasolines which contain MTBE

    SciTech Connect (OSTI)

    Maggard, S.M. (Ashland Petroleum Co., KY (USA))

    1990-01-01T23:59:59.000Z

    Near infrared (NIR) spectroscopy has emerged as a superior technique for the on-line determination of octane during the blending of gasoline. This results from the numerous advantages that NIR spectroscopy has over conventional on-line instrumentation. Methyl t-butyl ether (MTBE) is currently the oxygenated blending component of choice. MTBE is advantageous because it has a high blending octane, a low Reid vapor pressure, is relatively cheap, and does not form peroxides (1). The goal of this project was to develop a NIR regression model that could be used to predict pump octanes regardless of whether they contained MTBE.

  19. Reference Buildings by Climate Zone and Representative City:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    B Boulder, Colorado Reference Buildings by Climate Zone and Representative City: 5B Boulder, Colorado In addition to the ZIP file for each building type, you can directly view the...

  20. New processes to recovery methanol and remove oxygenates from Valero MTBE unit

    SciTech Connect (OSTI)

    Hillen, P.; Clemmons, J.

    1987-01-01T23:59:59.000Z

    The refiner today has to evaluate every available option to increase octane in the gasoline pool to make up for the loss in octane created by lead phase down. Production of MTBE is one of the most attractive options. MTBE is produced by selectivity reacting isobutylene with methanol. Valero Refining's refinery at Corpus Christie, Texas (formerly Saber Refining) is one of the most modern refineries built in the last decade to upgrade resids. As part of the gasoline upgrading Valero had built a Butamer Unit to convert normal butane to isobutane upstream of their HF Alkylation Unit. In 1984 as an ongoing optimization of its operations, Valero Refining evaluated various processes to enable it to increase the octane output, and decided to build an MTBE unit. Valero selected the MTBE process licensed by Arco Technology, Inc. and contracted with Jacobs Engineering Group, Inc., Houston, Texas to provide detailed engineering and procurement services.

  1. Lyondell`s new isobutylene route could fuel an MTBE capacity boost

    SciTech Connect (OSTI)

    Rotman, D.; Wood, A.

    1992-03-25T23:59:59.000Z

    Driven by the hot growth prospects for methyl tert-butyl ether (MTBE), Lyondell Petrochemical (Houston) has developed a route to isobutylene it claims can produce the MTBE feedstock at half the capital cost of alternative synthesis technology. If proved, the process will be used in a new 7500-10,000 bbl/day MTBE plant at Channelview, TX. Lyondell also hopes to license the technology. {open_quotes}With expanding MTBE capacity, we will have to have new routes to isobutylene,{close_quotes} says Bob G. Gower, president and CEO of Lyondell. {open_quotes}We think this is a good fit within Lyondell, but also that it is important technology.{close_quotes} Gower declines to detail its specifics, but says it is a one-step isomerization of n-butenes to isobutylene. The firm has tested the process at a pilot unit and plans a demonstration unit in 1992.

  2. Automobile proximity and indoor residential concentrations of BTEX and MTBE

    SciTech Connect (OSTI)

    Corsi, Dr. Richard [University of Texas, Austin; Morandi, Dr. Maria [University of Texas Health Science Center, Houston; Siegel, Dr. Jeffrey [University of Texas, Austin; Hun, Diana E [ORNL

    2011-01-01T23:59:59.000Z

    Attached garages have been identified as important sources of indoor residential air pollution. However, the literature lacks information on how the proximity of cars to the living area affects indoor concentrations of gasoline-related compounds, and the origin of these pollutants. We analyzed data from the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study and evaluated 114 residences with cars in an attached garage, detached garage or carport, or without cars. Results indicate that homes with cars in attached garages were affected the most. Concentrations in homes with cars in detached garages and residences without cars were similar. The contribution from gasoline-related sources to indoor benzene and MTBE concentrations appeared to be dominated by car exhaust, or a combination of tailpipe and gasoline vapor emissions. Residing in a home with an attached garage could lead to benzene exposures ten times higher than exposures from commuting in heavy traffic.

  3. Traitement biologique in situ au sein d'un aquifre de polluants de type ETBE et MTBE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Traitement biologique in situ au sein d'un aquifère de polluants de type ETBE et MTBE Yves Benoit Villeurbanne (6) CNRS, UMR5557, Ecologie Microbienne ­ 69100 Villeurbanne Résumé Le MtBE et l' EtBE sont des : Traçabilité, Innocuité, Efficacité: Application aux polluants pétroliers type MTBE, ETBE), financé par le pôle

  4. Colorado - C.R.S. 40-5-101 - New Construction - Extension - Compliance...

    Open Energy Info (EERE)

    - New Construction - Extension - Compliance with Local Zoning Rules Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Colorado -...

  5. Non-Lawyers' Guide to Hearings before the Colorado Ground Water...

    Open Energy Info (EERE)

    Lawyers' Guide to Hearings before the Colorado Ground Water Commission Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Guide...

  6. RELATIONS BETWEEN THE DETECTION OF METHYL TERT-BUTYL ETHER (MTBE) IN SURFACE AND GROUND WATER AND ITS CONTENT IN GASOLINE

    E-Print Network [OSTI]

    RELATIONS BETWEEN THE DETECTION OF METHYL TERT-BUTYL ETHER (MTBE) IN SURFACE AND GROUND WATER.S. Geological Survey 1608 Mt. View Rapid City, SD 57702 Methyl tert-butyl ether (MTBE) is commonly used today, the one used most commonly is MTBE. To meet the oxygen requirements of the CAA Amendments, gasoline

  7. Photoionization of methyl t-butyl ether (MTBE) and t-octyl methyl ether (TOME) and analysis of their pyrolyses by

    E-Print Network [OSTI]

    Morton, Thomas Hellman

    Photoionization of methyl t-butyl ether (MTBE) and t-octyl methyl ether (TOME) and analysis 1999; accepted 20 July 1999 Abstract The pyrolysis products of neutral methyl-d3 t-butyl ether (MTBE-d3 from thermal cracking patterns. MTBE and TOME both exhibit base peaks at m/z 73 (which shifts to m/z 76

  8. One multivariable controller increased capacity of an Oleflex{trademark}/MTBE complex

    SciTech Connect (OSTI)

    Robertson, D.; Peterson, T.J.; O`Connor, D. [Dynamic Matrix Control Corp., Houston, TX (United States); Adams, V.; Payne, D. [Valero Refining Co., Corpus Christi, TX (United States)

    1996-12-01T23:59:59.000Z

    Capacity increased by more than 4.6% when one dynamic matrix controller began operating in Valero Refining Company`s MTBE production complex in Corpus Christi, Texas. This was on a plant that was already running well above design capacity due to process changes previously made on the plant. A single controller was developed to cover an Oleflex{trademark} isobutane dehydrogenation unit and an MTBe reaction and fractionation plant with the intermediate isobutylene surge drum. The overall benefit is realized by a comprehensive constrained multivariable predictive controller which properly handles all sets of limits experienced by the complex, whether limited by the front-end Oleflex{trademark} or back-end MTBE unit. The controller has 20 manipulated, 6 disturbance and 44 controlled variables, and covers widely varying dynamics with settling times ranging from twenty minutes to six hours. The controller executes each minute with a six hour time horizon. A unique achievement is intelligent handling of the surge drum level by the controller for higher average daily capacity of the complex as a whole. The Oleflex{trademark} often operates at simultaneous limits on reactor effluent compressor capacity, cold box temperature and hydrogen/hydrocarbon ratio and the MTBE at impurity in butene column overhead as well as impurity in MTBE product.

  9. Biodegradation of methyl tertiary butyl ether (MTBE) using a granular activated carbon trickling filter

    SciTech Connect (OSTI)

    Converse, B.M.; Schroeder, E.D.; Chang, D.P.Y.

    1999-07-01T23:59:59.000Z

    A pilot scale trickling filter was constructed using granular activated carbon (GAC) as the packing medium and inoculated with a microbial culture known to degrade MTBE. The packing dimensions were 0.076 m in diameter and 0.22 m deep. The unit operated with recycling flow for two months before a biofilm was observed on the GAC. After two additional months the biofilm had visibly spread throughout the packing. A few pieces of GAC were placed in a sealed bottle with MTBE-contaminated water and nutrients. Headspace analysis performed over 14 days confirmed that MTBE degradation was occurring. The trickling filter was converted to continuous flow and operated for one month at a nominal flow rate of 0.1 L/min and a hydraulic loading rate of 32 m{sup 3}/m{sup 2}-d. Samples were collected for analysis at the spray nozzle and at the bottom of the trickling filter. Fractional removal varied with influent MTBE concentration, temperature and liquid flow rate. Percent MTBE removal was as high as 85%. A mechanical failure resulted in the trickling filter bed drying and percent removal dropping to less than 1 percent. However, the system recovered within five days.

  10. Relationship between MTBE-blended gasoline properties and warm-up driveability

    SciTech Connect (OSTI)

    Suzawa, Takumi; Yamaguchi, Kazunori; Kashiwabara, Kimito [Mitsubishi Motors Corp., Tokyo (Japan); Fujisawa, Norihiro; Matsubara, Michiro

    1995-12-31T23:59:59.000Z

    The relationship between MBE-blended gasoline properties and warm-up driveability is investigated by focusing on the transient combustion air-fuel ratio that strongly relates to the combustion state of the engine. As a result, although warm-up driveability of MTBE-free gasoline has a high correlation with 50% distillation temperature (T50) and a high correlation with 100 C distillation volume (E100), the correlation is found to be low when blended with MTBE. Various formulas that improve correlation with peak excess air ratio ({lambda}) by correcting T50 and E100 for the amount of MTBE blended are examined. The formula for which the highest determination coefficient is obtained is proposed as a new driveability index (DI) that can also be applied to MTBE-blended gasoline. In addition, the effect on driveability by gasoline base materials using this new DI also is investigated. The results indicate that the new DI worsen when heavy reformate containing large amounts of aromatics or MTBE, an oxygen-containing compound, is used for the octane improver, leaving the balance of the volatility out of consideration.

  11. Acute toxicity of methyl-tertiary-butyl ether (MTBE) to aquatic organisms

    SciTech Connect (OSTI)

    BenKinney, M.T.; Barbieri, J.F.; Gross, J.S.; Naro, P.A. [Stonybrook Labs. Inc., Princeton, NJ (United States)

    1994-12-31T23:59:59.000Z

    Due to the recent amendment of the Clean Air Act, oxygenates are now being added to gasolines to boost octane and reduce air pollution from combustion in heavily populated areas. Oxygenates such as alcohols (i.e. methanol) and ethers (methyl-tertiary-butyl ether, MTBE) are commonly being used. A series of bioassay studies have been conducted with MTBE, one of the most commonly used octane-enhancing additives. Freshwater and marine studies were conducted with fish, invertebrates and algae to determine the impact of this material on the environment following accidental spills. Static-renewal studies were run to ensure maintenance of MTBE, a highly volatile material in the test containers. Chemical confirmation of exposure concentrations demonstrated the adequacy of the exposure system. Mysid shrimp were highly sensitive to MTBE, with significantly less effect observed with the other species evaluated. These data have implications for spill response, particularly since MTBE is slow to biodegrade and will rapidly move through groundwater. Comparative data for other oxygenates will also be discussed.

  12. Proceedings of the National Groundwater National Ground Water Association Southwest focused ground water conference: Discussing the issue of MTBE and perchlorate in the ground water, Anaheim, CA, June 3-4, pp:87-90.

    E-Print Network [OSTI]

    ground water conference: Discussing the issue of MTBE and perchlorate in the ground water, Anaheim, CA

  13. Aerobic mineralization of MTBE and tert-butyl alcohol by stream-bed sediment microorganisms

    SciTech Connect (OSTI)

    Bradley, P.M.; Landmeyer, J.E.; Chapelle, F.H. [Geological Survey, Columbia, SC (United States)] [Geological Survey, Columbia, SC (United States)

    1999-06-01T23:59:59.000Z

    Microorganisms indigenous to the stream-bed sediments at two gasoline-contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-{sup 14}C]-MTBE and 84% of [U-{sup 14}C]-TBA were degraded to {sup 14}CO{sub 2} under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.

  14. Colorado Statewide Forest Resource Assessment

    E-Print Network [OSTI]

    Colorado Statewide Forest Resource Assessment A Foundation for Strategic Discussion and Private Forestry Redesign Initiative 2 National Guidance for Statewide Forest Resource Assessments 4 The Colorado Statewide Resource Assessment and all appendices are available online on the Colorado State Forest

  15. Manipulation of the HIF–Vegf pathway rescues methyl tert-butyl ether (MTBE)-induced vascular lesions

    SciTech Connect (OSTI)

    Bonventre, Josephine A., E-mail: josephine.bonventre@oregonstate.edu [Rutgers, The State University of New Jersey, Joint Graduate Program in Toxicology, 170 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Rutgers, The State University of New Jersey, Department of Biochemistry and Microbiology, 76 Lipman Dr., New Brunswick, NJ 08901 (United States); Oregon State University, Department of Environmental and Molecular Toxicology, 1011 Agricultural and Life Sciences Bldg, Corvallis, OR 97331 (United States); Kung, Tiffany S., E-mail: tiffany.kung@rutgers.edu [Rutgers, The State University of New Jersey, Joint Graduate Program in Toxicology, 170 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Rutgers, The State University of New Jersey, Department of Biochemistry and Microbiology, 76 Lipman Dr., New Brunswick, NJ 08901 (United States); White, Lori A., E-mail: lawhite@aesop.rutgers.edu [Rutgers, The State University of New Jersey, Joint Graduate Program in Toxicology, 170 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Rutgers, The State University of New Jersey, Department of Biochemistry and Microbiology, 76 Lipman Dr., New Brunswick, NJ 08901 (United States); Cooper, Keith R., E-mail: cooper@aesop.rutgers.edu [Rutgers, The State University of New Jersey, Joint Graduate Program in Toxicology, 170 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Rutgers, The State University of New Jersey, Department of Biochemistry and Microbiology, 76 Lipman Dr., New Brunswick, NJ 08901 (United States)

    2013-12-15T23:59:59.000Z

    Methyl tert-butyl ether (MTBE) has been shown to be specifically anti-angiogenic in piscine and mammalian model systems at concentrations that appear non-toxic in other organ systems. The mechanism by which MTBE targets developing vascular structures is unknown. A global transcriptome analysis of zebrafish embryos developmentally exposed to 0.00625–5 mM MTBE suggested that hypoxia inducible factor (HIF)-regulated pathways were affected. HIF-driven angiogenesis via vascular endothelial growth factor (vegf) is essential to the developing vasculature of an embryo. Three rescue studies were designed to rescue MTBE-induced vascular lesions: pooled blood in the common cardinal vein (CCV), cranial hemorrhages (CH), and abnormal intersegmental vessels (ISV), and test the hypothesis that MTBE toxicity was HIF–Vegf dependent. First, zebrafish vegf-a over-expression via plasmid injection, resulted in significantly fewer CH and ISV lesions, 46 and 35% respectively, in embryos exposed to 10 mM MTBE. Then HIF degradation was inhibited in two ways. Chemical rescue by N-oxaloylglycine significantly reduced CCV and CH lesions by 30 and 32% in 10 mM exposed embryos, and ISV lesions were reduced 24% in 5 mM exposed zebrafish. Finally, a morpholino designed to knock-down ubiquitin associated von Hippel–Lindau protein, significantly reduced CCV lesions by 35% in 10 mM exposed embryos. In addition, expression of some angiogenesis related genes altered by MTBE exposure were rescued. These studies demonstrated that MTBE vascular toxicity is mediated by a down regulation of HIF–Vegf driven angiogenesis. The selective toxicity of MTBE toward developing vasculature makes it a potentially useful chemical in the designing of new drugs or in elucidating roles for specific angiogenic proteins in future studies of vascular development. - Highlights: • Global gene expression of MTBE exposed zebrafish suggested altered HIF1 signaling. • Over expression of zebrafish vegf-a rescues MTBE-induced vascular lesions. • Inhibiting PHD or knocking down VHL rescues MTBE-induced vascular lesions. • HIF1-Vegf driven angiogenesis is a target for MTBE vascular toxicity.

  16. Geothermal Prospects in Colorado

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Prospects in Colorado Geothermal Peer Review Bobi Garrett Deputy Laboratory Director Strategic Programs and Partnerships April 22, 2013 2 NREL Snapshot * Physical Assets Owned by...

  17. Effects of temperature and acidic pre-treatment on Fenton-driven oxidation of MTBE-spent granular activated carbon

    SciTech Connect (OSTI)

    Kan, E.; Huling, S.G. [Robert S. Kerr Environmental Research Center, Ada, OK (United States)

    2009-03-01T23:59:59.000Z

    The effects of temperature and acidic pretreatment on Fenton-driven chemical oxidation of methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC, derived from bituminous coal) were investigated. Limiting factors in MTBE removal in GAC include the heterogeneous distribution of amended Fe, and slow intraparticle diffusive transport of MTBE and hydrogen peroxide (H{sub 2}O{sub 2}) into the 'reactive zone'. Acid pretreatment of GAC before Fe amendment altered the surface chemistry of the GAC, lowered the pH point of zero charge, and resulted in greater penetration and more uniform distribution of Fe in GAC. This led to a condition where Fe, MTBE, and H{sub 2}O{sub 2} coexisted over a larger volume of the GAC contributing to greater MTBE oxidation and removal. H{sub 2}O{sub 2} reaction and MTBE removal in GAC increased with temperature. Modeling H{sub 2}O{sub 2} transport and reaction in GAC indicated that H{sub 2}O{sub 2} penetration was inversely proportional with temperature and tortuosity, and occurred over a larger fraction of the total volume of small GAC particles (0.3 mm diameter) relative to large particles (1.2 mm diameter). Acidic pretreatment of GAC, Fe-amendment, elevated reaction temperature, and use of small GAC particles are operational parameters that improve Fenton-driven oxidation of MTBE in GAC. 29 refs., 6 figs., 1 tab.

  18. of Colorado's Special Issue

    E-Print Network [OSTI]

    Report on the Health of Colorado's Forests Special Issue 2005 Aspen Forests #12;2005 Report the ecology and management of the state's aspen forests and provides an expanded insect and disease update in the management of Colorado's trademark aspen forests. Many of the state's aspen stands are reaching the end

  19. Colorado Heat Flow Data from IHFC

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: The International Heat Flow Commission (IHFC) Publication Date: 2012 Title: Colorado IHFC Data Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: Abstract: This layer contains the heat flow sites and data of the State of Colorado compiled from the International Heat Flow Commission (IHFC) of the International Association of Seismology and Physics of the Earth's Interior (IASPEI) global heat flow database (www.heatflow.und.edu/index2.html). The data include different items: Item number, descriptive code, name of site, latitude and longitude, elevation, depth interval, number of temperature data, temperature gradient, number of conductivity measurement, average conductivity, number of heat generation measurements, average heat production, heat flow, number of individual sites, references, and date of publication. Spatial Domain: Extent: Top: 4522121.800672 m Left: 165356.134075 m Right: 621836.776246 m Bottom: 4097833.419676 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude Of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  20. Iron optimization for Fenton-driven oxidation of MTBE-spent granular activated carbon

    SciTech Connect (OSTI)

    Scott G. Huling; Patrick K. Jones; Tony R. Lee [U.S. Environmental Protection Agency, Ada, OK (United States). Office of Research and Development, National Risk Management Research Laboratory

    2007-06-01T23:59:59.000Z

    Fenton-driven chemical oxidation of methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) was accomplished through the addition of iron (Fe) and hydrogen peroxide (H{sub 2}O{sub 2}) (15.9 g/L; pH 3). The GAC used was URV, a bituminous-coal based carbon. The Fe concentration in GAC was incrementally varied (1020-25 660 mg/kg) by the addition of increasing concentrations of Fe solution (FeSO4{center_dot}7H{sub 2}O). MTBE degradation in Fe-amended GAC increased by an order of magnitude over Fe-unamended GAC and H{sub 2}O{sub 2} reaction was predominantly (99%) attributed to GAC-bound Fe within the porous structure of the GAC. Imaging and microanalysis of GAC particles indicated limited penetration of Fe into GAC. The optimal Fe concentration was 6710 mg/kg (1020 mg/kg background; 5690 mg/kg amended Fe) and resulted in the greatest MTBE removal and maximum Fe loading oxidation efficiency (MTBE oxidized (g)/Fe loaded to GAC(mg/Kg)). At lower Fe concentrations, the H{sub 2}O{sub 2} reaction was Fe limited. At higher Fe concentrations, the H{sub 2}O{sub 2} reaction was not entirely Fe limited, and reductions in GAC surface area, GAC pore volume, MTBE adsorption, and Fe loading oxidation efficiency were measured. Results are consistent with nonuniform distribution of Fe, pore blockage in H{sub 2}O{sub 2} transport, unavailable Fe, and limitations in H{sub 2}O{sub 2} diffusive transport, and emphasize the importance of optimal Fe loading. 22 refs., 6 figs., 2 tabs.

