Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mtbe plants petrochemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Refinery, petrochemical plant injuries decline  

Science Conference Proceedings (OSTI)

The National Petroleum Refiners Association (NPRA) reports a 7% reduction in workplace injury and illness incidence rates for refineries in 1993, and a 21% decrease for petrochemical plants. The report summarizes data from 135 of the 162 US member refineries, and 117 of the 172 US member petrochemical plants. This paper summarizes the report findings.

Not Available

1994-07-25T23:59:59.000Z

2

Petrochemicals  

Science Conference Proceedings (OSTI)

An account of the chemistry and industry of petrochemicals. Organized around three basic petrochemical processes-cracking, catalytic reforming, and steam reforming-this text presents a picture of the relationship between the petrochemical industry and the oil industry, and outlines the overall technological structure of the petrochemical industry. Data on annual capacities is given.

Wiseman, P.

1986-01-01T23:59:59.000Z

3

Greek petrochemicals finds buyers for plants  

SciTech Connect

Greek Petrochemicals (Athens) has found buyers for two polyethylene (PE) plants it ordered from U.K. contractors 10 years ago and that are currently stored in Manchester. It is understood that Thai Polyethylene (Bangkok) has been selected to acquire the 70,000-m.t./year ICI process low-density PE plant engineered by Simon-Carves. Reliance Industries is in talks to by the 50,000-m.t./year Union Carbide Unipol process high-density PE unit. The plants are to be installed at Map Ta Put, Thailand and Hazira, India, respectively.

Alperowicz, N.

1993-02-17T23:59:59.000Z

4

MTBE movements between Texas Gulf Coast plants to be enhanced  

SciTech Connect

This paper reports that Texas Eastern Products Pipeline Co. (Teppco), Houston, has begun construction of its shuttle pipeline, a 10-mile, 6 and 8-in. line to move methyl tertiary butyl ether (MTBE) between producers and refiners along the Houston Ship Channel. Funding for the project has been approved, rights-of-way are secured, and procurement of materials is under way, according to Teppco. The line will flow from the western edge of Shell's refinery eastward to storage facilities of Teppco's Baytown terminal. The shuttle pipeline anticipates the US requirement for oxygenated gasolines that takes effect Nov. 1. Approximately 70% of the available US merchant capacity for MTBE is located along the shuttle's path, Teppco says.

Not Available

1992-07-27T23:59:59.000Z

5

Decision system based on neural networks to optimize the energy efficiency of a petrochemical plant  

Science Conference Proceedings (OSTI)

The energy efficiency of industrial plants is an important issue in any type of business but particularly in the chemical industry. Not only is it important in order to reduce costs, but also it is necessary even more as a means of reducing the amount ... Keywords: Cost optimization, Crude oil distillation, Data mining, Decision system, Expert system, Neural network, Petrochemical plant

Iñigo Monedero; Félix Biscarri; Carlos León; Juan I. Guerrero; Rocio González; Luis Pérez-Lombard

2012-08-01T23:59:59.000Z

6

QUANTIFICATION OF FUGITIVE REACTIVE ALKENE EMISSIONS FROM PETROCHEMICAL PLANTS WITH PERFLUOROCARBON TRACERS.  

SciTech Connect

Recent studies demonstrate the impact of fugitive emissions of reactive alkenes on the atmospheric chemistry of the Houston Texas metropolitan area (1). Petrochemical plants located in and around the Houston area emit atmospheric alkenes, such as ethene, propene and 1,3-butadiene. The magnitude of emissions is a major uncertainty in assessing their effects. Even though the petrochemical industry reports that fugitive emissions of alkenes have been reduced to less than 0.1% of daily production, recent measurement data, obtained during the TexAQS 2000 experiment indicates that emissions are perhaps a factor of ten larger than estimated values. Industry figures for fugitive emissions are based on adding up estimated emission factors for every component in the plant to give a total estimated emission from the entire facility. The dramatic difference between estimated and measured rates indicates either that calculating emission fluxes by summing estimates for individual components is seriously flawed, possibly due to individual components leaking well beyond their estimated tolerances, that not all sources of emissions for a facility are being considered in emissions estimates, or that there are known sources of emissions that are not being reported. This experiment was designed to confirm estimates of reactive alkene emissions derived from analysis of the TexAQS 2000 data by releasing perfluorocarbon tracers (PFTs) at a known flux from a petrochemical plant and sampling both the perfluorocarbon tracer and reactive alkenes downwind using the Piper-Aztec research aircraft operated by Baylor University. PFTs have been extensively used to determine leaks in pipelines, air infiltration in buildings, and to characterize the transport and dispersion of air parcels in the atmosphere. Over 20 years of development by the Tracer Technology Center (TTC) has produced a range of analysis instruments, field samplers and PFT release equipment that have been successfully deployed in a large variety of experiments. PFTs are inert, nontoxic, noncombustible and nonreactive. Up to seven unique PFTs can be simultaneously released, sampled and analyzed and the technology is well suited for determining emission fluxes from large petrochemical facilities. The PFT experiment described here was designed to quantitate alkene emissions from a single petrochemical facility, but such experiments could be applied to other industrial sources or groups of sources in the Houston area.

SENUM,G.I.; DIETZ,R.N.

2004-06-30T23:59:59.000Z

7

MTBE Production Economics  

Gasoline and Diesel Fuel Update (EIA)

MTBE Production MTBE Production Economics Tancred C. M. Lidderdale Contents 1. Summary 2. MTBE Production Costs 3. Relationship between price of MTBE and Reformulated Gasoline 4. Influence of Natural Gas Prices on the Gasoline Market 5. Regression Results 6. Data Sources 7. End Notes 1. Summary Last year the price of MTBE (methyl tertiary butyl ether) increased dramatically on two occasions (Figure 1) (see Data Sources at end of article.): 1. Between April and June 2000, the price (U.S. Gulf Coast waterborne market) of MTBE rose from $1.00 per gallon to over $1.60 per gallon. This represented an increase in the price premium for MTBE over the wholesale price of conventional gasoline from its normal (1995 though 2000 average) $0.26 per gallon to $0.60 per gallon. The MTBE

8

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

Science Conference Proceedings (OSTI)

Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

Neelis, Maarten; Worrell, Ernst; Masanet, Eric

2008-09-01T23:59:59.000Z

9

MTBE, Oxygenates, and Motor Gasoline  

Gasoline and Diesel Fuel Update (EIA)

MTBE, Oxygenates, and MTBE, Oxygenates, and Motor Gasoline Contents * Introduction * Federal gasoline product quality regulations * What are oxygenates? * Who gets gasoline with oxygenates? * Which areas get MTBE? * How much has been invested in MTBE production capacity? * What does new Ethanol capacity cost? * What would an MTBE ban cost? * On-line information resources * Endnotes * Summary of revisions to this analysis Introduction The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an

10

Dow Chemical Company: Assessment Leads to Steam System Energy Savings in a Petrochemical Plant  

SciTech Connect

This DOE Save Energy Now case study describes how Dow Chemical Company saves 272,000 MMBtu and $1.9 million annually after increasing the steam system energy efficiency of a plant in Louisiana.

2007-11-01T23:59:59.000Z

11

Computer-Aided Design Reveals Potential of Gas Turbine Cogeneration in Chemical and Petrochemical Plants  

E-Print Network (OSTI)

Gas turbine cogeneration cycles provide a simple and economical solution to the problems created by rising fuel and electricity costs. These cycles can be designed to accommodate a wide range of electrical, steam, and process heating demands. The optimum cycle is typically based on an analysis of the plant's electrical / steam / process heating requirements, an evaluation of the potential for selling to or permit wheeling by utilities of electrical power under PURPA guidelines, and application of pertinent investment decision criteria. The study that identifies the best solution to the problem must contain sufficient detail to support a plan of action by management. This paper addresses how computer-aided design techniques support the effort necessary to fully evaluate several alternative cycle designs in a short time frame. It includes examples for a new power unit as well as for cycles which require modifications to existing process and steam generating equipment in a medium-sized chemical plant.

Nanny, M. D.; Koeroghlian, M. M.; Baker, W. J.

1984-01-01T23:59:59.000Z

12

Texas facility treats, recycles refinery, petrochemical wastes  

Science Conference Proceedings (OSTI)

A US Gulf Coast environmental services company is treating refinery and petrochemical plant wastes to universal treatment standards (UTS). DuraTherm Inc.`s recycling center uses thermal desorption to treat a variety of refinery wastes and other hazardous materials. The plant is located in San Leon, Tex., near the major Houston/Texas City refining and petrochemical center. DuraTherm`s customers include major US refining companies, plus petrochemical, terminal, pipeline, transportation, and remediation companies. Examples of typical contaminant concentrations and treatment levels for refinery wastes are shown. The paper discusses thermal desorption, the process description and testing.

NONE

1996-09-16T23:59:59.000Z

13

Status and Impact of State MTBE Bans  

Gasoline and Diesel Fuel Update (EIA)

Status and Impact of State MTBE Bans Status and Impact of State MTBE Bans Background As a result of the Clean Air Act Amendments of 1990 (CAAA90), the year-round use of reformulated gasoline (RFG) has been required in cities with the worst smog problems since 1995 (Figure 1). One of the requirements of RFG specified by CAAA90 is a 2- percent oxygen requirement, which is met by blending "oxygenates," 1 including methyl tertiary butyl ether (MTBE) and ethanol, into the gasoline. MTBE is the oxygenate used in almost all RFG outside of the Midwest. Ethanol is currently used in the Midwest as an oxygenate in RFG and as an octane booster and volume extender in conventional gasoline. Several years ago, MTBE was detected in water supplies scattered throughout the country, but predominantly in areas using RFG. MTBE from RFG was apparently

14

Motor Gasoline Outlook and State MTBE Bans  

Gasoline and Diesel Fuel Update (EIA)

Motor Gasoline Outlook Motor Gasoline Outlook and State MTBE Bans Tancred Lidderdale Contents 1. Summary 2. MTBE Supply and Demand 3. Ethanol Supply 4. Gasoline Supply 5. Gasoline Prices A. Long-Term Equilibrium Price Analysis B. Short-Term Price Volatility 6. Conclusion 7. Appendix A. Estimating MTBE Consumption by State 8. Appendix B. MTBE Imports and Exports 9. Appendix C. Glossary of Terms 10. End Notes 11. References 1. Summary The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending State bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year. Three impending State bans on MTBE blending could significantly affect gasoline

15

Eliminating MTBE in Gasoline in 2006  

Gasoline and Diesel Fuel Update (EIA)

02/22/2006 02/22/2006 Eliminating MTBE in Gasoline in 2006 Summary In 2005, a number of petroleum companies announced their intent to remove methyl tertiary-butyl ether (MTBE) from their gasoline in 2006. Companies' decisions to eliminate MTBE have been driven by State bans due to water contamination concerns, continuing liability exposure from adding MTBE to gasoline, and perceived potential for increased liability exposure due to the elimination of the oxygen content requirement for reformulated gasoline (RFG) included in the Energy Policy Act of 2005. EIA's informal discussions with a number of suppliers indicate that most of the industry is trying to move away from MTBE before the 2006 summer driving season. Currently, the largest use of MTBE is in RFG consumed on the East Coast outside of

16

Thai petrochemical boom on track  

SciTech Connect

This paper reports that Thailand continues to mark progress on the ambitious expansion of its petrochemical industry. Among recent developments: The outlook for Thailand's troubled worldscale aromatics project has improved with a major cut in its estimated cost. In addition, the project apparently has drawn the interest of other companies seeking a possible equity stake. Amoco Chemical Co., which lost a tender to build a worldscale purified terephathalic acid (PTA) complex in Thailand to Taiwan's Tuntex Co., is reviving its bid with a proposal similar to its earlier one. Amoco contends there will be enough demand to warrant a second PTA plant in Thailand. Tuntex is negotiating with several business groups to take part in its $333 million, 350,000 ton/year PTA project in Thailand. Tuntex is soliciting interest from a number of Thai companies, including Bangkok Bank and the Saha Union industrial conglomerate to acquire portions of the 51% interest in the project earmarked for Thai shareholders. The firm also is negotiating with a number of Japanese companies with whom it has long trade ties, including Mitsui and Co. and Marubeni Corp. to acquire part of the 49% foreign shareholding in the project. Thai Olefins Co. (TOC) marked further progress with feedstock contracts and financing arrangements for its proposed $720 million olefins plant, part of Thailand's second worldscale petrochemical complex (NPC II). Indian industrial giant Birla proposed a $20 million ethylene glycol (EG) project in Thailand.

1992-03-16T23:59:59.000Z

17

MTBE Production Economics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

... MTBE production declined from 210,000 barrels per day in October 2000, to ... the United States use this process ... ethane and propane) ...

18

MTBE Prices Responded to Natural Gas Prices  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: On top of the usual factors impacting gasoline prices, natural gas has had some influence recently. MTBE is an oxygenate used in most of the RFG consumed in the U.S. Generally, it follows gasoline prices and its own supply/demand balance factors. But this winter, we saw it respond strongly to natural gas prices. MTBE is made from methanol and isobutylene, which in turn come from methane and butane. Both methane and butane come from natural gas streams. Until this year, the price of natural gas has been so low that it had little effect. But the surge that occurred in December and January pulled MTBE up . Keep in mind that about 11% MTBE is used in a gallon of RFG, so a 30 cent increase in MTBE is only about a 3 cent increase in the price of RFG. While we look ahead at this summer, natural gas prices should be

19

Factors influencing biological treatment of MTBE contaminated ground water  

DOE Green Energy (OSTI)

Methyl tert-butyl ether (MTBE) contamination has complicated the remediation of gasoline contaminated sites. Many sites are using biological processes for ground water treatment and would like to apply the same technology to MTBE. However, the efficiency and reliability of MTBE biological treatment is not well documented. The objective of this study was to examine the operational and environmental variables influencing MTBE biotreatment. A fluidized bed reactor was installed at a fuel transfer station and used to treat ground water contaminated with MTBE and gasoline hydrocarbons. A complete set of chemical and operational data was collected during this study and a statistical approach was used to determine what variables were influencing MTBE treatment efficiency. It was found that MTBE treatment was more sensitive to up-set than gasoline hydrocarbon treatment. Events, such as excess iron accumulation, inhibited MTBE treatment, but not hydrocarbon treatment. Multiple regression analysis identified biomass accumulation and temperature as the most important variables controlling the efficiency of MTBE treatment. The influent concentration and loading of hydrocarbons, but not MTBE, also impacted MTBE treatment efficiency. The results of this study suggest guidelines for improving MTBE treatment. Long cell retention times in the reactor are necessary for maintaining MTBE treatment. The onset of nitrification only occurs when long cell retention times have been reached and can be used as an indicator in fixed film reactors that conditions favorable to MTBE treatment exist. Conversely, if the reactor can not nitrify, it is unlikely to have stable MTBE treatment.

Stringfellow, William T.; Hines Jr., Robert D.; Cockrum, Dirk K.; Kilkenny, Scott T.

2001-09-14T23:59:59.000Z

20

Radiation Chemistry of MTBE in Aqueous Solution  

NLE Websites -- All DOE Office Websites (Extended Search)

Methyl-tert-Butyl Ether (MTBE) in Aqueous Solution Stephen P. Mezyk, Jace Jones, William J. Cooper, Thomas Tobien, Michael G. Nickelsen, J. Wesley Adams, Kevin E. O'Shea, David M....

Note: This page contains sample records for the topic "mtbe plants petrochemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The Social Costs of an MTBE Ban in California  

E-Print Network (OSTI)

of the Nation’s Natural Gas Demand. ” Washington DC, 1999.Effects of MTBE Ban on Natural Gas Demand Ethanol Tax CreditEffects of MTBE Ban on Natural Gas Demand Ethanol Tax Credit

Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

2005-01-01T23:59:59.000Z

22

Motor Gasoline Outlook and State MTBE Bans  

Reports and Publications (EIA)

The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending State bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year.

Information Center

2003-04-01T23:59:59.000Z

23

Eliminating MTBE in Gasoline in 2006  

Reports and Publications (EIA)

A review of the market implications resulting from the rapid change from MTBE- to ethanol-blended RFG on the East Coast and in Texas. Strains in ethanol supply and distribution will increase the potential for price volatility in these regions this summer.

Joanne Shore

2006-02-22T23:59:59.000Z

24

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

V. (2001). Optimize energy efficiency of HRSG. HydrocarbonS.K. (1997). Conserve Energy in Distillation. Chemicalreduces ethylene plant’s energy needs. Oil and gas journal,

Neelis, Maarten

2008-01-01T23:59:59.000Z

25

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

steam consumption at ExxonMobil chemical plant. FebruaryLBNL), Frank Roberto (ExxonMobil), Art Royals (Sunoco), FredGeneration System at ExxonMobil Gas Plant. January 2002.

Neelis, Maarten

2008-01-01T23:59:59.000Z

26

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

plant’s energy needs. Oil and gas journal, 10 February 1992.of distillation units. Oil and Gas Journal, 21 June, 1999.the Netherlands (in Dutch). Oil and Gas Journal (2005). 2005

Neelis, Maarten

2008-01-01T23:59:59.000Z

27

Ecological hazards of MTBE exposure: A research agenda  

DOE Green Energy (OSTI)

Fuel oxygenates are used in metropolitan areas across the United States in order to reduce the amount of carbon monoxide released into the atmosphere during the winter. The most commonly used fuel oxygenate is Methyl tert-butyl ether (MTBE). Its widespread use has resulted in releases into the environment. To date there has been only minimal effort to investigate ecological impacts caused by exposure to concentrations of MTBE typically found in environmental media. Research into the potential for MTBE to adversely affect ecological receptors is essential. Acquisition of such baselines data is especially critical in light of continuing inputs and potential accumulation of MTBE in environmental media. A research Agenda is included in this report and addresses: Assessing Ecological Impacts, Potential Ecological Impacts of MTBE (aquatic organisms, terrestrial organisms), Potential Ecological Endpoints, and A Summary of Research Needs.

Carlsen, T.; Hall, L.; Rice, D.

1997-03-01T23:59:59.000Z

28

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

is used to pre-heat fresh water intake of the same plant byreporting reductions in water intake of up to 50% (Polleyto heat the polished water intake of the de-aerator in the

Neelis, Maarten

2008-01-01T23:59:59.000Z

29

Saving Energy and Reducing Emissions from the Regeneration Air System of a Butane Dehydrogenation Plant  

E-Print Network (OSTI)

Texas Petrochemicals operates a butane dehydrogenation unit producing MTBE for reformulated gasoline that was originally constructed when energy was cheap and prior to environmental regulation. The process exhausts 900,000 pounds per hour of air at 900 to 1100°F containing CO and VOC. By installing a furnace/heat recovery steam generator, Texas Petrochemicals achieved significant reductions of VOC, CO, and NOx, along with energy savings.

John, T. P.

1998-04-01T23:59:59.000Z

30

Preparations for Meeting New York and Connecticut MTBE Bans  

Reports and Publications (EIA)

In response to a Congressional request, EIA examined the progress being made to meet the bans on the use of methyl tertiary butyl ether (MTBE) being implemented in New York and Connecticut at the end of 2003.

Joanne Shore

2003-10-01T23:59:59.000Z

31

Analytic prognostic for petrochemical pipelines  

E-Print Network (OSTI)

Pipelines tubes are part of vital mechanical systems largely used in petrochemical industries. They serve to transport natural gases or liquids. They are cylindrical tubes and are submitted to the risks of corrosion due to high PH concentrations of the transported liquids in addition to fatigue cracks due to the alternation of pressure-depression of gas along the time, initiating therefore in the tubes body micro-cracks that can propagate abruptly to lead to failure. The development of the prognostic process for such systems increases largely their performance and their availability, as well decreases the global cost of their missions. Therefore, this paper deals with a new prognostic approach to improve the performance of these pipelines. Only the first mode of crack, that is, the opening mode, is considered.

Abdo Abou Jaoude; Seifedine Kadry; Khaled El-Tawil; Hassan Noura; Mustapha Ouladsine

2012-12-25T23:59:59.000Z

32

Analytic prognostic for petrochemical pipelines  

E-Print Network (OSTI)

Pipelines tubes are part of vital mechanical systems largely used in petrochemical industries. They serve to transport natural gases or liquids. They are cylindrical tubes and are submitted to the risks of corrosion due to high PH concentrations of the transported liquids in addition to fatigue cracks due to the alternation of pressure-depression of gas along the time, initiating therefore in the tubes body micro-cracks that can propagate abruptly to lead to failure. The development of the prognostic process for such systems increases largely their performance and their availability, as well decreases the global cost of their missions. Therefore, this paper deals with a new prognostic approach to improve the performance of these pipelines. Only the first mode of crack, that is, the opening mode, is considered.

Jaoude, Abdo Abou; El-Tawil, Khaled; Noura, Hassan; Ouladsine, Mustapha

2012-01-01T23:59:59.000Z

33

Arena in the petrochemical operations environment  

Science Conference Proceedings (OSTI)

The use of discrete event simulation within Sasol, an international petrochemical company, is fast becoming an important tool for supporting strategic decision-making in the continuous operations environment. Arena models are used specifically to investigate ...

Lorraine Malherbe

2007-12-01T23:59:59.000Z

34

Cogeneration Design Considerations for a Major Petrochemical Facility  

E-Print Network (OSTI)

The step increase in energy cost brought about in 1973 has permanently changed the way in which petrochemical production facilities are designed, operated, and maintained. Highly visible energy conservation programs consisting of steam trap repair, insulation, and turning off unused equipment in the late 1970’s gave way to industrial wide shutdown of older, less efficient production facilities in the 1980’s. The subject petrochemical facility’s energy use peaked in early 1981. Several small projects were instituted to accommodate a declining steam load and increasing amounts of low pressure steam venting. However, as steam load was dropping, electrical rates were increasing both from rising natural gas costs and utility construction of a nuclear power plant. As a result, energy costs seemed almost an uncontrollable cost in late 1982. This paper addresses the design considerations and the following distinct steps taken in the development process of a 100 megawatt cogeneration power plant currently under construction at the petrochemical facility. The paper addresses the following distinct steps taken in the design process. 1. Examination of past, current, and future electricity and steam demand. 2. Examination of the regulatory climate and opportunities for firm power sales. 3. Economic evaluation of different fuel and power cost projections and their impact on cycle and equipment selection. 4. Evaluation of the reliability required by current and associated future standby power contracts. 5. Examination of outside forces that impact the design. 6. Selection of final design. The above considerations led to a unique efficient design that incorporates 100% steam condensing capability and independent dual train operating capability. The subject cogeneration plant is scheduled to be in full operation in December of 1987.

Good, R. L.

1987-09-01T23:59:59.000Z

35

Economics of Energy Conservation in the Chemical and Petrochemical Industries  

E-Print Network (OSTI)

Capital allocated to energy savings projects competes with that for new or revised plants. Thus, it must show the same or better rate of return. Usually the risk factor in energy savings projects is less than allocations for other uses. The categories of energy consumption on a chemical or petrochemical plant are defined. Distillation is often the largest energy consumer, hence, offering the most promising area for investigation of energy savings. Other unit operations and well as changes in process operations are explored for potential energy savings. The use of cogeneration as a method for net energy savings is explored and appears to be most promising, especislly where it is possible to upgrade the value of waste heat or combustible by-products in the process plant to produce steam and electrical energy which can be utilized or sold to others. A formal energy audit of process plants is suggested utilizing for engineering, operating as well as management personnel.

Nachod, J. E. Jr.

1987-09-01T23:59:59.000Z

36

MTBE, Oxygenates, and Motor Gasoline (Released in the STEO October 1999)  

Reports and Publications (EIA)

The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an increase in MTBE production between 1990 and 1994. MTBE demand increased from 83,000 in 1990 to 161,000 barrels per day in 1994. The reformulated gasoline (RFG) program provided a further boost to oxygenate blending. The MTBE contained in motor gasoline increased to 269,000 barrels per day by 1997.

Information Center

1999-10-01T23:59:59.000Z

37

Using Advanced Control and Power Technologies to Improve the Reliability and Energy Efficiency of Petroleum Refining and Petrochemical Manufacturing in California  

Science Conference Proceedings (OSTI)

Full implementation of advanced control and power technologies could save U.S. refineries and petrochemical plants an estimated $7.14 billion/year. California refineries process 1,893,020 barrels of crude per day -- about 11% of the total U.S. crude. Implementation of advanced control and power technologies could provide California refineries and petrochemical plants significant savings from increased energy efficiency and productivity. This report identifies these savings opportunities for California re...

2004-05-17T23:59:59.000Z

38

Future of LPG as a petrochemical feedstock  

SciTech Connect

An evaluation is made of probable LPG (primarily propane) supplies and demand factors through 1985. The analysis indicates that because of diminishing domestic supplies and the transportation economics for foreign supplies the petrochemical industry will be forced to convert to the use of naphtha or heavy crude components for ethylene production. (JSR)

Skillern, M.P.

1976-10-01T23:59:59.000Z

39

Plantwide Energy Management for Hydrocarbon and Petrochemical Industry  

E-Print Network (OSTI)

Within the hydrocarbon and petrochemical industry the generation and utilization of various forms of energy is a highly complex and dynamic process. The process plant normally generates steam and fuel in the form of process off-gas. The same process plant also requires fuel, steam, and electricity, which is supplied from the utility plant. Also, the utility plant transforms energy from one form to another for economic efficiency. The low grade energy is transformed to medium grade energy as steam. This steam is then transformed to high grade energy in the form of electric or mechanical power. As a result, the transformation and utilization of energy requires a critical balance of plantwide steam and power. The balance of power production with actual plant requirements depends largely upon the production rate and quality of various products. It is the function of an energy managcment system to control and monitor this complex interactive system to insure the reliable availability of adequate energy for the process plant at minimum cost.

Ahmed, A.; Clinkscales, T.

1988-09-01T23:59:59.000Z

40

Global petrochemical industry experiencing cyclic downturn  

SciTech Connect

The current deterioration of the petrochemical industry-particularly in the U.S. and Western Europe-is a cause of great concern to operators and analysts alike. Although the rapidly developing Asian market will continue to be a major factor into the next century, the immediate global outlook is for a weak market. Chem Systems Inc., Tarrytown, N.Y., discussed these issues at its annual petrochemical conference, held Jan. 13-14 in Houston. One of the few optimistic predictions of the meetings gas that the harbingers of the next industry cycle already can be seen in the U.S. economic recovery, and slow-down in new project planning, and a reduction in fixed costs. The paper describes the US market; market structure; the trend toward capacity integration; product forecasts; factors affecting the prices of propylene, aromatics, and benzene; the Asian market (Japan, Korea, Taiwan, China, Asian countries); regional trade; and the European market.

1993-03-29T23:59:59.000Z

Note: This page contains sample records for the topic "mtbe plants petrochemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Characterizing MTBE Cometabolism and Propane Metabolism by Mycobacterium austroafricanum JOB5.  

E-Print Network (OSTI)

??Characterizing MTBE Cometabolism and Propane Metabolism by Mycobacterium austroafricanum JOB5. (Under the direction of Michael R. Hyman.) Cometabolic transformations are unable to support cell growth.… (more)

House, Alan

2009-01-01T23:59:59.000Z

42

Impact of Renewable Fuels Standard/MTBE Provisions of S. 517 Requested by Sens. Daschle & Murkowski  

Reports and Publications (EIA)

Additional analysis of the impact of the Renewable Fuels Standard (RFS) and methyl tertiary butyl ether (MTBE) ban provisions of S. 517.

Information Center

2002-04-01T23:59:59.000Z

43

Impact of Renewable Fuels Standard/MTBE Provisions of S.1766  

U.S. Energy Information Administration (EIA)

SR/OIAF/2002-06 Release date: March 2002 This report analyzes the Renewable Fuels Standard (RFS)/methyl tertiary butyl ether (MTBE) provisions of S. 1766.

44

Microsoft Word - Energy_Guide_Petrochemicals_Final.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

64E 64E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry An ENERGY STAR ® Guide for Energy and Plant Managers Maarten Neelis, Ernst Worrell, and Eric Masanet Environmental Energy Technologies Division Sponsored by the U.S. Environmental Protection Agency June 2008 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy,

45

Failure Analysis Case Studies from Refinery and Petrochemical Pilot ...  

Science Conference Proceedings (OSTI)

Abstract Scope, A critical step in the development of new refining and petrochemical technologies is ... Failure of Electrical Submersible Pump of Oil Reservoir.

46

Development of Supported Polymeric Liquid Membrane Technology for Aqueous MTBE Mitigation  

Science Conference Proceedings (OSTI)

The use of MTBE (methyl tert-butyl ether) as a gasoline additive has generated a serious, widespread groundwater contamination problem in California. This study evaluated the use of supported polymeric liquid membrane technology in the remediation of MTBE contaminated groundwater.

2002-07-02T23:59:59.000Z

47

Understanding the petrochemical cycle: Part 2  

Science Conference Proceedings (OSTI)

The manager of a petrochemical enterprise, to survive the competitive 1990s, must have a good understanding of the industry's cyclicality, and a good grasp of coping alternatives. To select the best strategies and tactics calls for a familiarity with such concepts as the hockey-stick profile for profitability and the experience curve for cost reductions at both ends of the supply curve. The manager must carefully weigh advantages of build-and-scrap policies and differentiation vs. diversification and recognize the pitfalls associated with the prisoner's dilemma. With these elements well understood, the manager is in an improved position to cope with the industry's boom-and-bust characteristics. The paper discusses practicalities, the prisoner's dilemma in game theory, individual company actions, leveraging cyclicability, differentiation and diversification/integration, improvement of competitiveness, and structure as part of the problem.

Sedriks, W. (SRI International, Menlo Park, CA (United States))

1994-04-01T23:59:59.000Z

48

U.S. Exports to Venezuela of MTBE (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

U.S. Exports to Venezuela of MTBE (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2005: 9: 10: 18: 9: 7: 8: 21: 2006: 18: 11: 20: 26 ...

