Sample records for mtbe ethyl tertiary

  1. Atmospheric Methyl Tertiary Butyl Ether (MTBE) at a Rural Mountain Site in California

    E-Print Network [OSTI]

    Cohen, Ronald C.

    Atmospheric Methyl Tertiary Butyl Ether (MTBE) at a Rural Mountain Site in California Gunnar W. Schade,* Gabrielle B. Dreyfus, and Allen H. Goldstein ABSTRACT (CARB) measured MTBE in urban regions in 1995­ 1996, reporting a range of 0.4 to 13.2 ppbv in the LosMethyl tertiary butyl ether (MTBE

  2. State Restrictions on Methyl Tertiary Butyl Ether (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01T23:59:59.000Z

    By the end of 2005, 25 states had barred, or passed laws banning, any more than trace levels of methyl tertiary butyl ether (MTBE) in their gasoline supplies, and legislation to ban MTBE was pending in 4 others. Some state laws address only MTBE; others also address ethers such as ethyl tertiary butyl ether (ETBE) and tertiary amyl methyl ether (TAME). Annual Energy Outlook 2006 assumes that all state MTBE bans prohibit the use of all ethers for gasoline blending.

  3. Acute toxicity of methyl-tertiary-butyl ether (MTBE) to aquatic organisms

    SciTech Connect (OSTI)

    BenKinney, M.T.; Barbieri, J.F.; Gross, J.S.; Naro, P.A. [Stonybrook Labs. Inc., Princeton, NJ (United States)

    1994-12-31T23:59:59.000Z

    Due to the recent amendment of the Clean Air Act, oxygenates are now being added to gasolines to boost octane and reduce air pollution from combustion in heavily populated areas. Oxygenates such as alcohols (i.e. methanol) and ethers (methyl-tertiary-butyl ether, MTBE) are commonly being used. A series of bioassay studies have been conducted with MTBE, one of the most commonly used octane-enhancing additives. Freshwater and marine studies were conducted with fish, invertebrates and algae to determine the impact of this material on the environment following accidental spills. Static-renewal studies were run to ensure maintenance of MTBE, a highly volatile material in the test containers. Chemical confirmation of exposure concentrations demonstrated the adequacy of the exposure system. Mysid shrimp were highly sensitive to MTBE, with significantly less effect observed with the other species evaluated. These data have implications for spill response, particularly since MTBE is slow to biodegrade and will rapidly move through groundwater. Comparative data for other oxygenates will also be discussed.

  4. Alveolar breath sampling and analysis to assess exposures to methyl tertiary butyl ether (MTBE) during motor vehicle refueling

    SciTech Connect (OSTI)

    Lindstrom, A.B.; Pleil, J.D. [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

    1996-07-01T23:59:59.000Z

    In this study we present a sampling and analytical methodology that can be used to assess consumers` exposures to methyl tertiary butyl ether (MTBE) that may result from routine vehicle refueling operations. The method is based on the collection of alveolar breath samples using evacuated one-liter stainless steel canisters and analysis using a gas chromatograph-mass spectrometer equipped with a patented `valveless` cryogenic preconcentrator. To demonstrate the utility of this approach, a series of breath samples was collected from two individuals (the person pumping the fuel and a nearby observer) immediately before and for 64 min after a vehicle was refueled with premium grade gasoline. Results demonstrate low levels of MTBE in both subjects` breaths before refueling, and levels that increased by a factor of 35 to 100 after the exposure. Breath elimination models fitted to the post exposure measurements indicate that the half-life of MTBE in the first physiological compartment was between 1.3 and 2.9 min. Analysis of the resulting models suggests that breath elimination of MTBE during the 64 min monitoring period was approximately 155 {mu}g for the refueling subject while it was only 30 {mu}g for the nearby observer. This analysis also shows that the post exposure breath elimination of other gasoline constituents was consistent with previously published observations. 20 refs., 3 figs., 4 tabs.

  5. Oxidation of methyl tert-butyl ether (MTBE) and ethyl tert-butyl ether (ETBE) by ozone and combined ozone/hydrogen peroxide

    SciTech Connect (OSTI)

    Leitner, N.K.V.; Papailhou, A.L.; Croue, J.P.; Dore, M. (Univ. de Poitiers (France)); Peyrot, J. (British Petroleum, Harfleur (France))

    1994-01-01T23:59:59.000Z

    The aim of this work was to study the reaction of ozone and combined ozone/hydrogen peroxide on oxygenated additives such as methyl tert-butyl ether (MTBE) and ethyl tert-butyl ether (ETBE) in dilute aqueous solution using controlled experimental conditions. Experiments conducted in a semi-continuous reactor with MTBE and ETBE in combination (initial concentration: 2 mmol/L of each) showed that ETBE was better eliminated than MTBE with both ozone and combined O[sub 3]/H[sub 2]O[sub 2]. batch experiments led to the determination of the ratio of the kinetic constants for the reaction of OH[degree]-radical with MTBE and ETBE (k[sub OH[degree]/ETBE]/k[sub OH[degree]//MTBE] = 1.7). Tert-butyl formate and tert-butyl acetate were identified as the ozonation byproducts of MTBE an ETBE, respectively, while tert-butyl alcohol was found to be produced during the ozonation of both compounds. 10 refs., 10 figs., 1 tab.

  6. Biodegradation of methyl tertiary butyl ether (MTBE) using a granular activated carbon trickling filter

    SciTech Connect (OSTI)

    Converse, B.M.; Schroeder, E.D.; Chang, D.P.Y.

    1999-07-01T23:59:59.000Z

    A pilot scale trickling filter was constructed using granular activated carbon (GAC) as the packing medium and inoculated with a microbial culture known to degrade MTBE. The packing dimensions were 0.076 m in diameter and 0.22 m deep. The unit operated with recycling flow for two months before a biofilm was observed on the GAC. After two additional months the biofilm had visibly spread throughout the packing. A few pieces of GAC were placed in a sealed bottle with MTBE-contaminated water and nutrients. Headspace analysis performed over 14 days confirmed that MTBE degradation was occurring. The trickling filter was converted to continuous flow and operated for one month at a nominal flow rate of 0.1 L/min and a hydraulic loading rate of 32 m{sup 3}/m{sup 2}-d. Samples were collected for analysis at the spray nozzle and at the bottom of the trickling filter. Fractional removal varied with influent MTBE concentration, temperature and liquid flow rate. Percent MTBE removal was as high as 85%. A mechanical failure resulted in the trickling filter bed drying and percent removal dropping to less than 1 percent. However, the system recovered within five days.

  7. Oxygenates du`jour...MTBE? Ethanol? ETBE?

    SciTech Connect (OSTI)

    Wolfe, R.

    1995-12-31T23:59:59.000Z

    There are many different liquids that contain oxygen which could be blended into gasoline. The ones that have been tried and make the most sense are in the alcohol (R-OH) and ether (R-O-R) chemical family. The alcohols considered are: methanol (MeOH), ethanol (EtOH), tertiary butyl alcohol (TBA). The ethers are: methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), tertiary amyl ethyl ether (TAEE), di-isopropyl ether (DIPE). Of the eight oxygenates listed above, the author describes the five that are still waiting for widespread marketing acceptance (methanol, TBA, TAME, TAEE, and DIPE). He then discusses the two most widely used oxygenates in the US, MTBE and ethanol, along with the up-and-coming ethanol ether, ETBE. Selected physical properties for all of these oxygenates can be found in Table 2 at the end of this paper. A figure shows a simplified alcohol/ether production flow chart for the oxygenates listed above and how they are interrelated.

  8. Factors influencing biological treatment of MTBE contaminated ground water

    E-Print Network [OSTI]

    Stringfellow, William T.; Hines Jr., Robert D.; Cockrum, Dirk K.; Kilkenny, Scott T.

    2001-01-01T23:59:59.000Z

    Methyl tertiary-butyl ether (MTBE) biodegradation in batchCometabolic degradation of MTBE by a cyclohexane-oxidizingof 49 Biological Treatment of MTBE Fortin, N. Y. , and M. A.

  9. MTBE Production Economics (Released in the STEO April 2001)

    Reports and Publications (EIA)

    2001-01-01T23:59:59.000Z

    The purpose of this analysis is to evaluate the causes of methyl tertiary butyl ether (MTBE) price increases in 2000.

  10. Review of potential technologies for the treatment of Methyl tertiary butyl Ether (MtBE) in drinking water

    SciTech Connect (OSTI)

    Brown, A.; Browne, T.E. [Komex H2O Science, Huntington Beach, CA (United States); Devinny, J.S. [Univ. of Southern California, Los Angeles, CA (United States)] [and others

    1997-12-31T23:59:59.000Z

    At present, the state of knowledge on effective treatment technologies for MtBE in drinking water, and groundwater in general, is limited. Research by others is focusing on the remediation of MtBE close to the point of release. The City of Santa Monica, MWD, Komex and USC are currently conducting research into different technologies that could be used to remove MtBE from drinking water supplies. The objectives of the research are to evaluate different treatment technologies to identify cost-effective and technically feasible alternatives for the removal of MtBE from drinking water. The evaluation is considering moderate to high water flow rates (100 to 2,000+ gpm) and low to moderate MtBE concentrations (<2,000 {mu}g/l). The research program includes four phases: (1) Literature Review; (2) Bench Scale Study; (3) Field Scale Pre-pilot Study; and (4) Summary Evaluation. This paper presents some preliminary information and findings from the first phase of this research - the literature review. The review discusses the chemical properties of MtBE and how they affect remediation and thus, an evaluation of alternative treatment technologies. The review of available literature, and the applicability and limitations of the following technologies are presented in detail.

  11. Methyl tertiary butyl ether (MtBE) contamination of the City of Santa Monica drinking water supply

    SciTech Connect (OSTI)

    Brown, A.; Farrow, J.R.C. [Komex H2O Science, Huntington Beach, CA (United States); Rodriguez, R.A. [City of Santa Monica, CA (United States)] [and others

    1997-12-31T23:59:59.000Z

    In the summer of 1996, the City of Santa Monica ceased pumping groundwater from two Well Fields (Charnock and Arcadia) used for public drinking water supply due to persistent and increasing concentrations of MtBE in all seven municipal water supply wells. This lost production accounted for 50% of the City`s total drinking water supply. In late 1996, the City, in cooperation with State and Federal agencies, initiated an investigation of MtBE contamination at the two well fields. The objectives of the investigation were as follows: (1) Review available data on the production, use, chemical characteristics, fate and transport, toxicology, and remediation of MtBE; (2) Identify locations of potential sources of MtBE groundwater contamination at the well fields; (3) Develop an understanding of the hydrologic pathways from the potential sources to the drinking water wells; and (4) Evaluate alternative treatment technologies for the removal of MtBE from drinking water. In addition to a review of available information about MtBE, the investigation included an extensive review of literature and available data relevant to the well fields, including well field production histories, site and regional hydrogeology, all well logs and production in the groundwater basins, general groundwater quality, and the record of MtBE detection. Based upon the review of background information, conceptual hydrogeologic models were developed. A detailed review of agency files for over 45 potential source sites was conducted. The information from this review was summarized, and source site screening and ranking criteria were developed. A field program was conducted at the major well field (Charnock), including soil gas surveys, CPTs, soil borings and well installations, geophysics, and aquifer testing. The field program provided site data which allowed the conceptual hydrogeologic model to be refitted to actual site conditions.

  12. Evaluating nonmetallic materials` compatibility with MTBE and MTBE + gasoline service

    SciTech Connect (OSTI)

    Hotaling, A.C.

    1995-12-31T23:59:59.000Z

    Methyl-tertiary-butyl-ether (MTBE) has become the leading oxygenate in use in the petroleum industry. Since its introduction several years ago there has been premature deterioration of nonmetallic materials in both neat MTBE and MTBE + gasoline. This degradation is costly in several ways: maintenance, replacement, environmental, and product-loss. Identifying nonmetallic materials compatible with MTBE and MTBE + gasoline is important to the petroleum industry -- all the way from the refinery to the retail sale. Exposure tests have been conducted with different types of nonmetallics in neat MTBE, neat MTBE vapor, and 5% MTBE + 95% gasoline. As in previously reported tests, Teflon{reg_sign} laminates were the top performers, experiencing very little change in any of the properties tested. An ester and ether-based urethane laminate also exhibited only small property changes. Most materials displayed significant deterioration of one or more of the measured properties, even in MTBE condensing vapor and the 5% MTBE + 95% gasoline. The specific effects on each material need to be individually evaluated to determine the effect on service life.

  13. Statoil outlines MTBE development program

    SciTech Connect (OSTI)

    Not Available

    1991-11-25T23:59:59.000Z

    This paper reports that Norway's state oil company Den Norkse state Oljeselskap AS has outlined plans to become one of the major European producers of methyl tertiary butyl ether in the 1990s. Statoil predicts European demand for MTBE will jump to 4.5 million metric tons/year by 2000 from 2.5 million tons in 1990. Europe currently is a net importer of MTBE, with a productive capacity of 2.2 million tons/year.

  14. Economics of new MTBE design

    SciTech Connect (OSTI)

    Al-Jarallah, A.M.; Lee, A.K.K.

    1988-07-01T23:59:59.000Z

    Methyl Tertiary Butyl Ether (MTBE) is produced industrially by catalytic reaction between methanol and isobutene. The catalyst that is widely used is an acidic ion exchange resin. This article explores design and economics when sulfuric acid is the catalyst. The profitability of MTBE production depends mainly on the cost of butenes and methhanol. Thus, the example shows MTBE made with a catalyst of sulfuric acid was profitable at a Saudi Arabian location, even though it was not profitable at a U.S. Gulf Coast location.

  15. Analysis of dissolved benzene plumes and methyl tertiary butyl ether (MTBE) plumes in ground water at leaking underground fuel tank (LUFT) sites

    SciTech Connect (OSTI)

    Happel, A.M.; Rice, D. [Lawrence Livermore National Lab., CA (United States); Beckenbach, E. [California Univ., Berkeley, CA (United States); Savalin, L.; Temko, H.; Rempel, R. [California State Water Resources Control Board, Sacramento, CA (United States); Dooher, B. [California Univ., Los Angeles, CA (United States)

    1996-11-01T23:59:59.000Z

    The 1990 Clean Air Act Amendments mandate the addition of oxygenates to gasoline products to abate air pollution. Currently, many areas of the country utilize oxygenated or reformulated fuel containing 15- percent and I I-percent MTBE by volume, respectively. This increased use of MTBE in gasoline products has resulted in accidental point source releases of MTBE containing gasoline products to ground water. Recent studies have shown MTBE to be frequently detected in samples of shallow ground water from urban areas throughout the United States (Squillace et al., 1995). Knowledge of the subsurface fate and transport of MTBE in ground water at leaking underground fuel tank (LUFT) sites and the spatial extent of MTBE plumes is needed to address these releases. The goal of this research is to utilize data from a large number of LUFT sites to gain insights into the fate, transport, and spatial extent of MTBE plumes. Specific goals include defining the spatial configuration of dissolved MTBE plumes, evaluating plume stability or degradation over time, evaluating the impact of point source releases of MTBE to ground water, and attempting to identify the controlling factors influencing the magnitude and extent of the MTBE plumes. We are examining the relationships between dissolved TPH, BTEX, and MTBE plumes at LUFT sites using parallel approaches of best professional judgment and a computer-aided plume model fitting procedure to determine plume parameters. Here we present our initial results comparing dissolved benzene and MTBE plumes lengths, the statistical significance of these results, and configuration of benzene and MTBE plumes at individual LUFT sites.

  16. Equilibrium thermodynamic analysis of liquid-phase ethyl tert-butylether (ETBE) synthesis

    SciTech Connect (OSTI)

    Jensen, K.L.; Datta, R. [Univ. of Iowa, Iowa City, IA (United States)

    1994-12-31T23:59:59.000Z

    Methyl tertiary butyl ether (MTBE) is now the second largest volume organic chemical, only behind ethylene, produced in the U.S. This is remarkable since its commercial production began barely two decades ago. Although MTBE is currently the industry standard, it has been proposed that ethanol and other renewable additives make up to 30% of the oxygenate market. As a result, ethyl tertiary butyl ether (ETBE, or 2-ethyoxy 2-methyl propane), derived from renewable ethanol and isobutylene, has emerged as a promising new oxygenate. ETBE also has a somewhat lower blending Reid vapor pressure as well as a higher octane number than MTBE. This paper describes the thermodynamic equilibrium constant for the production of ETBE.

  17. A review of treatment technologies for MTBE

    SciTech Connect (OSTI)

    Bass, D. [Groundwater Technology, Inc., Norwood, MA (United States)

    1995-12-31T23:59:59.000Z

    Available treatment technologies for methyl tertiary butyl ether (MTBE) contamination in soil, groundwater, and recovered groundwater are reviewed and assessed. MTBE contamination is becoming an important issue due to the increasing prevalence and regulation of this gasoline additive. In addition, MTBE is more soluble and more mobile in groundwater than most hydrocarbons, so it is usually the first gasoline constituent to reach sensitive receptors. Treatment of MTBE is complicated by its Henry`s constant, which is lower than most other gasoline constituents. Furthermore, evidence of biodegradability of MTBE is mixed, and MTBE does not degrade rapidly abiotically. Groundwater pumping is usually employed to contain and collect MTBE-contaminated groundwater, often successfully because of its high aqueous solubility. Air sparging/soil vapor extraction is also successfully employed to treat MTBE, but its effectiveness is reduced by the low Henry`s constant of MTBE. Sparging and other aerobic bioremediation approaches are hampered by the poor biodegradability of MTBE. Oxidation technologies, such as ozone injection, hold promise for rapid in situ remediation of MTBE. Treatment of recovered groundwater contaminated with MTBE is also problematic. MTBE adsorbs poorly to granular activated carbon; advanced oxidation processes are effective on MTBE, but entail high capital and operating costs; bioreactors are of questionable effectiveness on MTBE. Air stripping is usually the most cost-effective treatment technology for MTBE so long as the off gas from the air stripper can be discharged without treatment. However, off gas treatment is expensive, so groundwater is sometimes heated to reduce the requirement for stripping air.

  18. Role of Volatilization in Changing TBA and MTBE Concentrations at

    E-Print Network [OSTI]

    a low affinity for gasoline (low Kfw, Table 1). Therefore, minute amounts of TBA in the MTBE blended tertiary butyl ether (MTBE) added to gasoline. Frequent observations of high TBA, and especially rising TBA/MTBE concentration ratios, in groundwater at gasoline spill sites are generally attributed to microbial conversion

  19. UMass builds bugs to eat MTBE ByAuriaCimino

    E-Print Network [OSTI]

    Lovley, Derek

    UMass builds bugs to eat MTBE ByAuriaCimino STAfFWRITER An area university's process to destroy with methyl tertiary butyl ether (MTBE), which is found in gasoline. Once the first field trial is complete in particular has suffered from MTBE contamination because of the abundance of groundwater in the state, said

  20. Experimental Pathology Laboratories, Inc. Methyl-Tertiary-Butyl Ether

    E-Print Network [OSTI]

    Baker, Chris I.

    COORDINATOR'S REPORT FOR LIFETIME CARCINOGENICITY STUDY OF METHYL-TERTIARY-BUTYL ETHER (MTBE) IN SPRAGUE CARCINOGENICITY STUDY OF METHYL-TERTIARY-BUTYL ETHER (MTBE) IN SPRAGUE-DAWLEY RATS CONDUCTED AT THE CANCER

  1. Evaluation and Optimization of MTBE Biodegradation in Aquifers, Final Report

    SciTech Connect (OSTI)

    Legler, T; Balser, L; Koester, C; Wilson, W

    2004-02-13T23:59:59.000Z

    This study was focused on meeting the following objectives concerning the process of methyl tertiary butyl ether (MTBE) biodegradation, with the goal of optimizing this process in situ: 1. Assess whether intrinsic bioattenuation of MTBE is feasible under aerobic conditions across several contaminated sites. 2. Determine the effect of co-contaminants, specifically water-soluble gasoline components (most notably benzene, toluene, ethylbenzene and xylenes [BTEX]) on MTBE biodegradation. 3. Determine whether microbial and/or chemical factors contribute to different MTBE degradative activities. 4. Isolate and characterize MTBE-degrading microorganisms from sediments in which MTBE biodegradation was observed.

  2. MTBE -- A global perspective

    SciTech Connect (OSTI)

    Ludlow, W.I.; Miller, K.D. Jr.; Liew, R.E. van [DeWitt and Co., Inc., Houston, TX (United States)

    1995-09-01T23:59:59.000Z

    Methyl tertiary butyl ether (MTBE) is a major and familiar component of Reformulated and Oxygenated gasoline in the US. As such, it is essential to the success of the Clean Air Act programs now reaching a crescendo in major urban areas. In less than ten years, US MTBE capacity has grown from about 4,000 B/D to more than 200,000 B/D. Outside of the USA, its role is less widely understood. Although MTBE markets elsewhere are much less driven by legislation, they have seen the same spectacular growth prospects. Overall, about as much MTBE is used today overseas as in the US. To date, this has to be one of the petrochemical industry`s major success stories. Yet today, the MTBE industry stands at a crossroads, with the direction of future development uncertain at best. DeWitt`s gasoline and oxygenates team has closely observed the ups and downs of this market during most of its turbulent history. In this paper, the authors shall try to set down the major developments and prospects, with the personal familiarity of having been there when things changed. The story begins with a brief historical sketch, leading up to the identification of four critical periods in which major changes took place. The causes of today`s uncertainty lie in all of these stages, and are in a very real sense an example of the ``Law of Unintended consequences.`` Having set the stage, a cautious set of predictions will be put forth. These are neither as promising as proponents would like, nor as unpromising as some would tend to believe.

  3. Petrochem industry expands North American MTBE capacity

    SciTech Connect (OSTI)

    Not Available

    1992-10-05T23:59:59.000Z

    This paper reports that petrochemical manufacturers continue to increase methyl tertiary butyl ether (MTBE) capacity in North America. The action reflects refiners' reformulation of gasoline to help reduce auto emissions. Demand for gasoline blending oxygenates such as MTBE is expected to increase as U.S. refiners reconfigure processing trains to produce fuels meeting requirements of the Clean Air Act amendments of 1990. Recent progress includes plans to build an MTBE plant in Mexico and start-ups of plants on the U.S. Gulf Coast and in Canada.

  4. MTBE: Wild card in groundwater cleanup

    SciTech Connect (OSTI)

    Koenigsberg, S. [Regenesis Bioremediation Products, San Juan Capistrano, CA (United States)

    1997-11-01T23:59:59.000Z

    Subsurface releases of the gasoline oxygenate, methyl tertiary butyl ether (MTBE) seriously compromise the remediation and closure of properties that have ground water contaminated with BTEX and other conventional fuel hydrocarbon components. Although a manageable protocal for BTEX remediation is being set up, the MTBE problem continues to be difficult. This article discusses a new magnesium peroxide compound which could be part of the solution. Covered topics include oxygen release compound (ORC) enhance bioremediation and the role of oxygen and ORC in MTBE remediation. 1 fig.

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    Ethylene dichloride 1 MTBE 2 Vinylchloride 3 Ethylbenzene 1Methyl- Tertiary-Butyl-Ether (MTBE) or Ethyl-Tertiary-Butyl-Styrene Vinylchloride MTBE Benzene, Toluene, Xylene Acetone

  6. MTBE: The headache of cleaner air

    SciTech Connect (OSTI)

    Kneiss, J.

    1995-07-01T23:59:59.000Z

    Gasoline with methyl tertiary butyl ether (MTBE) has been sold in the United States since 1979, when it was added to fuels as an octane enhancer after lead was phased out of motor fuels. Recently it has been introduced as a means of reducing carbon monoxide emissions during the winter months in targeted US cities. However, there is concern over health complaints including headaches, dizziness and nausea from residents of some areas. These reports have launched an era of assidious research by scientists and public health officials across the country to learn more about MTBE`s short-term and long-term, and possibly carcinogenic, health effects. New research should help weigh the risk of MTBE as a possible carcinogen and the effectiveness of MTBE-blended fuels in reducing carbon monoxide levels. The question is whether, in minimizing one risk, is another risk - however small - being introduced?

  7. Motor Gasoline Outlook and State MTBE Bans

    Reports and Publications (EIA)

    2003-01-01T23:59:59.000Z

    The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending state bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year.

  8. MTBE, Oxygenates, and Motor Gasoline (Released in the STEO October 1999)

    Reports and Publications (EIA)

    1999-01-01T23:59:59.000Z

    The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an increase in MTBE production between 1990 and 1994. MTBE demand increased from 83,000 in 1990 to 161,000 barrels per day in 1994. The reformulated gasoline (RFG) program provided a further boost to oxygenate blending. The MTBE contained in motor gasoline increased to 269,000 barrels per day by 1997.

  9. The MTBE solution: Octanes, technology, and refinery profitability

    SciTech Connect (OSTI)

    Lander, E.P.; Hubbard, J.N.; Smith, L.A.

    1983-03-01T23:59:59.000Z

    This paper has been developed to provide refiners with business decision insight regarding the production of methyl tertiary butyl ether (MTBE) from refinery - (FCC) produced isobutylene. The driving forces making MTBE an attractive investment are examined with regard to the increasing demand for higher octane unleaded gasolines. The decision to proceed with MTBE production depends on the profitability of such an investment and the refiner's ability to meet market demands using available processing equipment, refinery produced streams and external feedstocks. The factors affecting this decision are analyzed in this paper and include: industry ability to meet rising octane demand; profit potential realized by diverting isobutylene to MTBE; availability of technology for producing MTBE; and investment and operating costs required to produce MTBE. Chemical Research and Licensing and NEOCHEM have developed a simple, low cost process to produce MTBE, reducing the excessive equipment and high operating costs that were associated with conventional MTBE designs. The economics and process benefits of installing a CRandL/NEOCHEM MTBE process are examined within the framework of a generalized medium-sized refinery configuration.

  10. Global developments in MTBE

    SciTech Connect (OSTI)

    Feller, L.W. [CMAI, Houston, TX (United States)

    1995-12-31T23:59:59.000Z

    This paper is intended to provide an overview of some of the recent developments in MTBE demand growth worldwide and the impact of these developments on MTBE demand in the future. It provides a perspective of the influence of developments in the US on the worldwide MTBE markets. The public`s outcry regarding oxygenates in gasoline, and specifically MTBE, that has been evolving in the US during the past several months is in response to a politically mandated requirement for a fuel that contains oxygen that is provided by MTBE or ethanol. This public unrest had negatively impacted the market price for MTBE at the time this paper was being prepared. However, the author believes that MTBE, because of its clean octane capabilities, will continue to be used as an octane blendstock for gasoline in increasing quantities worldwide as we move through lead phasedown in West Europe and other countries that are experiencing pollution problems relating to exhaust emissions from internal combustion engines. The objectives of this paper are as follows: review developments in MTBE demand 1990--2000; identify regions where MTBE demand growth will occur; review production growth for MTBE, both historical and forecast; examine world trade patterns during the period; assess methanol demand growth during the period; analyze MTBE`s regional price bias; and provide a forecast of future MTBE price trends.

  11. Drinking Water Problems: MTBE

    E-Print Network [OSTI]

    Dozier, Monty; Lesikar, Bruce J.

    2008-08-28T23:59:59.000Z

    . This compound belongs to a chemical family of fuel oxygenates that enhance gaso- line combustion by increasing oxygen available for the process. Added to gasoline, MTBE has reduced carbon monoxide and ozone emissions by promoting more complete burning.... Texas follows the EPA drinking water advisory of 20 to 40 micrograms per liter. How can MTBE be Removed from Well Water? MTBE requires a specific treatment process for removal from water. Well owners can use granular activated carbon or charcoal...

  12. Health risks associated with exposure to gasoline additives-methyl tertiary butyl ether [MTBE]. Hearing before a Subcommittee of the Committee on Appropriations, United States Senate, One Hundred Third Congress, First Session, Special Hearing

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    This hearing focuses on an Alaskan study by the Centers for Disease Control which examines possible health risks associated with exposure to gasoline additive know as MTBE. Testimony is given by Dr. William Roper, Director, CDC.

  13. Remediation of MTBE in groundwater: A case where pump-and-treat works

    SciTech Connect (OSTI)

    Bass, D.H.; Riley, B. [Groundwater Technology, Inc., Norwood, MA (United States); Farrell, T. [Groundwater Technology, Inc., Trenton, NJ (United States)

    1994-12-31T23:59:59.000Z

    Two case studies are discussed in which groundwater pumping reduced levels of dissolved methyl tertiary butyl ether (MTBE) in groundwater by more than two orders of magnitude, in some cases to below detection limits. MTBE contamination in groundwater is becoming an important issue due to the increasing prevalence and regulation of this gasoline additive. In addition, MTBE is more mobile in groundwater than most hydrocarbons, so it is usually the first gasoline constituent to reach sensitive receptors. Since its Henry`s constant is low, in situ removal of MTBE from groundwater by air sparging is slow, and MTBE does not rapidly degrade, either biologically or abiotically. Therefore, groundwater pumping is usually employed to contain and collect MTBE-contaminated groundwater. Pumping groundwater can reduce MME levels to below detection limits within a few years, because MTBE in the subsurface is found mostly dissolved in groundwater. In contrast, the more hydrophobic gasoline hydrocarbons exist mostly in pockets of separate phase material and adsorbed to soil particles and dissolve slowly in groundwater. Hydrocarbon concentrations are rarely reduced to closure levels within a reasonable time frame by pumping. Sites in eastern Massachusetts and southern New Jersey, where groundwater was contaminated with MTBE due to releases of unleaded gasoline from underground storage tanks, are discussed. At these sites, average MTBE levels were reduced by two to three orders of magnitude, from several ppm or more to less than 10 ppb within three years by pumping groundwater at 10 to 30 gpm.

  14. US refiners choose variety of routes to MTBE

    SciTech Connect (OSTI)

    Rhodes, A.K.

    1992-09-07T23:59:59.000Z

    This paper reports that refiners and merchant manufacturers in the U.S. are gearing up to produce the large volumes of methyl tertiary butyl ether (MTBE) needed to comply with oxygenated gasoline requirements. The 1990 U.S. Clean Air Act Amendments specify that, as of the first of this coming November, gasoline containing a minimum of 2.7 wt % oxygen must be sold in 39 CO-nonattainment cities. Refiners and others are scurrying to bring MTBE capacity on line in time to meet this requirement. Many U.S. refiners already have some operating MTBE capacity, but this will not be nearly enough to meet the looming increase in demand. As a result, additional capacity is being constructed worldwide.

  15. Effect of lower feedstock prices on economics of MTBE complex

    SciTech Connect (OSTI)

    Rahman, F.; Hamid, S.H.; Ali, M.A. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia)

    1996-01-01T23:59:59.000Z

    Economic evaluation of the methyl tertiary butyl ether (MTBE) complex was carried out starting from n-butane and by captive production of methanol from natural gas. The processing steps consist of isomerization of n-butane to isobutane, dehydrogenation of isobutane to make isobutene, and finally, the reaction of isobutene with methanol to produce MTBE. Two different plant sizes were considered, and the effect of 30% lower feedback prices on profitability was studied. It was found that the raw materials cost is a dominant component, composing about 55% of the total production cost. An internal rate of return of 19% could be realized for 500,000 tons per annum MTBE complex based on economic data in mid-1993. The payback period estimated at this capacity was 3.8 years, and the break-even capacity was 36.6%.

  16. MTBE, methanol prices rise

    SciTech Connect (OSTI)

    Morris, G.D.L.; Cornitius, T.

    1995-12-20T23:59:59.000Z

    After several months of drifting lower in line with declining autumn gasoline prices, tabs for methyl tert-butyl ether (MTBE) have turned around. There has been no big demand surge, but consumers and traders are beginning to build up inventories in advance of a series of midwinter shutdowns and turnarounds by producers. Spot prices, which dropped as low as 75 cts/gal, have rebounded to 90 cts/gal fob. Eager for a positive glimmer, methanol producers posted a 3-cts/gal increase in contract prices this month. It marks the first upward idea since February. In that time contract prices have dropped 75% from $1.55/gal to 39 cts/gal. A hard winter has hit early in much of the US sending natural gas prices up sharply. At the same time, formaldehyde and acetic acid markets remain firm, and with MTBE rebounding, methanol producers feel entitled to a piece of the action. {open_quotes}I don`t buy into this claim that MTBE demand is up and I don`t think producers can justify even a 3-cts/gal increase,{close_quotes} says one. {open_quotes}There is nothing in the economy to warrant a run-up. Housing starts are weaker, and demand is down at least 80,000 bbl/day with the MTBE shutdown.{close_quotes}

  17. Snamprogetti signs MTBE contracts

    SciTech Connect (OSTI)

    Alperowicz, N.

    1992-04-15T23:59:59.000Z

    Snamprogetti (Milan) will use a Russian-developed dehydrogenation process in a world-scale methyl tert-butyl ether (MTBE) plant it is to build at Arzew, Algeria for a previously announced joint venture of Sonatrach (Algiers), Total (Paris), and Ecofuel (Milan). The 600,000-m.t./year plant will be the first in the West to use the improved Snamprogetti-Yarsintez fluidized-bed dehydrogenation (FBD) technology proven on a demonstration plant at Yaroslavl, Russia. The process has also been selected for use in Oxyfuel Corp.`s 500,000-m.t./year MTBE plant near Beaumont, TX. Although the environmental permit is already in place, final agreement for this project has not yet been signed.

  18. Saudi MTBE project revived

    SciTech Connect (OSTI)

    NONE

    1996-01-17T23:59:59.000Z

    Alujain Corp., a member of the Xenel group of Saudi Arabia, is going ahead with plans to build an 800,000-m.t./year methyl tert-butyl ether (MTBE) plant. Bechtel has been appointed project manager for the plant, which will be owned by a new company, National Fuel Additives (Tahseen). Bechtel will help evaluate proposals already submitted for the lump sum turnkey job.

  19. Canada could get three MTBE plants

    SciTech Connect (OSTI)

    Anderson, E

    1990-03-01T23:59:59.000Z

    This article reports on the proposed development of three methyl tert-butyl ether (MTBE) plants in Canada. MTBE is used as an oxygenated fuel additive. The author discusses how demand for MTBE is increasing due to the regulation of leaded gasoline by the U.S. and Canadian governments. The exportation of MTBE from Canada to the U.S. is highlighted.

  20. MTBE will be a boon to U. S. gas processors

    SciTech Connect (OSTI)

    Otto, K.W. (Purvin and Gertz, Inc. Dallas, TX (United States))

    1993-01-11T23:59:59.000Z

    This paper reports that the advent of methyl tertiary butyl ether (MTBE) as the primary oxygenate blending component for oxygenated and reformulated motor fuels promises significant benefits for the U.S. gas-processing industry. Increased demand for isobutane as MTBE-plant feedstock will buoy both normal butane and isobutane pricing in U.S. gulf Coast during the 1990s. Elimination of the need to crack normal butane in U.S. olefin plants will also strengthen competitive feedstocks somewhat, including ethane and propane. And increased use of normal butane as isomerization feedstock will result in wider recognition of the premium quality of gas plant normal butane production compared to most refinery C[sub 4] production.

  1. MTBE movements between Texas Gulf Coast plants to be enhanced

    SciTech Connect (OSTI)

    Not Available

    1992-07-27T23:59:59.000Z

    This paper reports that Texas Eastern Products Pipeline Co. (Teppco), Houston, has begun construction of its shuttle pipeline, a 10-mile, 6 and 8-in. line to move methyl tertiary butyl ether (MTBE) between producers and refiners along the Houston Ship Channel. Funding for the project has been approved, rights-of-way are secured, and procurement of materials is under way, according to Teppco. The line will flow from the western edge of Shell's refinery eastward to storage facilities of Teppco's Baytown terminal. The shuttle pipeline anticipates the US requirement for oxygenated gasolines that takes effect Nov. 1. Approximately 70% of the available US merchant capacity for MTBE is located along the shuttle's path, Teppco says.

  2. Disposition, metabolism, and toxicity of methyl tertiary butyl ether, an oxygenate for reformulated gasoline

    SciTech Connect (OSTI)

    Hutcheon, D.E.; Hove, W. ten; Boyle, J. III [UMDNJ, New Jersey Medical Schook, Newark, NJ (United States)] [UMDNJ, New Jersey Medical Schook, Newark, NJ (United States); Arnold, J.D. [Arnold & Arnold, Inc., Kansas City, MO (United States)] [Arnold & Arnold, Inc., Kansas City, MO (United States)

    1996-04-05T23:59:59.000Z

    Studies of the toxicology of methyl tertiary butyl ether (MTBE) were reviewed as a possible information base for evaluating the health effects of evaporative emissions from reformulated gasoline (RFG). Perirenal fat/blood MTBE concentration ratios ranged from 9.7 to 11.6 after 15 wk of intermittent exposure. During an oxyfuels program in Fairbanks, AK, blood levels of occupationally exposed workers were 0.2-31.5 {mu}g/L MTBE and 1.6 to 72.2 {mu}g/L TBA with a mean TBA:MTBE blood concentration ratio of 4.2. In patients who received MTBE by percutaneous, transhepatic puncture for the dissolution of cholesterol gallstones, concentrations of MTBE in fat tissue reached 60 and 300 {mu}g/g at a treatment time when mean blood MTBE was less than 20 {mu}g/ml. The results of laboratory and clinical studies indicate that metabolites of MTBE may contribute to the nephropathy, neoplasms, and other pathological changes associated with repeated exposure to MTBE in experimental animals. It is concluded that such studies can provide a well-defined database for quantitatitive safety comparisons and health risk-benefit analyses of MTBE and other oxygenates in RFG. 39 refs., 1 tab.

  3. MTBE catalyst shows increased conversion in commercial unit

    SciTech Connect (OSTI)

    Not Available

    1994-10-10T23:59:59.000Z

    Rising demand for methyl tertiary butyl ether (MTBE) has spawned interest in finding a cost-effective means of increasing production from existing units. A commercial trial of an improved MTBE catalyst was conducted recently at Lyondell Petrochemical Co.'s Channelview, Tex., plant. The new catalyst called Amberlyst 35 Wet, enhanced oxygenate production in the Lyondell trial. The new catalyst changes the activity coefficients of at least one of the components of the MTBE reaction, resulting in higher equilibrium conversion relative to its first-generation counterpart. Key catalyst properties are: particle size, 0.4--1.25 mm; Apparent density, 0.82 g/ml; Surface area, 44 sq m/g; Moisture content, 56%; Concentration of acid sites, 1.9 meq/ml (5.4 meq/g); Porosity, 0.35 cc/g; and Average pore diameter, 300 [angstrom]. Suggested operating conditions are: maximum temperature, 284 F (140 C); minimum bed depth, 24 in. (0.61 m); and liquid hourly space velocity (LHSV), 1--5 hr[sup [minus]1].

  4. EPA proposal sets MTBE back

    SciTech Connect (OSTI)

    Lucas, A.

    1995-01-04T23:59:59.000Z

    Methyl tert-butyl ether (MTBE) producers were looking for a boost from the official New Year`s start of EPA`s reformulated gasoline (RFG) program. But that prospect has been dimmed by an EPA-proposal-in reaction to concerns about RFG prices-to allow states to withdraw from the program. The states that have opted to out make up 5%-6% of the total RFG pool says Arthur Zadronzy, director/government outreach for MTBE producer Arco Chemical. {open_quotes}This is not a major hit, but it is one we have felt,{close_quotes} he says. Despite the state and EPA actions, MTBE producers are not worried about long-term consequences.

  5. Toxicity of methyl tertiary butyl ether to Daphnia magna and photobacterium phosphoreum

    SciTech Connect (OSTI)

    Gupta, G.; Lin, Y.J. [Univ. of Maryland Eastern Shore, Princess Anne, MD (United States)

    1995-10-01T23:59:59.000Z

    Methyl tertiary butyl ether (MTBE) is a liquid organic compound added to gasoline to increase its oxygen content and to reduce the emission of carbon monoxide during combustion in many urban areas. In order to meet the 1990 Clean Air Act amendments, gasoline must contain 2.7% oxygen (by weight) or 15% (by volume) of MTBE in gasoline to meet the regulations for the control of carbon monoxide emissions. Health effects caused by inhalation of MTBE include headaches, dizziness, irritated eyes and nausea; MTBE is one of cancer--causing chemicals. Intracaval injection of MTBE (0.2 mg/kg) caused the highest mortality (100%) in rats. General anesthetic effect induced by MTBE was found at or above 1200 mg/kg body weight; Rosenkranz and Klopman (1991) predicted that MTBE is neither a genotoxicant nor a carcinogen. Nevertheless, the safety of using MTBE in oxygenated fuels is now being questioned from its potential as groundwater pollutant. This study measures the toxicity of MTBE to Daphnia magna and Photobacterium phosphoreum. 13 refs.

  6. The Social Costs of an MTBE Ban in California

    E-Print Network [OSTI]

    Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

    2005-01-01T23:59:59.000Z

    349 The Social Costs of an MTBE Ban in California REFERENCESD.E. Rolston. “Impacts of MTBE on California Groundwater. ”Environmental Assessment of MTBE, Vol. 4. A. Keller et al. ,

  7. Texas plant will use new process to coproduce propylene oxide, MTBE

    SciTech Connect (OSTI)

    Rhodes, A.K.

    1993-08-30T23:59:59.000Z

    Texaco Chemical Co. is building a $400 + million facility to produce 1.2 billion lb/year (14,000 b/d) methyl tertiary butyl ether (MTBE) and 400 million lb/year (about 500 metric tons/day) propylene oxide (PO). The facility-under construction at Port Neches, Tex.-will utilize a newly developed Texaco process that coproduces the two chemicals. The process produces propylene oxide and tertiary butyl alcohol (TBA) from the reaction of isobutane with oxygen in one step, then in a second step with propylene. The TBA is then reacted with methanol in a one-step process that synthesizes MTBE. The paper describes the Port Neches facilities, construction schedule, feedstocks, product uses, and auxiliary equipment.

  8. Interdisciplinary investigation of subsurface contaminant transport and fate at point-source releases of gasoline containing MTBE

    SciTech Connect (OSTI)

    Buxton, H.T.; Baehr, A.L. [Geological Survey, West Trenton, NJ (United States); Landmeyer, J.E. [Geological Survey, Columbia, SC (United States)] [and others

    1997-12-31T23:59:59.000Z

    Methyl tert-butyl ether (MTBE) is commonly found at concentrations above the current U.S. Environmental Protection Agency draft lifetime health advisory for drinking water (20 to 200 micrograms per liter) at many point-source gasoline release sites. MTBE is significantly more persistent than benzene, toluene, ethyl-benzene and xylenes (BTEX) in the subsurface. Therefore, evaluation of the implications of its presence in gasoline to monitored natural attenuation and engineered bioremediation alternatives is warranted. An interdisciplinary, field-based investigation of the subsurface transport and fate of MTBE and petroleum hydrocarbons is being conducted by the U.S. Geological Survey (USGS) Toxic Substances Hydrology Program at the site of an underground gasoline storage-tank release near Beaufort, South Carolina. The objective of the investigation is to provide a systematic evaluation of natural attenuation of MTBE compared to BTEX. Results of the field and laboratory studies at this site will be generalized to a broader range of hydrogeochemical conditions through experiments at other sites. Furthermore, newly developed methods of analysis can be applied to sites across the Nation. This investigation of MTBE at point-source release sites is coordinated with investigations of the occurrence of MTBE in shallow ground water, surface water, precipitation, and the atmosphere being conducted by the USGS National Water-Quality Assessment Program.

  9. Two US markets, or one? How the MTBE-gasoline relationship is evolving

    SciTech Connect (OSTI)

    NONE

    1996-01-26T23:59:59.000Z

    This issue of Energy Detente features the price sensitivity of Methyl Tertiary Butyl Ether. Data is presented for US wholesale gasoline prices vs. MTBE for the 20-month period beginning in June 1994 and ending in January 1996, and the data is discussed. Also contained in this issue is the refining netback data and the fuel price/tax data for the period ending January 5, 1996.

  10. Mode of action of ethyl tertiary-butyl ether hepatotumorigenicity in the rat: Evidence for a role of oxidative stress via activation of CAR, PXR and PPAR signaling pathways

    SciTech Connect (OSTI)

    Kakehashi, Anna, E-mail: anna@med.osaka-cu.ac.jp [Department of Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Hagiwara, Akihiro; Imai, Norio [DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya, Aichi 491-0113 (Japan); Nagano, Kasuke [Nagano Toxicologic-Pathology Consulting, Ochiai, Hadano, Kanagawa 257-0025 (Japan); Nishimaki, Fukumi [Biofuel Assessment Group, New Fuels Dept., Japan Petroleum Energy Center (JPEC), 4-3-9 Toranomon, Minato-ku, Tokyo 105-0001 (Japan); Banton, Marcy [Toxicology and Risk Assessment, LyondellBasell Industries, LyondellBasell Corporate HSE/Product Safety, One Houston Center, Suite 700, 1221 McKinney Street, Houston, TX 770 10 (United States); Wei, Min [Department of Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Fukushima, Shoji [Department of Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Japan Bioassay Research Center, Japan Industrial Safety and Health Association, 2445 Hirasawa, Hadano, Kanagawa 257-0011 (Japan); Wanibuchi, Hideki [Department of Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan)

    2013-12-01T23:59:59.000Z

    To elucidate possible mode of action (MOA) and human relevance of hepatotumorigenicity in rats for ethyl tertiary-butyl ether (ETBE), male F344 rats were administered ETBE at doses of 0, 150 and 1000 mg/kg body weight twice a day by gavage for 1 and 2 weeks. For comparison, non-genotoxic carcinogen phenobarbital (PB) was applied at a dose of 500 ppm in diet. Significant increase of P450 total content and hydroxyl radical levels by low, high doses of ETBE and PB treatments at weeks 1 and 2, and 8-OHdG formation at week 2, accompanied accumulation of CYP2B1/2B2, CYP3A1/3A2 and CYP2C6, and downregulation of DNA oxoguanine glycosylase 1, induction of apoptosis and cell cycle arrest in hepatocytes, respectively. Up-regulation of CYP2E1 and CYP1A1 at weeks 1 and 2, and peroxisome proliferation at week 2 were found in high dose ETBE group. Results of proteome analysis predicted activation of upstream regulators of gene expression altered by ETBE including constitutive androstane receptor (CAR), pregnane-X-receptor (PXR) and peroxisome proliferator-activated receptors (PPARs). These results indicate that the MOA of ETBE hepatotumorigenicity in rats may be related to induction of oxidative stress, 8-OHdG formation, subsequent cell cycle arrest, and apoptosis, suggesting regenerative cell proliferation after week 2, predominantly via activation of CAR and PXR nuclear receptors by a mechanism similar to that of PB, and differentially by activation of PPARs. The MOA for ETBE hepatotumorigenicity in rats is unlikely to be relevant to humans. - Highlights: • We focus on MOA and human relevance of hepatotumorigenicity in rats for ETBE. • ETBE was administered to F344 rats for 1 and 2 weeks. • Oxidative stress formation, proliferation and apoptosis in the liver are analyzed. • ETBE-induced changes of gene and protein expression in the liver are examined. • The effects are compared with those induced by non-genotoxic carcinogen PB.