  1. Analysis of dissolved benzene plumes and methyl tertiary butyl ether (MTBE) plumes in ground water at leaking underground fuel tank (LUFT) sites

    SciTech Connect (OSTI)

    Happel, A.M.; Rice, D. [Lawrence Livermore National Lab., CA (United States); Beckenbach, E. [California Univ., Berkeley, CA (United States); Savalin, L.; Temko, H.; Rempel, R. [California State Water Resources Control Board, Sacramento, CA (United States); Dooher, B. [California Univ., Los Angeles, CA (United States)

    1996-11-01T23:59:59.000Z

    The 1990 Clean Air Act Amendments mandate the addition of oxygenates to gasoline products to abate air pollution. Currently, many areas of the country utilize oxygenated or reformulated fuel containing 15- percent and I I-percent MTBE by volume, respectively. This increased use of MTBE in gasoline products has resulted in accidental point source releases of MTBE containing gasoline products to ground water. Recent studies have shown MTBE to be frequently detected in samples of shallow ground water from urban areas throughout the United States (Squillace et al., 1995). Knowledge of the subsurface fate and transport of MTBE in ground water at leaking underground fuel tank (LUFT) sites and the spatial extent of MTBE plumes is needed to address these releases. The goal of this research is to utilize data from a large number of LUFT sites to gain insights into the fate, transport, and spatial extent of MTBE plumes. Specific goals include defining the spatial configuration of dissolved MTBE plumes, evaluating plume stability or degradation over time, evaluating the impact of point source releases of MTBE to ground water, and attempting to identify the controlling factors influencing the magnitude and extent of the MTBE plumes. We are examining the relationships between dissolved TPH, BTEX, and MTBE plumes at LUFT sites using parallel approaches of best professional judgment and a computer-aided plume model fitting procedure to determine plume parameters. Here we present our initial results comparing dissolved benzene and MTBE plumes lengths, the statistical significance of these results, and configuration of benzene and MTBE plumes at individual LUFT sites.

  2. Location of MTBE and toluene in the channel system of the zeolite mordenite: Adsorption and host-guest interactions

    SciTech Connect (OSTI)

    Arletti, Rossella, E-mail: rossella.arletti@unito.it [Department of Earth Sciences, University of Torino Via Valperga Caluso 35, I-10125, Torino (Italy)] [Department of Earth Sciences, University of Torino Via Valperga Caluso 35, I-10125, Torino (Italy); Martucci, Annalisa; Alberti, Alberto [Department of Earth Sciences, University of Ferrara, Via G. Saragat 1, I-44100, Ferrara (Italy)] [Department of Earth Sciences, University of Ferrara, Via G. Saragat 1, I-44100, Ferrara (Italy); Pasti, Luisa; Nassi, Marianna [Department of Chemistry, University of Ferrara, Via L. Borsari 26, I-44100 Ferrara (Italy)] [Department of Chemistry, University of Ferrara, Via L. Borsari 26, I-44100 Ferrara (Italy); Bagatin, Roberto [Research Centre for Non-Conventional Energy-Istituto ENI Donegani, Environmental Technologies, Via Fauser 4, I-28100 Novara (Italy)] [Research Centre for Non-Conventional Energy-Istituto ENI Donegani, Environmental Technologies, Via Fauser 4, I-28100 Novara (Italy)

    2012-10-15T23:59:59.000Z

    This paper reports a study of the location of Methyl Tertiary Butyl Ether (MTBE) and toluene molecules adsorbed in the pores of the organophylic zeolite mordenite from an aqueous solution. The presence of these organic molecules in the zeolite channels was revealed by structure refinement performed by the Rietveld method. About 3 molecules of MTBE and 3.6 molecules of toluene per unit cell were incorporated into the cavities of mordenite, representing 75% and 80% of the total absorption capacity of this zeolite. In both cases a water molecule was localized inside the side pocket of mordenite. The saturation capacity determined by the adsorption isotherms, obtained by batch experiments, and the weight loss given by thermogravimetric (TG) analyses were in very good agreement with these values. The interatomic distances obtained after the structural refinements suggest MTBE could be connected to the framework through a water molecule, while toluene could be bonded to framework oxygen atoms. The rapid and high adsorption of these hydrocarbons into the organophylic mordenite zeolite makes this cheap and environmental friendly material a suitable candidate for the removal of these pollutants from water. - graphical abstract: Location of MTBE (a) and toluene (b) in mordenite channels (projection along the [001] direction). Highlights: Black-Right-Pointing-Pointer We investigated the MTBE and toluene adsorption process into an organophilic zeolite mordenite. Black-Right-Pointing-Pointer The presence of MTBE and toluene in mordenite was determined by X-ray diffraction studies. Black-Right-Pointing-Pointer About 3 molecules of MTBE and 3.6 molecules of toluene per unit cell were incorporated into the zeolite cavities. Black-Right-Pointing-Pointer MTBE is connected to the framework through a water molecule. Black-Right-Pointing-Pointer Toluene is directly bonded to framework oxygen atoms.

  3. Interdisciplinary investigation of subsurface contaminant transport and fate at point-source releases of gasoline containing MTBE

    SciTech Connect (OSTI)

    Buxton, H.T.; Baehr, A.L. [Geological Survey, West Trenton, NJ (United States); Landmeyer, J.E. [Geological Survey, Columbia, SC (United States)] [and others

    1997-12-31T23:59:59.000Z

    Methyl tert-butyl ether (MTBE) is commonly found at concentrations above the current U.S. Environmental Protection Agency draft lifetime health advisory for drinking water (20 to 200 micrograms per liter) at many point-source gasoline release sites. MTBE is significantly more persistent than benzene, toluene, ethyl-benzene and xylenes (BTEX) in the subsurface. Therefore, evaluation of the implications of its presence in gasoline to monitored natural attenuation and engineered bioremediation alternatives is warranted. An interdisciplinary, field-based investigation of the subsurface transport and fate of MTBE and petroleum hydrocarbons is being conducted by the U.S. Geological Survey (USGS) Toxic Substances Hydrology Program at the site of an underground gasoline storage-tank release near Beaufort, South Carolina. The objective of the investigation is to provide a systematic evaluation of natural attenuation of MTBE compared to BTEX. Results of the field and laboratory studies at this site will be generalized to a broader range of hydrogeochemical conditions through experiments at other sites. Furthermore, newly developed methods of analysis can be applied to sites across the Nation. This investigation of MTBE at point-source release sites is coordinated with investigations of the occurrence of MTBE in shallow ground water, surface water, precipitation, and the atmosphere being conducted by the USGS National Water-Quality Assessment Program.

  4. Review of potential technologies for the treatment of Methyl tertiary butyl Ether (MtBE) in drinking water

    SciTech Connect (OSTI)

    Brown, A.; Browne, T.E. [Komex H2O Science, Huntington Beach, CA (United States); Devinny, J.S. [Univ. of Southern California, Los Angeles, CA (United States)] [and others

    1997-12-31T23:59:59.000Z

    At present, the state of knowledge on effective treatment technologies for MtBE in drinking water, and groundwater in general, is limited. Research by others is focusing on the remediation of MtBE close to the point of release. The City of Santa Monica, MWD, Komex and USC are currently conducting research into different technologies that could be used to remove MtBE from drinking water supplies. The objectives of the research are to evaluate different treatment technologies to identify cost-effective and technically feasible alternatives for the removal of MtBE from drinking water. The evaluation is considering moderate to high water flow rates (100 to 2,000+ gpm) and low to moderate MtBE concentrations (<2,000 {mu}g/l). The research program includes four phases: (1) Literature Review; (2) Bench Scale Study; (3) Field Scale Pre-pilot Study; and (4) Summary Evaluation. This paper presents some preliminary information and findings from the first phase of this research - the literature review. The review discusses the chemical properties of MtBE and how they affect remediation and thus, an evaluation of alternative treatment technologies. The review of available literature, and the applicability and limitations of the following technologies are presented in detail.

  5. Field Projects: Durango, Colorado

    Broader source: Energy.gov [DOE]

    Personnel from Sandia National Laboratories in New Mexico installed four permeable reactive barriers  PRBs at the Durango, Colorado, Uranium Mill Tailings Radiation Control Act Title I site in...

  6. Impacts of Ethanol on Anaerobic Production of Tert-Butyl Alcohol (TBA) from Methyl Tert-Butyl Ether (MTBE) in Groundwater

    E-Print Network [OSTI]

    Scow, K M; MacKay, Douglas

    2008-01-01T23:59:59.000Z

    Project title: Impacts of Ethanol on Anaerobic Production oftert-butanol (TBA). As ethanol is being promoted as ainvestigate the effect of ethanol release on existing MTBE

  7. Texas plant will use new process to coproduce propylene oxide, MTBE

    SciTech Connect (OSTI)

    Rhodes, A.K.

    1993-08-30T23:59:59.000Z

    Texaco Chemical Co. is building a $400 + million facility to produce 1.2 billion lb/year (14,000 b/d) methyl tertiary butyl ether (MTBE) and 400 million lb/year (about 500 metric tons/day) propylene oxide (PO). The facility-under construction at Port Neches, Tex.-will utilize a newly developed Texaco process that coproduces the two chemicals. The process produces propylene oxide and tertiary butyl alcohol (TBA) from the reaction of isobutane with oxygen in one step, then in a second step with propylene. The TBA is then reacted with methanol in a one-step process that synthesizes MTBE. The paper describes the Port Neches facilities, construction schedule, feedstocks, product uses, and auxiliary equipment.

  8. Gas phase synthesis of MTBE on triflic-acid-modified zeolites

    SciTech Connect (OSTI)

    Nikolopoulos, A.A.; Kogelbauer, A.; Goodwin, J.G. Jr. [Univ. of Pittsburgh, PA (United States)] [and others] [Univ. of Pittsburgh, PA (United States); and others

    1996-01-01T23:59:59.000Z

    The gas phase synthesis of MTBE (methyl tert-butyl ether) was studied using three series of triflic acid (TFA)-modified zeolites, the parent materials being HY, H-mordenite, and HZSM-5. Impregnation with TFA was found to enhance MTBE synthesis activity only for the large-pore zeolite Y and only up to a certain extent of modification. A high level of TFA modification caused a reduction in activity, apparently due to blockage of the active sites by TFA molecules and extra-lattice Al formed during the modification process. The mechanism of activity enhancement by TFA modification appears to be related to the formation of extra-lattice Al rather than the direct presence of TFA. 20 refs., 6 figs., 1 tab.

  9. Rates and products of degradation for MTBE and other oxygenate fuel additives in the subsurface environment

    SciTech Connect (OSTI)

    Tratnyek, P.G.; Church, C.D.; Pankow, J.F. [Oregon Graduate Inst., Portland, OR (United States). Dept. of Environmental Science and Engineering

    1995-12-31T23:59:59.000Z

    The recent realization that oxygenated fuel additives such as MTBE are becoming widely distributed groundwater contaminants has created a sudden and pressing demand for data on the processes that control their environmental fate. Explaining and predicting the subsequent environmental fate of these compounds is going to require extrapolations over long time frames that will be very sensitive to the quality of input data on each compound. To provide such data, they have initiated a systematic study of the pathways and kinetics of fuel oxygenate degradation under subsurface conditions. Batch experiments in simplified model systems are being performed to isolate specific processes that may contribute to MTBE degradation. A variety of degradation pathways can be envisioned that lead to t-butyl alcohol (TBA) as the primary or secondary product. However, experiments to date with a facultative iron reducing bacteria showed no evidence for TBA formation. Continuing experiments include mixed cultures from a range of aquifer materials representative of NAWQA study sites.

  10. Two US markets, or one? How the MTBE-gasoline relationship is evolving

    SciTech Connect (OSTI)

    NONE

    1996-01-26T23:59:59.000Z

    This issue of Energy Detente features the price sensitivity of Methyl Tertiary Butyl Ether. Data is presented for US wholesale gasoline prices vs. MTBE for the 20-month period beginning in June 1994 and ending in January 1996, and the data is discussed. Also contained in this issue is the refining netback data and the fuel price/tax data for the period ending January 5, 1996.

  11. Remediation of a fractured clay soil contaminated with gasoline containing MTBE

    SciTech Connect (OSTI)

    Johnson, R.L.; Grady, D.E. [Oregon Graduate Institute, Portland, OR (United States); Walden, T. [BP Oil Europe, Brussels (Belgium)

    1997-12-31T23:59:59.000Z

    Gasoline and other light non-aqueous phase liquids (LNAPLs) released into fractured clay soils initially move by advection of the LNAPL through the fractures. Once advective movement of the LNAPL ceases, dissolution of the gasoline components into the pore water and diffusion into the intact blocks of clay becomes an important transport process. The aqueous-phase flux of each compound in the mixture depends in large part upon its aqueous solubility. For example, a low-solubility compound like isooctane remains primarily in the fracture in the LNAPL. A high-solubility compound, like methyl-tert-butyl ether (MTBE), dissolves readily and may move almost entirely into the clay matrix. The distribution of compounds between the matrix and the fractures will have an important impact on the rate at which the gasoline contaminated soil can be remediated. In this context, the presence of soluble additives like MTBE can significantly impact the risk and remediation time for the, soil. Beginning in 1993 a field study to examine the applicability of air flushing for remediation of low-permeability soils was sponsored by API. The study focused on a variety of soil vapor extraction (SVE) and in situ air sparging (IAS) approaches for mass removal and risk reduction. The source of gasoline contamination in this study was a release of 50 liters of a mixture containing 14 gasoline hydrocarbons ranging from pentane to naphthalene, and including MTBE. The mixture was released into the shallow subsurface and allowed to redistribute for 10 months prior to air flushing startup. Numerical modeling indicated that essentially all of the MTBE should have dissolved into the matrix. In contrast, essentially all of the isooctane should have remained in the LNAPL in the fractures.

  12. Colorado: Colorado's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Colorado.

  13. ASTER Thermal Anomalies in western Colorado

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2013-01-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: ASTER Thermal Anomalies Western Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the areas identified as areas of anomalous surface temperature from ASTER satellite imagery. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. Areas that had temperature greater than 2?, and areas with temperature equal to 1? to 2?, were considered ASTER modeled very warm and warm surface exposures (thermal anomalies), respectively Spatial Domain: Extent: Top: 4547052.446651 m Left: 158917.090117 m Right: 4101162.228281 m Bottom: 4101162.228281 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  14. adult colorado potato: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Colorado State University Extension Colorado Department of Public Health and Environment 12 Anderson Acronyms AES Agricultural Experiment Station (Colorado State...

  15. Methyl tertiary butyl ether (MtBE) contamination of the City of Santa Monica drinking water supply

    SciTech Connect (OSTI)

    Brown, A.; Farrow, J.R.C. [Komex H2O Science, Huntington Beach, CA (United States); Rodriguez, R.A. [City of Santa Monica, CA (United States)] [and others

    1997-12-31T23:59:59.000Z

    In the summer of 1996, the City of Santa Monica ceased pumping groundwater from two Well Fields (Charnock and Arcadia) used for public drinking water supply due to persistent and increasing concentrations of MtBE in all seven municipal water supply wells. This lost production accounted for 50% of the City`s total drinking water supply. In late 1996, the City, in cooperation with State and Federal agencies, initiated an investigation of MtBE contamination at the two well fields. The objectives of the investigation were as follows: (1) Review available data on the production, use, chemical characteristics, fate and transport, toxicology, and remediation of MtBE; (2) Identify locations of potential sources of MtBE groundwater contamination at the well fields; (3) Develop an understanding of the hydrologic pathways from the potential sources to the drinking water wells; and (4) Evaluate alternative treatment technologies for the removal of MtBE from drinking water. In addition to a review of available information about MtBE, the investigation included an extensive review of literature and available data relevant to the well fields, including well field production histories, site and regional hydrogeology, all well logs and production in the groundwater basins, general groundwater quality, and the record of MtBE detection. Based upon the review of background information, conceptual hydrogeologic models were developed. A detailed review of agency files for over 45 potential source sites was conducted. The information from this review was summarized, and source site screening and ranking criteria were developed. A field program was conducted at the major well field (Charnock), including soil gas surveys, CPTs, soil borings and well installations, geophysics, and aquifer testing. The field program provided site data which allowed the conceptual hydrogeologic model to be refitted to actual site conditions.

  16. Colorado Forestry Best Management Practices

    E-Print Network [OSTI]

    Stephens, Graeme L.

    Colorado Forestry Best Management Practices Forest Stewardship Guidelines for Water Quality Management Practices (BMPs) for forestry activities. BMPs are a set of water-quality protection measures-harvest sites in southwest Colorado to assess Colorado forestry BMP application and effectiveness. Sites were

  17. High-temperature ignition of propane with MTBE as an additive: Shock-tube experiments and modeling

    SciTech Connect (OSTI)

    Gray, J.A. (Sandia National Labs., Livermore, CA (United States)); Westbrook, C.K. (Lawrence Livermore National Lab., CA (United States))

    1991-01-01T23:59:59.000Z

    Ignition of propane has been studied in a shock tube and by computational modeling to determine the effect of methyl tert-butyl ether (MTBE) as a fuel additive. MTBE and isobutene were added in amounts up to 25% of the fuel to propane-oxygen-argon mixtures in shock-tube experiments covering a range of temperatures between 1450 and 1800 K. Ignition delays were measured from chemiluminescence at 432 nm due to excited CH radicals. The temperature dependence of the ignition rates was analyzed to yield Arrhenius parameters of E{sub a}{approximately}40 kcal/mol and log (A){approximately} 9.0 sec{sup {minus}1} for the overall reaction. Reactions involving MTBE and its decomposition products were combined with an established propane mechanism in a numerical model to describe the kinetic interaction of this additive with a typical hydrocarbon fuel. The experiments and the kinetic model both show that MTBE and isobutene retard propane ignition with nearly equal efficiency. The kinetic model demonstrates that isobutene kinetics are responsible for inhibition by both MTBE and isobutene, and the specific elementary reactions which produce this behavior are identified.

  18. High-temperature ignition of propane with MTBE as an additive: Shock-tube experiments and modeling. Revision 1

    SciTech Connect (OSTI)

    Gray, J.A. [Sandia National Labs., Livermore, CA (United States); Westbrook, C.K. [Lawrence Livermore National Lab., CA (United States)

    1991-12-01T23:59:59.000Z

    Ignition of propane has been studied in a shock tube and by computational modeling to determine the effect of methyl tert-butyl ether (MTBE) as a fuel additive. MTBE and isobutene were added to amounts up to 25% of the fuel to propane-oxygen-argon mixtures to shock-tube experiments covering a range of temperatures between 1450 and 1800 K. Ignition delays were measured from chemiluminescence at 432 nm due to excited CH radicals. The temperature dependence of the ignition rates was analyzed to yield Arrhenium parameters of E{sub a}{sup {minus}}40 kcal/mol and log(A) {sup {minus}}9.0 sec{sup {minus}1} for the overall reaction. Reactions involving MTBE and its decomposition products were combined with an established propane mechanism in a numerical model to describe the kinetic interaction of this additive with a typical hydrocarbon fuel. The experiments and the kinetic model both show that MTBE and isobutene retard propane ignition with nearly equal efficiency. The kinetic model demonstrates that isobutene kinetics are responsible for inhibition by both MTBE and isobutene, and the specific elementary reactions which produce this behavior are identified. 19 refs., 1 fig., 3 tabs.

  19. High-temperature ignition of propane with MTBE as an additive: Shock-tube experiments and modeling

    SciTech Connect (OSTI)

    Gray, J.A. [Sandia National Labs., Livermore, CA (United States); Westbrook, C.K. [Lawrence Livermore National Lab., CA (United States)

    1991-12-31T23:59:59.000Z

    Ignition of propane has been studied in a shock tube and by computational modeling to determine the effect of methyl tert-butyl ether (MTBE) as a fuel additive. MTBE and isobutene were added in amounts up to 25% of the fuel to propane-oxygen-argon mixtures in shock-tube experiments covering a range of temperatures between 1450 and 1800 K. Ignition delays were measured from chemiluminescence at 432 nm due to excited CH radicals. The temperature dependence of the ignition rates was analyzed to yield Arrhenius parameters of E{sub a}{approximately}40 kcal/mol and log (A){approximately} 9.0 sec{sup {minus}1} for the overall reaction. Reactions involving MTBE and its decomposition products were combined with an established propane mechanism in a numerical model to describe the kinetic interaction of this additive with a typical hydrocarbon fuel. The experiments and the kinetic model both show that MTBE and isobutene retard propane ignition with nearly equal efficiency. The kinetic model demonstrates that isobutene kinetics are responsible for inhibition by both MTBE and isobutene, and the specific elementary reactions which produce this behavior are identified.

  20. High-temperature ignition of propane with MTBE as an additive: Shock-tube experiments and modeling

    SciTech Connect (OSTI)

    Gray, J.A. (Sandia National Labs., Livermore, CA (United States)); Westbrook, C.K. (Lawrence Livermore National Lab., CA (United States))

    1991-12-01T23:59:59.000Z

    Ignition of propane has been studied in a shock tube and by computational modeling to determine the effect of methyl tert-butyl ether (MTBE) as a fuel additive. MTBE and isobutene were added to amounts up to 25% of the fuel to propane-oxygen-argon mixtures to shock-tube experiments covering a range of temperatures between 1450 and 1800 K. Ignition delays were measured from chemiluminescence at 432 nm due to excited CH radicals. The temperature dependence of the ignition rates was analyzed to yield Arrhenium parameters of E{sub a}{sup {minus}}40 kcal/mol and log(A) {sup {minus}}9.0 sec{sup {minus}1} for the overall reaction. Reactions involving MTBE and its decomposition products were combined with an established propane mechanism in a numerical model to describe the kinetic interaction of this additive with a typical hydrocarbon fuel. The experiments and the kinetic model both show that MTBE and isobutene retard propane ignition with nearly equal efficiency. The kinetic model demonstrates that isobutene kinetics are responsible for inhibition by both MTBE and isobutene, and the specific elementary reactions which produce this behavior are identified. 19 refs., 1 fig., 3 tabs.

  1. A screening model for evaluating the degradation and transport of MTBE and other fuel oxygenates in the subsurface

    SciTech Connect (OSTI)

    Sun, Y; Lu, X

    2004-04-20T23:59:59.000Z

    Methyl tert-butyl ether (MTBE) has received high attention as it contributed to cleaner air and contaminated thousands of underground storage tank sites. Because MTBE is very water soluble, it is more difficult to remove from water by conventional remediation techniques. Therefore, biodegradation of MTBE has become a remediation alternative. In order to understand the transport and transformation processes, they present a closed form solution as a screening tool in this paper. The possible reaction pathways of first-order reactions are described as a reaction matrix. The singular value decomposition is conducted analytically to decouple the partial differential equations of the multi-species transport system coupled by the reaction matrix into multiple independent subsystems. Therefore, the complexity of mathematical description for the reactive transport system is significantly reduced and analytical solutions may be previously available or easily derived.