49

The social costs of an MTBE ban in California (Condensed version)  

E-Print Network (OSTI)

an equivalent quantity (in energy terms), oil imports, sinceworld oil price times the equilibrium quantity of importsquantities of ethanol and MTBE were used there would be no impact on US oil

Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

2002-01-01T23:59:59.000Z

50

The social costs of an MTBE ban in California (Condensed version)  

E-Print Network (OSTI)

an equivalent quantity (in energy terms), oil imports, sinceworld oil price times the equilibrium quantity of importsquantities of ethanol and MTBE were used there would be no impact on US oil imports.

Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

2002-01-01T23:59:59.000Z

51

Preparations for Meeting New York and Connecticut MTBE Bans  

Gasoline and Diesel Fuel Update (EIA)

2 2 Preparations for Meeting New York and Connecticut MTBE Bans October 2003 Office of Oil and Gas Energy Information Administration U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Contacts and Acknowledgments This report was prepared by the Office of Oil and Gas of the Energy Information Administration (EIA) under the direction of John Cook, Director, Petroleum Division. Questions concerning the report may be directed to Joanne Shore (202/586-4677),

52

Automobile proximity and indoor residential concentrations of BTEX and MTBE  

Science Conference Proceedings (OSTI)

Attached garages have been identified as important sources of indoor residential air pollution. However, the literature lacks information on how the proximity of cars to the living area affects indoor concentrations of gasoline-related compounds, and the origin of these pollutants. We analyzed data from the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study and evaluated 114 residences with cars in an attached garage, detached garage or carport, or without cars. Results indicate that homes with cars in attached garages were affected the most. Concentrations in homes with cars in detached garages and residences without cars were similar. The contribution from gasoline-related sources to indoor benzene and MTBE concentrations appeared to be dominated by car exhaust, or a combination of tailpipe and gasoline vapor emissions. Residing in a home with an attached garage could lead to benzene exposures ten times higher than exposures from commuting in heavy traffic.

Corsi, Dr. Richard [University of Texas, Austin; Morandi, Dr. Maria [University of Texas Health Science Center, Houston; Siegel, Dr. Jeffrey [University of Texas, Austin; Hun, Diana E [ORNL

2011-01-01T23:59:59.000Z

53

Coal and Co-generation at a Petro-Chemical Complex  

E-Print Network (OSTI)

Celanese Chemical Company, Inc. is converting from natural gas to coal as boiler fuel at its petrochemical plant in the Texas Panhandle. Coincident with that fuel conversion is a project in conjunction with Southwestern Public Service Company. High pressure (1450 psig) steam generated from the new Celanese coal-fired boilers will be let down through a 30 megawatt, back pressure, turbine-generator set owned by Southwestern. Heat rate will be approximately 4800 Btu's/kwh. The paper describes some of the utility and industry challenges and how they were met.

Turek, P.; Gibson, G. L.

1979-01-01T23:59:59.000Z

54

Synergize fuel and petrochemical processing plans with catalytic reforming  

Science Conference Proceedings (OSTI)

Depending on the market, refiner`s plans to produce clean fuels and higher value petrochemicals will weigh heavily on the catalytic reformer`s flexibility. It seems that as soon as a timely article related to catalytic reforming operations is published, a new {open_quotes}boutique{close_quotes} gasoline fuel specification is slapped on to existing fuel standards, affecting reformer operations and processing objectives. Just as importantly, the petrochemical market (such as aromatics) that refiners are targeting, can be very fickle. That`s why process engineers have endeavored to maintain an awareness of the flexibility that technology suppliers are building into modern catalytic reformers.

NONE

1997-03-01T23:59:59.000Z

55

Innovative Decision Support in a Petrochemical Production Environment  

Science Conference Proceedings (OSTI)

Sasol, an integrated energy and chemicals company based in South Africa, leads the world in producing liquid fuels from natural gas and coal. Sasol faces many challenges, such as stricter fuel specifications, fluctuating oil and gas prices, and unique ... Keywords: application, data analysis, decision support, petrochemical, probability, simulations, statistics, stochastic model applications

Marlize Meyer; Hylton Robinson; Michele Fisher; Anette van der Merwe; Gerrit Streicher; Johan Janse van Rensburg; Hentie van den Berg; Esmi Dreyer; Jaco Joubert; Gerkotze Bonthuys; Ruan Rossouw; Willem Louw; Lorraine van Deventer; Cecile Wykes; Ebert Cawood

2011-01-01T23:59:59.000Z

56

CO{sub 2} Reuse in Petrochemical Facilities  

Science Conference Proceedings (OSTI)

To address public concerns regarding the consequences of climate change from anthropogenic carbon dioxide (CO{sub 2}) emissions, the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) is actively funding a CO{sub 2} management program to develop technologies capable of mitigating CO{sub 2} emissions from power plant and industrial facilities. Over the past decade, this program has focused on reducing the costs of carbon capture and storage technologies. Recently, DOE/NETL launched an alternative CO{sub 2} mitigation program focused on beneficial CO{sub 2} reuse to support the development of technologies that mitigate emissions by converting CO{sub 2} into valuable chemicals and fuels. RTI, with DOE/NETL support, has been developing an innovative beneficial CO{sub 2} reuse process for converting CO{sub 2} into substitute natural gas (SNG) by using by-product hydrogen (H{sub 2)-containing fuel gas from petrochemical facilities. This process leveraged commercial reactor technology currently used in fluid catalytic crackers in petroleum refining and a novel nickel (Ni)-based catalyst developed by RTI. The goal was to generate an SNG product that meets the pipeline specifications for natural gas, making the SNG product completely compatible with the existing natural gas infrastructure. RTI's technology development efforts focused on demonstrating the technical feasibility of this novel CO{sub 2} reuse process and obtaining the necessary engineering information to design a pilot demonstration unit for converting about 4 tons per day (tons/day) of CO{sub 2} into SNG at a suitable host site. This final report describes the results of the Phase I catalyst and process development efforts. The methanation activity of several commercial fixed-bed catalysts was evaluated under fluidized-bed conditions in a bench-scale reactor to identify catalyst performance targets. RTI developed two fluidizable Ni-based catalyst formulations (Cat-1 and Cat-3) that demonstrated equal or better performance than that of commercial methanation catalysts. The Cat-1 and Cat-3 formulations were successfully scaled up using commercial manufacturing equipment at the Sud-Chemie Inc. pilot-plant facility in Louisville, KY. Pilot transport reactor testing with RTI's Cat-1 formulation at Kellog Brown & Root's Technology Center demonstrated the ability of the process to achieve high single-pass CO{sub 2} conversion. Using information acquired from bench- and pilot-scale testing, a basic engineering design package was prepared for a 4-ton/day CO{sub 2} pilot demonstration unit, including process and instrumentation diagrams, equipment list, control philosophy, and preliminary cost estimate.

Jason Trembly; Brian Turk; Maruthi Pavani; Jon McCarty; Chris Boggs; Aqil Jamal; Raghubir Gupta

2010-12-31T23:59:59.000Z

57

Understanding the petrochemical cycle: Part 1  

Science Conference Proceedings (OSTI)

Fitness in the hydrocarbon processing industry (HPI) arena involves understanding and coping with business cycles: supply and demand. This becomes increasingly more important as the industry globalizes and matures. Competitive-edge thinking needs to look hard at the forces that influence business cycles. Recognition of potential pitfalls is very important when considering: future capacity expansion, mergers and acquisitions, market departure, plant closure, potential product substitution, etc. Understanding pricing mechanisms and the workings of hockey-stick profitability profiles help HPI operators endure cycle downturns and prepare plants to maximize profits for the next upswing. The paper discusses characteristic trends, cycles in the hydrocarbon processing industry, current conditions, and mitigating cycle effects.

Sedriks, W. (SRI International, Menlo Park, CA (United States))

1994-03-01T23:59:59.000Z

58

The Mexican petrochemical sector in the NAFTA negotiations  

Science Conference Proceedings (OSTI)

Since 1985, there have been important changes in the Mexican petrochemical sector, including trade liberalization, deregulation and the elimination of subsidies. NAFTA represents another step towards liberalization of the sector. Given the low tariffs currently applied to international trade among the three nations, the authors do not anticipate major impacts of NAFTA on trade flows. Nevertheless, the elimination of restrictions to foreign investment is expected to increase capital flows into the sector and to promote productivity increases. On the other hand, the new barriers to trade in petrochemical feedstocks and the restrictions on private investment in infrastructure may negatively affect the sector`s growth, making it necessary to adjust domestic regulations to improve the performance of Pemex. 12 refs., 4 tabs.

Kessel, G.; Kim, C.S. [Instituto Technologico Autonomo de Mexico, Magdalena Contreras (Mexico)

1993-12-31T23:59:59.000Z

59

Two US markets, or one? How the MTBE-gasoline relationship is evolving  

SciTech Connect

This issue of Energy Detente features the price sensitivity of Methyl Tertiary Butyl Ether. Data is presented for US wholesale gasoline prices vs. MTBE for the 20-month period beginning in June 1994 and ending in January 1996, and the data is discussed. Also contained in this issue is the refining netback data and the fuel price/tax data for the period ending January 5, 1996.

1996-01-26T23:59:59.000Z

60

Demand for petrochem feedstock to buoy world LPG industry  

Science Conference Proceedings (OSTI)

This paper reports that use of liquefied petroleum gas as petrochemical feedstock will increase worldwide, providing major growth opportunities for LPG producers. World exports of liquefied petroleum gas will increase more slowly than production as producers choose to use LPG locally as chemical feedstock and export in value added forms such as polyethylene. So predicts Poten and Partners Inc., New York. Poten forecasts LPG production in exporting countries will jump to 95 million tons in 2010 from 45 million tons in 1990. However, local and regional demand will climb to 60 million tons/year from 23 million tons/year during the same period. So supplies available for export will rise to 35 million tons in 2010 from 22 million tons in 1990.

Not Available

1992-05-18T23:59:59.000Z

Note: This page contains sample records for the topic "mtbe plants petrochemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

An Attempt To Use Aerial Gamma-Ray Spectrometry Results In Petrochemical  

Open Energy Info (EERE)

Attempt To Use Aerial Gamma-Ray Spectrometry Results In Petrochemical Attempt To Use Aerial Gamma-Ray Spectrometry Results In Petrochemical Assessments Of The Volcanic And Plutonic Associations Of Central Anatolia (Turkey) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Attempt To Use Aerial Gamma-Ray Spectrometry Results In Petrochemical Assessments Of The Volcanic And Plutonic Associations Of Central Anatolia (Turkey) Details Activities (0) Areas (0) Regions (0) Abstract: Volcanic and magmatic rocks of Central Anatolia are fairly rich in radioelement concentrations. The aerial gamma-ray spectrometric survey data, gathered for the purpose of radioactive mineral exploration were utilized as an additional tool for the petrochemical classification of the volcanic and magmatics rocks and their environments. The survey data on

62

Sector-Specific information infrastructure issues in the oil, gas, and petrochemical sector  

Science Conference Proceedings (OSTI)

In this chapter we have discussed vulnerabilities and mitigating actions to improve safety, security and continuity of the information and process infrastructure used in the oil, gas and petrochemical sector. An accident in the oil and gas industry can ...

Stig O. Johnsen; Andreas Aas; Ying Qian

2012-01-01T23:59:59.000Z

63

Award-winning alloys could reduce costs for chemical and petrochemical  

NLE Websites -- All DOE Office Websites (Extended Search)

Award-winning alloys could reduce costs for chemical and petrochemical Award-winning alloys could reduce costs for chemical and petrochemical industries Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Award-winning alloys could reduce costs for chemical and petrochemical industries This macrophotograph compares commercial nickel-based Alloy 600 (top) and Argonne's new alloy after 5,700 hours of exposure to the same metal-dusting environment at 593°C

64

Neutron Scattering for Polymer R&D in the Petrochemical ...  

Science Conference Proceedings (OSTI)

... Page 4. NCNR Summer School May 13, 2010 Crude Oil to Polymer Product Crude Oil Refinery Steam Cracker Naptha Cracker FCC Plastics plant ...

2010-05-07T23:59:59.000Z

65

Barriers and drivers for process innovation in the petrochemical industry: A case study  

Science Conference Proceedings (OSTI)

Process innovation and energy efficiency improvement are among the key options to reduce greenhouse gas emissions in petrochemicals production. This case study presents some of the main drivers and barriers to activities aimed at improving existing processes ... Keywords: Barriers, Case study, Drivers, Energy efficiency, O31 Innovation and Invention: Processes and Incentives, Process innovation, Strategic innovation

Tao Ren

2009-12-01T23:59:59.000Z

66

AlternativeAlternative FeedstocksFeedstocks for the Petrochemical Industryfor the Petrochemical Industry from Biomassfrom Biomass LigninsLignins  

E-Print Network (OSTI)

-oil from fast pyrolysis, producing hydrogen from biomass for use in fuel cells). Consequently, biomass the scale of `medium' plant and the potential role of biomass pyrolysis or gasification technologies,11 technologies but references to biomass pyrolysis or biomass gasifica- tion are noticeably absent. The glossary

67

Methyl tert-butyl ether (MTBE) is a volatile organic com-pound (VOC) derived from natural gas that is added to gas-  

E-Print Network (OSTI)

Methyl tert-butyl ether (MTBE) is a volatile organic com- pound (VOC) derived from natural gas Water in Urban and Agricultural Areas made from methanol, which is derived primarily from natural gas that is added to gas- oline either seasonally or year round in many parts of the United States to increase

68

Developing and Integrating Sustainable Chemical Processes into Existing Petro-Chemical Plant Complexes  

E-Print Network (OSTI)

pyrolysis or gasification (2). Finally, lipids from nonfood crops as well as algae (3) can be converted processes (17). Like pyrolysis, gasification also uses whole biomass but converts it spontaneously at very) combined the three reactions of older thermal gasification processes into a single, small reactor in which

Pike, Ralph W.

69

Petrochemical industry An ENERGY STAR ® Guide for Energy and Plant Managers  

E-Print Network (OSTI)

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States

Ernest Orlando Lawrence; Plant Managers; Maarten Neelis; Ernst Worrell; Eric Masanet; Maarten Neelis; Ernst Worrell; Eric Masanet; Maarten Neelis; Ernst Worrell; Eric Masanet

2008-01-01T23:59:59.000Z

70

CO{sub 2} Reuse in Petrochemical Facilities  

DOE Green Energy (OSTI)

This final report describes the results of the Phase I catalyst and process development efforts. The methanation activity of several commercial fixed-bed catalysts was evaluated under fluidized-bed conditions in a bench-scale reactor to identify catalyst performance targets. RTI developed two fluidizable Ni-based catalyst formulations (Cat-1 and Cat-3) that demonstrated equal or better performance than that of commercial methanation catalysts. The Cat-1 and Cat-3 formulations were successfully scaled up using commercial manufacturing equipment at the Sud-Chemie Inc. pilot-plant facility in Louisville, KY. Pilot transport reactor testing with RTI's Cat-1 formulation at Kellog Brown & Root's Technology Center demonstrated the ability of the process to achieve high single-pass CO{sub 2} conversion. Using information acquired from bench- and pilot-scale testing, a basic engineering design package was prepared for a 4-ton/day CO{sub 2} pilot demonstration unit, including process and instrumentation diagrams, equipment list, control philosophy, and preliminary cost estimate.

Jason Trembly; Brian Turk; Maruthi Pavani; Jon McCarty; Chris Boggs; Aqil Jamal; Raghubir Gupta

2010-12-31T23:59:59.000Z

71

Hydrocarbon Source Signatures in Houston, Texas: Influence of the Petrochemical Industry  

SciTech Connect

Observations of C1-C10 hydrocarbon mixing ratios measured by in-situ instrumentation at the La Porte super site during the TexAQS 2000 field experiment are reported. The La Porte data were compared to a roadway vehicle exhaust signature obtained from canister samples collected in the Houston Washburn tunnel during the same summer to better understand the impact of petrochemical emissions of hydrocarbons at the site. It is shown that the abundance of ethene, propene, 1-butene, C2-C4 alkanes, hexane, cyclohexane, methylcyclohexane, isopropylbenzene, and styrene at La Porte were systematically impacted by petrochemical industry emissions. Coherent power law relationships between frequency distribution widths of hydrocarbon mixing ratios and their local lifetimes clearly identify two major source groups, roadway vehicle emissions and industrial emissions. Distributions of most aromatics and long chain alkanes were consistent with roadway vehicle emissions as the dominant source. Airmass reactivity was generally dominated by C1-C3 aldehydes. Propene and ethene sometimes dominated air mass reactivity with HO loss frequencies often greater than 10 s-1. Ozone mixing ratios near 200 ppbv were observed on two separate occasions and these air masses appear to have been impacted by industrial emissions of alkenes from the Houston Ship Channel. The La Porte data provide evidence of the importance of industrial emissions of ethene and propene on air masses reactivity and ozone formation in Houston.

Jobson, B Tom T.; Berkowitz, Carl M.; Kuster, W. C.; Goldan, P. D.; Williams, E. J.; Fesenfeld, F.; Apel, Eric; Karl, Thomas G.; Lonneman, William A.; Riemer, D.

2004-12-22T23:59:59.000Z

72

The Accurate Computer Simulation of Phase Equilibrium for Complex Fluid Mixtures. Application to Binaries Involving isobutene, methanol, MTBE, and n-butane  

E-Print Network (OSTI)

We have developed a new method, called the Reaction Gibbs Ensemble Monte Carlo (RGEMC) method for the computer simulation of the phase equilibria for multicomponent mixtures, given an intermolecular potential model for the constituent molecular species. The approach treats the phase equilibrium conditions as a special type of chemical reaction, and incorporates knowledge of the pure-substance vapor pressure data into the simulations. Unlike macroscopic thermodynamic-based approaches like the Wilson and the UNIFAC approximations, no experimental information concerning the mixtures is required. In addition to the PTxy phase equilibrium data, the volumetric properties of the mixture are calculated. We developed intermolecular potential models based on the OPLS potential models of Jorgensen, and used the RGEMC method to predict phase equilibrium data for the binary systems isobutene+MTBE and the binaries formed by methanol with isobutene, MTBE, and n-butane. The predictions are excellent, ...

Martin Lísal; William R. Smith; Ivo Nezbeda

1999-01-01T23:59:59.000Z

73

The social costs of an MTBE ban in California (Condensed version)  

E-Print Network (OSTI)

Technical Appendices, Refinery Modeling Task 3: SupplyStates is produced in refineries and merchant plants fromand other problems in the refinery. Separate storage tanks

Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

2002-01-01T23:59:59.000Z

74

The social costs of an MTBE ban in California (Long version)  

E-Print Network (OSTI)

22 4.4.1 RefineryStates is produced in refineries and merchant plants fromand other problems in the refinery. Separate storage tanks

Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

2002-01-01T23:59:59.000Z

75

Plant View On Reducing Steam Trap Energy Loss  

E-Print Network (OSTI)

Energy will continue to be an ever increasingly important factor in the cost of doing business in the decade of the 80' s. In many petrochemical industries, energy is the second most costly item in producing a product. About 36% of our nation's total energy consumption is used by industry in producing the goods which are consumed around the world. Steam is the most commonly used energy source for the petrochemical industry. Most of this steam is used for heating and evaporating the many petrochemical liquids. This steam is then condensed and is removed from the system at the same rate as it is being formed or the loss of heat transfer will result. From a cost standpoint only condensate should be allowed through the trap. But at many plants half of the steam traps are passing excess steam. This is caused by neglect of aged steam traps which have worn out and misapplication of steam traps by oversizing or using the 'wrong' type trap. Elimination of steam wastes by an effective well engineered steam trap program is what is covered by this article.

Vallery, S. J.

1982-01-01T23:59:59.000Z

76

Petrochemical and Mineralogical Constraints on the Source and Processes of Uranium Mineralisation in the Granitoids of Zing-Monkin Area, Adamawa Massif, NE Nigeria  

Science Conference Proceedings (OSTI)

Zing-Monkin area, located in the northern part of Adamawa Massif, is underlain by extensive exposures of moderately radioactive granodiorites, anatectic migmatites, equigranular granites, porphyritic granites and highly radioactive fine-grained granites with minor pegmatites. Selected major and trace element petrochemical investigations of the rocks show that a progression from granodiorite through migmatite to granites is characterised by depletion of MgO, CaO, Fe{sub 2}O{sub 3,} Sr, Ba, and Zr, and enrichment of SiO{sub 2} and Rb. This trend is associated with uranium enrichment and shows a chemical gradation from the more primitive granodiorite to the more evolved granites. Electron microprobe analysis shows that the uranium is content in uranothorite and in accessories, such as monazite, titanite, apatite, epidote and zircon. Based on petrochemical and mineralogical data, the more differentiated granitoids (e.g., fine-grained granite) bordering the Benue Trough are the immediate source of the uranium prospect in Bima Sandstone within the Trough. Uranium was derived from the granitoids by weathering and erosion. Transportation and subsequent interaction with organic matter within the Bima Sandstone led to precipitation of insoluble secondary uranium minerals in the Benue Trough.

Haruna, I. V., E-mail: vela_hi@yahoo.co.uk [Federal University of Technology, Geology Department (Nigeria); Orazulike, D. M. [Abubakar Tafawa Balewa University, Geology Programme (Nigeria); Ofulume, A. B. [Federal University of Technology, Geosciences Department (Nigeria); Mamman, Y. D. [Federal University of Technology, Geology Department (Nigeria)

2011-12-15T23:59:59.000Z

77

MTBE (Oxygenate) Imports from OPEC  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

78

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

U.S. EPA (2004). ENERGY STAR Building Upgrade Manual. OfficeThe U.S. EPA’s ENERGY STAR Building Upgrade Manual (U.S. EPAthe U.S. EPA’s ENERGY STAR Building Upgrade Manual (U.S. EPA

Neelis, Maarten

2008-01-01T23:59:59.000Z

79

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Department of Energy, or the U.S. Government. Glossary ASDEnergy Efficiency Measures in Other Key Processes.97   17. Summary and Conclusions ..100   Acknowledgements..101   Glossary .

Neelis, Maarten

2008-01-01T23:59:59.000Z

80

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

load factor, running time, local energy costs, and availablecosts, reduced processing time, and increased resource and energycosts and increase predictable earnings, especially in times of high energy-

Neelis, Maarten

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mtbe plants petrochemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Steam Distribution ..measures in steam distribution systems. ..expansion turbines Steam Distribution Systems and Steam End

Neelis, Maarten

2008-01-01T23:59:59.000Z

82

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

and T. Fukushima (1992). Gas turbine integration reducesfor gas crackers. • Use of gas turbine exhaust as furnacesystems • Addition of gas turbine/electric generator. •

Neelis, Maarten

2008-01-01T23:59:59.000Z

83

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Equistar Chem icals LP (Lyondell) Exxon Mobil Chem ical Co.Exxon Mobil Chem ical Co.Exxon Mobil Chem ical Co. Exxon Mobil Chem ical Co. Form osa

Neelis, Maarten

2008-01-01T23:59:59.000Z

84

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

2005a), the recovery of steam condensate was identified as a2000). By using steam condensate instead of low pressureimprovement Return condensate Steam trap maintenance Improve

Neelis, Maarten

2008-01-01T23:59:59.000Z

85

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Energy Management in Industry. Centre for the Analysis andEnergy Efficiency. Canadian Industry Program for Energyefficiency lighting in Industry and Commercial Buildings.

Neelis, Maarten

2008-01-01T23:59:59.000Z

86

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

V. (2001). Optimize energy efficiency of HRSG. HydrocarbonCEC (2001). 2001 Energy Efficiency Standards for Residential2002. Consortium for Energy Efficiency (CEE), 2007. Motor

Neelis, Maarten

2008-01-01T23:59:59.000Z

87

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

U.S. Department of Energy (U.S. DOE), 1996. Factsheet:USA. U.S. Department of Energy (U.S. DOE), 2005a. Tipsheets:U.S. Department of Energy (U.S. DOE), 2005b. Tipsheets:

Neelis, Maarten

2008-01-01T23:59:59.000Z

88

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

U.S. Department of Energy, Washington, DC, USA. U.S. DOE-U.S. Department of Energy, Washington, DC, USA. DownloadedU.S. Department of Energy, Washington, DC, USA. Downloaded

Neelis, Maarten

2008-01-01T23:59:59.000Z

89

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

in Industry, ACEEE, Washington DC, USA. Jones, T. (2001).Economy, Berkeley, CA/Washington, DC, USA. McPherson, G. ,Efficient Economy, Washington, DC, USA. Neelis, M.L. , M.

Neelis, Maarten

2008-01-01T23:59:59.000Z

90

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

01-024. CEC (2002). Natural Gas Supply and Infrastructuredemand for natural gas and constrained natural supply, the

Neelis, Maarten

2008-01-01T23:59:59.000Z

91

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

in the chemical and refinery industries. Energy Researchand by petroleum refineries from the fluid catalyticproduction of propylene at refineries. In the first quarter

Neelis, Maarten

2008-01-01T23:59:59.000Z

92

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

optimization Reducing reboiler duty Insulation Enhanced distillation control Building Energy Efficiency Measures (Chapter 15) HVAC

Neelis, Maarten

2008-01-01T23:59:59.000Z

93

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

EPA (2004). ENERGY STAR Building Upgrade Manual. Office ofThe U.S. EPA’s ENERGY STAR Building Upgrade Manual (U.S. EPAthe U.S. EPA’s ENERGY STAR Building Upgrade Manual (U.S. EPA

Neelis, Maarten

2008-01-01T23:59:59.000Z

94

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Saving Energy with Daylighting Systems. Centre for theA Sourcebook on Daylighting Systems and Components.an efficient daylighting system may provide evenly dispersed

Neelis, Maarten

2008-01-01T23:59:59.000Z

95

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

to identify and evaluate energy- saving opportunities,Demonstration of Energy Savings of Cool Roofs. LawrencePractice Case Study 300: Energy Savings by Reducing the Size

Neelis, Maarten

2008-01-01T23:59:59.000Z

96

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

such an important cost factor, energy efficiency is a verythe cost-effectiveness of energy efficiency opportunities2005). Energy Efficiency Improvement and Cost Saving

Neelis, Maarten

2008-01-01T23:59:59.000Z

97

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Shenoy, U. (1994). Heat Exchanger Network Synthesis. GulfD.C King. 2002. Emerging Heat Exchanger Technologies for theon a plate-fin heat exchanger. Proceedings of Sustainable (

Neelis, Maarten

2008-01-01T23:59:59.000Z

98

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Nath (2000). Improve Steam Turbine Efficiency. HydrocarbonOIT (2000c). New steam turbine saves chemical manufacturer $demand. Back-pressure steam turbines which may be used to

Neelis, Maarten

2008-01-01T23:59:59.000Z

99

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

V. (1994). Understand Steam Generator Performance. Chemicalelectric generator. • Optimization of steam and power

Neelis, Maarten

2008-01-01T23:59:59.000Z

100

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

helped to improve the Energy Guide substantially. We wouldremaining errors in this Energy Guide are the responsibilityThe views expressed in this Energy Guide do not necessarily

Neelis, Maarten

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mtbe plants petrochemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

such as ethane, propane, butane, naphtha or gasoline. AnOthers Losses Ethane Propane Butane Naphtha Gas oil Source:by dehydrogenation of propane and butane respectively. The

Neelis, Maarten

2008-01-01T23:59:59.000Z

102

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

38   6.1 Energy Management Systems (EMS) andimprovement of energy management systems do apply not onlythe Global Energy Management System (GEMS) of ExxonMobil has

Neelis, Maarten

2008-01-01T23:59:59.000Z

103

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

of Baltimore by using landfill gas (methane) to co-generateIt involves using landfill gas (methane) currently being

Neelis, Maarten

2008-01-01T23:59:59.000Z

104

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

fuel and electricity supplied to the industries are based onof all electricity in the chemical industry is consumed byuse of electricity in the total chemical industry and the

Neelis, Maarten

2008-01-01T23:59:59.000Z

105

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

recover heat from processes and transfer heat to the processprocess chemistry including kinetics and heat transfer. SomeProcess Integration .60   9.1 Heat Transfer –

Neelis, Maarten

2008-01-01T23:59:59.000Z

106

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Windows for Energy Efficiency. Office of Energy Efficiency and Renewable Energy, Building Technology Program, Washington, DC,

Neelis, Maarten

2008-01-01T23:59:59.000Z

107

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

reformates from catalytic reforming in refineries and steamor aromatic mixtures from catalytic reforming in refineries.and reformates from catalytic reforming in refineries. An

Neelis, Maarten

2008-01-01T23:59:59.000Z

108

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

heat recovery wheels, heat pipes, and run-around loops.The efficiency of heat pipes is in the 45% to 65% range (also lead to higher heat losses. A pipe too small may lead

Neelis, Maarten

2008-01-01T23:59:59.000Z

109

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

requiring cooling, absorption cooling can be combined within combination with absorption cooling has been demonstratedcooling and fractionation section is a very complex system encompassing distillation, refrigeration and absorption

Neelis, Maarten

2008-01-01T23:59:59.000Z

110

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Management Assessment Matrix Energy Management ProgramEnergy Management Assessment Matrix.the ENERGY STAR Energy Program Assessment Matrix provided in

Neelis, Maarten

2008-01-01T23:59:59.000Z

111

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

and wind shielding. Building insulation. Adding insulationguidelines for building insulation, for example, California’for improving building insulation. Low emittance windows can

Neelis, Maarten

2008-01-01T23:59:59.000Z

112

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico States Gulf of Mexico States Gulf of Mexico States The Gulf of Mexico area, which includes the States of Texas, Louisiana, Mississippi, Alabama, and Florida, has in the past accounted for the majority of natural gas production. Processing plants are especially important in this part of the country because of the amount of NGLs in the natural gas produced and existence of numerous petro-chemical plants seeking that feedstock in this area. Consequently, the States along the Gulf of Mexico are home to the largest number of plants and the most processing capacity in the United States. Natural gas produced in this area of the country is typically rich in NGLs and requires processing before it is pipeline-quality dry natural gas. Offshore natural gas production can contain more than 4 gallons of

113

A resilience assessment framework for infrastructure and economic systems : quantitative and qualitative resilience analysis of petrochemical supply chains to a hurricane.  