  11. Location of MTBE and toluene in the channel system of the zeolite mordenite: Adsorption and host-guest interactions

    SciTech Connect (OSTI)

    Arletti, Rossella, E-mail: rossella.arletti@unito.it [Department of Earth Sciences, University of Torino Via Valperga Caluso 35, I-10125, Torino (Italy)] [Department of Earth Sciences, University of Torino Via Valperga Caluso 35, I-10125, Torino (Italy); Martucci, Annalisa; Alberti, Alberto [Department of Earth Sciences, University of Ferrara, Via G. Saragat 1, I-44100, Ferrara (Italy)] [Department of Earth Sciences, University of Ferrara, Via G. Saragat 1, I-44100, Ferrara (Italy); Pasti, Luisa; Nassi, Marianna [Department of Chemistry, University of Ferrara, Via L. Borsari 26, I-44100 Ferrara (Italy)] [Department of Chemistry, University of Ferrara, Via L. Borsari 26, I-44100 Ferrara (Italy); Bagatin, Roberto [Research Centre for Non-Conventional Energy-Istituto ENI Donegani, Environmental Technologies, Via Fauser 4, I-28100 Novara (Italy)] [Research Centre for Non-Conventional Energy-Istituto ENI Donegani, Environmental Technologies, Via Fauser 4, I-28100 Novara (Italy)

    2012-10-15T23:59:59.000Z

    This paper reports a study of the location of Methyl Tertiary Butyl Ether (MTBE) and toluene molecules adsorbed in the pores of the organophylic zeolite mordenite from an aqueous solution. The presence of these organic molecules in the zeolite channels was revealed by structure refinement performed by the Rietveld method. About 3 molecules of MTBE and 3.6 molecules of toluene per unit cell were incorporated into the cavities of mordenite, representing 75% and 80% of the total absorption capacity of this zeolite. In both cases a water molecule was localized inside the side pocket of mordenite. The saturation capacity determined by the adsorption isotherms, obtained by batch experiments, and the weight loss given by thermogravimetric (TG) analyses were in very good agreement with these values. The interatomic distances obtained after the structural refinements suggest MTBE could be connected to the framework through a water molecule, while toluene could be bonded to framework oxygen atoms. The rapid and high adsorption of these hydrocarbons into the organophylic mordenite zeolite makes this cheap and environmental friendly material a suitable candidate for the removal of these pollutants from water. - graphical abstract: Location of MTBE (a) and toluene (b) in mordenite channels (projection along the [001] direction). Highlights: Black-Right-Pointing-Pointer We investigated the MTBE and toluene adsorption process into an organophilic zeolite mordenite. Black-Right-Pointing-Pointer The presence of MTBE and toluene in mordenite was determined by X-ray diffraction studies. Black-Right-Pointing-Pointer About 3 molecules of MTBE and 3.6 molecules of toluene per unit cell were incorporated into the zeolite cavities. Black-Right-Pointing-Pointer MTBE is connected to the framework through a water molecule. Black-Right-Pointing-Pointer Toluene is directly bonded to framework oxygen atoms.

  12. The social costs of an MTBE ban in California (Condensed version)

    E-Print Network [OSTI]

    Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

    2002-01-01T23:59:59.000Z

    in Focus: Phasing Out MTBE in Gasoline," Annual Energyand P. J. Bartholomae, "MTBE and Benzene Plume Behavior: ASoil Sediment & Groundwater MTBE Special Issue, March, 43-

  13. MTBE demand as a oxygenated fuel additive

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    The MTBE markets are in the state of flux. In the U.S. the demand has reached a plateau while in other parts of the world, it is increasing. The various factors why MTBE is experiencing a global shift will be examined and future volumes projected.

  14. Effects of oxygenate concentration on species mole fractions in premixed n-heptane flames

    E-Print Network [OSTI]

    Senkan, Selim M.

    -heptane/oxygenate mixtures were 2.7 and 3.4. Three different fuel oxygenates (i.e. MTBE, methanol, and ethanol) were tested tertiary-butyl ether (MTBE), ethyl tertiary-butyl ether (ETBE), and tertiary amyl methyl ether (TAME)) were considered as possible fuel oxygenates. MTBE and ethanol are the most common oxygenates currently used

  15. Factors influencing biological treatment of MTBE contaminated ground water

    SciTech Connect (OSTI)

    Stringfellow, William T.; Hines Jr., Robert D.; Cockrum, Dirk K.; Kilkenny, Scott T.

    2001-09-14T23:59:59.000Z

    Methyl tert-butyl ether (MTBE) contamination has complicated the remediation of gasoline contaminated sites. Many sites are using biological processes for ground water treatment and would like to apply the same technology to MTBE. However, the efficiency and reliability of MTBE biological treatment is not well documented. The objective of this study was to examine the operational and environmental variables influencing MTBE biotreatment. A fluidized bed reactor was installed at a fuel transfer station and used to treat ground water contaminated with MTBE and gasoline hydrocarbons. A complete set of chemical and operational data was collected during this study and a statistical approach was used to determine what variables were influencing MTBE treatment efficiency. It was found that MTBE treatment was more sensitive to up-set than gasoline hydrocarbon treatment. Events, such as excess iron accumulation, inhibited MTBE treatment, but not hydrocarbon treatment. Multiple regression analysis identified biomass accumulation and temperature as the most important variables controlling the efficiency of MTBE treatment. The influent concentration and loading of hydrocarbons, but not MTBE, also impacted MTBE treatment efficiency. The results of this study suggest guidelines for improving MTBE treatment. Long cell retention times in the reactor are necessary for maintaining MTBE treatment. The onset of nitrification only occurs when long cell retention times have been reached and can be used as an indicator in fixed film reactors that conditions favorable to MTBE treatment exist. Conversely, if the reactor can not nitrify, it is unlikely to have stable MTBE treatment.

  16. MTBE, Oxygenates, and Motor Gasoline

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricityrgy81 §98 3.241MTBE,

  17. Falling MTBE demand bursts the methanol bubble

    SciTech Connect (OSTI)

    Wiesmann, G.; Cornitius, T.

    1995-03-01T23:59:59.000Z

    Methanol spot markets in Europe and the US have been hit hard by weakening demand from methyl tert-butyl ether (MTBE) producers. In Europe, spot prices for domestic T2 product have dropped to DM620-DM630/m.t. fob from early-January prices above DM800/m.t. and US spot prices have slipped to $1.05/gal fob from $1.35/gal. While chemical applications for methanol show sustained demand, sharp methanol hikes during 1994 have priced MTBE out of the gasoline-additive market. {open_quotes}We`ve learned an important lesson. We killed [MTBE] applications in the rest of the world,{close_quotes} says one European methanol producer. Even with methanol currently at DM620/m.t., another manufacturer points out, MTBE production costs still total $300/m.t., $30/m.t. more than MTBE spot prices. Since late 1994, Europe`s 3.3-million m.t./year MTBE production has been cut back 30%.

  18. Add MTBE unit ahead of alkylation

    SciTech Connect (OSTI)

    Masters, K.R.; Prohaska, E.A.

    1988-08-01T23:59:59.000Z

    Approximately three years ago, the people at Diamond Shamrock's Sunray, Texas, refinery recognized a growing demand for high octane super premium unleaded gasoline in their regional marketing area. It was apparent that they would need to change their processing scheme to meet this growing demand. After investigating several options, they decided to install an MTBE (methyl tert-butyl ether) unit upstream of their existing sulfuric acid (H/sub 2/SO/sub 4/) aklylation unit. The new unit would process olefin feed before it entered the alkylation unit. The MTBE unit was expected to improve Diamond Shamrock's gasoline pool in two ways. First, the MTBE would be an additional high octane blending stock for the gasoline pool. Second, the MTBE unit would improve the quality of the olefin stream going to the alkylation unit. Diamond Shamrock brought their MTBE unit onstream in December, 1985. The results of the combined operation exceeded expectations, producing alkylate in excess of 98 RON (Research octane number) and MTBE of 118 RON. These components significantly upgraded the refinery's capability to produce a super premium unleaded gasoline.

  19. The Social Costs of an MTBE Ban in California

    E-Print Network [OSTI]

    Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

    2005-01-01T23:59:59.000Z

    85 MTBE is more soluble in water than BTEX, which means thatlong as BTEX plumes; and California Regional Water QualityMTBE than BTEX dissolves in a given quantity of water. This

  20. Multivariable controller increased MTBE complex capacity

    SciTech Connect (OSTI)

    Robertson, D.; Peterson, T.J.; O`Connor, D. [DMC Corp., Houston, TX (United States); Payne, D.; Adams, V. [Valero Refining Co., Corpus Christi, TX (United States)

    1997-03-01T23:59:59.000Z

    Capacity increased by more than 4.6% when one dynamic matrix multivariable controller began operating in Valero Refining Company`s MTBE production complex in Corpus Christi, Texas. This was on a plant that was already running well above design capacity due to previously made process changes. A single controller was developed to cover an isobutane dehydrogenation (ID) unit and an MTBE reaction and fractionation plant with the intermediate isobutylene surge drum. The overall benefit is realized by a comprehensive constrained multivariable predictive controller that properly handles all sets of limits experienced by the complex, whether limited by the front-end ID or back-end MTBE units. The controller has 20 manipulated, 6 disturbance and 44 controlled variables, and covers widely varying dynamics with settling times ranging from twenty minutes to six hours. The controller executes each minute with a six hour time horizon. A unique achievement is intelligent surge drum level handling by the controller for higher average daily complex capacity as a whole. The ID unit often operates at simultaneous limits on reactor effluent compressor capacity, cold box temperature and hydrogen/hydrocarbon ratio, and the MTBE unit at impurity in butene column overhead as well as impurity in MTBE product. The paper discusses ether production, isobutane dehydrogenation, maximizing production, controller design, and controller performance.

  1. Korean oxygenates rule sparks MTBE capacity plans

    SciTech Connect (OSTI)

    Kim, Hyung-Jin

    1994-06-15T23:59:59.000Z

    The Korean government`s strict standard for gasoline sold domestically is expected to have a significant impact on the methyl tert-butyl ether (MTBE) market. The mandate-requiring gasoline oxygen content of 0.5% this year, 0.75% by 1996, and 1.0% by 1998-has sparked a rush by Korean refineries to build new MTBE plants. If expansion plans are carried out, Korea`s MTBE capacity will increase from 280,000 m.t./year to 650,000 m.t./year by 1996, far surpassing predicted demand. Honam Oil, part of the Lucky Group, plans startup of a 100,000-m.t./year unit at Yeochon by early 1996. In addition, by the end of 1996 Ssangyong Oil will bring a 100,000-m.t./year unit onstream.

  2. Ecofuel plans MTBE plant in Italy

    SciTech Connect (OSTI)

    Alperowicz, N.

    1992-04-29T23:59:59.000Z

    Ecofuel (Milan), an ENI company, is evaluating construction of a new methyl tert-butyl ether (MTBE) plant in Italy, but has shelved plans for a world-scale MTBE unit in Mexico. The Italian unit is tied to ethylene expansion now under way. Later this year EniChem (Milan), a sister company, is due to complete construction of a 360,000-m.t./year cracker at Brindisi. The C{sub 4} stream available there and from the existing cracker at Priolo in Sicily should provide enough feed for a unit of up to 100,000 m.t./year of MTBE capacity. Some of the feedstock could also come from the Ravenna cracker.

  3. Veba in MTBE project, cutting aromatics

    SciTech Connect (OSTI)

    Young, I.; Roberts, M.

    1992-04-15T23:59:59.000Z

    The new owners of the refinery and petrochemical complex at Schwedt in eastern Germany-RWE-DEA (Hamburg), Veba Oel (Gelsenkirchen), Agip (Rome), Total (Paris), and Elf-Aquitaine (Paris)-plan to build a 60,000-m.t./year methyl tert-butyl ether (MTBE) plant at the site for 1994-1995 completion. The MTBE project forms part of the consortium`s announced DM1.5-billion ($500 million) investment program for the complex that aims to raise refinery throughput from 8 million m.t./year to 12 million m.t./year by 1994 and hike production of naphtha and benzene.

  4. Methanex considers methanol, MTBE in Qatar

    SciTech Connect (OSTI)

    NONE

    1995-12-13T23:59:59.000Z

    CW has learned that Methanex Corp. is considering entering one of two methanol and methyl tert-butyl ether (MTBE) projects in Qatar. Executive v.p. Michael Wilson says that part of the company`s New Zealand plant could be moved to a site in Qatar, which would lower capital costs for the possible project by $75 million-$100 million. Both Qatar General Petroleum Corp. and Qatar Fuel Additives are developing methanol and MTBE projects at Umm Said, Qatar. Methanex says its goal is to ensure low-cost feedstocks.

  5. Total to withdraw from Qatar methanol - MTBE?

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    Total is rumored to be withdrawing from the $700-million methanol and methyl tert-butyl ether (MTBE) Qatar Fuel Additives Co., (Qafac) project. The French company has a 12.5% stake in the project. Similar equity is held by three other foreign investors: Canada`s International Octane, Taiwan`s Chinese Petroleum Corp., and Lee Change Yung Chemical Industrial Corp. Total is said to want Qafac to concentrate on methanol only. The project involves plant unit sizes of 610,000 m.t./year of MTBE and 825,000 m.t./year of methanol. Total declines to comment.

  6. MTBE still in poor health, despite the Clean Air Act

    SciTech Connect (OSTI)

    Wood, A.

    1994-05-25T23:59:59.000Z

    After the second winter oxygenated fuels program of the 1990 Clean Air Act, producers of methyl tert-butyl ether (MTBE) are still feeling the chill of poor profitability. Despite the strong demand growth for MTBE to meet oxygen requirements in reformulated gasoline (RFG), oversupply still dogs the market. That, combined with a run-up in feedstock prices, has seen margins for MTBE markers all but evaporate. And it seems matters are likely to get worse before they get better. This week, Belvieu Environmental Fuels (BEF; Houston) expects to startup its 15,000-bbl/day MTBE plant at Mont Belvieu, TX. In late July, Texaco will start up its 15,000-bbl/day MTBE/propylene oxide (PO) plant at Port Neches, TX. In addition, a rash of refinery-based MTBE and tert-amyl methyl ether projects are nearing completion. {open_quotes}Profitability in MTBE has been extremely poor,{close_quotes} says Marvin O. Schlanger, president of Arco Chemical Americas, the largest MTBE producer. There has, however, been some recent recovery on the spot market, with MTBE moving from less than 60 cts/gal to near cash-cost levels of 70 cts/gal. But contract prices remain depressed, and strength in butane and methanol pricing have all buy wiped out any gains in MTBE.

  7. MTBE from butadiene-rich C/sub 4/s

    SciTech Connect (OSTI)

    Ancillotti, F.; Pescarollo, E.; Szatmari, E.; Lazar, L.

    1987-12-01T23:59:59.000Z

    Methyl tert-butyl ether (MTBE), is made by reacting methanol with isobutylene. The preferred source of isobutylene is a steam cracker C/sub 4/ cut from which butadiene has been removed. However, moving the MTBE synthesis upstream of the butadiene extraction will improve the extraction step. The following is a review of conditions imposed on the MTBE unit's design and operation when placed in this new location.

  8. MTBE: Capacity boosts on hold amid demand concerns

    SciTech Connect (OSTI)

    NONE

    1995-05-03T23:59:59.000Z

    Uncertainty reigns in the methyl tert-butyl ether (MTBE) market. {open_quotes}We have no choice but to put our expansion plans on the back burner,{close_quotes} says one producer. {open_quotes}Because of government actions, there are no MTBE plants being built or expanded.{close_quotes} Spot MTBE prices have risen ti 82 cts- 83 cts/gal from 76 cts-78 cts/gal earlier this month as the demand for octane enhancement increases for the summer driving season. Some observers say EPA may relax different oxygen requirements for gasoline in different seasons. That would simplify production and supply for MTBE makers.

  9. MTBE, ethanol rules come under fire

    SciTech Connect (OSTI)

    Begley, R.

    1995-03-01T23:59:59.000Z

    EPA is facing stiff challenges to the mandates for methyl tert-butyl ether (MTBE) and ethanol in its reformulated gasoline (RFG) program. Wisconsin officials are receiving hundreds of complaints about the alleged health effects and other problems with MTBE added to gasoline, and Gov. Tommy Thompson is demanding that EPA suspend the RFG program until April 1. Rep. James Sensenbrenner (R., WI) is threatening to introduce a bill to repeal the program in Wisconsin if EPA does not comply. However, EPA administrator Carol Browner says the agency will {open_quotes}defer any decision{close_quotes} on the request. EPA has sent technical experts to Milwaukee to respond to and monitor citizens` complaints.

  10. Recovery of methanol in an MTBE process

    SciTech Connect (OSTI)

    Whisenhunt, D.E.; Byers, G.L.; Hattiangadi, U.S.

    1988-05-31T23:59:59.000Z

    In a process for the manufacture of methyltertiarybutylether (MTBE) in which methanol and a mixture of C/sub 4/ hydrocarbons containing isobutylene are contacted in a reaction zone containing an ion-exchange resin catalyst under suitable conditions to effect the reaction of methanol and isobutylene to produce a reaction product containing MTBE, unreacted methanol, unreacted isobutylene and other C/sub 4/ hydrocarbons, the reaction product is introduced to a fractionation zone wherein it is separated into a bottoms product comprising essentially MTBE and an overhead product containing unreacted methanol, unreacted isobutylene, and other C/sub 4/ hydrocarbons, and the overhead product is introduced to an absorption zone wherein the methanol is absorbed; the improvement is described which comprises utilizing silica gel as adsorbent and regenerating the silica gel adsorbent in a closed loop by contacting the silica gel absorbent with a desorption gas stream at an elevated temperature for a sufficient period of time to remove absorbed methanol, cooling the effluent from the adsorption zone to condense desorbed methanol removing desorbed methanol from the system and recycling the desorption gas to the adsorption zone.

  11. Meeting the challenge of MTBE biodegradation

    SciTech Connect (OSTI)

    Eweis, J.B.; Chang, D.P.Y.; Schroeder, E.D.; Scow, K.M. [Univ. of California, Davis, CA (United States); Morton, R.L.; Caballero, R.C. [Los Angeles County Sanitation Districts, Carson, CA (United States). Joint Water Pollution Control Plant

    1997-12-31T23:59:59.000Z

    Oxygenated and reformulated gasolines have been developed in response to air pollution control regulations targeted at reducing carbon monoxide emissions and photochemical air pollution. The 1990 Clean Air Act Amendments required the addition of fuel oxygenates to gasoline in areas where the level of carbon monoxide exceeded national ambient air quality standards. In the South Coast Air Basin gasoline containing oxygenated compounds has been in use since the late 1980`s. One oxygenated fuel additive most often selected by producers to meet the requirements is methyl tert-butyl ether (MTBE). However, large production numbers associated with MTBE production, combined with the compound`s high water solubility, chemical stability, and toxicity, make it a potentially important groundwater pollutant. The County Sanitation District of Los Angeles, Joint Water Pollution Control Plant in Carson, California is one of the few wastewater treatment plants in the nation that receives refinery wastewater discharge. It has operated several pilot-scale compost-based biofilters for control of various volatile organic contaminants throughout the plant since a 1991 joint study with the University of California, Davis. After one year of operation, one of the biofilters spontaneously developed the ability to degrade MTBE. The paper describes the collaborative efforts to determine the feasibility of transferring the degrading microbial population from the solid to liquid phase, without loss of activity, and to determine some of the environmental requirements necessary for survival of the microbial culture.

  12. MTBE still facing pressure from ethanol under latest fuel proposal

    SciTech Connect (OSTI)

    Lucas, A.

    1994-01-26T23:59:59.000Z

    The US EPA's finalized reformulated gasoline rule, part of Phase II of the 1990 Clean Air Act, signals a possible turnaround for the sluggish methyl tert-butyl ether (MTBE) market. But if a 30% renewable fuels proposal favoring ethanol passes, pressure could continue for MTBE.

  13. Ecological hazards of MTBE exposure: A research agenda

    SciTech Connect (OSTI)

    Carlsen, T.; Hall, L.; Rice, D.

    1997-03-01T23:59:59.000Z

    Fuel oxygenates are used in metropolitan areas across the United States in order to reduce the amount of carbon monoxide released into the atmosphere during the winter. The most commonly used fuel oxygenate is Methyl tert-butyl ether (MTBE). Its widespread use has resulted in releases into the environment. To date there has been only minimal effort to investigate ecological impacts caused by exposure to concentrations of MTBE typically found in environmental media. Research into the potential for MTBE to adversely affect ecological receptors is essential. Acquisition of such baselines data is especially critical in light of continuing inputs and potential accumulation of MTBE in environmental media. A research Agenda is included in this report and addresses: Assessing Ecological Impacts, Potential Ecological Impacts of MTBE (aquatic organisms, terrestrial organisms), Potential Ecological Endpoints, and A Summary of Research Needs.

  14. Measurement of methyl-tert-butyl-ether (MTBE) in raw drinking water

    SciTech Connect (OSTI)

    Davisson, M L; Koester, C J; Moran, J E

    1999-10-14T23:59:59.000Z

    In order to assess the pathways for human exposure to methyl-tert-butyl-ether (MTBE) and to understand the extent of MTBE contamination in watersheds, a purge and trap gas chromatographic mass spectrometric method to measure part-per-trillion (ppt) concentrations of MTBE in environmental waters was developed. A variety of California's raw drinking waters were analyzed. No detectable MTBE was found in deep groundwater (>1000 feet). However shallow groundwater ({approx}250 feet) contained MTBE concentrations of non-detect to 1300 ppt. MTBE concentrations measured in rivers and lakes ranged from non-detect to 3500 ppt. East (San Francisco) Bay area rain water contained approximately 80 ppt MTBE.

  15. Eliminating MTBE in Gasoline in 2006

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96Nebraska NuclearDecade Year-08/03)1 Eliminating MTBE in

  16. Health studies indicate MTBE is safe gasoline additive

    SciTech Connect (OSTI)

    Anderson, E.V.

    1993-09-01T23:59:59.000Z

    Implementation of the oxygenated fuels program by EPA in 39 metropolitan areas, including Fairbanks and Anchorage, Alaska, in the winter of 1992, encountered some unexpected difficulties. Complaints of headaches, dizziness, nausea, and irritated eyes started in Fairbanks, jumped to Anchorage, and popped up in various locations in the lower 48 states. The suspected culprit behind these complaints was the main additive for oxygenation of gasoline is methyl tert-butyl ether (MTBE). A test program, hastily organized in response to these complaints, has indicated that MTBE is a safe gasoline additive. However, official certification of the safety of MTBE is still awaited.

  17. MTBE growth limited despite lead phasedown in gasoline

    SciTech Connect (OSTI)

    Storck, W.

    1985-07-15T23:59:59.000Z

    This month's legislated reduction of the allowable amount of lead additives in gasoline will increase demand strongly for methyl-tert-butyl ether (MTBE) as an octane enhancer, but the economics of the refinery business and the likelihood of rapidly increasing high-octane gasoline imports probably will limit the size of the business in coming years. MTBE will be used to fill the octane gap now, but economics and imports of gasoline later on could hold down demand. The limited growth in sales of MTBE is discussed.

  18. Feasibility of using bioaugmentation with bacterial strain PM1 for bioremediation of MTBE-contaminated vadose and groundwater environments

    E-Print Network [OSTI]

    Scow, Kate M; Hristova, Krassimira

    2001-01-01T23:59:59.000Z

    2000. "In Situ Treatment of MTBE by Biostimulation of NativeAmerican Petroleum Institute MTBE Biodegradation Workshop,Detection and Quantification of MTBE-degrading Strain PM1 by

  19. Remediation of overlapping benzene/MTBE and MTBE-only plumes: A case study

    SciTech Connect (OSTI)

    Carpenter, P.L. [TolTest, Inc., Pittsburgh, PA (United States); Vinch, C.A. [Ryder Transportation Services, Lawrenceville, NJ (United States)

    1997-12-31T23:59:59.000Z

    Two overlapping dissolved hydrocarbon plumes were identified in the shallow water-bearing zone at a commercial vehicle service and fueling facility. Plume 1 originated from a pre-1993 gasoline product line/dispenser leak. This plume contained a relatively common mix of benzene, toluene, ethylbenzene, xylenes (BTEX), and methyl tert-butyl ether (MTBE); benzene and MTBE were identified as the Plume 1 contaminants of concern based on their detection at approximately 200 {mu}g/l each, which exceeded regulatory guidance. Plume 2, which was detected in the tank cavity during UST removal, resulted from gasoline line leaks/underground storage tank overfills. Although the majority of impacted soils in both the dispenser and tank cavity areas were removed during UST excavation, rainfall during impacted soil removal mobilized the MTBE contained in the soils to groundwater. As a result, Plume 2 contained approximately 900 {mu}g/l MTBE while BTEX compounds were non-detect. Although the impacted zone sustained an approximate yield of only 0.3 gallon per minute, Pennsylvania regulations dictate that this zone must be treated as an aquifer. The failure of remediating gasoline plumes using pump-and-treat has been predominantly due to BTEX`s tendency to adsorb onto soil, creating a residual-phase product layer which acts as a continuing source of dissolved-phase BTEX. Based on this experience, most groundwater and remediation professionals reject pump-and-treat as a viable remedial option, except in situations where controlling groundwater movement is the predominant goal.

  20. The Social Costs of an MTBE Ban in California

    E-Print Network [OSTI]

    Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

    2005-01-01T23:59:59.000Z

    in Gasoline. ” Annual Energy Outlook 2000. DOE/EIA-0383,in Gaso- line. ” Annual Energy Outlook 2000. DOE/EIA-0383,MTBE in Gasoline,” Annual Energy Outlook 2000, 2001a. Mazur,

  1. Modeling the atmospheric inputs of MTBE to groundwater systems

    SciTech Connect (OSTI)

    Pankow, J.F.; Johnson, R.L. [Oregon Graduate Inst., Portland, OR (United States). Dept. of Environmental Science and Engineering; Thomson, N.R. [Univ. of Waterloo, Ontario (Canada). Dept. of Civil Engineering

    1995-12-31T23:59:59.000Z

    A numerical transport model was used to calculate the movement of methyl-t-butyl ether (MTBE) and several other volatile organic compounds (VOCs) from the atmosphere downward through the unsaturated zone and into shallow groundwater. Simulations were carried out for periods as long as 10 years to investigate whether a gaseous atmospheric MTBE source at typical ambient concentrations could account for the presence of MTBE in shallow groundwater at the types of low ug/L levels that have been found during the National Water Quality Assessment Program currently being conducted by the US Geological Survey. The simulations indicate that downward movement of MTBE to shallow groundwater will be very slow when there is no net downward movement of water through the vadose zone. For example, for a vadose zone composed of fine sand, and assuming tens of cm of infiltration, then only a few years will be required for water at a water table that is 5.0 m below ground surface to attain MTBE levels that correspond to saturation with respect to the atmospheric source gaseous concentration. An on/off atmospheric source, as might occur in the seasonal use of MTBE, will lead to concentrations in shallow groundwater that correspond to saturation with the time-averaging atmospheric source concentration.

  2. Iran plans huge private sector MTBE plant

    SciTech Connect (OSTI)

    Alperowicz, N.

    1992-01-15T23:59:59.000Z

    An export-oriented 1-million m.t./year methyl tert-butyl ether (MTBE) plant is planned as one of Iran`s private sector investment projects. State-owned National Petrochemical Co (NPC; Tehran) and the Dubai-based Iranian businessman Abdul Wahab Galadari have signed a letter of intent allowing Galadari to develop the venture. Colt Engineering (Calgary, AL) is assisting Galadari with costs, planning and technology selection for the estimated $300-million plus venture. An important meeting with NPC is scheduled end of this month, says Galadari, and a financial package should be put together by end of March or April. The facility will most likely be wholly-owned by the Galadari family, roughly 50% by members resident in Iran and the remainder by the Dubai-based concern A.W. Galadari Sons. NPC says it may take a token shareholding in the venture.

  3. The social costs of an MTBE ban in California (Long version)

    E-Print Network [OSTI]

    Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

    2002-01-01T23:59:59.000Z

    Ethanol, Non-oxy Case D'( p) MTBE Case D(p) U.S. Supply S(p)NO. 932 THE SOCIAL COSTS OF AN MTBE BAN IN CALIFORNIA (LONGMTBE .

  4. Author's personal copy Automobile proximity and indoor residential concentrations of BTEX and MTBE

    E-Print Network [OSTI]

    Siegel, Jeffrey

    Author's personal copy Automobile proximity and indoor residential concentrations of BTEX and MTBE to indoor benzene and MTBE concentrations appeared to have been dominated by car exhaust concentrations of other BTEX components and methyl tert-butyl ether (MTBE) have been reported [5,6]. Up until

  5. Biotreatment of groundwater contaminated with MTBE: interaction of common environmental co-contaminants

    E-Print Network [OSTI]

    Biotreatment of groundwater contaminated with MTBE: interaction of common environmental co November 2005 Key words: aerobic, biodegradation, BTEX, co-contaminant, MTBE, TBA Abstract Contamination of groundwater with the gasoline additive methyl tert-butyl ether (MTBE) is often accompanied by many aromatic

  6. Atmosphere-Water Interaction of Chloroform, Toluene, and MTBE in Small Perennial Urban Streams

    E-Print Network [OSTI]

    Atmosphere-Water Interaction of Chloroform, Toluene, and MTBE in Small Perennial Urban Streams-butyl ether (MTBE) are frequently detected VOCs in the atmosphere, surface water, and ground water in urban not be the predominant source of chloroform and toluene in the two urban streams. In contrast, MTBE may be coming from

  7. Environmental Microbiology (2001) 3(6), 407416 Methyl tert-butyl ether (MTBE) degradation by a

    E-Print Network [OSTI]

    Environmental Microbiology (2001) 3(6), 407±416 Methyl tert-butyl ether (MTBE) degradation of California, Riverside, Riverside, CA 92521, USA. Summary The widespread use of methyl tert-butyl ether (MTBE is often proposed as the most promising alter- native after treatment. However, MTBE biodegradation appears

  8. Determination of methyl tert. butyl ether (MTBE) in gasoline

    SciTech Connect (OSTI)

    Feldman, J.; Orchin, M. (Univ. of Cincinnati, OH (United States))

    1993-02-01T23:59:59.000Z

    A GLC-acid extraction method is described for the determination of MTBE in gasolines. The method consists of a programmed GLC analysis starting at about room temperature conducted before and after extraction with cold 85% phosphoric acid. This treatment results in the preferential solubility of ethers and other oxygenated compounds while minimizing the reaction of olefins and aromatics which may be present in the gasolines. Plotting various known concentrations of MTBE in gasolines against the concentrations determined in the same samples by the authors methodology results in a straight line relationship. The concentration of MTBE in any sample of gasoline may thus be determined using their GLC-extraction procedure and the calibration line. The analysis can accommodate a wide choice of standard GLC columns and programs. 2 refs., 1 fig., 1 tab.

  9. The current status of the U.S. MTBE industry

    SciTech Connect (OSTI)

    Rose, G.M. [Global Octanes Corp., Houston, TX (United States)

    1995-12-31T23:59:59.000Z

    This paper reviews the status of the MTBE industry from its beginnings as a result of the Clean Air Act Amendments and the need for the use of oxygenates in non-attainment areas. During 1990--93 three world scale merchant plants were constructed and in 1994 two more were brought on stream. The paper tabulates reasons why MTBE gained the lion`s share of the oxygenates market. Finally the paper discusses the problems that now plague the industry and their causes.

  10. Synthesis of MTBE during CO hydrogenation: Reaction sites required

    SciTech Connect (OSTI)

    Kazi, A.M.; Goodwin, J.G. Jr.; Marcelin, G.; Oukaci, R. [Univ. of Pittsburgh, PA (United States). Dept. of Chemical and Petroleum Engineering

    1995-03-01T23:59:59.000Z

    Synthesis of methyl tert-butyl ether (MTBE) during carbon monoxide (CO) hydrogenation has been studied with the following reaction schemes: (1) the addition of isobutylene during CO hydrogenation over metal catalysts active for methanol synthesis (Pd/SiO{sub 2} and Li-Pd/SiO{sub 2}) and (2) the addition of isobutylene during CO hydrogenation over a dual bed configuration consisting of Li-Pd/SiO{sub 2} and a zeolite (H-ZSM-5 or HY). The addition of isobutylene during methanol synthesis over the supported Pd catalysts indicated that MTBE cannot be formed on metal sites from a reaction of isobutylene with methanol precursors. However, addition of isobutylene to the syngas feed over a dual bed consisting of a methanol synthesis catalyst and an acid zeolite downstream of the methanol synthesis catalyst showed that MTBE can be synthesized during CO hydrogenation provided acid sites are available. In order to get higher conversions of methanol to MTBE, optimization of the acid catalyst and/or reaction conditions would be required to minimize formation of byproduct hydrocarbons.

  11. Reactant adsorption and its impact upon MTBE synthesis on zeolites

    SciTech Connect (OSTI)

    Kogelbauer, A.; Nikolopoulos, A.A.; Goodwin, J.G. Jr.; Marcelin, G. [Univ. of Pittsburgh, PA (United States)] [Univ. of Pittsburgh, PA (United States)

    1995-03-01T23:59:59.000Z

    Zeolites show interesting properties as catalysts for MTBE synthesis from methanol and isobutene such as a high selectivity to MTBE even at a low methanol/isobutene feed ratio. In order to explain this high selectivity, the adsorption behaviors of HY and HZSM-5 zeolites and their impact on activity and selectivity for MTBE synthesis were studied. Adsorption experiments, carried out under conditions similar to those used for reaction, showed that ca. 2.5 molecules of methanol were adsorbed per acid site on HZSM-5 and HY zeolites, whereas isobutene was found to form a 1:1 adsorption complex. The excess methanol adsorbed was found to be only weakly bonded, probably via hydrogen bonds. On a commercially used resin catalyst (Amberlyst-15) equal amounts of methanol and isobutene were adsorbed. The higher methanol uptake of the zeolites was paralleled by a higher selectivity to MTBE as compared to the resin catalyst. The increased adsorption of methanol on the zeolites was concluded to play a key role in suppressing the formation of by-products due to isobutene dimerization or oligomerization by decreasing the adsorption of isobutene on the active sites and thereby keeping these sites available for reaction. 40 refs., 5 figs., 3 tabs.

  12. New low energy process for MTBE and TAME

    SciTech Connect (OSTI)

    Herwig, J.; Schleppinghoff, B.; Schulwitz, S.

    1984-06-01T23:59:59.000Z

    Considered as new bulk petrochemicals of limited feedstocks MTBE (methyltertbutylether) and TAME (tertamylmethylether) need cheap and simple, minimum-cost production processes. The problems in optimizing the etherification are set by specifications for ether products and hydrocarbon raffinates. Working up reaction products from etherification processes containing hydrocarbons, methanol and ether to secure the pure main and side products is difficult because of azeotrope formation of methanol with ethers or hydrocarbons. At EC Erdolchemie GmbH, Cologne, a semicommercial unit with a capacity of 2,500 metric t/y has now been successfully operated for nearly one year producing high purity MTBE (> 99 wt.%) and a raffinate II with methanol content of < 0.05 wt.%. The TAME process has successfully been tested in a 3,000 kg/y TAME pilot plant for almost two years. Based on the operating experience, EC has prepared the engineering for a commercial multiproduct plant, including the production of 30,000 metric t/y MTBE, 15,000 metric t/y TAME and 6,000 metric t/y methylbutenes (TAME cracking product) in the first stage. EC has made application to the authorities for a construction permit. The process for MTBE and TAME will be licensed by EC Erdolchemie GmbH, Postfach 75 20 02, 5000 Cologne 71, West Germany or by Lurgi Kohle und Mineraloltechnik GmbH, Postfach 11 12 31, 6000 Frankfurt Main 2, West Germany.

  13. Impacts of Ethanol on Anaerobic Production of Tert-Butyl Alcohol (TBA) from Methyl Tert-Butyl Ether (MTBE) in Groundwater

    E-Print Network [OSTI]

    Scow, K M; MacKay, Douglas

    2008-01-01T23:59:59.000Z

    Methyl Tert-Butyl Ether (MTBE) in Groundwater P.I. names,Methyl tert-butyl ether (MTBE) is a contaminant of concernsubsurface environments. MTBE appears to be degraded readily

  14. E-Print Network 3.0 - aerobic mtbe biodegradation Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27 ACCEPTED BY WATER ENVIRONMENT RESEARCH ODOR AND VOC REMOVAL FROM WASTEWATER TREATMENT PLANT Summary: capable of MTBE biodegradation. 12;Effective treatment of a mixture...

  15. The evolution of fuel: A dissertation on MTBE and elastomers

    SciTech Connect (OSTI)

    Smith, G.M. [General Valve Co., Brookshire, TX (United States)

    1995-12-31T23:59:59.000Z

    This paper begins with a history of the development of the internal combustion engine and the need for a fuel octane booster that would also be non-polluting. The use of ethers as fuel additives cause a compatibility problem with valve sealing materials. The main purpose of this presentation is to address this compatibility problem. The paper makes specific recommendations for the author`s General Twin Seal, describing the seal components (slip seal, bonnet and lower plate O-rings, gland O-rings, bearing retainer O-rings, and pressure relief device seals) and which materials these components should be manufactured from to be compatible with the following fuel additives: toluene, MTBE, and various mixtures of toluene and MTBE.

  16. Race to license new MTBE and TAME routes heats up

    SciTech Connect (OSTI)

    Rotman, D.

    1993-01-06T23:59:59.000Z

    With refineries and petrochemical manufacturers continuing to gear up production of oxygenates for use in reformulated fuels, new routes to methyl tert-butyl ether (MTBE) and tert-amyl methyl ether (TAME) are clearly hot items in the licensing market. And probably nowhere has the competition become as intense as in offerings for skeletal isomerization technologies to boost ethers production from fluid catalytic cracking and steam cracking.

  17. Pilot-scale evaluation of chemical oxidation for MTBE-contaminated soil

    SciTech Connect (OSTI)

    Rahman, M.; Schupp, D.A.; Krishnan, E.R.; Tafuri, A.N.; Chen, C.T.

    1999-07-01T23:59:59.000Z

    The US Environmental Protection Agency (USEPA) has tentatively classified MTBE as a possible human carcinogen, thus further emphasizing the importance for study of fate, transport, and environmental effects of MTBE. The treatment of subsurface contaminants (e.g., MTBE) from leaking underground storage tank (LUST) sites presents many complex challenges. Many techniques have been employed for the remediation of contaminants in soil and groundwater at LUST sites. Under sponsorship of US EPA's National Risk Management Research Laboratory, IT Corporation has conducted evaluations of chemical oxidation of MTBE contaminated soil using Fenton's Reagent (hydrogen peroxide catalyzed by ferrous sulfate), simulating both ex-situ and in-situ soil remediation. Bench-scale ex-situ tests have shown up to 90% degradation of MTBE within 12 hours. Pilot-scale MTBE oxidation tests were conducted in a stainless paddle-type mixer with a 10 cubic foot mixing volume. The reactor was designed with a heavy duty mixer shaft assembly to homogenize soil and included provisions for contaminant and reagent addition, mixing, and sample acquisition. The tests were performed by placing 400 pounds of a synthetic soil matrix (consisting of a mixture of top soil, sand, gravel and clay) in the reactor, spiking with 20 ppm of MTBE, and mixing thoroughly. The variables evaluated in the pilot-scale tests included reaction time, amount of hydrogen peroxide, and amount of ferrous sulfate. After 8 hours of reaction, using 4 times the stoichiometric quantity of hydrogen peroxide and a 10:1 hydrogen peroxide: ferrous iron weight ratio, approximately 60% MTBE degradation was observed. When 10 times the stoichiometric quantity of hydrogen peroxide was used (with the same ratio of hydrogen peroxide to ferrous iron), 90% MTBE degradation was observed. When the same test was performed without any ferrous iron addition, 75% MTBE degradation was observed.

  18. Detections of MTBE in surficial and bedrock aquifers in New England

    SciTech Connect (OSTI)

    Grady, S.J. [Geological Survey, Hartford, CT (United States)

    1995-12-31T23:59:59.000Z

    The gasoline additive methyl tert-butyl ether (MTBE) was detected in 24% of water samples collected from surficial and bedrock aquifers in areas of New England. MTBE was the most frequently detected volatile organic compound among the 60 volatile chemicals analyzed and was present in 33 of 133 wells sampled from July 1993 through September 1995. The median MTBE concentration measured in ground-water samples was 0.45 microgram per liter and concentrations ranged from 0.2 to 5.8 microgram per liter. The network of wells sampled for MTBE consisted of 103 monitoring wells screened in surficial sand-and-gravel aquifers and 30 domestic-supply wells in fractured crystalline bedrock aquifers. Seventy-seven percent of all MTBE detections were from 26 shallow monitoring wells screened in surficial aquifers. MTBE was detected in42% of monitoring wells in urban areas. In agricultural areas, MTBE was detected i 8% (2 of 24) of wells and was not detected in undeveloped areas. Sixty-two percent of the MTBE detections in surficial aquifers were from wells within 0.25 mile of gasoline stations or underground gasoline storage tanks; all but one of these wells were in Connecticut and Massachusetts, where reformulated gasoline is used. MTBE was detected in 23% of deep domestic-supply wells that tapped fractured bedrock aquifers. MTBE was detected in bedrock wells only in Connecticut and Massachusetts; land use near the wells was suburban to rural, and none of the sampled bedrock wells were within 0.25 mile of a gasoline station.

  19. A near infrared regression model for octane measurements in gasolines which contain MTBE

    SciTech Connect (OSTI)

    Maggard, S.M. (Ashland Petroleum Co., KY (USA))

    1990-01-01T23:59:59.000Z

    Near infrared (NIR) spectroscopy has emerged as a superior technique for the on-line determination of octane during the blending of gasoline. This results from the numerous advantages that NIR spectroscopy has over conventional on-line instrumentation. Methyl t-butyl ether (MTBE) is currently the oxygenated blending component of choice. MTBE is advantageous because it has a high blending octane, a low Reid vapor pressure, is relatively cheap, and does not form peroxides (1). The goal of this project was to develop a NIR regression model that could be used to predict pump octanes regardless of whether they contained MTBE.

  20. New processes to recovery methanol and remove oxygenates from Valero MTBE unit

    SciTech Connect (OSTI)

    Hillen, P.; Clemmons, J.

    1987-01-01T23:59:59.000Z

    The refiner today has to evaluate every available option to increase octane in the gasoline pool to make up for the loss in octane created by lead phase down. Production of MTBE is one of the most attractive options. MTBE is produced by selectivity reacting isobutylene with methanol. Valero Refining's refinery at Corpus Christie, Texas (formerly Saber Refining) is one of the most modern refineries built in the last decade to upgrade resids. As part of the gasoline upgrading Valero had built a Butamer Unit to convert normal butane to isobutane upstream of their HF Alkylation Unit. In 1984 as an ongoing optimization of its operations, Valero Refining evaluated various processes to enable it to increase the octane output, and decided to build an MTBE unit. Valero selected the MTBE process licensed by Arco Technology, Inc. and contracted with Jacobs Engineering Group, Inc., Houston, Texas to provide detailed engineering and procurement services.

  1. Lyondell`s new isobutylene route could fuel an MTBE capacity boost

    SciTech Connect (OSTI)

    Rotman, D.; Wood, A.

    1992-03-25T23:59:59.000Z

    Driven by the hot growth prospects for methyl tert-butyl ether (MTBE), Lyondell Petrochemical (Houston) has developed a route to isobutylene it claims can produce the MTBE feedstock at half the capital cost of alternative synthesis technology. If proved, the process will be used in a new 7500-10,000 bbl/day MTBE plant at Channelview, TX. Lyondell also hopes to license the technology. {open_quotes}With expanding MTBE capacity, we will have to have new routes to isobutylene,{close_quotes} says Bob G. Gower, president and CEO of Lyondell. {open_quotes}We think this is a good fit within Lyondell, but also that it is important technology.{close_quotes} Gower declines to detail its specifics, but says it is a one-step isomerization of n-butenes to isobutylene. The firm has tested the process at a pilot unit and plans a demonstration unit in 1992.

  2. Traitement biologique in situ au sein d'un aquifre de polluants de type ETBE et MTBE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Traitement biologique in situ au sein d'un aquifère de polluants de type ETBE et MTBE Yves Benoit Villeurbanne (6) CNRS, UMR5557, Ecologie Microbienne ­ 69100 Villeurbanne Résumé Le MtBE et l' EtBE sont des : Traçabilité, Innocuité, Efficacité: Application aux polluants pétroliers type MTBE, ETBE), financé par le pôle

  3. Automobile proximity and indoor residential concentrations of BTEX and MTBE

    SciTech Connect (OSTI)

    Corsi, Dr. Richard [University of Texas, Austin; Morandi, Dr. Maria [University of Texas Health Science Center, Houston; Siegel, Dr. Jeffrey [University of Texas, Austin; Hun, Diana E [ORNL

    2011-01-01T23:59:59.000Z

    Attached garages have been identified as important sources of indoor residential air pollution. However, the literature lacks information on how the proximity of cars to the living area affects indoor concentrations of gasoline-related compounds, and the origin of these pollutants. We analyzed data from the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study and evaluated 114 residences with cars in an attached garage, detached garage or carport, or without cars. Results indicate that homes with cars in attached garages were affected the most. Concentrations in homes with cars in detached garages and residences without cars were similar. The contribution from gasoline-related sources to indoor benzene and MTBE concentrations appeared to be dominated by car exhaust, or a combination of tailpipe and gasoline vapor emissions. Residing in a home with an attached garage could lead to benzene exposures ten times higher than exposures from commuting in heavy traffic.