  2. Environmental Health and Safety COLORADO SCHOOL OF MINES Colorado School of Mines GOLDEN, COLORADO 80401-1887

    E-Print Network [OSTI]

    Environmental Health and Safety COLORADO SCHOOL OF MINES Colorado School of Mines GOLDEN, COLORADO Institute Site (CSMRI Site) on the south side of Clear Creek has been undergoing environmental time. Sincerely, L Linn D. Havelick Director, Environmental Health & Safety #12;

  3. EA-1611: Colorado Highlands Wind Project, Logan County, Colorado...

    Broader source: Energy.gov (indexed) [DOE]

    Western Area Power Administration prepared an EA in 2009 to assess the potential environmental impacts of interconnecting the proposed Colorado Highlands Wind Project to Western's...

  4. Remotely Sensed Thermal Anomalies in western Colorado

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Landsat Thermal Anomalies Western Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the areas identified as areas of anomalous surface temperature from Landsat satellite imagery in Western Colorado. Data was obtained for two different dates. The digital numbers of each Landsat scene were converted to radiance and the temperature was calculated in degrees Kelvin and then converted to degrees Celsius for each land cover type using the emissivity of that cover type. And this process was repeated for each of the land cover types (open water, barren, deciduous forest and evergreen forest, mixed forest, shrub/scrub, grassland/herbaceous, pasture hay, and cultivated crops). The temperature of each pixel within each scene was calculated using the thermal band. In order to calculate the temperature an average emissivity value was used for each land cover type within each scene. The NLCD 2001 land cover classification raster data of the zones that cover Colorado were downloaded from USGS site and used to identify the land cover types within each scene. Areas that had temperature residual greater than 2?, and areas with temperature equal to 1? to 2?, were considered Landsat modeled very warm and warm surface exposures (thermal anomalies), respectively Spatial Domain: Extent: Top: 4546381.234113 m Left: 140556.857021 m Right: 573390.000000 m Bottom: 4094583.641581 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  5. Colorado Geothermal Commercialization Program

    SciTech Connect (OSTI)

    Healy, F.C.

    1980-04-01T23:59:59.000Z

    Chaffee County, located in central Colorado, has immense potential for geothermal development. This report has been prepared to assist residents and developers in and outside the area to develop the hydrothermal resources of the county. Data has been collected and interpreted from numerous sources in order to introduce a general description of the area, estimate energy requirements, describe the resources and postulate a development plan. Electric power generation and direct heat application potential for the region are described.

  6. Colorado Highlands Wind Project, Western's RM Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Colorado Highlands Wind Project Western Area Power Administration, Rocky Mountain Region (Western) has received a request from Colorado Highlands Wind to modify its Interconnection...

  7. Colorado State University Public Forums concerning the

    E-Print Network [OSTI]

    Stephens, Graeme L.

    · Colorado Health Care Reform · NIF "Energy Problem" forums · Improving higher education · Childhood obesity · Child care quality and affordability Ongoing Projects · Embrace Colorado · Poverty in Larimer County

  8. Colorado: Energy Modeling Products Support Energy Efficiency...

    Energy Savers [EERE]

    Colorado: Energy Modeling Products Support Energy Efficiency Projects Colorado: Energy Modeling Products Support Energy Efficiency Projects May 1, 2014 - 11:04am Addthis Xcel...

  9. Colorado Natural Gas- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Colorado Natural Gas offers the Excess is Out Program for residential and commercial customers in Colorado. Incentives are available for purchasing and installing energy efficient furnaces, boilers...

  10. Fast photoreactions of ethanol and MTBE on tropospheric metal oxide particles

    SciTech Connect (OSTI)

    Idriss, H.; Seebauer, E.G. [Univ. of Illinois, Urbana, IL (United States)

    1995-12-31T23:59:59.000Z

    Ethanol (EtOH) and tert-Butyl methyl ether (MTBE) are both finding increased use as oxygenated additives to fuels. However, the environmental fate in the troposphere of these species is unclear when they escape as fugitive emissions. In several locations there are reports of human illness in response to MTBE in particular. Volatile organic compounds (VOC`s) such as these are generally thought to react by a variety of homogeneous free-radical mechanisms, usually beginning with attack by OH radical. However, we show by laboratory kinetic studies that the heterogeneous photoreaction on solid suspended metal-oxide particulates such as fly ash proceeds with a comparable rate, especially in urban environments. EtOH reacts to form acetaldehyde, and EtOH forms isobutene, methanol, and formaldehyde. Our work appears to be the first-ever demonstration that VOC`s can react as fast by a heterogeneous mechanism as by a homogeneous one in the atmosphere. Experiments by various optical and kinetic techniques show that the active phases in fly ash are Fe oxides, which are fairly abundant in other atmospheric particulates as well.

  11. Intrinsic bioremediation of a BTEX and MTBE plume under mixed aerobic/denitrifying conditions

    SciTech Connect (OSTI)

    Borden, R.C.; Daniel, R.A. [North Carolina State Univ., Raleigh, NC (United States). Civil Engineering Dept.

    1995-09-01T23:59:59.000Z

    A shallow Coastal Plain aquifer in rural Sampson Country, North Carolina, has been contaminated with petroleum hydrocarbon from a leaking underground storage tank containing gasoline.An extensive field characterization has been performed to define the horizontal and vertical distribution of soluble gasoline components and indicator parameters. A plume of dissolved methyl tert-butyl ether (MTBE) and the aromatic hydrocarbons benzene, toluene, ethylbenzene, and xylene isomers (BTEX) is present in the aquifer and has migrated over 600 ft from the source area. Background dissolved oxygen concentrations range from 7 to 8 mg/L, and nitrate concentrations range from 5 to 22 mg/L as N due to extensive fertilization of fields surrounding the spill. In the center of the BTEX plume, oxygen concentrations decline to less than 1 mg/L while nitrate concentrations remain high. The total mass flux of MTBE and all BTEX components decline with distance downgradient relative to a conservative tracer (chloride). At the source, the total BTEX concentration exceeds 75 mg/L while 130 ft downgradient, total BTEX concentrations are less than 4.9 mg/L, a 15-fold reduction. Toluene and ethylbenzene decline most rapidly followed by m-p-xylene, o-xylene and finally benzene. Biodegradation of TEX appears to be enhanced by the excess nitrate present in the aquifer while benzene biodegradation appears to be due to strictly aerobic processes.

  12. Alveolar breath sampling and analysis to assess exposures to methyl tertiary butyl ether (MTBE) during motor vehicle refueling

    SciTech Connect (OSTI)

    Lindstrom, A.B.; Pleil, J.D. [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

    1996-07-01T23:59:59.000Z

    In this study we present a sampling and analytical methodology that can be used to assess consumers` exposures to methyl tertiary butyl ether (MTBE) that may result from routine vehicle refueling operations. The method is based on the collection of alveolar breath samples using evacuated one-liter stainless steel canisters and analysis using a gas chromatograph-mass spectrometer equipped with a patented `valveless` cryogenic preconcentrator. To demonstrate the utility of this approach, a series of breath samples was collected from two individuals (the person pumping the fuel and a nearby observer) immediately before and for 64 min after a vehicle was refueled with premium grade gasoline. Results demonstrate low levels of MTBE in both subjects` breaths before refueling, and levels that increased by a factor of 35 to 100 after the exposure. Breath elimination models fitted to the post exposure measurements indicate that the half-life of MTBE in the first physiological compartment was between 1.3 and 2.9 min. Analysis of the resulting models suggests that breath elimination of MTBE during the 64 min monitoring period was approximately 155 {mu}g for the refueling subject while it was only 30 {mu}g for the nearby observer. This analysis also shows that the post exposure breath elimination of other gasoline constituents was consistent with previously published observations. 20 refs., 3 figs., 4 tabs.

  13. VOL. 32, No.4 UNL WATER CENTER AUGUST 2000 New Method For Detecting Trace Amounts of MTBE

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    of MTBE and Ethanol at Heart ofUNL Contamination Research with ethanol, which also reduces harmful vehicle "Although ethanol is the same alcohol consumed in contaminate the water we drink. But they can be diffi have cern that ethanol could negatively impact the ability of developed a method for detecting minute

  14. NIST Standard Reference Database 23 NIST Reference Fluid Thermodynamic and Transport Properties--

    E-Print Network [OSTI]

    Magee, Joseph W.

    -Conditioning and Refrigeration Technology Institute and the U.S. Department of Energy. The development of the models on which#12;NIST Standard Reference Database 23 NIST Reference Fluid Thermodynamic and Transport Properties Properties Division National Institute of Standards and Technology Boulder, Colorado 80305 April, 2007 U

  15. NIST Standard Reference Database 23 NIST Reference Fluid Thermodynamic and Transport Properties--

    E-Print Network [OSTI]

    Technology Institute and the U.S. Department of Energy. Model development and measurements at NIST have been#12;NIST Standard Reference Database 23 NIST Reference Fluid Thermodynamic and Transport Properties Division National Institute of Standards and Technology Boulder, Colorado 80305 November, 2010 U

  16. State of Colorado Wildfire Hazard

    E-Print Network [OSTI]

    State of Colorado Wildfire Hazard Mitigation Plan Colorado Multi-Hazards Mitigation Plan July 2002 and importance of the August 1995 Wildfire Hazard Mitigation Plan and its predecessors as foundation documents on which to build and judge progress in wildfire hazard mitigation. The text version of the 1995 Plan

  17. Colorado Climate Update Nolan Doesken

    E-Print Network [OSTI]

    to the Colorado Farm Show Wednesday, January 30, 2013 Prepared by Wendy Ryan and Zach Schwalbe #12;Topics we;Monitoring our Climate · Elements: temperature, precipitation, snow, wind, solar, evaporation, soil Average Solar Radiation National Renewal Energy Laboratory: www.nrel.gov Colorado is a part

  18. The Value Chain of Colorado Agriculture

    E-Print Network [OSTI]

    Stephens, Graeme L.

    The Value Chain of Colorado Agriculture Gregory Graff, Ryan Mortenson, Rebecca Goldbach, Dawn of Agricultural and Resource Economics, College of Agricultural Sciences, and the Office of Engagement Colorado the Colorado Department of Agriculture and the Colorado State University Office of Engagement. The authors

  19. Colorado Water Institute Annual Technical Report

    E-Print Network [OSTI]

    Colorado Water Institute Annual Technical Report FY 2012 Colorado Water Institute Annual Technical Report FY 2012 1 #12;Introduction Colorado Water Institute Annual Report for the period: March 1, 2012 ­ February 28, 2013 Water research is more pertinent than ever in Colorado. Whether the project explores

  20. Southeastern Colorado Survey of Critical Biological Resources

    E-Print Network [OSTI]

    , local landowners, CCALT, and Great Outdoors Colorado (GOCO) requested that CNHP conduct a second field

  1. ProGreen 2014 Colorado Climate Update

    E-Print Network [OSTI]

    · Complex Mountain topography · Solar energy and seasonal cycles drive our climate #12;Colorado has" and we LOVE IT! #12;Monitoring our Climate · Elements: temperature, precipitation, snow, wind, solarProGreen 2014 Colorado Climate Update Nolan Doesken Colorado State Climatologist Colorado Climate

  2. Colorado STEP Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i tCollaboration March 16,Connect ColorColorado

  3. Oxidation of methyl tert-butyl ether (MTBE) and ethyl tert-butyl ether (ETBE) by ozone and combined ozone/hydrogen peroxide

    SciTech Connect (OSTI)

    Leitner, N.K.V.; Papailhou, A.L.; Croue, J.P.; Dore, M. (Univ. de Poitiers (France)); Peyrot, J. (British Petroleum, Harfleur (France))

    1994-01-01T23:59:59.000Z

    The aim of this work was to study the reaction of ozone and combined ozone/hydrogen peroxide on oxygenated additives such as methyl tert-butyl ether (MTBE) and ethyl tert-butyl ether (ETBE) in dilute aqueous solution using controlled experimental conditions. Experiments conducted in a semi-continuous reactor with MTBE and ETBE in combination (initial concentration: 2 mmol/L of each) showed that ETBE was better eliminated than MTBE with both ozone and combined O[sub 3]/H[sub 2]O[sub 2]. batch experiments led to the determination of the ratio of the kinetic constants for the reaction of OH[degree]-radical with MTBE and ETBE (k[sub OH[degree]/ETBE]/k[sub OH[degree]//MTBE] = 1.7). Tert-butyl formate and tert-butyl acetate were identified as the ozonation byproducts of MTBE an ETBE, respectively, while tert-butyl alcohol was found to be produced during the ozonation of both compounds. 10 refs., 10 figs., 1 tab.

  4. Ft. Carson Army Base, Colorado Springs, Colorado | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Colorado. It was the first Federal facility to install a "solar wall"-a solar ventilation air preheating system. The solar wall heats Ft. Carson's new high-bay aviation...

  5. Field Projects: Cañon City, Colorado

    Broader source: Energy.gov [DOE]

    In June 2000, Cotter Corporation installed a PRB at its uranium ore processing millsite in Cañon City, Colorado. The PRB contains zero-valent iron (ZVI) that treated molybdenum and uranium...

  6. to Protect Water Quality in Colorado

    E-Print Network [OSTI]

    Rutledge, Steven

    ..................................................... 5 road Construction ...................................................... 6 drainage from road (BMPS) for Colorado, with additional recommendations from a 2008 BMP audit. The Colorado Timber Industry, operations and maintenance pro- cedures. BMPs can be applied before, during and after pollution

  7. COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD

    E-Print Network [OSTI]

    Sheehan, Anne F.

    COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD Anne F. Sheehan University of Colorado, seismic, seismicity, crust, fault, hazard ABSTRACT Construction of seismic hazard and risk maps depends upon carefully constrained input parameters including background seismicity, seismic attenuation

  8. {gamma}-aminobutyric acid{sub A} (GABA{sub A}) receptor regulates ERK1/2 phosphorylation in rat hippocampus in high doses of Methyl Tert-Butyl Ether (MTBE)-induced impairment of spatial memory

    SciTech Connect (OSTI)

    Zheng Gang; Zhang Wenbin [Department of Occupational and Environmental Health, School of Public Health and Military Preventive Medicine, Fourth Military Medical University, Xi'an 710032 (China); Zhang Yun [465 Hospital, Jilin Medical College, Jilin 132001 (China); Chen Yaoming; Liu Mingchao; Yao Ting; Yang Yanxia; Zhao Fang [Department of Occupational and Environmental Health, School of Public Health and Military Preventive Medicine, Fourth Military Medical University, Xi'an 710032 (China); Li Jingxia; Huang Chuanshu [Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 (United States); Luo Wenjing [Department of Occupational and Environmental Health, School of Public Health and Military Preventive Medicine, Fourth Military Medical University, Xi'an 710032 (China)], E-mail: luowenj@fmmu.edu.cn; Chen Jingyuan [Department of Occupational and Environmental Health, School of Public Health and Military Preventive Medicine, Fourth Military Medical University, Xi'an 710032 (China)], E-mail: jy_chen@fmmu.edu.cn

    2009-04-15T23:59:59.000Z

    Experimental and occupational exposure to Methyl Tert-Butyl Ether (MTBE) has been reported to induce neurotoxicological and neurobehavioral effects, such as headache, nausea, dizziness, and disorientation, etc. However, the molecular mechanisms involved in MTBE-induced neurotoxicity are still not well understood. In the present study, we investigated the effects of MTBE on spatial memory and the expression and function of GABA{sub A} receptor in the hippocampus. Our results demonstrated that intraventricular injection of MTBE impaired the performance of the rats in a Morris water maze task, and significantly increased the expression of GABA{sub A} receptor {alpha}1 subunit in the hippocampus. The phosphorylation of ERK1/2 decreased after the MTBE injection. Furthermore, the decreased ability of learning and the reduction of phosphorylated ERK1/2 level of the MTBE-treated rats was partly reversed by bicuculline injected 30 min before the training. These results suggested that MTBE exposure could result in impaired spatial memory. GABA{sub A} receptor may play an important role in the MTBE-induced impairment of learning and memory by regulating the phosphorylation of ERK in the hippocampus.

  9. Biological Inventory Colorado Canyons National Conservation Area

    E-Print Network [OSTI]

    Biological Inventory of the Colorado Canyons National Conservation Area Prepared by: Joe Stevens .............................. 12 Identify Targeted Inventory Areas

  10. Colorado Statewide Forest Resource Assessment and Strategy

    E-Print Network [OSTI]

    Colorado Statewide Forest Resource Assessment and Strategy www.csfs.colostate.edu Colorado Forest resource assessments had to be completed by June 2010 ­ required to receive S&PF funds in the future (2008;Resource Assessment and Strategy Partners Resource Assessment and Strategy Partners Colorado Division

  11. Southeastern Colorado Survey of Critical Biological Resources

    E-Print Network [OSTI]

    Southeastern Colorado Survey of Critical Biological Resources 2007 #12;ii #12;Southeastern Colorado Survey of Critical Biological Resources Prepared for: Colorado Cattleman's Agricultural Land Trust 8833 Department of Natural Resources Division of State Board of Land Commissioners 1313 Sherman Street Denver, CO

  12. Department of Geophysics Colorado School of Mines

    E-Print Network [OSTI]

    Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics;#12;Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics of the requirements for the degree of Master of Science (Geophysics). Golden, Colorado Date: April 14, 2005 Signed

  13. Department of Geophysics Colorado School of Mines

    E-Print Network [OSTI]

    Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics.mines.edu/cgem Defended: May 10 (Geophysics). Golden, Colorado Date May 15, 2006 Signed: on original copy Jeongmin Lee Signed: on original

  14. Department of Geophysics Colorado School of Mines

    E-Print Network [OSTI]

    Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics Colorado School of Mines CGEM Dongjie Cheng #12;#12;Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics.mines.edu/cgem Defended: December 2003 Advisor: Dr. Yaoguo Li (GP

  15. Department of Geophysics Colorado School of Mines

    E-Print Network [OSTI]

    Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics.mines.edu/cgem Defended: September fulfillment of the requirements for the degree of Master of Science (Geophysics). Golden, Colorado Date

  16. Department of Geophysics Colorado School of Mines

    E-Print Network [OSTI]

    Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics Colorado School of Mines CGEM Alisa Marie Green #12;Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics.mines.edu/cgem Defended: November 06, 2003 Advisor: Dr. Yaoguo Li

  17. Colorado Water Institute Annual Technical Report

    E-Print Network [OSTI]

    Colorado Water Institute Annual Technical Report FY 2011 Colorado Water Institute Annual Technical Report FY 2011 1 #12;Introduction Water research is more pertinent than ever in Colorado. Whether the project explores the effects of decentralized wastewater treatment systems on water quality, optimal

  18. Colorado Water Institute Annual Technical Report

    E-Print Network [OSTI]

    Colorado Water Institute Annual Technical Report FY 2013 Colorado Water Institute Annual Technical Report FY 2013 1 #12;Introduction Water research is more important than ever in Colorado. Whether the project explores the effects of decentralized wastewater treatment systems on water quality, optimal

  19. Colorado Water Institute Annual Technical Report

    E-Print Network [OSTI]

    Colorado Water Institute Annual Technical Report FY 2009 Colorado Water Institute Annual Technical Report FY 2009 1 #12;Introduction Water research is more pertinent than ever in Colorado. Whether the research explores the effects of decentralized wastewater treatment systems on water quality, optimal

  20. Colorado Water Institute Annual Technical Report

    E-Print Network [OSTI]

    Colorado Water Institute Annual Technical Report FY 2010 Colorado Water Institute Annual Technical Report FY 2010 1 #12;Introduction Water research is more pertinent than ever in Colorado. Whether the project explores the effects of decentralized wastewater treatment systems on water quality, optimal

  1. Colorado Natural Heritage Program Wetland Program Plan

    E-Print Network [OSTI]

    of Land Management (BLM), and numerous county and local governments. The surveys have also involvedColorado Natural Heritage Program Wetland Program Plan A Vision for Building Comprehensive Wetland Information for the State of Colorado Planning Years 2011­2015 #12;Colorado Natural Heritage Program Wetland

  2. Colorado School of Mines 1 Colorado School of

    E-Print Network [OSTI]

    admission standards. The Colorado School of Mines shall have a unique mission in energy, mineral be the primary institution of higher education offering energy, mineral and materials science and mineral faces a crisis in balancing resource availability with environmental protection and that CSM and its

  3. Rural recycling in southeast Colorado

    SciTech Connect (OSTI)

    Lariviere, R. (Prowers County Development, Inc., Lamar, CO (United States))

    1993-05-01T23:59:59.000Z

    This article describes a recycling effort developed for rural southeast Colorado. The program was inspired and manned by local volunteers and based on a drop-off method used in Europe. The topics of the article include getting started, funding, problems encountered, level of participation, and estimated savings in waste collection and landfilling fees.