SciTech Connect

In recent years, the nation has recognized that critical infrastructure protection should consider not only the prevention of disruptive events, but also the processes that infrastructure systems undergo to maintain functionality following disruptions. This more comprehensive approach has been termed critical infrastructure resilience (CIR). Given the occurrence of a particular disruptive event, the resilience of a system to that event is the system's ability to efficiently reduce both the magnitude and duration of the deviation from targeted system performance levels. Sandia National Laboratories (Sandia) has developed a comprehensive resilience assessment framework for evaluating the resilience of infrastructure and economic systems. The framework includes a quantitative methodology that measures resilience costs that result from a disruption to infrastructure function. The framework also includes a qualitative analysis methodology that assesses system characteristics that affect resilience in order to provide insight and direction for potential improvements to resilience. This paper describes the resilience assessment framework. This paper further demonstrates the utility of the assessment framework through application to a hypothetical scenario involving the disruption of a petrochemical supply chain by a hurricane.

Ehlen, Mark Andrew; Vugrin, Eric D.; Warren, Drake E.

2010-03-01T23:59:59.000Z

114

Application of Cold Metal Transfer Process for Structural Weld ...  

Science Conference Proceedings (OSTI)

... heat treatment of closure welds in oil and gas, and petrochemical applications. ... for Extending Plant Lives in Power Generation, Refinery & Petrochemical, ...

115

www.eia.gov  

U.S. Energy Information Administration (EIA)

... Petroleum Supply ... finished aviation gasoline, kerosene, petrochemical feedstocks, special naphthas ... natural gas plant liquids, biofuels, other ...

116

www.eia.gov  

U.S. Energy Information Administration (EIA)

... Fuel ethanol and biodiesel supply represent domestic ... kerosene, petrochemical feedstocks, special ... natural gas plant liquids, biofuels, ...

117

Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

LNG LNG Update on the world's largest landfill gas to LNG plant Mike McGowan Head of Government Affairs Linde NA, Inc. June 12, 2012 $18.3 billion global sales A leading gases and engineering company Linde North America Profile $2.3 billion in gases sales revenue in North America in 2011 5,000 employees throughout the U.S., Canada and the Caribbean Supplier of compressed and cryogenic gases and technology Atmospheric gases - oxygen, nitrogen, argon Helium LNG and LPG Hydrogen Rare gases Plant engineering and supply LNG Petrochemicals Natural gas processing Atmospheric gases 3 Linde's alternative fuels portfolio Green hydrogen production - Magog, Quebec Renewable liquefied natural gas production - Altamont, CA Biogas fueling, LNG import terminal - Sweden

118

Plant Operational Status - Pantex Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Status Plant Operational Status Page Content Operational Status Shift 1 - Day The Pantex Plant is open for normal operations. All personnel are to report for duty according to...

119

Reducing Emissions in Plant Flaring Operations  

E-Print Network (OSTI)

Since 2006, one of the largest integrated energy and chemical companies in the world has actively pushed toward optimization and upgrading of pipelines, refineries and petrochemical plants in China for the purpose of minimizing energy consumption, lowering emissions and maximizing production. Saving energy and reducing emissions are the internal requirements for every division of this major corporation. To achieve the public goals the company set, they issued a five year plan called Methods on Energy and Water Saving Management which was applied to all operating equipment in the 13 company owned oil and gas fields, the 22 refineries and 3 pipeline companies. The plan for the refineries focused on key areas such as improving energy efficiency, utilizing latest technologies and reducing green house gas emissions.1 The company also created a Green Team with the objective of achieving zero injury, zero pollution, and zero accidents for all production facilities. These Green Teams advocated the company's new HSE (Health Safety & Environment) culture by eliminating energy-consuming and highly polluting production equipment and facilities that fell behind in the use of technologically advanced equipment.

Duck, B.

2011-01-01T23:59:59.000Z

120

Product Supplied for Petrochemical Feedstocks  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Data may not add to ...

Note: This page contains sample records for the topic "mtbe plants petrochemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Frozen plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Frozen plants Frozen plants Name: janicehu Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: Why do some plants freeze and others do not? Replies: The main reason some plants freeze and others do not is that some plants do not have much water in them. Pine tree leaves have little water and are therefore difficult to freeze. Another reason is that some plants make chemicals to put into their fluids that reduce the freezing temperature. Salts and oils are some. The polyunsaturated fats found in many plants freeze at a lower temperature than the saturated fats found in many animals. Therefore plant fats are liquid (oils) at room temperature, and animal fats are solid. Plants could not use so many saturated fats as warm blooded animals do or they would freeze up solid at higher temperatures. I know little of plants but many animals can make ethylene glycol to keep themselves from freezing. Ethylene glycol is the active ingredient in car anti-freeze

122

Carnivorous Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Carnivorous Plants Carnivorous Plants Nature Bulletin No. 597-A March 27, 1976 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation CARNIVOROUS PLANTS Plants, generally, are eaten by insects or furnish other food for them. But there are a few families of strange plants that, instead, "eat" insects and other small animals. About 500 species are distributed over the world, from the arctic to the tropics. Most of them have peculiar leaves that not only attract insects but are equipped to trap and kill their victims. Even more remarkable is the fact that some have glands which secrete a digestive juice that softens and decomposes the animal until it is absorbed by the plant in much the same way as your stomach digests food.

123

Review of current research on hydrocarbon production by plants  

DOE Green Energy (OSTI)

This review assesses the status of research and development in the area of plants that produce hydrocarbons as a possible replacement for traditional fossil fuels. The information is meant to be used as a basis for determining the scope of a possible R and D program by DOE/FFB. Except in the case of guayule (Parthenium argentatum Gray), research on hydrocarbon species generally has not advanced beyond preliminary screening, extraction, and growth studies. Virtually no field studies have been initiated; hydrocarbon component extraction, separation, identification, and characterization have been only timidly approached; the biochemistry of hydrocarbon formation remains virtually untouched; and potential market analysis has been based on insufficient data. Research interest is increasing in this area, however. Industrial interest understandably centers about guayule prospects and is supplemented by NSF and DOE research funds. Additional support for other research topics has been supplied by DOE and USDA and by certain university systems. Due to the infant state of technology in this area of energy research, it is not possible to predict or satisfactorily assess at this time the potential contribution that plant hydrocarbons might make toward decreasing the nation's dependence upon petroleum. However, the general impression received from experts interviewed during this review was that the major thrust of research should be directed toward the manufacture of petrochemical substitutes rather than fuel production.

Benedict, H. M.; Inman, B.

1979-01-01T23:59:59.000Z

124

MTBE Prices Responded to Natural Gas Prices  

U.S. Energy Information Administration (EIA)

On top of the usual factors impacting gasoline prices, natural gas has had some influence recently. ... Both methane and butane come from natural gas streams.

125

U.S. MTBE (Oxygenate) Imports  

U.S. Energy Information Administration (EIA)

Singapore : 2005-2005: Taiwan : 2004-2004-= No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company ...

126

MTBE (Oxygenate) Imports from Non OPEC  

U.S. Energy Information Administration (EIA)

... Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. Totals may not equal sum of components due to independent rounding.

127

MTBE (Oxygenate) Imports from Korea, South  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

128

Bog Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Bog Plants Bog Plants Nature Bulletin No. 385-A June 6, 1970 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation BOG PLANTS Fifty years ago there were probably more different kinds of plants within a 50 mile radius from the Loop than anywhere else in the Temperate Zone. Industrial, commercial and residential developments, plus drainage and fires have erased the habitats where many of the more uncommon kinds flourished, including almost all of the tamarack swamps and quaking bogs. These bogs were a heritage from the last glacier. Its front had advanced in a great curve, from 10 to 20 miles beyond what is now the shoreline of Lake Michigan, before the climate changed and it began to melt back. Apparently the retreat was so rapid that huge blocks of ice were left behind, surrounded by the outwash of boulders, gravel and ground-up rock called "drift". These undrained depressions; became lakes. Sphagnum moss invaded many of them and eventually the thick floating mats of it supported a variety of bog-loving plants including certain shrubs, tamarack, and a small species of birch. Such lakes became bogs.

129

Medicinal Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Medicinal Plants Medicinal Plants Nature Bulletin No. 187 April 11, 1981 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation MEDICINAL PLANTS In springtime, many years ago, grandma made her family drink gallons of tea made by boiling roots of the sassafras. That was supposed to thin and purify the blood. Children were sent out to gather dandelion, curly dock, wild mustard, pokeberry and other greens as soon as they appeared -- not only because they added welcome variety to the diet of bread, meat, potatoes and gravy, but because some of them were also laxatives. For a bad "cold on the lungs," she slapped a mustard plaster on the patient's back, and on his chest she put a square of red flannel soaked in goose grease. For whooping cough she used a syrup of red clover blossoms. She made cough medicine from the bloodroot plant, and a tea from the compass plant of the prairies was also used for fevers and coughs. She made a pleasant tea from the blossoms of the linden or basswood tree. For stomach aches she used tea from any of several aromatic herbs such as catnip, fennel, yarrow, peppermint, spearmint, sweetflag, wild ginger, bergamot and splice bush.

130

Poisonous Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants Plants Nature Bulletin No. 276 October 1, 1983 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation POISONOUS PLANTS In the autumn of 1818, Nancy Hanks Lincoln died of milk sickness and left her son, Abe, motherless before he was ten years old. Since colonial times, in most of the eastern half of the United States, that dreaded disease has been a hazard in summer and fall, wherever cattle graze in woodlands or along wooded stream banks. In the 1920s it was finally traced to white snakeroot -- an erect branched plant, usually about 3 feet tall, with a slender round stem, sharply-toothed nettle-like leaves and, in late summer, several small heads of tiny white flowers. Cows eating small amounts over a long period develop a disease called "trembles", and their milk may bring death to nursing calves or milk sickness to humans. When larger amounts are eaten the cow, herself, may die.

131

Bagdad Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bagdad Plant Bagdad Plant 585 Silicon Drive Leechburg, P A 15656 * ATI Allegheny "'I Ludlum e-mail: Raymond.Polinski@ATImetals.com Mr. James Raba U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Building Technologies Program 1000 Independence Avenue SW Washington, DC 205585-0121 Raymond J. Polinski General Manager Grain-Oriented Electrical Steel RE: Distribution Transformers Rulemaking Docket Number EE-2010-STD-0048 RIN 1904-AC04 Submitted 4-10-12 via email Mr. Raba, I was planning to make the following closing comments at the DOE Public Meeting on February 23, 2012, but since the extended building evacuation caused the meeting to run well past the scheduled completion time I decided to submit my comments directly to you for the record.

132

TMS 2011: Exhibitor Details  

Science Conference Proceedings (OSTI)

Typical applications include Aluminium smelting, Refineries (esp. HF Alkylation), Petrochemical and Chemical Plants, Gas Production and Processing, Green ...

133

www.eia.gov  

U.S. Energy Information Administration (EIA)

Total World Supply Non-OPEC Supply ... natural gas plant liquids, biofuels, other ... finished aviation gasoline, kerosene, petrochemical feedstocks, special ...

134

www.eia.gov  

U.S. Energy Information Administration (EIA)

Total Supply Pentanes Plus ... natural gas plant liquids, biofuels, other ... finished aviation gasoline, kerosene, petrochemical feedstocks, special naphthas ...

135

www.eia.gov  

U.S. Energy Information Administration (EIA)

Crude Oil Supply Other Supply ... natural gas plant liquids, biofuels, other ... finished aviation gasoline, kerosene, petrochemical feedstocks, special naphthas ...

136

www.eia.gov  

U.S. Energy Information Administration (EIA)

Supply (million short tons) ... natural gas plant liquids, biofuels, other ... finished aviation gasoline, kerosene, petrochemical feedstocks, special naphthas ...

137

www.eia.gov  

U.S. Energy Information Administration (EIA)

Petroleum Supply Annual, ... finished aviation gasoline, kerosene, petrochemical feedstocks, special naphthas ... natural gas plant liquids, biofuels, other ...

138

www.eia.gov  

U.S. Energy Information Administration (EIA)

Non-Farm Employment EMNFPUS ... natural gas plant liquids, biofuels, other ... finished aviation gasoline, kerosene, petrochemical feedstocks, special ...

139

www.eia.gov  

U.S. Energy Information Administration (EIA)

... finished aviation gasoline, kerosene, petrochemical feedstocks, special ... Includes offshore supply from Denmark ... natural gas plant liquids, biofuels, ...

140

Plant Rosettes  

NLE Websites -- All DOE Office Websites (Extended Search)

Rosettes Rosettes Nature Bulletin No. 662 January 13, 1962 Forest Preserve District of Cook County John J. Duffy, President David H. Thompson, Senior Naturalist PLANT ROSETTES In winter our landscape is mostly leafless trees silhouetted against the sky, and the dead stalks of wildflowers, weeds and tall grasses -- with or without a blanket of snow. Some snows lie on the ground for only a few days. Others follow one after another and cover the ground with white for weeks at a time. Soon the eye begins to hunger for a glimpse of something green and growing. Then, in sunny spots where the snow has melted or where youngsters have cleared it away, there appear clusters of fresh green leaves pressed tight to the soil. Whether it is a dandelion in the lawn, a pansy in a flower border, or a thistle in a vacant lot, such a typical leaf cluster -- called a winter rosette -- is a ring of leaves around a short central stem. The leaves are narrow at the base, wider toward the tip, and spread flat on the ground with little or no overlap. This arrangement gives full exposure to sunlight and close contact with the warmer soil beneath. Such plants continue to grow, sometimes faster, sometimes slower, even under snow, throughout winter.

Note: This page contains sample records for the topic "mtbe plants petrochemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Genetic Engineering of Plants to Improve Phytoremediation of Chlorinated Hydrocarbons in Groundwater  

SciTech Connect

I. Mechanism of halogenated hydrocarbon oxidation We are using poplar culture cells to determine the pathway of TCE metabolism. In our earlier work, we found that trichloroethanol (TCEOH) is a major early intermediate. Our studies this year have focused on the steps that follow this toxic intermediate. We did several experiments to track the disappearance of TCEOH after the cells were removed from TCE. We could conclude that TCEOH is not an end-product but is rapidly degraded. Six flasks of poplar liquid suspension cells were exposed to a level of 50 {micro}g/ml TCE for three days. Three of the cultures were subjected to MTBE extractions to quantify the levels of TCEOH produced. The cells of the remaining three cultures were then pelleted and resuspended in fresh medium. After three more days, these were also subjected to MTBE extractions. The samples were analyzed by GC-ECD. After the three days of further metabolism, an average of 91% of the trichloroethanol was gone. When similar experiments were done with intact plants and both free and conjugated TCEOH were quantified, a similar rapid decline in both forms was seen (Shang, 2001). Therefore, it seems probable that similar mechanisms are taking place in both poplar suspension cells and whole poplar plants, so we continued to do our studies with the suspension cells. Metabolism of trichloroethanol may go through trichloroacetic acid (TCAA) prior to dehalogenation. To test this possibility, we exposed cells to TCE and analyzed for TCAA over time. The cultures were analyzed after 4, 5, 6, and 14 days from TCE exposure. We did not detect any significant amount of TCAA above the background in undosed cells. To determine if trichloroethanol itself is directly dehalogenated, we analyzed TCE-exposed cells for the presence of dichloroethanol. Undosed cells did not have any of the DCEOH peak but TCE-dosed cells that produced the highest levels of trichloroethanol did have a small DCEOH peak. Cultures that did not produce high levels of TCEOH did not have the DCEOH peak. This result repeated in two independent experiments. We decided to expose cells directly to TCEOH and look for DCEOH in the cell extracts. After one week of exposure, the culture cells produced consistent levels of DCEOH of approximately 0.02% of the TCEOH dose. However, when we did a control reaction with no cells, DCEOH was present, indicating that the TCEOH degrades in the absence of cells. We are currently conducting the same experiments with newly-purchased chemicals and in darkness (by wrapping the culture flasks in foil). We have had success using tribromoethanol as a surrogate for trichloroethanol in studying the dehalogenation reaction in poplar cells. We had previously shown that tribromoethanol is steadily metabolized over time in poplar culture cells, producing free bromide ion. TBEOH-dosed dead cells and no cell controls did not have any bromide ion production. We are currently using this system to test P450 inhibitors to determine if dehalogenation of TBEOH is through this mechanism. We have recently purchased tribromoethylene as a more easily monitored surrogate for TCE. We will conduct mass balance experiments to determine what percentage of the bromide is released from tribromoethylene.

Strand, Stuart E.

2004-12-01T23:59:59.000Z

142

FCC LPG olefinicity and branching enhanced by octane catalysts  

SciTech Connect

Refiners are increasingly recognizing the downstream opportunities for fluid catalytic cracking LPG olefins for the production of methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE, if the ethanol subsidy is extended to the production of ETBE), and as petrochemical feedstocks. Some of new gasoline FCC octane-enhancing catalysts can support those opportunities because their low non-framework alumina (low NFA) preserve both LPG olefinicity and promote branching of the LPG streams from the FCCU. The combined effect results in more isobutane for alkylate feed, more propylene in the propane/propylene stream, and more isobutene - which makes the addition of an MTBE unit very enticing.

Keyworth, D.A.; Reid, T.A.; Kreider, K.R.; Yatsu, C.A.

1989-05-29T23:59:59.000Z

143

Long-day plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-day plants Name: Ryan S Martin Status: NA Age: NA Location: NA Country: NA Date: NA Question: What are long-day plants? Replies: Long-day plants are those that require a...

144

Gasification Plant Databases  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Systems Gasification Plant Databases Welcome to the U. S. Department of Energy, National Energy Technology Laboratory's Gasification Plant Databases Within these...

145

New baseload power plants  

Science Conference Proceedings (OSTI)

This is a listing of 221 baseload power plant units currently in the planning stage. The list shows the plant owner, capacity, fuel, engineering firm, constructor, major equipment suppliers (steam generator, turbogenerator, and flue gas desulfurization system), partner, and date the plant is to be online. This data is a result of a survey by the journal of power plant owners.

Not Available

1994-04-01T23:59:59.000Z

146

Considerations Associated with Reactor Technology Selection for the Next Generation Nuclear Plant Project  

Science Conference Proceedings (OSTI)

At the inception of the Next Generation Nuclear Plant Project and during predecessor activities, alternative reactor technologies have been evaluated to determine the technology that best fulfills the functional and performance requirements of the targeted energy applications and market. Unlike the case of electric power generation where the reactor performance is primarily expressed in terms of economics, the targeted energy applications involve industrial applications that have specific needs in terms of acceptable heat transport fluids and the associated thermodynamic conditions. Hence, to be of interest to these industrial energy applications, the alternative reactor technologies are weighed in terms of the reactor coolant/heat transport fluid, achievable reactor outlet temperature, and practicality of operations to achieve the very high reliability demands associated with the petrochemical, petroleum, metals and related industries. These evaluations have concluded that the high temperature gas-cooled reactor (HTGR) can uniquely provide the required ranges of energy needs for these target applications, do so with promising economics, and can be commercialized with reasonable development risk in the time frames of current industry interest – i.e., within the next 10-15 years.

L.E. Demick

2010-09-01T23:59:59.000Z

147

Refinery & Blender Net Production of Petrochemical Feedstocks  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

148

Naphtha for Petrochemical Feedstock Use Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

149

Plant immune systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant immune systems Plant immune systems Name: stephanie Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: Do plants have an immune system? How does it work? Are plants able to "fight off" infections such as Dutch Elm disease? Replies: In the broadest sense, an immune system is any method an organism has protect itself from succeeding to another organism's efforts to undermine its health and integrity. In this sense, yes, plants have immune systems. Plants do NOT have "active" immune systems, like humans, including macrophages, lymls, antibodies, complements, interferon, etc., which help us ward off infection. Rather, plants have "passive" mechanisms of protection. For instance, the waxy secretion of some plants (cuticle) functions to help hold in moisture and keep out microorganisms. Plants can also secrete irritating juices that prevent insects and animals from eating it. The thick bark of woody plants is another example of a defensive adaptation, that protects the more delicate tissues inside. The chemical secretions of some plants are downright poisonous to many organisms, which greatly enhance the chances of survival for the plant. Fruits of plants contain large amounts of vitamin C and bioflavonoids, compounds which have been shown in the lab to be anti-bacterial and antiviral. So in these ways, plants can improve their chances of survival. Hundreds of viruses and bacteria attack plants each year, and the cost to agriculture is enormous. I would venture to guess that once an organism establishes an infection in a plant, the plant will not be able to "fight" it. However, exposure to the sun's UV light may help control an infection, possibly even defeat it, but the plant does not have any inherent "active" way to fight the infection

150

Plant Phenotype Characterization System  

DOE Green Energy (OSTI)

This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

Daniel W McDonald; Ronald B Michaels

2005-09-09T23:59:59.000Z

151

Chlorine and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Chlorine and Plants Name: Paul Location: NA Country: NA Date: NA Question: Is too Much chlorine going to kill or harm plants? I couldn't find information anywhere but I found...

152

Chlorine and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Chlorine and Plants Name: james Location: NA Country: NA Date: NA Question: I am doing project on the effects of chlorine on plant growth and i cant find any info. If you could...

153

PLANT BIOLOGY DEPARTMENT HANDBOOK  

E-Print Network (OSTI)

PLANT BIOLOGY DEPARTMENT HANDBOOK 2012-2013 University of Georgia Athens, GA 30602 Updated: 9/5/12 #12;Plant Biology Handbook Table of Contents General Information and Operating Procedures 1

Arnold, Jonathan

154

Plants producing DHA  

Science Conference Proceedings (OSTI)

CSIRO researchers published results in November 2012 showing that the long-chain n-3 fatty acid docosahexaenoic acid (DHA) can be produced in land plants in commercially valuable quantities. Plants producing DHA inform Magazine algae algal AOCS bi

155

Oil and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil and Plants Name: Matt Location: NA Country: NA Date: NA Question: If you could please tell me exactly what motor oil (unused) does to plants, and the effects. Does it...

156

Paste Plant Operations  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... It now provides data extraction features that aggregate system ... DUBAL Carbon Plant management team defined and implemented a 3-year strategic ... how to best approach Paste Plant operating and maintenance activities.

157

Plants and Dirt Compaction  

NLE Websites -- All DOE Office Websites (Extended Search)

Dirt Compaction Name: Conor Location: NA Country: NA Date: NA Question: When growing corn and soybean plants does the compaction of dirt effect the growth of the plant? Replies:...

158

Light Wavelength and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Wavelength and Plants Name: John Location: NA Country: NA Date: NA Question: I just was wandering whether plants grow better in artificial light or in sunlight. I am...

159

Plant centromere compositions  

DOE Patents (OSTI)

The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

Mach, Jennifer (Chicago, IL); Zieler, Helge (Chicago, IL); Jin, James (Chicago, IL); Keith, Kevin (Chicago, IL); Copenhaver, Gregory (Chapel Hill, NC); Preuss, Daphne (Chicago, IL)

2006-06-26T23:59:59.000Z

160

Plant centromere compositions  

DOE Patents (OSTI)

The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

Mach, Jennifer (Chicago, IL); Zieler, Helge (Chicago, IL); Jin, James (Chicago, IL); Keith, Kevin (Chicago, IL); Copenhaver, Gregory (Chapel Hill, NC); Preuss, Daphne (Chicago, IL)

2007-06-05T23:59:59.000Z

Note: This page contains sample records for the topic "mtbe plants petrochemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Plant centromere compositions  

DOE Patents (OSTI)

The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

Mach, Jennifer M. (Chicago, IL); Zieler, Helge (Del Mar, CA); Jin, RongGuan (Chesterfield, MO); Keith, Kevin (Three Forks, MT); Copenhaver, Gregory P. (Chapel Hill, NC); Preuss, Daphne (Chicago, IL)

2011-08-02T23:59:59.000Z

162

Plant centromere compositions  

Science Conference Proceedings (OSTI)

The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

Mach; Jennifer M. (Chicago, IL), Zieler; Helge (Del Mar, CA), Jin; RongGuan (Chesterfield, MO), Keith; Kevin (Three Forks, MT), Copenhaver; Gregory P. (Chapel Hill, NC), Preuss; Daphne (Chicago, IL)

2011-11-22T23:59:59.000Z

163

Plants & Animals  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants & Animals Plants & Animals Plants & Animals Plant and animal monitoring is performed to determine whether Laboratory operations are impacting human health via the food chain. April 12, 2012 A rabbit on LANL land. A rabbit on LANL land. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email We sample many plants and animals, including wild and domestic crops, game animals, fish, and food products from animals, as well as other plants and animals not considered food sources. What plants and animals do we monitor? LANL monitors both edible and non-edible plants and animals to determine whether Laboratory operations are impacting human health via the food chain, or to find contaminants that indicate they are being moved in the

164

Weld Overlay Material Options for Power Systems  

Science Conference Proceedings (OSTI)

The primary applications are for coal fired power plants, but nuclear power .... for Extending Plant Lives in Power Generation, Refinery & Petrochemical, and ...

165

Weld Overlay Claddings by Gas-metal-arc Welding Process for ...  

Science Conference Proceedings (OSTI)

... Process for Extending Plant Lives in Power Generation, Refinery & Petrochemical, ... and coal-fired boilers, and on vessels in refinery and pulp & paper plants.

166

New baseload power plants  

Science Conference Proceedings (OSTI)

This is a tabulation of the results of this magazines survey of current plans for new baseload power plants. The table lists the unit name, capacity, fuel, engineering firm, constructor, suppliers for steam generator, turbine generator and flue gas desulfurization equipment, date due on-line, and any non-utility participants. The table includes fossil-fuel plants, nuclear plants, geothermal, biomass and hydroelectric plants.

Not Available

1993-04-01T23:59:59.000Z

167

Cooling Plant Optimization Guide  

Science Conference Proceedings (OSTI)

Central cooling plants or district cooling systems account for 22 percent of energy costs for cooling commercial buildings. Improving the efficiency of central cooling plants will significantly impact peak demand and energy usage for both building owners and utilities. This guide identifies opportunities for optimizing a central cooling plant and provides a simplified optimization procedure. The guide focuses on plant optimization from the standpoint of minimizing energy costs and maximizing efficiencies...

1998-09-29T23:59:59.000Z

168

Plant design: Integrating Plant and Equipment Models  

Science Conference Proceedings (OSTI)

Like power plant engineers, process plant engineers must design generating units to operate efficiently, cleanly, and profitably despite fluctuating costs for raw materials and fuels. To do so, they increasingly create virtual plants to enable evaluation of design concepts without the expense of building pilot-scale or demonstration facilities. Existing computational models describe an entire plant either as a network of simplified equipment models or as a single, very detailed equipment model. The Advanced Process Engineering Co-Simulator (APECS) project (Figure 5) sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) seeks to bridge the gap between models by integrating plant modeling and equipment modeling software. The goal of the effort is to provide greater insight into the performance of proposed plant designs. The software integration was done using the process-industry standard CAPE-OPEN (Computer Aided Process Engineering–Open), or CO interface. Several demonstration cases based on operating power plants confirm the viability of this co-simulation approach.

Sloan, David (Alstrom Power); Fiveland, Woody (Alstrom Power); Zitney, S.E.; Osawe, Maxwell (Ansys, Inc.)

2007-08-01T23:59:59.000Z

169

NUCLEAR PLANT OPERATIONS AND  

E-Print Network (OSTI)

reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed--has been benchmarked against measurements.30 At the Ringhals nuclear power plant, this measurement is car a measurement performed at the PWR Unit 4 of the Ring hals Nuclear Power Plant was available to us

Demazière, Christophe

170

NUCLEAR PLANT OPERATIONS AND  

E-Print Network (OSTI)

reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed reactivity effects--has been benchmarked against measurements.30 At the Ringhals nuclear power plant a measurement performed at the PWR Unit 4 of the Ring- hals Nuclear Power Plant was available to us

Demazière, Christophe

171

Decisions decisions plant vessels  

Science Conference Proceedings (OSTI)

This paper describes concepts for a family of plant vessels that help users make decisions or reach goals. The concepts use plants to mark time or answer questions for the user, creating a connection between the user and the individual plant. These concepts ...

Jenny Liang

2007-08-01T23:59:59.000Z

172

Power Plant Cycling Costs  

Science Conference Proceedings (OSTI)

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

173

Advanced Manufacturing Office: Better Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Plants on Twitter Bookmark Advanced Manufacturing Office: Better Plants on Google Bookmark Advanced Manufacturing Office: Better Plants on Delicious Rank Advanced...

174

prairie plant list  

NLE Websites -- All DOE Office Websites (Extended Search)

List of Native Prairie Plant Illustrations List of Native Prairie Plant Illustrations Select the common name of the plant you want to view. Common Name Scientific Name Grasses BIG BLUESTEM Andropogon gerardii INDIAN GRASS Sorghastrum nutans LITTLE BLUESTEM Andropogon scoparius SWITCH GRASS Panicum virgatum CORD GRASS Spartina pectinata NEEDLEGRASS Stipa spartea PRAIRIE DROPSEED Sporobolus pectinata SIDE-OATS GRAMA Bouteloua curtipendula FORBS ROSINWEED Silphium integrifolium SAW-TOOTHED SUNFLOWER Helianthus grossesserratus WILD BERGAMOT Monarda fistulosa YELLOW CONEFLOWER Ratibida pinnata BLACK-EYED SUSAN Rudbeckia hirta COMPASS PLANT Silphium lactiniatum CUP PLANT Silphium perfoliatum NEW ENGLAND ASTER Aster novae-angilae PRAIRIE DOCK Silphium terebinthinaceum RATTLESNAKE MASTER Eryngium yuccifolium STIFF GOLDENROD Solidaga rigida

175

prairie restoration plant ident  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Identification Plant Identification Once your restoration is started and plants begin to germinate, the next issue you are faced with is the identification of what is growing. From my experience, the seeds you planted should start germinating after about a week to ten days. Of course, this is dependent on the weather conditions and the amount of moisture in the soil. If you are watering regularly, you will get growth much more quickly than if you are just waiting for nature to take its course. Identifying prairie plants as they germinate is very difficult. If you are an experienced botanist or an expert on prairie plants, your identification will still be a little more than an educated guess. In other words identifying prairie species from non-native species will take some time.