  4. Photoionization of methyl t-butyl ether (MTBE) and t-octyl methyl ether (TOME) and analysis of their pyrolyses by

    E-Print Network [OSTI]

    Morton, Thomas Hellman

    Photoionization of methyl t-butyl ether (MTBE) and t-octyl methyl ether (TOME) and analysis 1999; accepted 20 July 1999 Abstract The pyrolysis products of neutral methyl-d3 t-butyl ether (MTBE-d3 from thermal cracking patterns. MTBE and TOME both exhibit base peaks at m/z 73 (which shifts to m/z 76

  5. IDENTIFYING THE USAGE PATTERNS OF METHYL TERT-BUTYL ETHER (MTBE) AND OTHER OXYGENATES IN GASOLINE USING GASOLINE

    E-Print Network [OSTI]

    IDENTIFYING THE USAGE PATTERNS OF METHYL TERT-BUTYL ETHER (MTBE) AND OTHER OXYGENATES IN GASOLINE USING GASOLINE SURVEYS By Michael J. Moran, Rick M. Clawges, and John S. Zogorski U.S. Geological Survey 1608 Mt. View Rapid City, SD 57702 Methyl tert-butyl ether (MTBE) is commonly added to gasoline

  6. One multivariable controller increased capacity of an Oleflex{trademark}/MTBE complex

    SciTech Connect (OSTI)

    Robertson, D.; Peterson, T.J.; O`Connor, D. [Dynamic Matrix Control Corp., Houston, TX (United States); Adams, V.; Payne, D. [Valero Refining Co., Corpus Christi, TX (United States)

    1996-12-01T23:59:59.000Z

    Capacity increased by more than 4.6% when one dynamic matrix controller began operating in Valero Refining Company`s MTBE production complex in Corpus Christi, Texas. This was on a plant that was already running well above design capacity due to process changes previously made on the plant. A single controller was developed to cover an Oleflex{trademark} isobutane dehydrogenation unit and an MTBe reaction and fractionation plant with the intermediate isobutylene surge drum. The overall benefit is realized by a comprehensive constrained multivariable predictive controller which properly handles all sets of limits experienced by the complex, whether limited by the front-end Oleflex{trademark} or back-end MTBE unit. The controller has 20 manipulated, 6 disturbance and 44 controlled variables, and covers widely varying dynamics with settling times ranging from twenty minutes to six hours. The controller executes each minute with a six hour time horizon. A unique achievement is intelligent handling of the surge drum level by the controller for higher average daily capacity of the complex as a whole. The Oleflex{trademark} often operates at simultaneous limits on reactor effluent compressor capacity, cold box temperature and hydrogen/hydrocarbon ratio and the MTBE at impurity in butene column overhead as well as impurity in MTBE product.

  7. Relationship between MTBE-blended gasoline properties and warm-up driveability

    SciTech Connect (OSTI)

    Suzawa, Takumi; Yamaguchi, Kazunori; Kashiwabara, Kimito [Mitsubishi Motors Corp., Tokyo (Japan); Fujisawa, Norihiro; Matsubara, Michiro

    1995-12-31T23:59:59.000Z

    The relationship between MBE-blended gasoline properties and warm-up driveability is investigated by focusing on the transient combustion air-fuel ratio that strongly relates to the combustion state of the engine. As a result, although warm-up driveability of MTBE-free gasoline has a high correlation with 50% distillation temperature (T50) and a high correlation with 100 C distillation volume (E100), the correlation is found to be low when blended with MTBE. Various formulas that improve correlation with peak excess air ratio ({lambda}) by correcting T50 and E100 for the amount of MTBE blended are examined. The formula for which the highest determination coefficient is obtained is proposed as a new driveability index (DI) that can also be applied to MTBE-blended gasoline. In addition, the effect on driveability by gasoline base materials using this new DI also is investigated. The results indicate that the new DI worsen when heavy reformate containing large amounts of aromatics or MTBE, an oxygen-containing compound, is used for the octane improver, leaving the balance of the volatility out of consideration.

  8. Proceedings of the National Groundwater National Ground Water Association Southwest focused ground water conference: Discussing the issue of MTBE and perchlorate in the ground water, Anaheim, CA, June 3-4, pp:87-90.

    E-Print Network [OSTI]

    ground water conference: Discussing the issue of MTBE and perchlorate in the ground water, Anaheim, CA

  9. energy savings by the use of mtbe to replace alkylate in automotive gasolines

    SciTech Connect (OSTI)

    Englin, B.A.; Emel'yanov, V.E.; Terent'ev, G.A.; Vinogradov, A.M.

    1986-07-01T23:59:59.000Z

    This paper presents data on the differences in energy consumption in the production of leaded and unleaded AI-93 gasolines with various blend components. The authors investigate as high-octane components certain products that are more effective in use and less energy-consuming in production in comparison with alkylate. In particular, methyl tert-butyl ether (MTBE) is discussed; it is not poisonous, it has a high heat of combustion, and it does not attack materials of construction. The addition of 11% MTBE to gasoline lowers the cold start temperature of engines by 10-12 degrees. Moreover, no adjustment of the carburetor is required for the changeover to gasoline with 11% MTBE.

  10. Removal of MTBE and other organic contaminants from water by sorption to high silica zeolites

    SciTech Connect (OSTI)

    Anderson, M.A.

    2000-02-15T23:59:59.000Z

    Select zeolites with high SiO{sub 2}/Al{sub 2}O{sub 3} ratios were shown to effectively remove methyl tert-butyl ether (MTBE), chloroform, and trichloroethylene (TCE) from water. In laboratory studies using batch sorption equilibria, high Si large-port mordenite and ZSM-5 (silicalite) were found to have sorption properties for MTBE and TCE superior to activated carbon. for example, at an equilibrium solution concentration of 100 {micro}g/L, high Si mordenite retained 8--12x more MTBE than either of two powdered activated carbons used as reference sorbents. Sorption results also highlight the importance of pore size and SiO{sub 2}/Al{sub 2}O{sub 3} ration on contaminant removal efficiencies by zeolites.

  11. Aerobic mineralization of MTBE and tert-butyl alcohol by stream-bed sediment microorganisms

    SciTech Connect (OSTI)

    Bradley, P.M.; Landmeyer, J.E.; Chapelle, F.H. [Geological Survey, Columbia, SC (United States)] [Geological Survey, Columbia, SC (United States)

    1999-06-01T23:59:59.000Z

    Microorganisms indigenous to the stream-bed sediments at two gasoline-contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-{sup 14}C]-MTBE and 84% of [U-{sup 14}C]-TBA were degraded to {sup 14}CO{sub 2} under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.

  12. Vol. 83, No. 2, 2006 121 Analysis of Heat Transfer Fouling by Dry-Grind Maize Thin Stillage

    E-Print Network [OSTI]

    -tertiary butyl ether (MTBE), a petroleum derivative, and ethanol. In recent years, MTBE has been phased out due

  13. Agricultural and Resource Economics Update

    E-Print Network [OSTI]

    Smith, Aaron; Zilberman, David; Saitone, Tina; Sexton, Richard J.

    2012-01-01T23:59:59.000Z

    tertiary butyl ether (MTBE), a natural-gas derivative, werebattle between advocates for ethanol and those for MTBE.MTBE became the dominant additive because it was less

  14. Manipulation of the HIF–Vegf pathway rescues methyl tert-butyl ether (MTBE)-induced vascular lesions

    SciTech Connect (OSTI)

    Bonventre, Josephine A., E-mail: josephine.bonventre@oregonstate.edu [Rutgers, The State University of New Jersey, Joint Graduate Program in Toxicology, 170 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Rutgers, The State University of New Jersey, Department of Biochemistry and Microbiology, 76 Lipman Dr., New Brunswick, NJ 08901 (United States); Oregon State University, Department of Environmental and Molecular Toxicology, 1011 Agricultural and Life Sciences Bldg, Corvallis, OR 97331 (United States); Kung, Tiffany S., E-mail: tiffany.kung@rutgers.edu [Rutgers, The State University of New Jersey, Joint Graduate Program in Toxicology, 170 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Rutgers, The State University of New Jersey, Department of Biochemistry and Microbiology, 76 Lipman Dr., New Brunswick, NJ 08901 (United States); White, Lori A., E-mail: lawhite@aesop.rutgers.edu [Rutgers, The State University of New Jersey, Joint Graduate Program in Toxicology, 170 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Rutgers, The State University of New Jersey, Department of Biochemistry and Microbiology, 76 Lipman Dr., New Brunswick, NJ 08901 (United States); Cooper, Keith R., E-mail: cooper@aesop.rutgers.edu [Rutgers, The State University of New Jersey, Joint Graduate Program in Toxicology, 170 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Rutgers, The State University of New Jersey, Department of Biochemistry and Microbiology, 76 Lipman Dr., New Brunswick, NJ 08901 (United States)

    2013-12-15T23:59:59.000Z

    Methyl tert-butyl ether (MTBE) has been shown to be specifically anti-angiogenic in piscine and mammalian model systems at concentrations that appear non-toxic in other organ systems. The mechanism by which MTBE targets developing vascular structures is unknown. A global transcriptome analysis of zebrafish embryos developmentally exposed to 0.00625–5 mM MTBE suggested that hypoxia inducible factor (HIF)-regulated pathways were affected. HIF-driven angiogenesis via vascular endothelial growth factor (vegf) is essential to the developing vasculature of an embryo. Three rescue studies were designed to rescue MTBE-induced vascular lesions: pooled blood in the common cardinal vein (CCV), cranial hemorrhages (CH), and abnormal intersegmental vessels (ISV), and test the hypothesis that MTBE toxicity was HIF–Vegf dependent. First, zebrafish vegf-a over-expression via plasmid injection, resulted in significantly fewer CH and ISV lesions, 46 and 35% respectively, in embryos exposed to 10 mM MTBE. Then HIF degradation was inhibited in two ways. Chemical rescue by N-oxaloylglycine significantly reduced CCV and CH lesions by 30 and 32% in 10 mM exposed embryos, and ISV lesions were reduced 24% in 5 mM exposed zebrafish. Finally, a morpholino designed to knock-down ubiquitin associated von Hippel–Lindau protein, significantly reduced CCV lesions by 35% in 10 mM exposed embryos. In addition, expression of some angiogenesis related genes altered by MTBE exposure were rescued. These studies demonstrated that MTBE vascular toxicity is mediated by a down regulation of HIF–Vegf driven angiogenesis. The selective toxicity of MTBE toward developing vasculature makes it a potentially useful chemical in the designing of new drugs or in elucidating roles for specific angiogenic proteins in future studies of vascular development. - Highlights: • Global gene expression of MTBE exposed zebrafish suggested altered HIF1 signaling. • Over expression of zebrafish vegf-a rescues MTBE-induced vascular lesions. • Inhibiting PHD or knocking down VHL rescues MTBE-induced vascular lesions. • HIF1-Vegf driven angiogenesis is a target for MTBE vascular toxicity.

  15. analog 2-chloroethyl ethyl: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    de 170 High Purity Ethyl Acetate Production with a Batch Reactive Distillation Column using Dynamic Optimization Strategy CiteSeer Summary: AbstractEthyl acetate with the...

  16. Effects of temperature and acidic pre-treatment on Fenton-driven oxidation of MTBE-spent granular activated carbon

    SciTech Connect (OSTI)

    Kan, E.; Huling, S.G. [Robert S. Kerr Environmental Research Center, Ada, OK (United States)

    2009-03-01T23:59:59.000Z

    The effects of temperature and acidic pretreatment on Fenton-driven chemical oxidation of methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC, derived from bituminous coal) were investigated. Limiting factors in MTBE removal in GAC include the heterogeneous distribution of amended Fe, and slow intraparticle diffusive transport of MTBE and hydrogen peroxide (H{sub 2}O{sub 2}) into the 'reactive zone'. Acid pretreatment of GAC before Fe amendment altered the surface chemistry of the GAC, lowered the pH point of zero charge, and resulted in greater penetration and more uniform distribution of Fe in GAC. This led to a condition where Fe, MTBE, and H{sub 2}O{sub 2} coexisted over a larger volume of the GAC contributing to greater MTBE oxidation and removal. H{sub 2}O{sub 2} reaction and MTBE removal in GAC increased with temperature. Modeling H{sub 2}O{sub 2} transport and reaction in GAC indicated that H{sub 2}O{sub 2} penetration was inversely proportional with temperature and tortuosity, and occurred over a larger fraction of the total volume of small GAC particles (0.3 mm diameter) relative to large particles (1.2 mm diameter). Acidic pretreatment of GAC, Fe-amendment, elevated reaction temperature, and use of small GAC particles are operational parameters that improve Fenton-driven oxidation of MTBE in GAC. 29 refs., 6 figs., 1 tab.

  17. Iron optimization for Fenton-driven oxidation of MTBE-spent granular activated carbon

    SciTech Connect (OSTI)

    Scott G. Huling; Patrick K. Jones; Tony R. Lee [U.S. Environmental Protection Agency, Ada, OK (United States). Office of Research and Development, National Risk Management Research Laboratory

    2007-06-01T23:59:59.000Z

    Fenton-driven chemical oxidation of methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) was accomplished through the addition of iron (Fe) and hydrogen peroxide (H{sub 2}O{sub 2}) (15.9 g/L; pH 3). The GAC used was URV, a bituminous-coal based carbon. The Fe concentration in GAC was incrementally varied (1020-25 660 mg/kg) by the addition of increasing concentrations of Fe solution (FeSO4{center_dot}7H{sub 2}O). MTBE degradation in Fe-amended GAC increased by an order of magnitude over Fe-unamended GAC and H{sub 2}O{sub 2} reaction was predominantly (99%) attributed to GAC-bound Fe within the porous structure of the GAC. Imaging and microanalysis of GAC particles indicated limited penetration of Fe into GAC. The optimal Fe concentration was 6710 mg/kg (1020 mg/kg background; 5690 mg/kg amended Fe) and resulted in the greatest MTBE removal and maximum Fe loading oxidation efficiency (MTBE oxidized (g)/Fe loaded to GAC(mg/Kg)). At lower Fe concentrations, the H{sub 2}O{sub 2} reaction was Fe limited. At higher Fe concentrations, the H{sub 2}O{sub 2} reaction was not entirely Fe limited, and reductions in GAC surface area, GAC pore volume, MTBE adsorption, and Fe loading oxidation efficiency were measured. Results are consistent with nonuniform distribution of Fe, pore blockage in H{sub 2}O{sub 2} transport, unavailable Fe, and limitations in H{sub 2}O{sub 2} diffusive transport, and emphasize the importance of optimal Fe loading. 22 refs., 6 figs., 2 tabs.

  18. Impacts of Ethanol on Anaerobic Production of Tert-Butyl Alcohol (TBA) from Methyl Tert-Butyl Ether (MTBE) in Groundwater

    E-Print Network [OSTI]

    Scow, K M; MacKay, Douglas

    2008-01-01T23:59:59.000Z

    Project title: Impacts of Ethanol on Anaerobic Production oftert-butanol (TBA). As ethanol is being promoted as ainvestigate the effect of ethanol release on existing MTBE

  19. Gas phase synthesis of MTBE from methanol and isobutene over dealuminated zeolites

    SciTech Connect (OSTI)

    Collignon, F.; Mariani, M.; Moreno, S.; Remy, M.; Poncelet, G. [Universite Catholique de Louvain (Belgium)] [Universite Catholique de Louvain (Belgium)

    1997-02-01T23:59:59.000Z

    Gas phase synthesis of MTBE from methanol and isobutene has been investigated over different zeolites. It is shown that bulk Si/Al ratio has a marked influence on the formation of MTBE. H-beta zeolite was found to be as active as acid Amberlyst-15 (reference catalyst), and noticeably superior to non- and dealuminated forms of H-Y, H-ZSM-5, zeolite omega, and H-mordenites. Screening test results obtained over other catalysts (SAPOs and pillared clays) are briefly commented. The contribution of the external surface of the zeolites to the reaction is discussed. In the case of H-Y zeolites, it is shown that extra framework Al species ({sup 27}Al NMR signal at 30 ppm) have a detrimental effect on the reaction. 64 refs., 12 figs., 3 tabs.

  20. Gas phase synthesis of MTBE on triflic-acid-modified zeolites

    SciTech Connect (OSTI)

    Nikolopoulos, A.A.; Kogelbauer, A.; Goodwin, J.G. Jr. [Univ. of Pittsburgh, PA (United States)] [and others] [Univ. of Pittsburgh, PA (United States); and others

    1996-01-01T23:59:59.000Z

    The gas phase synthesis of MTBE (methyl tert-butyl ether) was studied using three series of triflic acid (TFA)-modified zeolites, the parent materials being HY, H-mordenite, and HZSM-5. Impregnation with TFA was found to enhance MTBE synthesis activity only for the large-pore zeolite Y and only up to a certain extent of modification. A high level of TFA modification caused a reduction in activity, apparently due to blockage of the active sites by TFA molecules and extra-lattice Al formed during the modification process. The mechanism of activity enhancement by TFA modification appears to be related to the formation of extra-lattice Al rather than the direct presence of TFA. 20 refs., 6 figs., 1 tab.

  1. Rates and products of degradation for MTBE and other oxygenate fuel additives in the subsurface environment

    SciTech Connect (OSTI)

    Tratnyek, P.G.; Church, C.D.; Pankow, J.F. [Oregon Graduate Inst., Portland, OR (United States). Dept. of Environmental Science and Engineering

    1995-12-31T23:59:59.000Z

    The recent realization that oxygenated fuel additives such as MTBE are becoming widely distributed groundwater contaminants has created a sudden and pressing demand for data on the processes that control their environmental fate. Explaining and predicting the subsequent environmental fate of these compounds is going to require extrapolations over long time frames that will be very sensitive to the quality of input data on each compound. To provide such data, they have initiated a systematic study of the pathways and kinetics of fuel oxygenate degradation under subsurface conditions. Batch experiments in simplified model systems are being performed to isolate specific processes that may contribute to MTBE degradation. A variety of degradation pathways can be envisioned that lead to t-butyl alcohol (TBA) as the primary or secondary product. However, experiments to date with a facultative iron reducing bacteria showed no evidence for TBA formation. Continuing experiments include mixed cultures from a range of aquifer materials representative of NAWQA study sites.

  2. Remediation of a fractured clay soil contaminated with gasoline containing MTBE

    SciTech Connect (OSTI)

    Johnson, R.L.; Grady, D.E. [Oregon Graduate Institute, Portland, OR (United States); Walden, T. [BP Oil Europe, Brussels (Belgium)

    1997-12-31T23:59:59.000Z

    Gasoline and other light non-aqueous phase liquids (LNAPLs) released into fractured clay soils initially move by advection of the LNAPL through the fractures. Once advective movement of the LNAPL ceases, dissolution of the gasoline components into the pore water and diffusion into the intact blocks of clay becomes an important transport process. The aqueous-phase flux of each compound in the mixture depends in large part upon its aqueous solubility. For example, a low-solubility compound like isooctane remains primarily in the fracture in the LNAPL. A high-solubility compound, like methyl-tert-butyl ether (MTBE), dissolves readily and may move almost entirely into the clay matrix. The distribution of compounds between the matrix and the fractures will have an important impact on the rate at which the gasoline contaminated soil can be remediated. In this context, the presence of soluble additives like MTBE can significantly impact the risk and remediation time for the, soil. Beginning in 1993 a field study to examine the applicability of air flushing for remediation of low-permeability soils was sponsored by API. The study focused on a variety of soil vapor extraction (SVE) and in situ air sparging (IAS) approaches for mass removal and risk reduction. The source of gasoline contamination in this study was a release of 50 liters of a mixture containing 14 gasoline hydrocarbons ranging from pentane to naphthalene, and including MTBE. The mixture was released into the shallow subsurface and allowed to redistribute for 10 months prior to air flushing startup. Numerical modeling indicated that essentially all of the MTBE should have dissolved into the matrix. In contrast, essentially all of the isooctane should have remained in the LNAPL in the fractures.

  3. Emissions of volatile organic compounds inferred from airborne flux measurements over a megacity

    E-Print Network [OSTI]

    Karl, T.; Apel, E.; Hodzic, A.; Riemer, D. D; Blake, D. R; Wiedinmyer, C.

    2009-01-01T23:59:59.000Z

    methyl-tertiary-butyl- ether (MTBE) and the biomass burningfrom all source categories. MTBE is a gasoline additive andwith the fuel tracer MTBE (e.g. 0.82 for MTBE/benzene).

  4. High-temperature ignition of propane with MTBE as an additive: Shock-tube experiments and modeling

    SciTech Connect (OSTI)

    Gray, J.A. (Sandia National Labs., Livermore, CA (United States)); Westbrook, C.K. (Lawrence Livermore National Lab., CA (United States))

    1991-01-01T23:59:59.000Z

    Ignition of propane has been studied in a shock tube and by computational modeling to determine the effect of methyl tert-butyl ether (MTBE) as a fuel additive. MTBE and isobutene were added in amounts up to 25% of the fuel to propane-oxygen-argon mixtures in shock-tube experiments covering a range of temperatures between 1450 and 1800 K. Ignition delays were measured from chemiluminescence at 432 nm due to excited CH radicals. The temperature dependence of the ignition rates was analyzed to yield Arrhenius parameters of E{sub a}{approximately}40 kcal/mol and log (A){approximately} 9.0 sec{sup {minus}1} for the overall reaction. Reactions involving MTBE and its decomposition products were combined with an established propane mechanism in a numerical model to describe the kinetic interaction of this additive with a typical hydrocarbon fuel. The experiments and the kinetic model both show that MTBE and isobutene retard propane ignition with nearly equal efficiency. The kinetic model demonstrates that isobutene kinetics are responsible for inhibition by both MTBE and isobutene, and the specific elementary reactions which produce this behavior are identified.

  5. High-temperature ignition of propane with MTBE as an additive: Shock-tube experiments and modeling. Revision 1

    SciTech Connect (OSTI)

    Gray, J.A. [Sandia National Labs., Livermore, CA (United States); Westbrook, C.K. [Lawrence Livermore National Lab., CA (United States)

    1991-12-01T23:59:59.000Z

    Ignition of propane has been studied in a shock tube and by computational modeling to determine the effect of methyl tert-butyl ether (MTBE) as a fuel additive. MTBE and isobutene were added to amounts up to 25% of the fuel to propane-oxygen-argon mixtures to shock-tube experiments covering a range of temperatures between 1450 and 1800 K. Ignition delays were measured from chemiluminescence at 432 nm due to excited CH radicals. The temperature dependence of the ignition rates was analyzed to yield Arrhenium parameters of E{sub a}{sup {minus}}40 kcal/mol and log(A) {sup {minus}}9.0 sec{sup {minus}1} for the overall reaction. Reactions involving MTBE and its decomposition products were combined with an established propane mechanism in a numerical model to describe the kinetic interaction of this additive with a typical hydrocarbon fuel. The experiments and the kinetic model both show that MTBE and isobutene retard propane ignition with nearly equal efficiency. The kinetic model demonstrates that isobutene kinetics are responsible for inhibition by both MTBE and isobutene, and the specific elementary reactions which produce this behavior are identified. 19 refs., 1 fig., 3 tabs.

  6. High-temperature ignition of propane with MTBE as an additive: Shock-tube experiments and modeling

    SciTech Connect (OSTI)

    Gray, J.A. [Sandia National Labs., Livermore, CA (United States); Westbrook, C.K. [Lawrence Livermore National Lab., CA (United States)

    1991-12-31T23:59:59.000Z

    Ignition of propane has been studied in a shock tube and by computational modeling to determine the effect of methyl tert-butyl ether (MTBE) as a fuel additive. MTBE and isobutene were added in amounts up to 25% of the fuel to propane-oxygen-argon mixtures in shock-tube experiments covering a range of temperatures between 1450 and 1800 K. Ignition delays were measured from chemiluminescence at 432 nm due to excited CH radicals. The temperature dependence of the ignition rates was analyzed to yield Arrhenius parameters of E{sub a}{approximately}40 kcal/mol and log (A){approximately} 9.0 sec{sup {minus}1} for the overall reaction. Reactions involving MTBE and its decomposition products were combined with an established propane mechanism in a numerical model to describe the kinetic interaction of this additive with a typical hydrocarbon fuel. The experiments and the kinetic model both show that MTBE and isobutene retard propane ignition with nearly equal efficiency. The kinetic model demonstrates that isobutene kinetics are responsible for inhibition by both MTBE and isobutene, and the specific elementary reactions which produce this behavior are identified.

  7. High-temperature ignition of propane with MTBE as an additive: Shock-tube experiments and modeling

    SciTech Connect (OSTI)

    Gray, J.A. (Sandia National Labs., Livermore, CA (United States)); Westbrook, C.K. (Lawrence Livermore National Lab., CA (United States))

    1991-12-01T23:59:59.000Z

    Ignition of propane has been studied in a shock tube and by computational modeling to determine the effect of methyl tert-butyl ether (MTBE) as a fuel additive. MTBE and isobutene were added to amounts up to 25% of the fuel to propane-oxygen-argon mixtures to shock-tube experiments covering a range of temperatures between 1450 and 1800 K. Ignition delays were measured from chemiluminescence at 432 nm due to excited CH radicals. The temperature dependence of the ignition rates was analyzed to yield Arrhenium parameters of E{sub a}{sup {minus}}40 kcal/mol and log(A) {sup {minus}}9.0 sec{sup {minus}1} for the overall reaction. Reactions involving MTBE and its decomposition products were combined with an established propane mechanism in a numerical model to describe the kinetic interaction of this additive with a typical hydrocarbon fuel. The experiments and the kinetic model both show that MTBE and isobutene retard propane ignition with nearly equal efficiency. The kinetic model demonstrates that isobutene kinetics are responsible for inhibition by both MTBE and isobutene, and the specific elementary reactions which produce this behavior are identified. 19 refs., 1 fig., 3 tabs.

  8. A screening model for evaluating the degradation and transport of MTBE and other fuel oxygenates in the subsurface

    SciTech Connect (OSTI)

    Sun, Y; Lu, X

    2004-04-20T23:59:59.000Z

    Methyl tert-butyl ether (MTBE) has received high attention as it contributed to cleaner air and contaminated thousands of underground storage tank sites. Because MTBE is very water soluble, it is more difficult to remove from water by conventional remediation techniques. Therefore, biodegradation of MTBE has become a remediation alternative. In order to understand the transport and transformation processes, they present a closed form solution as a screening tool in this paper. The possible reaction pathways of first-order reactions are described as a reaction matrix. The singular value decomposition is conducted analytically to decouple the partial differential equations of the multi-species transport system coupled by the reaction matrix into multiple independent subsystems. Therefore, the complexity of mathematical description for the reactive transport system is significantly reduced and analytical solutions may be previously available or easily derived.

  9. The Scientific Basis for the Regulation of Nanoparticles: Challenging Paracelsus and Pare

    E-Print Network [OSTI]

    Goldstein, Bernard D.

    2010-01-01T23:59:59.000Z

    NANOTECHNOILOGY 402 (2007). 20. MTBE unquestionably causesTertiary-Butyl Ether (MTBE)-a Gasoline Additive-CausesMethyl Tertiary-butyl Ether (MTBE) in CD-I Mice and F-344

  10. Concentrating aqueous acetate solutions with tertiary amines

    E-Print Network [OSTI]

    Lee, Champion

    1993-01-01T23:59:59.000Z

    Water may be extracted from aqueous calcium acetate or sodium acetate solutions using low miscibility, low molecular weight tertiary amines, e.g. triethylamine (TEA) and N,N- dietliylmethylaniine (DEMA). This novel extraction technology...

  11. Fast photoreactions of ethanol and MTBE on tropospheric metal oxide particles

    SciTech Connect (OSTI)

    Idriss, H.; Seebauer, E.G. [Univ. of Illinois, Urbana, IL (United States)

    1995-12-31T23:59:59.000Z

    Ethanol (EtOH) and tert-Butyl methyl ether (MTBE) are both finding increased use as oxygenated additives to fuels. However, the environmental fate in the troposphere of these species is unclear when they escape as fugitive emissions. In several locations there are reports of human illness in response to MTBE in particular. Volatile organic compounds (VOC`s) such as these are generally thought to react by a variety of homogeneous free-radical mechanisms, usually beginning with attack by OH radical. However, we show by laboratory kinetic studies that the heterogeneous photoreaction on solid suspended metal-oxide particulates such as fly ash proceeds with a comparable rate, especially in urban environments. EtOH reacts to form acetaldehyde, and EtOH forms isobutene, methanol, and formaldehyde. Our work appears to be the first-ever demonstration that VOC`s can react as fast by a heterogeneous mechanism as by a homogeneous one in the atmosphere. Experiments by various optical and kinetic techniques show that the active phases in fly ash are Fe oxides, which are fairly abundant in other atmospheric particulates as well.

  12. Intrinsic bioremediation of a BTEX and MTBE plume under mixed aerobic/denitrifying conditions

    SciTech Connect (OSTI)

    Borden, R.C.; Daniel, R.A. [North Carolina State Univ., Raleigh, NC (United States). Civil Engineering Dept.

    1995-09-01T23:59:59.000Z

    A shallow Coastal Plain aquifer in rural Sampson Country, North Carolina, has been contaminated with petroleum hydrocarbon from a leaking underground storage tank containing gasoline.An extensive field characterization has been performed to define the horizontal and vertical distribution of soluble gasoline components and indicator parameters. A plume of dissolved methyl tert-butyl ether (MTBE) and the aromatic hydrocarbons benzene, toluene, ethylbenzene, and xylene isomers (BTEX) is present in the aquifer and has migrated over 600 ft from the source area. Background dissolved oxygen concentrations range from 7 to 8 mg/L, and nitrate concentrations range from 5 to 22 mg/L as N due to extensive fertilization of fields surrounding the spill. In the center of the BTEX plume, oxygen concentrations decline to less than 1 mg/L while nitrate concentrations remain high. The total mass flux of MTBE and all BTEX components decline with distance downgradient relative to a conservative tracer (chloride). At the source, the total BTEX concentration exceeds 75 mg/L while 130 ft downgradient, total BTEX concentrations are less than 4.9 mg/L, a 15-fold reduction. Toluene and ethylbenzene decline most rapidly followed by m-p-xylene, o-xylene and finally benzene. Biodegradation of TEX appears to be enhanced by the excess nitrate present in the aquifer while benzene biodegradation appears to be due to strictly aerobic processes.

  13. Heterogeneous models of tubular reactors packed with ion-exchange resins: Simulation of the MTBE synthesis

    SciTech Connect (OSTI)

    Quinta Ferreira, R.M.; Almeida-Costa, C.A. [Univ. of Coimbra (Portugal). Dept. of Chemical Engineering; Rodrigues, A.E. [Univ. of Porto (Portugal). Dept. of Chemical Engineering

    1996-11-01T23:59:59.000Z

    The study of behavior of fixed-bed reactors using ion-exchange resins as catalysts was carried out by making use of a complete bidimensional heterogeneous model for the reactor, which included the resistances inside the ion-exchange resin particles, considered with a macroreticular structure. The active sites were located inside the gel phase of the resin, represented by microspheres, and on the macropores walls. The overall efficiency of such heterogeneous catalyst particles was defined by the macroeffectiveness and microeffectiveness factors accounting for the process behavior on the macropores and inside the microspheres. The synthesis of methyl tert-butyl ether, MTBE, a liquid-phase reversible exothermic reaction between methanol and isobutene, was considered as a reference case. This system was studied in the temperature range of 313--338 K, and the effect of the thermodynamic equilibrium conditions was examined. The results predicted by the complete heterogeneous model were compared with those obtained with the simple pseudohomogeneous model, which revealed higher hot spots. Moreover, a comparison between bidimensional and unidimensional models was also performed. The orthogonal collocation method was used for the discretization of the differential equations inside the catalyst particles, which were reduced from three (corresponding to the three mass balances for the three compounds, isobutene, methanol, and MTBE) to only one differential equation, by using the concept of the generalized variable.

  14. VOL. 32, No.4 UNL WATER CENTER AUGUST 2000 New Method For Detecting Trace Amounts of MTBE

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    water their use to help curb growing prob- at spill sites. lems with air pollution. MTBE is the most emis-by Steve Ress sions, are considered small. Gasoline additives that help keep our air clean can- "Most of the information available on oxygenates 10 mine the extent of their environmental impacts

  15. arrhizus ethyl esters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1. Introduction Biodiesel, consisting of the methyl or ethyl ester of fatty acids with biodiesel. To the extent that these deal with biodiesel from virgin vegetable fatty acids,...

  16. Control Study of Ethyl tert-Butyl Ether Reactive Distillation Muhammad A. Al-Arfaj

    E-Print Network [OSTI]

    Al-Arfaj, Muhammad A.

    -butyl ether (ETBE) for gasoline blending as a replacement for methyl tert-butyl ether (MTBE) because and be blended with ETBE in the gasoline pool. Even for neat operation, if the conversion is low, the unconverted

  17. A SUMMARY OF COAL IN THE COALMONT FORMATION (TERTIARY),

    E-Print Network [OSTI]

    Chapter SN A SUMMARY OF COAL IN THE COALMONT FORMATION (TERTIARY), NORTH PARK BASIN, COLORADO By S assessment of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

  18. SUMMARY OF TERTIARY COAL RESOURCES OF THE DENVER BASIN, COLORADO

    E-Print Network [OSTI]

    Chapter SD SUMMARY OF TERTIARY COAL RESOURCES OF THE DENVER BASIN, COLORADO By D. J. Nichols in U.S. Geological Survey Professional Paper 1625-A 1999 Resource assessment of selected Tertiary coal beds and zones here or on this symbol in the toolbar to return. 1999 Resource assessment of selected Tertiary coal

  19. An Evaluation of Ethyl Silicate-Based Grouts for Weathered Silicate Stones

    E-Print Network [OSTI]

    Dolph, Brittany Helen

    2014-01-01T23:59:59.000Z

    and Wheeler G.S. 2009. “Silicate Consolidants for Stone. ”4   2.2.   Ethyl Silicate: Chemistry and6   2.2.1.   Ethyl Silicates for Stone

  20. Multiple Objective Stormwater Management For the Coliseum Complex

    E-Print Network [OSTI]

    Jones, Jesse; Kraai, Rachel

    2009-01-01T23:59:59.000Z

    methyl tertiary butyl ether (MTBE) remain in the soil around5.2 ppb xylenes, and 160 ppb MTBE remain in the groundwater

  1. The Drinking Water Security and Safety Amendments of 2002: Is America's Drinking Water Infrastructure Safer Four Years Later?

    E-Print Network [OSTI]

    Shermer, Steven D.

    2006-01-01T23:59:59.000Z

    355 tertiary butyl ether ("MTBE"). 43 8 Amazingly, even "[c]Water: Study Estimates Cost of MTBE Remedia- tion At Up to $

  2. The antiestrogen [2-(4-benzyl-phenoxy)ethyl]diethylammonium

    E-Print Network [OSTI]

    The antiestrogen [2-(4-benzyl- phenoxy)ethyl]diethylammonium chloride Andrew Hempel,a * Norman Research, 8515C 35 Ave. NE, Seattle, WA 98115, USA Correspondence e-mail: andrew

  3. {gamma}-aminobutyric acid{sub A} (GABA{sub A}) receptor regulates ERK1/2 phosphorylation in rat hippocampus in high doses of Methyl Tert-Butyl Ether (MTBE)-induced impairment of spatial memory

    SciTech Connect (OSTI)

    Zheng Gang; Zhang Wenbin [Department of Occupational and Environmental Health, School of Public Health and Military Preventive Medicine, Fourth Military Medical University, Xi'an 710032 (China); Zhang Yun [465 Hospital, Jilin Medical College, Jilin 132001 (China); Chen Yaoming; Liu Mingchao; Yao Ting; Yang Yanxia; Zhao Fang [Department of Occupational and Environmental Health, School of Public Health and Military Preventive Medicine, Fourth Military Medical University, Xi'an 710032 (China); Li Jingxia; Huang Chuanshu [Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 (United States); Luo Wenjing [Department of Occupational and Environmental Health, School of Public Health and Military Preventive Medicine, Fourth Military Medical University, Xi'an 710032 (China)], E-mail: luowenj@fmmu.edu.cn; Chen Jingyuan [Department of Occupational and Environmental Health, School of Public Health and Military Preventive Medicine, Fourth Military Medical University, Xi'an 710032 (China)], E-mail: jy_chen@fmmu.edu.cn

    2009-04-15T23:59:59.000Z

    Experimental and occupational exposure to Methyl Tert-Butyl Ether (MTBE) has been reported to induce neurotoxicological and neurobehavioral effects, such as headache, nausea, dizziness, and disorientation, etc. However, the molecular mechanisms involved in MTBE-induced neurotoxicity are still not well understood. In the present study, we investigated the effects of MTBE on spatial memory and the expression and function of GABA{sub A} receptor in the hippocampus. Our results demonstrated that intraventricular injection of MTBE impaired the performance of the rats in a Morris water maze task, and significantly increased the expression of GABA{sub A} receptor {alpha}1 subunit in the hippocampus. The phosphorylation of ERK1/2 decreased after the MTBE injection. Furthermore, the decreased ability of learning and the reduction of phosphorylated ERK1/2 level of the MTBE-treated rats was partly reversed by bicuculline injected 30 min before the training. These results suggested that MTBE exposure could result in impaired spatial memory. GABA{sub A} receptor may play an important role in the MTBE-induced impairment of learning and memory by regulating the phosphorylation of ERK in the hippocampus.

  4. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    methyl-tertiary butyl ether (MTBE), from gasoline by 2004.MTBE was used to meet a requirement for gasoline to containbeginning in 2002, replacing MTBE with ethanol. According to

  5. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    Methanol Ethanol Acetone MEK MTBE CO Methane UCI UCI TOGA/methyl tertiary butyl ether (MTBE), and toluene all ratioedthe observed decay. For MTBE, also a species that is not

  6. Soil type, crop and irrigation technique affect nitrogen leaching to groundwater

    E-Print Network [OSTI]

    Letey, John; Vaughan, Peter

    2013-01-01T23:59:59.000Z

    water contamination with MTBE (methyl tertiary-butyl ether,that areas vulnerable to MTBE are also vulner- able tothat affect the movement of MTBE. If only a small amount of

  7. Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2-C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3 and SO2

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    methyl tertiary- butyl ether (MTBE) and its effect on plasmaand three VOCs (propyne, furan, MTBE) remained below their 3Ethanol Acetone MEK MAC MVK MTBE Furan CH 3 OH C 2 H 5 OH C

  8. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01T23:59:59.000Z

    methyl-tertiary butyl ether (MTBE), from gasoline by 2004.MTBE was used to meet a requirement for gasoline to containbeginning in 2002, replacing MTBE with ethanol. According to

  9. Finding the missing stratospheric Bry: a global modeling study of CHBr3 and CH2Br2

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    Methanol Ethanol Acetone MEK MTBE CO Methane UCI UCI TOGA/methyl tertiary butyl ether (MTBE), and toluene all ratioedthe observed decay. For MTBE, also a species that is not

  10. Life-cycle Environmental Inventory of Passenger Transportation in the United States

    E-Print Network [OSTI]

    Chester, Mikhail V

    2008-01-01T23:59:59.000Z

    Methyl tert?Butyl Ether (MTBE); http://www.atsdr.cdc.gov/Methyl Tertiary Butyl  Ether  (MTBE),  which  was  easily accounting was not performed on MTBE and the result  of 

  11. Life-Cycle Water Impacts of U.S. Transportation Fuels

    E-Print Network [OSTI]

    Scown, Corinne Donahue

    2010-01-01T23:59:59.000Z

    Drinking Water: Methyl Tertiary Butyl Ether (MTBE).http://www.epa.gov/mtbe/water.htm (11/30/10), Chiu, Y. W. ;LCFS LCI LP LPG MED MRO MSF MTBE MWD MWDOC NAICS NERC NETL

  12. The Fusion Curve of Ammonia and Ethyl Alcohol

    E-Print Network [OSTI]

    Broderson, H.J.

    1911-01-01T23:59:59.000Z

    ’ Center for Digital Scholarship. http://kuscholarworks.ku.edu Submitted to the Graduate School of the University of Kansas for partial completion of Master of Arts. THE FUSION CURVE OF AMMONIA AND ETHYL ALCOHOL H. J. BRODERSON THE 2?03IOH CUHVB OP... AMMOHIA AND ETHXL ALCOHOL. A part of the requirement for the lh A. 2)egree. By K. J. Brodereon, University of Kangaa, May 1911, THE PUSIOB CURVS OP AliKOHlA AHD ETHYL ALCOHOL* Only within tho last fow ycara has any worlc boon done on tho fusion...

  13. EXECUTIVE SUMMARY TERTIARY COAL RESOURCES IN THE NORTHERN

    E-Print Network [OSTI]

    Professional Paper 1625-A 1999 Resource assessment of selected Tertiary coal beds and zones in the Northern or on this symbol in the toolbar to return. 1999 Resource assessment of selected Tertiary coal beds and zones......................................................................ES-8 Figures ES-1. Coal basins under study in the current resource assessment, by region. ES-2

  14. (distillation) (Le Chatelier

    E-Print Network [OSTI]

    Hong, Deog Ki

    acetate(methyl-, ethyl-, butyl-) , methanol isobutene MTBE , ethanol isobutene ETBE , methanol 2-methyl-1% MTBE 3 DMC . 2% 1990 MTBE 1999 3 2002 MTBE . [ 1-1 ] Phosgene process polycarbonate(PC) 50/ . DMC DMC MTBE / . ( : Amoco, "Review of DMC Manufacture and its

  15. E-Print Network 3.0 - ai tertiary structures Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tertiary structures Search Powered by Explorit Topic List Advanced Search Sample search results for: ai tertiary structures Page: << < 1 2 3 4 5 > >> 1 OECD FACTBOOK 2008 ISBN...

  16. Aqueous flooding methods for tertiary oil recovery

    DOE Patents [OSTI]

    Peru, Deborah A. (Bartlesville, OK)

    1989-01-01T23:59:59.000Z

    A method of aqueous flooding of subterranean oil bearing formation for tertiary oil recovery involves injecting through a well into the formation a low alkaline pH aqueous sodium bicarbonate flooding solution. The flooding solution's pH ranges from about 8.25 to 9.25 and comprises from 0.25 to 5 weight percent and preferably about 0.75 to 3.0 weight percent of sodium bicarbonate and includes a petroleum recovery surfactant of 0.05 to 1.0 weight percent and between 1 and 20 weight percent of sodium chloride. After flooding, an oil and water mixture is withdrawn from the well and the oil is separated from the oil and water mixture.

  17. Methyl tert-butyl ether (MTBE) is a volatile organic com-pound (VOC) derived from natural gas that is added to gas-

    E-Print Network [OSTI]

    Methyl tert-butyl ether (MTBE) is a volatile organic com- pound (VOC) derived from natural gas Water in Urban and Agricultural Areas made from methanol, which is derived primarily from natural gas that is added to gas- oline either seasonally or year round in many parts of the United States to increase

  18. Eutrophication potential of secondary and tertiary wastewater effluents

    E-Print Network [OSTI]

    Ivy, James Thomas

    1972-01-01T23:59:59.000Z

    hydroxi de or some other base. 8ecause of its low cost 1n some areas, waste pickle 11quor will probably be useful in some treatment systems. Alum has been used for phosphate removal in both the secondary (act1vated sludge) and tertiary processes.... In the secondary process, alum has reduced the effluent phosphorus concentration to 0 . 5 - 1. 0 mg/1. Tertiary alum treatment has been used at the FWOA ? Lebanon Pilot Plant, Lebanon, Oh1o (8). The pilot plant at Dallas, Texas, is investigating the use of 11...

  19. A SUMMARY OF COAL IN THE FORT UNION FORMATION (TERTIARY), BIGHORN BASIN,

    E-Print Network [OSTI]

    Chapter SB A SUMMARY OF COAL IN THE FORT UNION FORMATION (TERTIARY), BIGHORN BASIN, WYOMING assessment of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U...........................................................................................................................SB-1 Coal Production History

  20. E-Print Network 3.0 - australian tertiary referral Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Darwin Institution Programme Summary: ANUTECH (Australian National University) Foundation Studies Program Australian National University... for Tertiary Studies) Batchelor...

  1. TERTIARY INSTITUTIONS SERVICE CENTRE (Incorporated in Western Australia)

    E-Print Network [OSTI]

    TERTIARY INSTITUTIONS SERVICE CENTRE (Incorporated in Western Australia) 100 Royal Street East Perth, Western Australia 6004 Telephone (08) 9318 8000 Facsimile (08) 9225 7050 http://www.tisc.edu.au/ Curtin University · Edith Cowan University · Murdoch University · The University of Western Australia

  2. TERTIARY INSTITUTIONS SERVICE CENTRE (Incorporated in Western Australia)

    E-Print Network [OSTI]

    TERTIARY INSTITUTIONS SERVICE CENTRE (Incorporated in Western Australia) Level 1, 100 Royal Street East Perth, Western Australia 6004 Telephone (08) 9318 8000 Facsimile (08) 9225 7050 http://www.tisc.edu.au/ Curtin University · Edith Cowan University · Murdoch University · The University of Western Australia

  3. Combustion chemical kinetics of biodiesel and related compounds (methyl and ethyl esters): Experiments and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Combustion chemical kinetics of biodiesel and related compounds (methyl and ethyl esters transportation fuel dedicated to the diesel engine, biodiesel, with an emphasis on ethyl esters because of biodiesel and related components, the main gaps in the field are highlighted to facilitate the convergence

  4. Pd-Catalyzed O-Arylation of Ethyl Acetohydroximate: Synthesis of O-Arylhydroxylamines and Substituted Benzofurans

    E-Print Network [OSTI]

    Maimone, Thomas

    An efficient Pd catalyst for the O-arylation of ethyl acetohydroximate with aryl chlorides, bromides, and iodides has been developed. Ethyl acetohydroximate serves as an efficient hydroxylamine equivalent for C?O cross-coupling, ...

  5. UNIVERSITY OF CALIFORNIA Santa Barbara

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    , B. Dooher, and D. Rice, Analysis of dissolved benzene plumes and methyl tertiary butyl ether (MTBE, An evaluation of MTBE impacts to California groundwater resources, pp. 68 p., Lawrence Livermore National, Temporal Analysis of Methyl Tertiary Butyl Ether (MTBE) Plumes at California Leaking Underground Fuel tank

  6. E-Print Network 3.0 - academic tertiary care Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Rochester, Rochester, New York 14627 (Received 1 April 1996) Tertiary protons with birth... targets, such as those planned for the National Ignition Facility. Measurement of...

  7. Early Tertiary subsidence and sedimentary facies - northern Sirte Basin, Libya

    SciTech Connect (OSTI)

    Gumati, Y.D.; Kanes, W.H.

    1985-01-01T23:59:59.000Z

    The subsidence curves and subsidence rate curves for the Sirte basin, constructed from the stratigraphic record, show that subsidence was continuous throughout Late Cretaceous and Tertiary times, reaching a maximum during the Paleocene and Eocene, when a major reactivation of faults occurred. Shales and carbonates were deposited during all of the Late Cretaceous and Tertiary. Abrupt lateral facies changes occur from the platform areas toward the deeper troughs along with steep downdip thickening. These conditions were probably assisted by contemporaneous faulting along structurally weak hinge lines where the dominant structural elements are normal step faults. The absence of upper Paleozoic and lower Mesozoic sediments suggests that the area was domed, faulted, and eroded during the late Mesozoic. As a result of crustal extension during the Paleocene, a marked lithologic and structural change occurred. The Heira Shale succeeded the Kalash Limestone in the Marada trough. Reactivation of the earlier faults, accompanied by an increase in the sediment supply from the south, caused these lower Paleocene shales to cover the entire area, with the exception of the old highs where carbonate deposition continued. An intercalation of shales and carbonates provides a sensitive indicator of change of depth and sediment type.

  8. Early Tertiary subsidence and sedimentary facies - Northern Sirte Basin, Libya

    SciTech Connect (OSTI)

    Gumati, Y.D.; Kanes, W.H.