  4. Sixth Annual Colorado Rare Plant Symposium Overview of G2 Plants of Northern Colorado

    E-Print Network [OSTI]

    Sixth Annual Colorado Rare Plant Symposium Overview of G2 Plants of Northern Colorado 9:00 am - 4 Anticlea (Zigadenus) vaginatus 3:15 Rare Plant Conservation Initiative ­ CNHP/TNC 4:00 Adjourn #12;

  5. Methyl tert-butyl ether (MTBE) is a volatile organic com-pound (VOC) derived from natural gas that is added to gas-

    E-Print Network [OSTI]

    Methyl tert-butyl ether (MTBE) is a volatile organic com- pound (VOC) derived from natural gas Water in Urban and Agricultural Areas made from methanol, which is derived primarily from natural gas that is added to gas- oline either seasonally or year round in many parts of the United States to increase

  6. The 6th Annual Colorado Rare Plant Symposium: G2 Plants of Colorado

    E-Print Network [OSTI]

    The 6th Annual Colorado Rare Plant Symposium: G2 Plants of Colorado September 11, 2009 8 am - 4 pm, endangered, candidate, and petitioned plant species. The second symposium, held in Pagosa Springs in 2005, covered the globally critically imperiled (G1) plant species of Colorado that are not federally listed

  7. Athletic Training Coordinator Hometown: Colorado Springs, CO

    E-Print Network [OSTI]

    Van Stryland, Eric

    WHO WE ARE Gaby Bell Athletic Training Coordinator Hometown: Colorado Springs, CO Certifications Athletic Training Graduate Assistant Jonathan Hodapp Student Athletic Trainer Mike Carlson Student Athletic

  8. A Colorado Perspective: The New Energy Economy

    E-Print Network [OSTI]

    Martin, Jim; Brannon, Ginny

    2009-01-01T23:59:59.000Z

    to- ward full realization of the New Energy Economy.Colorado Perspective: The New Energy Economy Jim Martin* andtwenty-first century New Energy Economy by pro- moting

  9. Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer,...

  10. Colorado State University Public Forums concerning the

    E-Print Network [OSTI]

    Stephens, Graeme L.

    · Statewide dropout rate · Colorado Health Care Reform · NIF "Energy Problem" forums · Improving higher · Water and growth issues · PSD Innovation plans · Child care quality and affordability Ongoing Projects

  11. Colorado Springs Utilities- Energy Efficient Builder Program

    Broader source: Energy.gov [DOE]

    The Colorado Springs Utilities (CSU) Energy Efficient Builder Program offers an incentive to builders who construct ENERGY STAR® qualified homes within the CSU service area. The incentive range...

  12. Tenmile district special folio, Colorado 

    E-Print Network [OSTI]

    Emmons, Samuel Franklin, 1841-1911.

    1898-01-01T23:59:59.000Z

    . A portion of the browse nursery at the Little Hills Game Experimental Range showing the deer- or elk-proof fence .............................................................. 21 2? Precipitation by 10-day intervals at Gunnison, near... by standard deer- or elk-proof fence (Figure 1 ) . Nurseries were located on the Hot Sulfur Game Refuge in Grand County as the eastern edge of Middle Park along the Colorado River; on the Little Hills Game Experimental range in Rio Blanco County about 30...

  13. Spring 2001 Vol. 2, No. 2 ii Colorado Climate

    E-Print Network [OSTI]

    Colorado Climate Spring 2001 Vol. 2, No. 2 #12;ii Colorado Climate Table of Contents Frost: Nature ...................................................................................................................................... 9 January 2001 .......................................................................................................................................................... 9 February 2001

  14. Fall 2001 Vol. 2, No. 4 ii Colorado Climate

    E-Print Network [OSTI]

    Colorado Climate Fall 2001 Vol. 2, No. 4 #12;ii Colorado Climate Table of Contents On Being a Small . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 July 2001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 August 2001

  15. Summer 2001 Vol. 2, No. 3 ii Colorado Climate

    E-Print Network [OSTI]

    Colorado Climate Summer 2001 Vol. 2, No. 3 #12;ii Colorado Climate Table of Contents Nocturnal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 April 2001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 May 2001

  16. Eagle County - Energy Smart Colorado Energy Efficiency Rebate...

    Open Energy Info (EERE)

    Eagle County - Energy Smart Colorado Energy Efficiency Rebate Program (Colorado) No revision has been approved for this page. It is currently under review by our subject matter...

  17. area northwestern colorado: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Southwestern Colorado and Northwestern New Mexico: How the Past and Environmental Management and Restoration Websites Summary: The Forests of Southwestern Colorado and...

  18. Energy Department Names Two Colorado-based Electric Cooperatives...

    Energy Savers [EERE]

    Energy Department Names Two Colorado-based Electric Cooperatives as Wind Cooperatives of the Year for 2014 Energy Department Names Two Colorado-based Electric Cooperatives as Wind...

  19. Health risks associated with exposure to gasoline additives-methyl tertiary butyl ether [MTBE]. Hearing before a Subcommittee of the Committee on Appropriations, United States Senate, One Hundred Third Congress, First Session, Special Hearing

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    This hearing focuses on an Alaskan study by the Centers for Disease Control which examines possible health risks associated with exposure to gasoline additive know as MTBE. Testimony is given by Dr. William Roper, Director, CDC.

  20. Geothermal Target Areas in Colorado as Identified by Remote Sensing Techniques

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Target Areas Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the areas identified as targets of potential geothermal activity. The Criteria used to identify the target areas include: hot/warm surface exposures modeled from ASTER/Landsat satellite imagery and geological characteristics, alteration mineral commonly associated with hot springs (clays, Si, and FeOx) modeled from ASTER and Landsat data, Coloradodo Geological Survey (CGS) known thermal hot springs/wells and heat-flow data points, Colorado deep-seated fault zones, weakened basement identified from isostatic gravity data, and Colorado sedimentary and topographic characteristics Spatial Domain: Extent: Top: 4546251.530446 m Left: 151398.567298 m Right: 502919.587395 m Bottom: 4095100.068903 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  1. Colorado economic impact study on the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-12T23:59:59.000Z

    The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year (FY) 1993. To capture employment benefits, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Rifle, and Gunnison, Colorado. An estimated 52 percent of the employees working on the UMTRA Project responded to this information request. Economic data were requested from each prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are: Direct employment was estimated at 894 workers; An estimated 89 percent of all direct employment was local; Secondary employment resulting from remedial action at the active Colorado UMTRA Project sites and the Grand Junction vicinity property program is estimated at 546 workers. Total employment (direct and secondary) is estimated at 1440 workers for the period of study (July 1, 1992, to June 30, 1993). An estimated $24.1 million was paid in wages to UMTRA workers in Colorado during FY1993; Direct and secondary wage earnings were estimated at $39.9 million; Income tax payments to the state of Colorado were estimated at $843,400 during FY1993; The gross economic impact of UMTRA Project activities in the state of Colorado is estimated at $70 million during the 1-year study period; and the net economic benefit to the state of Colorado was estimated at $57.5 million, or $5.90 per dollar of funding provided by Colorado. This figure includes both direct and secondary benefits but does not include the impact of alternative uses of the state funding.

  2. EA-1611: Colorado Highlands Wind Project, Logan County, Colorado

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration prepared an EA in 2009 to assess the potential environmental impacts of interconnecting the proposed Colorado Highlands Wind Project to Western’s transmission system. The EA analyzed a proposal for 60 wind turbine generators with a total output nameplate capacity of 90 megawatts (MW). Western prepared a supplemental EA to assess the potential environmental impacts of the proposed expansion of the project by 11 wind turbine generators that would add approximately 20 MW. Additional information is available on the Western Area Power Administration webpage for this project.

  3. Department of Geophysics Colorado School of Mines

    E-Print Network [OSTI]

    Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics.mines.edu/cgem Defended: May 11 (Geophysics) On Original Copies Dr. Terence K. Young Professor and Head Department of Geophysics Approved

  4. Colorado Homeowner Preferences on Energy and

    E-Print Network [OSTI]

    Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest ResearchColorado Homeowner Preferences on Energy and Environmental Policy June 1999 · NREL/TP-550-25285 Barbara C. Farhar, Ph.D. Timothy C. Coburn, Ph.D. National Renewable Energy Laboratory 1617 Cole Boulevard

  5. The Colorado Rare Plant Technical Committee presents

    E-Print Network [OSTI]

    Natural Heritage Program #12;#12;Asclepias uncialis ssp. uncialis Dwarf milkweed · Federal status: BLM/USFS sensitive · Heritage ranks: G3G4T2T3/S2 · Global distribution: Arizona, Texas, New Mexico, Wyoming, Oklahoma/11/2004 · Colorado occurrences: 20, 13 historical · Colorado individuals: ~500 · Primary threats: Population

  6. A History of DROUGHT IN COLORADO

    E-Print Network [OSTI]

    reservoirs, and drifts of topsoil left many of us in government feeling helpless and ill prepared expressed by decision makers then was the lack of timely and integrated information on which to make plans studies which have been supported by the Colorado Office of Emergency Management, the Colorado Water

  7. Colorado State University Computer Programmer Research Associate

    E-Print Network [OSTI]

    of the positives cited in the ranking include: practically every new road has a bike lane and bicycles can even be checked out of a bike #12;library; Colorado State University occupies a scenic spot in the middle of town identity or expression. Colorado State University is an equal opportunity/equal access/affirmative action

  8. Poroelastic references

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Christina Morency

    This file contains a list of relevant references on the Biot theory (forward and inverse approaches), the double-porosity and dual-permeability theory, and seismic wave propagation in fracture porous media, in RIS format, to approach seismic monitoring in a complex fractured porous medium such as Brady?s Geothermal Field.

  9. Poroelastic references

    SciTech Connect (OSTI)

    Christina Morency

    2014-12-12T23:59:59.000Z

    This file contains a list of relevant references on the Biot theory (forward and inverse approaches), the double-porosity and dual-permeability theory, and seismic wave propagation in fracture porous media, in RIS format, to approach seismic monitoring in a complex fractured porous medium such as Brady?s Geothermal Field.

  10. Colorado Forestry Advisory Board Members: Don Ament Tom Stone

    E-Print Network [OSTI]

    #12;Colorado Forestry Advisory Board Members: Don Ament Tom Stone Commissioner of Agriculture desired benefits? The members of Colorado's Forestry Advisory Board have presented this question, Colorado Forestry Advisory Board #12;2003 Report on the Health of Colorado's Forests 1 2003 Report

  11. And Our State's Economic Vitality Colorado's Recreation Economy

    E-Print Network [OSTI]

    And Our State's Economic Vitality Colorado's Recreation Economy Bryan Martin, The Colorado Mountain Club #12;Colorado's Recreation Economy The Colorado Mountain Club · 8,000 Members · 14 Chapters's Recreation Economy By the Numbers · $10 Billion Annually · 107,000 Jobs · $500 Million in State Tax Revenue

  12. 2013 Colorado Forest Health Report 2013 Report on the

    E-Print Network [OSTI]

    2013 Colorado Forest Health Report 2013 Report on the Health of Colorado's Forests Caring Timm Schaubert, Outreach Division Supervisor. Thanks also to William M. Ciesla, Forest Health;A January 2014 2013 Colorado Forest Health Report As your new Colorado State Forester, it is my

  13. Colorado Climate Spring 2000 Vol. 1, No. 2

    E-Print Network [OSTI]

    Colorado Climate Spring 2000 Vol. 1, No. 2 Inside: · Growing Season Trends · Urban Heat Islands · Where Do Climate Data Come From · Climate Prediction in the 21st Century #12;22 ColoradoClimate Colorado Climate Center Atmospheric Science Department Colorado State University Fort Collins, CO 80523-1371 ISSN

  14. Colorado Highlands | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColorado Energy OfficeHighlands

  15. Reference Material

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead ofReference-Documents Sign In

  16. Energy Smart Colorado, Final Report

    SciTech Connect (OSTI)

    Gitchell, John M. [Program Administrator] [Program Administrator; Palmer, Adam L. [Program Manager] [Program Manager

    2014-03-31T23:59:59.000Z

    Energy Smart Colorado is an energy efficiency program established in 2011 in the central mountain region of Colorado. The program was funded through a grant of $4.9 million, awarded in August 2010 by the U.S. Department of Energy’s Better Buildings Program. As primary grant recipient, Eagle County coordinated program activities, managed the budget, and reported results. Eagle County staff worked closely with local community education and outreach partner Eagle Valley Alliance for Sustainability (now Walking Mountains Science Center) to engage residents in the program. Sub-recipients Pitkin County and Gunnison County assigned local implementation of the program in their regions to their respective community efficiency organizations, Community Office for Resource Efficiency (CORE) in Pitkin County, and Office for Resource Efficiency (ORE) in Gunnison County. Utility partners contributed $166,600 to support Home Energy Assessments for their customers. Program staff opened Energy Resource Centers, engaged a network of qualified contractors, developed a work-flow, an enrollment website, a loan program, and a data management system to track results.

  17. Reference Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead ofReference-Documents Sign In About |

  18. Favorable Geochemistry from Springs and Wells in COlorado

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Geothermal Development Associates, Reno Nevada Originator: United States Geological Survey (USGS) Originator: Colorado Geological Survey Publication Date: 2012 Title: Favorable Geochemistry Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: This layer contains favorable geochemistry for high-temperature geothermal systems, as interpreted by Richard "Rick" Zehner. The data is compiled from the data obtained from the USGS. The original data set combines 15,622 samples collected in the State of Colorado from several sources including 1) the original Geotherm geochemical database, 2) USGS NWIS (National Water Information System), 3) Colorado Geological Survey geothermal sample data, and 4) original samples collected by R. Zehner at various sites during the 2011 field season. These samples are also available in a separate shapefile FlintWaterSamples.shp. Data from all samples were reportedly collected using standard water sampling protocols (filtering through 0.45 micron filter, etc.) Sample information was standardized to ppm (micrograms/liter) in spreadsheet columns. Commonly-used cation and silica geothermometer temperature estimates are included. Spatial Domain: Extent: Top: 4515595.841032 m Left: 149699.513964 m Right: 757959.309388 m Bottom: 4104156.435530 m Contact Information: Contact Organization: Geothermal Development Associates, Reno, Nevada Contact Person: Richard “Rick” Zehner Address: 3740 Barron Way City: Reno State: NV Postal Code: 89511 Country: USA Contact Telephone: 775-737-7806 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  19. Colorado Statewide Forest Products Industry Profile

    E-Print Network [OSTI]

    Colorado Statewide Forest Products Industry Profile Economic Sustainability and Ecological and Comparisons · Production and Processing · Sales and Markets · Economic and Ecological Contributions Sawmills · 1/4 for Roundwood (post and pole, vigas, house logs), furniture, excelsior etc. ­ Sawmill

  20. Alternative Fuels Data Center: Colorado Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    production facilities in Colorado, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  1. Southern Rockies: eastern and northwestern Colorado

    SciTech Connect (OSTI)

    Dolson, J.

    1981-10-01T23:59:59.000Z

    Exploratory drilling in eastern and northwestern Colorado closely paralleled that of 1979. Success factors, however, were higher, partially due to a greater number of marginal well completions following the increase in oil prices. Thirty-seven percent more exploratory wells were completed in 1980 than in 1979. Statewide exploratory success was 28.8% and the development well success rate was 78.3%, compared to 20.8% and 73.4%, respectively, in 1979. Cretaceous sandstones remained the primary target in northwestern and central Colorado. Shallow Niobrara gas provided the main play in eastern Colorado. Southeastern Colorado was the site of significant exploration and development drilling in Pennsylvanian Morrow trends. 1 figure, 3 tables.

  2. Colorado's hydrothermal resource base: an assessment

    SciTech Connect (OSTI)

    Pearl, R.H.

    1981-01-01T23:59:59.000Z

    As part of its effort to more accurately describe the nations geothrmal resource potential, the US Department of Energy/Division of Geothermal Energy contracted with the Colorado Geological survey to appraise the hydrothermal (hot water) geothermal resources of Colorado. Part of this effort required that the amount of energy that could possibly be contained in the various hydrothermal systems in Colorado be estimated. The findings of that assessment are presented. To make these estimates the geothermometer reservoir temperatures estimated by Barrett and Pearl (1978) were used. In addition, the possible reservoir size and extent were estimated and used. This assessment shows that the total energy content of the thermal systems in Colorado could range from 4.872 x 10{sup 15} BTU's to 13.2386 x 10{sup 15} BTU's.

  3. Colorado Springs Utilities- Renewable Energy Rebate Program

    Broader source: Energy.gov [DOE]

    Through its Renewable Energy Rebate Program, Colorado Springs Utilities (CSU) offers a rebate to customers who install grid-connected solar-electric (PV) systems, wind systems, and solar water...

  4. Aspen, Colorado: Community Energy Strategic Planning Process

    Broader source: Energy.gov [DOE]

    This presentation features Lee Ledesma, utilities operations manager with the City of Aspen, Colorado. Ledesma provides an overview of the City of Aspen's experience in putting together a financing...

  5. Colorado

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption TheX I A O J I E X

  6. Process Optimization Assessments at Fort Leonard Wood, Missouri and Fort Carson, Colorado

    E-Print Network [OSTI]

    Lin, M.; Vavrin, J.; Smith, W.

    2004-01-01T23:59:59.000Z

    Process Optimization Assessments at Fort Leonard Wood, Missouri and Fort Carson, Colorado Mike C.J. Lin U.S. Army Corps of Engineers Engineer Research Development Center, Construction Engineering Research Laboratory Champaign, Illinois... a specific Level II scope of work, respective roles, and the most expeditious path forward. This begins with a formal review of this report, combined with a planning session to organize the Level II program. REFERENCES 1. Lin, Mike C.J., et...

  7. Colorado Forestry Advisory Board Members: Don Ament Tom Stone

    E-Print Network [OSTI]

    #12;Colorado Forestry Advisory Board Members: Don Ament Tom Stone Commissioner of Agriculture As Chairperson of Colorado's newly created Forestry Advisory Board, I would like to thank you for taking the time

  8. Colorado State University Brand Toolbox I Design principles

    E-Print Network [OSTI]

    Colorado State University Brand Toolbox I Design principles Graphic standards Communicators Updated 3/2013 #12;Communications Assurance...................................... 1 Graphic Standards, or general consent as a model or example; criterion. Graphic Standards #12;Colorado State University Brand

  9. Colorado's Economic Recovery since the Great Recession Professor Martin Shields

    E-Print Network [OSTI]

    1 Colorado's Economic Recovery since the Great Recession Professor Martin Shields Regional Economics Institute Colorado State University csurei, economic performance has been mixed. The northern Front Range has fared best

  10. Modeling In situ sediment oxygen demand in the Arroyo Colorado

    E-Print Network [OSTI]

    Kasprzak, Kevin Ray

    2001-01-01T23:59:59.000Z

    The Arroyo Colorado River is the principal source of fresh water inflow to the Southern Laguna Madre, an economically and ecologically important resource for the Lower Rio Grande Valley region of Texas. The Arroyo Colorado serves as a principal...

  11. Colorado Forestry Advisory Board Members: April 6, 2005

    E-Print Network [OSTI]

    #12;Colorado Forestry Advisory Board Members: April 6, 2005 The 2004 Report on the Health types that characterize Colora- do's unique landscapes. As members of the Colorado Forestry Advisory will motivate and inform your involvement. Sincerely, Nancy M. Fishering Chairperson, Colorado Forestry Advisory

  12. School of Social Work Fort Collins, Colorado 80523-1586

    E-Print Network [OSTI]

    Rutledge, Steven

    School of Social Work Fort Collins, Colorado 80523-1586 Phone (970) 491-6612 Fax (970) 491-7280 Colorado State University College of Health and Human Sciences School of Social Work http or disability. #12;ii Greetings! Welcome to the School of Social Work at Colorado State University! Central

  13. STATE OF COLORADO DEPARTMENT OF HIGHER EDUCATION John Hickenlooper

    E-Print Network [OSTI]

    STATE OF COLORADO DEPARTMENT OF HIGHER EDUCATION John Hickenlooper Governor Lt. Gov. Joseph A-YEAR INSTITUTIONS OF HIGHER EDUCATION Colorado State University-Ft Collins Metropolitan State University of Denver number of credits designated by the Colorado Commission on Higher Education. The guarantees

  14. Connecting Colorado's Renewable Resources to the Markets in a Cabon-Constrained Electricity Sector

    SciTech Connect (OSTI)

    None

    2009-12-31T23:59:59.000Z

    The benchmark goal that drives the report is to achieve a 20 percent reduction in carbon dioxide (CO{sub 2}) emissions in Colorado's electricity sector below 2005 levels by 2020. We refer to this as the '20 x 20 goal.' In discussing how to meet this goal, the report concentrates particularly on the role of utility-scale renewable energy and high-voltage transmission. An underlying recognition is that any proposed actions must not interfere with electric system reliability and should minimize financial impacts on customers and utilities. The report also describes the goals of Colorado's New Energy Economy5 - identified here, in summary, as the integration of energy, environment, and economic policies that leads to an increased quality of life in Colorado. We recognize that a wide array of options are under constant consideration by professionals in the electric industry, and the regulatory community. Many options are under discussion on this topic, and the costs and benefits of the options are inherently difficult to quantify. Accordingly, this report should not be viewed as a blueprint with specific recommendations for the timing, siting, and sizing of generating plants and high-voltage transmission lines. We convened the project with the goal of supplying information inputs for consideration by the state's electric utilities, legislators, regulators, and others as we work creatively to shape our electricity sector in a carbon-constrained world. The report addresses various issues that were raised in the Connecting Colorado's Renewable Resources to the Markets report, also known as the SB07-91 Report. That report was produced by the Senate Bill 2007-91 Renewable Resource Generation Development Areas Task Force and presented to the Colorado General Assembly in 2007. The SB07-91 Report provided the Governor, the General Assembly, and the people of Colorado with an assessment of the capability of Colorado's utility-scale renewable resources to contribute electric power in the state from 10 Colorado generation development areas (GDAs) that have the capacity for more than 96,000 megawatts (MW) of wind generation and 26,000 MW of solar generation. The SB07-91 Report recognized that only a small fraction of these large capacity opportunities are destined to be developed. As a rough comparison, 13,964 MW of installed nameplate capacity was available in Colorado in 2008. The legislature did not direct the SB07-91 task force to examine several issues that are addressed in the REDI report. These issues include topics such as transmission, regulation, wildlife, land use, permitting, electricity demand, and the roles that different combinations of supply-side resources, demand-side resources, and transmission can play to meet a CO{sub 2} emissions reduction goal. This report, which expands upon research from a wide array of sources, serves as a sequel to the SB07-91 Report. Reports and research on renewable energy and transmission abound. This report builds on the work of many, including professionals who have dedicated their careers to these topics. A bibliography of information resources is provided, along with many citations to the work of others. The REDI Project was designed to present baseline information regarding the current status of Colorado's generation and transmission infrastructure. The report discusses proposals to expand the infrastructure, and identifies opportunities to make further improvements in the state's regulatory and policy environment. The report offers a variety of options for consideration as Colorado seeks pathways to meet the 20 x 20 goal. The primary goal of the report is to foster broader discussion regarding how the 20 x 20 goal interacts with electric resource portfolio choices, particularly the expansion of utility-scale renewable energy and the high-voltage transmission infrastructure. The report also is intended to serve as a resource when identifying opportunities stemming from the American Recovery and Reinvestment Act of 2009.