176

Conditional sterility in plants  

DOE Patents (OSTI)

The present disclosure provides methods, recombinant DNA molecules, recombinant host cells containing the DNA molecules, and transgenic plant cells, plant tissue and plants which contain and express at least one antisense or interference RNA specific for a thiamine biosynthetic coding sequence or a thiamine binding protein or a thiamine-degrading protein, wherein the RNA or thiamine binding protein is expressed under the regulatory control of a transcription regulatory sequence which directs expression in male and/or female reproductive tissue. These transgenic plants are conditionally sterile; i.e., they are fertile only in the presence of exogenous thiamine. Such plants are especially appropriate for use in the seed industry or in the environment, for example, for use in revegetation of contaminated soils or phytoremediation, especially when those transgenic plants also contain and express one or more chimeric genes which confer resistance to contaminants.

Meagher, Richard B. (Athens, GA); McKinney, Elizabeth (Athens, GA); Kim, Tehryung (Taejeon, KR)

2010-02-23T23:59:59.000Z

177

Crystals and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Crystals and Plants Crystals and Plants Name: Diab Location: N/A Country: N/A Date: N/A Question: What will the likely effects of crystallized filaments in plant cells be? I had noticed that moth balls (para dichlorbenzene) tends within a very short temperature range to transform from a solid to gas and back to solid in the form of crystal filaments. I been wondering about the likely effects of an experiment in which a plant is placed in a chamber saturated with the fumes of a substance that had the same transformation properties of its state but none of the toxic effects be on the plants and will such filaments form inside the cell and rearrange its DNA strands or kill it outright? Replies: The following might be helpful: http://biowww.clemson.edu/biolab/mitosis.html http://koning.ecsu.ctstateu.edu/Plant_Physiology/osmosis.html

178

Electrical generating plant availability  

SciTech Connect

A discussion is given of actions that can improve availability, including the following: the meaning of power plant availability; The organization of the electric power industry; some general considerations of availability; the improvement of power plant availability--design factors, control of shipping and construction, maintenance, operating practices; sources of statistics on generating plant availability; effects of reducing forced outage rates; and comments by electric utilities on generating unit availability.

1975-05-01T23:59:59.000Z

179

Plant Growth and Photosynthesis  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Growth and Photosynthesis Plant Growth and Photosynthesis Name: Jack Location: N/A Country: N/A Date: N/A Question: Do plants have any other way of growing besides photosythesis? Plants do not use photosynthesis to grow!!! They use cellular respiration just like every other organism to process energy into work. Plants use oxygen just like we do. Photosynthesis is principally only a process to change sunlight into a chemical form for storage. Replies: Check out our archives for more information. www.newton.dep.anl.gov/archive.htm Steve Sample Jack, Several kinds of flowering plants survive without the use of chlorophyll which is what makes plants green and able to produce sugar through photosynthesis. Dodder is a parasitic nongreen (without chlorophyll) plant that is commonly found growing on jewelweed and other plants in damp areas. Dodder twines around its host, (A host is an organism that has fallen victim to a parasite.), like a morning glory and attaches itself at certain points along the stem where it absorbs sugar and nutrients from the hosts sap.

180

Sunrise II Power Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sunrise Power Company, LLC (Sunrise), has planned the modification of an existing power plant project to increase its generation capacity by 265 megawatts by 2003. The initial...

Note: This page contains sample records for the topic "mtbe plants petrochemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Plant and Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

publicationshouseplantligh t.html Sincerely, Anthony R. Brach "Artificial" light comes from many kinds of bulbs that emit different wavelengths of light; Many plants...

182

Repurposing a Hydroelectric Plant.  

E-Print Network (OSTI)

??This thesis project explores repurposing a hydroelectric plant along Richmond Virginia's Canal Walk. The building has been redesigned to create a community-oriented space programmed as… (more)

Pritcher, Melissa

2008-01-01T23:59:59.000Z

183

& Immobilization Plant Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the current mixing, erosion, corrosion, instrumentation and monitoring challenges at the Waste Treatment Plant (WTP) in Hanford. The "black cell" design concept and the use of...

184

Modulating lignin in plants  

DOE Patents (OSTI)

Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

2013-01-29T23:59:59.000Z

185

NUCLEAR POWER PLANT  

DOE Patents (OSTI)

A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

1963-05-14T23:59:59.000Z

186

Plants “remember” drought, adapt  

Science Conference Proceedings (OSTI)

Research carried out at the University of Nebraska-Lincoln (UNL; USA) shows that plants subjected to a previous period of drought learn to deal with the stress owing to their “memories” of the experience. Plants “remember” drought, adapt Inform Magazine

187

BNL | Plant Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Sciences Plant Sciences The Plant Sciences group's goal is to understand the principles underlying carbon capture, conversion, and storage in living systems; and develop the capability to model, predict and optimize these processes in plants and microorganisms. Staff Members John Shanklin Jason Candreva Jilian Fan Hui Liu Qin Liu Edward Whittle Xiaohong Yu Dax Fu Jin Chai Chang-Jun Liu Yuanheng Cai Mingyue Gou Guoyin Kai Zhaoyang Wei Huijun Yang Kewei Zhang Xuebin Zhang Jörg Schwender Jordan Hay Inga Hebbelmann Hai Shi Zhijie Sun Changcheng Xu Chengshi Yan Zhiyang Zhai Plant Sciences Contact John Shanklin, (631)344-3414 In the News No stories available Funding Agencies DOE Basic Energy Sciences Bayer CropScience The Biosciences Department is part of the Environment and Life Sciences Directorate at Brookhaven National Laboratory

188

Granby Pumping Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Granby Pumping Plant Granby Pumping Plant Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Granby Pumping Plant-Windy Gap Transmission Line Rebuild Project Western owns and operates a 12-mile, 69-kV electric transmission line in Grand County, Colo., that originates at Windy Gap Substation and terminates at Granby Pumping Plant Switchyard. The proposed project would rebuild the single circuit line as a double circuit transmission line and add a second power transformer. One circuit would replace the existing 69-kV line; the other circuit would be a new 138-kV line. Granby Pumping Plant Switchyard would be expanded to accommodate the second line and power transformer. Windy Gap Substation would be modified to accommodate the second line.

189

U.S. Exports to Chile of MTBE (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 2000's: 21: 627: 930: 1,110: 2010's: 1,040: 1,115: 1,327-

190

The Social Costs of an MTBE Ban in California  

E-Print Network (OSTI)

of the world. Price of crude oil. Wellhead price of naturalfor natural gas. Supply of crude oil. Supply of natural gas.to an increased demand for crude oil. Ethanol also has lower

Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

2005-01-01T23:59:59.000Z

191

The Social Costs of an MTBE Ban in California  

E-Print Network (OSTI)

Montgomery. “Social Cost of Imported Oil and U.S. ImportCredit Change in Re?ning Cost, Oil Import Bill, and ConsumerCredit Change in Re?ning Cost, Oil Import Bill, and Consumer

Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

2005-01-01T23:59:59.000Z

192

The Social Costs of an MTBE Ban in California  

E-Print Network (OSTI)

Gasoline Elasticity Natural Gas Supply Elasticity NaturalReduced demand for natural gas Supply of Imports Ethanol &alternative scenarios for natural gas supply and demand. By

Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

2005-01-01T23:59:59.000Z

193

The Social Costs of an MTBE Ban in California  

E-Print Network (OSTI)

purchasing natural gas imports at a lower price. Natural gasin the price of natural gas imports is a net bene?t to thesocial cost of natural gas imports was consid- erably less

Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

2005-01-01T23:59:59.000Z

194

U.S. Exports to Venezuela of MTBE (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2005: 271: 297: 551: 258: 223: 254: 663: 2006: 553: 311: 613: 766: 408: 755: 878: 1,099: 687: 775: 397: 488 ...

195

MTBE Pipeline Stocks by Type - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

196

The Social Costs of an MTBE Ban in California  

E-Print Network (OSTI)

equivalent quantity (in energy terms) since oil imports areU.S. oil imports calculated equilibrium quantity of importsworld oil price times the equilibrium quantity of imports

Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

2005-01-01T23:59:59.000Z

197

Greenhouse Gas Emissions from Ethanol and MTBE A Comparison  

E-Print Network (OSTI)

Environmentally Sound Economic DevelopmentThe Institute for Local Self-Reliance (ILSR) is a nonprofit research and educational organization that provides technical assistance and information on environmentally sound economic development strategies. Since 1974, ILSR has worked with citizen groups, governments and private businesses in developing policies that extract the maximum value from local resources.

Irshad Ahmed; David Morris; Irshad Ahmed; David Morris

1994-01-01T23:59:59.000Z

198

The Social Costs of an MTBE Ban in California  

E-Print Network (OSTI)

and W.D. Montgomery. Oil Prices, Energy Security, and Importnew equilibrium world oil price and level of U.S. imports.to estimate the changes in oil prices that would result from

Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

2005-01-01T23:59:59.000Z

199

Preparations for Meeting New York and Connecticut MTBE Bans  

U.S. Energy Information Administration (EIA)

analytical agency within the Department of Energy. ... their facilities as well, ... making changes to meet the requirements. The switchover to ethanol based-RFG,

200

Supply Impact of Losing MTBE and Using Ethanol  

Reports and Publications (EIA)

Presented by: Joanne Shore Presented to: OPIS National Supply Summit San Antonio, Texas October 2002

Information Center

2002-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "mtbe plants petrochemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

AVESTAR® - Smart Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Plant In the area of smart plant operations, AVESTAR's dynamic simulators enable researchers to analyze plant-wide performance over a wide range of operating scenarios, including plant startup (cold, warm, hot), shutdown, fuel switchovers, on-load cycling, high-load operations of 90-120% of rated capacity, and high frequency megawatt changes for automatic generation control. The dynamic simulators also let researchers analyze the plant's response to disturbances and malfunctions. The AVESTAR team is also using dynamic simulators to develop effective strategies for the operation and control of pre-combustion capture technology capable of removing at least 90% of the CO2 emissions. Achieving operational excellence can have significant impact on the extent and the rate at which commercial-scale capture processes will be scaled-up, deployed, and used in the years to come. If deployment of new CO2 capture technologies is to be accelerated, power generators must be confident in ensuring efficient, flexible, reliable, environmentally-friendly, and profitable plant operations.

202

Georgia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

203

Arkansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

204

Iowa Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

205

Ohio Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

206

Vermont Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

207

Florida Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

208

Virginia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

209

Washington Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Washington nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

210

Missouri Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

211

Nebraska Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

212

Tennessee Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

213

Connecticut Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

214

Minnesota Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

215

California Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

216

Arizona Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

217

Massachusetts Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

218

Kansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

219

Alabama Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

220

Wisconsin Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

Note: This page contains sample records for the topic "mtbe plants petrochemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NETL: Power Plant Improvement Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

PPII Major Demonstrations Power Plant Improvement Initiative (PPII) The Power Plant Improvement Initiative (PPII) was established in October 2000 to further the commercial-scale...

222

Texas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

223

Michigan Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

224

Mississippi Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

225

Artificial light and plant growth  

NLE Websites -- All DOE Office Websites (Extended Search)

Artificial light and plant growth Name: Lim Age: NA Location: NA Country: NA Date: NA Question: What color of artificial light works the best in plant growth? Replies:...

226

The First Coal Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Plants Coal Plants Nature Bulletin No. 329-A January 25, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation THE FIRST COAL PLANTS Coal has been called "the mainspring" of our civilization. You are probably familiar, in a general way, with the story of how it originated ages ago from beds of peat which were very slowly changed to coal; and how it became lignite or brown coal, sub-bituminous, bituminous, or anthracite coal, depending on bacterial and chemical changes in the peat, how much it was compressed under terrific pressure, and the amount of heat involved in the process. You also know that peat is formed by decaying vegetation in shallow clear fresh-water swamps or bogs, but it is difficult to find a simple description of the kinds of plants that, living and dying during different periods of the earth's history, created beds of peat which eventually became coal.

227

Fermilab Prairie Plant Survey  

NLE Websites -- All DOE Office Websites (Extended Search)

Crack the Quadrat* Code! Crack the Quadrat* Code! compass plasnt * What is a Quadrat? It's a one-meter square plot. Plants in the quadrat are identified and counted. Fermilab quadrat specialists can! Attention Citizen Scientists Are you a prairie enthusiast? Learn scientific plant monitoring techniques while enjoying our beautiful prairie. Join a unique science program open to the public, adult groups, families, scouts and more Â…. Become a prairie quadrat specialist and do real science at Fermilab! In the Fermilab Prairie Plant Survey you will learn how to identify prairie plants, map a prairie plot and track restoration progress along with our experts. Use our Website to contribute data you collect. Come once or come back two or three times to see how the prairie changes. Keep an eye on this prairie for years to come!

228

prairie restoration planting  

NLE Websites -- All DOE Office Websites (Extended Search)

Planting Planting The most common method of planting is to broadcast spread your seeds. This is usually done by hand, but you can also use a lawn-type spreader. After you have spread your seeds, rake the area over lightly. For seeds to germinate correctly they need to have good seed to soil contact, but you also don't want to bury the seeds too deeply. The general rule is to cover seeds to a depth no deeper than twice the seed's size. For example, if a seed is 4 mm in size, you would not want to bury it any deeper than 8 mm. The seeds commonly found in a prairie matrix are usually small enough, that raking over the spread seed to mix and cover them with a thin layer of soil, is adequate. If you are involving large numbers of people in the planting, a plastic cup

229

Pollution adn Plant Growth  

NLE Websites -- All DOE Office Websites (Extended Search)

Pollution adn Plant Growth Pollution adn Plant Growth Name: Virdina Location: N/A Country: N/A Date: N/A Question: What are the effcts off water polltuion on plant growth? Are there any good websites where I can find current or on going research being done by other scientist? Replies: Dear Virdina, Possibly helpful: http://www.ec.gc.ca/water/en/manage/poll/e_poll.htm http://www.epa.vic.gov.au/wq/info/wq987.htm Sincerely, Anthony R. Brach This is a very complicated question, there are so many different types of water pollution and different species of plants react very differently. Good places to start are the U.S. environmental protection agency, the office of water is at: http://www.epa.gov/ow/ and there is a link to a kid's page from there: http://www.epa.gov/OST/KidsStuff/ You might also try state EPA's, Illinois is at:

230

Water Treatment Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

to see the operation than have us explain it. Basically, most treatment plants remove the solid material and use living organisms and chlorine to clean up the water. Steve Sample...

231

Fuel rod reprocessing plant  

Science Conference Proceedings (OSTI)

A plant for the reprocessing of fuel rods for a nuclear reactor comprises a plurality of rectangular compartments desirably arranged on a rectangular grid. Signal lines, power lines, pipes, conduits for instrumentation, and other communication lines leave a compartment just below its top edges. A vehicle access zone permits overhead and/or mobile cranes to remove covers from compartments. The number of compartments is at least 25% greater than the number of compartments used in the initial design and operation of the plant. Vacant compartments are available in which replacement apparatus can be constructed. At the time of the replacement of a unit, the piping and conduits are altered to utilize the substitute equipment in the formerly vacant compartment, and it is put on stream prior to dismantling old equipment from the previous compartment. Thus the downtime for the reprocessing plant for such a changeover is less than in a traditional reprocessing plant.

Szulinski, M.J.

1981-04-14T23:59:59.000Z

232

Power Plant Closure Guidebook  

Science Conference Proceedings (OSTI)

Organizations that are planning to decommission an aged power plant face a host of issues that must be addressed and many tasks that must be properly executed in order to ensure a successful closure of the facility.

2010-10-20T23:59:59.000Z

233

B Plant facility description  

SciTech Connect

Buildings 225B, 272B, 282B, 282BA, and 294B were removed from the B Plant facility description. Minor corrections were made for tank sizes and hazardous and toxic inventories.

Chalk, S.E.

1996-10-04T23:59:59.000Z

234

Plant Pathogen Resistance  

Crop plants are infected by numerous fungal and bacterial pathogens that reduce crop quality and yield. Common methods for addessing this problem include time consuming processes such as genetic engeneering, and possibly enviromentally risky ...

235

The importance of FCC catalyst selection on LPG profitability  

SciTech Connect

Recently the value of LPG in chemical operations downstream of the FCC unit has increased. Such downstream operations utilize propylene not only in alkylate, but also in rapid growth petrochemical applications such as for a raw material in the manufacture of polypropylene and propylene oxide. Isobutane and the butenes (particularly butene-2 in sulfuric acid catalyzed alkylation units) are prized for alkylate feed. The profit potential and incentives to use other LPG components such as isobutene to make MTBE is now increased because of legislative actions and increased octane performance demand; and because of the greater isobutene content in the LPG from the new FCC octane catalysts. A low non-framework alumina (NFA) zeolite studied made a more olefinic LPG with higher iso-to normal C4 ratio than the other zeolites. Pilot plant data has also shown the new low NFA zeolite gave not only outstanding motor octane (MON) performance, but produced an LPG with better propylene to propane ratio, more isobutene, more n-butenes and more C4 branching than other RE promoted zeolite catalysts. Commercial results have verified the improved performance and profitability for the new low-NFA type zeolite catalysts. Three commercial examples are described.

Keyworth, D.A.; Gilman, R.; Pearce, J.R. (AKZO Catalysts, 13000 Bay Park Road, Pasadena, TX (US))

1989-01-01T23:59:59.000Z

236

Metal Interconnection Made Inside the Micro-channel by Localized ...  

Science Conference Proceedings (OSTI)

A metal ligand oil solution and a reducing agent aqueous solution are applied .... for Extending Plant Lives in Power Generation, Refinery & Petrochemical, and ...

237

Experimental Technique to Conduct Thermal Shock Test on ...  

Science Conference Proceedings (OSTI)

Failure Analysis Case Studies from Refinery and Petrochemical Pilot Plants ... Failure of Electrical Submersible Pump of Oil Reservoir · Fan Blade Fracture in a  ...

238

Failure Analysis in Oil & Gas Industry - Programmaster.org  

Science Conference Proceedings (OSTI)

Failure Analysis and Prevention: Failure Analysis in Oil & Gas Industry ... Failure Analysis Case Studies from Refinery and Petrochemical Pilot Plants: Benjamin ...

239

Adhesive Anchor Failure in Boston's Big Dig Tunnel System  

Science Conference Proceedings (OSTI)

Failure Analysis Case Studies from Refinery and Petrochemical Pilot Plants ... Failure of Electrical Submersible Pump of Oil Reservoir · Fan Blade Fracture in a  ...

240

Investigation of Brittle Fracture in 200 Series Austenitic Stainless Steel  

Science Conference Proceedings (OSTI)

Failure Analysis Case Studies from Refinery and Petrochemical Pilot Plants ... Failure of Electrical Submersible Pump of Oil Reservoir · Fan Blade Fracture in a  ...

Note: This page contains sample records for the topic "mtbe plants petrochemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Applications of Zinc  

Science Conference Proceedings (OSTI)

Table 1   Typical applications of zinc-coated steel products...galvanized Various alloys Structural steel for power generating plants, petrochemical

242

Natural Gas - U.S. Energy Information Administration (EIA) - U.S ...  

U.S. Energy Information Administration (EIA)

New petrochemical or manufacturing plants are capital-intensive and take several ... The East region was also the only region that had a stock build lower than ...

243

Plant critical concept  

SciTech Connect

The achievement of operation and maintenance (O&M) cost reductions is a prime concern for plant operators. Initiatives by the nuclear industry to address this concern are under way and/or in development. These efforts include plant reliability studies, reliability-centered maintenance, risk ranking and testing philosophies, performance-based testing philosophies, graded quality assurance, and so forth. This paper presents the results of an effort to develop a methodology that integrates and applies the common data and analysis requirements for a number of risk-based and performance-based initiatives. This initial phase of the effort applied the methodology and its results to two initiatives. These were the procurement function and the preventive maintenance function. This effort integrated multiple programs and functions to identify those components that are truly critical from an integrated plant performance perspective. The paper describes the scope of the effort, the development of a methodology to identify plant critical components, and the application of these results to the maintenance rule compliance, preventive maintenance, and procurement functions at the candidate plant.

O`Regan, P.J. [Yankee Atomic Electric Co., Bolton, MA (United States)

1995-12-31T23:59:59.000Z

244

How do plants grow?  

NLE Websites -- All DOE Office Websites (Extended Search)

How do plants grow? How do plants grow? Name: Sally McCombs Location: N/A Country: N/A Date: N/A Question: A 4th grade class at our school is doing plant research and would like to know if plants grow from the top up or from the bottom up? Thanks for your help! Replies: Plants grow from the top up (or from the bottom down, in the case of root growth). Right at the tip, more cells form by division, and just behind that is an area where cells get bigger). More amazing than all of this is where your question comes from. I went to 4th grade there!!! Amazing, Just after the school was built, I think, maybe around 1959 to about early 1960's. Then I moved on to St. Pete High School, then my parents got jobs in Alabama, where I did the last year of High School. Then onto college in New England, graduate school in California, a research job in England, and now finally as a professor at the University of Washington in Seattle. Brings back memories...

245

Maintaining plant safety margins  

SciTech Connect

The Final Safety Analysis Report Forms the basis of demonstrating that the plant can operate safely and meet all applicable acceptance criteria. In order to assure that this continues through each operating cycle, the safety analysis is reexamined for each reload core. Operating limits are set for each reload core to assure that safety limits and applicable acceptance criteria are not exceeded for postulated events within the design basis. These operating limits form the basis for plant operation, providing barriers on various measurable parameters. The barriers are refereed to as limiting conditions for operation (LCO). The operating limits, being influenced by many factors, can change significantly from cycle to cycle. In order to be successful in demonstrating safe operation for each reload core (with adequate operating margin), it is necessary to continue to focus on ways to maintain/improve existing safety margins. Existing safety margins are a function of the plant type (boiling water reactor/pressurized water reactor (BWR/PWR)), nuclear system supply (NSSS) vendor, operating license date, core design features, plant design features, licensing history, and analytical methods used in the safety analysis. This paper summarizes the experience at Yankee Atomic Electric Company (YAEC) in its efforts to provide adequate operating margin for the plants that it supports.

Bergeron, P.A.

1989-01-01T23:59:59.000Z

246

NISTIR 6005 Plant Spatial Configuration Application Protocol ...  

Science Conference Proceedings (OSTI)

... Part 12, Description method: The EXPRESS-I language reference manual; ... Decommission Plant ... Plant operating procedures; ...

1998-01-14T23:59:59.000Z

247

Power Plant Cycling Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plant Cycling Costs Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Subcontract Report NREL/SR-5500-55433 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Prepared under Subcontract No. NFT-1-11325-01

248

Plant Tumor Growth Rates  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Tumor Growth Rates Plant Tumor Growth Rates Name: Gina and Maria Location: N/A Country: N/A Date: N/A Question: We are doing a science fair project on if B. Carotene, Green tea, and Grape Seed Extract helps plants against the crown gall disease. We injected sunflowers with agrobacterium tum. one week ago (Sun. Feb. 27, 2000). Our questions is how long will it take for the tumors to grow? We scratched the surface of the stems and injected the agrobacterium in the wound. Also which do you think, in your opinion, will do the best, if any? Our science fair is April 13, do you think we'll have growth before then, atleast enough time to do our conclusion and results? Thank you, any information you forward will be very helpful. Replies: Sunflowers form galls relatively quickly. I usually get them in two weeks at least. Good luck.

249

Plant and Animal Immigrants  

NLE Websites -- All DOE Office Websites (Extended Search)

and Animal Immigrants and Animal Immigrants Nature Bulletin No. 43 December 1, 1945 Forest Preserve District of Cook County Clayton F. Smith, President Roberts Mann, Superintendent of Conservation PLANT AND ANIMAL IMMIGRANTS When foreign plants and animals are brought to a new country they either become naturalized and thrive, or they cling to their old ways and die out. after they, too, find new freedoms because they leave their enemies, competitors, parasites, and some of their diseases behind them -- much as immigrant people do. The United States now supports about 300 times as many people as it did when Columbus discovered America. This is possible because the domesticated plants and animals that the early settlers brought with them give much higher yields of food and clothing than the Indians got from wild ones.

250

Waste Treatment Plant Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Site, located in southeastern Washington state, Hanford Site, located in southeastern Washington state, was the largest of three defense production sites in the U.S. Over the span of 40 years, it was used to produce 64 metric tons of plutonium, helping end World War II and playing a major role in military defense efforts during the Cold War. As a result, 56 million gallons of radioactive and chemical wastes are now stored in 177 underground tanks on the Hanford Site. To address this challenge, the U.S. Department of Energy contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the "Vit Plant," will use vitrification to immobilize most of Hanford's dangerous tank waste.

251

Plants making oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants making oxygen Plants making oxygen Name: Doug Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: How many plants are needed to make enough oxygen for one person for one hour? We are experimenting with Anacharis plants. Replies: The problem can be solved when broken down into smaller questions: 1. How much oxygen does a person need in an hour? 2. How much oxygen does a plant produce in an hour? 3. Based on the above, how many plants will provide the oxygen needs of the person for the hour? Here is the solution to the first question: A resting, healthy adult on an average, cool day breathes in about 53 liters of oxygen per hour. An average, resting, health adult breathes in about 500 mL of air per breath. This is called the normal tidal volume. Now, 150 mL of this air will go to non- functioning areas of the lung, called the "dead space." The average breath rate for this average person is 12 breaths per minute. So, the amount of air breathed in by the person which is available for use is 12 x (500 mL -150 mL) = 4,200 mL/minute. Multiply by 60 to get 252,000 mL/hour. That is, every hour, the person will breathe in 252 L of air. Now, on an average, cool, clear day, only 21% of that air is oxygen. So, 21% of 252 L is 53 L. So, in an hour, the person breathes in about 53 L of oxygen.

252

Waste Isolation Pilot Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Isolation Pilot Plant Waste Isolation Pilot Plant AFFIDAVIT FOR SURVIVING RELATIVE STATE _______________ ) ) ss: __________________ COUNTY OF _____________ ) That I, ________________________, am the _________________________ (Indicate relationship) of ___________________________, who is deceased and make the attached request pursuant to 10 CFR, Section 1008. That the information contained on the attached request is true and correct to the best of my knowledge and belief, and I am signing this authorization subject to the penalties provided in 18 U.S.C. 1001. ____________________________ SIGNATURE NOTARIZATION: SUBSCRIBED and SWORN to before me this ______day of __________, 20_____

253

Total Crude Oil and Petroleum Products Imports by Area of Entry  

U.S. Energy Information Administration (EIA) Indexed Site

by Area of Entry by Area of Entry Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Ethylene Propane Propylene Normal Butane Butylene Isobutane Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) MGBC - Reformulated, RBOB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene-Type Bonded Aircraft Fuel Other Bonded Aircraft Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Bonded, 15 ppm and under Distillate F.O., Other, 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Bonded, Greater than 15 to 500 ppm Distillate F.O., Other, Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., Greater than 500 to 2000 ppm Distillate F.O., Bonded, Greater than 500 to 2000 ppm Distillate F.O., Other, Greater than 500 ppm to 2000 ppm Distillate F.O., Greater than 2000 ppm Distillate F.O., Bonded, Greater than 2000 ppm Distillate F.O., Other, Greater than 2000 ppm Residual Fuel Oil Residual F.O., Bonded Ship Bunkers, Less than 0.31% Sulfur Residual F.O., Bonded Ship Bunkers, 0.31 to 1.00% Sulfur Residual F.O., Bonded Ship Bunkers, Greater than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

254

Snakes and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Snakes and Plants Snakes and Plants Name: kathy Location: N/A Country: N/A Date: N/A Question: We live in the southern most tip of Illinois,on horseshoe lake. I would like to know what time of the year do snakes come out and when do they go back in? Also is there any plants to plant to keep them away? Replies: What kind of snakes, in what kind of habitat? All snakes in Illinois hibernate in winter, but their habits differ by species. I'm not sure of the range of dates for southern Illinois, but they start to come out of hibernation in northern Illinois around the end of March or in April, depending on the weather. Advance of spring is usually about 3 weeks earlier in southern Illinois than northern, so i guess snake emergence would be about that much advanced as well. They will come out when there are warm sunny days to get them warmed up, and nights are not so cold that they will be harmed. Fall entry into hibernation is roughly parallel, snakes will often bask in the sun on sunny fall days before going into hibernation, again in no. Ill usually in October but widely varying.

255

Pinellas Plant facts  

SciTech Connect

The Pinellas Plant, near St. Petersburg, Florida, is wholly owned by the United States Government. It is operated for the Department of Energy (DOE) by GE Aerospace, Neutron Devices (GEND). This plant was built in 1956 to manufacture neutron generators, a principal component in nuclear weapons. The neutron generators built at Neutron Devices consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. Production of these devices has necessitated the development of several uniquely specialized areas of competence and supporting facilities. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology; hermetic seals between glass, ceramic, glass-ceramic, and metal materials; plus high voltage generation and measurement technology. The existence of these capabilities at Neutron Devices has led directly to the assignment of other weapon application products: the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Other product assignments such as active and reserve batteries and the radioisotopically-powered thermoelectric generator evolved from the plant`s materials measurement and controls technologies which are required to ensure neutron generator life.

NONE

1990-11-01T23:59:59.000Z

256

Troubleshooting power plant controls  

SciTech Connect

Using an example from an 80 MW cogeneration plant working at near capacity on a hot day, the paper illustrates the steps involved in troubleshooting a maintenance problem. It discusses identification of the problem, the planning involved in the identification of the problem, development of proof of an hypothesis, human factors, implementing effective solutions, and determination of the root cause.