    1985-12-01T23:59:59.000Z

    The subsidence curves and subsidence rate curves for the Sirte basin, constructed from the stratigraphic record, show that subsidence was continuous throughout Late Cretaceous and Tertiary times, reaching a maximum during the Paleocene and Eocene, when a major reactivation of faults occurred. Shales and carbonates were deposited during all of the Late Cretaceous and Tertiary. Abrupt lateral facies changes occur from the platform areas toward the deeper troughs along with steep downdip thickening. The absence of upper Paleozoic and lower Mesozoic sediments suggests that the area was domed, faulted, and eroded during the late Mesozoic. As a result of crustal extension during the Paleocene, a marked lithologic and structural change occurred. The Heira Shale succeeded the Kalash Limestone in the Marada trough. Reactivation of the earlier faults, accompanied by an increase in the sediment supply from the south, caused these lower Paleocene shales to cover the entire area, with the exception of the old highs where carbonate deposition continued. An intercalation of shales and carbonates provides a sensitive indicator of change of depth and sediment type. 14 figures.

  9. The identification of recurrent tertiary motifs by interactions of protein secondary structure units

    E-Print Network [OSTI]

    Hodges, Hamilton Courtney

    2013-02-22T23:59:59.000Z

    . Through an informatics analysis of recurrent tertiary contacts, we have derived a database of recurrent tertiary motifs. A group of 691 high-resolution, non-redundant protein structures was obtained. For each protein in this source data, we found all...

  10. A SUMMARY OF TERTIARY COAL RESOURCES OF THE WIND RIVER BASIN, WYOMING

    E-Print Network [OSTI]

    and C. W. Keighin in U.S. Geological Survey Professional Paper 1625-A 1999 Resource assessment Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great member of the Fort Union Formation. 1999 Resource assessment of selected Tertiary coal beds and zones

  11. Water quality for secondary and tertiary oil recovery

    SciTech Connect (OSTI)

    Michnick, M.J.

    1983-01-01T23:59:59.000Z

    A key element in many secondary and tertiary oil recovery processes is the injection of water into an oil-bearing formation. Water is the fluid which displaces the oil in the pore space of the rock. A successful waterflood requires more than the availability of water and the pumps and piping to inject the water into the formation. It requires an understanding of how water enters the oil bearing formation and what happens once the injected water comes into contact with the rock or sand, the oil, and the water already in the reservoir. Problems in injectivity will arise unless care and constant monitoring are exercised in the water system for a flood operation. This study examines water availability and quality in relation to waterflooding.

  12. MTBE Production Economics

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricityrgy81 §98 3.241

  13. Thermochemistry of Ethyl 3-Oxobutanoate Revisited: Observance of a Non-Zero Enthalpy of Mixing between Tautomers and Its Effects

    E-Print Network [OSTI]

    Chickos, James S.

    . Equation 1 was used for this purpose. The term Cp(l)m represents the heat capacity of the liquid that was estimated by group additivity.6 Since the heat capacity of the liquid enol-ester and keto-ester estimate The enthalpies of formation of pure liquid and gas-phase ethyl 3-oxobutanoate and ethyl Z-3-hydroxy- 2-butenoate

  14. Small angle neutron scattering study of deuterated sodium dodecylsulfate micellization in dilute poly((2edimethylamino)ethyl methacrylate) solutions

    E-Print Network [OSTI]

    Kofinas, Peter

    Small angle neutron scattering study of deuterated sodium dodecylsulfate micellization in dilute 2010 Keywords: Poly((2edimethylamino)ethyl methacrylate) Micelle Small angle neutron scattering a b angle neutron scattering. We found three transitions of the poly ((2edimethylamino)ethyl methacrylate

  15. Detection of Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) Using Toluene Dioxygenase-Peroxidase Coupling Reactions

    E-Print Network [OSTI]

    Chen, Wilfred

    bioassay may be suitable for field monitoring of BTEX to identify and track contaminated water and follow in contaminated water because of their accuracy and sensitivity. Although very sensitive, the cost associatedDetection of Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) Using Toluene Dioxygenase

  16. A SUMMARY OF TERTIARY COAL RESOURCES OF THE RATON BASIN, COLORADO AND NEW MEXICO

    E-Print Network [OSTI]

    ............................................................................................................SR-13 Coal-bed Methane and potential coal-bed methane production in Raton Basin. Adapted from Hemborg (1996). 1999 RChapter SR A SUMMARY OF TERTIARY COAL RESOURCES OF THE RATON BASIN, COLORADO AND NEW MEXICO By R

  17. Concentrating aqueous volatile fatty acid salt solutions using a tertiary amine mixture

    E-Print Network [OSTI]

    Gaskin, David J

    1997-01-01T23:59:59.000Z

    Lee (1993) has shown that tertiary amines are able to hics. extract water from low-concentration calcium acetate and sodium acetate solutions. This thesis extends the previous work to include calcium propionate and butyrate. Amine extraction may...

  18. West Hackberry Tertiary Project. Annual report, September 3, 1997--September 2, 1998

    SciTech Connect (OSTI)

    Gillham, T.H.

    1997-09-10T23:59:59.000Z

    The following report is the Project Management Plan for the fifth year of the West Hackberry Tertiary Project. The West Hackberry Tertiary Project is one of four mid-term projects selected by the United States Department of Energy (DOE) as part of the DOE`s Class 1 Program for the development of advance recovery technologies in fluvial dominated deltaic reservoirs. The West Hackberry Tertiary Project is a field test of the idea that air injection can be combined with the Double Displacement Process to produce a low cost tertiary recovery process which is economic at current oil prices. The Double Displacement Process is the gas displacement of a water invaded oil column for the purpose of recovering tertiary oil by gravity drainage. The Double Displacement Process is based upon the concept that in fields such as West Hackberry waterdrive recoveries are typically 50%-60% of the original oil in place while gravity drainage recoveries average 80%-90% of the original oil in place. Therefore, by injecting a gas into a watered out reservoir, a gas cap will form an additional oil can be recovered due to gravity drainage. Although the Double Displacement Process has been shown to be successful in recovering tertiary oil in other fields, this project will be the first to utilize air injection in the Double Displacement Process. The use of air injection in this process combines the benefits of air`s low cost and universal accessibility with the potential for accelerated oil recovery due to the combustion process. If successful, this project will demonstrate that the use of air injection in the Double Displacement Process will result in an economically viable tertiary process in reservoirs where tertiary oil recovery is presently uneconomical.

  19. Petrological comparison of some tertiary and quaternary sands from Brazos and adjourning counties, Texas

    E-Print Network [OSTI]

    Elsik, William Clinton

    1960-01-01T23:59:59.000Z

    //ipyramids of quartz in the Catahoula sands differ- / / entiates them from P ~ternary sands. The Claiborne sands contain much , , ' / muscovite. Volcarj g glass is common in the Jackson sends. / Angular-s+' gular roundness ratios vary for both Tertiary... and / / / Quaternary sar g. Occasional angular-subangular ratio va1ues in excess / / of 2. 00 are saracteristic of the Quaternary sands. / / Glaua' gite is more common in Tertiary than in Quaternary sands. / / / Add' Lional petrological studies of the clay...

  20. 7198 J. Org. Chem. 1995,60, 7198-7208 Gas Phase Decomposition of Conjugate Acid Ions of Simple

    E-Print Network [OSTI]

    Morton, Thomas Hellman

    (MTBE),ethyl (ETBE),n-propyl,isopropyl,and isobutyl tert-butyl ethers have been examined experimentally spectroscopy (MIKES) experiments on deuterated ions from MTBE and ETBE. Mechanistic possibilities are probed tert-amyl ether and its deuterated analogues. Protonated MTBE displays a single unimolecular

  1. Physico-chemical and biological characterization of an aquifer polluted with Yves Benoit (1)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    to in order to meet specific requirements. Oxygenates such as methyl tert-butyl ether (MTBE) or ethyl tert on groundwater was not estimated prior to their utilization and the actual level of MTBE and ETBE contamination of MTBE- and ETBE-biodegradation is quite poor. Two directives have been adopted in the EU to promote

  2. Water Research 37 (2003) 37563766 Seasonal and daily variations in concentrations of methyl-

    E-Print Network [OSTI]

    Toran, Laura

    by volume to gasoline from November to February, and blending 11% MTBE by volume during the rest of the year; accepted 24 March 2003 Abstract Methyl-tertiary-butyl ether (MTBE), an additive used to oxygenate gasoline of gasoline-powered watercraft. This paper documents and explains both seasonal and daily variations in MTBE

  3. By Martman Cohen News Office staff

    E-Print Network [OSTI]

    Lovley, Derek

    tertiary butyl ether, or MTBE (another hazardous gasoline component that is hazardous to health the benzene-removal technol- ogy to sites contaminated with MTBE. That gasoline additive tends to mi- grate of MTBE- contaminated sites from around the U.S. By simulating an anaerobic pro- cess similar to what

  4. Association Behavior of Biotinylated and Non-Biotinylated PolyEthylene Oxide-b-Poly(2-(Diethylamino)Ethyl Methacrylate)

    E-Print Network [OSTI]

    Tan, J. F.

    Biotinylated and non-biotinylated copolymers of ethylene oxide (EO) and 2-(diethylamino)ethyl methacrylate (DEAEMA) were synthesized by the atom transfer radical polymerization technique (ATRP). The chemical compositions ...

  5. Distribution and origin of ethyl-branched alkanes in a Cenomanian transgressive shale of the Western Interior

    E-Print Network [OSTI]

    Kenig, Fabien

    Note Distribution and origin of ethyl-branched alkanes in a Cenomanian transgressive shale hydrocarbon fraction of the basal Graneros Shale (Cenomanian, Western Interior Seaway, USA). On the basis rights reserved. Keywords: Monoethylalkanes; Branched alkanes; Black shales; Cenomanian; Graneros Shale

  6. A review of Tertiary climate changes in southern South America and the Antarctic Peninsula. Part 1: Oceanic conditions .

    E-Print Network [OSTI]

    Le Roux, J. P.

    2012-01-01T23:59:59.000Z

    ??Oceanic conditions around southern South America and the Antarctic Peninsula have a major influence on climate patterns in these subcontinents. During the Tertiary, changes in… (more)

  7. The Cretaceous/ Tertiary boundary: sedimentology and micropalaeontology at El Mulato section, NE Mexico

    E-Print Network [OSTI]

    Royer, Dana

    The Cretaceous/ Tertiary boundary: sedimentology and micropalaeontology at El Mulato section, NE and sedimentological analysis of this transition at the El Mulato section (NE Mexico), in order to infer the little Palaeogene Velasco Formation, there is a 2-m-thick Clastic Unit. Strati- graphical and sedimentological ana

  8. Interplay between Secondary and Tertiary Structure Formation in Protein Folding Cooperativity

    E-Print Network [OSTI]

    Bachmann, Michael

    Interplay between Secondary and Tertiary Structure Formation in Protein Folding Cooperativity¨lich, 52425 Ju¨lich, Germany Received June 14, 2010; E-mail: deserno@andrew.cmu.edu Abstract: Protein folding be difficult to measure. Therefore, protein folding cooperativity is often probed using the calorimetric

  9. Occurrence and Implication of dissolved organic phosphorus (DOP) in tertiary wastewater Effluents Page 1 of 6

    E-Print Network [OSTI]

    Brody, James P.

    GU, APRIL Occurrence and Implication of dissolved organic phosphorus (DOP) in tertiary wastewater wastewater effluents L. Liu1 , D. S. Smith2 , M. Bracken3 , J.B. Neethling4 , H.D. Stensel5 and S. Murthy6 levels (e.g. TPwastewater treatment plants. A few previous studies (Benisch et al., 2007

  10. An Efficient Genetic Algorithm for Predicting Protein Tertiary Structures in the 2D HP Model

    E-Print Network [OSTI]

    Istrail, Sorin

    , predicting its tertiary structure is known as the protein folding problem. This problem has been widely genetic algo- rithm for the protein folding problem under the HP model in the two-dimensional square Genetic Algorithm, Protein Folding Problem, 2D HP Model 1. INTRODUCTION Amino acids are the building

  11. Interactions in 1-ethyl-3-methyl imidazolium tetracyanoborate ion pair: Spectroscopic and density functional study

    SciTech Connect (OSTI)

    Mao, James X.; Lee, Anita S.; Kitchin, John R.; Nulwala, Hunaid B; Luebke, David R.; Damodaran, Krishnan

    2013-04-24T23:59:59.000Z

    Density Functional Theory is used to investigate a weakly coordinating room-temperature ionic liquid, 1-ethyl-3-methyl imidazolium tetracyanoborate ([Emim]{sup +}[TCB]{sup -}). Four locally stable conformers of the ion pair were located. Atoms-in-molecules (AIM) and electron density analysis indicated the existence of several hydrogen bonds. Further investigation through the Natural Bond Orbital (NBO) and Natural Energy Decomposition Analysis (NEDA) calculations provided insight into the origin of interactions in the [Emim]{sup +}[TCB]{sup -} ion pair. Strength of molecular interactions in the ionic liquid was correlated with frequency shifts of the characteristic vibrations of the ion pair. Harmonic vibrations of the ion pair were also compared with the experimental Raman and Infrared spectra. Vibrational frequencies were assigned by visualizing displacements of atoms around their equilibrium positions and through Potential Energy Distribution (PED) analysis.

  12. Enrichment, isolation and characterization of fungi tolerant to 1-ethyl-3-methylimidazolium acetate

    SciTech Connect (OSTI)

    Singer, S.W.; Reddy, A. P.; Gladden, J. M.; Guo, H.; Hazen, T.C.; Simmons, B. A.; VanderGheynst, J. S.

    2010-12-15T23:59:59.000Z

    This work aims to characterize microbial tolerance to 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), ionic liquid that has emerged as a novel biomass pretreatment for lignocellulosic biomass. Enrichment experiments performed using inocula treated with [C2mim][OAc] under solid and liquid cultivation yielded fungal populationsdominated by Aspergilli. Ionic liquid-tolerant Aspergillus isolates from these enrichments were capable of growing in a radial plate growth assay in the presence of 10% [C2mim][OAc]. When a [C2mim][OAc]-tolerant Aspergillus fumigatus strain was grown in the presence of switchgrass, endoglucanases and xylanases were secreted that retained residual enzymatic activity in the presence of 20% [C2mim][OAc]. The results of the study suggest tolerance to ionic liquids is a general property of Aspergilli. Tolerance to an industrially important ionic liquid was discovered in a fungal genera that is widely used in biotechnology, including biomass deconstruction.

  13. Play analysis and stratigraphic position of Uinta Basin tertiary - age oil and gas fields

    SciTech Connect (OSTI)

    Williams, R.A. (Pennzoil Exploration and Production Co., Houston, TX (United States))

    1993-08-01T23:59:59.000Z

    Tertiary-age sediments in the Uinta basin produce hydrocarbons from five types of plays. These play types were determined by hydrocarbon type, formation, depositional environment, rock type, porosity, permeability, source, and per-well recovery. Each well was reviewed to determine the stratigraphic position and producing characteristics of each producing interval. The five types of plays are as follows: (1) naturally fractured oil reservoirs, (2) low-permeability oil reservoirs, (3) high-permeability of oil reservoirs, (4) low-permeability gas reservoirs, and (5) tight gas sands. Several fields produce from multiple plays, which made it necessary to segregate the hydrocarbon production into several plays. The stratigraphic position of the main producing intervals is shown on a basin-wide cross section, which is color-coded by play type. This 61-well cross section has several wells from each significant Tertiary oil and gas field in the Uinta basin.

  14. West Hackberry Tertiary Project. Quarterly technical progress report, January 1, 1996--March 31, 1996

    SciTech Connect (OSTI)

    Gillham, T.; Cerveny, B.; Turek, E.

    1996-04-10T23:59:59.000Z

    The goal of the West Hackberry Tertiary Project is to demonstrate the technical and economic feasibility of combining air injection with the Double Displacement Process for tertiary oil recovery. The Double Displacement Process is the gas displacement of a water invaded oil column for the purpose of recovering oil through gravity drainage. The novel aspect of this project is the use of air as the injection fluid. The target reservoir for the project is the Camerina C-1,2,3 sand located on the West Flank of West Hackberry Field in Cameron Parish, Louisiana. If successful, this project will demonstrate that the use of air injection in the Double Displacement Process can economically recover oil in reservoirs where tertiary oil recovery is presently uneconomic. The first quarter of 1996 was outstanding both in terms of volume of air injected and low cost operations. More air was injected during this quarter than in any preceding quarter. The compressors experienced much improved run time with minimal repairs. Low operating costs resulted from no repairs required for injection or production wells. A discussion of the following topics are contained herein: (1) performance summary for the injection and production wells, (2) air compressor operations, (3) updated bottom hole pressure data, (4) technology transfer activities and (5) plans for the upcoming quarter.

  15. Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models

    SciTech Connect (OSTI)

    Saeed, Noha M. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo (Egypt)] [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo (Egypt); El-Demerdash, Ebtehal [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt)] [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt); Abdel-Rahman, Hanaa M. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo (Egypt)] [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo (Egypt); Algandaby, Mardi M. [Department of Biology (Botany), Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia)] [Department of Biology (Botany), Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Al-Abbasi, Fahad A. [Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia)] [Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Abdel-Naim, Ashraf B., E-mail: abnaim@pharma.asu.edu.eg [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt)

    2012-10-01T23:59:59.000Z

    Methyl palmitate (MP) and ethyl palmitate (EP) are naturally occurring fatty acid esters reported as inflammatory cell inhibitors. In the current study, the potential anti-inflammatory activity of MP and EP was evaluated in different experimental rat models. Results showed that MP and EP caused reduction of carrageenan-induced rat paw edema in addition to diminishing prostaglandin E2 (PGE2) level in the inflammatory exudates. In lipopolysaccharide (LPS)-induced endotoxemia in rats, MP and EP reduced plasma levels of tumor necrosis factor-? (TNF-?) and interleukin-6 (IL-6). MP and EP decreased NF-?B expression in liver and lung tissues and ameliorated histopathological changes caused by LPS. Topical application of MP and EP reduced ear edema induced by croton oil in rats. In the same animal model, MP and EP reduced neutrophil infiltration, as indicated by decreased myeloperoxidase (MPO) activity. In conclusion, this study demonstrates the effectiveness of MP and EP in combating inflammation in several experimental models. -- Highlights: ? Efficacy of MP and EP in combating inflammation was displayed in several models. ? MP and EP reduced carrageenan-induced rat paw edema and prostaglandin E2 level. ? MP and EP decreased TNF-? and IL-6 levels in experimental endotoxemia. ? MP and EP reduced NF-?B expression and histological changes in rat liver and lung. ? MP and EP reduced croton oil-induced ear edema and neutrophil infiltration.

  16. Hormetic effect of ionic liquid 1-ethyl-3-methylimidazolium acetate on bacteria

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nancharaiah, Y. V. [Bhabha Atomic Research Center, Kalpakkam (India). Biofouling and Biofilm Processes Sect.; Francis, A. J. [Brookhaven National Laboratory (BNL), Upton, NY (United States). Environmental Sciences Dept.; POSTECH, Pohang (Korea, Rep. of). Div. of Advanced Nuclear Engineering

    2015-06-01T23:59:59.000Z

    The biological effect of ionic liquids (ILs) is one of the highly debated topics as they are being contemplated for various industrial applications. 1-ethyl-2-methylimidazolium acetate ([EMIM][Ac]) showed remarkable hormesis on anaerobic Clostridium sp. and aerobic Psueudomonas putida. Bacterial growth was stimulated at up to 2.5 g L-1 and inhibited at > 2.5 g L-1 of ([EMIM][Ac]). The growth of Clostridium sp. and P. putida were higher by 0.4 and 4-fold respectively, in the presense of 0.5 g L-1 of ([EMIM][Ac]). Assessment of the effect of [EMIM][Ac] under different growth conditions showed that the hormesis of [EMIM][Ac] was mediated via regulation of medium pH. Hormetic effect of [EMIM][Ac] was evident only in medium with poor buffering capacity and in the presence of a fermentable substrate as the carbon source. The hormetic effect of [EMIM][Ac] on bacterial growth is most likely associated with the buffering capacity of acetate anion. These observations have implications in ILs toxicity studies and ecological risk assessment.

  17. Effect of solvents on the radiation-induced polymerization of ethyl and isopropyl vinyl ethers

    SciTech Connect (OSTI)

    Hsieh, W.C.

    1981-01-01T23:59:59.000Z

    The effect of solvents on the radiation-induced cationic polymerization of ethyl and isopropyl vinyl ethers (EVE and IPVE, respectively) was investigated. EVE and IPVE polymerizations were carried out in bulk and in solution under superdry conditions in which polar impurities, especially water, have been reduced to negligible levels. This was accomplished by means of a sodium mirror technique using joint free baked out glass equipment and high vacuum. Plots of the monomer conversions and irradiation times were obtained for EVE and IPVE polymerizations in bulk and in benzene solution at constant monomer concentrations. The monomer concentration dependence of the polymerization rate was studied for EVE polymerization in bulk and in benzene, diethlyl ether, diglyme and methylene chloride, and for IPVE polymerization in bulk and in benzene. Solvent effect on the estimated propagating rate constants was examined for EVE and IPVE polymerization in bulk and in solution. The effect of temperature on the polymerization rate was also investigated for EVE polymerization in bulk ad in benzene, diethyl and diisopropyl ethers, methylene chloride and nitromethane, and for IPVE ploymerization in bulk and in benzene.

  18. Physical insight into switchgrass dissolution in the ionic liquid 1-ethyl-3-methylimidazolium acetate

    SciTech Connect (OSTI)

    Wang, Hui [University of Alabama, Tuscaloosa] [University of Alabama, Tuscaloosa; Gurau, Gabriela [University of Alabama, Tuscaloosa] [University of Alabama, Tuscaloosa; Pingali, Sai Venkatesh [ORNL] [ORNL; O'Neil, Hugh [ORNL] [ORNL; Evans, Barbara R [ORNL] [ORNL; Urban, Volker S [ORNL] [ORNL; Heller, William T [ORNL] [ORNL; Rogers, Robin D [University of Alabama, Tuscaloosa] [University of Alabama, Tuscaloosa

    2014-01-01T23:59:59.000Z

    Small-angle neutron scattering was used to characterize solutions of switchgrass and the constituent biopolymers cellulose, hemicellulose, and lignin, as well as a physical mixture of them mimicking the composition of switchgrass, dissolved in the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate. The results demonstrate that the IL dissolves the cellulose fibrils of switchgrass, although a supramolecular biopolymer network remains that is not present in solutions of the individual biopolymers and that does not self-assemble in a solution containing the physical mixture of the individual biopolymers. The persistence of a network-like structure indicates that dissolving switchgrass in the IL does not disrupt all of the physical entanglements and covalent linkages between the biopolymers created during plant growth. Reconstitution of the IL-dissolved switchgrass yields carbohydrate-rich material containing cellulose with a low degree of crystallinity, as determined by powder X-ray diffraction, which impacts potential down-stream uses of the biopolymers produced by the process. The data suggests that the use of chemical additives which would break bonds that exist between the lignin and hemicellulose might improve the purity of the resulting product, but may not be able to disrupt the highly physically-entangled biopolymer network sufficiently to facilitate their separation.

  19. Plant observation report and evaluation, Pennwalt Corporation, secondary and tertiary aliphatic monoamines

    SciTech Connect (OSTI)

    Not Available

    1980-08-27T23:59:59.000Z

    A site visit was made to the amine manufacturing facility of the Pennwalt Corporation, Wyandotte, Michigan, to evaluate the facility in regard to the Secondary and Tertiary Aliphatic Monoamines Criteria Document. A total of 21 people were directly in contact with the amine production process. Two to four of the maintenance personnel may also come in contact with the process. Maintenance workers ran the risk of exposure not only to primary, secondary and tertiary amine compounds, but also to several other chemicals being used in the process. The processes used to unload raw materials are described, along with reactor operations, decanter and recycling operations, distillation operations, product storage and shipping. Medical monitoring at the facility included chest x-ray, respiratory function tests, sight screening, urinalysis, and back x-rays. Restricted and potentially hazardous area signs were clearly posted. Employees wore hard hats and safety glasses on the job as well as gloves, rubber boots, face shields, goggles, and respirators as necessary. Emergency procedures are described, including fire protection. Sanitation and personal hygiene are discussed, along with monitoring of the workplace conditions.

  20. Sterically controlled recyclable system. Reversible photoredox reactions between anthraquinone and hindered tertiary amines

    SciTech Connect (OSTI)

    Gan, H.; Whitten, D.G. (Univ. of Rochester, NY (United States))

    1993-09-08T23:59:59.000Z

    Photochemical reactions of 9,10-anthraquinone (AQ) with sterically hindered tertiary amines have been studied. The reactivity and products are strongly dependent on the structure of the tertiary amine. Irradiation of AQ in the presence of the sterically hindered amine 1,2,2,6,6-pentamethyl-4-piperidinol (3) (or 1,2,2,6,6-pentamethylpiperidine (5)) in degassed dry benzene leads chiefly to the formation of 9-hydroxy-9-[N-(2,2,6,6-tetramethyl-4-piperidinol)-methyl]anthr one (8), which is found to be metastable at room temperature under vacuum. The reaction may be thermally reversed to regenerate the starting materials. The photolysis products and thermal reversion are solvent dependent. While in dry benzene adduct 8 is the major product, in dry acetonitrile the ionic redox products AQH-and iminium cation are detected and no thermal reversal occurs. The results are explained in terms of equilibrium between a product ion pair (AQH[sup [minus

  1. ORGANIC GEOCHEMISTRY, DEPOSITIONAL ENVIRONMENT AND HYDROCARBON POTENTIAL OF THE TERTIARY OIL SHALE DEPOSITS IN NW ANATOLIA, TURKEY

    E-Print Network [OSTI]

    R. Kara Gülbay; S. Korkmaz

    In this study, organic geochemical characteristics and depositional environ-ment of the Tertiary-aged oil shale deposits in Northwest Anatolia have been examined. Oil shales in all the studied areas are typically characterized by high hydrogen index and low oxygen index values. Beypazar?

  2. LOW-MASS TERTIARY COMPANIONS TO SPECTROSCOPIC BINARIES. I. COMMON PROPER MOTION SURVEY FOR WIDE COMPANIONS USING 2MASS

    SciTech Connect (OSTI)

    Allen, Peter R. [Department of Physics and Astronomy, P.O. Box 3003, Franklin and Marshall College, Lancaster, PA 17604 (United States); Burgasser, Adam J. [Department of Physics, University of California, San Diego, CA 92093 (United States); Faherty, Jacqueline K. [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10034 (United States); Kirkpatrick, J. Davy, E-mail: peter.allen@fandm.edu [IPAC, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-08-15T23:59:59.000Z

    We report the first results of a multi-epoch search for wide (separations greater than a few tens of AU), low-mass tertiary companions of a volume-limited sample of 118 known spectroscopic binaries within 30 pc of the Sun, using the Two Micron All Sky Survey Point Source Catalog and follow-up observations with the KPNO and CTIO 4 m telescopes. Note that this sample is not volume complete but volume limited, and, thus, there is incompleteness in our reported companion rates. We are sensitive to common proper motion companions with separations from roughly 200 AU to 10,000 AU ({approx}10'' {yields} {approx} 10'). From 77 sources followed-up to date, we recover 11 previously known tertiaries, 3 previously known candidate tertiaries, of which 2 are spectroscopically confirmed and 1 rejected, and 3 new candidates, of which 2 are confirmed and 1 rejected. This yields an estimated wide tertiary fraction of 19.5{sup +5.2}{sub -3.7}%. This observed fraction is consistent with predictions set out in star formation simulations where the fraction of wide, low-mass companions to spectroscopic binaries is >10%.

  3. Recent advances in modeling the transition at the secondary and tertiary stages of creep

    SciTech Connect (OSTI)

    Chen, Z.; Wang, M.L.; Lu, T. [Univ. of New Mexico, Albuquerque, NM (United States)

    1995-12-31T23:59:59.000Z

    With the use of macro- and micro-experimental techniques, the creep mechanisms of the WIPP rock salt have been investigated under simple loading paths with an emphasis on the transition between the secondary and tertiary stages of creep. It appears that the essential feature of the transition is characterized by the evolution of localized creep damage that is manifested by the formation and propagation of a material boundary between localized and non-localized deformation fields. Based on an energy point of view, a partitioned-modeling approach has been proposed to predict localized creep damage. To establish a sound mathematical foundation for the proposed procedure, a set of moving jump forms of conservation laws have been used to define the moving boundary, and analytical solutions have been obtained for one-dimensional problems. Based on the lessons learnt from the previous work, this presentation discusses recent experimental and theoretical results on modeling the transition between the secondary and tertiary stages of rock salt creep. Since the transition involves the change from a continuous failure mode into a discontinuous failure mode, a reliable experimental procedure must be developed to obtain quantitative data of satisfactory quality. Especially, the determination of an appropriate load level is non-trivial to get a group of consistent data within the limitation of experimental instruments, because of the random defects of the rock salt obtained from the WIPP site. And also, a simple modeling approach, which catches the essential physical mechanisms of the transition, must be formulated for engineering applications. Keeping these facts in mind, a combined experimental and theoretical effort is being made, with a strain-based partitioned procedure. The preliminary results look quite promising. To illustrate the proposed procedure, both experimental data and model predictions will be given for uniaxial and triaxial compression problems.

  4. APPENDXD.CHP:Corel VENTURA

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Report The Form EIA-819, "Monthly Oxygenate Report" provides production data for fuel ethanol and methyl tertiary butyl ether (MTBE). End-of-month stock data held at ethanol...

  5. Natural gas accumulations in low-permeability Tertiary, and Cretaceous (Campanian and Maastrichtian) rock, Uinta Basin, Utah

    SciTech Connect (OSTI)

    Fouch, T.D.; Wandrey, C.J.; Pitman, J.K.; Nuccio, V.F.; Schmoker, J.W.; Rice, D.D.; Johnson, R.C.; Dolton, G.L.

    1992-02-01T23:59:59.000Z

    This report characterizes Upper Cretaceous Campanian and Maastrichtian, and lower Tertiary gas-bearing rocks in the Uinta Basin with special emphasis on those units that contain gas in reservoirs that have been described as being tight. The report was prepared for the USDOE whose Western Tight Gas Sandstone Program cofunded much of this research in conjunction with the US Geological Survey's Evolution of Sedimentary Basins, and Onshore Oil and Gas Programs. (VC)

  6. Natural gas accumulations in low-permeability Tertiary, and Cretaceous (Campanian and Maastrichtian) rock, Uinta Basin, Utah. Final report

    SciTech Connect (OSTI)

    Fouch, T.D.; Wandrey, C.J.; Pitman, J.K.; Nuccio, V.F.; Schmoker, J.W.; Rice, D.D.; Johnson, R.C.; Dolton, G.L.

    1992-02-01T23:59:59.000Z

    This report characterizes Upper Cretaceous Campanian and Maastrichtian, and lower Tertiary gas-bearing rocks in the Uinta Basin with special emphasis on those units that contain gas in reservoirs that have been described as being tight. The report was prepared for the USDOE whose Western Tight Gas Sandstone Program cofunded much of this research in conjunction with the US Geological Survey`s Evolution of Sedimentary Basins, and Onshore Oil and Gas Programs. (VC)

  7. Anhydrous aluminum chloride as an alkylation catalyst: identification of mono- and dialkyl-benzenes from the condensation of tertiary butyl alcohol with benzene.

    E-Print Network [OSTI]

    Scoggins, Lacey E

    1959-01-01T23:59:59.000Z

    LIBRARY a a w c"I. I. SI - O~ TI:YAf ANHYDROUS ALUMINUM CHLORIDE AS AN ALKYLATION CATALYST: IDENTIFICATION OF MONO- AND DIALKYIZENZENES FROM THE CONDENSATION QF TERTIARY BUTYL ALCOHOL WITH BENKENE IACEY EUGENE SCOGGINS 4 A Thesis Submitted...: IDENTIFICATION OF MONO- AND DI~NZZNES FROM THE CONDENSATION OF TERTIARY BUTYL ALCOHOL WITH BENZENE A Thesis By LACEY EUGENE SCOGGINS Approved as to style and content hy: Chairman of Committee Head of Chemistry Department 1959 ACKNOWLEDGME1VTS The author...

  8. Guiding optimal biofuels : a comparative analysis of the biochemical production of ethanol and fatty acid ethyl esters from switchgrass.

    SciTech Connect (OSTI)

    Paap, Scott M.; West, Todd H.; Manley, Dawn Kataoka; Dibble, Dean C.; Simmons, Blake Alexander; Steen, Eric J. [Joint BioEnergy Institute, Emeryville, CA; Beller, Harry R. [Lawrence Berkeley National Laboratory, Berkeley, CA; Keasling, Jay D. [Lawrence Berkeley National Laboratory, Berkeley, CA; Chang, Shiyan [Tsinghua University, Beijing, PR China

    2013-01-01T23:59:59.000Z

    In the current study, processes to produce either ethanol or a representative fatty acid ethyl ester (FAEE) via the fermentation of sugars liberated from lignocellulosic materials pretreated in acid or alkaline environments are analyzed in terms of economic and environmental metrics. Simplified process models are introduced and employed to estimate process performance, and Monte Carlo analyses were carried out to identify key sources of uncertainty and variability. We find that the near-term performance of processes to produce FAEE is significantly worse than that of ethanol production processes for all metrics considered, primarily due to poor fermentation yields and higher electricity demands for aerobic fermentation. In the longer term, the reduced cost and energy requirements of FAEE separation processes will be at least partially offset by inherent limitations in the relevant metabolic pathways that constrain the maximum yield potential of FAEE from biomass-derived sugars.

  9. Factors controlling reservoir quality in tertiary sandstones and their significance to geopressured geothermal production

    SciTech Connect (OSTI)

    Loucks, R.G.; Richmann, D.L.; Milliken, K.L.

    1981-01-01T23:59:59.000Z

    Variable intensity of diagenesis is the factor primarily responsible for contrasting regional reservoir quality of Tertiary sandstones from the upper and lower Texas coast. Detailed comparison of Frio sandstone from the Chocolate Bayou/Danbury Dome area, Brazoria County, and Vicksburg sandstones from the McAllen Ranch Field area, Hidalgo County, reveals that extent of diagenetic modification is most strongly influenced by (1) detrital mineralogy and (2) regional geothermal gradients. The regional reservoir quality of Frio sandstones from Brazoria County is far better than that characterizing Vicksburg sandstones from Hidalgo County, especially at depths suitable for geopressured geothermal energy production. However, in predicting reservoir quality on a site-specific basis, locally variable factors such as relative proportions for porosity types, pore geometry as related to permeability, and local depositional environment must also be considered. Even in an area of regionally favorable reservoir quality, such local factors can significantly affect reservoir quality and, hence, the geothermal production potential of a specific sandstone unit.

  10. Interplay between Secondary and Tertiary Structure Formation in Protein Folding Cooperativity

    E-Print Network [OSTI]

    Tristan Bereau; Michael Bachmann; Markus Deserno

    2011-07-01T23:59:59.000Z

    Protein folding cooperativity is defined by the nature of the finite-size thermodynamic transition exhibited upon folding: two-state transitions show a free energy barrier between the folded and unfolded ensembles, while downhill folding is barrierless. A microcanonical analysis, where the energy is the natural variable, has shown better suited to unambiguously characterize the nature of the transition compared to its canonical counterpart. Replica exchange molecular dynamics simulations of a high resolution coarse-grained model allow for the accurate evaluation of the density of states, in order to extract precise thermodynamic information, and measure its impact on structural features. The method is applied to three helical peptides: a short helix shows sharp features of a two-state folder, while a longer helix and a three-helix bundle exhibit downhill and two-state transitions, respectively. Extending the results of lattice simulations and theoretical models, we find that it is the interplay between secondary structure and the loss of non-native tertiary contacts which determines the nature of the transition.

  11. Maturation of Tertiary sediments in the Asian Continental Margins: A basis for hydrocarbon generation studies

    SciTech Connect (OSTI)

    Miki, Takashi (Kyushu Univ., Fukuoka (Japan))

    1994-07-01T23:59:59.000Z

    In the marginal areas of the Asian continent, the Paleogene and Miocene coal-bearing formations are sporadically distributed. In some areas, particularly in the sea regions, their equivalents are possibly explored for oil and gas. The basins mainly formed as tectonic depressions, and are filled with fluvial to marine clastic rocks. The formations show marked lateral variation in thickness, lithology, and sediment characteristics, which are related to the geotectonic settings of the basins at active plate margins. Remarkable accumulation of overburden and high paleogeothermal conditions, which are marked in northern Kyushu, Japan, and Thailand, influenced diagenesis. Organic and inorganic maturation studies in northern Kyushu reveal a progress of diagenesis from the inland of Kyushu toward the sea region essentially controlled by additional heat supply from the sea region during and after sedimentation. The sediments on the land surface are chiefly overmatured, and/or contain minor amounts of organic carbon. High paleogeothermal influence on Tertiary maturation is clear also in northern Thailand. The high paleotemperature conditions in these areas may be related to tectonic interaction between the oceanic and continental plates.

  12. Seismic reflection evidence for two phase development of Tertiary basins from east-central Nevada

    SciTech Connect (OSTI)

    Liberty, L.M.; Heller, P.L.; Smithson, S.B. (Univ. of Wyoming, Laramie, WY (United States). Dept. of Geology and Geophysics)

    1993-04-01T23:59:59.000Z

    Two east-west seismic reflection profiles crossing Antelope Valley, Smokey Valley, Railroad Valley and Big Sand Springs Valley demonstrate the evolution of Tertiary extension from broad sags to narrow, fault-bounded basins. Seismic reflection data was acquired for the Anschutz Corporation by the Digicon Corporation during the winter of 1988/1989. Reprocessing of a 480 channel, 60 fold, dynamite source experiment enabled good imaging of the basin stratigraphy. These data suggest two distinct phases of basin development occurred, separated by a regional unconformity. The early phase is characterized by development of a broad basin riddled with many small offset normal faults. The later phase shows a narrowing of the basin and subsidence along one dominant structure, an apparent planar normal fault. The unconformity separating the two phases of extension marks a transition from broad subsidence to local asymmetric tilting that took place over a short period of time relative to sedimentation rates. Antelope Valley and Railroad Valley clearly show strong evidence for two phase development, whereas Smokey Valley represents mostly the early phase and Big Sand Springs Valley represents only the later phase of extension. The absence of dating within the basins precludes the authors from determining if the abrupt tectonic transition within the basins resulted from differences in local strain rates or amounts, or was due to changes in regional stress fields.

  13. Complete oxidation of CO, ethanol, and ethyl acetate over copper oxide supported on titania and ceria modified titania

    SciTech Connect (OSTI)

    Larsson, P.O. [Perstorp AB (Sweden)] [Perstorp AB (Sweden); Andersson, A. [Univ. of Lund (Sweden). Dept. of Chemical Engineering II] [Univ. of Lund (Sweden). Dept. of Chemical Engineering II

    1998-10-01T23:59:59.000Z

    Titania and titania modified with 3 and 12 {mu}mol Ce/m{sup 2} surface area of the titania were prepared and were used as supports for copper oxide. Preparations with 3 and 12 {mu}mol CuO{sub x}/m{sup 2} surface area of the support were tested for the combustion of CO, ethyl acetate, and ethanol. The results show that the Ce-doped titania surface is good as support for CuO{sub x} and that the cerium not only enhances the activity of the copper species, but also stabilizes the surface area of the TiO{sub 2} support in the presence of copper oxide. Additions of Al, K, and La are also found to stabilize the TiO{sub 2} support but, compared with Ce, these elements do not to the same extent enhance the activity of the copper species. Acetaldehyde is observed to ban an intermediate in the combustion of both ethanol and ethyl acetate over Cu-Ce-Ti-O catalysts. Since acetaldehyde is more harmful than any of the reactants and also is photochemically active, it is in applications important to assure that the combustion is complete. Cu-Ce-Ti-O catalysts show good performance not only for feeds without water vapor, but also for humid feeds. Although the concentrations of intermediates are affected by the addition of water, there is little effect on the temperature required for obtaining complete conversion to carbon dioxide and water. Characterization with XRD, FT-Raman, TPR, and XPS indicates that the dispersed copper species are in the form of patches or a bidimensional layer which interacts with the surface of the support. When the content of cerium and copper is low, other types of dispersed copper species are present, which possibly are monomers or dimers. The copper species are predominantly Cu{sup 2+} species.

  14. Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management

    SciTech Connect (OSTI)

    David Dzombak; Radisav Vidic; Amy Landis

    2012-06-30T23:59:59.000Z

    Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by nitrification helped to reduce the corrosivity and biocide demand. Also, the lower pH and alkalinity resulting from nitrification reduced the scaling to an acceptable level, without the addition of anti-scalant chemicals. Additional GAC adsorption treatment, MWW_NFG, yielded no net benefit. Removal of organic matter resulted in pitting corrosion in copper and cupronickel alloys. Negligible improvement was observed in scaling control and biofouling control. For all of the tertiary treatments, biofouling control was achievable, and most effectively with pre-formed monochloramine (2-3 ppm) in comparison with NaOCl and ClO2. Life cycle cost (LCC) analyses were performed for the tertiary treatment systems studied experimentally and for several other treatment options. A public domain conceptual costing tool (LC3 model) was developed for this purpose. MWW_SF (lime softening and sand filtration) and MWW_NF were the most cost-effective treatment options among the tertiary treatment alternatives considered because of the higher effluent quality with moderate infrastructure costs and the relatively low doses of conditioning chemicals required. Life cycle inventory (LCI) analysis along with integration of external costs of emissions with direct costs was performed to evaluate relative emissions to the environment and external costs associated with construction and operation of tertiary treatment alternatives. Integrated LCI and LCC analysis indicated that three-tiered treatment alternatives such as MWW_NSF and MWW_NFG, with regular chemical addition for treatment and conditioning and/or regeneration, tend to increase the impact costs and in turn the overall costs of tertiary treatment. River water supply and MWW_F alternatives with a single step of tertiary treatment were associated with lower impact costs, but the contribution of impact costs to overall annual costs was higher than all other treatment alternatives. MWW_NF and MWW_SF alternatives exhibited moderate external impact costs with moderate infrastructure and chemical conditioner dosing, which makes them (especially

  15. Evaluation of the 3M Organic Vapor Monitor #3500 as a sampling device for ethyl acrylate and the effect of discontinued exposure on vapor retention

    E-Print Network [OSTI]

    Barr, Robert Wayne

    2012-06-07T23:59:59.000Z

    Sampling Theories of Adsorption Forces of Adsorption Activation Procedures Surface Structure Statement of Hypotheses METHODOLOGV Test Atmosphere Generation Exposure Chamber MIRAN Calibration and Use Monitor Exposure to EA Analytical Procedures...EVALUATION OF THE 3M ORGANIC VAPOR MONITOR 53500 AS A SAMPLING DEVICE FOR ETHYL ACRYLATE AND THE EFFECT OF DISCONTINUED EXPOSURE ON VAPOP, RETENTION A Thesis by ROBERT WAYNE BARR Submitted to the Graduate College of Texas Al!M University...

  16. Uranium mineralization along a fault plane in tertiary sedimentary rocks in the McLean 5 Mine, Live Oak Conty, Texas

    E-Print Network [OSTI]

    Bomber, Brenda Jean

    1980-01-01T23:59:59.000Z

    URAN1IUM MINERALIZATION ALONG A FAULT PLANE IN TERTIARY SEDIMENTARY ROCKS IN THE MCLEAN 5 MINE, LIVE OAK COUNTY, TEXAS A Thesis by BRENDA JEAN BOMBER Submitted to the Graduate College of Texas ARM University in partial fulfillment... as to sty1e and content by: Chairman of Committee Member Memb r H o De artment December 1980 ABSTRACT Uranium Mineralization along a Fault Plane in Tertiary Sedimentary Rocks in the McLean 5 Mine, Live Oak County, Texas. (December 1980) Brenda Jean...

  17. Motor Gasoline Outlook and State MTBE Bans

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. Crude Oil31 E n e

  18. Ethyl Alcohol Production.

    E-Print Network [OSTI]

    O'Neal, Henry

    1981-01-01T23:59:59.000Z

    +------.-----.------.------.-----.------.-- o 2 3 4 5 6 Time (hrs.) Batch 29 Cooking and Fermenting Log Corn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682 pounds (12.2 bushels) Natural gas used Meter measures in increments of 100 cubic feet. Cooking.... The following general production steps are the ones presently used and may change with future production experience. 1. The grain is ground in a hammermill with a 1/8- inch screen. Each of the 350 gallon cooker fermenter tanks normally handles a 12...

  19. Review and reconnaissance of the hydrogeology of Tertiary sedimentary rocks in the vicinity of Frenchman Flat, Nevada Test Site

    SciTech Connect (OSTI)

    Prothro, L.B.; Drellack, S.L. Jr.

    1997-09-01T23:59:59.000Z

    Work is currently underway within the Underground Test Area (UGTA) subproject of the US Department of Energy/Nevada Operations Office Environmental Restoration Program to develop corrective action plans in support of the overall corrective action strategy for the Nevada Test Site (NTS) as established in the Federal Facility Agreement and Consent Order (FFACO, 1996). A closure plan is currently being developed for Frenchman Flat, which has been identified in the FFACO as a Corrective Action Unit (CAU). Part of this effort requires that hydrogeologic data be compiled for inclusion in a CAU-specific hydrologic flow and transport model that will be used to predict contaminant boundaries. Hydrogeologic maps and cross sections are currently being prepared for use in the model to define the nature and extent of aquifers and confining units that might influence the flow of contaminated groundwater from underground nuclear tests conducted in Frenchman Flat. During this effort, it has been found that older Tertiary-age sediments might be hydrogeologically important in the Frenchman Flat model area. Although the character and extent of these units are poorly known, there is reason to believe that in some parts of Frenchman Flat they may lie between the regional Lower Carbonate Aquifer (LCA) and the younger Tertiary saturated alluvium and volcanic units in which several underground nuclear tests were conducted. It was not possible to quickly determine their extent, or ascertain whether or not these units might act as confining units or aquifers. The work described in this report was done to gain a better understanding of the hydrogeology of these rocks.

  20. Ethanol Demand in United States Production of Oxygenate-limited Gasoline

    SciTech Connect (OSTI)

    Hadder, G.R.