  15. 7th Annual Colorado Rare Plant Symposium Conservation Efforts and Status Review of G1 Plants of Colorado

    E-Print Network [OSTI]

    7th Annual Colorado Rare Plant Symposium Conservation Efforts and Status Review of G1 Plants of the Colorado Rare Plant Technical Committee (RPTC) for the 7th Annual Colorado Rare Plant Symposium. The RPTC is an ad-hoc group of agency and NGO botanists that has been working for years to advance rare plant

  16. Chapter 7 Bibliography and References

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Laboratory, Golden, Colorado 80401. September. NREL. 1999. Storm Water Pollution Prevention Program for Construction Activities. NREL. 1998. South Table Mountain...

  17. Colorado State University | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColoradoColorado

  18. Colorado Water Courts | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColoradoColoradoCourts Jump to:

  19. Department Name Degrees Phone Email Website Aerospace Engineering MS, PhD 303-492-6416 aerograd@colorado.edu http://www.colorado.edu/aerospace

    E-Print Network [OSTI]

    Mulligan, Jane

    Department Name Degrees Phone Email Website Aerospace Engineering MS, PhD 303-492-6416 aerograd@colorado.edu http://www.colorado.edu/aerospace Anthropology MA, PhD 303-492-7947 anthro@colorado.edu http://www.colorado.edu/anthropology Applied Mathematics MS, PhD 303-492-1238 amgradco@colorado.edu http://amath.colorado.edu Art and Art

  20. Denver, Colorado: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This brochure provides an overview of the challenges and successes of Denver, Colorado, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  1. Geospatial Data Store Colorado School of Mines

    E-Print Network [OSTI]

    Geospatial Data Store Colorado School of Mines White Paper February 2006 Martin Spann, Adjunct Professor EPICS #12;2 A Geospatial Data Store Contents Executive Summary Proposed Budget (short version) General Information Geospatial Data Geospatial Data Store Library Geospatial Committee Academic

  2. Air Pollution, ATS555 Colorado State University

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    Air Pollution, ATS555 Colorado State University Fall 2014 Mondays and Wednesdays @ 4:00 ­ 5:30 Room://ramct.colostate.edu/) Textbooks: Air Pollution: Its Origin and Control, 3rd Edition, by Wark, Warner and Davis, Addison Wesley. Specific objectives include: 1. Develop an understanding of types and sources of air pollution. 2. Examine

  3. COLORADO SCHOOL OF MINES PERFORMANCE MANAGEMENT PROGRAM

    E-Print Network [OSTI]

    , managers, and other affected parties, · Emphasizes planning, management, and evaluation of employee1 COLORADO SCHOOL OF MINES PERFORMANCE MANAGEMENT PROGRAM Revised October 1, 2008 I. HISTORY Since salaries were adjusted based on prevailing wages as determined by a salary survey, with merit increases

  4. Recent Economic Trends in Colorado's Oil and Gas Industry Martin Shields, Ph.D.

    E-Print Network [OSTI]

    's Oil and Gas Industry Martin Shields, Ph.D. Regional Economics Institute Trends in Colorado's Oil and Gas Industry Summary Colorado's economy lost issues affecting its prospects in Colorado. Although the oil and gas industry

  5. Special Collections Department/University Libraries University of Colorado at Boulder spc@colorado.edu, 303-492-6144 Page 1

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    ©Special Collections Department/University Libraries University of Colorado at Boulder spc at Boulder Libraries Norlin Library Room N345, 303-492-6144, spc@colorado.edu http Collections Department/University Libraries University of Colorado at Boulder spc@colorado.edu, 303

  6. Shallow (2-meter) temperature surveys in Colorado

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Geothermal Development Associates, Reno, Nevada Publication Date: 2012 Title: Colorado 2m Survey Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: Shallow temperature surveys are useful in early-stage geothermal exploration to delineate surface outflow zones, with the intent to identify the source of upwelling, usually a fault. Detailed descriptions of the 2-meter survey method and equipment design can be found in Coolbaugh et al. (2007) and Sladek et al. (2007), and are summarized here. The survey method was devised to measure temperature as far below the zone of solar influence as possible, have minimal equilibration time, and yet be portable enough to fit on the back of an all-terrain vehicle (ATV); Figure 2). This method utilizes a direct push technology (DPT) technique where 2.3 m long, 0.54” outer diameter hollow steel rods are pounded into the ground using a demolition hammer. Resistance temperature devices (RTD) are then inserted into the rods at 2-meter depths, and allowed to equilibrate for one hour. The temperatures are then measured and recorded, the rods pulled out of the ground, and re-used at future sites. Usually multiple rods are planted over the course of an hour, and then the sampler returns back to the first station, measures the temperatures, pulls the rods, and so on, to eliminate waiting time. At Wagon Wheel Gap, 32 rods were planted around the hot springs between June 20 and July 1, 2012. The purpose was to determine the direction of a possible upflow fault or other structure. Temperatures at 1.5m and 2m depths were measured and recorded in the attribute table of this point shapefile. Several anomalous temperatures suggest that outflow is coming from a ~N60W striking fault or shear zone that contains the quartz-fluorite-barite veins of the adjacent patented mining claims. It should be noted that temperatures at 2m depth vary according to the amount of solar heating from above, as well as possible geothermal heating from below. Spatial Domain: Extent: Top: 4490310.560635 m Left: 150307.008238 m Right: 433163.213617 m Bottom: 4009565.915398 m Contact Information: Contact Organization: Geothermal Development Associates, Reno, Nevada Contact Person: Richard “Rick” Zehner Address: 3740 Barron Way City: Reno State: NV Postal Code: 89511 Country: USA Contact Telephone: 775-737-7806 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  7. Radiation Research Society 2005 Annual Meeting, Denver, Colorado

    SciTech Connect (OSTI)

    Robert Ullrich, PhD

    2005-10-04T23:59:59.000Z

    Abstracts and proceedings of the 2005 Annual Meeting of the Radiation Research Society held in Denver, Colorado on October 16-19, 2005.

  8. Colorado Springs Utilities- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Colorado Springs Utilities (CSU) Business Energy and Water Efficiency Rebate Program offers a variety of incentives to business customers who upgrade evaporative cooling, HVAC, irrigation,...

  9. Colorado Community Readiness Efforts for PEVs Support State Policy...

    Broader source: Energy.gov (indexed) [DOE]

    the development of Colorado state policies to accelerate the adoption of plug-in electric vehicles (PEVs). Through Project FEVER, the Denver Clean Cities coalition and its...

  10. Economic Impact of NREL on Colorado, FY2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY Economic Impact of NREL on Colorado, FY2012 STUDY FUNDED BY: Alliance for Sustainable Energy, LLC BUSINESS RESEARCH DIVISION Leeds School of Business University of...

  11. University of Colorado-Boulder Researches Solar-Thermochemical...

    Broader source: Energy.gov (indexed) [DOE]

    EERE funds research at the University of Colorado-Boulder for a hydrogen production technology that uses solar energy to produce hydrogen from water. The thermochemical process...

  12. Direct Confirmation of Commercial Geothermal Resources in Colorado...

    Open Energy Info (EERE)

    Megawatts by location. Awardees (Company Institution) Flint Geothermal, LLC Partner 1 University of Colorado, Boulder Partner 2 Geothermal Development Associates Partner 3...

  13. Colorado Firm Develops Innovative Materials for Geothermal Systems...

    Office of Environmental Management (EM)

    Firm Develops Innovative Materials for Geothermal Systems Colorado Firm Develops Innovative Materials for Geothermal Systems April 18, 2013 - 12:00am Addthis With support from...

  14. applications laboratory colorado: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Laboratory 13 O:CSUEHorticultureNative Plant Masters20132013 NPM Application.doc432013 Colorado State University Extension 2009 Geosciences Websites...

  15. Colorado Springs Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Colorado Springs Utilities offers a variety of energy and water efficiency incentives to its residential customers through the Residential Rebate Program. Rebates are offered for single and multi...

  16. Areas of Anomalous Surface Temperature in Garfield County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Garfield Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4441550.552290 m Left: 271445.053363 m Right: 359825.053363 m Bottom: 4312490.552290 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  17. Areas of Anomalous Surface Temperature in Routt County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Routt Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4501071.574000 m Left: 311351.975000 m Right: 359681.975000 m Bottom: 4447251.574000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  18. Areas of Anomalous Surface Temperature in Chaffee County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Chaffee Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4333432.368072 m Left: 366907.700763 m Right: 452457.816015 m Bottom: 4208271.566715 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  19. Areas of Anomalous Surface Temperature in Archuleta County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Archuleta Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4144691.792023 m Left: 285531.662851 m Right: 348694.182686 m Bottom: 4097005.210304 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  20. Areas of Anomalous Surface Temperature in Dolored County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Dolores Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4186234.213315 m Left: 212558.673056 m Right: 232922.811862 m Bottom: 4176781.467043 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  1. Pyrolysis of Organic Molecules Relevant to Combustion as Monitored by Photoionization Time-of-Flight Mass Spectrometry

    E-Print Network [OSTI]

    Weber, Kevin Howard

    2010-01-01T23:59:59.000Z

    is observed, which is similar to MTBE in this system whichisobutene formed from MTBE, is found to occur. REFERENCES [methyl tert-butyl ether (MTBE) and tert-amyl methyl ether (

  2. Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1993 (July 1, 1992, through June 30, 1993). To capture employment benefits, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Rifle, and Gunnison, Colorado. An estimated 52 percent of the employees working on the UMTRA Project responded to this information request. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are summarized.

  3. Economic impact study of the Uranium Mill Tailings Remedial Action project in Colorado: Colorado state fiscal year 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    This Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year (FY) 1995 (1 July 1994 through 30 June 1995). To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock, Colorado. Economic data were requested from the Remedial Action Contractor (RAC), the Technical Assistance Contractor (TAC) and the US Department of Energy (DOE). The most significant benefits associated with the UMTRA Project in Colorado are summarized.

  4. Colorado 2014 Economic Outlook: There are No Guarantees

    E-Print Network [OSTI]

    Colorado 2014 Economic Outlook: There are No Guarantees Dr. Martin Shields Regional Economics Institute Colorado State University #12;The Important Economic Issues · The economy is no longer "recovering the recovery looked like · 2014 outlook · Does economic growth improve individual well-being? #12;"Recovery

  5. Water Supply Analysis for Restoring the Colorado River Delta, Mexico

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    Water Supply Analysis for Restoring the Colorado River Delta, Mexico Josué Medellín-Azuara1 ; Jay R, Mexico. Potential water sources include reductions in local agricultural and urban water use through headings: Water supply; Restoration; Mexico; Colorado River; Environmental issues. Introduction Providing

  6. Agricultural Water Demand Along the Colorado River Main Stem

    E-Print Network [OSTI]

    Fay, Noah

    Agricultural Water Demand Along the Colorado River Main Stem: An Econometric Analysis Advisor: Dr · Agriculture is by far the largest water user in the state of Arizona (70%) Municipal Industrial Agriculture 25% 7%68% Municipal Industrial Agriculture #12;Relevance to Arizona · Irrigation along the Colorado

  7. STATE OF COLORADO DEPARTMENT OF HIGHER EDUCATION John Hickenlooper

    E-Print Network [OSTI]

    STATE OF COLORADO DEPARTMENT OF HIGHER EDUCATION John Hickenlooper Governor Lt. Gov. Joseph A-YEAR INSTITUTIONS OF HIGHER EDUCATION Colorado State University-Ft Collins Fort Lewis College Metropolitan State Commission on Higher Education. The guarantees and limitations below describe the minimum requirements

  8. STATE OF COLORADO DEPARTMENT OF HIGHER EDUCATION John Hickenlooper

    E-Print Network [OSTI]

    STATE OF COLORADO DEPARTMENT OF HIGHER EDUCATION John Hickenlooper Governor Lt. Gov. Joseph A OF HIGHER EDUCATION Colorado State University-Ft Collins #12;FINAL Statewide Transfer Articulation Agreement Education. The guarantees and limitations below describe the minimum requirements to which all participating

  9. A Classification of Riparian Wetland Plant Associations of Colorado

    E-Print Network [OSTI]

    Protection Agency, the US Forest Service, the US Bureau of Land Management, the US Bureau of Reclamation, US: EPA/State of Colorado, The Nature Conservancy, US Forest Service, Bureau of Land Management, Bureau of Reclamation, National Fish and Wildlife Foundation, Denver Water Board, City of Boulder, Colorado Natural

  10. Colorado Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    Colorado Water Resources Research Institute Annual Technical Report FY 1999 Introduction WATER Water Institute Program for FY1999, the Advisory Council on Water Research Policy (ACWRP) for the Colorado Water Resources Research Institute (CWRRI) was activated. The Council held its initial meeting

  11. Colorado Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    Colorado Water Resources Research Institute Annual Technical Report FY 2000 Introduction As water managers work to solve the integrated water problems facing Colorado today, the dimensions of each issue demand a better understanding of basic water science, technology and policy. Whether water managers work

  12. Colorado State University Cooperative Extension. 4/02.

    E-Print Network [OSTI]

    necessary for good germination. Aspen is unique among Colorado forest trees in its ability to sprout new types are pinon pine-juniper; ponderosa pine-Douglas-fir; lodgepole pine; spruce-fir; and aspen. Fire lower in elevation and dryer than the spruce-fir forest types of the subalpine zone. Aspen is Colorado

  13. COLORADO SCHOOL OF MINES RESEARCH INSTITUTE SITE REMEDIATION PROJECT SUMMARY

    E-Print Network [OSTI]

    COLORADO SCHOOL OF MINES RESEARCH INSTITUTE SITE REMEDIATION PROJECT SUMMARY May 15, 2007 · The Colorado School of Mines Research Institute Site (the "Site) has been undergoing additional investigation RESEARCH INSTITUTE REMEDIATION PROJECT SUMMARY Page Two May 15, 2007 · The revised Remedial Investigation

  14. SME Annual Meeting Feb. 26-28, Denver, Colorado

    E-Print Network [OSTI]

    Saylor, John R.

    SME Annual Meeting Feb. 26-28, Denver, Colorado 1 Copyright © 2001 by SME Preprint 01-114 EFFECTS of operating conditions that included multiple drum heights and the use of side and underboom sprays. #12;SME Annual Meeting Feb. 26-28, Denver, Colorado 2 Copyright © 2001 by SME TEST FACILITY Gallery Testing

  15. Structural Orientations Adjacent to Some Colorado Geothermal Systems

    SciTech Connect (OSTI)

    Richard,

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Geothermal Development Associates, Reno, Nevada Publication Date: 2012 Title: Structural Data Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: Structural orientations (fractures, joints, faults, lineaments, bedding orientations, etc.) were collected with a standard Brunton compass during routine field examinations of geothermal phenomena in Colorado. Often multiple orientations were taken from one outcrop. Care was taken to ensure outcrops were "in place". Point data was collected with a hand-held GPS unit. The structural data is presented both as standard quadrant measurements and in format suitable for ESRI symbology Spatial Domain: Extent: Top: 4491528.924999 m Left: 207137.983196 m Right: 432462.310324 m Bottom: 4117211.772001 m Contact Information: Contact Organization: Geothermal Development Associates, Reno, Nevada Contact Person: Richard “Rick” Zehner Address: 3740 Barron Way City: Reno State: NV Postal Code: 89511 Country: USA Contact Telephone: 775-737-7806 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  16. MTBE/methanol supply

    SciTech Connect (OSTI)

    Simmons, R.E.

    1986-05-01T23:59:59.000Z

    U.S. methanol production has become economically competitive with imports due to de-escalation of natural gas price from $3.07 mm Btu in January 1985 to $2.07 mm Btu by December 1985. This has reversed the earlier supply outlook when it appeared that additional methanol plants would shutdown due to low cost imports. Current gas cost in conjunction with projections for continued excess supply prompted DuPont to restart their 250 mm gpy plant at Beaumont, Texas. Other former producers are contemplating restarting idle units.

  17. The Colorado Rare Plant Technical Committee presents: Colorado Rare Plant Symposium

    E-Print Network [OSTI]

    · Land ownership/management: BLM, private, state Conservation Action Plan #12;Astragalus osterhoutii #12 · Land ownership/management: Colorado National Monument, BLM, possibly on adjacent private #12;Aletes · Land ownership/management: BLM, Mesa Verde NP, tribal (Southern Ute and Ute Mountain Ute), and private

  18. Alfred A. Arraj U.S. Courthouse; Denver, Colorado: A Model of Sustainability

    SciTech Connect (OSTI)

    Not Available

    2005-09-01T23:59:59.000Z

    This brochure describes the sustainability of the Alfred A. Arraj United States Courthouse in Denver, Colorado.

  19. Energy Incentive Programs, Colorado | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogenDistributionFact SheetColorado Energy Incentive

  20. Akron, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)Airway Heights,Akins, Oklahoma: EnergyColorado:

  1. Florence, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy Park atFisia BabcockFlexColorado: Energy

  2. Westcreek, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills, NewWestbrook, Minnesota: EnergyWestcreek, Colorado:

  3. Clean Cities: Northern Colorado Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12DenverNorthern Colorado Clean Cities

  4. Clean Cities: Southern Colorado Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12DenverNorthernSouth ShoreColorado Clean

  5. Kittredge, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa:Washington:KimbleKinnelon,Kirtland,Kittredge, Colorado:

  6. Jamestown, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm JumpJamestown, Colorado: Energy

  7. Hudson, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County,Ohio: EnergyHudson EnergyColorado: Energy

  8. Colorado Renewable Energy Collaboratory | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCityCoated ConductorsColonial Industria de BebidasColorado

  9. Woodmoor, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources JumpWood,WoodfordLandfillWoodmoor, Colorado:

  10. Parachute, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, NewPalisadesParachute, Colorado: Energy Resources Jump

  11. Southeast Colorado Power Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast Colorado Power Assn Jump to: navigation, search Name:

  12. Eagle, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, NewDyerTier2Latvia)Colorado: Energy Resources Jump

  13. Eaton, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois: EnergyEastport, Maine: EnergyColorado: Energy Resources

  14. Nunn, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn, Colorado: Energy Resources Jump to:

  15. DOE - Office of Legacy Management -- Colorado

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizona Arizona az_map Monument ValleyColorado

  16. Cottonwood, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|Core Analysis AtSystems |CostaCottonAlabama:Colorado:

  17. Lafayette, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea PartsLLNL EnergyLafarge RoofingColorado:

  18. Applewood, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County, Michigan:Applewood, Colorado: Energy Resources

  19. Colorado DWR GWS-32 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier Technologies IncCity,Published Colorado

  20. Colorado Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier Technologies IncCity,PublishedColorado

  1. Colorado Energy Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColorado Energy Office Jump to:

  2. Colorado Ground Water Commission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColorado Energy Office

  3. Colorado Public Utilities Commission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColorado

  4. Berkley, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina: Energy Resources JumpWestColorado: Energy

  5. RAPID/Geothermal/Colorado | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎ | Geothermal Jump to:

  6. REC Solar (Colorado) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformationeNevada <REC Solar (Colorado) Jump to:

  7. Rangely, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, search Name:Rancia 2Rangely, Colorado: Energy

  8. Colorado's Prospects for Interstate Commerce in Renewable Power

    SciTech Connect (OSTI)

    Hurlbut, D. J.

    2009-12-01T23:59:59.000Z

    Colorado has more renewable energy potential than it is ever likely to need for its own in-state electricity consumption. Such abundance may suggest an opportunity for the state to sell renewable power elsewhere, but Colorado faces considerable competition from other western states that may have better resources and easier access to key markets on the West Coast. This report examines factors that will be important to the development of interstate commerce for electricity generated from renewable resources. It examines market fundamentals in a regional context, and then looks at the implications for Colorado.

  9. High frequency reference electrode

    DOE Patents [OSTI]

    Kronberg, J.W.

    1994-05-31T23:59:59.000Z

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  10. Optical voltage reference

    DOE Patents [OSTI]

    Rankin, R.; Kotter, D.

    1994-04-26T23:59:59.000Z

    An optical voltage reference for providing an alternative to a battery source is described. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function. 2 figures.

  11. EIS-0351: Operation of Flaming Gorge Dam, Colorado River Storage Project, Colorado River, UT

    Broader source: Energy.gov [DOE]

    The Secretary of the United States Department of the Interior (Secretary), acting through the Bureau of Reclamation (Reclamation), is considering whether to implement a proposed action under which Flaming Gorge Dam would be operated to achieve the flow and temperature regimes recommended in the September 2000 report Flow and Temperature Recommendations for Endangered Fishes in the Green River Downstream of Flaming Gorge Dam (2000 Flow and Temperature Recommendations), published by the Upper Colorado River Endangered Fish Recovery Program (Recovery Program).