Alley, S.D. [ANNA, Inc., Annapolis, MD (United States)

1995-05-01T23:59:59.000Z

257

Kakkonda Geothermal Power Plant  

SciTech Connect

A brief general description is given of a geothermal resource. Geothermal exploration in the Takinoue area is reviewed. Geothermal drilling procedures are described. The history of the development at the Takinoue area (the Kakkonda Geothermal Power Plant), and the geothermal fluid characteristics are discussed. The technical specifications of the Kakkonda facility are shown. Photographs and drawings of the facility are included. (MHR)

DiPippo, R.

1979-01-01T23:59:59.000Z

258

NUCLEAR PLANT OPERATIONS AND  

E-Print Network (OSTI)

NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: neutron flux, cur- rent noise, vibration diagnostics: Swedish Nuclear Power Inspectorate SE- 10658 Stockholm, Sweden. NUCLEAR TECHNOLOGY VOL. 131 AUG. 2000 239 by the Swedish Nuclear Power Inspectorate, contract 14.5-980942-98242. REFERENCES 1. A. M. WEINBERG and H. C

Pázsit, Imre

259

Mechanisms in Plant Development  

SciTech Connect

This meeting has been held every other year for the past twenty-two years and is the only regularly held meeting focused specifically on plant development. Topics covered included: patterning in developing tissues; short and long distance signaling; differentiation of cell types; the role of epigenetics in development; evolution; growth.

Hake, Sarah [USDA ARS Plant Gene Expression Center

2013-08-21T23:59:59.000Z

260

Plantings that save energy  

SciTech Connect

In this 12th of a series on urban forestry, homeowners and community planners are offered practical guidance in selection of landscape plantings which will significantly reduce wind velocity and heat loss from homes in winter and reduce energy costs for air conditioning in summer.

Heisler, G.M.; DeWalle, D.R.

1984-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "mtbe plants petrochemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Plant and Soil An International Journal on Plant-Soil  

E-Print Network (OSTI)

1 23 Plant and Soil An International Journal on Plant-Soil Relationships ISSN 0032-079X Plant Soil DOI 10.1007/s11104-012-1353-x Seedling growth and soil nutrient availability in exotic and native tree growth and soil nutrient availability in exotic and native tree species: implications for afforestation

Neher, Deborah A.

262

The Iowa Stored Energy Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Robert Haug Executive Director Iowa Association of Municipal Utilities for Iowa Stored Energy Plant Agency THE IOWA STORED ENERGY PLANT What is ISEP? ISEP is a DOE-supported effort...

263

Pantex Plant | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pantex Plant Pantex Plant Pantex Plant Pantex Plant | September 2010 Aerial View Pantex Plant | September 2010 Aerial View The primary mission of the Pantex Plant is the assembly, disassembly, testing, and evaluation of nuclear weapons in support of the NNSA stockpile stewardship program. Pantex also performs research and development in conventional high explosives and serves as an interim storage site for plutonium pits removed from dismantled weapons. Enforcement January 7, 2013 Enforcement Letter, NEL-2013-01 Issued to B&W Pantex, LLC related to the Conduct of Nuclear Explosive Operations at the Pantex Plant November 21, 2006 Preliminary Notice of Violation, BWXT Pantex, LLC - EA-2006-04 Issued to BWXT Pantex, LLC, related to Quality Assurance and Safety Basis Requirements Violations at the Pantex Plant

264

Production of virus resistant plants  

DOE Patents (OSTI)

A method of suppressing virus gene expression in plants using untranslatable plus sense RNA is disclosed. The method is useful for the production of plants that are resistant to virus infection.

Dougherty, William G. (Philomath, OR); Lindbo, John A. (Kent, WA)

1996-01-01T23:59:59.000Z

265

Maryland Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

of State nuclear net generation (percent)","Owner" "Calvert Cliffs Nuclear Power Plant Unit 1, Unit 2","1,705","13,994",100.0,"Calvert Cliffs Nuclear PP Inc" "1 Plant 2...

266

Louisiana Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

267

Production of virus resistant plants  

DOE Patents (OSTI)

A method of suppressing virus gene expression in plants using untranslatable plus sense RNA is disclosed. The method is useful for the production of plants that are resistant to virus infection. 9 figs.

Dougherty, W.G.; Lindbo, J.A.

1996-12-10T23:59:59.000Z

268

Belgrade Lot Steam Plant Lot  

E-Print Network (OSTI)

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Oceanographic Operations 1 2 8 5 3 4 7 6 AMC Chadbourne Merrill Aubert Hannibal Hamlin Steam Plant Crosby

Thomas, Andrew

269

Belgrade Lot Steam Plant Lot  

E-Print Network (OSTI)

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Chadbourne Merrill Aubert Hannibal Hamlin Steam Plant Crosby Machine Tool Lab Children's Center Rogers N

Thomas, Andrew

270

T Plant Cell Investigation  

Science Conference Proceedings (OSTI)

The Waste Management Project within Fluor Hanford performed an initial investigation of the current and historical contents of 221-T (T Plant Canyon) process cells. This Phase I report is intended to be followed by a final, more detailed, Phase II report. This information has been gathered in order to help reduce uncertainties and future surprises regarding cell contents during future work in and around T Plant process cells. The information was obtained from available documentation and was compiled into a database that is included in the report. Resolution of any apparently conflicting information was not a part of the Phase I effort. No information has been found to date that would indicate there could be a significant unexpected hazard in any of the process cells.

HLADEK, K.L.

2001-09-20T23:59:59.000Z

271

Jennings Demonstration PLant  

DOE Green Energy (OSTI)

Verenium operated a demonstration plant with a capacity to produce 1.4 million gallons of cellulosic ethanol from agricultural resiues for about two years. During this time, the plant was able to evaluate the technical issues in producing ethanol from three different cellulosic feedstocks, sugar cane bagasse, energy cane, and sorghum. The project was intended to develop a better understanding of the operating parameters that would inform a commercial sized operation. Issues related to feedstock variability, use of hydrolytic enzymes, and the viability of fermentative organisms were evaluated. Considerable success was achieved with pretreatment processes and use of enzymes but challenges were encountered with feedstock variability and fermentation systems. Limited amounts of cellulosic ethanol were produced.

Russ Heissner

2010-08-31T23:59:59.000Z

272

NETL: Power Plant Improvement Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Performance Summaries Power Plant Improvement Initiative (PPII) Project Performance Summaries Project Performance Summaries are written after project completion. These...

273

US prep plant census 2008  

Science Conference Proceedings (OSTI)

Each year Coal Age conducts a fairly comprehensive survey of the industry to produce the US coal preparation plant survey. This year's survey shows how many mergers and acquisitions have given coal operators more coal washing capacity. The plants are tabulated by state, giving basic details including company owner, plant name, raw feed, product ash %, quality, type of plant builder and year built. 1 tab., 1 photo.

Fiscor, S.

2008-10-15T23:59:59.000Z

274

Importance of Processing Plant Information  

U.S. Energy Information Administration (EIA)

... new survey instrument to collect information from natural gas processing plants during non-emergency and supply-emergency conditions. ...

275

IMPROVEMENTS IN POWER PLANT  

SciTech Connect

A power plant for nuclear reactors is designed for improved cycle efficiency. In addition to the usual heat exchanger for heat transfer from gaseous reactor coolant to water for vaporization, a second heat exchanger is provided between the first heat exchanger and a point betwveen the intermediate- pressure and low-pressure turbine stages. In this way, interstage reheating of the steam is obtained without passage of the steam back to the first heat exchanger. (D.L.C.) Research Reactors

Peters, M.C.

1961-10-11T23:59:59.000Z

276

Nuclear Plant Decommissioning  

Science Conference Proceedings (OSTI)

In the 1990s several nuclear utilities proceeded with full decommissioning of their nuclear power plants based on perceived economics. This major shift to immediate decommissioning presented a significant challenge to the industry in terms of the development of a decommissioning process and a comprehensive updated regulatory framework. EPRI responded by undertaking the formation of the Decommissioning Support Program. The initial work involved conducting a series of topical workshops directed to specific...

2010-11-24T23:59:59.000Z

277

NEUTRONIC REACTOR POWER PLANT  

DOE Patents (OSTI)

This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

Metcalf, H.E.

1962-12-25T23:59:59.000Z

278

Poinsettia -- The Christmas Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Poinsettia -- The Christmas Plant Poinsettia -- The Christmas Plant Nature Bulletin No. 699 December 22, 1962 Forest Preserve District of Cook County Seymour Simon, President Roberts Mann, Conservation Editor POINSETTIA -- THE CHRISTMAS PLANT Christmas is a day of family gatherings. In each home they have their own traditional customs. Some of us cherish those that are peculiar to the region where we were children, or the land from whence our forefathers came. Most of us have also adopted customs -- such as decorating with holly and mistletoe -- that stem from ancient pagan ceremonies or festivals but have lost their original significance. There are many myths and legends about the origin of our Yuletide customs. (See Bulletins No. 135, 173, 211, 326 and 475). In this country most families have a Christmas tree, a custom that was introduced from Germany by Hessian troops in the British army during the Revolutionary War. It prevails in Britain and most of northern Europe but is unusual in Italy, Spain and Latin America. There, the symbol of Christmas and heart of the celebration in a home is not an Evergreen tree but a miniature reproduction of the stable and manger where Christ was born.

279

Plants of the Bible  

NLE Websites -- All DOE Office Websites (Extended Search)

Bible Bible Nature Bulletin No. 188-A April 16, 1965 Forest Preserve District of Cook County Seymour Simon, President Roland F. Eisenbeis, Supt. of Conservation PLANTS OF THE BIBLE When Jesus suffered on the cross, we are told in the Gospel according to St. Matthew (27:48) that at the ninth hour he thirsted and a sponge, filled with vinegar and put upon a reed, was raised to His lips. It is so related in St. Mark (15:36) but according to St. John (19:29), "they filled a sponge with vinegar, and put it upon hyssop, and put it into his mouth. " What was hyssop. The plant is mentioned frequently in the Bible. The hyssop of our herb gardens is not native to Palestine, Syria or Egypt, but there is evidence that when Solomon "spoke of trees, from the cedar tree that is in Lebanon even unto the hyssop that springeth out of the wall" (I Kings 4:23), he spoke of the herb we call marjoram. The hyssop dipped in the blood of a sacrificial lamb and used by the Israelites in Egypt to mark their doorways (Exodus 12:22), and the hyssop referred to by St. John but called a reed by St. Matthew and St. Mark, was probably sorghum, a tall cereal plant grown by the Jews for food and also used for brushes and brooms.

280

Delayed Planting Considerations for Corn  

E-Print Network (OSTI)

Quite a bit of Indiana’s corn crop remains to be planted, especially in southern Indiana, due to the current rainy spell that put the brakes on what had been a very rapid planting pace. As of 11 May, 42 % of Indiana’s intended corn acreage was yet to be planted (USDA-NASS,

John Obermeyer; Entomology Dept; Tony Vyn; Agronomy Dept

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mtbe plants petrochemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Pantex Plant | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Locations > Pantex Plant Pantex Plant http:www.pantex.com Field Office: The NNSA Production Office is responsible for contract management and oversight of the Pantex Plant in...

282

The Kansas City Plant | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Kansas City Plant The Kansas City Plant The Kansas City Plant More Documents & Publications OPSAID Initial Design and TestingReport SECURITY CORE FUNCTION AND DEFINITION REPORT...

283

Saguargo Solar Power Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Saguargo Solar Power Plant Solar Power Plant Saguargo Solar Power Plant Solar Power Plant Jump to: navigation, search Name Saguargo Solar Power Plant Solar Power Plant Facility Saguargo Solar Power Plant Sector Solar Facility Type Concentrating Solar Power Facility Status In Service Developer Solargenix Location Red Rock, Arizona Coordinates 32.54795°, -111.292887° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.54795,"lon":-111.292887,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

284

Deming Solar Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Deming Solar Plant Solar Power Plant Deming Solar Plant Solar Power Plant Jump to: navigation, search Name Deming Solar Plant Solar Power Plant Facility Deming Solar Plant Sector Solar Facility Type Photovoltaic Developer New Solar Ventures/ Solar Torx 50/50 Location New Mexico Coordinates 34.9727305°, -105.0323635° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9727305,"lon":-105.0323635,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

285

Prescott Airport Solar Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Prescott Airport Solar Plant Solar Power Plant Prescott Airport Solar Plant Solar Power Plant Jump to: navigation, search Name Prescott Airport Solar Plant Solar Power Plant Facility Prescott Airport Solar Plant Sector Solar Facility Type Photovoltaic Developer APS Location Prescott, Arizona Coordinates 34.5400242°, -112.4685025° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.5400242,"lon":-112.4685025,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Solana Generating Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Solar Power Plant Plant Solar Power Plant Jump to: navigation, search Name Solana Generating Plant Solar Power Plant Facility Solana Generating Plant Sector Solar Facility Type Concentrating Solar Power Facility Status Under Construction Developer Abengoa Solar Location Gila Bend, Arizona Coordinates 32.916163°, -112.968727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.916163,"lon":-112.968727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

B plant mission analysis report  

SciTech Connect

This report further develops the mission for B Plant originally defined in WHC-EP-0722, ``System Engineering Functions and Requirements for the Hanford Cleanup Mission: First Issue.`` The B Plant mission analysis will be the basis for a functional analysis that breaks down the B Plant mission statement into the necessary activities to accomplish the mission. These activities are the product of the functional analysis and will then be used in subsequent steps of the systems engineering process, such as identifying requirements and allocating those requirements to B Plant functions. The information in this mission analysis and the functional and requirements analysis are a part of the B Plant technical baseline.

Lund, D.P.

1995-05-24T23:59:59.000Z

288

Waste Isolation Pilot Plant - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Reports Waste Isolation Pilot Plant Review Report 2013 Review of the Waste Isolation Pilot Plant Work Planning and Control Activities, April 2013 Review Report 2012 Review of Site Preparedness for Severe Natural Phenomena Events at the Waste Isolation Pilot Plant, November 2012 Activity Reports 2011 Orientation Visit to the Waste Isolation Pilot Plant, September 2011 Review Reports 2007 Independent Oversight Inspection of Emergency Management at the Carlsbad Field Office and Waste Isolation Pilot Plant, December 2007 Review Reports 2002 Inspection of Environment, Safety, and Health and Emergency Management at the Waste Isolation Pilot Plant - Summary Report, August 2002 Inspection of Environment, Safety, and Health Management at the Waste Isolation Pilot Plant - Volume I, August 2002

289

Pinellas Plant Environmental Baseline Report  

Science Conference Proceedings (OSTI)

The Pinellas Plant has been part of the Department of Energy`s (DOE) nuclear weapons complex since the plant opened in 1957. In March 1995, the DOE sold the Pinellas Plant to the Pinellas County Industry Council (PCIC). DOE has leased back a large portion of the plant site to facilitate transition to alternate use and safe shutdown. The current mission is to achieve a safe transition of the facility from defense production and prepare the site for alternative uses as a community resource for economic development. Toward that effort, the Pinellas Plant Environmental Baseline Report (EBR) discusses the current and past environmental conditions of the plant site. Information for the EBR is obtained from plant records. Historical process and chemical usage information for each area is reviewed during area characterizations.

Not Available

1997-06-01T23:59:59.000Z

290

Gas turbine plant emissions  

SciTech Connect

Many cogeneration facilities use gas turbines combined with heat recovery boilers, and the number is increasing. At the start of 1986, over 75% of filings for new cogeneration plants included plans to burn natural gas. Depending on the geographic region, gas turbines are still one of the most popular prime movers. Emissions of pollutants from these turbines pose potential risks to the environment, particularly in geographical areas that already have high concentrations of cogeneration facilities. Although environmental regulations have concentrated on nitrogen oxides (NO/sub x/) in the past, it is now necessary to evaluate emission controls for other pollutants as well.

Davidson, L.N.; Gullett, D.E.

1987-03-01T23:59:59.000Z

291

Plant Pathogen Resistance - Energy Innovation Portal  

Plant Pathogen Resistance Agent for Plant Protection from Common Virulent Pathogens Oak Ridge National Laboratory. Contact ORNL About This Technology

292

A LUNAR POWER PLANT  

SciTech Connect

A concept of a nuclear power plant to be assembled on earth and operated on the moon is presented. The two principal design objectives are reliability and high specific power. Wherever there is an incompatibility between these two objectives, the decision favors reliability. The design is based on the premise that the power plant must be designed on the basis of current technology and with a minimum amount of research and development. The principal components consist of a fast reactor in a direct cycle with a mercury-vapor turbine. The high- frequency generator, hydrogen compressor for the generator cooling system, mercury-recirculating pump, and condensate pump are on an extension of the turbine shaft. Ths mercury vapor is condensed and the hydrogen cooled in wing radiators. The reactor is of a construction quite similar to EBR-I Mark IlI for which there is a large amount of operating experience. The radiator is a vertical tube-and-fin type built in concentric cylindrical sections of increseing diameter. The curved headers are connected by swivel joints so that, upon arrival, the radiator can be quickly unfolded from the compact cylindrical package it formed during transportation. (auth)

Armstrong, R.H.; Carter, J.C.; Hummel, H.H.; Janicke, M.J.; Marchaterre, J.F.

1960-12-01T23:59:59.000Z

293

Nuclear Plant/Hydrogen Plant Safety: Issues and Approaches  

DOE Green Energy (OSTI)

The U.S. Department of Energy, through its agents the Next Generation Nuclear Plant Project and the Nuclear Hydrogen Initiative, is working on developing the technologies to enable the large scale production of hydrogen using nuclear power. A very important consideration in the design of a co-located and connected nuclear plant/hydrogen plant facility is safety. This study provides an overview of the safety issues associated with a combined plant and discusses approaches for categorizing, quantifying, and addressing the safety risks.

Steven R. Sherman

2007-06-01T23:59:59.000Z

294

Balance of Plant Corrosion Issues in Aging Nuclear Power Plants  

Science Conference Proceedings (OSTI)

... number of times, can be used to forecast the most probable number of leaks. ... Conditions for Long Term Operation of Nuclear Power Plants in Sweden.

295

The SONATRACH jumbo LPG plant  

SciTech Connect

The authors aim is to give to the 17 TH world gas conference a general idea on SONATRACH LPG PLANT which is located in the ARZEW area. They develop this communication as follows: general presentation of LPG plant: During the communication, the author's will give the assistance all the information concerning the contractions the erection's date and the LPG PLANT process, start-up of the plant: In this chapter, the authors's will describe the start-up condition, the performance test result, the flexibility test result and the total mechanical achievement of the plant; operation by SONATRACH: After the success that obtained during the mechanical achievement and performance test, the contractor handed over the plant to SONATRACH.

Ahmed Khodja, A.; Bennaceur, A.

1988-01-01T23:59:59.000Z

296

How plants grow toward light  

NLE Websites -- All DOE Office Websites (Extended Search)

How plants grow toward light How plants grow toward light Name: schwobtj Location: N/A Country: N/A Date: N/A Question: When a seed is planted below the surface of the ground, how does it "know" to grow toward the light? Replies: Plants don't know where the light is, they do respond to gravity. Since light is usually up, a plant seed grows up and finds light enough to keep things going. Psych One way that plants below ground can tell which way is up is with the use of STATOLITHS. Statoliths are dense pieces of material that settle to the bottom of a STATOCYST. In plants, pieces of starch or another material denser than water will settle to the bottom of the cell. Somehow the plant cell determines on what side the statolith has fallen, and then somehow relays a message (probably a chemical) that tells the bottom cells to grow faster than the top cells, therefore causing upward growth. There is still quite a lot of mystery in there to be discovered. I got this explanation from BIOLOGY by Neil Campbell. This is similar to the way in which plants use chemical signals to help them grow towards light.

297

Owners of nuclear power plants  

Science Conference Proceedings (OSTI)

Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

Hudson, C.R.; White, V.S.

1996-11-01T23:59:59.000Z

298

Development of Virtual Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Virtual Power Plants We are working in the emerging intersection between information, computation, and complexity Applications * Design * Environmental modeling * Controls with...

299

Research Addressing Power Plant Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Addressing Power Plant Water Management to Minimize Water Use while Providing Reliable Electricity Generation Water and Energy 2 Water and Energy are inextricably linked. Because...

300

MEASUREMENT OF POWER PLANT EXHAUST ...  

Science Conference Proceedings (OSTI)

... by tracking propagation of acoustic plane waves in a ... of the robustness of plane wave propagation to ... for GHG monitoring in power plant stacks and ...

Note: This page contains sample records for the topic "mtbe plants petrochemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The northeast Georgia hydroelectric plants.  

E-Print Network (OSTI)

??The Northeast Georgia hydroelectric plants are important cultural resources to the state of Georgia and the communities immediately adjacent. If the early technology of these… (more)

Kelly, Nancy Elizabeth

2005-01-01T23:59:59.000Z

302

,"California Natural Gas Plant Processing"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Plant Processing",3,"Annual",2011,"6301967" ,"Release Date:","1031...

303

Plant energy auditing | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

track, and benchmark Improve energy performance ENERGY STAR industrial partnership Energy guides Energy efficiency and air regulation Plant energy auditing Industrial...

304

ALARA at nuclear power plants  

SciTech Connect

Implementation of the As Low As Reasonably Achievable (ALARA) principle at nuclear power plants presents a continuing challenge for health physicists at utility corporate and plant levels, for plant designers, and for regulatory agencies. The relatively large collective doses at some plants are being addressed though a variety of dose reduction techniques. It is planned that this report will include material on historical aspects, management, valuation of dose reduction, quantitative and qualitative aspects of optimization, design, operational considerations, and training. The status of this work is summarized in this report. 30 refs., 1 fig., 6 tabs.

Baum, J.W.

1990-01-01T23:59:59.000Z

305

Fossil Energy Power Plant Desk  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Energy Power Plant Desk Reference Revision 1: Bituminous Coal and Natural Gas to Electricity October 18, 2011 DOENETL-20111516 Preliminary - Do Not Cite or Quote Fossil...

306

Asbury power plant, Asbury, Missouri  

Science Conference Proceedings (OSTI)

The Asbury power plant in rural southwest Missouri is off the beaten path in more ways than one. Three years ago, Empire District Electric Co., the plant's owner/operator, began mixing pieces of discarded tires into its coal fuel supply. Each ensuing year, without compromising local air quality, the plant has rid the area of millions of tires that otherwise would have ended up in a landfill. For demonstrating that a blight can be made right, Asbury is one of Power's 2005 top plants. 2 figs., 1 tab.

Wicker, K.

2005-08-01T23:59:59.000Z

307

Plant construction and community stress  

SciTech Connect

Reports on a study commissioned by EPRI's Energy Analysis and Environment Division to acquire a better understanding of the power plant construction process and the socioeconomic impacts it can bring about. Points out that because of a parallel study the NRC conducted involving nuclear plants, the EPRI study's emphasis was on coal-fired power plants, which represented 9 of the 12 case studies. Finds that the impacts on communities near the case study plants were considerably less than had been forecast. Emphasizes that improper socioeconomic assessment procedures and poor mitigation planning can contribute to costly construction delays and lower construction worker productivity.

Lihach, N.

1982-11-01T23:59:59.000Z

308

,"Texas Natural Gas Plant Processing"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Processing",3,"Annual",2011,"6301967" ,"Release Date:","1031...

309

MHD plant turn down considerations  

DOE Green Energy (OSTI)

The topic of part load operation of the MHD power plant is assessed. Current and future planned MHD research is reviewed in terms of addressing topping and bottoming cycle integration needs. The response of the MHD generator to turn up and down scenarios is reviewed. The concept of turning the MHD power to met changes in plant load is discussed. The need for new ideas and focused research to study MHD plant integration and problems of plant turn down and up is cited. 7 refs., 5 figs., 1 tab.

Lineberry, J.T.; Chapman, J.N.

1991-01-01T23:59:59.000Z

310

Advanced Manufacturing Office: Better Plants  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Better Buildings, Better Plants Program Partners are demonstrating their commitment to energy savings by signing a voluntary pledge to reduce energy intensity by 25% over ten...

311

"NATURAL GAS PROCESSING PLANT SURVEY"  

U.S. Energy Information Administration (EIA) Indexed Site

2 3 "Operator Company:" "PART 3. CONTACTS" "Section A: Contact information during an emergency (such as a hurricane):" "Processing Plant Operations Contact:",,,...

312

Pantex Plant Emergency Response Exercise  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assurance November 2000 Independent Oversight Evaluation of the Pantex Plant Emergency Response Exercise OVERSIGHT Table of Contents 1.0 INTRODUCTION ......

313

Importance of Processing Plant Information  

U.S. Energy Information Administration (EIA)

During an Emergency. 12. Department of Energy Situation Reports During an Energy Emergency. 13. Why Survey Natural Gas Processing Plants? 14.

314

Steam turbine plant  

SciTech Connect

A system for regulating the rate of closing of the turbine intake valve of a steam turbine plant is disclosed. A steam turbine is supplied from a steam generator through a turbine intake valve. A branch line conducts the steam to a bypass valve which is normally closed. In the event of conditions making it necessary to close the turbine intake valve rapidly, a regulator is provided to control the rate of closing of the turbine intake valve and the opening of the bypass valve so that the pressure conditions in the steam generator do not exceed the limits established by the manufacturer. Pressure measuring instruments are placed in the system to sense the pressure immediately upstream from the turbine intake valve and the bypass valve as well as the initial steam supply pressure. These pressure signals are transmitted to a computer which produces a control signal in accordance with predetermined conditions.

Skala, K.

1981-06-09T23:59:59.000Z

315

THE SCIOTO ORDNANCE PLANT  

Office of Legacy Management (LM)

' ' 1 . \." _ j. .I > * .A; .i ,' / / ,/ ' , ( , ( 1: 1 i I l-1 5 ' / ,,' :A' ' , THE SCIOTO ORDNANCE PLANT . and THE MARION ENGINEER DEPOT of Marion, Ohio A Profile AFTER FORTY YEARS BY Charles D. Mosher and Delpha Ruth Mosher . . . 111 THE AUTHORS Charles D. Mosher was born on a farm located in Morrow County on Mosher Road near Mt. Gilead. He received his TH.B. from Malone College, B.A. from Baldwin-Wallace College and his B.Div. and M.Div. at the Nazarene Theological Seminary in Kansas City, MO. He did additional graduate work at Western Reserve University, Kent State University and Florida State University. He has taught in Cleveland and in Morrow County and has been an Occupational Work Adjustment teacher at Harding High School in Marion

316

Hanford Waste Vitrification Plant  

SciTech Connect

The Hanford Waste Vitrification Plant (HWVP) is being designed to immobilize pretreated Hanford high-level waste and transuranic waste in borosilicate glass contained in stainless steel canisters. Testing is being conducted in the HWVP Technology Development Project to ensure that adapted technologies are applicable to the candidate Hanford wastes and to generate information for waste form qualification. Empirical modeling is being conducted to define a glass composition range consistent with process and waste form qualification requirements. Laboratory studies are conducted to determine process stream properties, characterize the redox chemistry of the melter feed as a basis for controlling melt foaming and evaluate zeolite sorption materials for process waste treatment. Pilot-scale tests have been performed with simulated melter feed to access filtration for solids removal from process wastes, evaluate vitrification process performance and assess offgas equipment performance. Process equipment construction materials are being selected based on literature review, corrosion testing, and performance in pilot-scale testing. 3 figs., 6 tabs.

Larson, D.E.; Allen, C.R. (Pacific Northwest Lab., Richland, WA (United States)); Kruger, O.L.; Weber, E.T. (Westinghouse Hanford Co., Richland, WA (United States))

1991-10-01T23:59:59.000Z

317

ATOMIC POWER PLANT  

DOE Patents (OSTI)

This patent relates to neutronic reactor power plants and discloses a design of a reactor utilizing a mixture of discrete units of a fissionable material, such as uranium carbide, a neutron moderator material, such as graphite, to carry out the chain reaction. A liquid metal, such as bismuth, is used as the coolant and is placed in the reactor chamber with the fissionable and moderator material so that it is boiled by the heat of the reaction, the boiling liquid and vapors passing up through the interstices between the discrete units. The vapor and flue gases coming off the top of the chamber are passed through heat exchangers, to produce steam, for example, and thence through condensers, the condensed coolant being returned to the chamber by gravity and the non- condensible gases being carried off through a stack at the top of the structure.

Daniels, F.

1957-11-01T23:59:59.000Z

318

Next Generation Geothermal Power Plants  

SciTech Connect

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a giv

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

319

Next Generation Geothermal Power Plants  

DOE Green Energy (OSTI)

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

320

Power plants with topping gas turbines and coal gasification planning of new plants and upgrading of existing plants  

Science Conference Proceedings (OSTI)

This paper reports on existing and new power plants improved environmentally and economically by integrating gas turbines in the plant process. The rate of additional firing has an influence on the overall plant efficiency. The influence of the additional firing of natural gas-fired power plants is compared to that of power plants with integrated coal gasification. The differences are explained. The result of the examination lead to recommendations for the design of new plants and for upgrading of existing plants. The advantages of topping gas turbines are shown by examples of new power plants and upgraded plants.

Schoedel, J.; Mertens, K. (ABB Kraftwerke AG, Mannheim (DE))

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mtbe plants petrochemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Uniform power plant identification system  

Science Conference Proceedings (OSTI)

In the seventies in the Federal Republic of Germany a uniform power plant identification system (Kraftwerks-Kennzeichen-System, KKS) was developed and introduced. It allows to keep the identification by all engineering disciplines from planning to waste management for any type of power plant. The paper explains the historical development, the structure and the application of this system.