    2000-08-16T23:59:59.000Z

    Ethanol competes with methyl tertiary butyl ether (MTBE) to satisfy oxygen, octane, and volume requirements of certain gasolines. However, MTBE has water quality problems that may create significant market opportunities for ethanol. Oak Ridge National Laboratory (ORNL) has used its Refinery Yield Model to estimate ethanol demand in gasolines with restricted use of MTBE. Reduction of the use of MTBE would increase the costs of gasoline production and possibly reduce the gasoline output of U.S. refineries. The potential gasoline supply problems of an MTBE ban could be mitigated by allowing a modest 3 vol percent MTBE in all gasoline. In the U.S. East and Gulf Coast gasoline producing regions, the 3 vol percent MTBE option results in costs that are 40 percent less than an MTBE ban. In the U.S. Midwest gasoline producing region, with already high use of ethanol, an MTBE ban has minimal effect on ethanol demand unless gasoline producers in other regions bid away the local supply of ethanol. The ethanol/MTBE issue gained momentum in March 2000 when the Clinton Administration announced that it would ask Congress to amend the Clean Air Act to provide the authority to significantly reduce or eliminate the use of MTBE; to ensure that air quality gains are not diminished as MTBE use is reduced; and to replace the existing oxygenate requirement in the Clean Air Act with a renewable fuel standard for all gasoline. Premises for the ORNL study are consistent with the Administration announcement, and the ethanol demand curve estimates of this study can be used to evaluate the impact of the Administration principles and related policy initiatives.

  1. An evaluation of the 3M Organic Vapor Monitor #3500 as a short term exposure limit sampling device for acetone, methyl ethyl ketone, and methyl iso butyl ketone

    E-Print Network [OSTI]

    Andrew, Lloyd B.

    2012-06-07T23:59:59.000Z

    . An exploded view of the monitor is illustrated in Figure 1. The theory of diffusive sampling considers a concentration gra- dient between the ambient air and the adsorbent to be the driving force for sampling. For the adsorption to be controlled by diffu...AN EVALUATION OF THE 3M ORGANIC VAPOR MONITOR 43500 AS A SHOR'I TERM EXPOSURE LIMIT SAMPLING DEVICE FOR ACETONE, METHYL ETHYL KETONE, AND METHYL ISO BUTYL KETONE A Thesis by LLOYD B. ANDREW III Submitted to the Graduate College of Texas ASM...

  2. Valence and ionic lowest-lying electronic states of ethyl formate as studied by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy, and ab initio calculations

    SciTech Connect (OSTI)

    ?mia?ek, M. A., E-mail: smialek@pg.gda.pl [Department of Control and Energy Engineering, Faculty of Ocean Engineering and Ship Technology, Gda?sk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gda?sk (Poland); ?abuda, M.; Guthmuller, J. [Department of Theoretical Physic and Quantum Information, Faculty of Applied Physics and Mathematics, Gda?sk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gda?sk (Poland); Hubin-Franskin, M.-J.; Delwiche, J. [Département de Chimie, Université de Ličge, Institut de Chimie-Bât. B6C, B-4000 Ličge (Belgium); Duflot, D. [Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM), UMR CNRS 8523, Université Lille1 Sciences et Technologies, F-59655 Villeneuve d' Ascq Cedex (France); Mason, N. J. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Hoffmann, S. V.; Jones, N. C. [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Building 1520, DK-8000 Aarhus C (Denmark); Limăo-Vieira, P., E-mail: plimaovieira@fct.unl.pt [Laboratório de Colisőes Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Cięncias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2014-09-14T23:59:59.000Z

    The highest resolution vacuum ultraviolet photoabsorption spectrum of ethyl formate, C{sub 2}H{sub 5}OCHO, yet reported is presented over the wavelength range 115.0–275.5 nm (10.75–4.5 eV) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series, observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of ethyl formate and are compared with a newly recorded He(I) photoelectron spectrum (from 10.1 to 16.1 eV). New vibrational structure is observed in the first photoelectron band. The photoabsorption cross sections have been used to calculate the photolysis lifetime of ethyl formate in the upper stratosphere (20–50 km)

  3. Austrian refiner benefits from advanced control

    SciTech Connect (OSTI)

    Richard, L.A.; Spencer, M. [Setpoint Inc., Houston, TX (United States); Schuster, R.; Tuppinger, D.M.; Wilmsen, W.F. [OeMV-AG Energy, Schwechat (Austria)

    1995-03-20T23:59:59.000Z

    OeMV-AG Energy implemented advanced process controls on 27 units at its refinery in Schwechat, Austria. A variety of controls were implemented on the butadiene and methyl tertiary butyl ether (MTBE) units in January 1993. After more than 1 year of operation, the butadiene/MTBE project has shown a number of benefits, including reduced energy consumption and increased capacity in both units. The paper discusses the process, advanced control, the simple model predictive controller, control objectives, the butadiene unit, the MTBE unit, and benefits of the advanced controllers.

  4. Direct observation of surface ethyl to ethane interconversion uponC2H4 hydrogenation over Pt/Al2O3 catalyst by time-resolved FT-IRspectroscopy

    SciTech Connect (OSTI)

    Wasylenko, Walter; Frei, Heinz

    2004-12-10T23:59:59.000Z

    Time-resolved FT-IR spectra of ethylene hydrogenation over alumina-supported Pt catalyst were recorded at 25 ms resolution in the temperature range 323 to 473 K using various H2 flow rates (1 atm total gas pressure). Surface ethyl species (2870 and 1200 cm-1) were detected at all temperatures along with the gas phase ethane product (2954 and 2893 cm-1). The CH3CH2Pt growth was instantaneous on the time scale of 25ms under all experimental conditions. At 323 K, the decay time of surface ethyl (122 + 10 ms) coincides with the rise time of C2H6 (144 + 14 ms).This establishes direct kinetic evidence for surface ethyl as the kinetically relevant intermediate. Such a direct link between the temporal behavior of an observed intermediate and the final product growth in a heterogeneous catalytic system has not been demonstrated before to our knowledge. A fraction (10 percent) of the asymptotic ethane growth at 323 K is prompt, indicating that there are surface ethyl species that react much faster than the majority of the CH3CH2Pt intermediates. The dispersive kinetics is attributed to the varying strength of interaction of the ethyl species with the Pt surface caused by heterogeneity of the surface environment. At 473 K, the majority of ethyl intermediates are hydrogenated prior to the recording of the first time slice (24 ms), and a correspondingly large prompt growth of ethane is observed. The yield and kinetics of the surface ethylidyne are in agreement with the known spectator nature of this species.

  5. Distribution of hazardous air pollutant trace elements, total sulfur, and ash in coals from five Tertiary basins in the Rocky Mountain Region

    SciTech Connect (OSTI)

    Ellis, M.S.; Stricker, G.D.; Flores, R.M. [Geological Survey, Denver, CO (United States)

    1994-12-31T23:59:59.000Z

    Arithmetic mean values of the contents of hazardous air pollutant (HAP) trace elements named in the 1990 Clean Air Act Amendments (antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, selenium, and uranium), ash, and total sulfur were statistically compared on a whole-coal basis for Paleocene coals from five Tertiary basins in the Rocky Mountain Region. The study of proximate and elemental analyses indicate a relationship between trace element contents and paleogeography.

  6. ch3probs Page 1 of 9 http://www.jbpub.com/fox/supplementalproblems/ch3pr.htm 11/18/2003

    E-Print Network [OSTI]

    Walba, David

    -ethyl-2-pentanone e. 3-methylbutanal f. ethanoic anhydride (acetic anhydride) g. ethyl butanoate h. 2. oxidation d. reduction 3.29 a. primary b. tertiary c. primary d. benzylic e. benzylic f. allylic g

  7. Adverse Drug Reaction Monitoring In Psychiatric OPD Adverse Drug Reaction Monitoring In Psychiatric Outpatient Department Of A Tertiary Care Hospital

    E-Print Network [OSTI]

    Hiren K. Prajapati; Nisarg D. Joshi; Hiren R. Trivedi; Manubhai C. Parmar; Shilpa P. Jadav; Dinesh M. Parmar; Jalpan G. Kareliya

    Abstracts Background:Pharmacovigilance in psychiatry units can play vital role in detecting adverse drug reactions (ADRs) and alerting physician to such events, thereby protecting the user population from avoidable harm. Objective: To assess the suspected ADRs profile of psychotropic drugs in psychiatry OPD of a tertiary care hospital and its comparison with available literature data as well as to create awareness among the consultant psychiatrists to these ADRs profile. Materials and Methods: A prospective study was conducted in the psychiatry OPD. Thirty five consecutive patients per day were screened irrespective of their psychiatric diagnosis for suspected ADRs on 3 fixed days in a week from January 2011 to December 2011. CDSCO form was used to record the ADRs. Causality was assessed by WHO causality assessment scale while severity was assessed using Hartwig and Siegel scale. Results: Out of 4410 patients were screened, 383 patients were suspected of having at least one ADR. Thus, 8.68 % of our study population reported ADRs. Of 407 events recorded, 369(90.60%) were “probable ” and rest “possible ” according to WHO-UMC causality assessment

  8. Technical and operational overview of the C[sub 4] Oleflex process at Valero refinery

    SciTech Connect (OSTI)

    Hohnholt, J.F.; Payne, D. (Valero Refining Co., Corpus Christi, TX (United States)); Gregor, J.; Smith, E. (UOP, Des Plaines, IL (United States))

    1994-01-01T23:59:59.000Z

    Changes in gasoline composition stemming from the 1990 Clean Air Act (CAA) Amendments prompted Valero Energy Corporation to evaluate options for producing reformulated gasoline. The evaluation culminated in a project to upgrade butanes into methyl tertiary butyl ether (MTBE). Technology selection focused on the dehydrogenation of isobutane, and the UOP Oleflex process was selected. The MTBE project was implemented in 34 months and was $3 million under budget. The guaranteed MTBE production of 12,500 BPSD was achieved within one month of mechanical completion and has since reached 15,000 BPSD. Even at the low MTBE prices prevailing in late 1993, the butane upgrading project contributed significantly to Valero Refinery's overall profitability. Worldwide demand is expected to increase MTBE prices in 1996, thereby further increasing profits. The paper describes the project evaluation activities which led to the selection of the Oleflex process, engineering and construction, the MTBE complex start-up and operation, the Valero MTBE complex performance, and future plans. The paper also discusses feedstock utilization efficiency and MTBE market analysis.

  9. TABLE33.CHP:Corel VENTURA

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    processed; all other products are reported by the PAD District of entry. b Includes crude oil imported for storage in the Strategic Petroleum Reserve. c Includes ethyl tertiary...

  10. TABLE34.CHP:Corel VENTURA

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    processed; all other products are reported by the PAD District of entry. b Includes crude oil imported for storage in the Strategic Petroleum Reserve. c Includes ethyl tertiary...

  11. Liquid-liquid equilibria of the ternary systems water + acetic acid + ethyl acetate and water + acetic acid + isophorene (3,5,5-trimethyl-2-cyclohexen-1-one)

    SciTech Connect (OSTI)

    Colombo, A.; Battilana, P.; Ragaini, V.; Bianchi, C.L. [Milan Univ. (Italy). Dept. of Physical Chemistry and Electrochemistry] [Milan Univ. (Italy). Dept. of Physical Chemistry and Electrochemistry; Carvoli, G. [Chemial S.p.A., Cavaglia (Italy)] [Chemial S.p.A., Cavaglia (Italy)

    1999-01-01T23:59:59.000Z

    Liquid-liquid equilibria for the ternary systems water + acetic acid + ethyl acetate and water + acetic acid + isophorone (3,5,5-trimethyl-2-cyclohexen-1-one) were measured over the temperature range (283 to 313) K. The results were used to estimate the interaction parameters between each of the three compounds of the systems studied for the NRTL and UNIQUAC models. The estimated interaction parameters were successfully used to predict the equilibrium compositions by the two models; experimental data were successfully reproduced. The UNIQUAC model was the most accurate in correlating the overall equilibrium composition of the studied systems. Also the NRTL model satisfactorily predicted the equilibrium composition. Isophorone experimentally resulted in a better extraction capacity for acetic acid and in a lower miscibility with water.

  12. Fluorohydrogenate Cluster Ions in the Gas Phase: Electrospray Ionization Mass Spectrometry of the [1-Ethyl-3-methylimidazolium+][F(HF)2.3–] Ionic Liquid

    SciTech Connect (OSTI)

    Gary S. Groenewold; James E. Delmore; Michael T. Benson; Tetsuya Tsuda; Rika Hagiwara

    2013-12-01T23:59:59.000Z

    Electrospray ionization of the fluorohydrogenate ionic liquid [1-ethyl-3-methylimidazolium][F(HF)2.3] ionic liquid was conducted to understand the nature of the anionic species as they exist in the gas phase. Abundant fluorohydrogenate clusters were produced; however, the dominant anion in the clusters was [FHF-], and not the fluoride-bound HF dimers or trimers that are seen in solution. Density functional theory (DFT) calculations suggest that HF molecules are bound to the clusters by about 30 kcal/mol. The DFT-calculated structures of the [FHF-]-bearing clusters show that the favored interactions of the anions are with the methynic and acetylenic hydrogen atoms on the imidazolium cation, forming planar structures similar to those observed in the solid state. A second series of abundant negative ions was also formed that contained [SiF5-] together with the imidazolium cation and the fluorohydrogenate anions that originate from reaction of the spray solution with silicate surfaces.

  13. 2,6-Dithiopurine, a nucleophilic scavenger, protects against mutagenesis in mouse skin treated in vivo with 2-(chloroethyl) ethyl sulfide, a mustard gas analog

    SciTech Connect (OSTI)

    Boulware, Stephen [Division of Pharmacy and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723 (United States)] [Division of Pharmacy and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723 (United States); Fields, Tammy; McIvor, Elizabeth; Powell, K. Leslie; Abel, Erika L. [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957 (United States)] [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957 (United States); Vasquez, Karen M. [Division of Pharmacy and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723 (United States)] [Division of Pharmacy and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723 (United States); MacLeod, Michael C., E-mail: mcmacleod@mdanderson.org [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957 (United States)

    2012-09-01T23:59:59.000Z

    Sulfur mustard [bis(2-chloroethyl)sulfide, SM] is a well-known DNA-damaging agent that has been used in chemical warfare since World War I, and is a weapon that could potentially be used in a terrorist attack on a civilian population. Dermal exposure to high concentrations of SM produces severe, long-lasting burns. Topical exposure to high concentrations of 2-(chloroethyl) ethyl sulfide (CEES), a monofunctional analog of SM, also produces severe skin lesions in mice. Utilizing a genetically engineered mouse strain, Big Blue, that allows measurement of mutation frequencies in mouse tissues, we now show that topical treatment with much lower concentrations of CEES induces significant dose- and time-dependent increases in mutation frequency in mouse skin; the mutagenic exposures produce minimal toxicity as determined by standard histopathology and immunohistochemical analysis for cytokeratin 6 and the DNA-damage induced phosphorylation of histone H2AX (?-H2AX). We attempted to develop a therapeutic that would inhibit the CEES-induced increase in mutation frequency in the skin. We observe that multi-dose, topical treatment with 2,6-dithiopurine (DTP), a known chemical scavenger of CEES, beginning 1 h post-exposure to CEES, completely abolishes the CEES-induced increase in mutation frequency. These findings suggest the possibility that DTP, previously shown to be non-toxic in mice, may be useful as a therapeutic agent in accidental or malicious human exposures to SM. -- Highlights: ? 200 mM 2-(chloroethyl) ethyl sulfide (CEES) induces mutations in mouse skin. ? This dose of CEES is not overtly toxic, as assayed by histopathology. ? 2,6-Dithiopurine (DTP), applied after CEES-treatment, abolishes CEES-mutagenesis. ? This supports the idea that sulfur mustards exhibit long biological half-lives.

  14. Repair of O sup 6 -ethylguanine in DNA protects rat 208F cells from tumorigenic conversion by N-ethyl-N-nitrosourea

    SciTech Connect (OSTI)

    Thomale, J.; Huh, Namho; Nehls, P.; Eberle, G.; Rajewsky, M.F. (Univ. of Essen Medical School (West Germany))

    1990-12-01T23:59:59.000Z

    O{sup 6}-Ethylguanine (O{sup 6}-EtGua) is one of about a dozen different alkylation products formed in the DNA of cells exposed to the alkylating N-nitroso carcinogen N-ethyl-N-nitrosourea (EtNU). The authors have evaluated selectively the relative capacity of cells for the specific enzymatic repair of O{sup 6}-EtGua as a determinant for the probability of malignant conversion. Eleven O{sup 6}-EtGua-repair-proficient (R{sup +}) variant subclones were isolated from the O{sup 6}-EtGua-repair-deficient (R{sup {minus}}) clonal rat fibroblast line 208F by selection for resistance to 1,3-bis-(2-chloroethyl)-1-nitrosourea. Contrary to the 208F wild-type cells, all variants expressed O{sup 6}-methylguanine-DNA methyltransferase activity, while both kinds of cells were deficient for repair of the DNA ethylation products O{sup 2}- and O{sup 4}-ethylthymine. After exposure to EtNU cells were analyzed for the formation of piled-up foci in monolayer culture and of anchorage-independent colonies in semisolid agar medium. No significant differences in the frequencies of piled-up foci were found between wild-type and variant cells after exposure to the major reactive metabolite of benzo(a)pyrene, (+)-7{beta},8{alpha}-dihydroxy-9,10{alpha}-epoxy7,8,9,10{alpha}-tetrahydrobenzo(a)pyrene, for which stable binding to guanine O{sup 6} in cellular DNA has not been observed. The relative capacity of cells for repair of O{sup 6}-alkylguanine is, therefore, a critical determinant for their risk of malignant conversion by N-nitroso carcinogens.

  15. New etherification process commercialized in Finland

    SciTech Connect (OSTI)

    NONE

    1997-01-06T23:59:59.000Z

    The phase-out of leaded fuels in Europe, Asia, and parts of Africa and Latin America is increasing demand for octane and octane-bearing fuel components such as ethers. Early solutions to the problem of increasing octane while reducing tailpipe emissions involved use of methyl tertiary butyl ether (MTBE). According to Neste, using both tertiary amyl methyl ether (TAME) and MTBE can give refiners increased blending flexibility for volatility control. But the economics associated with TAME production often make TAME units difficult to justify. The paper discusses the NExTAME process, the unit at the Porvoo refinery and process improvements.

  16. Expression of proliferative and inflammatory markers in a full-thickness human skin equivalent following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide

    SciTech Connect (OSTI)

    Black, Adrienne T. [Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Hayden, Patrick J. [MatTek Corporation, Ashland, MA (United States); Casillas, Robert P. [Battelle Memorial Institute, Columbus, OH (United States); Heck, Diane E. [Environmental Health Sciences, New York Medical College, Valhalla, NY (United States); Gerecke, Donald R. [Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Sinko, Patrick J. [Pharmaceutics, Rutgers University, Piscataway, NJ (United States); Laskin, Debra L. [Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.ed [Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2010-12-01T23:59:59.000Z

    Sulfur mustard is a potent vesicant that induces inflammation, edema and blistering following dermal exposure. To assess molecular mechanisms mediating these responses, we analyzed the effects of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide, on EpiDerm-FT{sup TM}, a commercially available full-thickness human skin equivalent. CEES (100-1000 {mu}M) caused a concentration-dependent increase in pyknotic nuclei and vacuolization in basal keratinocytes; at high concentrations (300-1000 {mu}M), CEES also disrupted keratin filament architecture in the stratum corneum. This was associated with time-dependent increases in expression of proliferating cell nuclear antigen, a marker of cell proliferation, and poly(ADP-ribose) polymerase (PARP) and phosphorylated histone H2AX, markers of DNA damage. Concentration- and time-dependent increases in mRNA and protein expression of eicosanoid biosynthetic enzymes including COX-2, 5-lipoxygenase, microsomal PGE{sub 2} synthases, leukotriene (LT) A{sub 4} hydrolase and LTC{sub 4} synthase were observed in CEES-treated skin equivalents, as well as in antioxidant enzymes, glutathione S-transferases A1-2 (GSTA1-2), GSTA3 and GSTA4. These data demonstrate that CEES induces rapid cellular damage, cytotoxicity and inflammation in full-thickness skin equivalents. These effects are similar to human responses to vesicants in vivo and suggest that the full thickness skin equivalent is a useful in vitro model to characterize the biological effects of mustards and to develop potential therapeutics.

  17. Ionizing radiation induced degradation of poly (2-methoxy-5-(2'-ethyl-hexyloxy) -1,4-phenylene vinylene) in solution

    SciTech Connect (OSTI)

    Bronze-Uhle, E. S.; Batagin-Neto, A.; Lavarda, F. C.; Graeff, C. F. O. [Department of Physics, FC-UNESP, Av. Eng. Luiz Edmundo Carrijo Coube 14-01, 17033-360 Bauru (Brazil)

    2011-10-01T23:59:59.000Z

    In this paper we investigate the causes of the chromatic alteration observed in chloroform solutions of poly (2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) after gamma ray irradiation. Structural and chemical changes were analyzed by gel permeation chromatography, fourier transform infrared spectroscopy, and proton nuclear magnetic resonance techniques and complemented by electronic structure calculations. The results indicate chlorine incorporation in the polymer structure and main chain scission after irradiation. Based on our findings we propose that the main mechanism for the blue-shifts, observed in the UV-Vis absorption spectra of MEH-PPV after irradiation, is the result of a radical attack on the polymer main chain. Gamma rays generate radicals, Cl and CHCl{sub 2} from chloroform radiolysis that attack preferentially the vinyl double bonds of the polymer backbone, breaking the electronic conjugation and eventually the chain. Our results indicate that oxygen does not play a major role in the effect. Electronic spectra simulations were performed based on these assumptions reproducing the UV-Vis experimental results.

  18. Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species

    SciTech Connect (OSTI)

    Gray, Joshua P. [Department of Science, United States Coast Guard Academy, New London, CT (United States); Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Mishin, Vladimir [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Department of Environmental Health Science, New York Medical College, Valhalla, NY (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.ed [Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2010-09-01T23:59:59.000Z

    Inhalation of vesicants including sulfur mustard can cause significant damage to the upper airways. This is the result of vesicant-induced modifications of proteins important in maintaining the integrity of the lung. Cytochrome P450s are the major enzymes in the lung mediating detoxification of sulfur mustard and its metabolites. NADPH cytochrome P450 reductase is a flavin-containing electron donor for cytochrome P450. The present studies demonstrate that the sulfur mustard analog, 2-chloroethyl ethyl sulfide (CEES), is a potent inhibitor of human recombinant cytochrome P450 reductase, as well as native cytochrome P450 reductase from liver microsomes of saline and {beta}-naphthoflavone-treated rats, and cytochrome P450 reductase from type II lung epithelial cells. Using rat liver microsomes from {beta}-naphthoflavone-treated rats, CEES was found to inhibit CYP 1A1 activity. This inhibition was overcome by microsomal cytochrome P450 reductase from saline-treated rats, which lack CYP 1A1 activity, demonstrating that the CEES inhibitory activity was selective for cytochrome P450 reductase. Cytochrome P450 reductase also generates reactive oxygen species (ROS) via oxidation of NADPH. In contrast to its inhibitory effects on the reduction of cytochrome c and CYP1A1 activity, CEES was found to stimulate ROS formation. Taken together, these data demonstrate that sulfur mustard vesicants target cytochrome P450 reductase and that this effect may be an important mechanism mediating oxidative stress and lung injury.

  19. Cytotoxic and DNA-damaging effects of methyl tert-butyl ether and its metabolites on HL-60 cells in vitro

    SciTech Connect (OSTI)

    Tang, G.H. [Xian Medical Univ. (China); Shen, Y.; Shen, H.M. [National Univ. of Singapore (Singapore)] [and others

    1996-12-31T23:59:59.000Z

    Methyl tert-butyl ether (MTBE) is a widely used oxygenate in unleaded gasoline; however, few studies have been conducted on the toxicity of this compound. This study evaluates the cytotoxic and DNA-damaging effects of MTBE and its metabolites in a human haemopoietic cell line, HL-60. The metabolites of MTBE studied include tertiary butyl alcohol (TBA), {alpha}-hydroxyisobutyric acid (HIBA), and formaldehyde. Comet assay is used to assess DNA damage, and the cytotoxicity is investigated by lactate dehydrogenease (LDH) release. The results show no significant cytotoxic effects of MTBE, TBA, and HIBA over a concentration ranging from 1 to 30 mM. Formaldehyde, in contrast, causes a substantial LDH release at a concentration of 5 {mu}M. Hydrogen peroxide, a known oxidative agent, at concentrations ranging from 10 to 100 {mu}M, produces a significant dose-related increase in DNA damage, whereas a much higher concentration of MTBE (1 to 30 mM) is required to produce a similar observation. The genotoxic effects of TBA and HIBA appear to be identical to that of MTBE. Conversely, DNA damage is observed for formaldehyde at a relatively low concentration range (5 to 100 {mu}M). These findings suggest that MTBE and its metabolites, except formaldehyde, have relatively low cytotoxic and genotoxic effects. 16 refs., 4 figs.

  20. Use TAME and heavier ethers to improve gasoline properties

    SciTech Connect (OSTI)

    Ignatius, J.; Jaervelin, H.; Lindqvist, P. (Neste Engineering, Porvoo (Finland))

    1995-02-01T23:59:59.000Z

    Producing oxygenates from all potential FCC tertiary olefins is one of the most economic methods for reducing olefins and Reid vapor pressure (Rvp) in motor gasoline. MTBE production based on FCC isobutylene has reached a very high level. But the amount of MTBE from a refinery sidestream MTBE unit is insufficient for producing reformulated gasoline (RFG) and additional oxygenates must be purchased. The next phase will see conversion of isoamylenes in FCC light gasoline to TAME. Very little attention has been given to the heavier tertiary olefins present in the FCC light gasoline like tert-hexenes and heptenes. This route allows higher levels of oxygenates production, thereby lowering Rvp and the proportion of olefins in the gasoline pool and maximizing the use of FCC olefins. By using all the components produced by an FCC efficiently, many gasoline problems can be solved. Isobutene is converted to MTBE, C[sub 3]/C[sub 4] olefins are converted to alkylate and C[sub 5] tertiary olefins can be converted to TAME. All of these are preferred components for gasoline quality. By producing more oxygenates like MTBE, TAME and heavier ethers, a refinery can be self-sufficient in blending reformulated gasoline and no oxygenates need to be purchased. The technology for producing TAME and other ethers is described.

  1. Broensted superacidity of HCl in a liquid chloroaluminate. AlCl sub 3 -1-ethyl-3-methyl-1H-imidazolium chloride

    SciTech Connect (OSTI)

    Smith, G.P.; Dworkin, A.S.; Zingg, S.P. (Oak Ridge National Lab., TN (USA)); Pagni, R.M. (Univ. of Tennessee, Knoxville (USA))

    1989-01-18T23:59:59.000Z

    The system HCl (0.1-1 atm)/AlCl{sub 3}-EMIC (55.0 mol % AlCl{sub 3}) (EMIC = 1-ethyl-3-methyl-1H-imidazolium chloride) at 23{degree}C is a Broensted superacid capable of protonating arenes to a degree similar to that of liquid HF at 0{degree}C (H{sub 0} = {minus}15.1). Arenes used in this investigation were biphenyl (I), naphthalene (II), 9H-fluorene (III), chrysene (IV), 2-methylnaphthalene (V), mesitylene (VI), pentamethylbenzene (VII), hexamethylbenzene (VIII), anthracene (IX), and 9,10-dimethylanthracene (X). In both the chloroaluminate melt and HF I is a weak base while VIII-X are strong bases. In between these extremes the order of basicities in both media is II < III and IV < V < VI < VII < VIII. A study of the effect of HCl partial pressure showed, for example that V is 50% protonated at 0.3 atm HCl. The overall reaction is arene + HCl + Al{sub 2}Cl{sub 7}{sup {minus}} {r reversible} arene {times} H{sup +} + 2AlCl{sub 4}{sup {minus}} and is reversible. The degree of protonation was measured by optical absorption spectrophotometry. The arenes are stable in the liquid chloroaluminate for many hours, and their protonated forms (arenium ions) are stable for 1 h or more. A new procedure for the preparation of EMIC was developed that yields exceptionally clean AlCl{sub 3}-EMIC melts with very low concentrations of protic and oxidizing impurities. 17 refs., 6 figs., 2 tabs.

  2. Economics for iso-olefin production using the fluid catalytic cracking unit

    SciTech Connect (OSTI)

    McClung, R.G.; Witoshkin, A.; Bogert, D.C.; Winkler, W.S. [Englehard Corp., Iselin, NJ (United States)

    1993-12-31T23:59:59.000Z

    The Clean Air Act of 1990 requires use of oxygenates in some gasolines to improve both CO and hydrocarbon auto tailpipe emissions. Various oxygenates are currently being used by the refining industry. For the fully integrated refinery having a fluid catalytic cracking unit, the most commonly used oxygenates are methyl tertiary butyl ether (MTBE) and tertiary amyl ether (TAME). The FCC unit produces the isobutylene and iso-amylases need for manufacture of both MTBE and TAME. The economics for an assumed refinery processing scheme for several FCC cases are examined giving estimates of income and investments for each case. Up to one-third of the total gasoline pool can be made in reformulated gasoline using TAME and MTBE with the FCC unit as the sole source of feedstock. This processing route is much more economical than the alternative scheme using butane isomerization/iosbutane dehydrogenation.

  3. Reference: De Vleeschouwer, M. & Gueudet, G. (2011, fvrier). Secondary-tertiary transition and evolution of didactic contract : the example of duality in linear algebra. In Pytlak, M., Rowland, T., Swoboda, E. Proceedings of

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and evolution of didactic contract : the example of duality in linear algebra. In Pytlak, M., Rowland, T-TERTIARY TRANSITION AND EVOLUTIONS OF DIDACTIC CONTRACT: THE EXAMPLE OF DUALITY IN LINEAR ALGEBRA Martine De, and a didactic contract perspective we argue that some of the novice students' difficulties can result from

  4. Variations in Mg/Ca as a control on distribution of strontium concentrations and delta/sup 18/O in upper Tertiary dolomites from Bahamas

    SciTech Connect (OSTI)

    Swart, P.K.; Dawans, J.M.

    1984-04-01T23:59:59.000Z

    Strontium concentrations and delta/sup 18/O are commonly used to infer the gross composition of dolomitizing waters, yet the bases for such inferences are not firmly established. A new approach to calibrating these 2 parameters is suggested from analyses of a section of upper Tertiary dolomites from the Bahamas. In an interval of dolomite, 120 m (394 ft) from a core taken on San Salvador Island, mole % MgCO/sub 3/ is correlated positively with delta/sup 18/O, and negatively with strontium. Strontium substitutes mainly for calcium, thus the negative correlation with mole % MgCO/sub 3/. Dolomites are enriched between 3 to 7% in delta/sup 18/O as compared with coprecipitated calcite, and thus the positive correlation. These two covariations indicate the need to consider the stoichiometric coefficient of dolomites, and to normalize strontium concentrations and delta/sup 18/O with their respective stoichiometric coefficients before inferring their relationship with fluid composition.

  5. TORP (Tertiary Oil Recovery Project) stream tube model for waterflood performance calculations in a reservoir with arbitrary well patterns and irregular boundaries

    SciTech Connect (OSTI)

    Vossoughi, S.

    1981-01-01T23:59:59.000Z

    The Tertiary Oil Recovery Project stream tube model was developed as a tool to help oil operators in Kansas evaluate and understand their waterflood projects in a more systematic approach. The model utilizes the stream tube concept and Buckley-Leverett theory and can be applied to any homogeneous reservoir with arbitrary well patterns and regular or irregular boundaries. It also can be applied to tracer projects to estimate tracer breakthrough time if the tracer is injected during the stage of high water-oil ratio. The computer package has been prepared in a fashion such that minimum effort and interaction are required for the user to obtain the final results from specified input data. The model was applied to an example problem consisting of a 5-spot pattern. 19 references.

  6. Nonassociated gas resources in low-permeability sandstone reservoirs, lower tertiary Wasatch Formation, and upper Cretaceous Mesaverde Group, Uinta Basin, Utah

    SciTech Connect (OSTI)

    Fouch, T.D.; Schmoker, J.W.; Boone, L.E.; Wandrey, C.J.; Crovelli, R.A.; Butler, W.C.

    1994-08-01T23:59:59.000Z

    The US Geological Survey recognizes six major plays for nonassociated gas in Tertiary and Upper Cretaceous low-permeability strata of the Uinta Basin, Utah. For purposes of this study, plays without gas/water contacts are separated from those with such contacts. Continuous-saturation accumulations are essentially single fields, so large in areal extent and so heterogeneous that their development cannot be properly modeled as field growth. Fields developed in gas-saturated plays are not restricted to structural or stratigraphic traps and they are developed in any structural position where permeability conduits occur such as that provided by natural open fractures. Other fields in the basin have gas/water contacts and the rocks are water-bearing away from structural culmination`s. The plays can be assigned to two groups. Group 1 plays are those in which gas/water contacts are rare to absent and the strata are gas saturated. Group 2 plays contain reservoirs in which both gas-saturated strata and rocks with gas/water contacts seem to coexist. Most units in the basin that have received a Federal Energy Regulatory Commission (FERC) designation as tight are in the main producing areas and are within Group 1 plays. Some rocks in Group 2 plays may not meet FERC requirements as tight reservoirs. However, we suggest that in the Uinta Basin that the extent of low-permeability rocks, and therefore resources, extends well beyond the limits of current FERC designated boundaries for tight reservoirs. Potential additions to gas reserves from gas-saturated tight reservoirs in the Tertiary Wasatch Formation and Cretaceous Mesaverde Group in the Uinta Basin, Utah is 10 TCF. If the potential additions to reserves in strata in which both gas-saturated and free water-bearing rocks exist are added to those of Group 1 plays, the volume is 13 TCF.

  7. untitled

    Gasoline and Diesel Fuel Update (EIA)

    3,054 Fuel Ethanol (FE) 1,019 97 1,116 2,133 528 393 3,054 Methyl Tertiary Butyl Ether (MTBE) 561 0 561 0 0 0 0 All Other Oxygenates a 0 0 0 0 0 0 0 Motor Gasoline Blend. Comp....

  8. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    11,352 13 1,309 15,181 42 Fuel Ethanol (FE) 0 0 0 0 0 0 0 Methyl Tertiary Butyl Ether (MTBE) 234 928 10,251 0 21 11,434 31 Other Oxygenates 955 390 1,101 13 1,288 3,747 10 Motor...

  9. untitled

    Gasoline and Diesel Fuel Update (EIA)

    Fuel Ethanol (FE) 1,229 108 1,337 2,369 724 497 3,590 Methyl Tertiary Butyl Ether (MTBE) 292 0 292 0 0 0 0 All Other Oxygenates a 0 0 0 0 0 0 0 Motor Gasoline Blend. Comp....

  10. Simultaneous Efficiency, NOx, and Smoke Improvements through Diesel/Gasoline Dual-Fuel Operation in a Diesel Engine

    E-Print Network [OSTI]

    Sun, Jiafeng

    2014-08-05T23:59:59.000Z

    or liquefied petroleum gas, natural gas, biogas, hydrogen, and alcohols such as methanol, ethanol, iso-propanol, and n-butanol), and fuel additives (MTBE or methyl tertiary-butyl ether, H2O2 or hydrogen peroxide, 2-EHN or ethylhexyl nitrate and DTBP or di...

  11. Stabilizing contributions of sulfur-modified nucleotides: crystal structure of a DNA duplex with 2'-O-[2-(methoxy)ethyl]-2-thiothymidines

    SciTech Connect (OSTI)

    Diop-Frimpong, Benjamin; Prakash, Thazha P.; Rajeev, Kallanthottathil G.; Manoharan, Muthiah; Egli, Martin (Isis Pharm.); (Alnylam Pharm.); (Vanderbilt)

    2010-03-05T23:59:59.000Z

    Substitution of oxygen atoms by sulfur at various locations in the nucleic acid framework has led to analogs such as the DNA phosphorothioates and 4'-thio RNA. The phosphorothioates are excellent mimics of DNA, exhibit increased resistance to nuclease degradation compared with the natural counterpart, and have been widely used as first-generation antisense nucleic acid analogs for applications in vitro and in vivo. The 4'-thio RNA analog exhibits significantly enhanced RNA affinity compared with RNA, and shows potential for incorporation into siRNAs. 2-Thiouridine (s{sup 2}U) and 5-methyl-2-thiouridine (m{sup 5}s{sup 2}U) are natural nucleotide analogs. s{sup 2}U in tRNA confers greater specificity of codon-anticodon interactions by discriminating more strongly between A and G compared with U. 2-Thio modification preorganizes the ribose and 2'-deoxyribose sugars for a C3'-endo conformation, and stabilizes heteroduplexes composed of modified DNA and complementary RNA. Combination of the 2-thio and sugar 2'-O-modifications has been demonstrated to boost both thermodynamic stability and nuclease resistance. Using the 2'-O-[2-(methoxy)ethyl]-2-thiothymidine (m{sup 5}s{sup 2}Umoe) analog, we have investigated the consequences of the replacement of the 2-oxygen by sulfur for base-pair geometry and duplex conformation. The crystal structure of the A-form DNA duplex with sequence GCGTAT*ACGC (T* = m{sup 5}s{sup 2}Umoe) was determined at high resolution and compared with the structure of the corresponding duplex with T* = m{sup 5}Umoe. Notable changes as a result of the incorporation of sulfur concern the base-pair parameter 'opening', an improvement of stacking in the vicinity of modified nucleotides as measured by base overlap, and a van der Waals interaction between sulfur atoms from adjacent m{sup 5}s{sup 2}Umoe residues in the minor groove. The structural data indicate only minor adjustments in the water structure as a result of the presence of sulfur. The observed small structural perturbations combined with the favorable consequences for pairing stability and nuclease resistance (when combined with 2'-O-modification) render 2-thiouracil-modified RNA a promising candidate for applications in RNAi.

  12. Effect of temperature on the optical and structural properties of hexadecylamine capped ZnS nanoparticles using Zinc(II) N-ethyl-N-phenyldithiocarbamate as single source precursor

    SciTech Connect (OSTI)

    Onwudiwe, Damian C., E-mail: dconwudiwe@webmail.co.za [Chemical Resource Beneficiation, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Strydom, Christien [Chemical Resource Beneficiation, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa)] [Chemical Resource Beneficiation, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Oluwafemi, Oluwatobi S., E-mail: oluwafemi.oluwatobi@gmail.com [Department of Chemistry and Chemical Technology, Walter Sisulu University, Mthatha Campus, Private Bag X1, Mthatha (South Africa); Songca, Sandile P. [Faculty of Science, Engineering and Technology, Walter Sisulu University, P.O. Box 19712, Tecoma, East London (South Africa)] [Faculty of Science, Engineering and Technology, Walter Sisulu University, P.O. Box 19712, Tecoma, East London (South Africa)

    2012-12-15T23:59:59.000Z

    Graphical abstract: Display Omitted Highlights: ? HDA-capped ZnS nanoparticles were synthesized via thermolysis of a single source precursor. ? Zinc(II) N-ethyl-N-phenyldithiocarbamate was used as the single source precursor. ? The growth temperature was varied to study the optical properties of the nanocrystals. ? Change in growth temperature affects the structural properties of the ZnS nanoparticles. ? Hexagonal wurtzite phase was obtained at lower temperatures while cubic sphalerite phase was obtained at higher growth temperatures. -- Abstract: Reported in this work is the synthesis of HDA (hexadecylamine)-capped ZnS nanoparticles by a single source route using Zinc(II) N-ethyl-N-phenyldithiocarbamate as a precursor. By varying the growth temperature, the temporal evolution of the optical properties and morphology of the nanocrystals were investigated. The as-synthesized nanoparticles were characterized using UV–vis absorption and photoluminescence (PL) spectroscopy, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). All the particles exhibited quantum confinement in their optical properties with band edge emission at the early stage of the reaction. The XRD showed transition from hexagonal wurtzite phase to cubic sphalerite phase as the growth temperature increases. The TEM image showed that the particles are small and spherical in shape while the HRTEM image confirmed the crystalline nature of the material.

  13. Factors controlling reservoir quality in tertiary sandstones and their significance to geopressured geothermal production. Annual report, May 1, 1979-May 31, 1980

    SciTech Connect (OSTI)

    Loucks, R.G.; Richmann, D.L.; Milliken, K.L.

    1980-07-01T23:59:59.000Z

    Differing extents of diagenetic modification is the factor primarily responsible for contrasting regional reservoir quality of Tertiary sandstones from the Upper and Lower Texas Gulf Coast. Detailed comparison of Frio sandstones from the Chocolate Bayou/Danbury Dome area, Brazoria County, and Vicksburg sandstones from the McAllen Ranch Field area, Hidalgo County, reveals that extent of diagenetic modification is most strongly influenced by (1) detrital mineralogy and (2) regional geothermal gradients. Vicksburg sandstones from the McAllen Ranch Field area are less stable, chemically and mechanically, than Frio sandstones from the Chocolate Bayou/Danbury dome area. Vicksburg sandstones are mineralogically immature and contain greater proportions of feldspars and rock fragments than do Frio sandstones. Thr reactive detrital assemblage of Vicksubrg sandstones is highly susceptible to diagenetic modification. Susceptibility is enhanced by higher than normal geothermal gradients in the McAllen Ranch Field area. Thus, consolidation of Vicksburg sandstones began at shallower depth of burial and precipitation of authigenic phases (especially calcite) was more pervasive than in Frio sandstones. Moreover, the late-stage episode of ferroan calcite precipitation that occluded most secondary porosity in Vicksburg sandstones did not occur significantly in Frio sandstones. Therefore, regional reservoir quality of Frio sandstones from Brazoria County is far better than that characterizing Vicksburg sandstones from Hidalgo County, especially at depths suitable for geopressured geothermal energy production.

  14. Microsoft Word - LBNL 53866_SPME-MTBE_Final_112103.doc

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart ofMeasuringInformation 9StructureContactWind

  15. Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model (Released in the STEO March 1998)

    Reports and Publications (EIA)

    1998-01-01T23:59:59.000Z

    The blending of oxygenates, such as fuel ethanol and methyl tertiary butyl ether (MTBE), into motor gasoline has increased dramatically in the last few years because of the oxygenated and reformulated gasoline programs. Because of the significant role oxygenates now have in petroleum product markets, the Short-Term Integrated Forecasting System (STIFS) was revised to include supply and demand balances for fuel ethanol and MTBE. The STIFS model is used for producing forecasts in the Short-Term Energy Outlook. A review of the historical data sources and forecasting methodology for oxygenate production, imports, inventories, and demand is presented in this report.

  16. Lyondell develops one step isobutylene process

    SciTech Connect (OSTI)

    Not Available

    1992-03-23T23:59:59.000Z

    This paper reports that Lyondell Petrochemical Co., Houston, has developed a one step process to convert normal butylenes to isobutylene, a key component of methyl tertiary butyl ether (MTBE). MTBE is expected to become the additive of choice among U.S. refiners to blend oxygenated gasolines required by 1990 amendments to the Clean Air Act. Lyondell Pres. and Chief Executive Officer Bob Gower the the new process could help assure adequate supplies of MTBE to meet U.S. demand for cleaner burning fuels. Lyondell estimates the capital cost of building a grassroots plant to produce isobutylene with the new process would be less than half the cost of a grassroot plant to produce isobutylene with existing technology starting with normal butane.

  17. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Tertiary Treatment

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Nikola Tesla STEM High School in Redmond, WA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  18. Application of Metagenomics for Identification of Novel Petroleum Hydrocarbon Degrading Enzymes in Natural Asphalts from the Rancho La Brea Tar Pits

    E-Print Network [OSTI]

    Baquiran, Jean-Paul Mendoza

    2010-01-01T23:59:59.000Z

    2010. Biodegradation of MTBE by Achromobacter xylosoxidansaromatic hydrocarbons and MTBE (Eixarch and Constanti, 2010,

  19. Health concerns fuel EPA study of ETBE and TAME

    SciTech Connect (OSTI)

    Lucas, A.

    1994-05-11T23:59:59.000Z

    Citing possible health risks associated with the use of methyl tert-butyl ether (MTBE) in winter-blend gasoline and requirements of the 1990 Clean Air Act (CAA), EPA has called for testing the health effects of ethyl tert-butyl ether (EBTE) and tert-amyl methyl ether (TAME). The program calls for toxicity testing to develop data on the health effects of ETBE and TAME. EPA may require chemical manufacturers and processors to provide the data. A public meeting will be held this week to begin working on an agreement. EPA says most of the data should be collected in 1995 and expects the program to cost approximately $3 million. In December, EPA floated a proposal to require 30% of the oxygenates used in the reformulated gasoline program to come from renewable sources such as ETBE and ethanol. Although EPA found no serious health risks associated with MTBE, questions remain, which is why EPA says it will test the use of ETBE and TAME. William Piel, business manager for oxygenated fuels at Arco Chemical (Newtown Square, PA), says testing is {open_quotes}just a formality.{close_quotes} There should be no difference in results among MTBE, ETBE, or TAME, he says. But ETBE and TAME have much lower volatility than MTBE, which would mean significantly less exposure to these oxygenates, Piel says. Arco is the biggest producer of MTBE but also has capability to make ETBE.

  20. This manuscript downloaded from www.microgrids.et.aau.dk is the preprint of the final paper: L. Meng, F. Tang, M. Savaghebi, J. C. Vasquez, and J. M. Guerrero, "Tertiary control of voltage unbalance compensation for optimal power quality in

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    distributed generators (DGs) equally share the compensation efforts. Tertiary control, which inherently in a multi-bus islanded system by optimally utilizing DGs as distributed compensators and saves. DG Distributed generation. E0 Rated voltage amplitude. E* Reference of voltage amplitude. fc Cut

  1. Regulation of Hsp27 and Hsp70 expression in human and mouse skin construct models by caveolae following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide

    SciTech Connect (OSTI)

    Black, Adrienne T. [Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Hayden, Patrick J. [MatTek Corporation, Ashland, MA (United States); Casillas, Robert P. [Battelle Memorial Institute, Columbus, OH (United States); Heck, Diane E. [Environmental Health, New York Medical College, Valhalla, NY (United States); Gerecke, Donald R. [Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Sinko, Patrick J. [Pharmaceutics, Rutgers University, Piscataway, NJ (United States); Laskin, Debra L. [Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2011-06-01T23:59:59.000Z

    Dermal exposure to the vesicant sulfur mustard causes marked inflammation and tissue damage. Basal keratinocytes appear to be a major target of sulfur mustard. In the present studies, mechanisms mediating skin toxicity were examined using a mouse skin construct model and a full-thickness human skin equivalent (EpiDerm-FT{sup TM}). In both systems, administration of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide (CEES, 100-1000 {mu}M) at the air surface induced mRNA and protein expression of heat shock proteins 27 and 70 (Hsp27 and Hsp70). CEES treatment also resulted in increased expression of caveolin-1, the major structural component of caveolae. Immunohistochemistry revealed that Hsp27, Hsp70 and caveolin-1 were localized in basal and suprabasal layers of the epidermis. Caveolin-1 was also detected in fibroblasts in the dermal component of the full thickness human skin equivalent. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that Hsp27 and Hsp70 were localized in caveolae. Treatment of mouse keratinocytes with filipin III or methyl-{beta}-cyclodextrin, which disrupt caveolar structure, markedly suppressed CEES-induced Hsp27 and Hsp70 mRNA and protein expression. CEES treatment is known to activate JNK and p38 MAP kinases; in mouse keratinocytes, inhibition of these enzymes suppressed CEES-induced expression of Hsp27 and Hsp70. These data suggest that MAP kinases regulate Hsp 27 and Hsp70; moreover, caveolae-mediated regulation of heat shock protein expression may be important in the pathophysiology of vesicant-induced skin toxicity.