  12. 2008 Forestry-related Legislation in Colorado The state of Colorado values healthy, resilient forest landscapes and is willing to invest

    E-Print Network [OSTI]

    2008 Forestry-related Legislation in Colorado The state of Colorado values healthy, resilient and value of Colorado's forests. At the time this report was written, several forestry-related bills were related to the WUI, fuels mitigation, fire fighting, bark beetle mortality and incentives for forestry

  13. Application Protocol Reference Architecture Application Protocol Reference Architecture

    E-Print Network [OSTI]

    van Sinderen, Marten

    Application Protocol Reference Architecture 165 Chapter 7 Application Protocol Reference Architecture This chapter proposes an alternative reference architecture for application protocols. The proposed reference architecture consists of the set of possible architectures for application protocols

  14. City extensions : the revitalization of Denver Colorado's Platte River Valley

    E-Print Network [OSTI]

    Sobey, James A

    1982-01-01T23:59:59.000Z

    This thesis examines a process for future city growth in Denver, Colorado. Its objective is to develop a model by which future expansion of the city might build qualities of continuity and identity between adjacent sections ...

  15. asce denver colorado: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BASIN, COLORADO By D. J. Nichols in U.S. Geological Survey Professional Paper 1625-A 1999 Resource assessment of selected Tertiary coal beds and zones here or on this symbol in the...

  16. Water supply analysis for restoring the Colorado River Delta, Mexico

    E-Print Network [OSTI]

    Medellin-Azuara, Josue; Lund, Jay R.; Howitt, Richard E.

    2007-01-01T23:59:59.000Z

    1091-1109. Banco de México. (2006). "Indices de Precios alColorado River Delta in Mexico." Cohen, M. J. (2006). "TheEstadísticas del Agua en México 2004." Comisión Nacional del

  17. Dear Readers: For years, you've known Colorado

    E-Print Network [OSTI]

    #12;Dear Readers: For years, you've known Colorado State Magazine as a source for news and updates the Division of Continuing Education #12;A Magazine for Alumni and Friends SUMMER 2013 · NUMBER 63 Editorial

  18. 2005 ASME Pressure Vessels and Piping Conference Denver, Colorado, USA

    E-Print Network [OSTI]

    Özer, Mutlu

    1 DRAFT 2005 ASME Pressure Vessels and Piping Conference Denver, Colorado, USA July 17-21, 2005 subjected to lateral earthquake loads. The results are verified with different codes (e.g. Eurocode8, API

  19. College of Engineering Profile The College of Engineering at Colorado

    E-Print Network [OSTI]

    Programs: Chemical and Biological Engineering Civil Engineering Computer Engineering Electrical Engineering: Atmospheric Science Bioengineering Chemical Engineering Civil Engineering Electrical Engineering MechanicalCollege of Engineering Profile 2007-2008 The College of Engineering at Colorado State has a strong

  20. Amanda S Hering Colorado School of Mines; Assistant Professor

    E-Print Network [OSTI]

    Society (TIES) · American Statistical Association (ASA) ­ Section on Statistics and the Environment Energy ­ Journal of the American Statistical Association ­ Journal of Computational and GraphicalAmanda S Hering Colorado School of Mines; Assistant Professor Applied Mathematics and Statistics

  1. Southeast Colorado Power Association- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southeast Colorado Power Association (SECPA) offers a variety of rebates to customers who purchase and install energy efficient [http://secpa.com/Sites/Appliances.html appliances], [http://secpa...

  2. 6040 Greenwood Plaza Boulevard Greenwood Village, Colorado 80111

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as the Lowry Bombing Range on behalf of the Colorado State Land Board. The upfront bonus of 137 Million and 88 well commitment will generate approximately 500 Million in...

  3. Colorado Front Range Fuel Photo Series Michael A. Battaglia

    E-Print Network [OSTI]

    Fried, Jeremy S.

    Colorado Front Range Fuel Photo Series Michael A. Battaglia Jonathan M. Dodson Wayne D. Shepperd of Agriculture Forest Service Rocky Mountain Research Station June 2005 #12;Battaglia, Michael A.; Dodson

  4. Ponnequin Wind Energy Project Weld County, Colorado

    SciTech Connect (OSTI)

    NONE

    1997-08-01T23:59:59.000Z

    The purpose of this environmental assessment (EA) is to provide the U.S. Department of Energy (DOE) and the public with information on potential environmental impacts associated with the development of the Ponnequin Wind Energy Project in Colorado. This EA and public comments received on it will be used in DOE`s deliberations on whether to release funding for the project. This document provides a detailed description of the proposed project and an assessment of potential impacts associated with its construction and operations. Resources and conditions considered in the analysis include streams; wetlands; floodplains; water quality; soils; vegetation; air quality; socioeconomic conditions; energy resources; noise; transportation; cultural resources; visual and land use resources; public health and safety; wildlife; threatened, endangered, and candidate species; and cumulative impacts. The analysis found that the project would have minimal impacts on these resources and conditions, and would not create impacts that exceed the significance criteria defined in this document. 90 refs., 5 figs.

  5. Public Service Announcements for the Arroyo Colorado Watershed

    E-Print Network [OSTI]

    Berthold, Allen

    COLLEGE OF AGRICULTURE AND LIFE SCIENCES TR-396 2011 Public Service Announcements for the Arroyo Colorado Watershed Final Report By T. Allen Berthold Texas Water Resources Institute Prepared... for Texas General Land Office March 2011 Texas Water Resources Institute Technical Report No. 396 Texas A&M University System College Station, Texas 77843-2118 Public Service Announcements for the Arroyo Colorado Watershed By T...

  6. Arroyo Colorado Watershed Protection Plan Implementation Project Final Report

    E-Print Network [OSTI]

    Berthold, T. Allen; Flores, Jaime

    2011-01-01T23:59:59.000Z

    Arroyo Colorado Watershed Protection Plan Implementation Project Final Report August 2011 By T. Allen Berthold and Jaime Flores Texas Water Resources Institute Texas Water Resources Institute Technical Report No. 411 Texas A&M University... System College Station, Texas 77843-2118 COLLEGE OF AGRICULTURE AND LIFE SCIENCES TR-411 2011 Arroyo Colorado Watershed Protection Plan Implementation Project Final Report By T. Allen Berthold and Jaime Flores Texas Water Resources...

  7. Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado State fiscal year 1994. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994 (1 July 1993 through 30 June 1994). To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. Information on wages, taxes, and subcontract expenditures in combination with estimates and economic multipliers is used to estimate the dollar economic benefits to Colorado during the state fiscal year. Finally, the fiscal year 1994 estimates are compared to fiscal year 1993 employment and economic information.

  8. MARY CARROLL CRAIG BRADFORD: PROVIDING OPPORTUNITIES TO COLORADO’S WOMEN AND CHILDREN THROUGH SUFFRAGE AND EDUCATION

    E-Print Network [OSTI]

    Caldwell, Heather K.

    2010-07-14T23:59:59.000Z

    This dissertation is a historical biography on the life, suffrage and educational contributions of Mary Carroll Craig Bradford, a wife, mother, suffragist, teacher and educational administrator in the state of Colorado. The purpose...

  9. Value of Information References

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Morency, Christina

    This file contains a list of relevant references on value of information (VOI) in RIS format. VOI provides a quantitative analysis to evaluate the outcome of the combined technologies (seismology, hydrology, geodesy) used to monitor Brady's Geothermal Field.

  10. Value of Information References

    SciTech Connect (OSTI)

    Morency, Christina

    2014-12-12T23:59:59.000Z

    This file contains a list of relevant references on value of information (VOI) in RIS format. VOI provides a quantitative analysis to evaluate the outcome of the combined technologies (seismology, hydrology, geodesy) used to monitor Brady's Geothermal Field.

  11. Precision displacement reference system

    DOE Patents [OSTI]

    Bieg, Lothar F. (Albuquerque, NM); Dubois, Robert R. (Albuquerque, NM); Strother, Jerry D. (Edgewood, NM)

    2000-02-22T23:59:59.000Z

    A precision displacement reference system is described, which enables real time accountability over the applied displacement feedback system to precision machine tools, positioning mechanisms, motion devices, and related operations. As independent measurements of tool location is taken by a displacement feedback system, a rotating reference disk compares feedback counts with performed motion. These measurements are compared to characterize and analyze real time mechanical and control performance during operation.

  12. Membrane reference electrode

    DOE Patents [OSTI]

    Redey, L.; Bloom, I.D.

    1988-01-21T23:59:59.000Z

    A reference electrode utilizes a small thin, flat membrane of a highly conductive glass placed on a small diameter insulator tube having a reference material inside in contact with an internal voltage lead. When the sensor is placed in a non-aqueous ionic electrolytic solution, the concentration difference across the glass membrane generates a low voltage signal in precise relationship to the concentration of the species to be measured, with high spatial resolution. 2 figs.

  13. Areas of Anomalous Surface Temperature in Alamosa and Saguache Counties, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Alamosa Saguache Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4217727.601630 m Left: 394390.400264 m Right: 460179.841813 m Bottom: 4156258.036086 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  14. Colorado Better Buildings Project Final Report

    SciTech Connect (OSTI)

    Strife, Susie; Yancey, Lea

    2013-12-30T23:59:59.000Z

    The Colorado Better Buildings project intended to bring new and existing energy efficiency model programs to market with regional collaboration and funding partnerships. The goals for Boulder County and its program partners were to advance energy efficiency investments, stimulate economic growth in Colorado and advance the state’s energy independence. Collectively, three counties set out to complete 9,025 energy efficiency upgrades in 2.5 years and they succeeded in doing so. Energy efficiency upgrades have been completed in more than 11,000 homes and businesses in these communities. Boulder County and its partners received a $25 million BetterBuildings grant from the U.S. Department of Energy under the American Recovery and Reinvestment Act in the summer of 2010. This was also known as the Energy Efficiency and Conservation Block Grants program. With this funding, Boulder County, the City and County of Denver, and Garfield County set out to design programs for the residential and commercial sectors to overcome key barriers in the energy upgrade process. Since January 2011, these communities have paired homeowners and business owners with an Energy Advisor – an expert to help move from assessment to upgrade with minimal hassle. Pairing this step-by-step assistance with financing incentives has effectively addressed many key barriers, resulting in energy efficiency improvements and happy customers. An expert energy advisor guides the building owner through every step of the process, coordinating the energy assessment, interpreting results for a customized action plan, providing a list of contractors, and finding and applying for all available rebates and low-interest loans. In addition to the expert advising and financial incentives, the programs also included elements of social marketing, technical assistance, workforce development and contractor trainings, project monitoring and verification, and a cloud-based customer data system to coordinate among field advisors and across local governments and local service vendors. A portion of the BetterBuildings grant went to the Metro Mayors Caucus (MMC) who worked in partnership with the Denver Regional Council of Governments (DRCOG) to conduct a series of 10 energy efficiency workshops for local government officials and other interested parties. The workshops helped showcase lessons learned on energy efficiency and helped guide other local governments in the establishment of similar programs. The workshops covered a wide range of energy efficiency and renewable energy topics such as clean energy finance, social mobilization and communications, specific case studies of Colorado towns, energy efficiency codes, net zero buildings and solar power. Since the programs launched in January 2011, these communities have collectively spurred economic investments in energy efficiency, achieved greater than 5:1 leveraging of grant funds, saved energy and reduced greenhouse gas emissions, provided trainings for a robust local energy contractor network, and proved out viable and replicable program models that local utilities and other communities are adopting, with long lasting market transformation.

  15. Did the Great Recession Wipe Out a Decade of Economic Progress in Colorado?

    E-Print Network [OSTI]

    1 Did the Great Recession Wipe Out a Decade of Economic Associate Professor of Economics Michael Marturana Research Economist Colorado rebuild. To make better decisions about Colorado's open economic path

  16. AN INVESTIGATION OF DEWATERING FOR THE MODIFIED IN-SITU RETORTING PROCESS, PICEANCE CREEK BASIN, COLORADO

    E-Print Network [OSTI]

    Mehran, M.

    2013-01-01T23:59:59.000Z

    J:''-~orraation v Piceance Creek Basin v Colorado r and 9 p'C~b Tract, Piceance Creek Basin, Colorado," Report to Oc~for Piceance and Yellow Creek Watersheds," Environmental

  17. EIS-0362: Colorado Springs Utilities' Next Generation CFB Coal Generating Unit, CO

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve Colorado Springs Utilities design, construction, and operation of their Next- Generation Circulating Fluidized Bed (CFB) Coal Generating Unit demonstration plant near Fountain, El Paso County, Colorado.

  18. Radiological survey of the inactive uranium-mill tailings at Rifle, Colorado

    SciTech Connect (OSTI)

    Haywood, F.F.; Jacobs, D.J.; Ellis, B.S.; Hubbard, H.M. Jr.; Shinpaugh, W.H.

    1980-06-01T23:59:59.000Z

    Results of radiological surveys of two inactive uranium-mill sites near Rifle, Colorado, in May 1976 are presented. These sites are referred to as Old Rifle and New Rifle. The calculated /sup 226/Ra inventory of the latter site is much higher than at the older mill location. Data on above-ground measurements of gamma exposure rates, surface and near-surface concentration of /sup 226/Ra in soil and sediment samples, concentration of /sup 226/Ra in water, calculated subsurface distribution of /sup 226/Ra, and particulate radionuclide concentrations in air samples are given. The data serve to define the extent of contamination in the vicinity of the mill sites and their immediate surrounding areas with tailings particles. Results of these measurements were utilized as technical input for an engineering assessment of these two sites.

  19. A watershed blueprint: partners work together to restore Arroyo Colorado's health

    E-Print Network [OSTI]

    Wythe, K.

    2010-01-01T23:59:59.000Z

    txH2O | pg. 18 A watershed blueprint Partners work together to restore Arroyo Colorado?s health In 2002 the Texas Commission on Environmental Quality (TCEQ) set a target of 90 percent reduction of nutrients and biochemical oxygen demand... for the Arroyo Colorado to regain its healthy condition. Eight years later, the Arroyo Colorado, an ancient channel of the Rio Grande in the Lower Rio Grande Valley, has been the focus of multiple projects; educational and outreach efforts...

  20. A watershed blueprint: Partners work together to restore Arroyo Colorado's health

    E-Print Network [OSTI]

    Wythe, Kathy

    2010-01-01T23:59:59.000Z

    txH2O | pg. 18 A watershed blueprint Partners work together to restore Arroyo Colorado?s health In 2002 the Texas Commission on Environmental Quality (TCEQ) set a target of 90 percent reduction of nutrients and biochemical oxygen demand... for the Arroyo Colorado to regain its healthy condition. Eight years later, the Arroyo Colorado, an ancient channel of the Rio Grande in the Lower Rio Grande Valley, has been the focus of multiple projects; educational and outreach efforts...

  1. Economic Development Impacts of Colorado's First 1000 Megawatts of Wind Energy

    SciTech Connect (OSTI)

    Reategui, S.; Tegen, S.

    2008-08-01T23:59:59.000Z

    This report analyzes the economic impacts of the installation of 1000 MW of wind power in the state of Colorado.

  2. Preliminary Site Characterization Report, Rulsion Site, Colorado

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    This report is a summary of environmental information gathered during a review of the documents pertaining to Project Rulison and interviews with personnel who worked on the project. Project Rulison was part of Operation Plowshare (a program designed to explore peaceful uses for nuclear devices). The project consisted of detonating a 43-kiloton nuclear device on September 10, 1969, in western Colorado to stimulate natural gas production. Following the detonation, a reentry well was drilled and several gas production tests were conducted. The reentry well was shut-in after the last gas production test and was held in standby condition until the general cleanup was undertaken in 1972. A final cleanup was conducted after the emplacement and testing wells were plugged in 1976. However, some surface radiologic contamination resulted from decontamination of the drilling equipment and fallout from the gas flaring during drilling operations. With the exception of the drilling effluent pond, all surface contamination at the Rulison Site was removed during the cleanup operations. All mudpits and other excavations were backfilled, and both upper and lower drilling pads were leveled and dressed. This report provides information regarding known or suspected areas of contamination, previous cleanup activities, analytical results, a review of the regulatory status, the site`s physical environment, and future recommendations for Project Ruhson. Based on this research, several potential areas of contamination have been identified. These include the drilling effluent pond and mudpits used during drilling operations. In addition, contamination could migrate in the gas horizon.

  3. Created to Serve: Colorado State University's Impact on the State's Economy

    E-Print Network [OSTI]

    Rutledge, Steven

    Created to Serve: Colorado State University's Impact on the State's Economy #12;2 Created to Serve: Created to Serve: Colorado State University's Impact on the State's Economy All data, research's Impact on the State's Economy Message from the President Colorado State, as a land-grant university

  4. Colorado School of Mines Police Department, Campus Security and Fire Safety Report -2013 2013 ANNUAL SECURITY

    E-Print Network [OSTI]

    Colorado School of Mines Police Department, Campus Security and Fire Safety Report -2013 1 2013 ANNUAL SECURITY & FIRE SAFETY REPORT PREPARED BY: THE COLORADO SCHOOL OF MINES DEPARTMENT OF PUBLIC SAFETY #12;Colorado School of Mines Police Department, Campus Security and Fire Safety Report -2013 2

  5. University of Colorado at Boulder Department of Environmental Health and Safety

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    University of Colorado at Boulder Department of Environmental Health and Safety Department of Environmental Health and Safety 1000 Regent Drive 413 UCB University of Colorado Boulder, Colorado 80309 to stationary objects (potential damage), and preparing for high winds. The Facilities Management Guidelines

  6. Multifunctional reference electrode

    DOE Patents [OSTI]

    Redey, L.; Vissers, D.R.

    1981-12-30T23:59:59.000Z

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell are described. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  7. Aluminum reference electrode

    DOE Patents [OSTI]

    Sadoway, D.R.

    1988-08-16T23:59:59.000Z

    A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

  8. Aluminum reference electrode

    DOE Patents [OSTI]

    Sadoway, Donald R. (Belmont, MA)

    1988-01-01T23:59:59.000Z

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  9. Multifunctional reference electrode

    DOE Patents [OSTI]

    Redey, Laszlo (Lisle, IL); Vissers, Donald R. (Naperville, IL)

    1983-01-01T23:59:59.000Z

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  10. Environmental assessment, expanded Ponnequin wind energy project, Weld County, Colorado

    SciTech Connect (OSTI)

    NONE

    1999-02-01T23:59:59.000Z

    The US Department of Energy (DOE) has considered a proposal from the State of Colorado, Office of Energy Conservation (OEC), for funding construction of the Expanded Ponnequin Wind Project in Weld County, Colorado. OEC plans to enter into a contracting arrangement with Public Service Company of Colorado (PSCo) for the completion of these activities. PSCo, along with its subcontractors and business partners, are jointly developing the Expanded Ponnequin Wind Project. The purpose of this Final Environmental Assessment (EA) is to provide DOE and the public with information on potential environmental impacts associated with the Expanded Ponnequin Wind Energy Project. This EA, and public comments received on it, were used in DOE`s deliberations on whether to release funding for the expanded project under the Commercialization Ventures Program.

  11. Grant Reference Lead / Sole

    E-Print Network [OSTI]

    Rank Overall Score Grant Reference Lead / Sole Grant Grant Holder Research Organisation Project of Birmingham Controls on Soil Carbon Export revealed by Novel Tracers on multiple timescales (SCENT) Standard Grant DEC12 8 8 NE/K011871/1 N Melanie Leng NERC British Geological Survey A 500,000-year environmental

  12. HAZARDOUS WASTE MANAGEMENT REFERENCE

    E-Print Network [OSTI]

    Faraon, Andrei

    Principal Investigators 7 Laboratory Personnel 8 EH&S Personnel 8 HAZARDOUS WASTE ACCUMULATION AREAS 9 Satellite Accumulation Area 9 Waste Accumulation Facility 10 HAZARDOUS WASTE CONTAINER MANAGEMENT LabelingHAZARDOUS WASTE MANAGEMENT REFERENCE GUIDE Prepared by Environment, Health and Safety Office

  13. CONCRETE PAVEMENT Reference Manual

    E-Print Network [OSTI]

    CONCRETE PAVEMENT Reference Manual Prepared for Federal Highway Administration Office of Pavement by National Concrete Pavement Technology Center at Iowa State University 2711 South Loop Drive, Suite 4700 No. 3. Recipient's Catalog No. 4. Title and Subtitle 5. Report Date February 2008 Concrete Pavement

  14. MSL ENTERANCE REFERENCE AREA

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    MSL ENTERANCE LOBBY ELEV STAIRS SSL-019 REFERENCE AREA SSL-021 GROUP STUDY SSL-018 STUDY ROOM SSL-029 SSL-020 COPY ROOM SSL-022 GROUP STUDY SSL-026 STACKS SSL-023 GROUP STUDY SSL-024 GROUP STUDY SSL TBL-014 TBL-014A STAIRS SSL-007 GIS/ WORKROOM SSL-011 SSL-008 SSL-009 SSL-010 SSL-014 SSL-017 STAIRS

  15. Cisco Reference Configurations for

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    ............................................................................................. 10 EMC VNX5500 Storage Layout.0 with EMC VNX5500 Series Storage Systems White Paper November 2012 © 2012 Cisco and/or its affiliates. AllCisco Reference Configurations for Microsoft SQL Server 2012 Fast Track Data Warehouse 4.0 with EMC

  16. Colorado Solar Energy Industries Association | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColoradoColorado Solar Energy

  17. Colorado State Bank and Trust | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColoradoColorado Solar

  18. Colorado State Board of Land Commissioners | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColoradoColorado SolarState

  19. Colorado Water Quality Control Act | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColoradoColoradoCourts Jump

  20. Colorado thermal spring water geothermometry (public dataset) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColoradoColoradoCourts

  1. RAPID/Geothermal/Environment/Colorado | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎ | GeothermalColorado

  2. RAPID/Geothermal/Exploration/Colorado | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎Alaska <Colorado <

  3. RAPID/Geothermal/Exploration/Colorado | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎Alaska <Colorado

  4. Taking the Pulse of Colorado's Climate

    E-Print Network [OSTI]

    Fort Lupton Greeley Lucerne Peckham Mean ReferenceET(in) 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60 Ault Briggsdale EasternAdams County Fort Collins AERC Fort Collins ARDEC Fort Lupton Greeley Lucerne

  5. OSH technical reference manual

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    In an evaluation of the Department of Energy (DOE) Occupational Safety and Health programs for government-owned contractor-operated (GOCO) activities, the Department of Labor`s Occupational Safety and Health Administration (OSHA) recommended a technical information exchange program. The intent was to share written safety and health programs, plans, training manuals, and materials within the entire DOE community. The OSH Technical Reference (OTR) helps support the secretary`s response to the OSHA finding by providing a one-stop resource and referral for technical information that relates to safe operations and practice. It also serves as a technical information exchange tool to reference DOE-wide materials pertinent to specific safety topics and, with some modification, as a training aid. The OTR bridges the gap between general safety documents and very specific requirements documents. It is tailored to the DOE community and incorporates DOE field experience.