Christiansen, W. (RWE Energie AG, Hauptverwaltung, Essen (DE)); Pannenbacker, K. (GABO mbH, Erlangen (DE)); Popp, H. (Siemens AG, Bereich Anlagentechnik, Erlangen (DE)); Seltmann, A. (ABB Kraftwerke AG, Mannheim (DE))

1990-01-01T23:59:59.000Z

322

Next Generation Geothermal Power Plants  

Science Conference Proceedings (OSTI)

This report analyzes several approaches to reduce the costs and enhance the performance of geothermal power generation plants. Electricity supply planners, research program managers, and engineers evaluating geothermal power plant additions or modifications can use this report to compare today's geothermal power systems to several near- and long-term future options.

1996-04-05T23:59:59.000Z

323

Hydrocarbons from plants and trees  

DOE Green Energy (OSTI)

The way energy was used in the US in 1980 was examined. A diagram shows the development of energy from its source to its end use. The following are described: the carbon dioxide problem - the greenhouse effect, sugar cane as an energy source, hydrocarbon-producing plants and trees, and isoprenoids from plants and trees. (MHR)

Calvin, M.

1982-07-01T23:59:59.000Z

324

AQUATIC PLANT CONTROL RESEARCH PROGRAM  

E-Print Network (OSTI)

AQUATIC PLANT CONTROL RESEARCH PROGRAM TECHNICAL REPORT A-S3-1 AERIAL SURVEY TECHNIQUES TO MAP NUMBER rGOVT ACCESSION NO. 3. Technical Report A-83-l 4. TI T L E (""d Subtitle) 5. AERIAL SURVEY···..,." -.d Identity by block numb,,,) Aerial surveys Computer applications Aquatic plant control Mapping

US Army Corps of Engineers

325

Nuclear power plant design analysis  

SciTech Connect

Information concerning the engineering aspects of the design of commercial nuclear power plants is presented. Topics discussed include: electric utility economics; nuclear plant cconomics; thermal-transport systems and core design; nuclear analysis methods; safcty requirements; fuel-system analysis; dcsign considerations; and optimization approaches. (DCC)

Sesonske, A.

1973-01-01T23:59:59.000Z

326

Importance of Processing Plant Information  

Reports and Publications (EIA)

This presentation provides information about the importance of information about natural gas processing plants, particularly during periods of natural gas supply disruption, such as hurricanes. It also provides information about a relatively new survey instrument to collect information from natural gas processing plants during non-emergency and supply-emergency conditions.

Information Center

2009-06-22T23:59:59.000Z

327

Plants and Night Oxygen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants and Night Oxygen Production Plants and Night Oxygen Production Name: Ashar Status: other Grade: other Location: Outside U.S. Country: India Date: Winter 2011-2012 Question: I would like to know if there are any plants which produces oxygen at night (without photosynthesis). I was told by a friend that Holy Basil (Ocimum tenuiflorum) produces oxygen even at night and I'm not convinced. I would like to get confirmation from experts. Replies: Some plants (particularly those of dry regions, e.g., deserts) only open their stomates at night to avoid drying out to intake CO2 (and output O2) (CAM photosynthesis) http://en.wikipedia.org/wiki/Crassulacean_acid_metabolism Sincerely, Anthony R. Brach, PhD Missouri Botanical Garden Bringing oxygen producing plants into your home is a way to mimic the healthy lifestyle factors of longevity in humans from the longest lived cultures.

328

NETL Water and Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Water and Power Plants Review Water and Power Plants Review A review meeting was held on June 20, 2006 of the NETL Water and Power Plants research program at the Pittsburgh NETL site. Thomas Feeley, Technology Manager for the Innovations for Existing Plants Program, gave background information and an overview of the Innovations for Existing Plants Water Program. Ongoing/Ending Projects Alternative Water Sources Michael DiFilippo, a consultant for EPRI, presented results from the project "Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities". John Rodgers, from Clemson University, presented results from the project "An Innovative System for the Efficient and Effective Treatment of Non-traditional Waters for Reuse in Thermoelectric Power Generation".

329

Amine plant troubleshooting and optimization  

Science Conference Proceedings (OSTI)

A systematic method for troubleshooting and optimization of amine plants, if properly used, will result in fewer plant upsets, quick and correct responses to changing conditions and long-term profitable operations of any amine unit. It is important for amine plants to maintain safe, continuous and optimized operations for short- and long-term success. Effective and fast resolution of maine unit upsets plays a large part in this success. These considerations are as important in plants using generic amines such as monoethanolamine (MEA), diethanolamine (DEA), methyldiethanolamine (MDEA) and specialty amines based on MDEA. The key to troubleshooting and optimization is a systematic approach. Developing and using control charts can also be used to monitor amine plant operations. By using these techniques collectively, a formal method for troubleshooting and optimization can be established. This will ultimately result in a more trouble-free, continuous operation.

Abry, R.G.F. [Dow Chemical Co., Ft. Saskatchewan, Alberta (Canada); DuPart, M.S. [Dow Chemical Co., Freeport, TX (United States)

1995-04-01T23:59:59.000Z

330

Aquatic plant control research  

DOE Green Energy (OSTI)

The Northwest region of the United States contains extensive canal systems that transport water for hydropower generation. Nuisance plants, including algae, that grow in these systems reduce their hydraulic capacity through water displacement and increased surface friction. Most control methods are applied in an ad hoc fashion. The goal of this work is to develop cost-effective, environmentally sound, long-term management strategies to prevent and control nuisance algal growth. This paper reports on a multi-year study, performed in collaboration with the Pacific Gas & Electric Company, to investigate algal growth in their canal systems, and to evaluate various control methodologies. Three types of controls, including mechanical, biological and chemical treatment, were selected for testing and evaluation. As part of this study, water quality data were collected and algal communities were sampled from numerous stations throughout the distribution system at regular intervals. This study resulted in a more comprehensive understanding of conditions leading to the development of nuisance algal growth, a better informed selection of treatment plans, and improved evaluation of the effectiveness for the control strategies selected for testing.

Pryfogle, P.A.; Rinehart, B.N. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Ghio, E.G. [Pacific Gas & Electric Company, San Francisco, CA (United States). Hydro Generation Engineering

1997-05-01T23:59:59.000Z

331

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstock. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing Plan (RD and T) for implementation in Phase II. The objective of Phase II is to implement the RD and T as outlined in the Phase I RD and T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and other feedstocks. The objective of Phase III is to develop an engineering design package and a financing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; Jimmy O. Ong; Sarah J. Patel; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Phil J. Shires; Rae Song

2000-10-26T23:59:59.000Z

332

EARLY ENTRANCE COPRODUCTION PLANT  

Science Conference Proceedings (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal or coal in combination with some other carbonaceous feedstock. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Test Plan (RD and T) for implementation in Phase II. The objective of Phase II is to conduct RD and T as outlined in the Phase I RD and T Plan to enhance the development and commercial acceptance of Coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and other feedstocks. The objective of Phase III is to develop an engineering design package and a financing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

Lalit S. Shah; William K. Davis

2000-05-01T23:59:59.000Z

333

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three-phase development of an Early Entrance Coproduction Plant (EECP) that produces at least one product from at least two of the following three categories: Electric power (or heat); Fuels; and Chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or some other carbonaceous feedstock, such as petroleum coke. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing (RD and T) Plan for implementation in Phase II. This objective has now been accomplished. A specific site, Motiva Refinery in Port Arthur, Texas, has been selected as the location best suited for the EECP. The accomplishments of Phase I are discussed in detail in this Phase I Concept Report. A RD and T Plan and a preliminary project financing plan have been developed and are submitted separately from this report.

John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; David Mintner; Wendy Moore; Jimmy O. Ong; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Kalapi D. Sheth; Phil J. Shires; Rae Song

2001-05-17T23:59:59.000Z

334

Bidding for Industrial Plants: Does Winning a 'Million Dollar Plant' Increase Welfare?  

E-Print Network (OSTI)

for Industrial Plants: Does Winning a ‘Million Dollar Plant’for Industrial Plants: Does Winning a ‘Million Dollar Plant’fundamentally, this approach does not offer a framework for

Moretti, Enrico

2004-01-01T23:59:59.000Z

335

Consider trigeneration techniques for process plants  

SciTech Connect

Trigeneration has, until recently, been used exclusively for air conditioning systems with small or moderate capacities. However, with more recent chiller packages providing larger capacities, and with modern cogeneration applications, trigeneration is now open to a wider range of process applications. It can provide tremendous hydrocarbon processing industry opportunities for more economical use of energy. Cogeneration is the most widely used technique for producing heat and power. If refrigeration is also produced form the same energy source, then the cogeneration simply becomes trigeneration. The technique is not new, it is commonly used in district heating and cooling schemes. However, trigeneration is being used more in the oil and gas, and petrochemical industries as three products--heat, power and refrigeration--are frequently needed in many modern processes. Moreover, this technique provides a wide scope for technical advances. The paper discusses the equipment needed as driver, waste heat recovery, refrigeration equipment, thermodynamics, capacity size limits, different trigeneration configurations, economics, and design enhancements to improve operating economy.

Dharmadhikari, S. [Ingerop, Paris (France)

1997-07-01T23:59:59.000Z

336

Geothermal Power Plants in China  

DOE Green Energy (OSTI)

Nine small experimental geothermal power plants are now operating at six sites in the People's Republic of China. These range in capacity from 50 kW to 3MW, and include plants of the flash-steam and binary type. All except two units utilize geofluids at temperatures lower than 100 C. The working fluids for the binary plants include normal- and iso-butane, ethyl chloride, and Freon. The first geothermal plant came on-line in 1970, the most recent ones in 1979. Figure 1 shows the location of the plants. Major cities are also shown for reference. Table 1 contains a listing of the plants and some pertinent characteristics. The total installed capacity is 5,186 kW, of which 4,386 kW is from flash-steam units. In the report, they given an example of the results of exploratory surveys, and show system diagrams, technical specifications, and test results for several of the power plants.

DiPippo, Ronald

1980-12-01T23:59:59.000Z

337

Dissimilar Metal Welds and Welding in Oil and Petrochemical Industry  

Science Conference Proceedings (OSTI)

Oct 18, 2010 ... Fabrication of large capital Liquefied Natural Gas (LNG) and long distance gas transmission pipeline projects is key to meeting this demand.

338

Naphtha for Petrochem. Feedstock Use Imports from Yemen  

U.S. Energy Information Administration (EIA)

... Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. Totals may not equal sum of components due to independent rounding.

339

Other Oils for Petrochem. Feedstock Use Imports from ...  

U.S. Energy Information Administration (EIA)

... Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. Totals may not equal sum of components due to independent rounding.

340

Other Oils for Petrochem. Feedstock Use Imports from Togo  

U.S. Energy Information Administration (EIA)

... Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. Totals may not equal sum of components due to independent rounding.

Note: This page contains sample records for the topic "mtbe plants petrochemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Other Oils for Petrochem. Feedstock Use Imports from Turkey  

U.S. Energy Information Administration (EIA)

... Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. Totals may not equal sum of components due to independent rounding.

342

Naphtha for Petrochem. Feedstock Use Imports from Azerbaijan  

U.S. Energy Information Administration (EIA)

... Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. Totals may not equal sum of components due to independent rounding.

343

Other Oils for Petrochem. Feedstock Use Imports from Cameroon  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

344

Naphtha for Petrochem. Feedstock Use Imports from Burma  

U.S. Energy Information Administration (EIA)

... Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. Totals may not equal sum of components due to independent rounding.

345

Naphtha for Petrochem. Feedstock Use Imports from Australia  

U.S. Energy Information Administration (EIA)

... Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. Totals may not equal sum of components due to independent rounding.

346

Refinery Yield of Naphtha for Petrochemical Feedstock Use  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal ...

347

Naphtha for Petrochem. Feedstock Use Imports from Peru  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

348

Other Oils for Petrochem. Feedstock Use Imports from Ecuador  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

349

Rocky Mountain (PADD 4) Petrochemical Feedstocks Net Receipts ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

350

Naphtha for Petrochem. Feedstock Use Imports from Indonesia  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

351

Naphtha for Petrochem. Feedstock Use Imports from Venezuela  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

352

Naphtha for Petrochem. Feedstock Use Imports from Pakistan  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

353

Naphtha for Petrochemical Feedstock Use Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA)

Stock Type: Download Series History: Definitions, Sources & Notes: Show Data By: Product: Stock Type: Area: Jan-13 Feb-13 Mar-13 Apr-13 May-13 Jun-13 View History; U ...

354

Fuzzy evaluation of cogeneration alternatives in a petrochemical industry  

Science Conference Proceedings (OSTI)

This paper derives fuzzy net present value (NPV) and pay back year (PBY) models as decision indexes for cogeneration alternatives decision-making. The Mellin transform is employed to establish the means and variances of the fuzzy indexes in order to ... Keywords: Cogeneration, Economic decision analysis, Fuzzy algebra, Fuzzy ranking, Mellin transform

J. N. Sheen

2005-04-01T23:59:59.000Z

355

Product Supplied for Naphtha for Petrochemical Feedstock Use  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Data may not add to ...

356

ENERGY STAR Focus on Energy Efficiency in Petrochemical Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Skip to main content ENERGY STAR logo Skip directly to page content Facebook Twitter YouTube Our Blog Search Search Energy Efficient Products Energy Efficient Products ENERGY STAR...

357

New petrochemical compositions for use in the coal industry  

Science Conference Proceedings (OSTI)

Various aspects of the use of antifreezing agents in the coal industry are considered. It has been found that, unlike previously proposed compositions, these agents can be prepared based on the products of a single process, the vacuum distillation of fuel oil.

D.O. Safieva; E.V. Surov; O.G. Safiev [Institute for Fossil Fuels, Moscow (Russian Federation)

2008-12-15T23:59:59.000Z

358

Naphtha for Petrochem. Feedstock Use Imports from Mexico  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

359

Illinois Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois nuclear power plants, summer capacity and net generation, 2010" Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Braidwood Generation Station Unit 1, Unit 2","2,330","19,200",20.0,"Exelon Nuclear" "Byron Generating Station Unit 1, Unit 2","2,300","19,856",20.6,"Exelon Nuclear" "Clinton Power Station Unit 1","1,065","8,612",9.0,"Exelon Nuclear" "Dresden Generating Station Unit 2, Unit 3","1,734","14,593",15.2,"Exelon Nuclear" "LaSalle Generating Station

360

Melvin Calvin: Fuels from Plants  

DOE Green Energy (OSTI)

A logical extension of his early work on the path of carbon during photosynthesis, Calvin's studies on the production of hydrocarbons by plants introduced many in the scientific and agricultural worlds to the potential of renewable fuel and chemical feedstocks. He and his co-workers identified numerous candidate compounds from plants found in tropical and temperate climates from around the world. His travels and lectures concerning the development of alternative fuel supplies inspired laboratories worldwide to take up the investigation of plant-derived energy sources as an alternative to fossil fuels.

Taylor, S.E.; Otvos, J.W.

1998-11-24T23:59:59.000Z

Note: This page contains sample records for the topic "mtbe plants petrochemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Plant Support Engineering: Elastomer Handbook for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

On a daily basis, engineers and maintenance personnel make judgments regarding the capabilities, degradation, and longevity of elastomeric material and its compatibility with other materials. Although most applications of elastomers in nuclear power plants are not unique to the industry, there is an extra emphasis in certain applications with regard to reliability, quality, and resistance to nuclear-plant-specific environments. Existing resources on elastomers are extensive, but they are not tailored to ...

2007-08-20T23:59:59.000Z

362

HYDROCARBONS FROM PLANTS: ANALYTICAL METHODS AND OBSERVATIONS  

E-Print Network (OSTI)

been using the green plants' stored energy in the form ofannually renewable energy resources using green plants. 7 •the green plant to capture and store solar energy, is Brazil

Calvin, Melvin

2013-01-01T23:59:59.000Z

363

Oversight Reports - Pantex Plant | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Reports - Pantex Plant Oversight Reports - Pantex Plant Oversight Reports - Pantex Plant December 31, 2013 Independent Oversight Review, Pantex Plant, December 2013 Targeted Review of the Safety Significant Blast Door and Personnel Door Interlock Systems and Review of Federal Assurance Capability at the Pantex Plant June 6, 2013 Independent Activity Report, Pantex Plant - May 2013 Operational Awareness Oversight of the Pantex Plant [HIAR PTX-2013-05-20] December 11, 2012 Independent Activity Report, Pantex Plant - November 2012 Pantex Plant Operational Awareness Site Visit [HIAR PTX-2012-11-08] November 28, 2012 Independent Oversight Assessment, Pantex Plant - November 2012 Assessment of Nuclear Safety Culture at the Pantex Plant August 8, 2012 Independent Activity Report, Pantex Plant - July 2012

364

CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT  

Office of Legacy Management (LM)

WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT EAST PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial Action Projects ..-.. --__- _".-.-l--_--l -_._ _- --- ~~~. . ..~ CONTENTS Page - - I NTRODUCTI ON 1 Purpose 1 Docket Contents 1 Exhibit I: Summary of Activities at Westinghouse Atomic Power Development Plant, East Pittsburgh Plant, Forest Hills, Pittsburgh, Pennsylvania I-l Exhibit II: Documents Supporting the Certification of Westinghouse Atomic Power Development Plant, East Pittsburgh Plant, Forest Hills, Pittsburgh, Pennsylvania iii II-1 . . .- .__.^ I ^_... _.-__^-____-. - CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT

365

Portsmouth Gaseous Diffusion Plant, Former Production Workers...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plant, Former Production Workers Screening Projects Portsmouth Gaseous Diffusion Plant, Former Production Workers Screening Projects Project Name: Worker Health Protection Program...

366

North Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

367

New Hampshire Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net...

368

NETL: Emissions Characterization - TVA Cumberland Plant Plume...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cumberland Power Plant Plume Study Sulfur dioxide (SO2) emission reductions at the Tennessee Valley Authority (TVA) Cumberland fossil plant (CUF) at Cumberland City, Tennessee will...

369

New Jersey Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

370

Independent Activity Report, Hanford Waste Treatment Plant -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Activity Report, Hanford Waste Treatment Plant - February 2011 February 2011 Hanford Waste Treatment Plant Construction Quality Assurance Review ARPT-WTP-2011-002...

371

Qing an Cogeneration Plant | Open Energy Information  

Open Energy Info (EERE)

Qing an Cogeneration Plant Jump to: navigation, search Name Qing'an Cogeneration Plant Place Heilongjiang Province, China Zip 152400 Sector Biomass Product China-based biomass...

372

Natural Gas Processing Plant- Sulfur (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

This regulation establishes sulfur emission standards for natural gas processing plants. Standards are stated for both existing and new plants. There are also rules for stack height requirements,...

373

Net Imports of Total Crude Oil and Products into the U.S. by Country  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Products Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Finished Motor Gasoline Reformulated Conventional Motor Gasoline Blending Components Reformulated Gasoline Blend. Comp. Conventional Gasoline Blend. Comp. MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., 500 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period-Unit: Monthly-Thousand Barrels per Day Annual-Thousand Barrels per Day

374

Gulf Coast (PADD 3) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

375

East Coast (PADD 1) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

376

Rare Plants of the ORR  

NLE Websites -- All DOE Office Websites (Extended Search)

or applying herbicides to maintain rights-of-way can kill plants, and changes in adjacent land use can impact a population. Other threats include illegal harvesting of some...

377

Better Tools for Better Plants  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Tools for Better Plants Better Tools for Better Plants Andre de Fontaine Bill Orthwein, CEM Advanced Manufacturing Office, Office of Energy Efficiency and Renewable Energy U.S. Department of Energy November 15, 2011 2 | Advanced Manufacturing Office eere.energy.gov Today * New opportunities - AMO Overview - Better Buildings, Better Plants Program - Better Buildings, Better Plants Challenge * New and revised tool suite - Energy Management Toolkit - Updated system assessment tools - Tool-related training 3 | Advanced Manufacturing Office eere.energy.gov Manufacturing Matters * 11% of U.S. GDP * 12 million U.S. jobs * 60% of U.S. engineering and science jobs % Manufacturing Job Growth or Loss 31.8% of all manufacturing jobs lost from 2000-2011 Jobs 31% of all 2010 U.S. total energy consumption

378

Missouri Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA)

snpt2mo Callaway Unit 1 1,190 8,996 100.0 Union Electric Co 1 Plant 1 Reactor Owner Note: Totals may not equal sum of components due to independent rounding.

379

Connecticut Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA)

snpt2ct Millstone Unit 2, Unit 3 2,103 16,750 100.0 Dominion Nuclear Conn Inc 1 Plant 2 Reactors Owner Note: Totals may not equal sum of components due to independent ...

380

ALMR plant design and performance  

SciTech Connect

The advanced liquid-metal reactor (ALMR) plant, sponsored by the US Department of Energy and being developed by a General Electric Company lead industrial team, features simple and reliable safety systems, seismic isolation, passive decay heat removal, passive reactivity control, and substantial margins to structural and fuel damage limits during potential accident situations. These features will result in significant gains for public safety and protection of the owner's investment. Standardized modular construction and extensive factory fabrication will result in a plant design that is economically competitive. The reference commercial ALMR plant utilizes nine reactor modules arranged in three identical 480-MW(electric) power blocks for an overall plant net electrical rating of 1440 MW(electric). Each power block features three identical reactor modules, each with its own steam generator, that jointly supply power to a single turbine generator.

Kwant, W.; Boardman, C.E.; Dayal, Y.; Magee, P.M. (GE Nuclear Energy, San Jose, CA (United States))

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mtbe plants petrochemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Plants of the Coal Age  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Age Nature Bulletin No. 330-A February 1, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation PLANTS OF THE COAL...

382

Materials Guidelines for Gasification Plants  

Science Conference Proceedings (OSTI)

This report distills and condenses EPRI's knowledge of materials performance in numerous pilot and commercial-scale gasifiers into guidelines for the application and expected performance of materials in key parts of gasification-combined-cycle power plants.

1998-06-16T23:59:59.000Z

383

Optimal Scheduling of Cogeneration Plants  

E-Print Network (OSTI)

A cogeneration plant, feeding its output water into a district-heating grid, may include several types of energy producing units. The most important being the cogeneration unit, which produces both heat and electricity. Most plants also have a heat water storage. Finding the optimal production of both heat and electricity and the optimal use of the storage is a difficult optimization problem. This paper formulates a general approach for the mathematical modeling of a cogeneration plant. The model objective function is nonlinear, with nonlinear constraints. Internal plant temperatures, mass flows, storage losses, minimal up and down times and time depending start-up costs are considered. The unit commitment, i.e. the units on and off modes, is found with an algorithm based on Lagrangian relaxation. The dual search direction is given by the subgradient method and the step length by the Polyak rule II. The economic dispatch problem, i.e. the problem of determining the units production giv...

Erik Dotzauer; Kenneth Holmström

1997-01-01T23:59:59.000Z

384

A neighborhood alternative energy plant  

E-Print Network (OSTI)

A design that proposes the redefinition of the role of a power plant facility within a community by creating a humane environment for recreation, education, community gathering, living, and energy production; rather than ...

Brooks, Douglas James

1982-01-01T23:59:59.000Z

385

Upgrading coal plant damper drives  

Science Conference Proceedings (OSTI)

The replacement of damper drives on two coal-fired units at the James H. Miller Jr. electric generating plant by Intelligent Contrac electric rotary actuators is discussed. 2 figs.

Hood, N.R.; Simmons, K. [Alamaba Power (United States)

2009-11-15T23:59:59.000Z

386

Arkansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA)

snpt2ar Arkansas Nuclear One Unit 1, Unit 2 1,835 15,023 100.0 Entergy Arkansas Inc 1 Plant 2 Reactors Owner Note: Totals may not equal sum of ...

387

Deoxygenation in Cycling Fossil Plants  

Science Conference Proceedings (OSTI)

Minimizing shutdown oxygen levels at a cycling fossil plant can reduce corrosion product transport to the boilers. In this study two forms of activated carbon were used to catalyze the oxygen/hydrazine reaction and minimize oxygen levels.

1992-05-01T23:59:59.000Z

388

Balancing people, plants, and practices  

Science Conference Proceedings (OSTI)

Two of the biggest challenges facing the US power industry today are retaining an experienced, capable workforce and operating and maintaining a reliable, diversified fleet of generating plants. Success in the marketplace requires a proper balancing of staff and new technology, something few gencos do well. Following this introductory paper in this issue are several technical articles representing a small sample of the steps that gencos nationwide are taking to prolong plant life. Unlike the false promise of Ponce de Leon's fountain of youth in Florida, the promise of longer life for aging plants is real wherever experienced engineers and technicians are on the job. The article looks at problems across America, from the East Coast to the West Coast. It is supported by diagrams projecting US new capacity and plant type additions up to 2014. 5 figs.

Peltier, R.

2006-04-15T23:59:59.000Z

389

Morris Plant Energy Efficiency Program  

E-Print Network (OSTI)

Competing in an increasingly global industry, U.S. chemical facilities have intensified their efforts to improve energy utilization. Increases in energy efficiency can offset age, scale, or other disadvantages of a chemical plant when compared with its in

Betczynski, M. T.

2004-01-01T23:59:59.000Z

390

Fiberglass plastics in power plants  

Science Conference Proceedings (OSTI)

Fiberglass reinforced plastics (FRPs) are replacing metal in FGDs, stacks, tanks, cooling towers, piping and other plant components. The article documents the use of FRP in power plants since the 1970s. The largest volume of FRP in North American power plants is for stack liners and ductwork. Absorber vessel shells and internal components comprise the third largest use. The most common FRP absorber vessels are known as jet bubbling reactors (JBRs). One of the largest JBRs at a plant on the Ohio River removes 99% of sulphur dioxide from high sulphur coal flue gas. FRPs last twice as long as wood structures when used for cooling towers and require less maintenance. 1 tab., 2 photos.

Kelley, D. [Ashland Performance Materials (United States)

2007-08-15T23:59:59.000Z

391

Phytochromes in photosynthetically competent plants  

DOE Green Energy (OSTI)

Plants utilize light as a source of information in photomorphogenesis and of free energy in photosynthesis, two processes that are interrelated in that the former serves to increase the efficiency with which plants can perform the latter. Only one pigment involved in photomorphogenesis has been identified unequivocally, namely phytochrome. The thrust of this proposal is to investigate this pigment and its mode(s) of action in photosynthetically competent plants. Our long term objective is to characterize phytochrome and its functions in photosynthetically competent plants from molecular, biochemical and cellular perspectives. It is anticipated that others will continue to contribute indirectly to these efforts at the physiological level. The ultimate goal will be to develop this information from a comparative perspective in order to learn whether the different phytochromes have significantly different physicochemical properties, whether they fulfill independent functions and if so what these different functions are, and how each of the different phytochromes acts at primary molecular and cellular levels.

Pratt, L.H.

1990-07-01T23:59:59.000Z

392

Sedoheptulose in Photosynthesis by Plants  

E-Print Network (OSTI)

48 SEDOHEPT[JLOSE IN PHOTOSYNTHESIS BY PLANTS A. A. Benson,a v i t a l function during a photosynthesis. W h a wmonopho sphate i n e cl% 2 photosynthesis products o f a l l

Benson, A.A.; Bassham, J.A.; Calvin, M.

1951-01-01T23:59:59.000Z

393

Belgrade Lot Steam Plant Lot  

E-Print Network (OSTI)

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Gym Lot Corbett Lot Greenhouse Patch Oceanographic Operations 1 2 8 5 3 4 7 6 AMC Chadbourne Merrill Aubert Hannibal Hamlin Steam

Thomas, Andrew

394

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc., GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I, a design basis for the Fischer-Tropsch Synthesis section was developed based on limited experience with the specified feed gas and operating conditions. The objective of this Task in Phase II RD&T work was to confirm the performance of the F-T reactor at the set design conditions. Although much of the research, development, and testing work were done by TES outside of this project, several important issues were addressed in this phase of the project. They included Rejuvenation/Regeneration of the Fischer-Tropsch Catalyst, online Catalyst Withdrawal and Addition from the synthesis reactor, and the Fischer-Tropsch Design Basis Confirmation. In Phase III the results from these RD&T work will be incorporated in developing the engineering design package. This Topical Report documents the Phase II RD&T work that was completed for this task.

David Storm; Govanon Nongbri; Steve Decanio; Ming He; Lalit Shah; Charles Schrader; Earl Berry; Peter Ricci; Belma Demirel; Charles Benham; Mark Bohn

2004-01-12T23:59:59.000Z

395

Turbine power plant system  

SciTech Connect

A turbine power plant system consisting of three sub-systems; a gas turbine sub-system, an exhaust turbine sub-system, and a steam turbine sub-system. The three turbine sub-systems use one external fuel source which is used to drive the turbine of the gas turbine sub-system. Hot exhaust fluid from the gas turbine sub-system is used to drive the turbines of the exhaust turbine sub-system and heat energy from the combustion chamber of the gas turbine sub-system is used to drive the turbine of the steam turbine sub-system. Each sub-system has a generator. In the gas turbine sub-system, air flows through several compressors and a combustion chamber and drives the gas turbine. In the exhaust turbine sub-system, hot exhaust fluid from the gas turbine sub-system flows into the second passageway arrangement of first and fourth heat exchangers and thus transfering the heat energy to the first passageway arrangement of the first and fourth heat exchangers which are connected to the inlets of first and second turbines, thus driving them. Each turbine has its own closed loop fluid cycle which consists of the turbine and three heat exchangers and which uses a fluid which boils at low temperatures. A cooler is connected to a corresponding compressor which forms another closed loop system and is used to cool the exhaust fluid from each of the two above mentioned turbines. In the steam turbine sub-system, hot fluid is used to drive the steam turbine and then it flows through a fluid duct, to a first compressor, the first fluid passageway arrangement of first and second heat exchangers, the second passageway of the first heat exchanger, the combustion chamber of the gas turbine where it receives heat energy, and then finally to the inlet of the steam turbine, all in one closed loop fluid cycle. A cooler is connected to the second passageway of the second heat exchanger in a closed loop fluid cycle, which is used to cool the turbine exhaust.

Papastavros, D.