  2. Sandia National Laboratories: fatty acid ethyl esters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluating wind-turbine/radar impacts Sandiafaster mass

  3. VERY LOW MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. II. A SHORT-PERIOD COMPANION ORBITING AN F STAR WITH EVIDENCE OF A STELLAR TERTIARY AND SIGNIFICANT MUTUAL INCLINATION

    SciTech Connect (OSTI)

    Fleming, Scott W.; Ge Jian; De Lee, Nathan; Jiang Peng; Lee, Brian; Nelson, Ben [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 2611-2055 (United States); Barnes, Rory [Department of Astronomy, University of Washington, P.O. Box 351580, Seattle, WA 98195 (United States); Beatty, Thomas G.; Gaudi, B. Scott; Shappee, Benjamin J. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Crepp, Justin R. [Department of Astronomy, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Esposito, Massimiliano; Femenia, Bruno; Gonzalez Hernandez, Jonay I. [Instituto de Astrofisica de Canarias (IAC), E-38205 La Laguna, Tenerife (Spain); Ferreira, Leticia; Porto de Mello, Gustavo F. [Observatorio do Valongo, Universidade Federal do Rio de Janeiro, Ladeira do Pedro Antonio, 43, CEP: 20080-090, Rio de Janeiro, RJ (Brazil); Gary, Bruce; Hebb, Leslie; Stassun, Keivan [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Ghezzi, Luan, E-mail: scfleming@psu.edu [Laboratorio Interinstitucional de e-Astronomia, LIneA, Rua Gal. Jose Cristino 77, Rio de Janeiro, RJ-20921-400 (Brazil); and others

    2012-09-15T23:59:59.000Z

    We report the discovery via radial velocity (RV) measurements of a short-period (P = 2.430420 {+-} 0.000006 days) companion to the F-type main-sequence star TYC 2930-00872-1. A long-term trend in the RV data also suggests the presence of a tertiary stellar companion with P > 2000 days. High-resolution spectroscopy of the host star yields T{sub eff} = 6427 {+-} 33 K, log g = 4.52 {+-} 0.14, and [Fe/H] = -0.04 {+-} 0.05. These parameters, combined with the broadband spectral energy distribution (SED) and a parallax, allow us to infer a mass and radius of the host star of M{sub 1} = 1.21 {+-} 0.08 M{sub Sun} and R{sub 1} = 1.09{sup +0.15}{sub -0.13} R{sub Sun }. The minimum mass of the inner companion is below the hydrogen-burning limit; however, the true mass is likely to be substantially higher. We are able to exclude transits of the inner companion with high confidence. Further, the host star spectrum exhibits a clear signature of Ca H and K core emission, indicating stellar activity, but a lack of photometric variability and small vsin I suggest that the primary's spin axis is oriented in a pole-on configuration. The rotational period of the primary estimated through an activity-rotation relation matches the orbital period of the inner companion to within 1.5 {sigma}, suggesting that the primary and inner companion are tidally locked. If the inner companion's orbital angular momentum vector is aligned with the stellar spin axis as expected through tidal evolution, then it has a stellar mass of {approx}0.3-0.4 M{sub Sun }. Direct imaging limits the existence of stellar companions to projected separations <30 AU. No set of spectral lines and no significant flux contribution to the SED from either companion are detected, which places individual upper mass limits of M{sub {l_brace}2,3{r_brace}} {approx}< 1.0 M{sub Sun }, provided they are not stellar remnants. If the tertiary is not a stellar remnant, then it likely has a mass of {approx}0.5-0.6 M{sub Sun }, and its orbit is likely significantly inclined from that of the secondary, suggesting that the Kozai-Lidov mechanism may have driven the dynamical evolution of this system.

  4. Stratospheric ozone, global warming, and the principle of unintended consequences - an ongoing science and policy story

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    as methyl-tert-butyl ether (MTBE), lubricating oil and itsthe environment. Use of the MTBE additive in gasoline wasof gasoline laced with MTBE into groundwater resulted in

  5. Numerical and experimental studies of ethanol flames and autoignition theory for higher alkanes

    E-Print Network [OSTI]

    Saxena, Priyank

    2007-01-01T23:59:59.000Z

    of ethanol, isobutene and MTBE: Experiments and modeling”,of ethanol, isobutene and MTBE: Experiments and modeling”,of ethanol, isobutene and MTBE: Experiments and modeling”,

  6. Cometabolic bioremediation

    E-Print Network [OSTI]

    Hazen, Terry C.

    2010-01-01T23:59:59.000Z

    Intrinsic bioremediation of MTBE-contaminated groundwater atcontaminants, e.g. PCE, TCE, MTBE, TNT, dioxane, atrazine,Methyl tert-butyl ether (MTBE) has also been remediated

  7. Four: Evaluating Reforms in the Implementation of Hazardous Waste Policies in California

    E-Print Network [OSTI]

    Cutter, W. Bowman; DeShazo, J.R.

    2006-01-01T23:59:59.000Z

    the increasing extent of MTBE contamination from USTs. Onlyof groundwater supplies with MTBE, a gasoline additive.contamination, especially by MTBE, have grown in importance.

  8. Different Strategies for Biological Remediation of Perchlorate Contaminated Groundwater

    E-Print Network [OSTI]

    Wang, Yue

    2012-01-01T23:59:59.000Z

    Association (NGWA) Conference on MTBE and Perchlorate, 2004.at NGWA Conference on MTBE and Perchlorate. June 4. 2004.Association Conference on MTBE and Perchlorate: Assessment,

  9. First Annual U.S. Department of Energy Office of Science Joint Genome Institute User Meeting

    E-Print Network [OSTI]

    Various

    2006-01-01T23:59:59.000Z

    Genome Analysis of MTBE-Degrading Beta- Proteobacteriummethyl tert- butyl ether (MTBE). Strain PM1 can alsooften co-contaminants with MTBE in groundwater, including

  10. Regulatory Takings and Environmental Regulation in NAFTA's Chapter 11

    E-Print Network [OSTI]

    Aisbett, Emma; Karp, Larry; McAusland, Carol

    2006-01-01T23:59:59.000Z

    oxygenates (ethanol and MTBE), and that it was possible forof the gasoline additive MTBE, which uses Methanol as anand regu- lations banning MTBE expropriated parts of its

  11. High octane ethers from synthesis gas-derived alcohols. Quarterly technical progress report, April--June 1992

    SciTech Connect (OSTI)

    Klier, K.; Herman, R.G.; Feeley, O.C.; Johansson, M.A.

    1992-07-01T23:59:59.000Z

    The objective of the proposed research is to synthesize high octane ethers, primarily methyl isobutyl ether (MIBE) and methyl tertiary butyl ether (MTBE), directly from H{sub 2}/CO/CO{sub 2} coal-derived synthesis gas via alcohol mixtures that are rich in methanol and 2-methyl-l-propanol (isobutanol). The overall scheme involves gasification of coal, purification and shifting of the synthesis gas, higher alcohol synthesis, and direct synthesis of ethers. The last stage of the synthesis involves direct coupling of synthesis gas-derived methanol and isobutanol that has been demonstrated by us to occur over superacid catalysts to yield methyl isobutyl ether (MIBE) at moderate pressures and a mixture of methanol and isobutene at low pressures. MIBE is an isomer of MTBE and a process is proposed whereby MTBE from the two alcohols is maximized and MIBE is minimized. This will be achieved by the proper choice of reaction conditions, i.e. intermediate pressures, and of inorganic acid catalysts that are stable at temperatures higher than 200{degree}C, at which the carbonium ion reaction coupling of the two alcohols to MTBE is more effective than the oxonium ion or ester reaction coupling to MIBE. Both organic and inorganic catalysts will be investigated, and the better catalysts of these classes will be subjected to long term performance studies. The long term performance studies of the combined process will extend to 1000 hr and detailed analytical data for all products will be provided.

  12. High octane ethers from synthesis gas-derived alcohols

    SciTech Connect (OSTI)

    Klier, K.; Herman, R.G.; Feeley, O.C.; Johansson, M.A.

    1992-07-01T23:59:59.000Z

    The objective of the proposed research is to synthesize high octane ethers, primarily methyl isobutyl ether (MIBE) and methyl tertiary butyl ether (MTBE), directly from H[sub 2]/CO/CO[sub 2] coal-derived synthesis gas via alcohol mixtures that are rich in methanol and 2-methyl-l-propanol (isobutanol). The overall scheme involves gasification of coal, purification and shifting of the synthesis gas, higher alcohol synthesis, and direct synthesis of ethers. The last stage of the synthesis involves direct coupling of synthesis gas-derived methanol and isobutanol that has been demonstrated by us to occur over superacid catalysts to yield methyl isobutyl ether (MIBE) at moderate pressures and a mixture of methanol and isobutene at low pressures. MIBE is an isomer of MTBE and a process is proposed whereby MTBE from the two alcohols is maximized and MIBE is minimized. This will be achieved by the proper choice of reaction conditions, i.e. intermediate pressures, and of inorganic acid catalysts that are stable at temperatures higher than 200[degree]C, at which the carbonium ion reaction coupling of the two alcohols to MTBE is more effective than the oxonium ion or ester reaction coupling to MIBE. Both organic and inorganic catalysts will be investigated, and the better catalysts of these classes will be subjected to long term performance studies. The long term performance studies of the combined process will extend to 1000 hr and detailed analytical data for all products will be provided.

  13. Evaluation of organic matter, Subsurface temperature nd pressure with regard to gas generation in low-permeability upper cretaceous and lower tertiary sandstones in Pacific Creek area, sublette and Sweetwater Counties, Wyoming

    SciTech Connect (OSTI)

    Law, B.E.; Spencer, C.W.; Bostick, N.H.

    1980-04-01T23:59:59.000Z

    Investigations of a sequence of Upper Cretaceous and lower Tertiary rocks in the Pacific Creek area of Wyoming show that studies of organic matter content, type, and maturity in conjunction with subsurface temperature and reservoir pressure, will help define prospective gas-saturated intervals and delineate areas of maximum gas-resource potential. The onset of overpressuring occurs at about 11,600 ft (3,500 m), near the base of the Upper Cretaceous Lance Formation. Drill stem test data indicate that at about 12,800 ft (3,900 m) the pressure gradient is as high as 0.84 psi/ft (19.0 kPa/m). The development of overpressuring probably due to the active generation of large amounts of wet gas. Nearly coincident with the top of overpressuring is a reversal of the spontaneous potential (SP) curve that is thought to be caused by a reduction of formation water salinity. The very small amounts of water produced during thermochemical decomposition of organic matter and the dehydration of clays during clay transformation may provide enough low-salinity water to effictively dilute the original formation water to a degree that the formation water resistivity is greater than mud filtrate resistivity. Microscopic and geochemical evaluation of organic matter shows that they are dominantly humic-type kerogen. Total organic carbon contents of 26 samples range from 0.25 to 7.84 weight percent. Most samples exceed 0.5 percent organic carbon and the average is 1.38 percent. A vertial profile of organic maturation, shows that the top of overpressuring and beginning of important wet-gas generation occur at vitrinite reflectance values of 0.74 to 0.86. (JMT)

  14. Whole-Genome Analysis of Methyl tert-Butyl Ether-Degrading Beta-Proteobacterium Methylibium petroleiphilum PM1

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    D. J. Slomczynski. 2003. BTEX/MTBE bioremediation: BionetsScow, and L. Alvarez-Cohen. MTBE and benzene biodegradationinteractions in BTEX and MTBE mixtures by an MTBE-degrading

  15. AirUCI Summer Institute 2012 Schedule Monday, June 25

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    of MTBE and benzene in gasoline by GC/MS - MTBE in gasoline and ethanol in vodka / mouthwash measured

  16. AirUCI Summer Institute 2011 Schedule Monday, June 27

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    by HPLC - Determination of MTBE and benzene in gasoline by GC/MS - MTBE in gasoline and ethanol in vodka

  17. Coastal Septic Systems and Submarine Groundwater Discharge: A Case Study

    E-Print Network [OSTI]

    de Sieyes, Nicholas R.

    2011-01-01T23:59:59.000Z

    Intrinsic Biodegradation of MTBE and BTEX in a Gasoline-Intrinsic Biodegradation of MTBE and BTEX in a Gasoline-

  18. AirUCI Summer 2010 Schedule Monday, June 28

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    - Determination of PAH in cigarette smoke by HPLC - Determination of MTBE and benzene in gasoline by GC/MS - MTBE

  19. Toxicological and performance aspects of oxygenated motor vehicle fuels

    SciTech Connect (OSTI)

    NONE

    1996-12-31T23:59:59.000Z

    At the request of the Environmental Protection Agency, the committee reviewed a draft of a federal report that assesses the effects of oxygenated fuels on public health, air quality, fuel economy, engine performance, and water quality. The committee determined that much of the federal report adequately represents what is known about the effects of methyl tertiary-butyl ether (MTBE) -- the most commonly used additive in the federal oxygenated-fuels program -- on health, the environment, and motor vehicles. MTBE, a chemical added to gasoline to reduce carbon monoxide pollution, appears not to pose a substantial human health risk, but more-definitive data are needed to assess short-term health effects and to determine whether this additive is effective in reducing carbon monoxide pollution in cold environments.

  20. Pool octanes via oxygenates

    SciTech Connect (OSTI)

    Prezelj, M.

    1987-09-01T23:59:59.000Z

    Increasingly stringent antipollution regulations placed on automobile exhaust gases with consequent reduction or complete lead ban from motor gasoline result in octane shortage at many manufacturing sites. Attractive solutions to this problem, especially in conjunction with abundant methanol supplies, are the hydration and etherification of olefins contained in light product streams from cracking unit or produced by field gas dehydrogenation. A comparison is made between oxygenates octane-volume pool contributions and established refinery technologies. Process reviews for bulk manufacture of fuel-grade isopropanol (IPA), secondary butanol (SBA), tertiary butanol (TBA), methyl tertiary butyl ether (MTBE) and tertiary amyl methyl ether (TAME) are presented together with the characteristic investment and operating data. The implantation of these processes into a typical FCCU refinery complex with the resulting octane-pool improvement possibilities is descried.

  1. Tertiary paleomagnetic results from east Kalimantan

    E-Print Network [OSTI]

    Lumadyo, Leonard E. D

    1991-01-01T23:59:59.000Z

    ? Early Miocene basalt, shale, and andesite yield a mean reversed direction of D = 182. 0', I = -2. 2'(oss = 11. 0', k = 22. 8) and a paleomagnetic pole 1 = 87. 8'N, P = 173. 5'E (Ass ? 7. 0', K = 54. 8). Rock magnetic studies suggest that the carrier... for his guidance in the laboratory and writing style and for keeping me honest. I am indebted to Dr. Laura Stokking of Ocean Drilling Program for her guidance in rock magnetism. I thank my good friends Dean Merrill, who dedicated most of his time...

  2. Later Tertiary Leporidae of North America

    E-Print Network [OSTI]

    Dawson, M. R.

    1958-05-01T23:59:59.000Z

    Saskatchewan. Generic characters. Compared with Megalagus brachyodon, cheek-teeth less hypsodont, molarization of premolars less advanced, molars less reduced, and maxilla and mandibular ramus narrower in premolar region; P3-P4 each having shallow hypostria... the Myton Pocket in Utah and M. wyomingensis from Badwater Creek, Wyoming, specimens from the Wagonhound member of the Uinta Eocene, the Duchesne River (Rand- lett horizon), and the Swift Current Creek beds of Saskatchewan have been referred to this genus...

  3. Ion exchange as a tertiary treatment

    E-Print Network [OSTI]

    Westervelt, Ronald David

    1968-01-01T23:59:59.000Z

    that these treatment methods are capable of removing an appreciable amount of objection? able dissolved organic and inorganic materi aJ s from the final effluent. Color and turbidity were greatly reduced and an appreciable amount of the suspended solids were... Demand Re Resin A General Anion mg. /1. MLVSS psi gpm Milligrams per I. iter Mixed Liquor Volatile Suspended Solids Pounds per Square Inch Gallons per Minute. mm Mi llimeters kgr meq ml Kilogram Milliequilavent Millimeter S. S. BV...

  4. Apolipoprotein AI tertiary structures determine stability and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mailRadioimmunotherapy of Cancers. | EMSLbinding

  5. Arco chimie focuses on PA at FOS

    SciTech Connect (OSTI)

    Jackson, D.

    1992-12-02T23:59:59.000Z

    Arco Chimie France (Fos-sur-Mer), at a recent meeting at its southern France manufacturing site, emphasized that future strategy is strongly focused on its propylene oxide (PO) and derivatives activities. The F2.5 billion ($466 million)-Fe billion/year operation manufactures 200,000 m.t./year of PO, about 70% for captive use and the balance for the merchant market; 550,000 m.t./year of methyl tert butyl ether (MTBE); 97,000 m.t./year of polyols; and 70,000 m.t./year of propylene glycols. There has been talk of Arco modifying its Fos MTBE plant to make it flexible for ethyl tert-butyl ether (ETBE) output; the parent company already operates an MTBE/ETBE pilot unit at Corpus Christi, TX. But Arco Chimie notes there is insufficient bioethanol feedstock availability to convert all production to ETBE. The company would also require investment in new storage capacity for ethanol and ETBE. However, France's biofuels program is not yet clearly defined, and it is politically sensitive because it depends heavily on government subsidies offered to farmers. That, says Arco, makes it impossible to have an accurate idea of how much ethanol will be available.

  6. Heterogeneous catalytic process for alcohol fuels from syngas. Final technical report

    SciTech Connect (OSTI)

    Dombek, B.D.

    1996-03-01T23:59:59.000Z

    The primary objective of this project has been the pursuit of a catalyst system which would allow the selective production from syngas of methanol and isobutanol. It is desirable to develop a process in which the methanol to isobutanol weight ratio could be varied from 70/30 to 30/70. The 70/30 mixture could be used directly as a fuel additive, while, with the appropriate downstream processing, the 30/70 mixture could be utilized for methyl tertiary-butyl ether (MTBE) synthesis. The indirect manufacture of MTBE from a coal derived syngas to methanol and isobutanol process would appear to be a viable solution to MTBE feedstock limitations. To become economically attractive, a process fro producing oxygenates from coal-derived syngas must form these products with high selectivity and good rates, and must be capable of operating with a low-hydrogen-content syngas. This was to be accomplished through extensions of known catalyst systems and by the rational design of novel catalyst systems.

  7. Catalyst and process development for synthesis gas conversion to isobutylene. Quarterly report, October 1, 1993--December 31, 1993

    SciTech Connect (OSTI)

    Anthony, R.G.; Akgerman, A.

    1994-05-01T23:59:59.000Z

    The objectives of this project are to develop a new catalyst; the kinetics for this catalyst; reactor models for trickle bed, slurry and fixed bed reactors; and to simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for conversion of a hydrogen lean synthesis gas to isobutylene. A hydrogen-lean synthesis gas with a ratio of H{sub 2}/CO of 0.5 to 1.0 is produced from the gasification of coal, lignite, or biomass. Isobutylene is a key reactant in the synthesis of methyl tertiary butyl ether (MTBE) and of isooctanes. MTBE and isooctanes are high octane fuels used to blend with low octane gasolines to raise the octane number required for modern automobiles. The production of these two key octane boosters is limited by the supply of isobutylene. MTBE, when used as an octane enhancer, also decreases the amount of pollutants emitted from the exhaust of an automobile engine.

  8. Synthesis, crystal structure, spectroscopic and thermal properties of [Et{sub 4}N][Ta{sub 6}Br{sub 12}(H{sub 2}O){sub 6}]Br{sub 4}.4H{sub 2}O (Et=ethyl)-A new compound with the paramagnetic [Ta{sub 6}Br{sub 12}]{sup 3+} cluster core

    SciTech Connect (OSTI)

    Peric, Berislav, E-mail: bperic@irb.h [Ruder Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb (Croatia); Jozic, Drazan [Ruder Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb (Croatia); Planinic, Pavica, E-mail: planinic@irb.h [Ruder Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb (Croatia); Brnicevic, Nevenka [Ruder Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb (Croatia); Giester, Gerald [Institut fuer Mineralogie und Kristallographie, Universitaet Wien-Geozentrum Althanstrasse, 14, 1090 Wien (Austria)

    2009-09-15T23:59:59.000Z

    A new hexanuclear cluster compound, [Et{sub 4}N][Ta{sub 6}Br{sub 12}(H{sub 2}O){sub 6}]Br{sub 4}.4H{sub 2}O (Et=ethyl) (1), with the paramagnetic [Ta{sub 6}Br{sub 12}]{sup 3+} cluster entity, was synthesized and characterized by elemental and TG/DTA analyses, IR and UV/Vis spectroscopy and by a single-crystal X-ray diffraction study. The presence of the paramagnetic [Ta{sub 6}Br{sub 12}]{sup 3+} unit was confirmed also by the room-temperature magnetic and EPR measurements. The compound crystallizes in the tetragonal I4{sub 1}/a space group, with a=14.299(5), c=21.241(5) A, Z=4, R{sub 1}(F)/wR{sub 2}(F{sup 2})=0.0296/0.0811. The structure contains discrete [Ta{sub 6}Br{sub 12}(H{sub 2}O){sub 6}]{sup 3+} cations with an octahedron of metal atoms edge-bridged by bromine atoms and with water molecules occupying all six terminal positions. The cluster units are positioned in the vertices of the three-dimensional (pseudo)diamond lattice. The structure shows similarities with literature reported structures of cluster compounds crystallizing in the diamond (Fd3-barm) space group. - Graphical abstract: Two interpenetrating (pseudo)diamond nets formed by packing of the paramagnetic [Ta{sub 6}Br{sub 12}(H{sub 2}O)]{sup 3+} (octahedral) and diamagnetic [Et{sub 4}N]{sup +} (spheres) cations.

  9. The feasibility of ethyl iodide as an atmospheric tracer

    E-Print Network [OSTI]

    Everett, Joe Vincent

    1976-01-01T23:59:59.000Z

    . The CCl? was dissolved in toluene and measured with an electron-capture detector. The differences between the two tracers appeared in the lateral distribution measurements where the CC1, showed higher values than the HTO. The HTO results were described...

  10. alcohol ethyl alcohol: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    second, the efficacy of three psychotherapies for alcoholism in treating extreme West, Mike 243 Characterization of Catalysts for the Synthesis of Higher Alcohols using...

  11. LIGNIN BIODEGRADATION AND THE PRODUCTION OF ETHYL ALCOHOL FROM CELLULOSE

    E-Print Network [OSTI]

    Rosenberg, S.L.

    2013-01-01T23:59:59.000Z

    and Moore, W. E. , Removing lignin from wood with white-rotof carbohydrates on lignin degradation by the white-rotP. and Eriksson, K. -E. , Lignin degradation and utilization

  12. acid ethyl esters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 241 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  13. acid ethyl ester: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 241 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  14. Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: measurement comparison, emission ratios, and source attribution

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    methyl tert-butyl ether (MTBE) at 57 amu has been previouslyby a fragment of MTBE (62%) with minor contributions fromFortner and Knighton, 2008). MTBE also in- terfered (16%)

  15. Impacts of Motor Vehicle Operation on Water Quality in the United States - Clean-up Costs and Policies

    E-Print Network [OSTI]

    Nixon, Hilary; Saphores, Jean-Daniel

    2007-01-01T23:59:59.000Z

    and Squillace, P. J. (2005). MTBE and gasoline hydrocarbonsP. J. (2004). The risk of MTBE relative to other VOCs inEPA to Settle Santa Monica MTBE Cleanup Costs, Press release

  16. Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    Island Water Resources Center supported one research project; MTBE Drinking Water Contamination Aquifer. The MTBE contamination problem in Pascoag, which contaminated the only public drinking water well allowed researchers from URI to investigate the MTBE bedrock contamination and suggest remediation

  17. Pyrolysis of Organic Molecules Relevant to Combustion as Monitored by Photoionization Time-of-Flight Mass Spectrometry

    E-Print Network [OSTI]

    Weber, Kevin Howard

    2010-01-01T23:59:59.000Z

    is observed, which is similar to MTBE in this system whichisobutene formed from MTBE, is found to occur. REFERENCES [methyl tert-butyl ether (MTBE) and tert-amyl methyl ether (

  18. QUANTIFYING NON-POINT SOURCES OF VOLATILE ORGANIC COMPOUNDS IN STORMWATER FROM A PARKING LOT

    E-Print Network [OSTI]

    -butyl ether (MTBE) on urban particles indicates a site- specific interaction between MTBE and a particulate is a possible source only for the gasoline oxygenate methyl tert-butyl ether (MTBE). Lopes and Bender (1998

  19. Assessing the Effectiveness of California's Underground Storage Tank Annual Inspection Rate Requirements

    E-Print Network [OSTI]

    Cutter, W. Bowman

    2008-01-01T23:59:59.000Z

    Methyl Tert-Butyl Ether (MTBE), a gasoline additive. Thefor the lion’s share of MTBE contamination, as well asIn response to the MTBE crisis, California increased the

  20. Impacts of motor vehicle operation on water quality - Clean-up Costs and Policies

    E-Print Network [OSTI]

    Nixon, Hilary; Saphores, Jean-Daniel M

    2007-01-01T23:59:59.000Z

    P. J. (2004). The risk of MTBE relative to other VOCs inaddition, the likelihood of MTBE detection is related to theand Squillace, P. J. (2005). MTBE and gasoline hydrocarbons

  1. Trichloroethene Removal From Waste Gases in Anaerobic Biotrickling Filters Through Reductive Dechlorination

    E-Print Network [OSTI]

    Popat, Sudeep Chandrakant

    2010-01-01T23:59:59.000Z

    methyl tert-butyl ether (MTBE) vapors into water was used.MTBE is highly soluble in water (dimensionless Henry’sgas stream was laden with MTBE vapors (200-300 mg m -3 )

  2. Functional genomics of the bacterial degradation of the emerging water contaminants: 1,4-dioxane and N-nitrosodimethylamine (NDMA)

    E-Print Network [OSTI]

    Sales, Christopher Michael

    2012-01-01T23:59:59.000Z

    of propane sparging for MTBE bioremediation. Monterey, CA:by Rhodococcus sp. RR1 but not the MTBE degrader MethylibiumWackett et al. , 1989) and MTBE (Smith et al. , 2003), and

  3. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01T23:59:59.000Z

    kW LBNL LPG Mcf MECS MMBtu Mt MTBE MVSTAFF MW Average Annualof ethanol, as opposed to MTBE, as a blending component of

  4. ACCESS Magazine Fall 2010

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    for another. The addition of MTBE as a fuel oxygenate in theuse. The decision to use MTBE to improve air quality failed

  5. EXPERIMENTAL AND MODELING STUDY OF THE AUTOIGNITION OF 1-HEXENE / ISO-OCTANE MIXTURES AT LOW TEMPERATURE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of a propane/MTBE mixture has been studied in a shock tube [5], while the oxidation of n-heptane/MTBE and n

  6. Biomass burning and urban air pollution over the Central Mexican Plateau

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    the urban tracers (e.g. C 2 H 2 , MTBE, toluene) are highlymethyl tert-butyl ether (MTBE) because their shorter atmo-

  7. AirUCI Summer 2008 Schedule Monday, June 30th

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    by HPLC 2. Determination of MTBE and benzene in gasoline by GC/MS 3. MTBE in gasoline and ethanol in vodka

  8. Effects of water chemistry on NF/RO membrane structure and performance

    E-Print Network [OSTI]

    Mo, Yibing

    2013-01-01T23:59:59.000Z

    methyl tert-butyl ether (MTBE), benzene, ethylbenzene,TCE** Industrial C 2 HCl 3 MTBE** [48] Industrial C 5 H 12 O

  9. Synthesis of a proteasome inhibitor containing a [Gamma]- lactam-[Beta]-lactone fused ring system

    E-Print Network [OSTI]

    Urbina, Armando

    2009-01-01T23:59:59.000Z

    cool to rt, diluted with MTBE (2.7 L, 15 vol. ), washed withwas cooled to rt, added MTBE (1.0 L, ~20 vol. ) and adjusted

  10. Comparison of SPME headspace analysis to U.S. EPA method5030/8260B for MTBE monitoring

    SciTech Connect (OSTI)

    Stringfellow, William T.; Oh, Kuen-Chan

    2005-02-01T23:59:59.000Z

    A novel method for analysis of methyl tert-butyl ether andtert-butyl alcohol using solid phase microextraction is described andcompared to a standard method.

  11. alcohols aromatic tertiary: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of alcohol and drugs. 6. Describe the personality traits of the alcoholic and drug addict. 7. Describe the treatment and rehabilitation of the alcoholic and drug addict. 8....

  12. Freezing-induced perturbation of tertiary structure of monoclonal antibody

    E-Print Network [OSTI]

    Liu, Lu; Kueltzo, L. A.; Jones, L. S.; Carpenter, J. F.

    2006-10-25T23:59:59.000Z

    336 338 340 342 344 -30 -20 -10 0 10 20 Temperature (C) E m i ssi o n p eak p o s i t i o n ( n m) 332 334 336 338 340 342 344 -30 -20 -10 0 10 20 Temperature (C) E m is s i on pe a k pos it ion ( n m ) IgG Pre-frozen 20C Frozen -30C Post... -30 -20 -10 0 10 20 Temperature (C) E m i ssi o n p eak p o s i t i o n ( n m) IgG+KCl Pre-frozen 20C Frozen -30C Post-thawed 20C Peak shift due to freez- ing pH8 338.4 ? 0.1 nm 338.7 ? 0.0 nm 338.0 ? 0.1 nm 0.3 nm pH3 340.7 ? 0.5 nm...

  13. aliphatic tertiary amines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the system. If so, all close binaries should be members of triple (or higher-order) systems. As a test of this prediction, we present a search for the signature of third...

  14. Low Barrier Hydrogen Bonds in Acyclic Tertiary Diamines

    E-Print Network [OSTI]

    Khodagholian, Sevana

    2010-01-01T23:59:59.000Z

    B: synthesis of diamide with phosphorous pentoxide, and C:synthesis uses phosphorous pentoxide and dimethylformamide (B: synthesis of diamide with phosphorous pentoxide, and C:

  15. african tertiary institution: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batchelor Institute and Charles Darwin 9 "Criminally Unjust: Young People and the Crisis of Mass Incarceration" Conference presented by The Africana Criminal Justice Project...

  16. african tertiary teaching: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archive Summary: Welcome Research InterestsActivity Links to Publications; Courses ... EDCI 425: Teaching of Mathematics in Secondary Schools ... Most material for...

  17. Process for tertiary oil recovery using tall oil pitch

    DOE Patents [OSTI]

    Radke, C.J.

    1983-07-25T23:59:59.000Z

    A process and compositions for enhancing the recovery of acid crudes are disclosed. The process involves injecting caustic solutions into the reservoir to maintain a pH of 11 to 13. The fluid contains an effective amount of multivalent cation for inhibiting alkaline silica dissolution with the reservoir. A tall oil pitch soap is added as a polymeric mobility control agent. (DMC)

  18. A study of the multiplication and rooting in vitro of shoot tips from mature guayule (Parthenium argentatum Gray) plants

    E-Print Network [OSTI]

    Callin, Jeffrey Michael

    1990-01-01T23:59:59.000Z

    10 mL Glacial acetic acid overnight Dehydration Series, Tertiary Butyl Alcohol 1. 50% Dehydration Solution 50 mL distilled water 40 mL 95% Ethyl alcohol 10 mL Tertiary butyl alcohol (t-BuOH) . 2. 70% dehydration solution 30 mL distilled water... alcohol 75 mL -BuOH 2 hours overnight 1 hour 1 hour 1 hour 37 6. Pure t-BuOH 7. Pure t-BuOH 8. Pure t-BuOH 9. Equal volumes t-BuOH and parrifin oil 1 hour overnight 1 hour 24 hours 10. Fill small vials half full with melted parrifin...

  19. The Engineering Meetings Board has approved this paper for publication. It has successfully completed SAE's peer review process under the supervision of the session organizer. This process requires a minimum of three (3) reviews by industry experts.

    E-Print Network [OSTI]

    Wu, Mingshen

    Acetaldehyde Organic Gases (DPM + DEOG) MTBE Acrolein Ethylbenzene Naphthalene Arsenic Compounds Formeldehyde Nickel

  20. Automobile Proximity and Indoor Residential Concentrations of BTEX and Diana E. Hun1,*

    E-Print Network [OSTI]

    Siegel, Jeffrey

    Automobile Proximity and Indoor Residential Concentrations of BTEX and MTBE Diana E. Hun1 from gasoline-related sources to indoor benzene and MTBE concentrations appeared to be dominated by car of other BTEX components and MTBE have been reported (CalEPA 2009; U.S. EPA 2005). Up until 2000, MTBE

  1. he U.S. Geological Survey's (USGS) National Water-Quality Assess-

    E-Print Network [OSTI]

    of the wells included methyl tert-butyl ether (MTBE), tetrachloroethene (PCE), dichlorodifluoromethane, 1

  2. New Jersey Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    , the biodegradation of MTBE, and several aspects of wetland ecology. This research supported 7 graduate students

  3. AR242-PP56-02 ARI 24 December 2004 21:20 Phytoremediation

    E-Print Network [OSTI]

    for environmental cleanup TCE: trichloroethylene TNT: trinitrotoluene PAH: polycyclic aromatic hydrocarbon MTBE

  4. Impact of California Reformulated Gasoline On Motor Vehicle Emissions. 1. Mass Emission Rates

    E-Print Network [OSTI]

    Kirchstetter, Thomas W.; Singer, Brett C.; Harley, Robert A.

    1999-01-01T23:59:59.000Z

    propane standard. Methane,MTBE, speciated and NMHC concentrations were determined following the pro-

  5. In-situ air injection, soil vacuum extraction and enhanced biodegradation: A case study in a JP-4 jet fuel contaminated site

    SciTech Connect (OSTI)

    Cho, Jong Soo; DiGiulio, D.C.; Wilson, J.T. [National Risk Management Lab., Ada, OK (United States)

    1997-12-31T23:59:59.000Z

    The US Environmental Protection Agency (US EPA) and the US Coast Guard (USCG) conducted a joint demonstration of in situ remediation of a JP-4 jet fuel spill at the USCG Support Center in Elizabeth City, North Carolina. The jet fuel was trapped beneath a clay layer that extended from the surface to a depth of 1.5 in. The water table was 2.0 in below land surface, and jet fuel extended from a depth of 1.0 to 3.5 in. Air was injected under pressure to depress the water table and bring the entire spill into the unsaturated zone, where hydrocarbons could be removed by volatilization and biodegradation. The injected air was recovered through soil vacuum extraction (SVE) at the treatment area. To document actual removal of hydrocarbons, core samples were acquired in August 1992 before air injection, and September 1994 at the end of the demonstration. The spill originally contained 3600 kg of JP-4. Between the core sampling events, only 55 % of the total petroleum hydrocarbons were removed, but more than 98% of benzene was removed. The initial goal was to reduce the concentration of total petroleum hydrocarbons (TPH) to concentrations less than 100 mg/kg soil. This was not accomplished within 18 months of operation. During the period of operation, ground water was monitored for the concentration of benzene, toluene, ethylbenzene, and the xylene isomers (BTEX), and methyl tertiary butyl ether (MTBE). The concentration of BTEX and MTBE in the subsurface was reduced to a very low level, but concentrations of benzene and MTBE in ground water did not meet the EPA drinking water standards in the most heavily impacted wells. The effluent gas from SVE was monitored for the concentration of total hydrocarbon vapors. 12 refs., 7 figs., 5 tabs.

  6. Radiation chemistry of alternative fuel oxygenates -- Substituted ethers

    SciTech Connect (OSTI)

    Mezyk, S. P.; Cooper, W. J.; Bartels, D. M.; Tobien, T.; O'Shea, K. E.

    1999-11-15T23:59:59.000Z

    The electron beam process, an advanced oxidation and reduction technology, is based in the field of radiation chemistry. Fundamental to the development of treatment processes is an understanding of the underlying chemistry. The authors have previously evaluated the bimolecular rate constants for the reactions of methyl tert-butyl ether (MTBE) and with this study have extended their studies to include ethyl tert-butyl ether (ETBE), di-isopropyl ether (DIPE) and tert-amyl methyl ether (TAME) with the hydroxyl radical, hydrogen atom and solvated electron using pulse radiolysis. For all of the oxygenates the reaction with the hydroxyl radical appears to be of primary interest in the destruction of the compounds in water. The rates with the solvated electron are limiting values as the rates appear to be relatively low. The hydrogen atom rate constants are relatively low, coupled with the low yield in radiolysis, they concluded that these are of little significance in the destruction of the alternative fuel oxygenates (and MTBE).

  7. Assessing and Managing the Risks of Fuel Compounds: Ethanol Case Study

    SciTech Connect (OSTI)

    Layton, D.W.; Rice, D.W.

    2002-02-04T23:59:59.000Z

    We have implemented a suite of chemical transport and fate models that provide diagnostic information about the behavior of ethanol (denoted EtOH) and other fuel-related chemicals released to the environment. Our principal focus is on the impacts to water resources, as this has been one of the key issues facing the introduction of new fuels and additives. We present analyses comparing the transport and fate of EtOH, methyl tertiary butyl ether (MTBE), and 2,2,4 trimethyl pentane (TMP) for the following cases (1) discharges to stratified lakes, subsurface release in a surficial soil, (3) cross-media transfer from air to ground water, and (4) fate in a regional landscape. These compounds have significantly different properties that directly influence their behavior in the environment. EtOH, for example, has a low Henry's law constant, which means that it preferentially partitions to the water phase instead of air. An advantageous characteristic of EtOH is its rapid biodegradation rate in water; unlike MTBE or TMP, which degrade slowly. As a consequence, EtOH does not pose a significant risk to water resources. Preliminary health-protective limits for EtOH in drinking water suggest that routine releases to the environment will not result in levels that threaten human health.

  8. Comparative Environmental Performance of Two-Diesel-Fuel Oxygenates: Dibutyl Maleate (DBM) and Triproplyene Glycol Monomethyl Ether (TGME)

    SciTech Connect (OSTI)

    Layton, D.W.; Marchetti, A.A.

    2001-10-01T23:59:59.000Z

    Many studies have shown that the addition of oxygen bearing compounds to diesel fuel can significantly reduce particulate emissions. To assist in the evaluation of the environmental performance of diesel-fuel oxygenates, we have implemented a suite of diagnostic models for simulating the transport of compounds released to air, water, and soils/groundwater as well as regional landscapes. As a means of studying the comparative performance of DBM and TGME, we conducted a series of simulations for selected environmental media. Benzene and methyl tertiary butyl ether (MTBE) were also addressed because they represent benchmark fuel-related compounds that have been the subject of extensive environmental measurements and modeling. The simulations showed that DBM and TGME are less mobile in soil because of reduced vapor-phase transport and increased retention on soil particles. The key distinction between these two oxygenates is that DBM is predicted to have a greater potential than TGME for aerobic biodegradation, based on chemical structure.

  9. CRC fuel rating program: road octane performance of oxygenates in 1982 model cars

    SciTech Connect (OSTI)

    Not Available

    1985-07-01T23:59:59.000Z

    Because of the widespread interest in the use of alcohols and ethers as gasoline blending components, this program was conducted to evaluate the effects of several oxygenates on gasoline octane performance and to evaluate the effects of car design features such as engine and transmission type. Five oxygenates were evaluated at two nominal concentrations, 5 and 10 volume%, at both regular- and premium-grade octane levels: methanol (MeOH), ethanol (ETOH), isopropanol (IPA), tertiary butanol (TBA), and methyl tertiary butyl ether (MTBE). A blend of 5% MeOH and 5 percent TBA was also tested at both octane levels. Twenty-eight unleaded fuels, including four hydrocarbon fuels, two hydrocarbon fuels plus toluene, and twenty-two oxygenated fuels, were rated in duplicate in thirty-eight cars using the Modified Uniontown Technique (CRC Designation F-28-75 described in Appendix C), plus some additional instructions. All testing was done on chassis dynamometers. Ratings were obtained at full throttle with all thirty-eight cars, and at the most critical part-throttle condition (occurring with manifold vacuum of 4 in. Hg (13.5 kPa) or greater above the full-throttle vacuum) with nine cars.

  10. RELATIONS BETWEEN THE DETECTION OF METHYL TERT-BUTYL ETHER (MTBE) IN SURFACE AND GROUND WATER AND ITS CONTENT IN GASOLINE

    E-Print Network [OSTI]

    AND ITS CONTENT IN GASOLINE By Michael J. Moran, Mike J. Halde, Rick M. Clawges and John S. Zogorski U in the United States as an octane enhancer and oxygenate in gasoline. Octane enhancement began in the late 1970's with the phase-out of tetraethyl lead from gasoline. The use of oxygenates was expanded

  11. Cometabolic bioremediation

    E-Print Network [OSTI]

    Hazen, Terry C.

    2010-01-01T23:59:59.000Z

    contaminants, e.g. PCE, TCE, MTBE, TNT, dioxane, atrazine,Geobacter, Clavibacter) BTEX, PCE, PAHs, Pyrene, Atrazine,VC, 1,1-DCE, 1,1,1- TCA, MTBE PCE, TCE, DCE, VC, Hexachloro-

  12. 7 Cometabolic Bioremediation T. C. Hazen

    E-Print Network [OSTI]

    Hazen, Terry

    bioremediation has been used on some of the most recalcitrant contami- nants, e.g., PCE, TCE, MTBE, TNT, dioxane and aromatic hydrocar- bons, MTBE, explosives, dioxane, PCBs, and pesticides. Microorganisms are versatile

  13. Synthesis of higher alcohols on copper catalysts supported on alkali-promoted basic oxides

    E-Print Network [OSTI]

    Iglesia, Enrique

    -butyl-ether (MTBE) after isobutanol dehydration to form isobutene. An equimolar ratio of methanol to isobutanol would be preferred for MTBE synthesis. Methanol and higher alcohols can also be used for direct blending

  14. AirUCI Summer 2009 Schedule Monday, June 22

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    and Prof. J. Mickey Laux 1. Determination of PAH in cigarette smoke by HPLC 2. Determination of MTBE and benzene in gasoline by GC/MS 3. MTBE in gasoline and ethanol in vodka / mouthwash measured by FTIR 4

  15. EINLADUNG INFOTAG 2001 Eine Forschungsanstalt

    E-Print Network [OSTI]

    Wehrli, Bernhard

    durch den Benzinzusatz MTBE. Methyl-tert-butylether gehört weltweit zu den meistproduzierten orga- nischen Chemikalien. Weil MTBE im Grundwasser auftritt, soll es in den USA als Benzinzusatz verboten

  16. Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    -Situ Bioremediation of MTBE Contaminated Ground Water Using Biobarriers, Marc Deshusses & Mark Matsumoto, UC Riverside of Using Bioaugmentation with Bacterial Strain PM 1 for Bioremediation of MTBE-Contaminated Vadose

  17. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Aug. 2004, p. 47204726 Vol. 70, No. 8 0099-2240/04/$08.00 0 DOI: 10.1128/AEM.70.8.47204726.2004

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    contamination of surface and groundwater resources by the gasoline oxygenate methyl tert-butyl ether (MTBE) is leading to its phaseout. Ethanol, a likely candidate to substitute MTBE, is increasingly being used

  18. Development of Gold-Catalyzed Oxidative Alkene Heteroarylation and of Enantioselective Reactions Enabled by Phase Separation

    E-Print Network [OSTI]

    Lackner, Aaron D.

    2013-01-01T23:59:59.000Z

    pet. ether pentane C 8 F 17 MTBE mesitylene PhEt conv. ee ndR)-C 8 -TRIP heptane Et 2 O MTBE toluene C 6 H 5 F C 6 H 5 F

  19. AirUCI Summer Training Workshop in Environmental

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    schedule Syllabus Wet Lab: MTBE in gasoline and ethanol in vodka / mouthwash measured by FTIR FTIR Wet Lab and benzene in gasoline by GC/MS - MTBE in gasoline and ethanol in vodka / mouthwash measured by FTIR

  20. Learning Model Transformations from Examples using FCA: One for All or All for One?

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of these transformations consists in completely or partially learning them. MTBE (Model Transformation By in model driven en- gineering. An innovative approach called Model Transformation By Example (MTBE) [12

  1. Low Temperature Autoignition of C8H16O2 Ethyl and Methyl Esters...

    Broader source: Energy.gov (indexed) [DOE]

    500 600 700 800 900 1000 300 320 340 360 380 400 420 Apparent Heat Release Rate (kJDeg) Bulk Cylinder Gas Temperature (K) CA (Deg) -0.01 0.01 0.03 0.05 0.07 0.09 0.11 50 250 450...

  2. Cationic quaternization of cellulose with methacryloyloxy ethyl trimethyl ammonium chloride via ATRP method

    SciTech Connect (OSTI)

    Supeno [Cenderawasih University, Jayapura, Papua, Indonesia and School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Daik, Rusli, E-mail: rusli@ukm.edu.my [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); El-Sheikh, Said M. [Nano-Structured Materials Division, Advanced Materials Department, Central Metallurgical Research and Development Institute, Cairo (Egypt)

    2014-09-03T23:59:59.000Z

    The synthesis of a cationic cellulose copolymer from cellulose macro-initiator (MCC-BiB) and quaternary compound monomer (METMA) via atom transfer radical polymerization (ATRP) was studied. By using dimethylformamide (DMF), the optimum condition for successful synthesis was at the mole ratio of MCC-BIB:Catalyst:METMA = 1:1:26. The highest copolymer recovery was 93.2 % for 6 h and at 40°C. The copolymer was insoluble in weak polar solvents such as THF and DMF but soluble in methanol and water. The chemistry of cellulose copolymer was confirmed by the FTIR and TGA in which the METMA monomer was used as a reference. The absence of CC bond in the CiB-g-METMA spectrum indicated that graft copolymerization occurred.

  3. Rate of isomerization of triethyl phosphite to diethyl ethylphosphonate in the presence of ethyl iodide

    E-Print Network [OSTI]

    Zerwekh, Ralph Edwin

    1955-01-01T23:59:59.000Z

    , , j@ioh iQ. owe bo4b M ~b ~bh %be teLe@qk phonate~ 4hto, eo~ 5. y ', : 'gIob, Xf&lg 4o @6' greek~. ceo~. :6 I iodide. , 'The triethyl, phosphite ueeg v&e e, ~Xa4or ~e~~oQ p~aet. &vifkeatioa of this xeageu4 vae aooqmplisheg by zefloxing the CN...