  6. Reference Undulator Measurement Results

    SciTech Connect (OSTI)

    Wolf, Zachary; Levashov, Yurii; /SLAC; ,

    2011-08-18T23:59:59.000Z

    The LCLS reference undulator has been measured 22 times during the course of undulator tuning. These measurements provide estimates of various statistical errors. This note gives a summary of the reference undulator measurements and it provides estimates of the undulator tuning errors. We measured the reference undulator many times during the tuning of the LCLS undulators. These data sets give estimates of the random errors in the tuned undulators. The measured trajectories in the reference undulator are stable and straight to within {+-}2 {micro}m. Changes in the phase errors are less than {+-}2 deg between data sets. The phase advance in the cell varies by less than {+-}2 deg between data sets. The rms variation between data sets of the first integral of B{sub x} is 9.98 {micro}Tm, and the rms variation of the second integral of B{sub x} is 17.4 {micro}Tm{sup 2}. The rms variation of the first integral of B{sub y} is 6.65 {micro}Tm, and the rms variation of the second integral of B{sub y} is 12.3 {micro}Tm{sup 2}. The rms variation of the x-position of the fiducialized beam axis is 35 {micro}m in the final production run This corresponds to an rms uncertainty in the K value of {Delta}K/K = 2.7 x 10{sup -5}. The rms variation of the y-position of the fiducialized beam axis is 4 {micro}m in the final production run.

  7. STEP Intern Reference Check Sheet

    Broader source: Energy.gov [DOE]

    STEP Intern Reference Check Sheet, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  8. The selection of climatic-variation reference stations in the continental United States using historical information and statistical methods

    E-Print Network [OSTI]

    Love, James Hamilton

    1985-01-01T23:59:59.000Z

    Cooperative Program Manager' s area of responsibility . . 13 Substation history for Leakesville, Mississippi. 14 Location of selected reference stations. 18 Blanco-tau difference series using January mean maximum temperatures for 1907-16. Lines on either... Colorado Connecticut* Florida Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusettes* Michigan Minnesota Missouri Montana Nebraska New Hampshire New York Nor th Carolina North Dakota Ohio Oklahoma...

  9. Finance 2013-14 Institution: Colorado School of Mines (126775)

    E-Print Network [OSTI]

    Finance 2013-14 Institution: Colorado School of Mines (126775) User ID: P1267751 Overview Finance Overview Purpose The purpose of the IPEDS Finance component is to collect basic financial information from to the 2013-14 Finance data collection from the 2012-13 collection. Resources: To download the survey

  10. Colorado State University Center for Advising & Student Achievement

    E-Print Network [OSTI]

    at CASA are first and second year learning communities serving a highly diverse student population Academic Culture, Communication, and Sports is a first-year Learning Community focused on the integration1 Colorado State University Center for Advising & Student Achievement Position Description Key Plus

  11. COLORADO STATE UNIVERSITY Research Integrity & Compliance Review Office (RICRO)

    E-Print Network [OSTI]

    COLORADO STATE UNIVERSITY Research Integrity & Compliance Review Office (RICRO) Assistant of the Research Integrity and Compliance Review Office (RICRO) is responsible for a broad range of duties to the campus community and visitors to campus. #12; Ability to successfully plan and prepare for as well as set

  12. Colorado State University Cooperative Extension. 2/99.

    E-Print Network [OSTI]

    , unattacked trees. Mountain pine beetle (MPB), Dendroctonus ponderosae, is native to the forests of western.543, Western Spruce Budworms). Spruce beetle (D. rufipennis) is a pest of Engelmann and Colorado blue spruce beetles and related bark beetles in the genus Dendroctonus can be distinguished from other large bark

  13. SAND AND GRAVEL MINING IN COLORADO RIPARIAN HABITATS

    E-Print Network [OSTI]

    Reclamation Specialist Colorado Division of Mined Land Reclamation 723 Centennial Building 1313 Sherman Reclamation Board (MLRB) administers the Colo rado Mined Land Reclamation Act of 1976. This law requires types of mining including sand and gravel mining. The Mined Land Reclamation Division (MLRD

  14. Water Resources and Climate Change in Garden Park, Colorado

    E-Print Network [OSTI]

    Baffa, Thomas W.

    2009-12-18T23:59:59.000Z

    , is the availability of an adequate water supply. Drought is an ever-present danger, and, with an annual statewide precipitation rate of 12 to 17 inches, the quote above is a grim reminder that water is as precious as gold in Colorado. Combine that fact...

  15. COLORADO DEPARTMENT OF TRANSPORTATION Sustainability of Concrete Pavement

    E-Print Network [OSTI]

    COLORADO DEPARTMENT OF TRANSPORTATION Sustainability of Concrete Pavement I-225 - Mississippi to 6 · 2 Mile Reconstruction Existing: · 4 Lane Divided Highway · 8" Concrete Pavement (Recycled on-site) · 4" Asphalt Overlay (Recycled off-site) Project Design: · 6 Lane Divided Highway · 13" Concrete

  16. This Quick Guide was produced by the Colorado

    E-Print Network [OSTI]

    This Quick Guide was produced by the Colorado State Forest Service to promote knowledge transfer. Juniper tends to grow in more arid areas; its scaled foliage allows it to conserve water more effectively. Treatment Methods for Thinning Piñon-Juniper Forests A variety of techniques may be used to manage piñon

  17. Colorado State University Cooperative Extension. 9/99.

    E-Print Network [OSTI]

    are affected by this disease, including aspen, birch, cottonwood, poplar, spruce, willow, ash, maple, elm Cytospora. These pathogens affect many species of trees in Colorado, including aspen, cottonwood, lombardy are host specific and will not spread to other tree species. Aspen and cottonwoods are attacked by the same

  18. Colorado State University Cooperative Extension. 2/99.

    E-Print Network [OSTI]

    D E N I N G S E R I E S DISEASES Foliage diseases can reduce the aesthetic value of aspen Marssonina causes the most common foliage disease on aspen and poplars in urban and forested areas and occasionally aspen in urban areas of Colorado. Quick Facts... Five fungi cause most foliage diseases on aspen

  19. COLORADO STATE UNIVERSITY LISTING OF VARIOUS KFS CODES USED IN

    E-Print Network [OSTI]

    Stephens, Graeme L.

    COLORADO STATE UNIVERSITY KFS CODES LISTING OF VARIOUS KFS CODES USED IN INQUIRY SCREENS INDEX Item COMPENSATION CPTL CAPITAL FDBL FUND BALANCE GENX GENERAL EXPENSE IDEX INDIRECT COST RECOVERY EXPENSE LIAB Contracts OTRE CACO Capital Construction CPTL CAPO Equipment CPTL CASH Cash ASST CINP Construc in Process

  20. The Colorado Rare Plant Technical Committee Rare Plant Symposium

    E-Print Network [OSTI]

    Natural Heritage Program USDA Forest Service #12;All species map #12;Federal status: None Heritage ranks occurrences: 36, 1 historical Colorado individuals: 15,000+ Primary threats: Recreational uses are the primary nutallii Nuttall's Desert-parsley Federal status: None Heritage ranks: G3/S1 Global distribution: Montana

  1. Robert R. Leben Colorado Center for Astrodynamics Research

    E-Print Network [OSTI]

    . Colorado 80309 Note on plankton and cold-core rings in the Gulf of Mexico Douglas C. Biggs* Robert A. However, we were ity, and zooplankton biomass are generally extremely low (Biggs, 1992). In contrast during several cruises when GulfofMexico CCR's were tracked, Biggs et a1. (1988) hypothesized

  2. Joel M. Bach, Ph.D. Colorado School of Mines

    E-Print Network [OSTI]

    Engineers (ASME) Rehabilitation Engineering and Assistive Technology Society of North America (RESNA) Past and Rehabilitation Research Colorado School of Mines 2011 ­ Present Clinical Associate Professor Assistive Technology;Joel M. Bach, Ph.D. Page 3 of 15 Professional Societies Current American Society of Mechanical

  3. COLORADO STATE-WIDE FOREST LEGACY ASSESSMENT OF NEED

    E-Print Network [OSTI]

    plan designed for their forest. Activities consistent with the management plan, including timber for property owners. These ten criteria were developed through a survey conducted as part of this AON. The survey is meant as a means to assess and include stakeholders' interest in the FLP for Colorado

  4. Colorado Water Resources Research Institute Special Report No. 16

    E-Print Network [OSTI]

    management area AMP agricultural management plan ARS Agricultural Research Service (United States Department of Agriculture) BDL below detection limit BMP best management practice CCA Certified Crop Advisor CDA Colorado National Water-Quality Assessment Program (United States Geologic Survey) NRCS Natural Resources

  5. Survey of Critical Biological Resources Garfield County, Colorado

    E-Print Network [OSTI]

    Survey of Critical Biological Resources Garfield County, Colorado Volume I Prepared for Garfield of the Garfield County Commissioners, the Planning Department, and the Assessor's office. We received much help and good advice from the Bureau of Land Management, especially Carla Scheck and Dan Sokal in the Glenwood

  6. EIS-0395: San Luis Rio Colorado Project, AZ

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to construct and operate a proposed transmission line originating at the proposed San Luis Rio Colorado (SLRC) Power Center in Sonora, Mexico, interconnect with Western's existing Gila Substation, and continue to Arizona Public Service Company’s (APS) North Gila Substation

  7. Arroyo Colorado Agricultural Nonpoint Source Assessment Final Report

    E-Print Network [OSTI]

    Berthold, A.

    2012-06-19T23:59:59.000Z

    As a result of low dissolved oxygen levels, the tidal segment of the Arroyo Colorado (Segment 2201), does not currently meet the aquatic life use designated by the State of Texas and described in the Texas Water Quality Standards. This has been...

  8. SUMMARY OF TERTIARY COAL RESOURCES OF THE DENVER BASIN, COLORADO

    E-Print Network [OSTI]

    Chapter SD SUMMARY OF TERTIARY COAL RESOURCES OF THE DENVER BASIN, COLORADO By D. J. Nichols in U.S. Geological Survey Professional Paper 1625-A 1999 Resource assessment of selected Tertiary coal beds and zones here or on this symbol in the toolbar to return. 1999 Resource assessment of selected Tertiary coal

  9. Optomechanical reference accelerometer

    E-Print Network [OSTI]

    Gerberding, Oliver; Melcher, John; Pratt, Jon; Taylor, Jacob

    2015-01-01T23:59:59.000Z

    We present an optomechanical accelerometer with high dynamic range, high bandwidth and read-out noise levels below 8 {\\mu}g/$\\sqrt{\\mathrm{Hz}}$. The straightforward assembly and low cost of our device make it a prime candidate for on-site reference calibrations and autonomous navigation. We present experimental data taken with a vacuum sealed, portable prototype and deduce the achieved bias stability and scale factor accuracy. Additionally, we present a comprehensive model of the device physics that we use to analyze the fundamental noise sources and accuracy limitations of such devices.

  10. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469Appendix E4 Reference

  11. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469Appendix E4 Reference4

  12. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469Appendix E4 Reference46

  13. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469Appendix E44 Reference

  14. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2CubiccurrentFor2 Reference

  15. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2CubiccurrentFor2 Reference4

  16. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2CubiccurrentFor2 Reference46

  17. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2CubiccurrentFor2 Reference464

  18. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2CubiccurrentFor24 Reference

  19. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2CubiccurrentFor24 Reference6

  20. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2CubiccurrentFor24 Reference68

  1. REFERENCES Baines, W. D.

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurvesSpeedingScientificof ScientificQ LA-UR- " "REFERENCES

  2. References to Astrophysics Papers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently Approved JustificationBio-Inspired SolarReferences to

  3. Colorado SChool of MineS We are Colorado School of Mines. Full of pride in our distinguished history. Full

    E-Print Network [OSTI]

    to excellence and service. Graphic standards address the "show" element of this commitment. By diligently and stewardship of the earth's resources. This Graphic Standards Guide sets forth the trademarked logos -- both and communications. #12;Contents GraphiC standards 04 Letter from the President 05 Colorado School of Mines Signature

  4. Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1994

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994. To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are summarized. This study assesses benefits associated with the Grand Junction, Gunnison, Naturita, and Rifle UMTRA Projects sites for the 1-year period under study. Work at the Naturita site was initiated in April 1994 and involved demolition of buildings at the processing site. Actual start-up of remediation of Naturita is planned to begin in the spring of 1995. Work at the Slick Rock and Maybell sites is expected to begin in 1995. The only current economic benefits associated with these sites are related to UMTRA Project support work.

  5. Sustainability of the Arroyo Colorado Watershed Partnership and Continued Implementation of the Arroyo Colorado Watershed Protection Plan Final Report

    E-Print Network [OSTI]

    Flores, J.; Berthold, A.

    2014-01-01T23:59:59.000Z

    The Arroyo Colorado (AC) is an ancient channel of the Rio Grande and is approximately 90 miles long. The headwaters of the AC begins at the Anzalduas Diversion Dam in Mission, TX and flows eastward through southern Hidalgo County, into Cameron...

  6. Antares Reference Telescope System

    SciTech Connect (OSTI)

    Viswanathan, V.K.; Kaprelian, E.; Swann, T.; Parker, J.; Wolfe, P.; Woodfin, G.; Knight, D.

    1983-01-01T23:59:59.000Z

    Antares is a 24-beam, 40-TW carbon-dioxide laser-fusion system currently nearing completion at the Los Alamos National Laboratory. The 24 beams will be focused onto a tiny target (typically 300 to 1000 ..mu..m in diameter) located approximately at the center of a 7.3-m-diameter by 9.3-m-long vacuum (10/sup -6/ torr) chamber. The design goal is to position the targets to within 10 ..mu..m of a selected nominal position, which may be anywhere within a fixed spherical region 1 cm in diameter. The Antares Reference Telescope System is intended to help achieve this goal for alignment and viewing of the various targets used in the laser system. The Antares Reference Telescope System consists of two similar electro-optical systems positioned in a near orthogonal manner in the target chamber area of the laser. Each of these consists of four subsystems: (1) a fixed 9X optical imaging subsystem which produces an image of the target at the vidicon; (2) a reticle projection subsystem which superimposes an image of the reticle pattern at the vidicon; (3) an adjustable front-lighting subsystem which illuminates the target; and (4) an adjustable back-lighting subsystem which also can be used to illuminate the target. The various optical, mechanical, and vidicon design considerations and trade-offs are discussed. The final system chosen (which is being built) and its current status are described in detail.

  7. Coal data: A reference

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  8. CH 6 REFERENCES.DOC 6-1 6 References

    E-Print Network [OSTI]

    REFERENCES.DOC Allan, S., A. R. Buckley, and J. E. Meacham. 2001. Atlas of Oregon. Second Edition. William J

  9. Geothermal resources of Colorado | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI Reference LibraryAdd toWell Testing and Evaluation

  10. Gunbarrel, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergy

  11. Nuclear Science References Database

    E-Print Network [OSTI]

    B. Pritychenko; E. B?ták; B. Singh; J. Totans

    2014-07-08T23:59:59.000Z

    The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center http://www.nndc.bnl.gov/nsr and the International Atomic Energy Agency http://www-nds.iaea.org/nsr.

  12. Long life reference electrode

    DOE Patents [OSTI]

    Yonco, R.M.; Nagy, Z.

    1987-07-30T23:59:59.000Z

    An external, reference electrode is provided for long term use with a high temperature, high pressure system. The electrode is arranged in a vertical, electrically insulative tube with an upper portion serving as an electrolyte reservoir and a lower portion in electrolytic communication with the system to be monitored. The lower end portion includes a flow restriction such as a porous plug to limit the electrolyte release into the system. A piston equalized to the system pressure is fitted into the upper portion of the tube to impart a small incremental pressure to the electrolyte. The piston is selected of suitable size and weight to cause only a slight flow of electrolyte through the porous plug into the high pressure system. This prevents contamination of the electrolyte but is of such small flow rate that operating intervals of a month or more can be achieved. 2 figs.

  13. Landscapes as references for design

    E-Print Network [OSTI]

    Batchelor, James P

    1981-01-01T23:59:59.000Z

    This is a study of the ways in which the forms in landscapes - natural terrain adapted and inhabited - can serve as references in architectural design. As references for design, landscapes provide a richness of responses ...

  14. Budget Reconciliation Procedures Reference Guide

    E-Print Network [OSTI]

    Shull, Kenneth R.

    Budget Reconciliation Procedures Reference Guide eDev Course Number FMS723 Subject Area Budget Northwestern University #12;Reference Guide Budget Reconciliation Table of Contents Helpful Contacts....................................................................................... 14 723QuickRefGuidev1.4 2 of 14 #12;Reference Guide Budget Reconciliation Helpful Contacts Below

  15. Ponnequin Wind Energy Project: Reference site avian study, January 1, 1998--December 31, 1998

    SciTech Connect (OSTI)

    Kerlinger, P.; Curry, R.; Ryder, R.

    2000-04-05T23:59:59.000Z

    This report summarizes the results of surveys completed during the period January 1, 1998, through December 31, 1998, at the Ponnequin Wind Energy Project in Weld County, Colorado. The surveys were conducted at two reference sites, and include a pre-construction avian abundance and use survey and raptor nesting, prey, and carcass surveys. The reference sites were situated immediately to the west of the project site in Weld County, Colorado, and 4.8 kilometers to the north of the site in Laramie County, Wyoming. The surveys were conducted along two 800-meter (m) main transects at each site with two 400-m (by 100-m) perpendicular transects. About 30 complete surveys were completed during the year, with a greater frequency of surveys in the late spring and early autumn. The surveys revealed mostly common species, with no endangered or threatened species on the sites. Small numbers of raptors were observed on or near the project and reference areas. During the winter, avian use and abundance was minimal. Prey species consisted primarily of thirteen-lined ground squirrels and northern pocket gophers. Two songbird carcasses were found. The results of these surveys, combined with data from several more months of surveys, will be compared to surveys conducted after construction of the wind farm.

  16. File:5 CCR 1001-5 Colorado Stationary Source Permitting and Air...

    Open Energy Info (EERE)

    icon File:5 CCR 1001-5 Colorado Stationary Source Permitting and Air Pollution Control Emission Notice Requirements.pdf Jump to: navigation, search File File history File...

  17. AN INVESTIGATION OF DEWATERING FOR THE MODIFIED IN-SITU RETORTING PROCESS, PICEANCE CREEK BASIN, COLORADO

    E-Print Network [OSTI]

    Mehran, M.

    2013-01-01T23:59:59.000Z

    Commercially Producing Oil Shale: World Oil, Vol. 190, No.A Tech~ nology Assessment. of Oil Shale Development,"13th Oil Shale Symposium Proceedings, Colorado School of

  18. Areas of Weakly Anomalous to Anomalous Surface Temperature in Garfield County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Warm Modeled Temperature Garfield Edition: First Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the “Anomalous Surface Temperature” dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1? and 2? were considered ASTER modeled warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4442180.552290 m Left: 268655.053363 m Right: 359915.053363 m Bottom: 4312490.552290 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  19. Areas of Weakly Anomalous to Anomalous Surface Temperature in Routt County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Warm Modeled Temperature Routt Edition: First Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the “Anomalous Surface Temperature” dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1? and 2? were considered ASTER modeled warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4501071.574000 m Left: 311351.975000 m Right: 359411.975000 m Bottom: 4447521.574000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  20. Areas of Weakly Anomalous to Anomalous Surface Temperature in Dolores County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Dolores Edition: First Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the “Anomalous Surface Temperature” dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4186234.213315 m Left: 212558.673056 m Right: 232922.811862 m Bottom: 4176781.467043 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  1. Areas of Weakly Anomalous to Anomalous Surface Temperature in Chaffee County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Chaffee Edition: First Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the “Anomalous Surface Temperature” dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4333432.368072 m Left: 366907.700763 m Right: 452457.816015 m Bottom: 4208271.566715 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  2. Areas of Weakly Anomalous to Anomalous Surface Temperature in Archuleta County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Warm Modeled Temperature Archuleta Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the “Anomalous Surface Temperature” dataset. Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1? and 2? were considered ASTER modeled warm surface exposures (thermal anomalies). Spatial Domain: Extent: Top: 4144825.235807 m Left: 285446.256851 m Right: 350577.338852 m Bottom: 4096962.250137 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  3. Areas of Weakly Anomalous to Anomalous Surface Temperature in Alamosa and Saguache Counties, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Alamosa Saguache Edition: First Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the “Anomalous Surface Temperature” dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4217727.601630 m Left: 394390.400264 m Right: 460179.841813 m Bottom: 4156258.036086 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  4. COSY INFINITY reference manual

    SciTech Connect (OSTI)

    Berz, M.