1985-03-05T23:59:59.000Z

396

EARLY ENTRANCE COPRODUCTION PLANT  

DOE Green Energy (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). The potential technical and economic risks to the EECP from Task 2.5 can be mitigated by demonstrating that the end-use products derived from the upgrading of the F-T synthesis total liquid product can meet or exceed current specifications for the manufacture of ethylene and propylene chemicals from F-T naphtha, for the generation of hydrogen from F-T naphtha to power fuel cells, for direct blending of F-T diesels into transportation fuels, for the conversion of F-T heavy product wax to transportation fuels, and the conversion of F-T Heavy product wax to a valuable high melting point food-grade specialty wax product. Product evaluations conducted under Task 2.5 of Phase II successfully mitigated the above technical and economic risks to the EECP with the development of product yields and product qualities for the production of chemicals, transportation fuels, and specialty food-grade waxes from the F-T synthesis products.

Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; Ming He; James F. Stevens; Centha A. Davis; Michael Henley; Jerome Mayer; Harry Tsang; Jimell Erwin; Jennifer Adams; Michael Tillman; Chris Taylor; Marjan J. Roos; Robert F. Earhart

2004-01-27T23:59:59.000Z

397

SYMPOSIUM ON PLANT PROTEIN PHOSPHORYLATION  

SciTech Connect

Protein phosphorylation and dephosphorylation play key roles in many aspects of plant biology, including control of cell division, pathways of carbon and nitrogen metabolism, pattern formation, hormonal responses, and abiotic and biotic responses to environmental signals. A Symposium on Plant Protein Phosphorylation was hosted on the Columbia campus of the University of Missouri from May 26-28, 2010. The symposium provided an interdisciplinary venue at which scholars studying protein modification, as it relates to a broad range of biological questions and using a variety of plant species, presented their research. It also provided a forum where current international challenges in studies related to protein phosphorylation could be examined. The symposium also stimulated research collaborations through interactions and networking among those in the research community and engaged students and early career investigators in studying issues in plant biology from an interdisciplinary perspective. The proposed symposium, which drew 165 researchers from 13 countries and 21 States, facilitated a rapid dissemination of acquired knowledge and technical expertise regarding protein phosphorylation in plants to a broad range of plant biologists worldwide.

JOHN C WALKER

2011-11-01T23:59:59.000Z

398

EARLY ENTRANCE COPRODUCTION PLANT  

DOE Green Energy (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). Phase II RD&T Task 2.6 identified as potential technical risks to the EECP the fuel/engine performance and emissions of the F-T diesel fuel products. Hydrotreating the neat F-T diesel product reduces potentially reactive olefins, oxygenates, and acids levels and alleviates corrosion and fuel stability concerns. Future coproduction plants can maximize valuable transportation diesel by hydrocracking the F-T Synthesis wax product to diesel and naphtha. The upgraded neat F-T diesel, hydrotreater F-T diesel, and hydrocracker F-T diesel products would be final blending components in transportation diesel fuel. Phase II RD&T Task 2.6 successfully carried out fuel lubricity property testing, fuel response to lubricity additives, and hot-start transient emission tests on a neat F-T diesel product, a hydrocracker F-T diesel product, a blend of hydrotreater and hydrocracker F-T diesel products, and a Tier II California Air Resources Board (CARB)-like diesel reference fuel. Only the neat F-T diesel passed lubricity inspection without additive while the remaining three fuel candidates passed with conventional additive treatment. Hot-start transient emission tests were conducted on the four fuels in accordance with the U.S. Environmental Protection Agency (EPA) Federal Test Procedure (FTP) specified in Code of Federal Regulations, Title 40, Part 86, and Subpart N on a rebuilt 1991 Detroit Diesel Corporation Series 60 heavy-duty diesel engine. Neat F-T diesel fuel reduced oxides of nitrogen (NO{sub x}), total particulate (PM), hydrocarbons (HC), carbon monoxide (CO), and the Soluble Organic Fraction (SOF) by 4.5%, 31%, 50%, 29%, and 35%, respectively, compared to the Tier II CARB-like diesel. The hydrocracker F-T diesel product and a blend of hydrocracker and hydrotreater F-T diesel products also reduced NO{sub x}, PM, HC, CO and SOF by 13%, 16% to 17%, 38% to 63%, 17% to 21% and 21% to 39% compared to the Tier II CARB-like diesel. The fuel/engine performance and emissions of the three F-T diesel fuels exceed the performance of a Tier II CARB-like diesel. Phase II RD&T Task 2.6 successfully met the lubricity property testing and F-T diesel fuel hot-start transient emissions test objectives. The results of the testing help mitigate potential economic risks on obtaining a premium price for the F-T diesel fuel

Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; J. Erwin; Matthew G. Banks; Terry L. Ullman

2004-01-12T23:59:59.000Z

399

EARLY ENTRANCE COPRODUCTION PLANT  

Science Conference Proceedings (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). Phase II RD&T Task 2.6 identified as potential technical risks to the EECP the fuel/engine performance and emissions of the F-T diesel fuel products. Hydrotreating the neat F-T diesel product reduces potentially reactive olefins, oxygenates, and acids levels and alleviates corrosion and fuel stability concerns. Future coproduction plants can maximize valuable transportation diesel by hydrocracking the F-T Synthesis wax product to diesel and naphtha. The upgraded neat F-T diesel, hydrotreater F-T diesel, and hydrocracker F-T diesel products would be final blending components in transportation diesel fuel. Phase II RD&T Task 2.6 successfully carried out fuel lubricity property testing, fuel response to lubricity additives, and hot-start transient emission tests on a neat F-T diesel product, a hydrocracker F-T diesel product, a blend of hydrotreater and hydrocracker F-T diesel products, and a Tier II California Air Resources Board (CARB)-like diesel reference fuel. Only the neat F-T diesel passed lubricity inspection without additive while the remaining three fuel candidates passed with conventional additive treatment. Hot-start transient emission tests were conducted on the four fuels in accordance with the U.S. Environmental Protection Agency (EPA) Federal Test Procedure (FTP) specified in Code of Federal Regulations, Title 40, Part 86, and Subpart N on a rebuilt 1991 Detroit Diesel Corporation Series 60 heavy-duty diesel engine. Neat F-T diesel fuel reduced oxides of nitrogen (NO{sub x}), total particulate (PM), hydrocarbons (HC), carbon monoxide (CO), and the Soluble Organic Fraction (SOF) by 4.5%, 31%, 50%, 29%, and 35%, respectively, compared to the Tier II CARB-like diesel. The hydrocracker F-T diesel product and a blend of hydrocracker and hydrotreater F-T diesel products also reduced NO{sub x}, PM, HC, CO and SOF by 13%, 16% to 17%, 38% to 63%, 17% to 21% and 21% to 39% compared to the Tier II CARB-like diesel. The fuel/engine performance and emissions of the three F-T diesel fuels exceed the performance of a Tier II CARB-like diesel. Phase II RD&T Task 2.6 successfully met the lubricity property testing and F-T diesel fuel hot-start transient emissions test objectives. The results of the testing help mitigate potential economic risks on obtaining a premium price for the F-T diesel fuel

Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; J. Erwin; Matthew G. Banks; Terry L. Ullman

2004-01-12T23:59:59.000Z

400

EARLY ENTRANCE COPRODUCTION PLANT  

Science Conference Proceedings (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I the team identified several potential methods to reduce or minimize the environmental impact of the proposed EECP. The EECP Project Team identified F-T catalyst disposal, beneficial gasifier slag usage (other than landfill), and carbon dioxide recovery for the gas turbine exhaust for study under this task. Successfully completing the Task 2.10 RD&T provides additional opportunities for the EECP to meet the goals of DOE's Vision 21 Program. The gasification section offers several opportunities to maximize the environmental benefits of an EECP. The spent F-T catalyst can be sent to landfills or to the gasification section. Testing in Phase II shows that the spent F-T catalyst with a small wax coating can safely meet federal landfill requirements. As an alternative to landfilling, it has been proposed to mix the spent F-T catalyst with the petroleum coke and feed this mixture to the gasification unit. Based on ChevronTexaco's experience with gasification and the characteristics of the spent F-T catalyst this appears to be an excellent opportunity to reduce one potential waste stream. The slag from the gasification unit can be commercially marketed for construction or fuel (such as cement kiln fuel) uses. The technical and economic benefits of these options must be reviewed for the final EECP before incorporating a specific alternative into the design basis. Reducing greenhouse gas emissions, particularly carbon dioxide, is an important goal of the EECP. The Texaco gasification process provides opportunities to capture high purity streams of carbon dioxide. For Phase II, a carbon fiber composite molecular sieve (CFCMS) was tested to determine its potential to remove high purity carbon dioxide from the exhaust of a gas turbine. Testing on with a simulated gas turbine exhaust shows that the CFCMS is able to remove high purity carbon dioxide from the exhaust. However, more development is required to optimize the system.

John H. Anderson; Charles Benham; Earl R. Berry; Ming He; Charles H. Schrader; Lalit S. Shah; O.O. Omatete; T.D. Burchell

2004-01-12T23:59:59.000Z

Note: This page contains sample records for the topic "mtbe plants petrochemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The Water Circuit of the Plants - Do Plants have Hearts ?  

E-Print Network (OSTI)

There is a correspondence between the circulation of blood in all higher animals and the circulation of sap in all higher plants - up to heights h of 140 m - through the xylem and phloem vessels. Plants suck in water from the soil, osmotically through the roothair zone, and subsequently lift it osmotically again, and by capillary suction (via their buds, leaves, and fruits) into their crowns. In between happens a reverse osmosis - the endodermis jump - realized by two layers of subcellular mechanical pumps in the endodermis walls which are powered by ATP, or in addition by two analogous layers of such pumps in the exodermis. The thus established root pressure helps forcing the absorbed ground water upward, through the whole plant, and often out again, in the form of guttation, or exudation.

Wolfgang Kundt; Eva Gruber

2006-03-17T23:59:59.000Z

402

U.S. Energy Secretary Visits Kuwait | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kuwait Kuwait U.S. Energy Secretary Visits Kuwait November 15, 2005 - 2:30pm Addthis Stop included meeting with U.S. business leaders and military troops KUWAIT CITY, KUWAIT - On Monday, November 14, 2005, U.S. Department of Energy Secretary Samuel W. Bodman toured the EQUATE petrochemical plant and met with U.S. business representatives while visiting Kuwait, as part of his trip through the Middle East. The EQUATE petrochemical plant is a joint venture between Kuwait's Petrochemical Industries Company (PIC) and U.S. company Union Carbide, a subsidiary of The Dow Chemical Company. "The EQUATE petrochemical plant is a wonderful example of international cooperation and investment. We are pleased that the joint venture between the Petrochemical Industries Company and Dow Chemical has been so

403

Method of identifying plant pathogen tolerance  

DOE Patents (OSTI)

A process for identifying a plant having disease tolerance comprising administering to a plant an inhibitory amount of ethylene and screening for ethylene insensitivity, thereby identifying a disease tolerant plant, is described. Plants identified by the foregoing process are also described.

Ecker, Joseph R. (Erial, NJ); Staskawicz, Brian J. (Castro Valley, CA); Bent, Andrew F. (Piedmont, CA); Innes, Roger W. (Bloomington, IN)

1997-10-07T23:59:59.000Z

404

Method of identifying plant pathogen tolerance  

DOE Patents (OSTI)

A process for identifying a plant having disease tolerance comprising administering to a plant an inhibitory amount of ethylene and screening for ethylene insensitivity, thereby identifying a disease tolerant plant, is described. Plants identified by the foregoing process are also described. 7 figs.

Ecker, J.R.; Staskawicz, B.J.; Bent, A.F.; Innes, R.W.

1997-10-07T23:59:59.000Z

405

Pilot plant environmental conditions (OPDD Appendix C)  

DOE Green Energy (OSTI)

This is Appendix C to the Pilot Plant Overall Plant design description document for the 10-MW pilot central receiver plant to be located at Barstow, California. The environmental design criteria to be used for plant design day performance, operational limits, and survival environmental limits are specified. Data are presented on insolation, wind, temperature, and other meteorological conditions. (WHK)

Randall, C.M.; Whitson, M.E.; Coggi, J.V.

1978-08-15T23:59:59.000Z

406

Biochemical Conversion Pilot Plant (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet provides information about Biochemical Conversion Pilot Plant capabilities and resources at NREL.

Not Available

2012-06-01T23:59:59.000Z

407

Cement Plant EPI | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Cement Plant EPI Cement Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation

408

ENERGY STAR plant certification | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

» ENERGY STAR plant certification » ENERGY STAR plant certification Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Improve energy performance Industrial service and product providers Earn recognition ENERGY STAR Partner of the Year Award

409

Flat Glass Manufacturing Plant EPI | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Flat Glass Manufacturing Plant EPI Flat Glass Manufacturing Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

410

Juice Processing Plant EPI | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Juice Processing Plant EPI Juice Processing Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

411

Automobile Assembly Plant EPI | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Automobile Assembly Plant EPI Automobile Assembly Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

412

Plant Level Energy Performance Benchmarking  

E-Print Network (OSTI)

Since the early 1990's, the U.S. Environmental Protection Agency (EPA) has worked with U.S. corporations to reduce their energy requirements in buildings and office space through voluntary programs such as ENERGY STAR®. Corporate partners within ENERGY STAR have enjoyed success by applying the principles fundamental to this program. However, a common view was held that ENERGY STAR did not fully address energy use and performance of manufacturing plants. While there are many partners primarily working in manufacturing industries within ENERGY STAR, the program to date has focused primarily on the energy use and performance of commercial buildings rather than manufacturing plants. In the upcoming year, the EPA is poised to deliver new program components to facilitate broader corporate participation in ENERGY STAR. The business-oriented approach for building owners central to ENERGY STAR will be expanded to accommodate the energy use of manufacturing businesses. With introduction of the enhanced industrial manufacturing offering, ENERGY STAR will have a complete group of tools that will appeal to all corporate partners. Through understanding of their performance relative to their peers, EPA hopes to make available to the public tools to assess the performance of their plants relative to their peers. The objective of these tools is to provide plant managers and corporate executives with actionable information that can make their plants more competitive, more profitable, and more environmentally benign.

Hicks, T. W.

2001-05-01T23:59:59.000Z

413

Expression of multiple proteins in transgenic plants  

DOE Patents (OSTI)

A method is disclosed for the production of multiple proteins in transgenic plants. A DNA construct for introduction into plants includes a provision to express a fusion protein of two proteins of interest joined by a linking domain including plant ubiquitin. When the fusion protein is produced in the cells of a transgenic plant transformed with the DNA construction, native enzymes present in plant cells cleave the fusion protein to release both proteins of interest into the cells of the transgenic plant. Since the proteins are produced from the same fusion protein, the initial quantities of the proteins in the cells of the plant are approximately equal.

Vierstra, Richard D. (Madison, WI); Walker, Joseph M. (Madison, WI)

2002-01-01T23:59:59.000Z

414

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified petroleum coke characteristics as a potential technical risk. The composition of petroleum coke varies from one refinery to another. Petroleum coke characteristics are a function of the crude oil slate available at the refinery and the coker operating parameters. The specific petroleum coke characteristics at a refinery affect the design of the Gasification and Acid Gas Removal (AGR) subsystems. Knowing the petroleum coke composition provides the necessary data to proceed to the EECP Phase III engineering design of the gasification process. Based on ChevronTexaco's experience, the EECP team ranked the technical, economic, and overall risks of the petroleum coke composition related to the gasification subsystem as low. In Phase I of the EECP Project, the Motiva Port Arthur Refinery had been identified as the potential EECP site. As a result of the merger between Texaco and Chevron in October 2001, Texaco was required to sell its interest in the Motiva Enterprises LLC joint venture to Shell Oil Company and Saudi Refining Inc. To assess the possible impact of moving the proposed EECP host site to a ChevronTexaco refinery, samples of petroleum coke from two ChevronTexaco refineries were sent to MTC for bench-scale testing. The results of the analysis of these samples were compared to the Phase I EECP Gasification Design Basis developed for Motiva's Port Arthur Refinery. The analysis confirms that if the proposed EECP is moved to a new refinery site, the Phase I EECP Gasification Design Basis would have to be updated. The lower sulfur content of the two samples from the ChevronTexaco refineries indicates that if one of these sites were selected, the Sulfur Recovery Unit (SRU) might be sized smaller than the current EECP design. This would reduce the capital expense of the SRU. Additionally, both ChevronTexaco samples have a higher hydrogen to carbon monoxide ratio than the Motiva Port Arthur petroleum coke. The higher hydrogen to carbon monoxide ratio could give a slightly higher F-T products yield from the F-T Synthesis Reactor. However, the EECP Gasification Design Basis can not be updated until the site for the proposed EECP site is finalized. Until the site is finalized, the feedstock (petroleum coke) characteristics are a low risk to the EECP project.

Abdalla H. Ali; John H. Anderson; Earl R. Berry; Charles H. Schrader; Lalit S. Shah

2003-04-16T23:59:59.000Z

415

Pennsylvania Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania nuclear power plants, summer capacity and net generation, 2010" Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Beaver Valley Unit 1, Unit 2","1,777","14,994",19.3,"FirstEnergy Nuclear Operating Company" "Limerick Unit 1, Unit 2","2,264","18,926",24.3,"Exelon Nuclear" "PPL Susquehanna Unit 1, Unit 2","2,450","18,516",23.8,"PPL Susquehanna LLC" "Peach Bottom Unit 2, Unit 3","2,244","18,759",24.1,"Exelon Nuclear" "Three Mile Island Unit 1",805,"6,634",8.5,"Exelon Nuclear"

416

The Iowa Stored Energy Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Systems Annual Peer Review November 2-3, 2006 Progress Report Presented by Robert Haug Executive Director Iowa Association of Municipal Utilities for Iowa Stored Energy Plant Agency THE IOWA STORED ENERGY PLANT What is ISEP? ISEP is a DOE-supported effort of municipal utilities in Iowa, Minnesota, and the Dakotas for development of 200 (now 268) MW of compressed air energy storage (CAES) and 75 MW of wind capacity. THE IOWA STORED ENERGY PLANT What is the ISEP Agency? The ISEP Agency is an intergovernmental entity formed under Iowa law in 2005 and governed by a board of directors composed of representatives of participating local governments. Board of Directors: * Dennis Fannin, Osage * John Bilsten, Algona * Sheila Boeckman, Waverly * Scott Tonderum, Graettinger * Niel Ruddy, Carlisle

417

Why sequence Dothideomycetes plant pathogens?  

NLE Websites -- All DOE Office Websites (Extended Search)

Dothideomycetes plant pathogens? Dothideomycetes plant pathogens? The largest and most diverse group of fungi, Dothideomycetes are found on every continent and play key roles in maintaining the local ecosystems by degrading biomass and contributing to regulating the carbon cycle. Many of these fungi are also tolerant of environmental extremes such as heat, humidity and cold. Among the members of this group are pathogens that infect nearly every major crop used for food, fiber or fuel. As crop rotations are being reduced, fewer crops are being grown on larger acreages, making them more susceptible to severe crop losses due to disease. Understanding the plant pathogens of these crops could reduce fertilizer use, which could in turn help reduce greenhouse gas emissions. To better understand the members of this group, the project calls for

418

NETL: Innovations for Existing Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovations for Existing Plants Innovations for Existing Plants Coal and Power Systems Innovations for Existing Plants (IEP) Previous Next Chemical Looping Summary Chemical Looping Summary (July 2013) This summary provides a technical description of this advanced technology, describes its advantages, examines the R&D areas of need, and summarizes DOE's R&D efforts. DOE/NETL Advanced CO2 Capture R&D Program: Technology Update DOE/NETL Advanced CO2 Capture R&D Program: Technology Update (June 2013) This comprehensive handbook provides an update on DOE/NETL R&D efforts on advanced CO2 capture technologies for coal-based power systems. CO2 Capture Technology Meeting Presentations NETL CO2 Capture Technology Meeting Presentations (July 2013) This meeting highlighted DOE/NETL RD&D efforts to develop advanced pre-, post-, and oxy-combustion CO2 capture technologies.

419

Power plant | OpenEI  

Open Energy Info (EERE)

Power plant Power plant Dataset Summary Description No description given. Source Environmental Protection Agency (EPA) Date Released January 26th, 2009 (5 years ago) Date Updated June 07th, 2010 (4 years ago) Keywords eGrid eGRID2007 EIA Electricity emissions epa Power plant Data application/zip icon eGRID2007_Version1-1.zip (zip, 18.7 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Work of the U.S. Federal Government. Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments

420

Performance of nuclear plant RTDs  

SciTech Connect

Resistance temperature detectors (RTDs) are used for safety-related measurements in nuclear power plants and must therefore be accurate and respond to temperature changes in a timely fashion. Experience has shown that RTD calibration shift and response-time degradation can occur with aging. Therefore, periodic testing is performed to ensure that acceptable performance limits are not exceeded. A new method called the loop current step response (LCSR) test is used for periodic response-time testing of nuclear plant RTDs. This method permits testing the RTD as installed in an operating plant (in situ testing). The LCSR test is based on heating the RTD sensing element with a small electric current applied remotely through the sensor lead wires.

Hashemian, H.M.; Petersen, K.M.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mtbe plants petrochemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Plant Science Graduates Spring 2011 Bachelor of Science in Plant Sciences  

E-Print Network (OSTI)

Plant Science Graduates Spring 2011 Bachelor of Science in Plant Sciences Joshua Paul Baker, Old Dale Wallace, Centerville Master of Science Reginald Jason Millwood, Plant Sciences Kara Lee Warwick, Plant Sciences Undergraduate Degrees, Summer Term 2011 Henry Joseph Cope, III, Plant Sciences David

Tennessee, University of

422

Balance of Plant Requirements for a Nuclear Hydrogen Plant  

DOE Green Energy (OSTI)

This document describes the requirements for the components and systems that support the hydrogen production portion of a 600 megawatt thermal (MWt) Next Generation Nuclear Plant (NGNP). These systems, defined as the "balance-of-plant" (BOP), are essential to operate an effective hydrogen production plant. Examples of BOP items are: heat recovery and heat rejection equipment, process material transport systems (pumps, valves, piping, etc.), control systems, safety systems, waste collection and disposal systems, maintenance and repair equipment, heating, ventilation, and air conditioning (HVAC), electrical supply and distribution, and others. The requirements in this document are applicable to the two hydrogen production processes currently under consideration in the DOE Nuclear Hydrogen Initiative. These processes are the sulfur iodide (S-I) process and the high temperature electrolysis (HTE) process. At present, the other two hydrogen production process - the hybrid sulfur-iodide electrolytic process (SE) and the calcium-bromide process (Ca-Br) -are under flow sheet development and not included in this report. While some features of the balance-of-plant requirements are common to all hydrogen production processes, some details will apply only to the specific needs of individual processes.

Bradley Ward

2006-04-01T23:59:59.000Z

423

Environmental quandary shuts Mohave plants  

SciTech Connect

The 1,580 MW coal-fired Mohave Generating Station in Laughlin, NV was closed on 31 December 2005 and is expected to be closed for four years whilst the owners Southern California Edison sort out battles over the plant's pollutant emissions and negotiate with two native tribes over rights to the water needed to deliver fuel to Mohave as a slurry. The plant was forced to close because it was unable to comply with a 1999 court order to reduce emissions of sulphur dioxide, nitrogen oxides and particulates. 1 photo.

NONE

2006-03-15T23:59:59.000Z

424

T Plant overpack tiedown analysis  

SciTech Connect

This tiedown evaluation meets the requirement imposed by HNF-6550, Safety Evaluation for Packaging (Onsite) T Plant Canyon Items, (O'Brien 2000). O'Brien (2000) requires that any items prepared for shipment from T Plant to the burial grounds that are not bounded by the analysis in O'Brien (2000) must have a separate, approved, engineered tiedown analysis. The width of the overpack box is 9 ft. 7 in. This width is wider than the maximum width authorized in O'Brien (2000), which is 8 ft.

Riley, D.L.

2000-07-31T23:59:59.000Z

425

Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation Plants  

E-Print Network (OSTI)

compiles data on power plant operations and characteristicscharacteristics (e.g. power plant unit, state, grid controlBaseCase contains hourly power-plant unit-level information

Bushnell, James B.; Wolfram, Catherine

2005-01-01T23:59:59.000Z

426

2012 STRATEGY 2012 PHYSICAL PLANT  

E-Print Network (OSTI)

Install wet-bulb control on cooling towers Event Feb Ops. Supt. 8 Identify and repair steam leaks cooling towers to increase efficiency New economizer #3 boiler Upgraded plant light fixtures 2012 STRATEGY cooling towers off-line all month. (Dec) WSE online combined 907hrs (760,642 tons = 41.57% of the load

Rock, Chris

427

Pantex Plant Emergency Response Exercise  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight and Performance Assurance November 2000 Independent Oversight Evaluation of the Pantex Plant Emergency Response Exercise OVERSIGHT Table of Contents 1.0 INTRODUCTION ..................................................................................... 1 2.0 RESULTS ................................................................................................... 4 2.1 Positive Program Attributes ............................................................... 4 2.2 Weaknesses and Items Requiring Attention ..................................... 5 3.0 CONCLUSIONS ........................................................................................ 9 4.0 RATING .................................................................................................... 10

428

Shell structures for biogas plants  

Science Conference Proceedings (OSTI)

The shell structures designed for biogas plants of the fixed-dome type by the Bremen Overseas Research and Development Association are described. Biogas digesters of the design described have been successfully tested in Rwanda and India without structural or contractural problems.

Sasse, L.

1982-01-01T23:59:59.000Z

429

Advanced nuclear plant control complex  

DOE Patents (OSTI)

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

430

Pantex Plant meteorological monitoring program  

SciTech Connect

The current meteorological monitoring program of the US Department of Energy`s Pantex Plant, Amarillo, Texas, is described in detail. Instrumentation, meteorological data collection and management, and program management are reviewed. In addition, primary contacts are noted for instrumentation, calibration, data processing, and alternative databases. The quality assurance steps implemented during each portion of the meteorological monitoring program are also indicated.

Snyder, S.F.

1993-07-01T23:59:59.000Z

431

Methodology for Scaling Fusion Power Plant Availability  

Science Conference Proceedings (OSTI)

Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

Lester M. Waganer

2011-01-04T23:59:59.000Z

432

Design and simulation of a plant control system for a GCFR demonstration plant  

Science Conference Proceedings (OSTI)

A plant control system is being designed for a 300 MW(e) Gas Cooled Fast Breeder Reactor (GCFR) demonstration plant. Control analysis is being performed as an integral part of the plant design process to ensure that control requirements are satisfied as the plant design evolves. Plant models and simulations are being developed to generate information necessary to further define control system requirements for subsequent plant design iterations.

Estrine, E.A.; Greiner, H.G.

1980-02-01T23:59:59.000Z

433

Measuring wind plant capacity value  

DOE Green Energy (OSTI)

Electric utility planners and wind energy researchers pose a common question: What is the capacity value of a wind plant? Tentative answers, which can be phrased in a variety of ways, are based on widely varying definitions and methods of calculation. From the utility`s point of view, a resource that has no capacity value also has a reduced economic value. Utility planners must be able to quantify the capacity value of a wind plant so that investment in conventional generating capacity can be potentially offset by the capacity value of the wind plant. Utility operations personnel must schedule its conventional resources to ensure adequate generation to meet load. Given a choice between two resources, one that can be counted on and the other that can`t, the utility will avoid the risky resource. This choice will be reflected in the price that the utility will pay for the capacity: higher capacity credits result in higher payments. This issue is therefore also important to the other side of the power purchase transaction -- the wind plant developer. Both the utility and the developer must accurately assess the capacity value of wind. This article summarizes and evaluates some common methods of evaluating capacity credit. During the new era of utility deregulation in the United States, it is clear that many changes will occur in both utility planning and operations. However, it is my judgement that the evaluation of capacity credit for wind plants will continue to play an important part in renewable energy development in the future.

Milligan, M.R.

1996-01-01T23:59:59.000Z

434

Audit of Mound Plant`s reduction in force  

Science Conference Proceedings (OSTI)

Objective of this audit was to determine whether the Mound Plant`s Fiscal Year 1992 reduction in force (RIF) was effectively managed and implemented properly by DOE. DOE established policy to encourage contractors to reduce staffing by voluntary separations without unreasonable separation costs. EG&G Mound`s FY 1992 RIF was accomplished by voluntary separations; however, its implementation unreasonably increased costs because DOE did not have adequate criteria or guidelines for evaluating contractors` RIF proposals, and because EG&G Mound furnished inaccurate cost data to DOE evaluators. The unreasonable costs amounted to at least $21 million. Recommendations are made that DOE develop and implement guidelines to impose limitations on voluntary separation allowances, early retirement incentive payments, and inclusion of crucial employee classifications in voluntary RIFs.

Not Available

1993-05-17T23:59:59.000Z

435

Methodology and application of surrogate plant PRA analysis to the Rancho Seco Power Plant: Final report  

Science Conference Proceedings (OSTI)

This report presents the development and the first application of generic probabilistic risk assessment (PRA) information for identifying systems and components important to public risk at nuclear power plants lacking plant-specific PRAs. A methodology is presented for using the results of PRAs for similar (surrogate) plants, along with plant-specific information about the plant of interest and the surrogate plants, to infer important failure modes for systems of the plant of interest. This methodology, and the rationale on which it is based, is presented in the context of its application to the Rancho Seco plant. The Rancho Seco plant has been analyzed using PRA information from two surrogate plants. This analysis has been used to guide development of considerable plant-specific information about Rancho Seco systems and components important to minimizing public risk, which is also presented herein.

Gore, B.F.; Huenefeld, J.C.