  4. Storage effects on desorption efficiencies of methyl ethyl ketone and styrene collected on activated charcoal

    E-Print Network [OSTI]

    Dommer, Richard Alvin

    1978-01-01T23:59:59.000Z

    in the worker ' s breathir ng zone cont ir uously during his working day. Solid ad- sorbents are used almost exclusively I' or this type of sampling. Among the marr, adsorbents avail able (s ! i ca gel, activated alumina, Tenax, etc. } acti&!ated charcoa&1 I... efficier&cy nf methyl etiiy', Ketone and styrene monomer adsorbed on activated charcoal samples, and stored under isotherm&al condit'ions, were investigated as a function of storage time. The dependence of the storage time effects on the storage temp...

  5. SEC data for polymer 1, 2 (R= 2-ethyl-hexyl) and 3

    E-Print Network [OSTI]

    performance shown: Solar cells based on copolymers of benzothiadiazole and thiophene Eva Bundgaard a,b and Frederik C. Krebs a a Polymer Solar Cell Initiative, The Danish Polymer Centre, Risø National Laboratory Universitycenter, Universitetsvej 1, PO Box 260, DK-4000 Roskilde, Denmark. IV-curves for the polymer 1 (a) and 3

  6. Two Types of Intramolecular Lewis-Base Adducts with the [2-(Dimethylamino)ethyl]cyclopentadienyl Ligand

    E-Print Network [OSTI]

    Bluemel, Janet

    /or carbide-forming metals are involved.3 We were therefore led to investigate some organonickel com- plexes applied. A dead-time delay of 10 µs and a pulse repetition time of 200 Organo Group 13 Transition Metal ring.1 Jutzi et al. have been studying a number of metal complexes bearing this Lewis base

  7. Synthesis of ethyl N-carbobenzoxy-L-valyl-L-valyl-4-amino-3-hydroxyoctanoate

    E-Print Network [OSTI]

    Chesky, Elizabeth Gourley

    1982-01-01T23:59:59.000Z

    ~~I~H2~mH~~~H~I?H CH2~0H Figure 1. Structure of isovaleryl-L-valyl-L-valyl-(3S, 4S)-statyl-L-alanyl-(3S, 4S)-statine (pepstatin). Table I. Biological Activity of Pepstatin and Analogs 1 compounds I050 (ug/ml ) pepsin cathepsin D renin AHMHA IVA...-Val-Val Ac-Ala-AHMHA Ac-Leu-AHMHA Ac-Val-AHMHA IVA-Val-AHMHA-Val-AHMHA IVA-Val-Val-AHMHA-Ala-AHMHA &250 &250 26 9. 3 2. 4 0. 01 0. 01 &250 &250 280 8. 5 4. 4 0. 05 0. 005 &250 &250 &250 &250 &250 &250 4. 5 a ID50...

  8. Hydrogenated soy ethyl ester (HySEE) from ethanol and waste vegetable oil

    SciTech Connect (OSTI)

    Peterson, C.; Reece, D.; Thompson, J. [Univ. of Idaho, Moscow, ID (United States)] [and others

    1995-11-01T23:59:59.000Z

    Biodiesel is gaining recognition in the United States as a renewable fuel which may be used as an alternative to diesel fuel without any modifications to the engine. Currently the cost of this fuel is the factor that limits its use. One way to reduce the cost of biodiesel is to use a less expensive form of vegetable oil such as waste oil from a processing plant. These operations use mainly hydrogenated soybean oil, some tallow and some Canola as their frying oils. It is estimated that there are several million pounds of waste vegetable oil from these operations. Additional waste frying oil is available from smaller processors, off-grade oil seeds and restaurants. This paper reports on developing a process to produce the first 945 liters (250 gallons) of HySEE using recipes developed at the University of Idaho; fuel characterization tests on the HySEE according to the ASAE proposed Engineering Practice for Testing of Fuels from Biological Materials, X552; short term injector coking tests and performance tests in a turbocharged, DI, CI engine; and a 300 hour screening test in a single cylinder, IDI, CI engine.

  9. Direct Catalytic Asymmetric Aldol-Type Reaction of Aldehydes with Ethyl

    E-Print Network [OSTI]

    Wang, Jianbo

    high stereocontrol in these processes, considering the requirement of atom efficiency, it would be more of China wangjb@pku.edu.cn Received February 24, 2003 ABSTRACT The direct aldol-type condensation. Because the aldol reaction is generally considered as one of the most powerful and efficient C-C bond

  10. Low Temperature Autoignition of C8H16O2 Ethyl and Methyl Esters in a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Term Storage ofEnergyReactivity SI

  11. Ethyl Radical Ejection During Photodecomposition of Butanone on TiO2(110).

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance100 ton StanatAccepted

  12. Ethyl Radical Ejection During Photodecomposition of Butanone on TiO2(110).

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance100 ton StanatAccepted| EMSL Pacific Northwest

  13. Center for Water Resources Annual Technical Report

    E-Print Network [OSTI]

    of Ethanol on Anaerobic Production of Tert-Butyl Alcohol (TBA) from MTBE in Groundwater Kate M. Scow, Douglas

  14. Economics of Lifecycle analysis and greenhouse gas regulations

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2009-01-01T23:59:59.000Z

    namely, the hike in crude oil prices, replacement of MTBE bygrowth in demand. Crude oil import price is expected to

  15. NAME/TEAM: ______________________________________ FTIR postlab -1

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Spectroscopy Postlab Last modified: June 17, 2014 1) Summarize your results in the following table: v/v % MTBE your value % RE 100 lit. value - = Ă? 4) Convert your v/v % MTBE in gasoline to units of mass % (w/w %) of oxygen in gasoline. Density of MTBE = 0.74 g/mL, Density of gasoline = 0.66 g/mL, Molar Mass of MTBE = 88

  16. New Jersey Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    composition that parasites in fish from unimpacted streams, a study of the sorption of MTBE vapors on soil

  17. New Jersey Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    of research. Bonventre and her advisor researched the effects of MTBE, ETBE and TAME, three common gasoline

  18. Model Transformation By-Example: A Survey of the First Wave

    E-Print Network [OSTI]

    this problem, model transformation by-example (MTBE) approaches [45,47] have been proposed which follow

  19. PROOF COPY [023113] 008209QEE [023113]008209QEE

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    as a replacement for the gasoline oxygenate, methyl tert-butyl ether MTBE , may lead to indirect impacts related facilitate the migration of pre-existing contamination. MTBE 25 mg/L influent was not degraded inlet by one order of magnitude relative to columns fed BTEX alone or with MTBE. However, 16S

  20. Environmental Toxicology and Chemistry, Vol. 21, No. 12, pp. 26312639, 2002 Printed in the USA

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    --Aquifer microcosms were used to determine how ethanol and methyl-tert-butyl ether (MtBE) affect monoaromatic compared to benzene, which was degraded only under aerobic conditions. The MtBE was not degraded within 100 to phase out MtBE as a gasoline oxy- genate is likely to significantly increase the use of ethanol

  1. 90% of new cars have engines specially designed to run on hydrous ethanol. This avoids the expense of remov-

    E-Print Network [OSTI]

    competes with gasoline (petrol), diesel and MTBE (methyl tert-butyl ether, added to gasoline to MTBE, however, ethanol is comparable regarding price per energy unit and has considerable environmental advantages. MTBE is added to gasoline as an octane booster, replac- ing the lead formerly used

  2. Critical Reviews in Environmental Science and Technology, 00(0):000000 (2001) 1064-3389/01/$.50

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    water contamination by methyl tert-butyl ether (MTBE) have made policymakers more cognizant of the need reformulated gasoline (RFG) (2% oxygen) year-round to reduce emissions that contribute to ozone formation. MTBE-making process that lead to the widespread use of MTBE over the last decade is now quite controversial (BRP, 1999

  3. Monitoring synaptic protein dynamics with higher temporal, spatial, and molecular resolution

    E-Print Network [OSTI]

    Butko, Margaret

    2012-01-01T23:59:59.000Z

    Spectrometry mSOG MiniSOG MTBE Methyl tert-butyl ether mTORMethyl tert-butyl ether (MTBE, 1.4 mL) was then added for1,000 g, 5 min). The MTBE layer was collected into a 1.5-mL

  4. Effects of Using Oxygenated Fuels on Formaldehyde and Acetaldehyde Concentrations in Denver

    E-Print Network [OSTI]

    in the oxygenate added to the fuels. MTBE blended fuels were used almost exclusively during the earlypart tertiarybutyl ether (MTBE) and gasoline. The remainder of the fuel sold was a 10% by volume blend of ethanol the program, while the additive used has gradually shifted from largely MTBE to largely ethanol blended fuels2

  5. Microbes may control gas spills By TRUDY TYNAN

    E-Print Network [OSTI]

    Lovley, Derek

    found deep in the earth to control underground spills of the gasoline additive MTBE. First added that even if use of MTBE was immediately curtailed, it would take decades to remove the contamina- tion. MTBE's effect on humans is still being studied, but it is suspect- ed of causing cancer in animals. "By

  6. Hydrochemical and isotopic effects associated with petroleum fuel biodegradation pathways

    E-Print Network [OSTI]

    Sheffield, University of

    hydrocarbons and residual electron acceptors have been used to deduce BTEX and MTBE degradation pathways. Benzene and MTBE persist into the denitrification zone, with carbon isotope enrichment of benzene-enrichment of residual benzene gives an apparent e value of Ă?0.66x. MTBE shows no significant isotopic enrichment (d13 C

  7. I. Pt-Catalyzed Tandem Epoxide Fragmentation/Pentannulation of Propargylic Esters II. Progress Toward the Kopsia Family of Indole Alkaloids

    E-Print Network [OSTI]

    Pujanauski, Brian Gerard

    2010-01-01T23:59:59.000Z

    methyl t-butyl ether (MTBE), a much more environmentallyPhMe, reflux POCl 3 , Et 3 N CN MTBE Scheme 3.3: OptimizedO H NH POCl 3 , Et 3 N CN MTBE 1-Isocyanocyclohex-1-ene (

  8. Treatment of Methyl tert-Butyl Ether Vapors in Biotrickling Filters. 2.

    E-Print Network [OSTI]

    vapors of methyl tert-butyl ether (MTBE), a gasoline additive of great environmental concern MTBE treatment are discussed. Introduction The rapidly rising number of reports of groundwater con- taminated with the gasoline additive methyl tert-butyl ether (MTBE) has raised concerns about its

  9. UMass scientists tackle gas spills Underground microbesseenas

    E-Print Network [OSTI]

    Lovley, Derek

    spills of the gasoline additive MTBE. First added to gasoline to enhance octane, and later in much larger by the federal Environmental Protection Agency found that even if use of MTBE was immediately curtailed, it would take decades to remove the contamination. MTBE's effect on humans is still being studied

  10. Assessment of organic compound exposures, thermal comfort parameters, and HVAC system-driven air exchange rates in public school portable classrooms in California

    E-Print Network [OSTI]

    Shendell, Derek Garth

    2010-01-01T23:59:59.000Z

    ND m e t h y l e n e chloride MTBE chloroprene c a r b o ny l e n e chloride Max. ND MTBE chloroform 0.11 N D c a r b1,3-butadiene methylene chloride MTBE chloroprene chloroform

  11. s rsrt r t rs Pstr5

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Model Target MetaModel Matching MetaModel Source Model Target Model MTBE Engine links Transformation rulesModel Matching MetaModel Source Model Target Model MTBE Engine Transformation rules Matching Engine conformsTo input/outputIcons: http://cathycreatif.free.fr/ http://www.mecaniqueindustrielle.com/ Simple MTBE

  12. Sampling Throughout The Hydrologic Cycle To Characterize Sources Of Volatile Organic

    E-Print Network [OSTI]

    Torgersen, Christian

    ether (MTBE) are sufficiently high to cause detection in ground water, whereas atmospheric that point sources of MTBE, such as spills or infiltration of urban runoff, are also prevalent are widespread. MTBE is detected less frequently in observation wells that tap 10- to 15-year-old ground water

  13. Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    with Bacterial Strain PM1 for Bioremediation of MTBE-Contaminated Vadose and Groundwater Environments Project Category: Groundwater, Non Point Pollution, Treatment Descriptors: MTBE, Bioremediation, Biodegradation Publication 1. Hristova, K.R., C. M. Lutenegger and K. M. Scow, 2001. Detection and Quantification of MTBE

  14. Applying Model Transformation By-Example on Business Process Modeling Languages

    E-Print Network [OSTI]

    By Example (MTBE) approaches have been proposed as user-friendly alternative that simplifies the definition of model transformations. Up to now, MTBE ap- proaches have been applied to structural models, only. In this work we apply MTBE to the domain of business process modeling languages, i.e., Event-driven Process

  15. Treatment of Methyl tert-Butyl Ether Contaminated Water Using a Dense

    E-Print Network [OSTI]

    Dandy, David

    -butyl ether (MTBE) in a dense medium plasma (DMP) reactor utilizing gas chromatog- raphy-massspectrometryandgaschromatography-thermal conductivity techniques. A rate law is developed for the removal of MTBE from an aqueous solution in the DMP. The oxidation products from the treatment of MTBE-contaminated water in the DMP reactor were found

  16. Fourier Transform Infrared Spectroscopy

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    FTIR - 1 Fourier Transform Infrared Spectroscopy FTIR DETERMINATION OF MTBE IN GASOLINE AND ETHANOL FTIR DETERMINATION OF MTBE IN GASOLINE AND ETHANOL IN VODKA AND MOUTHWASH INTRODUCTION As a part has contained MTBE (methyl tert­butyl ether) as its primary oxygenate. However, there has been

  17. AirUCI Summer Training Workshop in Environmental

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    order. Description Page prefix* Course schedule Syllabus Wet Lab: MTBE in gasoline and ethanol in vodka Spectroscopy FTIR DETERMINATION OF MTBE IN GASOLINE AND ETHANOL IN VODKA AND MOUTHWASH Last updated: June 6, 2013 #12;FTIR - 2 Fourier Transform Infrared Spectroscopy FTIR DETERMINATION OF MTBE IN GASOLINE

  18. International Journal of Mass Spectrometry 249250 (2006) 303310 Pyrolysis of 2-methoxy-2,3,3-trimethylbutane (MTMB) monitored by

    E-Print Network [OSTI]

    Morton, Thomas Hellman

    used fuel oxygenates MTBE and TAME), the predominance of bond homolysis at temperatures >900 K suggests homologues ­ methyl tert-butyl ether (MTBE) and tert-amyl methyl ether (TAME) ­ present a new set of problems discussed as alternatives to MTBE and TAME, because they are expected to be much less soluble in water. More

  19. A. Schrr and B. Selic (Eds.): MODELS 2009, LNCS 5795, pp. 712726, 2009. Springer-Verlag Berlin Heidelberg 2009

    E-Print Network [OSTI]

    Gray, Jeffrey G.

    from which they have much do- main experience. Model Transformation By Example (MTBE) is an innovative- guages. Instead of writing transformation rules manually, MTBE enables users to define a prototypical set model transformations is greatly improved. The current state of MTBE research still has some limitations

  20. Treatment of methyl t-butyl ether contaminated water using a dense medium plasma reactor, a mechanistic and kinetic investigation

    E-Print Network [OSTI]

    Dandy, David

    and oxidation mechanisms of methyl t-butyl ether (MTBE) in a dense medium plasma (DMP) reactor utilizing gas for the removal of MTBE from an aqueous solution in the DMP reactor. Rate constants are also derived for three reactor configurations and two pin array spin rates. The oxidation products from the treatment of MTBE

  1. What Do We Know About Ethanol and Alkylates as Pollutants?

    SciTech Connect (OSTI)

    Rich, D W; Marchetti, A A; Buscheck, T; Layton, D W

    2001-05-11T23:59:59.000Z

    Gov. Davis issued Executive Order D-5-99 in March 1999 calling for removal of methyl tertiary butyl ether (MTBE) from gasoline no later than December 31, 2002. The Executive Order required the California Air Board, State Water Resources Control Board (SWRCB) and Office of Environmental Health Hazard Assessment (OEHHA) to prepare an analysis of potential impacts and health risks that may be associated with the use of ethanol as a fuel oxygenate. The SWRCB contracted with the Lawrence Livermore National Laboratory (LLNL) to lead a team of researchers, including scientists from Clarkson University, University of Iowa, and University of California, Davis, in evaluating the potential ground and surface water impacts that may occur if ethanol is used to replace MTBE. These findings are reported in the document entitled Health and Environmental Assessment of the Use of Ethanol as a Fuel Oxygenate. This document has been peer reviewed and presented to the California Environmental Policy Council and may be viewed at: http://www-erd.llnl.gov/ethanol/. Ethanol used for fuels is made primarily from grains, but any feed stock containing sugar, starch, or cellulose can be fermented to ethanol. Ethanol contains 34.7% oxygen by weight. It is less dense than water, but infinitely soluble in water. Ethanol vapors are denser than air. One and a half gallons of ethanol have the same energy as one gallon of gasoline. Pure fuel ethanol, and gasoline with ethanol, conducts electricity, while gasoline without ethanol is an insulator. Corrosion and compatibility of materials is an issue with the storage of pure ethanol and gasoline with high percentages of ethanol, but these issues are less important if gasoline with less than 10% ethanol is used.

  2. Etherify field butanes: Part 2

    SciTech Connect (OSTI)

    Sarathy, P.R. (John Brown, Houston, TX (United States)); Suffridge, G.S. (John Brown, Tulsa, OK (United States))

    1993-02-01T23:59:59.000Z

    Worldwide interest in technical details concerning major components of world-scale MTBE complexes continues. Part 1 reviewed alternate scenarios for MTBE production and basic technological considerations to assess component processes for producing MTBE. Commercial technologies and cost considerations for world-scale MTBE complexes call for a focus on butane isomerization, isobutane dehydrogenation and isobutylene etherification. The paper describes isomerization; four commercial processes for dehydrogenation (Oleflex, Catofin, STAR, and FBD-4 processes); three methods for etherification (fixed bed with recycle, fixed bed tubular reactor, and catalytic distillation); and capital and production costs for the MTBE complex.

  3. Review of the environmental behavior and fate of methyl tert-butyl ether

    SciTech Connect (OSTI)

    Squillace, P.J.; Zogorski, J.S. [Geological Survey, Rapid City, SD (United States); Pankow, J.F. [Oregon Graduate Inst. of Science and Technology, Beaverton, OR (United States). Dept. of Environmental Science and Engineering; Korte, N.E. [Oak Ridge National Lab., TN (United States). Environmental Science Div.

    1997-09-01T23:59:59.000Z

    A review of pertinent equations and current research indicates that when gasoline oxygenated with methyl tert-butyl ether (MTBE) comes into contact with water, large amounts of MTBe can dissolve. At 25 C, the water solubility of MTBE is about 5,000 mg/L for a gasoline that is 10% MTBE by weight, whereas for a nonoxygenated gasoline, the total hydrocarbon solubility in water is typically about 120 mg/L. Methyl tert-butyl ether sorbs only weakly to subsurface solids; therefore, sorption does not substantially retard the transport of MTBE by ground water. In addition, MTBE generally resists biodegradation in ground water. The half-life of MTBE in the atmosphere can be as short as 3 d in a regional airshed. In the air, MTBE tends to partition into atmospheric water, including precipitation. However, the washing out of gas-phase MTBE by precipitation will not, by itself, greatly alter the gas-phase concentration of the compound in the air. The partitioning of MTBE to precipitation can nevertheless result in concentrations as high as 3 {micro}g/L or more in urban precipitation and can contribute to the presence of MTBE in surface and ground water.

  4. Paleoecology of the Cretaceous^Tertiary mass extinction in planktonic foraminifera

    E-Print Network [OSTI]

    Keller, Gerta

    to be the result of both long-term environmental changes (e.g., climate, sea level, volcanism) and short environmental condi- tions for any living organism due to the culmina- tion of long-term climatic changes, spanning environments from open marine upper bathyal, to shelf and shallow marginal settings, indicate

  5. Serpentinites in a Tertiary subduction complex in the northern Dominican Repub-

    E-Print Network [OSTI]

    and the global mass balance. Serpentinites are abundant in the northern Dominican Republic on Hispaniola (Fig. 1 their origins and the im- plications for syn- and post-subduction processes. GEOLOGICAL SETTING Hispaniola

  6. The geochemistry and petrogenesis of the Tertiary igneous rocks of the Eagle Mountains, Van Horn, Texas

    E-Print Network [OSTI]

    Nelson, Ronald Alan

    1972-01-01T23:59:59.000Z

    Alkaline Ign ~ ~ cons ~ ~ ~ Rocks 21 42 D I S CUSS I QN e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Petrogenesis 50 50 Source magma. Fractionation . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 50 52 Origin of West Texas Nagmas... of Permian and Cretaceous age. The only Permian rocks in the area are represented by the Hueco Limestone Formation. The Cretaceous System, however, is represented by the entire Comanche and Gulf Series (Fig. 2). The Hueco Formation is of marine origin...

  7. Micropaleontology and mineralogy of a tertiary sediment core from the Sigsbee knolls, Gulf of Mexico

    E-Print Network [OSTI]

    Pyle, Thomas Edward

    1966-01-01T23:59:59.000Z

    and Adams (1960) and there is even evidence of other modes of nutrition (Bernard, 1948b; Gaarder and Hasle, 1962), These "algae" also exhibit two flagella which are used for locomotion. Thus several observations indicate that the coccolithophores are best...

  8. Yoon et al. 1 Research Article: Tertiary Endosymbiosis Driven Genome Evolution in

    E-Print Network [OSTI]

    Bhattacharya, Debashish

    apoprotein; PsbD, photosystem II D2 reaction center protein; PsbO, oxygen-evolving enhancer protein 1 MBE, 2 and Debashish Bhattacharya 1 * 1 Department of Biological Sciences and Roy J. Carver Center, NOAA National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research

  9. Calcareous nannofossils from the uppermost Cretaceous and the lowermost Tertiary of central Texas

    E-Print Network [OSTI]

    Jiang, Ming-Jung

    2012-06-07T23:59:59.000Z

    noflagellates, successively dominate the nanno- fossil assemblage immed1ately above the boundary. The opportunistic of small placolith species, such as Cruci lacolithus sp. cf. C. primus, C ocl la 11th p I, else t p. f. I!. ~di h d T wef s p tat, hl h t lty... yl ld t p dly I I s m I Pal o nannoflora. This boundary succession is nearly ident1cal to the boundary succession documented in detail 1n Spain and 1s most reasonably inter- preted as representing a continuous sect1on because there is no ev1dence...

  10. An investigation into student academic help seeking behaviours in a tertiary institution's learning support centre.

    E-Print Network [OSTI]

    Protheroe, Mervyn

    2009-01-01T23:59:59.000Z

    ??The majority of academic help seeking studies worldwide have predominantly used the quantitative paradigm and have been undertaken in the secondary and primary sector. This… (more)

  11. Ultrasonic absorption associated with tertiary butanol complex formation in cyclohexane solutions

    E-Print Network [OSTI]

    Musa, Raiq S.

    1957-01-01T23:59:59.000Z

    fY^gl MFe sXFYlFY a^2 vToMVHbMF Xr TXbbVYYll5 LTRA 7 ^ SONIRCBIP vOlMe Xr DlcMHYblFY5 CndnfY hwyp A '.9-n.^ Table of Contents Page Introduction 1 The Two Crystal Method The Apparatus It The Ultrasonic Interferometer ? Methods...^in ldrrln iyouSn du ryn ovfhterdhuw ry^f /2 xIj o1T oeenotf dupnenupnur hT Ttn,^nuiEa 9ht nbocelnw 5oll fyhqnp ryor du qorntw qyntn o1TM yof vnnu hvfntknp rh vn dupnenupnur hT ryn Ttn,^nuiEw dr df ehffdvln rh oiih^ur Tht ryn nbinff ovfhterdhu hknt ryn Brh...

  12. A contribution to the Tertiary geology and paleontology of northeastern Colorado

    E-Print Network [OSTI]

    Galbreath, E. C.

    1953-03-15T23:59:59.000Z

    LINNAEUS 39 Martin Canyon local fauna 32 Family Boidae BONAPARTE 39 Pawnee Creek fauna of authors 34 Calamagras murivorus COPE 39 Eubanks, Kennesaw, and Vim-Peetz local faunas 34 Calamagras angulatus COPE 39 Sand Canyon local fauna 35...) 58 Mesohip pus proteulophus OSBORN 80 Adjidaumo sp. (Small form) 58 Mesohip pus eulophus OSBORN 80 Paradjidaumo trilophus (Copz) 58 Mesohippus sp. 81 Family Sciuridae GRAY 59 Miohip pus sp. 81 Cedramus wardi WILSON 59 Family...

  13. Stochastic Programming Approach to Hydraulic Fracture Design for the Lower Tertiary Gulf of Mexico

    E-Print Network [OSTI]

    Podhoretz, Seth

    2013-07-27T23:59:59.000Z

    of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, Robert Lane Co-Chair of Committee, Peter Valk? Committee Member, Benchun Duan Head of Department, Daniel Hill August 2013 Major Subject: Petroleum Engineering ii... sampling to well count decision making under uncertainty for gas/condensate reservoirs. Dong, Holditch, and McVay (2013) applied Monte Carlo sampling for resource evaluation in shale gas reservoirs. 13 An alternative and less used model...

  14. Application of a moving bed biofilm reactor for tertiary ammonia treatment in high temperature industrial wastewater

    E-Print Network [OSTI]

    industrial wastewater Jennifer L. Shore a,b , William S. M'Coy b , Claudia K. Gunsch a , Marc A. Deshusses a 2012 Available online 17 February 2012 Keywords: Moving bed biofilm reactor Industrial wastewater and industrial wastewater. No biotreatment was observed at 45 °C, although effective nitrification was rapidly

  15. Origin of gaseous hydrocarbons from Upper Cretaceous and Tertiary strata in the Piceance basin, western Colorado

    E-Print Network [OSTI]

    Katz, David Jonathan

    1997-01-01T23:59:59.000Z

    microbial/thermogenic origin for methane. Only one sample from above 1950 m contained sufficient amounts of C2for isotopic analysis (813 CC2 =-27.0%o at 1718 m). Data from the second trend are based on seven analyses and are offset by approximately +20%o...

  16. New surfactant classes for enhanced oil recovery and their tertiary oil recovery potential

    E-Print Network [OSTI]

    Goddard III, William A.

    for more than 35 years, in particular in the USA in depleted oil reservoirs after waterflooding (Garrett conditioned to residual waterflood oil saturation prior to surfactant slug injection. This was followed., 2000; Jayanti et al., 2001; Berger and Lee, 2002; Endo et al., 2002). During a waterflood (which can

  17. Mineralogy and diagenesis of Gulf Coast Tertiary shales Ann-Mag Field, Brooks County, Texas

    E-Print Network [OSTI]

    Bott, Winston Frederick

    1985-01-01T23:59:59.000Z

    composition with increasing depth of burial provides evidence of systematic diagenetic conversions (Boles and Franks, 1979; Hower et al. , 1976; Perry and Hower, 1972; Weaver and Beck, 1971; Dunoyer De Segonzac, 1970; Burst, 1969; Powers, 1967). When... not be neglected, many workers have shown that significant mineral ogic changes do occur due to diagenesi s of clay minerals from the same source (Boles and Franks, 1979; Hower, et al. , 1976; Perry and Hower, 1972; Dunoyer De Segonzac, 1970; Burst, 1969). Also...

  18. Monitoring Electricity Consumption in the Tertiary Sector- A Project within the Intelligent Energy Europe Program

    E-Print Network [OSTI]

    Plesser, S.; Fisch, M. N.; Gruber, E.; Schlomann, B.

    Services and Energydesign, Technical University of Braunschweig, Germany Univ.-Prof. Dr.-Ing. M. Norbert Fisch Head of Institute IGS ? Institute of Building Services and Energydesign, Technical University of Braunschweig, Germany Edelgard Gruber... Competence Centre Energy Policy and Energy Systems, Fraunhofer Institute for Systems and Innovation Research, Karlsruhe, Germany Barbara Schlomann Competence Centre Energy Policy and Energy Systems, Fraunhofer Institute for Systems and Innovation...

  19. Evidence for Large-Scale Laramide Tectonic Inversion and a Mid-Tertiary

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It isInformationexplains a4Evendale, Ohio:Field From

  20. Late Tertiary paleomagnetic data from Leyte, Philippines: implications for Philippine fault zone motion

    E-Print Network [OSTI]

    Cole, Jay Timothy

    1988-01-01T23:59:59.000Z

    = 20. 1' (oss ? 6. 6', le ? 29. 9) and a paleomagnetic pole A ? 89. 0" N, P ? 10. 4'E (Ass ? 4. 8', K ? 55. 3). Eight early Neogene sites (3 normal polarity and 5 reversed polarity) give a mean direction D = 23. 2', I = 13. 9' (oss ? 9. 3', k = 36.... 2) and a paleomagnetic pole A = 66. 5'N, 6 = 220. 5'E (Ass ? 7. 1', It = 62. 0). The late Veogene pole is indistinguishable at the 95% confidence level from published Plio-Pleistocene poles from the entire Philippines and the late Miocene pole...

  1. The effect of solids retention time on tertiary ozonation and carbon adsorption of petrochemical wastewaters

    E-Print Network [OSTI]

    Buys, Ronald Earl

    1980-01-01T23:59:59.000Z

    . Biological treatment of wastewater has been used since the turn of the century, and while its application has grown in complexity since that time, the fundamental biological reaction mechanisms have remained unchanged. Most important... organic carbon from the wastewater by conversion into microbial cells, or some other desirable form. Biological waste treatment is usually intended for the removal of organic matter, but certain other contaminants are also removed, For example...

  2. Tertiary nitrogen heterocyclic material to reduce moisture-induced damage in asphalt-aggregate mixtures

    DOE Patents [OSTI]

    Plancher, Henry (Laramie, WY); Petersen, Joseph C. (Laramie, WY)

    1982-01-01T23:59:59.000Z

    Asphalt-aggregate roads crack when subjected to freezing and thawing cycles. Herein, the useful life of asphalts are substantially improved by a minor amount of a moisture damage inhibiting agent selected from compounds having a pyridine moiety, including acid salts of such compounds. A shale oil fraction may serve as the source of the improving agent and may simply be blended with conventional petroleum asphalts.

  3. Synthesis and crystal structure studies of ethyl 5-methyl-1, 3-diphenyl-1H-pyrazole-4-carboxylate

    SciTech Connect (OSTI)

    Chandra,; Babu, E. A. Jithesh; Mahendra, M., E-mail: mahendra@physics.uni-mysore.ac.in [Department of Studies in Physics, Manasagangotri, University of Mysore, Mysore-570006 (India); Srikantamurthy, N.; Umesha, K. B. [Department of Chemistry, Yuvaraja's College, University of Mysore, Mysore-570005 (India)

    2014-04-24T23:59:59.000Z

    The title compound, C{sub 19}H{sub 18}N{sub 2}O{sub 2}, was investigated by single crystal X-ray diffraction method. It crystallizes in monoclinic class under the space group P2{sub 1}/c with cell parameters a= 8.4593(4) Ĺ, b=15.6284(6) Ĺ, c=12.4579(5) Ĺ, ?=90°, ?=98.241(3)°, ?=90° and Z=2. The ethoxycarbonyl group is slightly twisted from the pyrazole ring, and adopts syn-periplanar conformation. The crystal structure is stabilized by intermolecular C-H….O hydrogen bonds, which help in stabilizing the crystal structure.

  4. Supporting Information for Stoltz et al. SI 1 Development of (Trimethylsilyl)Ethyl Ester Protected Enolates and

    E-Print Network [OSTI]

    Stoltz, Brian M.

    cm) obtained from Daicel Chemical Industries, Ltd. Analytical SFC was performed with a Mettler SFC-H, or OB-H) columns (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd. Analytical chiral GC). TLC was performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and visualized

  5. An XAFS Study of Nickel Chloride in the Ionic Liquid 1-ethyl-3-methyl Imidazolium Chloride/ Aluminum Chloride

    SciTech Connect (OSTI)

    Roeper, D.; Cheek, G; Pandya, K; O'Gragy, W

    2008-01-01T23:59:59.000Z

    The electrodeposition of metals from aqueous solutions has a successful history for many metals. However, some metals cannot be deposited from aqueous solutions because their potentials fall outside of the window of stability for water. Using ionic liquids for the electrodeposition of metals can avoid some of these difficulties because they have a larger region of stability than water. The electrochemical window can be tailored to fit a particular application by choosing appropriate anions and cations to form the melt. There is also the possibility to deposit pure metals without the oxides and hydrides that can form in aqueous solutions. The study of the structure of metal salts in ionic liquids is an important step towards achieving these goals.

  6. A determination of the heats of combustion of the five-carbon fatty acids and their methyl and ethyl esters

    E-Print Network [OSTI]

    Gilby, Ralph F

    1952-01-01T23:59:59.000Z

    ; g7;P~. X% FATTI ACXDS ND TAX'. K~~~. Ah. ' RKg', Ei~K'~ P~ FuXVQJ~ ef %he 1&aydgewetie fea %he Twine of ~ of . "-elmer F~ F QQXly xy, ay~ Oe esther w9atew to thank Lh ~ C+ K ~ eeet W 9 H~ Vetoes ebs 45xoe~ @de esesaveh The ~ also ~ to thsnk N... of preparation had to be used? Tbongh sane diff ioalt and tins oonsnaing than sxxidationx the prsparatdon through the Orignard synthesis prosed quite satisfaotory? Isobntyl ~ prepared frcxa the aloohol was converted to isobutgrl nayvvxtuxs bread, de whioh...

  7. On using film boiling to thermally decompose liquid organic chemicals: Application to ethyl acetate as a model compound

    E-Print Network [OSTI]

    Walter, M.Todd

    to provide for autothermal operation without external heat input owing to the exothermicity of the oxidative

  8. Displacement of oil by carbon dioxide. Annual report, October 1, 1980-September 30, 1981. [Ethyl benzene, ethylbutyrate, isopropanol

    SciTech Connect (OSTI)

    Orr, F.M. Jr.; Taber, J.J.

    1982-03-01T23:59:59.000Z

    Progress of a comprehensive research program to quantify factors affecting CO/sub 2/ flood displacement efficiency is described. Experimental and theoretical investigations of the interactions of factors such as phase behavior and fluid properties of CO/sub 2/-crude oil mixtures, and heterogeneities in reservoir rocks are discussed. Literature on the interpretation of miscible displacements in one- and two-phase systems is reviewed. Simple displacement experiments to evaluate effects of core heterogeneities and high mobile water saturations are described. Results of miscible displacement experiments with fluids of matched density and viscosity are presented and compared with results of a few displacements in which fluid properties were not matched. Those comparisons clearly indicate that control of viscous fingering is required if short core floods are to be interpreted with reasonable certainty. Detailed results of investigations of the phase behavior of CO/sub 2/-crude oil mixtures are presented. The volumetric behavior of mixtures of CO/sub 2/ with dead oils from the Wasson and Maljamar fields are compared with that of a Maljamar recombined reservoir fluid. The results provide the basis for a qualitative analysis of the effects of the presence of solution gas on CO/sub 2/ flood performance. Modifications to improve the continuous multiple contact experiment, which efficiently measures phase compositions and fluid properties, are described. An analysis of the operation of the apparatus is given for binary systems. The theory is compared with experimental results for CO/sub 2/-decane displacements, with excellent agreement. Extensive results of experiments to measure compositions and densities of phases present for CO/sub 2/-crude oil mixtures are reported.

  9. Proton NMR analysis of octane number for motor gasoline: Part V

    SciTech Connect (OSTI)

    Ichikawa, M.; Nonaka, N.; Amano, H.; Takada, I.; Ishimori, S. [Suzuki Motor Corp., Hamamatsu (Japan); Andoh, H.; Kumamoto, K. [Showa Shell Sikiyu Tokyo (Japan)

    1992-10-01T23:59:59.000Z

    A method to predict the octane number of automobile gasoline containing methyl tert-butyl ether (MTBE) by proton magnetic resonance (PMR) spectrometry was studied. Samples of gasoline whose octane numbers had been identified according to the ASTM standards (commercially available premium gasoline to which MTBE was added at rates of 7 vol % and 14 vol %) were used in this investigation of the effect of MTBE on the octane number. The findings were utilized to introduce a term regarding MTBE into the previously reported linear regression equation for estimating the octane number from the PMR spectrum, and the appropriateness of the linear regression equation was assessed. As a result the MTBE contents in the sample were determined with satisfactory accuracy by using a standard addition method, and a linear regression equation reflecting the effect of MTBE was obtained. These achievements are reported. 11 refs., 3 figs., 5 tabs.

  10. Ethers help gasoline quality

    SciTech Connect (OSTI)

    Chang, E.J.; Leiby, S.M. (SRI International, Menlo Park, CA (US))

    1992-02-01T23:59:59.000Z

    In this article three scenarios to evaluate the effect of etherification on gasoline production and quality are reviewed: Base case FCC/C{sub 4} alkylation complex - FCC unit operation for maximum gasoline yield, MTBE unit added to base case FCC unit operation and MTBE unit added to maximum olefins FCC unit operation. Details of the FCC, MTBE and C{sub 4} alkylation operations used in this article are reviewed, followed by a discussion of overall results.

  11. NAME/TEAM: ______________________________________ FTIR prelab -1

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Pages: 247­249 and 319 ­ 320 on Fuel & MTBE Pages: 295­302: Ethanol Online: www.whfreeman.com/envchem5e of this lab? 2) Draw the molecular structures for Ethanol and MTBE (see the Appendix in your Text for help: 247­249 on gasoline and additives Pages: 247­249 and 319 ­ 320 on Fuel & MTBE Pages: 295­302: Ethanol

  12. Multiple steady states during reactive distillation of methyl tert-butyl ether

    SciTech Connect (OSTI)

    Nijhuis, S.A. (Univ. of Amsterdam (Netherlands). Chemical Engineering Dept.); Kerkhof, F.P.J.M.; Mak, A.N.S. (Comprimo Engineers and Contractors, Amsterdam (Netherlands))

    1993-11-01T23:59:59.000Z

    This paper presents results of computer simulations of the synthesis of methyl tert-butyl ether (MTBE) in a fixed-bed reactor and in a reactive distillation column. These calculations clearly showed the advantages of MTBE synthesis in a catalytic distillation tower. Furthermore, the computer simulations showed that multiple steady states may occur in the reactive distillation column during MTBE synthesis in a broad range of operating conditions. An analysis of some sensitivity studies is presented.

  13. Organic Syntheses, Coll. Vol. 9, p.362; Vol. 74, p.33 (R)-(-)-2,2-DIPHENYLCYCLOPENTANOL

    E-Print Network [OSTI]

    Denmark, Scott

    (MTBE), and washed with water (2 Ă? 100 mL) and brine (100 mL). The aqueous layers are back-extracted with MTBE (100 mL). The combined organic layers are dried with sodium sulfate (Na2SO4), concentrated temperature, it is quenched with water (25 mL), diluted with MTBE (500 mL), and washed with water (100 m

  14. Biodegradation of methyl tert-butyl ether by a bacterial pure culture

    SciTech Connect (OSTI)

    Hanson, J.R.; Ackerman, C.E.; Scow, K.M.

    1999-11-01T23:59:59.000Z

    A bacterial strain, PM1, which is able to utilize methyl tert-butyl ether (MTBE) as its sole carbon and energy source, was isolated from a mixed microbial consortium in a compost biofilter capable of degrading MTBE. Initial linear rates of MTBE degradation by 2 x 10{sup 6} cells ml{sup {minus}1} were 0.07, 1.17, and 3.56 {mu}g ml{sup {minus}1} h{sup {minus}1} for initial concentrations of 5, 50, and 500 {mu}g MTBE ml{sup {minus}1}, respectively. When incubated with 20 {mu}g of uniformly labeled [{sup 14}C]MTBE ml{sup {minus}1}, strain PM1 converted 46% to {sup 14}CO{sub 2} and 19% to {sup 14}C-labeled cells within 120 h. This yield is consistent with the measurement of protein accumulation at different MTBE concentrations from which was estimated a biomass yield of 0.18 of cells mg MTBE{sup {minus}1}. Strain PM1 was inoculated into sediment core material collected from a contaminated groundwater plume at Port Hueneme, California, in which there was no evidence of MTBE degradation. Strain PM1 readily degraded 20 {micro}g of MTBE ml{sup {minus}1} added to the core material. The rate of MTBE removal increased with additional inputs of 20 {micro}g of MTBE ml{sup {minus}1}. These results suggest that PM1 has potential for use in the remediation of MTBE-contaminated environments.

  15. Texas Rice, Volume V, Number 5

    E-Print Network [OSTI]

    environmental lawsuits because one of their products, the gasoline additive MTBE, has con- taminated drinking water in hundreds of communities. House leaders have insisted an MTBE waiver be part of energy legislation. There have been discussions among House... Repub- licans to establish a federal fund for MTBE cleanup along with liability protection for the manufactures. President Bush praised the Senate for passing the measure, saying it would help U.S. economic growth by addressing the causes of high energy...

  16. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which can lead to public health problems. * MtBE (Methyl tert Butyl Ether), a gasoline additive, has begun to contaminate ground water supplies. * Similarly, perchlorate has...

  17. Kinetics and mechanism of the sonolytic destruction of methyl tert-butyl ether by ultrasonic irradiation in the presence of ozone

    SciTech Connect (OSTI)

    Kang, J.W. [Yonsei Univ., Wonju (Korea, Republic of). Dept. of Industrial Environment and Health] [Yonsei Univ., Wonju (Korea, Republic of). Dept. of Industrial Environment and Health; Hoffmann, M.R. [California Inst. of Tech., Pasadena, CA (United States). W.M. Keck Labs.] [California Inst. of Tech., Pasadena, CA (United States). W.M. Keck Labs.

    1998-10-15T23:59:59.000Z

    The kinetics and mechanism of the sonolytic degradation of methyl tert-butyl ether (MTBE) have been investigated at an ultrasonic frequency of 205 kHz and power of 200 W L{sup {minus}1}. The observed first-order degradation rate constant for the loss of MTBE increased from 4.1 {times} 10{sup {minus}4} s{sup {minus}1} to 8.5 {times} 10{sup {minus}4} s{sup {minus}1} as the concentration of MTBE decreased from 1.0 to 0.01 mM. In the presence of O{sub 3}, the sonolytic rate of destruction of MTBE was accelerated substantially. The rate of MTBE sonolysis with ozone was enhanced by a factor of 1.5--3.9 depending on the initial concentration of MTBE. tert-Butyl formate, tert-butyl alcohol, methyl acetate, and acetone were found to be the primary intermediates and byproducts of the degradation reaction with yields of 8, 5, 3, and 12%, respectively. A reaction mechanism involving three parallel pathways that include the direct pyrolytic decomposition of MTBE, the direct reaction of MTBE with ozone, and the reaction of MTBE with hydroxyl radical is proposed.

  18. alkyl-tert alkyl ethers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TREAT METHYL- TERT-BUTYL ETHER CONTAMINATED CiteSeer Summary: Methyl-tert-butyl ether (MTBE) is a commonly used gasoline additive. Leaking underground storage tank systems,...

  19. Contaminant Loads from Stormwater to Coastal Waters in

    E-Print Network [OSTI]

    · MTBE http://www.sfei.org/rmp/reports/AB1429/ab14.html #12;Methodologies For Other Pathways · Effluent

  20. TABLES1.CHP:Corel VENTURA

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    ethanol blended into finished motor gasoline and oxygenate production from merchant MTBE plants are also included. d Includes stocks located in the Strategic Petroleum Reserve....

  1. Observation on the biodegradation and bioremediation potential of methyl t-butyl ether

    SciTech Connect (OSTI)

    Salanitro, J.; Wisniewski, H.; McAllister, P. [Shell Development Co., Houston, TX (United States)

    1995-12-31T23:59:59.000Z

    There have been few reports documenting evidence for the biodegradation of the fuel oxygenate alkyl ether, methyl t-butyl ether (MTBE) in groundwater, soils, and biosludges. Partial (or complete) microbial breakdown of MTBE has been observed in an anaerobic subsoil, a river sediment under methanogenic conditions, a cyclohexane-degrading bacterial consortium and a pure culture of the methylotroph, Methylisnus trichosporium OB3b. An aerobic bacterial enrichment (BC-1) isolated from an industrial transient (non-accumulating) metabolic intermediate. The studies suggest that MTBE is cleaved by BC-1 to TBA which is then metabolized via isopropanol and acetone. There is little information on the occurrence of indigenous MTBE-degraders in groundwater, soils and activated sludges. Preliminary evidence has been obtained, however, from a marketing terminal groundwater site that naturally-occurring MTBE-degraders are present in some monitoring wells. Microcosm experiments with groundwater from this aquifer show that MTBE is aerobically degraded (no TBA formed) with a first-order decay rate (0.31/day) similar to BTEX. Also, MTBE did not inhibit the intrinsic biodegradation potential of BTEX in groundwater microcosms. In summary, the data presented indicate that MTBE biodegradation has been observed in some environmental media. Further work is needed to assess the feasibility of using indigenous or derived aerobic and anaerobic MTBE-degrading cultures for treating fuel ethers in groundwaters or wastewater with in-situ or ex-situ bioremediation technologies.

  2. Numerical and experimental studies of ethanol flames and autoignition theory for higher alkanes

    E-Print Network [OSTI]

    Saxena, Priyank

    2007-01-01T23:59:59.000Z

    initiated ignition in methane-propane mixtures”, Combustiontemperature ignition of propane with MTBE as an additive:detonation in ethylene and propane mixtures”, Combustion and

  3. Fuel-Cycle energy and emission impacts of ethanol-diesel blends in urban buses and farming tractors.

    SciTech Connect (OSTI)

    Wang, M.; Saricks, C.; Lee, H.

    2003-09-11T23:59:59.000Z

    About 2.1 billion gallons of fuel ethanol was used in the United States in 2002, mainly in the form of gasoline blends containing up to 10% ethanol (E10). Ethanol use has the potential to increase in the U.S. blended gasoline market because methyl tertiary butyl ether (MTBE), formerly the most popular oxygenate blendstock, may be phased out owing to concerns about MTBE contamination of the water supply. Ethanol would remain the only viable near-term option as an oxygenate in reformulated gasoline production and to meet a potential federal renewable fuels standard (RFS) for transportation fuels. Ethanol may also be blended with additives (co-solvents) into diesel fuels for applications in which oxygenation may improve diesel engine emission performance. Numerous studies have been conducted to evaluate the fuel-cycle energy and greenhouse gas (GHG) emission effects of ethanol-gasoline blends relative to those of gasoline for applications in spark-ignition engine vehicles (see Wang et al. 1997; Wang et al. 1999; Levelton Engineering et al. 1999; Shapouri et al. 2002; Graboski 2002). Those studies did not address the energy and emission effects of ethanol-diesel (E-diesel or ED) blends relative to those of petroleum diesel fuel in diesel engine vehicles. The energy and emission effects of E-diesel could be very different from those of ethanol-gasoline blends because (1) the energy use and emissions generated during diesel production (so-called ''upstream'' effects) are different from those generated during gasoline production; and (2) the energy and emission performance of E-diesel and petroleum diesel fuel in diesel compression-ignition engines differs from that of ethanol-gasoline blends in spark-ignition (Otto-cycle-type) engine vehicles. The Illinois Department of Commerce and Community Affairs (DCCA) commissioned Argonne National Laboratory to conduct a full fuel-cycle analysis of the energy and emission effects of E-diesel blends relative to those of petroleum diesel when used in the types of diesel engines that will likely be targeted first in the marketplace. This report documents the results of our study. The draft report was delivered to DCCA in January 2003. This final report incorporates revisions by the sponsor and by Argonne.