    1990-07-01T23:59:59.000Z

    This is a reference manual for the arbitrary order particle optics and beam dynamics code COSY INFINITY. It is current as of June 28, 1990. COSY INFINITY is a code to study and design particle optical systems, including beamlines, spectrometers, and particle accelerators. At its core it is using differential algebraic (DA) methods, which allow a very systematic and simple calculation of high order effects. At the same time, it allows the computation of dependences on system parameters, which is often interesting in its own right and can also be used for fitting. COSY INFINITY has a full structured object oriented language environment. This provides a simple interface for the casual user. At the same time, it offers the demanding user a very flexible and powerful tool for the study and design of systems, and more generally, the utilization of DA methods. The power and generality of the environment is perhaps best demonstrated by the fact that the physics routines of COSY INFINITY are written in its own input language and are very compact. The approach also considerably facilitates the implementation of new features because they are incorporated with the same commands that are used for design and study. 26 refs.

  5. Sensor Characteristics Reference Guide

    SciTech Connect (OSTI)

    Cree, Johnathan V.; Dansu, A.; Fuhr, P.; Lanzisera, Steven M.; McIntyre, T.; Muehleisen, Ralph T.; Starke, M.; Banerjee, Pranab; Kuruganti, T.; Castello, C.

    2013-04-01T23:59:59.000Z

    The Buildings Technologies Office (BTO), within the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), is initiating a new program in Sensor and Controls. The vision of this program is: • Buildings operating automatically and continuously at peak energy efficiency over their lifetimes and interoperating effectively with the electric power grid. • Buildings that are self-configuring, self-commissioning, self-learning, self-diagnosing, self-healing, and self-transacting to enable continuous peak performance. • Lower overall building operating costs and higher asset valuation. The overarching goal is to capture 30% energy savings by enhanced management of energy consuming assets and systems through development of cost-effective sensors and controls. One step in achieving this vision is the publication of this Sensor Characteristics Reference Guide. The purpose of the guide is to inform building owners and operators of the current status, capabilities, and limitations of sensor technologies. It is hoped that this guide will aid in the design and procurement process and result in successful implementation of building sensor and control systems. DOE will also use this guide to identify research priorities, develop future specifications for potential market adoption, and provide market clarity through unbiased information

  6. MTBE, Oxygenates, and Motor Gasoline

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14Biomass feedstocks

  7. Economic impact study of the Uranium Mill Tailings Remedial Action project in Colorado: Colorado state fiscal year 1995. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    As required by the Romer-Twining Agreement of 1990, the US Department of Energy (DOE) has prepared this annual economic impact study for the state of Colorado. This report assesses the economic impacts related to the DOE Uranium Mill Tailings Remedial Action (UMTRA) Project in Colorado during the state fiscal year (FY) between 1 July 1994 and 30 June 1995. To estimate net economic benefit, employment, salaries and wages, and other related economic benefits are discussed, quantified, and then compared to the state`s 10 percent share of the remedial action costs. Actual data obtained from sites currently undergoing remedial action were used as the basis for analyses. If data were not available, estimates were used to derive economic indicators. This study describes the types of employment associated with the UMTRA Project and estimates of the numbers of people employed by UMTRA Project subcontractors in Colorado during state FY 1995. Employment totals are reported in estimated average annual jobs; however, the actual number of workers at the site fluctuates depending on weather and on the status of remedial action activities. In addition, the actual number of people employed on the Project during the year may be higher than the average annual employment reported due to the temporary nature of some of the jobs.

  8. Undergraduate Research Experience in the Sleep and Development Laboratory http://www.colorado.edu/intphys/research/sleepdevelopment.html

    E-Print Network [OSTI]

    Seals, Douglas R.

    electronically with your CV or resume to monique.lebourgeois@colorado.edu ASAP. Many thanks for your interest. Monique LeBourgeois monique.lebourgeois@colorado.edu #12;Date____________________ Interested start date_____________ Name________________________________________________ Major

  9. Conference on Mountain Meteorology, 7-11 August 2000 Aspen, Colorado, Amer. Meteor. Soc., Preprint p.11-14.

    E-Print Network [OSTI]

    Houze Jr., Robert A.

    9th Conference on Mountain Meteorology, 7-11 August 2000 Aspen, Colorado, Amer. Meteor. Soc-11 August 2000 Aspen, Colorado, Amer. Meteor. Soc., Preprint p.11-14. the Osservatorio Ticinese at Locarno

  10. Optical probe with reference fiber

    DOE Patents [OSTI]

    Da Silva, Luiz B. (Danville, CA); Chase, Charles L. (Dublin, CA)

    2006-03-14T23:59:59.000Z

    A system for characterizing tissue includes the steps of generating an emission signal, generating a reference signal, directing the emission signal to and from the tissue, directing the reference signal in a predetermined manner relative to the emission signal, and using the reference signal to compensate the emission signal. In one embodiment compensation is provided for fluctuations in light delivery to the tip of the probe due to cable motion.

  11. FAQS Reference Guide- Chemical Processing

    Broader source: Energy.gov [DOE]

    This reference guide addresses the competency statements in the February 2010 edition of DOE-STD-1176-2010, Chemical Processing Functional Area Qualification Standard.

  12. FAQS Reference Guide – Emergency Management

    Broader source: Energy.gov [DOE]

    This reference guide addresses the competency statements in the January 2004 edition of DOE-STD-1177-2004, Emergency Management Functional Area Qualification Standard.

  13. FAQS Reference Guide – Industrial Hygiene

    Broader source: Energy.gov [DOE]

    This reference guide addresses the competency statements in the November 2007 edition of DOE-STD-1138-2007, Industrial Hygiene Functional Area Qualification Standard.

  14. FAQS Reference Guide – Construction Management

    Broader source: Energy.gov [DOE]

    This reference guide addresses the competency statements in the March 2004 edition of DOE-STD-1180-2004, Construction Management Functional Area Qualification Standard.

  15. FAQS Reference Guide – Environmental Compliance

    Broader source: Energy.gov [DOE]

    This reference guide addresses the competency statements in the June 2011 edition of DOE-STD-1156-2011, Environmental Compliance Functional Area Qualification Standard.

  16. Ris Energy Report 6 References Reference list for Chapter 3

    E-Print Network [OSTI]

    Risø Energy Report 6 References Reference list for Chapter 3 1. European Commission. (2007). Communication from the Commis- sion to the European Council and the European Parliament ­ An energy policy of the Brussels European Council 8/9 March 2007. Brussels. (7224/1/07 Rev. 1). 3. Danish Energy authority. (2007

  17. Appendix E References | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NEPA Reading Room SEIS for the Production of Tritium in a Commercial Light Water Reactor Reference Documents Appendix E References Appendix E References Crosswalk of...

  18. February/March2007 COLORADO WATER Residential Water Demand Management in Aurora

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    February/March2007 COLORADO WATER 14 Residential Water Demand Management in Aurora: Learning from Assessment Kevin Reidy, Water Conservation Supervisor, Aurora Water Recent drought years in Colorado have provided a strong in- centive for reform and innovation. One example can be found in Aurora, where drought

  19. PART A: TYPE OF COVERAGE HMO Colorado/Anthem Blue Cross and Blue Shield

    E-Print Network [OSTI]

    PART A: TYPE OF COVERAGE HMO Colorado/Anthem Blue Cross and Blue Shield Colorado Higher Education Insurance Benefits Alliance Trust Effective January 1, 2015 Blue Advantage HMO/Point-of-Service(POS) Plan and copayment options reflect the amount the covered person will pay. BlueAdvantage HMO

  20. 5/1/2013 Page 1 of 4 COLORADO STATE UNIVERSITY

    E-Print Network [OSTI]

    . Procedure Title: Inventories of Consumables and Merchandise 2. Procedure Purpose and Effect: The procedures for inventories of consumable material and merchandise for issue or sale are to ensure complete and accurate inventory data as required by the State of Colorado and Colorado State University. 3. Application

  1. Heuristics for Creating Assignments to Incorporate Simulations REU Report, University of Colorado

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    of Colorado daniel.rehn@colorado.edu Abstract The use of simulations in learning physics is a topic of growing situation intended for student learning as a complex system. Not only does the simulation influence howHeuristics for Creating Assignments to Incorporate Simulations Danny Rehn REU Report, University

  2. Workshop on Physics at the End of the Galactic Cosmic Ray Spectrum, Aspen, Colorado, April 2005

    E-Print Network [OSTI]

    Workshop on Physics at the End of the Galactic Cosmic Ray Spectrum, Aspen, Colorado, April 2005 contributions to the Workshop on Physics at the End of the Galactic Cosmic Ray Spectrum, held at the Aspen Physics Institute, Aspen, Colorado in April 2005. Experimental talks presented during the five day

  3. Lightning in Wildfire Smoke Plumes Observed in Colorado during Summer 2012 TIMOTHY J. LANG

    E-Print Network [OSTI]

    Rutledge, Steven

    University, Fort Collins, Colorado PAUL KREHBIEL AND WILLIAM RISON New Mexico Institute of Mining Mapping Array (LMA) system developed by the New Mexico Institute of Mining and Technology Corresponding and Technology, Socorro, New Mexico DANIEL T. LINDSEY NOAA/NESDIS/STAR/RAMMB, Fort Collins, Colorado (Manuscript

  4. Warming may create substantial water supply shortages in the Colorado River basin

    E-Print Network [OSTI]

    Warming may create substantial water supply shortages in the Colorado River basin Gregory J. Mc (2007), Warming may create substantial water supply shortages in the Colorado River basin, Geophys. Res; published 27 November 2007. [1] The high demand for water, the recent multiyear drought (1999

  5. Lagrangian Sampling of Wastewater Treatment Plant Effluent in Boulder Creek, Colorado, and Fourmile Creek,

    E-Print Network [OSTI]

    Lagrangian Sampling of Wastewater Treatment Plant Effluent in Boulder Creek, Colorado, and Fourmile of wastewater treatment plant effluent in Boulder Creek, Colorado, and Fourmile Creek, Iowa, during the summer........................................................................................................................................................... 5 Field Measurements, Nutrients, Carbon, Major Ions, Trace Elements, and Biological Components

  6. POPULATION ECOLOGY Population Dynamics of the Colorado Potato Beetle in an

    E-Print Network [OSTI]

    POPULATION ECOLOGY Population Dynamics of the Colorado Potato Beetle in an Agroecosystem with Tomatoes and Potatoes with Management Implications to Processing Tomatoes CHRIS L. HARDING,1 S. J Environ. Entomol. 31(6): 1110Ð1118 (2002) ABSTRACT We evaluated the population dynamics of Colorado potato

  7. Introduction The Colorado potato beetle became a pest when settlers brought potatoes into the Rocky

    E-Print Network [OSTI]

    New Hampshire, University of

    16 Introduction The Colorado potato beetle became a pest when settlers brought potatoes into the Rocky Mountain area, the native habitat of this beetle. The beetle preferred the potato to its host weed, and now is a serious pest throughout the U.S. and Eastern Canada. The Colorado potato beetle feeds

  8. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site began in 1995 and is scheduled for completion in 1996. The tailings are being stabilized in place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results presented in this document and other evaluations will determine whether any action is needed to protect human health or the environment.

  9. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    The Uranium Mill Tailings Radiation Control Act of 1978, hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the processing sites and on vicinity properties (VPs) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the ground water from further degradation. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the processing sites on land administered by the US Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project.

  10. POET with C++ Reference Manual

    E-Print Network [OSTI]

    Buhr, Peter Allan

    POET with #22;C++ Reference Manual University of Waterloo David Taylor and Peter A. Buhr c #3; 1996 July 23, 2006 #3; Permission is granted to make copies for personal or educational use #12; 2 POET Reference Manual Contents 1 Introduction 3 2 Before Starting POET 3 3 Accessing POET 3 4 User Interface 3 5

  11. NIST Cloud Computing Reference Architecture

    E-Print Network [OSTI]

    Perkins, Richard A.

    NIST Cloud Computing Reference Architecture Recommendations of the National Institute of Standards Publication 500-292 #12;i NIST Special Publication 500-292 NIST Cloud Computing Reference Architecture, John Messina, Lee Badger and Dawn Leaf Information Techonology Laboratory Cloud Computing Program

  12. 1992 Colorado Economic Impact Study for the US Department of Energy and Colorado Department of Health Uranium Mill Tailings Remedial Action (UMTRA) Project. Preliminary final

    SciTech Connect (OSTI)

    Not Available

    1991-10-22T23:59:59.000Z

    The findings of the 1992 Colorado Economic Impact Study (CEIS) for the Uranium Mill Tailings Remedial Action (UMTRA) Project are outlined below. All dollar amounts used in the study are in year-of-expenditure dollars. The total funding requirement for the State of Colorado for the UMTRA Project is estimated to be $66.8 million, or 10 percent of the remedial action costs for the UMTRA Project in Colorado. The UMTRA Project will generate $487.5 million in gross labor income in Colorado between 1983 and 1996. This includes $54.4 million in state and local tax revenues and $41.2 million in federal individual income tax revenues. The net economic benefit of the UMTRA Project to Colorado is $355.1 million. For every dollar the State of Colorado invests in the UMTRA Project, it will realize $5.32 in gross labor income. The employment impact to the Western Slope region is significant. The UMTRA Project will create a total employment impact of 13,749 fulltime equivalents (FTES) spread over. a period of 13 years in seven site areas. Nearly 100 percent of the labor will be drawn from the local communities. The State of Colorado`s Western Slope is anticipated to be minimally impacted by the phaseout of the UMTRA Project. Unlike industries that shut down operations without warning, the UMTRA Project workers, local government, and businesses know the schedule for completion and can consider and prepare for the impact of UMTRA Project conclusion. Further, because the majority of the work force is local, there has not been a significant investment in each community`s infrastructure. Any small increases in the infrastructure will not be abandoned at the end of the UMTRA Project due to a marked increase in migration out of the local community.

  13. Geophysical inversion using petrophysical constraints with application to lithology differentiation Jiajia Sun and Yaoguo Li, Center for Gravity, Electrical and Magnetic Studies, Colorado School of Mines

    E-Print Network [OSTI]

    Jiajia Sun and Yaoguo Li, Center for Gravity, Electrical and Magnetic Studies, Colorado School of Mines

  14. Effects of LCRA Lakes on Riparian Property Values: Recreational and Aesthetic Components of Lake Side Housing in the Colorado River Basin

    E-Print Network [OSTI]

    Lansford, Notie H. Jr.; Jones, Lonnie L.

    The Lower Colorado River Authority (LCRA) manages the Colorado River Basin in a ten county area stretching from central Texas to the gulf coast of Texas. In its recent "Water Management Plan for the Lower Colorado River," the Lower Colorado River...

  15. Environmental Assessment Expanded Ponnequin Wind Energy Project Weld County, Colorado

    SciTech Connect (OSTI)

    N /A

    1999-03-02T23:59:59.000Z

    The U.S.Department of Energy (DOE) has considered a proposal from the State of Colorado, Office of Energy Conservation (OEC), for funding construction of the Expanded Ponnequin Wind Project in Weld County, Colorado. OEC plans to enter into a contracting arrangement with Public Service Company of Colorado (PSCO) for the completion of these activities. PSCo, along with its subcontractors and business partners, are jointly developing the Expanded Ponnequin Wind Project. DOE completed an environmental assessment of the original proposed project in August 1997. Since then, the geographic scope and the design of the project changed, necessitating additional review of the project under the National Environmental Policy Act. The project now calls for the possible construction of up to 48 wind turbines on State and private lands. PSCo and its partners have initiated construction of the project on private land in Weld County, Colorado. A substation, access road and some wind turbines have been installed. However, to date, DOE has not provided any funding for these activities. DOE, through its Commercialization Ventures Program, has solicited applications for financial assistance from state energy offices, in a teaming arrangement with private-sector organizations, for projects that will accelerate the commercialization of emerging renewable energy technologies. The Commercialization Ventures Program was established by the Renewable Energy and Energy Efficiency Technology Competitiveness Act of 1989 (P.L. 101-218) as amended by the Energy Policy Act of 1992 (P.L. 102-486). The Program seeks to assist entry into the marketplace of newly emerging renewable energy technologies, or of innovative applications of existing technologies. In short, an emerging renewable energy technology is one which has already proven viable but which has had little or no operational experience. The Program is managed by the Department of Energy, Office of Energy Efficiency and Renewable Energy. The Federal action triggering the preparation of this EA is the need for DOE to decide whether to release the requested funding to support the construction of the Expanded Ponnequin Wind Project. The purpose of this Final Environmental Assessment (EA) is to provide DOE and the public with information on potential environmental impacts associated with the Expanded Ponnequin Wind Energy Project. This EA, and public comments received on it, were used in DOE's deliberations on whether to release funding for the expanded project under the Commercialization Ventures Program.

  16. Education of Best Management Practices in the Arroyo Colorado Watershed

    E-Print Network [OSTI]

    .S. Enviro n me n t a l Protec t i o n Agency (EPA). Since the progra m? s incept i o n in 2005, Extens i o n educat e d agricu l t u r a l produc e r s on proper nutrien t manageme n t and product i o n techniq u e s , pr omot e d progra ms associ a t e... and mercury and PCBs in edible fish tissue. Figure 3. Land use in the Arroyo Colorado Watershed. In 1998 the Texas Commission on Environmental Quality (TCEQ) initiated an effort to develop a Total Maximum Daily Load (TMDL) for pollutants causing low...

  17. Comments of the Lower Colorado River Authority | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.Space Data Corporation Comments oftheLower Colorado River

  18. Lake County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups <LackawannaLagoBenton,(RedirectedColorado:

  19. Logan County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners andLodgepole, Nebraska: Energy Resources JumpColorado: Energy

  20. Lower Colorado River Authority LCRA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners andLodgepole,Lotsee,Energy InformationMichigan:Lower Colorado

  1. Alamosa East, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)Airwaysource History6.1836854°,East, Colorado:

  2. Bow Mar, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthbyBoston Heights, Ohio:BoulevardBow Mar, Colorado: Energy

  3. Colorado Commercial-Scale Tribal Renewable Energy Workshop | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville EnergyDepartment. Cash 6-1ClayChange:Energy Colorado

  4. Cherry Hills Village, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelan County,ChenangoHills Village, Colorado: Energy

  5. San Miguel County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSalton SeaBasin EC JumpMarino,Miguel County, Colorado:

  6. Alamosa County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60Alameda County, California:Colorado: Energy

  7. Colorado School of Mines Technology Marketing Summaries - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i tCollaboration March 16,ConnectPortal Colorado

  8. Kiowa County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa:Washington:KimbleKinnelon, New Jersey:Kinston,Colorado:

  9. La Salle, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups < LEDSGP‎LEEPuente,Salle, Colorado: Energy

  10. Hinsdale County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation,Jersey: Energy ResourcesHilshireCounty, Colorado:

  11. Yuma County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, NewYanceyYokayoYorktownYukon,Colorado: Energy

  12. Park County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, NewPalisadesParachute,Paramus, NewColorado: Energy

  13. Colorado Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag"Department of8, 2013 DOE ExtendsColorado

  14. SBOT COLORADO GOLDEN FIELD OFFICE POC Karen Downs Telephone

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, anEnergyDepartment of EnergyCOLORADO GOLDEN FIELD OFFICE POC

  15. City of Burlington, Colorado (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |City ofBlue Earth,City ofBurlington, Colorado

  16. City of Longmont, Colorado (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCityCityLongmont, Colorado (Utility

  17. City of Loveland, Colorado (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCityCityLongmont, Colorado (UtilityCity of

  18. Grand County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County, Kansas:GrahamBlanc, Michigan:Colorado:

  19. Southern Colorado Plateau Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast Colorado Power Assn Jump to:Southern AllianceSCEP P

  20. Summit County - Energy Smart Colorado Renewable Energy Rebate Program

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation, searchNewOpen Energy(Colorado) | Open Energy

  1. Summit County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation, searchNewOpen Energy(Colorado) | Open

  2. Eagle County - Energy Smart Colorado Renewable Energy Rebate Program

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, NewDyerTier2Latvia) JumpEnergysource(Colorado) |

  3. Eagle-Vail, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, NewDyerTier2Latvia)Colorado: EnergyEagle-Vail,

  4. Custer County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCpWingCushing, Maine: Energy Resources JumpColorado:

  5. Human Resources at Colorado School of Mines | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault SignInstituteDOE OriginsManagementColorado

  6. Colorado Region | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals »AwakeBrookhavenColorado Region National Science

  7. Colorado Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals »AwakeBrookhavenColorado Region National

  8. Colorado Department of Labor and Employment | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier Technologies IncCity,Published ColoradoLabor

  9. Colorado Division of Water Resources Substitute Water Supply Plans Webpage

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier Technologies IncCity,PublishedColorado| Open

  10. Colorado Division of Water Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier Technologies IncCity,PublishedColorado|

  11. Colorado Green Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColorado Energy Office Jump

  12. Colorado Office of Archaeology and Historic Preservation | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColorado Energy

  13. Colorado Oil and Gas Conservation Commission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColorado EnergyConservation

  14. Colorado's 2nd congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollierInformation Colorado. Contents 1

  15. Colorado's 4th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollierInformation Colorado. Contents

  16. Colorado's 5th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollierInformation Colorado.

  17. Colorado's 6th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollierInformation Colorado.Information

  18. Mountain View, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,Spurr Geothermal Project JumpPark,Colorado:

  19. RAPID/BulkTransmission/Environment/Colorado | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia: EnergyOnline PermittingAirColorado <

  20. RAPID/Geothermal/Land Access/Colorado | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada <Washington