1987-07-01T23:59:59.000Z

436

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

437

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Power Plant Geothermal/Power Plant < Geothermal(Redirected from Power Plant) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (19) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine which is connected to a generator to produce electricity. The type of energy conversion technology that is used depends on whether the resource is predominantly water or steam, the temperature of the resource, and the

438

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant (Redirected from Flash Steam Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility

439

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Dry Steam) (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

440

Energeticals power plant engineering | Open Energy Information  

Open Energy Info (EERE)

Energeticals power plant engineering Energeticals power plant engineering Jump to: navigation, search Name energeticals power plant engineering Place München, Bavaria, Germany Zip 81371 Sector Biomass, Geothermal energy Product Planning, design, installation and operation of turnkey plants for heat and electricity generation in the field of solid Biomass, deep and shallow geothermal energy and water power. References energeticals power plant engineering[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. energeticals power plant engineering is a company located in München, Bavaria, Germany . References ↑ "[ energeticals power plant engineering]" Retrieved from "http://en.openei.org/w/index.php?title=Energeticals_power_plant_engineering&oldid=344770

Note: This page contains sample records for the topic "mtbe plants petrochemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Tracking New Coal-Fired Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

New Coal-Fired Power Plants New Coal-Fired Power Plants (data update 1/13/2012) January 13, 2012 National Energy Technology Laboratory Office of Strategic Energy Analysis & Planning Erik Shuster 2 Tracking New Coal-Fired Power Plants This report is intended to provide an overview of proposed new coal-fired power plants that are under development. This report may not represent all possible plants under consideration but is intended to illustrate the potential that exists for installation of new coal-fired power plants. Additional perspective has been added for non-coal-fired generation additions in the U.S. and coal-fired power plant activity in China. Experience has shown that public announcements of power plant developments do not provide an accurate representation of eventually

442

Nuclear power plants: structure and function  

SciTech Connect

Topics discussed include: steam electric plants; BWR type reactors; PWR type reactors; thermal efficiency of light water reactors; other types of nuclear power plants; the fission process and nuclear fuel; fission products and reactor afterheat; and reactor safety.

Hendrie, J.M.

1983-01-01T23:59:59.000Z

443

Integrated Coal Gasification Power Plant Credit (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

Integrated Coal Gasification Power Plant Credit states that an income taxpayer that makes a qualified investment in a new integrated coal gasification power plant or in the expansion of an existing...

444

Graduate Student Handbook Plant Pathology Graduate Program  

E-Print Network (OSTI)

Graduate Student Handbook Plant Pathology Graduate Program University of California-Davis Revised Davis. This handbook is designed to provide you with some basic information about the Plant Pathology

Hammock, Bruce D.

445

Modeling water use at thermoelectric power plants  

E-Print Network (OSTI)

The withdrawal and consumption of water at thermoelectric power plants affects regional ecology and supply security of both water and electricity. The existing field data on US power plant water use, however, is of limited ...

Rutberg, Michael J. (Michael Jacob)

2012-01-01T23:59:59.000Z

446

Oak Ridge Reservation Invasive Plant Treatment Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge Reservation Invasive Plant Treatment Update All 33,000 acres of the ORR All 33,000 acres of the ORR ORR Invasive Plant Management Plan Surveys and Monitoring ...

447

SLAC National Accelerator Laboratory - Power Plants: Scientists...  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plants: Scientists Use X-ray Laser to Probe Engines of Photosynthesis By Glenn Roberts Jr. June 6, 2012 The molecular power plants that carry out photosynthesis are at the...

448

Energy Department Highlights Nissan's Better Plants Challenge...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12 million square feet of plant space. According to Nissan's projections, the new 250,000 square- foot footprint Smyrna paint plant is capable of reducing energy use and carbon...

449

Historical plant cost and annual production expenses for selected electric plants, 1982  

SciTech Connect

This publication is a composite of the two prior publications, Hydroelectric Plant Construction Cost and Annual Production Expenses and Thermal-Electric Plant Construction Cost and Annual Production Expenses. Beginning in 1979, Thermal-Electric Plant Construction Cost and Annual Production Expenses contained information on both steam-electric and gas-turbine electric plant construction cost and annual production expenses. The summarized historical plant cost described under Historical Plant Cost in this report is the net cumulative-to-date actual outlays or expenditures for land, structures, and equipment to the utility. Historical plant cost is the initial investment in plant (cumulative to the date of initial commercial operation) plus the costs of all additions to the plant, less the value of retirements. Thus, historical plant cost includes expenditures made over several years, as modifications are made to the plant. Power Production Expenses is the reporting year's plant operation and maintenance expenses, including fuel expenses. These expenses do not include annual fixed charges on plant cost (capital costs) such as interest on debt, depreciation or amortization expenses, and taxes. Consequently, total production expenses and the derived unit costs are not the total cost of producing electric power at the various plants. This publication contains data on installed generating capacity, net generation, net capability, historical plant cost, production expenses, fuel consumption, physical and operating plant characteristics, and other relevant statistical information for selected plants.

1984-08-20T23:59:59.000Z

450

Fossil Power Plant Cost and Performance Trends  

Science Conference Proceedings (OSTI)

This report is one of two companion studies that describe trends in operating costs and reliability of fossil steam plants since 1970. The studies are a foundation for more sophisticated statistical studies aimed at modeling and predicting the impacts of cycling. This report summarizes results for coal-fired steam generating units, contrasting performance across 112 baseload plants, 68 load-following/cycling plants, and 118 plants that varied their operations for at least three years. Annual trends are p...

2006-08-31T23:59:59.000Z

451

Dirty kilowatts: America's most polluting power plants  

SciTech Connect

In 2006, the US EPA tracked more than 1,400 fossil-fired power plants of varying sizes through its Acid Rain Program. This report ranks each of the 378 largest plants (generating at least 2 million megawatt-hours in 2006) for which both the most recent EPA emissions data and Energy Information Administration (EIA) electric generation data are available. The report ranks each plant based on emission rates, or pounds of pollutant for each megawatt-hour (or million megawatt-hours, in the case of mercury) the plant produced. It ranks the top fifty power plants polluters for sulfur dioxide, nitrogen oxides, carbon dioxide, and mercury. A complete listing of all 378 plants is included as Appendix A. Appendix B contains overheads of an NETL presentation: Tracking new coal-fired power plants - coal's resurgence in electric power generation, 24 January 2007. The 12 states with the heaviest concentrations of the dirtiest power plants, in terms of total tons of carbon dioxide emitted, are: Texas (five, including two of the top 10 dirtiest plants); Pennsylvania (four); Indiana (four, including two of the top 10 dirtiest plants); Alabama (three); Georgia (three, including two of the top three dirtiest plants); North Carolina (three); Ohio (three); West Virginia (three); Wyoming (two); Florida (two); Kentucky (two); and New Mexico (two). Carbon dioxide emissions from power plants are now at roughly 2.5 billion tons per year. Power plants are responsible for about 30%-40% of all man-made CO{sub 2} emissions in the USA. Power plants, especially those that burn coal, are by far the largest single contributor of SO{sub 2} pollution in the United States. Power plant mercury emissions remain steady as compared to previous years. A searchable database ranking 378 U.S. power plants on carbon dioxide, sulfur dioxide, nitrogen oxide and mercury pollution is available online at http://www.dirtykilowatts.org. 22 refs., 8 tabs., 2 apps.

NONE

2007-07-15T23:59:59.000Z

452

World electric power plants database  

SciTech Connect

This global database provides records for 104,000 generating units in over 220 countries. These units include installed and projected facilities, central stations and distributed plants operated by utilities, independent power companies and commercial and self-generators. Each record includes information on: geographic location and operating company; technology, fuel and boiler; generator manufacturers; steam conditions; unit capacity and age; turbine/engine; architect/engineer and constructor; and pollution control equipment. The database is issued quarterly.

NONE

2006-06-15T23:59:59.000Z

453

Embrittlement of Power Plant Steels  

Science Conference Proceedings (OSTI)

Plant operators seek to adopt approaches that can minimize costs, prevent forced outages, and maximize safety and reliability. Rigorous life assessment methodologies have been developed over the years and are commonly employed to determine component integrity and life. Such assessments examine key operational characteristics including: elevated temperature exposure, cycling operation, loading, environmental exposure, etc., to determine remaining life. Many of these characteristics can have a ...

2013-12-19T23:59:59.000Z

454

Power Plant Baghouse Survey 2010  

Science Conference Proceedings (OSTI)

As particulate emission regulations become more stringent, the use of baghouses (also known as fabric filters) for particulate control on coal-fired boilers in the power generation industry has increased significantly in the past several years. With the potential for Maximum Achievable Control Technology requirements for air toxics being considered by the U.S. Environmental Protection Agency, power plants may be required to add sorbents to control mercury, trace metals and acid gases, further increasing ...

2010-12-31T23:59:59.000Z

455

Treated Wood Planted Post Study  

Science Conference Proceedings (OSTI)

This Technical Update describes the interim results of a planted post study currently under way at the Austin Cary Memorial Forest (ACMF), operated by The University of Florida, in Gainesville. The purpose of this research is to examine the effectiveness of commercially available prevention methods to reduce preservative migration from treated wood poles, compare the migration of constituents of various wood treatments, and assess the environmental impacts and performance of untreated chestnut.

2009-11-12T23:59:59.000Z

456

Multi-stage cleaning plant  

SciTech Connect

A cleaning plant positioned within an annular fluidized bed combustion chamber is divided into a plurality of separate cleaning stages, wherein a first stage is located adjacent the fluidized bed and additional stages are arranged within the first stage. Each stage comprises a plurality of separate cleaning devices which act in parallel, while cleaning devices of different stages act in series to remove debris from the combustion gases that exit from the fluidized bed combustion chamber.

Kullendorff, A.; Wikner, J.

1980-12-09T23:59:59.000Z

457

Engineered plant biomass feedstock particles  

DOE Patents (OSTI)

A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

2012-04-17T23:59:59.000Z

458

Financing Solar Thermal Power Plants  

DOE Green Energy (OSTI)

The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been build following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply stated, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised i n debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects from the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies.

Price, H. W.; Kistner, R.

1999-11-01T23:59:59.000Z

459

Guidelines for New High Reliability Fossil Plants  

Science Conference Proceedings (OSTI)

Many new power plants are being constructed throughout the world, and many organizations are beginning to design and commission new fossil plants. These circumstances provide an excellent opportunity to build long-term reliability into the specifications and designs for the new plants.

2009-01-28T23:59:59.000Z

460

Guidelines for New High Reliability Fossil Plants  

Science Conference Proceedings (OSTI)

The purity of water and steam is central to ensuring fossil plant component availability and reliability. New plants should have the optimum cycle chemistry features designed in, and the guidelines provided in this report will assist owners and operators of new plants in specifying these features during the design phase.

2007-02-26T23:59:59.000Z

Note: This page contains sample records for the topic "mtbe plants petrochemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Steam Plant Conversion Eliminating Campus Coal Use  

E-Print Network (OSTI)

Steam Plant Conversion Eliminating Campus Coal Use at the Steam Plant #12;· Flagship campus region produce 14% of US coal (TN only 0.2%) Knoxville and the TN Valley #12;· UT is one of about 70 U.S. colleges and universities w/ steam plant that burns coal · Constructed in 1964, provides steam for

Dai, Pengcheng

462

Wind Power Plant SCADA and Controls  

SciTech Connect

Modern Wind Power Plants (WPPs) contain a variety of intelligent electronic devices (IEDs), Supervisory Control and Data Acquisition (SCADA) and communication systems. This paper discusses the issues related to a typical WPP's SCADA and Control. Presentation topics are: (1) Wind Turbine Controls; (2) Wind Plant SCADA, OEM SCADA Solutions, Third-Party SCADA Solutions; (3) Wind Plant Control; and (4) Security and Reliability Compliance.

Badrzadeh, Babak [IEEE PES Wind Plant Collector System Design Working Group; Castillo, Nestor [IEEE PES Wind Plant Collector System Design Working Group; Bradt, M. [IEEE PES Wind Plant Collector System Design Working Group; Janakiraman, R. [IEEE PES Wind Plant Collector System Design Working Group; Kennedy, R. [IEEE PES Wind Plant Collector System Design Working Group; Klein, S. [IEEE PES Wind Plant Collector System Design Working Group; Smith, Travis M [ORNL; Vargas, L. [IEEE PES Wind Plant Collector System Design Working Group

2011-01-01T23:59:59.000Z

463

UNDERSTANDING ENTRAINMENT AT COASTAL POWER PLANTS  

E-Print Network (OSTI)

Thermal power plants larger than 50 megawatts (MW) are required to obtain a California Energy Commission UNDERSTANDING ENTRAINMENT AT COASTAL POWER PLANTS: INFORMING A PROGRAM TO STUDY Landing Power Plant (at center). Image from the U.S. Army Corps of Engineers Digital Visual Library. #12

464

Combined power plants -- Past, present, and future  

Science Conference Proceedings (OSTI)

The early history of combined power plants is described, together with the birth of the CCGT plant (the combined cycle gas turbine). Sustained CCGT development in the 1970s and 1980s, based on sound thermodynamic considerations, is outlined. Finally more recent developments and future prospects for the combined gas turbine/steam turbine combined plant are discussed.

Horlock, J.H. [Whittle Lab., Cambridge (United Kingdom)

1995-10-01T23:59:59.000Z

465

Power Quality Investigation of a Manufacturing Plant  

Science Conference Proceedings (OSTI)

This case study summarizes the findings and results of a power quality (PQ) audit performed at a manufacturing plant to harden the plant processes to external PQ disturbances. Recommendations were made by EPRI and implemented by the manufacturer. The result was a significant improvement in immunity of the plant processes to voltage sags.

2007-12-31T23:59:59.000Z

466

Transgenic plants with altered senescence characteristics  

DOE Patents (OSTI)

The identification of senescence-specific promoters from plants is described. Using information from the first senescence-specific promoter, SAG12 from Arabidopsis, other homologous promoters from another plant have been identified. Such promoters may be used to delay senescence in commercially important plants.

Amasino, Richard M. (Madison, WI); Gan, Susheng (Lexington, KY); Noh, Yoo-Sun (Madison, WI)

2002-03-19T23:59:59.000Z

467

Interdisciplinary Research and Training Program in the Plant Sciences  

Science Conference Proceedings (OSTI)

Research on plants continued. Topics include: Molecular basis of symbiotic plant-microbe interations; enzymatic mechanisms and regulation of plant cell wall biosynthesis; molecular mechanisms that regulate the expression of genes in plants; resistance of plants to environmental stress; studies on hormone biosynthesis and action; plant cell wall proteins; interaction of nuclear and organelle genomes; sensor transduction in plants; molecular mechanisms of trafficking in the plant cell; regulation of lipid metabolism; molecular bases of plant disease resistance mechanisms; biochemical and molecular aspects of plant pathogenesis; developmental biology of nitrogen-fixing cyanobacteria; environmental control of plant development and its relation to plant hormones.

Wolk, C.P.

1992-01-01T23:59:59.000Z

468

Conservation Screening Curves to Compare Efficiency Investments to Power Plants  

E-Print Network (OSTI)

Efficiency Investments to Power Plants J. Koorney, A.H.Efficiency Investments to Power Plants Jonathan Koorney,Pollution, and Avoid Power Plant Construction. Testimony

Koomey, J.G.

2008-01-01T23:59:59.000Z

469

Independent Activity Report, Pantex Plant - October 2011 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plant - October 2011 Independent Activity Report, Pantex Plant - October 2011 October 2011 Pantex Plant Operational Awareness Site Visit HIAR PTX-2011-10-28 The purpose of this...

470

Hanford Waste Tank Plant PIA, Richland Operations Office | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Waste Tank Plant PIA, Richland Operations Office Hanford Waste Tank Plant PIA, Richland Operations Office Hanford Waste Tank Plant PIA, Richland Operations Office Hanford...

471

Colorado Rare Plant Technical Committee Annual Rare Plant Symposium Evening Presentation  

E-Print Network (OSTI)

) Development has avoided plant populations FERC ­ interstate pipelines, overseen & permitted by FERC Lead

472

Supercritical plants to come online in 2009  

Science Conference Proceedings (OSTI)

A trio of coal-fired power plants using supercritical technology set to enter service this year. These are: We Energies is Elm Road Generating Station in Wisconsin, a two-unit, 1,230 MW supercritical plant that will burn bituminous coal; a 750 MW supercritical coal-fired power plant at the Comanche Generating Station in Pueblo, Colo., the third unit at the site; and Luminant's Oak Grove plant in Texas which will consist of two supercritical, lignite-fueled power generation units. When complete, the plant will deliver about 1,6000 MW. Some details are given on each of these projects. 2 photos.

Spring, N.

2009-07-15T23:59:59.000Z

473

Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects  

Science Conference Proceedings (OSTI)

These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

None

1986-02-12T23:59:59.000Z

474

Genomic Aspects of Research Involving Polyploid Plants  

Science Conference Proceedings (OSTI)

Almost all extant plant species have spontaneously doubled their genomes at least once in their evolutionary histories, resulting in polyploidy which provided a rich genomic resource for evolutionary processes. Moreover, superior polyploid clones have been created during the process of crop domestication. Polyploid plants generated by evolutionary processes and/or crop domestication have been the intentional or serendipitous focus of research dealing with the dynamics and consequences of genome evolution. One of the new trends in genomics research is to create synthetic polyploid plants which provide materials for studying the initial genomic changes/responses immediately after polyploid formation. Polyploid plants are also used in functional genomics research to study gene expression in a complex genomic background. In this review, we summarize the recent progress in genomics research involving ancient, young, and synthetic polyploid plants, with a focus on genome size evolution, genomics diversity, genomic rearrangement, genetic and epigenetic changes in duplicated genes, gene discovery, and comparative genomics. Implications on plant sciences including evolution, functional genomics, and plant breeding are presented. It is anticipated that polyploids will be a regular subject of genomics research in the foreseeable future as the rapid advances in DNA sequencing technology create unprecedented opportunities for discovering and monitoring genomic and transcriptomic changes in polyploid plants. The fast accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.

Yang, Xiaohan [ORNL; Ye, Chuyu [ORNL; Tschaplinski, Timothy J [ORNL; Wullschleger, Stan D [ORNL; Tuskan, Gerald A [ORNL

2011-01-01T23:59:59.000Z

475

Coal Power Plant Database | Open Energy Information  

Open Energy Info (EERE)

Power Plant Database Power Plant Database Jump to: navigation, search Name Coal Power Plant Database Data Format Excel Spreadsheet, Excel Pivot Table, Access Database Geographic Scope United States TODO: Import actual dataset contents into OpenEI The Coal Power Plant Database (CPPDB) is a dataset which "consolidates large quantities of information on coal-fired power plants in a single location."[1] It is produced by the National Energy Technology Laboratory (NETL). External links 2007 Edition Excel Spreadsheet Excel Pivot Table Access Database User's Manual (PDF) References ↑ "User's Manual: Coal Power Plant Database" Retrieved from "http://en.openei.org/w/index.php?title=Coal_Power_Plant_Database&oldid=273301" Categories: Datasets Articles with outstanding TODO tasks

476

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

Binary Cycle Power Plant Binary Cycle Power Plant (Redirected from Binary Cycle Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators.

477

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

Binary Cycle Power Plant Binary Cycle Power Plant (Redirected from Binary) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators. Binary cycle power plants are closed-loop systems and virtually nothing

478

Enforcement Documents - Pantex Plant | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pantex Plant Pantex Plant Enforcement Documents - Pantex Plant January 7, 2013 Enforcement Letter, NEL-2013-01 Issued to B&W Pantex, LLC related to the Conduct of Nuclear Explosive Operations at the Pantex Plant November 21, 2006 Preliminary Notice of Violation, BWXT Pantex, LLC - EA-2006-04 Issued to BWXT Pantex, LLC, related to Quality Assurance and Safety Basis Requirements Violations at the Pantex Plant May 16, 2005 Preliminary Notice of Violation, BWXT Pantex LLC - EA-2005-02 Preliminary Notice of Violation issued to BWXT Pantex LLC, related to High Explosive Cracking during Weapon Disassembly at the Pantex Plant June 21, 2000 Consent Order, Mason & Hanger Corporation - EA-2000-07 Price-Anderson Enforcement Consent Order issued to Mason & Hanger Corporation related to Fire Suppression System Issues at the Pantex Plant,

479

Wood Burning Combined Cycle Power Plant  

E-Print Network (OSTI)

A combined cycle power plant utilizing wood waste products as a fuel has been designed. This plant will yield a 50% efficiency improvement compared to conventional wood-fueled steam power plants. The power plant features an externally-fired gas turbine combined cycle system that obtains its heat input from a high temperature, high pressure ceramic air heater burning wood waste products as a fuel. This paper presents the results of the design study including the cycle evaluation and a description of the major components of the power plant. The cycle configuration is based on maximum fuel efficiency with minimum capital equipment risk. The cycle discussion includes design point performance of the power plant. The design represents a significant step forward in wood-fueled power plants.

Culley, J. W.; Bourgeois, H. S.

1984-01-01T23:59:59.000Z

480

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility Type Commercial Online Date Geothermal Area

Note: This page contains sample records for the topic "mtbe plants petrochemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Power Plant Baghouse Survey 2011  

Science Conference Proceedings (OSTI)

The requirement to reduce stack particulate matter (PM) emissions is one of the key challenges for coal-fired power plants, in light of the proposed Maximum Achievable Control Technology (MACT) ruling for hazardous air pollutants (HAPs) issued by the U.S. Environmental Protection Agency on March 16, 2011. The proposed MACT ruling may require that total PM, including condensable and filterable PM, be maintained at 0.03 lb/MMBtu. A final HAPs ruling is expected in December 2011. As particulate emission reg...

2011-12-06T23:59:59.000Z

482

Nuclear Power Plant NDE Challenges — Past, Present, and Future  

Science Conference Proceedings (OSTI)

The operating fleet of U.S. nuclear power plants was built to fossil plant standards (of workmanship

S. R. Doctor

2007-01-01T23:59:59.000Z

483

Oceanographic Considerations for Desalination Plants in Southern California Coastal Waters  

E-Print Network (OSTI)

Considerations for Desalination Plants in SouthernConsiderations for Desalination Plants in Southernfor the Huntington Beach Desalination Project”, submitted to

Jenkins, Scott A; Wasyl, Joseph

2005-01-01T23:59:59.000Z

484

Waste Isolation Pilot Plant's Excavated Salt Agreement Supports...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plant's Excavated Salt Agreement Supports Conservation Education, Other Public Initiatives Waste Isolation Pilot Plant's Excavated Salt Agreement Supports Conservation Education,...

485

The parabolic trough power plants Andasol 1 to 3 The largest solar power plants in the world  

E-Print Network (OSTI)

The parabolic trough power plants Andasol 1 to 3 The largest solar power plants in the world and solar-thermal power plants The first parabolic trough power plants in Europe ­ the world's largest solar

Laughlin, Robert B.

486

Sabotage at Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

Purvis, James W.

1999-07-21T23:59:59.000Z

487

Unusual plant features gas turbines  

SciTech Connect

Gas turbines were chosen by Phillips Petroleum Co. to operate the first gas-injection plant in the world to use gas-type turbines to drive reciprocating compressors. The plant is located in Lake Maracaibo, Venezuela. Gas turbines were chosen because of their inherent reliability as prime movers and for their lack of vibration. Reciprocating compressors were decided upon because of their great flexibility. Now, for the first time, the advantages of both gas turbines and reciprocating compressors are coupled on a very large scale. In this installation, the turbines will operate at about 5,000 rpm, while the compressors will run at only 270 rpm. Speed will be reduced through the giant gear boxes. The compressor platform rests on seventy- eight 36-in. piles in 100 ft of water. Piles were driven 180 ft below water level. To dehydrate the gas, Phillips will install a triethylene glycol unit. Two nearby flow stations will gather associated gas produced at the field and will pipe the gas underwater to the gas injection platform. Lamar Field is in the S. central area of Lake Maracaibo. To date, it has produced a 150 million bbl in 10 yr. Studies have indicated that a combination of waterflooding and repressuring by gas injection could double final recovery. Waterflooding began in 1963.

Franco, A.

1967-08-01T23:59:59.000Z

488

PlantGL: A Python-based geometric library for 3D plant modelling at different scales  

Science Conference Proceedings (OSTI)

In this paper, we present PlantGL, an open-source graphic toolkit for the creation, simulation and analysis of 3D virtual plants. This C++ geometric library is embedded in the Python language which makes it a powerful user-interactive platform for plant ... Keywords: Canopy reconstruction, Crown envelopes, Graphic library, Plant architecture, Plant scene-graphs, Virtual plants

C. Pradal; F. Boudon; C. Nouguier; J. Chopard; C. Godin

2009-01-01T23:59:59.000Z

489

Waste Isolation Pilot Plant | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Isolation Pilot Plant Waste Isolation Pilot Plant Waste Isolation Pilot Plant Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations The mission of the Waste Isolation Pilot Plant site is to provide permanent, underground disposal of TRU and TRU-mixed wastes (wastes that also have hazardous chemical components). TRU waste consists of clothing, tools, and debris left from the research and production of nuclear weapons. TRU waste is contaminated with small amounts of plutonium and other TRU radioactive elements. Over the next 35 years, WIPP is expected to receive approximately 175,000 cubic meters of waste from various DOE sites. Enforcement September 8, 2006 Enforcement Letter, Washington TRU Solutions - September 8, 2006

490

New York Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Indian Point Unit 2, Unit 3","2,063","16,321",39.0,"Entergy Nuclear Indian Point" "James A Fitzpatrick Unit 1",855,"6,361",15.2,"Entergy Nuc Fitzpatrick LLC" "Nine Mile Point Nuclear Station Unit 1, Unit 2","1,773","14,239",34.0,"Nine Mile Point Nuclear Sta LLC" "R E Ginna Nuclear Power Plant Unit 1",581,"4,948",11.8,"R.E. Ginna Nuclear Power Plant, LLC" "4 Plants

491

Pantex Plant | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant | National Nuclear Security Administration Plant | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our Locations > Pantex Plant Pantex Plant http://www.pantex.com/ Field Office: The NNSA Production Office is responsible for contract management and oversight of the Pantex Plant in Amarillo, Texas and the Y-12 National Security Complex in Oak Ridge, Tenn. The Pantex Plant is

492

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal/Power Plant < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (20) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine

493

Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli  

E-Print Network (OSTI)

One approach to reducing the costs of advanced biofuel production from cellulosic biomass is to engineer a single microorganism to both digest plant biomass and produce hydrocarbons that have the properties of petrochemical ...

Bokinsky, Gregory

494

Primer on Flexible Operations in Fossil Plants  

Science Conference Proceedings (OSTI)

This primer describes the significant changes that have occurred over the past decade in the duty cycles of fossil power plants and the implications for plant equipment and costs. These changes include the increasing shift in coal-fired and natural-gas-fired power plants from high-capacity-factor, baseloaded operation to various modes of flexible operation, including load-following and low-load operation. ...

2013-09-27T23:59:59.000Z

495

Optimal Instrumentation for Combined Cycle Plant Performance  

Science Conference Proceedings (OSTI)

Power plants today rely on distributed control systems (DCS) to operate their equipment. These control systems subsequently rely on process information provided by various instruments in the field. The accuracy and reliability of field instrumentation has a direct correlation to the ability of the control system to operate correctly, including the ability to control the plant in a safe and reliable manner.Beyond instrumentation relied on for control of the power plant, additional ...

2013-11-11T23:59:59.000Z

496

WATER REQUIREMENTS FOR A RADIOCHEMICAL PROCESSING PLANT  

SciTech Connect

A survey of the water requirements is presented for a hypothetical plant to process all the fuel from a 15,000Mwe nuclear economy. For each processing plant, specific requirements must be based on a detailed water survey which includes water quality, process requirements, and in-plant conservation plans. These considerations are discussed and the quantitative requirements are listed. (J.R.D.)

Harrington, F.E.

1962-05-28T23:59:59.000Z

497

Thermal spray applications for power plant components  

Science Conference Proceedings (OSTI)

Power plants usually are located near water and many are in salt water environments. Corrosion occurring in these environments is a problem often solved with thermal spray coatings. The use of thermal spray aluminum and zinc in three power plants for various components is reviewed. Special emphasis is on the cooling tower at the Seabrook, New Hampshire plant. A guide to selection of the coating and process also is given.

Sampson, E.R.

2000-03-01T23:59:59.000Z

498

Practical Procedures for Auditing Industrial Boiler Plants  

E-Print Network (OSTI)

Industrial boiler plants are an area of opportunity in virtually every industry to save energy and reduce costs by using relatively simple, inexpensive auditing procedures. An energy audit consists of inspection, measurement, analysis, and the preparation of recommendations. A complete boiler plant program will consider each individual boiler, boiler room auxiliary equipment, steam distribution and return systems, and steam end use equipment. This paper summarizes the practical procedures, techniques, and instrumentation which Nabisco uses in its boiler plant energy conservation program.

O'Neil, J. P.

1980-01-01T23:59:59.000Z

499

Assessment of Amines for Fossil Plant Applications  

Science Conference Proceedings (OSTI)

The purity and proper chemical treatment of water and steam are central to ensuring fossil and heat recovery steam generator (HRSG) plant component availability and reliability, which are critical to the overall economic performance and profitability of plant unit operations. This report provides a technical assessment of neutralizing amines for application in plant cycles to improve the pH conditions in the low pressure (LP) evaporators and economizers of HRSGs, the phase transition zone (PTZ) of the LP...

2010-03-31T23:59:59.000Z

500

Independent Oversight Inspection, Portsmouth Gaseous Diffusion Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portsmouth Gaseous Diffusion Portsmouth Gaseous Diffusion Plant - November 2006 Independent Oversight Inspection, Portsmouth Gaseous Diffusion Plant - November 2006 November 2006 Inspection of Emergency Management at the Portsmouth Gaseous Diffusion Plant The Secretary of Energy's Office of Independent Oversight, within the Office of Security and Safety Performance Assurance, conducted an inspection of the emergency management program at the Portsmouth Gaseous Diffusion Plant (PORTS) in August and September 2006. The coordination of emergency plans and procedures among USEC and DOE contractor organizations has successfully integrated the emergency management programs into a single cohesive program for the PORTS site. Other strengths include accurate hazards surveys that identify applicable