  4. Molecular organization in the native state of woody tissue: Studies of tertiary structure using the Raman microprobe solid state 13C NMR and biomimetic tertiary aggregates. Progress report, July 1, 1989--June 30, 1993

    SciTech Connect (OSTI)

    Atalla, R.H.

    1993-12-31T23:59:59.000Z

    We have previously shown that all relatively pure plant and bacterial celluloses are, in their native states, composites of two lattice forms, I{sub {alpha}} and I{sub {beta}}, and that the two forms possess molecular chains in the same conformations but with different hydrogen bonding patterns. In the current period we have demonstrated that in higher plant cell wall matrices, the hemicelluloses are likely to have a regulatory function during the aggregation of cellulose. Different hemicelluloses appear to influence the aggregation in different ways. We have also developed preliminary evidence indicating the hemicelluloses may have a protective function against the action of some cellulolytic enzymes. The specific accomplishments during the current period are detailed. Demonstration that hemicelluloses present during biogenesis can transform bacterial cellulose into a cellulose typical of higher plant celluloses, and that each hemicellulose has a different effect on the pattern of aggregation. Evidence is presented that the hemicelluloses may limit the action of certain cellulolytic enzymes, suggesting that their function may go beyond regulation to include passive resistance to cellulolytic pathogens. Enhancing the potential of the Raman microprobe technique for mapping variability of lignin in the cell wall by identifying the contribution of the different substructures of lignin to the intensity of the key band in the Raman spectrum of lignin. Mapping of the variability of lignin across two cell wall sections. The mappings have convoluted within them both composition and concentration, but they demonstrate the potential of the method and point to the improvements we are now making so as to distinguish between variability of concentration and variability of composition.

  5. GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/, Destruction of the Tertiary Ozone Maximum During a Solar

    E-Print Network [OSTI]

    Otago, University of

    Maximum During a Solar Proton Event A. Sepp¨al¨a, P. T. Verronen, V. F. Sofieva, J. Tamminen, E. Kyr¨ol¨a Finnish Meteorological Institute, Earth Observation, Helsinki, Finland C. J. Rodger Physics Department to study the effects of the January 2005 solar storms on the polar winter middle atmosphere. The model

  6. Volume and accessibility of entrained (solution) methane in deep geopressured reservoirs - tertiary formations of the Texas Gulf Coast. Final report

    SciTech Connect (OSTI)

    Gregory, A.R.; Dodge, M.M.; Posey, J.S.; Morton, R.A.

    1980-10-01T23:59:59.000Z

    The objective of this project was to appraise the total volume of in-place methane dissolved in formation waters of deep sandstone reservoirs of the onshore Texas Gulf Coast within the stratigraphic section extending from the base of significant hydrocarbon production (8000 ft)* to the deepest significant sandstone occurrence. The area of investigation is about 50,000 mi/sup 2/. Factors that determine the total methane resource are reservoir bulk volume, porosity, and methane solubility; the latter is controlled by the temperature, pressure, and salinity of formation waters. Regional assessment of the volume and the distribution of potential sandstone reservoirs was made from a data base of 880 electrical well logs, from which a grid of 24 dip cross sections and 4 strike cross sections was constructed. Solution methane content in each of nine formations or divisions of formations was determined for each subdivision. The distribution of solution methane in the Gulf Coast was described on the basis of five reservoir models. Each model was characterized by depositional environment, reservoir continuity, porosity, permeability, and methane solubility.

  7. The Influence of Metal Ions on the Tertiary Structure of the Prion Protein and Inherited Prion Disease

    E-Print Network [OSTI]

    Spevacek, Ann

    2012-01-01T23:59:59.000Z

    analysis of 300 subjects. Ann Neurol 46, 224-33 (1999).Creutzfeldt-Jakob disease. Ann Neurol 43, 826-8 (1998).permission from Elsevier) Ann R. Spevacek, Eric G. B. Evans,

  8. 1,4,7-Trimethyloxatriquinane: SN2 Reaction at Tertiary Carbon Mark Mascal,* Nema Hafezi, and Michael D. Toney

    E-Print Network [OSTI]

    Toney, Michael

    at reflux in water or ethanol. Although much less robust than 2, oxatriquinacene 3, a triply bis-allylic, or acetate, led to the anticipated elimination product 12 (Scheme 2). However, it turned out that 1, like 2

  9. Proportions of coarse and fine clay across the Cretaceous-Tertiary boundary in Milam, Falls, and Travis Counties, Texas

    E-Print Network [OSTI]

    Smith, John Charles

    1966-01-01T23:59:59.000Z

    and are of little value. It is concluded that the method proposed in this thesis is capable of detecting small differences between clay sampi es at a = ingle locai ity, but prob. bly cannot be used to correlate samples f'rom one locality to another. i&1tlloagh... making dispersion and I'rac- tionation difficult. The efficiency of the X-ray diffraction t, echniques is also improved when these constituents are removed. As a simplified means of comp:rison, the various procedures performed on each sample...

  10. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Jr., Chidsey, Thomas C.; Allison, M. Lee

    1999-11-02T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  11. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah.

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.; Lorenz, D.M.; Culham, W.E.

    1997-10-15T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide- (CO{sub 2}-) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  12. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey Jr., Thomas C.

    2003-02-06T23:59:59.000Z

    The primary objective of this project was to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox Basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project was designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  13. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Allison, M. Lee; Chidsey, Jr., Thomas

    1999-11-03T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million bbl of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO-) flood 2 project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  14. INCREASED OIL PRODUCTION AND RESERVES UTILIZING SECONDARY/TERTIARY RECOVERY TECHNIQUES ON SMALL RESERVOIRS IN THE PARADOX BASIN, UTAH

    SciTech Connect (OSTI)

    Thomas C. Chidsey, Jr.

    2002-11-01T23:59:59.000Z

    The Paradox Basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from shallow-shelf carbonate buildups or mounds within the Desert Creek zone of the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. Five fields in southeastern Utah were evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. The Desert Creek zone includes three generalized facies belts: (1) open-marine, (2) shallow-shelf and shelf-margin, and (3) intra-shelf, salinity-restricted facies. These deposits have modern analogs near the coasts of the Bahamas, Florida, and Australia, respectively, and outcrop analogs along the San Juan River of southeastern Utah. The analogs display reservoir heterogeneity, flow barriers and baffles, and lithofacies geometry observed in the fields; thus, these properties were incorporated in the reservoir simulation models. Productive carbonate buildups consist of three types: (1) phylloid algal, (2) coralline algal, and (3) bryozoan. Phylloid-algal buildups have a mound-core interval and a supra-mound interval. Hydrocarbons are stratigraphically trapped in porous and permeable lithotypes within the mound-core intervals of the lower part of the buildups and the more heterogeneous supramound intervals. To adequately represent the observed spatial heterogeneities in reservoir properties, the phylloid-algal bafflestones of the mound-core interval and the dolomites of the overlying supra-mound interval were subdivided into ten architecturally distinct lithotypes, each of which exhibits a characteristic set of reservoir properties obtained from outcrop analogs, cores, and geophysical logs. The Anasazi and Runway fields were selected for geostatistical modeling and reservoir compositional simulations. Models and simulations incorporated variations in carbonate lithotypes, porosity, and permeability to accurately predict reservoir responses. History matches tied previous production and reservoir pressure histories so that future reservoir performances could be confidently predicted. The simulation studies showed that despite most of the production being from the mound-core intervals, there were no corresponding decreases in the oil in place in these intervals. This behavior indicates gravity drainage of oil from the supra-mound intervals into the lower mound-core intervals from which the producing wells' major share of production arises. The key to increasing ultimate recovery from these fields (and similar fields in the basin) is to design either waterflood or CO{sub 2}-miscible flood projects capable of forcing oil from high-storage-capacity but low-recovery supra-mound units into the high-recovery mound-core units. Simulation of Anasazi field shows that a CO{sub 2} flood is technically superior to a waterflood and economically feasible. For Anasazi field, an optimized CO{sub 2} flood is predicted to recover a total 4.21 million barrels (0.67 million m3) of oil representing in excess of 89 percent of the original oil in place. For Runway field, the best CO{sub 2} flood is predicted to recover a total of 2.4 million barrels (0.38 million m3) of oil representing 71 percent of the original oil in place. If the CO{sub 2} flood performed as predicted, it is a financially robust process for increasing the reserves in the many small fields in the Paradox Basin. The results can be applied to other fields in the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent.

  15. NAME/TEAM: ______________________________________ FTIR prelab -1

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Pages: 247­249 and 319 ­ 320 on Fuel & MTBE Pages: 295­302: Ethanol Online: www.whfreeman.com/envchem5e of this lab? 2) Draw the molecular structures for Ethanol and MTBE (see the Appendix in your Text for help

  16. ID09969_01_UCA195_3302_030513.raw:1 ID09969_01_UCA195_3302_030513.raw : 1

    E-Print Network [OSTI]

    Richardson, David

    were prepared using 1:4 MeOH:MTBE, and proteins were prepared by trypsin digestion in 0.1% RapigestBic pH8) Polar Metabolites ~33% 80/20 MeOH/water 1 hr extraction, N2 dry Lipids ~33% 80/20 MTBE/MeOH 1

  17. UNIVERSIT D'ORLANS COLE DOCTORALE SCIENCES ET TECHNOLOGIES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    acétique et formique, l'acétonitrile, le dichlorométhane, le MTBE, le benzène, l'acétone et l'éthanol ne method showed that acetic and formic acids, acetonitrile, dichloromethane, MTBE, benzene, acetone

  18. Ambient air measurements related to traffic : volution of VOCs over three years

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    hours. The major VOC are : benzène and toluène, MTBE, 1,3-butadiene, formaldehyde, phénol, naphtalene, but will not be discussed hère. Aromatic hydrocarbons and MTBE are sampled b

  19. Determination of Methyl tert-Butyl Ether and tert-Butyl Alcohol in Water by Solid-Phase Microextraction/Head Space Analysis in Comparison to EPA Method 5030/8260B

    SciTech Connect (OSTI)

    Oh, Keun-Chan; Stringfellow, William T.

    2003-10-02T23:59:59.000Z

    Methyl tert-butyl ether (MTBE) is now one of the most common groundwater contaminants in the United States. Groundwater contaminated with MTBE is also likely to be contaminated with tert-butyl alcohol (TBA), because TBA is a component of commercial grade MTBE, TBA can also be used as a fuel oxygenate, and TBA is a biodegradation product of MTBE. In California, MTBE is subject to reporting at concentrations greater than 3 {micro}g/L. TBA is classified as a ''contaminant of current interest'' and has a drinking water action level of 12 {micro}g/L. In this paper, we describe the development and optimization of a simple, automated solid phase microextraction (SPME) method for the analysis of MTBE and TBA in water and demonstrate the applicability of this method for monitoring MTBE and TBA contamination in groundwater, drinking water, and surface water. In this method, the headspace (HS) of a water sample is extracted with a carboxen/polydimethylsiloxane SPME fiber, the MTBE and TBA are desorbed into a gas chromatograph (GC), and detected using mass spectrometry (MS). The method is optimized for the routine analysis of MTBE and TBA with a level of quantitation of 0.3 {micro}g/L and 4 {micro}g/L, respectively, in water. MTBE quantitation was linear for over two orders of concentration (0.3 {micro}g/L -80 {micro}g/L). TBA was found to be linear within the range of 4 {micro}g/L-7,900 {micro}g/L. The lower level of detection for MTBE is 0.03 {micro}g/L using this method. This SPME method using headspace extraction was found to be advantageous over SPME methods requiring immersion of the fiber into the water samples, because it prolonged the life of the fiber by up to 400 sample analyses. This is the first time headspace extraction SPME has been shown to be applicable to the measurement of both MTBE and TBA at concentrations below regulatory action levels. This method was compared with the certified EPA Method 5030/8260B (purge-and-trap/GC/MS) using split samples from laboratory bioreactors treating MTBE contaminated water and applied to environmental samples collected throughout the East Bay area of California. Results from the SPME-HS/GC/MS method were directly comparable to the EPA Method 5030/8260B. This method provides an simple, inexpensive, accurate, and sensitive alternative to EPA Method 5030/8260B for the analysis of MTBE and TBA in water samples.

  20. EPA`s proposed renewable oxygenate requirement (ROR): Pros and cons

    SciTech Connect (OSTI)

    Czeskleba, H.M. [Ashland Petroleum Co., KY (United States)

    1995-12-31T23:59:59.000Z

    In December 1993, the US Environmental Protection Agency (EPA) released its final rule that sets for the details for requirements to sell reformulated gasoline (RFG) in certain ozone non-attainment areas. At the same time, EPA also issued a proposed rule to require that 30% of the oxygen required in RFG be based on a renewable oxygenate. Renewables include ethanol and its ether derivatives such as ethyl tertiary butyl ether (ETBE). The RFG rule is a final rule, while the Renewable Oxygenate Requirement (ROR) rule is a proposed rule yet to be finalized and subject to revision. Included in this paper are brief reviews of Ashland petroleum Company`s ethanol usage, oxygenated fuel and reformulated gasoline blending economics, and some comments on the EPA proposed renewable oxygenate requirement.

  1. Vapor-liquid equilibria of hydrocarbons and fuel oxygenates. 2

    SciTech Connect (OSTI)

    Bennett, A.; Lamm, S.; Orbey, H.; Sandler, S.I. (Univ. of Delaware, Newark (United States))

    1993-04-01T23:59:59.000Z

    Vapor-liquid equilibrium data for methyl tert-butyl ether (MTBE) + 1-heptene, MTBE + four-component gasoline prototype, ethanol + four-component gasoline prototype, and separately MTBE and ethanol with the Auto/Oil Air Quality Improvement Research Gasoline Blend A are reported. Small additions of MTBE have a very small effect on the total equilibrium pressure of this gasoline blend, and at most temperatures will decrease this pressure. In contrast, small additions of ethanol to this gasoline blend result in a significant increase in the equilibrium pressure at all temperatures. Analysis shows that the vapor-liquid equilibrium data for the MTBE-containing systems are easily correlated using a modified Peng-Robinson equation of state with conventional van der Waals one-fluid mixing rules. Data for mixtures containing ethanol cannot be accurately correlated in this way.

  2. Fuel cycle evaluations of biomass-ethanol and reformulated gasoline. Volume 1

    SciTech Connect (OSTI)

    Tyson, K.S.

    1993-11-01T23:59:59.000Z

    The US Department of Energy (DOE) is using the total fuel cycle analysis (TFCA) methodology to evaluate energy choices. The National Energy Strategy (NES) identifies TFCA as a tool to describe and quantify the environmental, social, and economic costs and benefits associated with energy alternatives. A TFCA should quantify inputs and outputs, their impacts on society, and the value of those impacts that occur from each activity involved in producing and using fuels, cradle-to-grave. New fuels and energy technologies can be consistently evaluated and compared using TFCA, providing a sound basis for ranking policy options that expand the fuel choices available to consumers. This study is limited to creating an inventory of inputs and outputs for three transportation fuels: (1) reformulated gasoline (RFG) that meets the standards of the Clean Air Act Amendments of 1990 (CAAA) using methyl tertiary butyl ether (MTBE); (2) gasohol (E10), a mixture of 10% ethanol made from municipal solid waste (MSW) and 90% gasoline; and (3) E95, a mixture of 5% gasoline and 95% ethanol made from energy crops such as grasses and trees. The ethanol referred to in this study is produced from lignocellulosic material-trees, grass, and organic wastes -- called biomass. The biomass is converted to ethanol using an experimental technology described in more detail later. Corn-ethanol is not discussed in this report. This study is limited to estimating an inventory of inputs and outputs for each fuel cycle, similar to a mass balance study, for several reasons: (1) to manage the size of the project; (2) to provide the data required for others to conduct site-specific impact analysis on a case-by-case basis; (3) to reduce data requirements associated with projecting future environmental baselines and other variables that require an internally consistent scenario.

  3. Task 4.9 -- Value-added products from syngas. Semi-annual report, July 1--December 31, 1996

    SciTech Connect (OSTI)

    Olson, E.S.; Sharma, R.K.

    1997-08-01T23:59:59.000Z

    The work on advanced fuel forms in 1996 focused on the synthesis of higher alcohols from mixtures of hydrogen and carbon dioxide (syngas) from coal gasification. Initial work in this project utilized a novel molybdenum sulfide catalyst previously shown to be active for hydrodesulfurization reactions of coal liquids. A pressurized fixed-bed flow-through reactor was constructed, and the MoS{sub 2} catalysts were tested with syngas under a variety of conditions. Unfortunately, the catalysts, even with higher molybdenum loading and addition of promoters, failed to give alcohol products. A batch reactor test of the catalyst was also conducted, but did not produce alcohol products. Group VIII metals have been used previously in catalysts for syngas reactions. Ruthenium and rhodium catalysts were prepared by impregnation of a hydrotalcite support. Tests with these catalysts in flow-through reactors also did not produce the desired alcohol products. The formation of higher alcohols from smaller ones, such as methanol and ethanol, could be commercially important if high selectivity could be achieved. The methanol and ethanol would be derived from syngas and fermentation, respectively. Based on previous work in other laboratories, it was hypothesized that the hydrotalcite-supported MoS{sub 2} or Ru or Rh catalysts could catalyze the formation of butyl alcohols. Although the desired 1-butanol was obtained in batch reactions with the promoted ruthenium catalyst, the reaction was not as selective as desired. Product suitable for a lower-vapor-pressure gasoline oxygenate additive was obtained, but it may not be economical to market such products in competition with methyl tertiary-butyl ether (MTBE). Flow-through catalytic bed reactions were not successful.

  4. Dynamic Quenching of 5-(2 -Ethyl-hexyloxy)-p-Phenylene Vinylene (MEH-PPV) by Charge Transfer to a C60 Derivative

    E-Print Network [OSTI]

    Wang, Deli

    and the C60,8 bicontinuous interpenetrating network formation at length scales in the nano- meter regime60 Derivative in Solution JIAN WANG, DELI WANG, DANIEL MOSES, ALAN J. HEEGER Institute for Polymers Polym Sci 82: 2553­2557, 2001 Key words: fluorescence quenching; Stern­Volmer constant; photoinduced

  5. Detection of chlorpyrifos-ethyl (Dursban) and its metabolites in urine samples using immunoassays with confirmation by gas chromatography/mass spectrometry

    E-Print Network [OSTI]

    Clewis, Suenda Beth

    1995-01-01T23:59:59.000Z

    O"""&(RO)sP-OH + HX S (0) S (0) (RO)tP - X + HtO ""--~ (RO) (HO) P -X + ROH F1GURE 1. Hydrolysis of Organophosphates. Organophosphate Toxicology Pesticide exposures vary widely, especially when considering the different stages of pesticide manufacture and use.... Evaporator needles were cleaned with chloroform between samples. 8. Diluted samples to 5ml with HtO. Sonicated test tubes in rack for 30 seconds to redissolve all potential solids formed during evaporation. Vortexed test tubes to guarantee uniform...

  6. Nanofibrillar Networks in Poly(ethyl methacrylate) and Its Silica Nanocomposites Elizabeth A. Wilder, Michael B. Braunfeld, Hiroshi Jinnai,| Carol K. Hall,

    E-Print Network [OSTI]

    Agard, David

    & Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan ReceiVed: April 24, 2003; In Final Form particles, for instance, may aggregate as a polymer nanocomposite consisting of PDMS ages,1 leading

  7. Investigation of Pulsed Electric Field (PEF) as an Intensification Pretreatment for Solvent Lipid Extraction from Microalgae, utilizing Ethyl Acetate as a Greener Substitute to Chloroform-based Extraction

    E-Print Network [OSTI]

    Antezana Zbinden, Mauricio Daniel R.

    2011-02-16T23:59:59.000Z

    characteristics of this alternative energy source are its CO2 neutrality, high biomass growth, high lipid yield, and noncompetitive stance toward food supply. To date, development of economically feasible lipid solvent extraction processes of industrial scale face...

  8. Viscosities of the Mixtures of 1-Ethyl-3-Methylimidazolium Chloride with Water, Acetonitrile and Glucose: A Molecular Dynamics Simulation and Experimental Study

    E-Print Network [OSTI]

    Bell, Alexis

    the world's dependence on fossil fuels and mitigating the net emission of CO2 into the atmosphere.1 dissolution, making it difficult to pump such solutions and causing a reduction in mass transfer rates

  9. ETBE as a gasoline blending component. The experience of Elf Aquitaine

    SciTech Connect (OSTI)

    Chatin, L.; Fombarlet, C.; Bernasconi, C.; Gauthier, A.; Schmelzle, P.

    1994-10-01T23:59:59.000Z

    This study, led by Elf Aquitaine for several years, shows the possibility to use ETBE instead of MTBE as a gasoline component and compares properties of these two ethers regarding different parameters like octanes, volatility, engine cleanliness, stability of the ethers themselves and of gasoline blends, lubricant compatibility and toxicological data. ETBE appears at least as good as MTBE and sometimes better, as ETBE is chemically more similar to hydrocarbons than MTBE and can be used advantageously as a gasoline oxygenated component. 9 refs., 4 figs., 8 tabs.

  10. Phytoremediation of hydrocarbon-contaminated soils: principles and applications

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Toluene Ethylbenzene CH2CH3 ii) Common Oxygenates MTBE O C CH3CH3 CH3 m-Xylene CH3 CH3 p-Xylene CH3 CH3 CH Ethylbenzene CH2CH3CH2CH3CH2CH3 ii) Common Oxygenates MTBE O C CH3CH3 CH3 m-Xylene CH3 CH3 CH3 CH3 p-Xylene CH3 Ethylbenzene CH2CH3 ii) Common Oxygenates MTBE O C CH3CH3 CH3 m-Xylene CH3 CH3 p-Xylene CH3 CH3 CH3CH2OH

  11. Simultaneous measurements of driveability and emissions at cool ambient temperatures

    SciTech Connect (OSTI)

    Jorgensen, S.W.; Benson, J.D.

    1994-10-01T23:59:59.000Z

    Simultaneous measurements of cold-start/warm-up driveability and tailpipe emissions on a chassis dynamometer were made at 5{degree}C using four late-model vehicles. Two fuels were used: a low driveability index (DI) fuel containing 11% MTBE and 29% aromatics, and a high DI fuel with no MTBE and 43% aromatics. Tailpipe hydrocarbon emissions and total weighted driveability demerits (TWDs) both correlated with the fuel used; both increased significantly when high-DI/no-MTBE fuel was used. A strong linear relation exists between TWDs and simultaneously measured tailpipe hydrocarbon emissions. CO and NOx emissions did not correlate with fuel composition. 10 refs., 10 figs., 4 tabs.

  12. Risindialogue Risindialogue

    E-Print Network [OSTI]

    - based substances such as MTBE. There is a large global market for new technologies which may result systems which are suitable for the production of bioenergy and biomaterials, and which can at the same

  13. Saving Energy and Reducing Emissions from the Regeneration Air System of a Butane Dehydrogenation Plant

    E-Print Network [OSTI]

    John, T. P.

    Texas Petrochemicals operates a butane dehydrogenation unit producing MTBE for reformulated gasoline that was originally constructed when energy was cheap and prior to environmental regulation. The process exhausts 900,000 pounds per hour of air...

  14. E-Print Network 3.0 - alcohol tba biodegradation Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biodegradation. Inoculum size 0.3 g50 mL 0 20 40 60 80 100... in liquid phase, capture 14CO2. 12;Biodegradation of MTBE in Soil Columns Setup: Height: 47 cm ID: 4 Source:...

  15. anaerobic spirochete isolated: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    found for the extraction with the maximum recovery of 7.0 gL compared to Chloroform:MTBE (1:1)(6.1gL). The ability of strain B160 to grow and produce biosurfactant on...

  16. Kinetics and modeling of mixture effects during complete catalytic oxidation of benzene and methyl tert-butyl ether

    SciTech Connect (OSTI)

    Dangi, S.; Abraham, M.A. [Univ. of Tulsa, OK (United States). Dept. of Chemical Engineering] [Univ. of Tulsa, OK (United States). Dept. of Chemical Engineering

    1997-06-01T23:59:59.000Z

    The performance of a catalytic incinerator depends on the nature of the compounds being oxidized and cannot be predicted simply by knowing the performance of the incinerator with pure-component model compounds. Considering the importance of mixture effects, an attempt was made to develop a combined model to predict the conversion when benzene and methyl tert-butyl ether (MTBE) are simultaneously oxidized. Complete catalytic oxidation of benzene and MTBE, singly and in mixtures, was investigated over a platinum catalyst. No inhibition effects were seen with benzene, but MTBE conversion was distinctly inhibited by benzene. A Mars-van Krevelen rate model was used to explain the results. Model parameters were obtained from pure-component experiments and then incorporated into a multicomponent model without any adjustment or additional rate parameters. The multicomponent model was able to predict the conversion of benzene and MTBE oxidation in the binary mixture using the pure-component data without adjustable parameters.

  17. antioxidant butylated hydroxytoluene: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by Fusarium solani CiteSeer Summary: Fusarium solani degraded methyl tert-butyl ether (MTBE) and other oxygenated compounds from gasoline including tert-butyl alcohol (TBA). The...

  18. alkyl tert-butyl ether: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by Fusarium solani CiteSeer Summary: Fusarium solani degraded methyl tert-butyl ether (MTBE) and other oxygenated compounds from gasoline including tert-butyl alcohol (TBA). The...

  19. acid bacteria strains: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    found for the extraction with the maximum recovery of 7.0 gL compared to Chloroform:MTBE (1:1)(6.1gL). The ability of strain B160 to grow and produce biosurfactant on...

  20. active methyl tert-butyl: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by Fusarium solani CiteSeer Summary: Fusarium solani degraded methyl tert-butyl ether (MTBE) and other oxygenated compounds from gasoline including tert-butyl alcohol (TBA). The...

  1. IMPACT OF OXYGENATED FUEL ON DIESEL ENGINE PERFORMANCE AND EMISSIONS

    SciTech Connect (OSTI)

    Boehman, Andre L.

    2000-08-20T23:59:59.000Z

    As evidenced by recent lawsuits brought against operators of large diesel truck fleets [1] and by the Consent Decree brought against the heavy-duty diesel manufacturers [2], the environmental and health effects of diesel engine emissions continue to be a significant concern. Reduction of diesel engine emissions has traditionally been achieved through a combination of fuel system, combustion chamber, and engine control modifications [3]. Catalytic aftertreatment has become common on modern diesel vehicles, with the predominant device being the diesel oxidation catalytic converter [3]. To enable advanced after-treatment devices and to directly reduce emissions, significant recent interest has focused on reformulation of diesel fuel, particularly the reduction of sulfur content. The EPA has man-dated that diesel fuel will have only 15 ppm sulfur content by 2007, with current diesel specifications requiring around 300 ppm [4]. Reduction of sulfur will permit sulfur-sensitive aftertreatment devices, continuously regenerating particulate traps, NOx control catalysts, and plasma assisted catalysts to be implemented on diesel vehicles [4]. Another method of reformulating diesel fuel to reduce emissions is to incorporate oxygen in the fuel, as was done in the reformulation of gasoline. The use of methyl tertiary butyl ether (MTBE) in reformulated gasoline has resulted in contamination of water resources across the country [5]. Nonetheless, by relying on the lessons learned from MTBE, oxygenation of diesel fuel may be accomplished without compromising water quality. Oxygenation of diesel fuel offers the possibility of reducing particulate matter emissions significantly, even for the current fleet of diesel vehicles. The mechanism by which oxygen content leads to particulate matter reductions is still under debate, but recent evidence shows clearly that ''smokeless'' engine operation is possible when the oxygen content of diesel fuel reaches roughly 38% by weight [6]. The potential improvements in energy efficiency within the transportation section, particularly in sport utility vehicles and light-duty trucks, that can be provided by deployment of diesel engines in passenger cars and trucks is a strong incentive to develop cleaner burning diesel engines and cleaner burning fuels for diesel engines. Thus, serious consideration of oxygenated diesel fuels is of significant practical interest and value to society. In the present work, a diesel fuel reformulating agent, CETANERTM, has been examined in a popular light-medium duty turbodiesel engine over a range of blending ratios. This additive is a mixture of glycol ethers and can be produced from dimethyl ether, which itself can be manufactured from synthesis gas using Air Products' Liquid Phase Dimethyl Ether (LPDME TM) technology. CETANERTM is a liquid, has an oxygen content of 36 wt.%, has a cetane number over 100 and is highly miscible in diesel fuel. This combination of physical and chemical properties makes CETANERTM an attractive agent for oxygenating diesel fuel. The present study considered CETANERTM ratios from 0 to 40 wt.% in a California Air Resources Board (CARB) specification diesel fuel. Particulate matter emissions, gaseous emissions and in-cylinder pressure traces were monitored over the AVL 8-Mode engine test protocol [7]. This paper presents the results from these measurements and discusses the implications of using high cetane number oxygenates in diesel fuel reformulation.

  2. Treatment of methyl tert-butyl ether vapors in biotrickling filters. 1. Reactor startup, steady-state performance, and culture characteristics

    SciTech Connect (OSTI)

    Fortin, N.Y.; Deshusses, M.A. [Univ. of California, Riverside, CA (United States). Dept. of Chemical and Environmental Engineering] [Univ. of California, Riverside, CA (United States). Dept. of Chemical and Environmental Engineering

    1999-09-01T23:59:59.000Z

    An aerobic microbial consortium able to biodegrade methyl tert-butyl ether (MTBE) was enriched in two waste air biotrickling filters after continuous operation for 6 months. After this acclimation phase, the two laboratory-scale biotrickling filters were able to degrade up to 50 g of MTBE per cubic meter of reactor per hour, a value comparable to other gasoline constituents. Such high performance could be sustained for at least 4--6 weeks. After the acclimation phase, the MTBE degrading biotrickling filters were characterized by their almost full conversion of MTBE to carbon dioxide and the absence of any degradation byproducts in either the gas or the liquid phase. They also exhibited a very high specific degradation activity per amount of biomass, and a low rate of biomass accumulation. An observed biomass yield of 0.1 g g{sup {minus}1} and a specific growth rate of 0.025 day{sup {minus}1} were determined for the biotrickling filter process culture. Further data on MTBE mass transfer and on the dynamic behavior of the biotrickling filter are presented in part 2 of this paper. Overall, the results demonstrate that MTBE can be effectively biodegraded under carefully controlled environmental conditions.

  3. Advances in mass storage technology are producing devices capable of holding terabytes of data. These new devices, often called tertiary storage devices, have dramatically different performance

    E-Print Network [OSTI]

    California at Irvine, University of

    -overwrite technique for managing storage. This technique allows the user to see the entire history of the database of the database at any moment in history. This capability is referred to as time travel. Since only the start time characteristics than magnetic disks. Conventional database systems include explicit dependen- cies on magnetic

  4. The Effect of the Di-Tertiary Butyl Peroxide (DTBP) additive on HCCI Combustion of Fuel Blends of Ethanol and Diethyl Ether

    E-Print Network [OSTI]

    Mack, John Hunter; Buchholz, Bruce A; Flowers, Daniel L; Dibble, Robert W

    2005-01-01T23:59:59.000Z

    Charge Compression Ignition (HCCI) Engines: Key Research andJ. Girard, and R. Dibble, "HCCI in a CFR Engine: ExperimentsRyan III, and J.S. Souder, "HCCI Operation of a Dual-Fuel

  5. Preliminary results on the characterization of Cretaceous and lower Tertiary low-permeability (tight) gas-bearing rocks in the Wind River Basin, Wyoming

    SciTech Connect (OSTI)

    Fouch, T.D.; Keefer, W.R.; Finn, T.M. [and others

    1993-12-31T23:59:59.000Z

    The Wind River Basin is a structural and sedimentary basin in central Wyoming (Figure 1) that was created during the Laramide orogeny from Late Cretaceous through Eocene time. The objectives of the Wind River Basin tight gas sandstone project are to define the limits of the tight gas accumulation in the basin and to estimate in-place and recoverable gas resources. The approximate limits of the tight gas accumulation are defined from available drillhole information. Geologic parameters, which controlled the development of the accumulation, are studied in order to better understand the origins of tight gas accumulations, and to predict the limits of the accumulation in areas where little drillhole information is available. The architecture of sandstone reservoirs are studied in outcrop to predict production characteristics of similar reservoirs within the tight gas accumulation. Core and cuttings are used to determine thermal maturities, quality of source rocks, and diagenetic histories. Our work thus far has concentrated in the Wind River Indian Reservation in the western part of the basin.

  6. The Effect of the Di-Tertiary Butyl Peroxide (DTBP) additive on HCCI Combustion of Fuel Blends of Ethanol and Diethyl Ether

    E-Print Network [OSTI]

    Mack, John Hunter; Buchholz, Bruce A; Flowers, Daniel L; Dibble, Robert W

    2005-01-01T23:59:59.000Z

    diethyl ether (DEE) in ethanol fuel blends for a range ofbio-derived fuel components (ethanol) in emission productsHCCI Combustion of Fuel Blends of Ethanol and Diethyl Ether

  7. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1997-02-01T23:59:59.000Z

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, mule, Blue Hogan, heron North, and Runway) within the Navajo Nation of southeastern utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The reservoir engineering component of the work completed to date included analysis of production data and well tests, comprehensive laboratory programs, and preliminary mechanistic reservoir simulation studies. A comprehensive fluid property characterization program was completed. Mechanistic reservoir production performance simulation studies were also completed.

  8. Study of the kinetics of the gas-phase, iodine catalyzed elimination of HBr from isobutylbromide: the tertiary C-H bond dissociation energy in isobutylbromide.

    E-Print Network [OSTI]

    Jirustithipong, Pongsiri

    2012-06-07T23:59:59.000Z

    , (with the possible exception of the very electronegative F atom) unless the substituent can delocalize the odd electron such as with the vinyI substituent, i. e. the allyl radical. The stabi'Iization energy is defined as the difference between... of formation of the radical. f s indicated in section (II); the stabilization energy of bromine bridged radical by the delocalization of tne odd electron can be obtained by comparisior, with a localized free radical. Thus, the stabi11zat1on energy...

  9. Mesozoic to Early Tertiary tectonic-sedimentary evolution of the Northern Neotethys Ocean: evidence from the Beysehir-Hoyran-Hadim Nappes, S.W. Turkey. 

    E-Print Network [OSTI]

    Andrew, Theo

    The Bey?ehir-Hoyran-Hadim Nappes crop out over 700km, from east to west in the Pisidian and Central Taurus Mountains of southern Turkey. During this study, field obsevations of lithological, structural and sedimentological features are combined...

  10. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report, February 9, 1996--February 8, 1997

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1997-08-01T23:59:59.000Z

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The Anasazi field was selected for the initial geostatistical modeling and reservoir simulation. A compositional simulation approach is being used to model primary depletion, waterflood, and CO{sub 2}-flood processes. During this second year of the project, team members performed the following reservoir-engineering analysis of Anasazi field: (1) relative permeability measurements of the supra-mound and mound-core intervals, (2) completion of geologic model development of the Anasazi reservoir units for use in reservoir simulation studies including completion of a series of one-dimensional, carbon dioxide-displacement simulations to analyze the carbon dioxide-displacement mechanism that could operate in the Paradox basin system of reservoirs, and (3) completion of the first phase of the full-field, three-dimensional Anasazi reservoir simulation model, and the start of the history matching and reservoir performance prediction phase of the simulation study.

  11. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect (OSTI)

    Allison, M.L.

    1995-05-30T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  12. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah, Class II

    SciTech Connect (OSTI)

    Chidsey, Thomas C.

    2000-07-28T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m{sup 3}) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  13. Design, synthesis and application of novel fluorescent nucleosides

    E-Print Network [OSTI]

    Greco, Nicholas Joseph

    2008-01-01T23:59:59.000Z

    Anhydrous pyridine and acetonitrile were obtained fromcm -1 Water Methanol Acetonitrile Dichloromethane Ethyl1-Propanol Butanol Acetonitrile DMSO DMF Ethyl Acetate 1,4-

  14. Pathways, kinetics, and mechanisms for 2-dodecyl-9,10-dihydrophenanthrene pyrolysis

    SciTech Connect (OSTI)

    Savage, P.E.; Baxter, K.L. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering] [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering

    1996-05-01T23:59:59.000Z

    The authors pyrolyzed 2-dodecyl-9,10-dihydrophenanthrene (DDPh) in batch microreactors. The reaction conditions included neat pyrolyses between 375--450C for times of 15--240 min and also pyrolyses in benzene at 400 C and 90 min but at different initial DDPh concentrations ranging from 0.0095 to 0.238 mol/L. The disappearance of DDPh followed first-order kinetics, and the global first-order rate constant had Arrhenius parameters of log{sub 10} A (s{sup {minus}1}) = 13.6 {+-} 2.8 and E (kcal/mol) = 54.5 {+-} 9.1, where the uncertainties are the 95% confidence intervals. The decomposition of DDPh can be described by a reaction network that possesses four parallel primary pathways. The major primary path, which involves dehydrogenation, leads to 2-dodecylphenanthrene. The other three primary paths involve C{single_bond}C bond cleavage, and they lead to 2-methyl-9,10-dihydrophenanthrene plus undecene, to 2-vinyl-9,10-dihydrophenanthrene plus decane, and to numerous minor products. Important secondary and tertiary reactions include the rapid reduction of 2-vinyl-9,10-dihydrophenanthrene to 2-ethyl-9,10-dihydrophenanthrene and the facile dehydrogenation of 2-methyl- and 2-ethyl-9,10-dihydrophenanthrene to form 2-methyl- and 2-ethylphenanthrene, respectively. The identities and relative abundances of the major products are consistent with a free-radical chain reaction mechanism for DDPh pyrolysis. Application is to the processing of hydrocarbon resources such as coals and heavy crude oils.

  15. A review of the environmental behavior and fate of fuel oxygenates

    SciTech Connect (OSTI)

    Squillace, P.J.

    1995-12-31T23:59:59.000Z

    The ways in which fuel oxygenate compounds behave in water, soil, and air are determined by how they partition among the different media. The behavior of a gasoline oxygenate in water is affected by the oxygenate`s (1) solubility in water from gasoline: (2) partitioning between water and soil materials; and (3) partitioning between air and water. Water in equilibrium with oxygenated gasoline can contain high concentrations of the oxygenate. For example, at room temperature water solubility of methyl tert-butyl ether (MTBE) will be about 5,000 mg/L for a gasoline that is 10% MTBE by weight. In contrast, the total hydrocarbon solubility in water is typically about 120 mg/L for nonoxygenated gasoline. Fuel oxygenates sorb only weakly to soil and aquifer materials. Therefore, sorption to these materials will not significantly retard their transport by ground water. Fuel oxygenates tend to partition into atmospheric water, including precipitation. For example, washout of gas-phase MTBE by precipitation would not, by itself, greatly alter the gas-phase concentration of the compound in the atmosphere. Nevertheless, the partitioning of MTBE to precipitation is strong enough to allow for submicrogram per liter to 3 pg/L or more inputs of MTBE to ground water and surface water. Occurrence data for MTBE in water and air supports partition theoretical calculations. MTBE and other alkyl ether oxygenates have half lives in the atmosphere that range from about 1 to 14 days. These compounds are generally considered recalcitrant in ground water; whereas ethanol and methanol will readily undergo microbial degradation except where present in concentrations toxic to microorganisms.

  16. Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. Quarterly technical progress report No. 9, October 1, 1992--December 31, 1992

    SciTech Connect (OSTI)

    Marcelin, G.

    1993-06-30T23:59:59.000Z

    Figure 7 summarizes the carbon selectivities observed towards the main products. During Period IV, the main products observed were the heavy hydrocarbons, with selectivity for MTBE being less than 3--5%. The only time that high MTBE selectivity was noted was during period III, when the i-butylene feed was shut-off. The large amounts of heavy products and the low selectivity to MTBE were surprising in view of our previous experiments in the gas phase and the high methanol-to-i-butylene ratio used in these runs. In the gas-phase and with methanol/i-butylene = 0.5, over 95% selectivity to MTBE was observed with this catalyst at this temperature. The higher level of methanol used here would be expected to further improve the MTBE selectivity. Perhaps one reason for the poor MTBE selectivity relates to the relative solubilities of the reactants in the Synfluid changing the effective methanol/i-butylene ratio. Figure 8 shows the relative molar concentration of i-butylene during Period III. At 180 minutes, the gas supply of that reactant was shut-off, yet the analyses show that i-butylene continued to elute from the reactor for at least an additional 2 hours. It seems reasonable that the i-butylene is highly soluble in the Synfluid since they are both nonpolar hydrocarbons. Likewise, one would expect the methanol to not be quite as soluble and thus the methanol/i-butylene ratio in the liquid medium may be very low, favoring the oligomerization of i-butylene. Indeed, the only time that MTBE selectivity was high was after the i-butylene supply was shut-off. We intend to quantify these solubilities in future experiments.

  17. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    propenoate * Ethyl 2-propenoate * Etil acrilato (Italian) * Etilacrilatului (Romanian) * NCI-C50384 * 2

  18. Attachment F Marketplace Prohibited Items November 2014

    E-Print Network [OSTI]

    . · Alcohol (ethyl alcohol [ethanol] & denatured) · Alcoholic Beverages · Artwork (paintings, pictures, office

  19. Exposure to methyl tert-butyl ether and benzene among service station attendants and operators

    SciTech Connect (OSTI)

    Hartle, R. [National Inst. for Occupational Safety and Health, Cincinnati, OH (United States)

    1993-12-01T23:59:59.000Z

    Concerns for atmospheric pollution from auto exhaust have led to the blending of {open_quotes}oxygenates{close_quotes} with motor fuels. The most common oxygenate, methyl tert-butyl ether (MTBE) is currently required within several metropolitan areas (Denver and Phoenix) in the range of 12% of the motor fuel. Amendments to the Clean Air Act may expand this requirement to as many as 44 other areas of the United States in the near future. In consideration of the magnitude of potential uncontrolled exposures from its extensive use and a related concern involving the potential influence of MTBE blending on exposures to other constituents of gasoline (particularly benzene), an evaluation of exposures among service station attendants and operators was undertaken at the request, and in cooperation with, the American Petroleum Institute during the latter part of 1990. For application of the survey results to a broad audience, three categories or types of service stations were identified with regard to MTBE use and exposure potential: (a) service stations that do not use MTBE or use it only as an octane enhancer, (b) service stations with seasonal requirements to use 12-15% MTBE (the Denver, Colorado, and Phoenix, Arizona, metropolitan areas), and (c) service stations equipped with stage II (active) vapor recovery systems (several coastal areas, most notably Southern California). 4 refs., 4 tabs.

  20. High-resolution NMR process analyzer for oxygenates in gasoline

    SciTech Connect (OSTI)

    Skloss, T.W.; Kim, A.J.; Haw, J.F. (Texas A M Univ., College Station, TX (United States))

    1994-02-15T23:59:59.000Z

    We report a high-resolution 42-MHz[sup 1]HFT-NMR instrument that is suitable for use as a process analyzer and demonstrate its use in the determination of methyl tert-butyl ether (MTBE) in a flowing stream of gasoline. This spectrometer is based on a 55-kg permanent magnet with essentially no fringe field. A spectral resolution of 3 Hz was typically obtained for spinning samples, and this performance was only slightly degraded with flowing samples. We report a procedure for magnet drift compensation using a software procedure rather than a field-frequency lock channel. This procedure allowed signal averaging without loss of resolution. Regulatory changes to be implemented in the near future have created a need for the development of methods for the determination of MTBE and other oxygenates in reformulated gasolines. Existing methods employing gas chromatography are not fast enough for process control of a gasoline blender and suffer from other limitations. This study demonstrates that process analysis NMR is well-suited to the determination of MTBE in a simulated gasoline blender. The detection limit of 0.5 vol % MTBE was obtained with a measurement time of 1 min. The absolute standard deviation of independent determinations was 0.17% when the MTBE concentration was 10%, a nominal value. Preliminary results also suggest that the method may be applicable to gasolines containing mixtures of oxygenate additives as well as the measurement of aromatic and olefinic hydrogens. 33 refs., 9 figs.

  1. Reaction calorimetry study of the liquid-phase synthesis of tert-butyl methyl ether

    SciTech Connect (OSTI)

    Sola, L.; Pericas, M.A.; Cunill, F.; Iborra, M. (Univ. de Barcelona (Spain). Dept. d'Enginyeria Quimica)

    1994-11-01T23:59:59.000Z

    The liquid-phase addition of methanol to isobutene to give tert-butyl methyl ether (MTBE) on the ion-exchange resin Lewatit K2631 has been studied in a calorimetric reactor. Heat capacity of MTBE and enthalpy of the MTBE synthesis reaction in the temperature range 312--333 K have been determined. MTBE heat capacity in the liquid phase has been found to obey the equation c[sub P] (J/mol[center dot]K) = 472.34 [minus] 2.468(T/K) + 0.005071(T/K)[sup 2]. At 298 K the standard molar reaction enthalpy is [Delta]H[degree] = [minus]33.8 kJ/mol. A method to estimate apparent activation energies from heat flow rate in a given reaction has been developed and proved to be valid for the MTBE synthesis. Using this method, an apparent activation energy of 91.1--95.2 kJ/mol is calculated. A [minus]3.8 kJ/mol value has been found for the adsorption enthalpy of methanol on the ion-exchange resin Lewatit K2631 by a combination of reaction calorimetry and thermogravimetry. This allows the calculation of an activation energy on the gel phase of the resin of 91 kJ/mol.

  2. Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. Quarterly technical progress report No. 8, July 1, 1992--September 30, 1992

    SciTech Connect (OSTI)

    Marcelin, G.

    1993-07-07T23:59:59.000Z

    The initial work on the synthesis of MTBE during CO hydrogenation shows that MTBE cannot be formed directly on metal sites and likely requires the presence of an acid site. However, MTBE can be made successfully when an acid site, provided by the zeolites, is present in the vicinity of the methanol-synthesis metal sites. When i-butylene was added during CO hydrogenation over a composite catalyst consisting of Li-Pd/SiO{sub 2} and a hydrogen-zeolite, MTBE was formed in measurable amounts. The major by-product of this reaction scheme was isobutane and the dimer of i-butylene. In general, ZSM-5 was found to be superior to LZ210-12 HY zeolite. CO hydrogenation over a bifunctional PdNaY catalyst shows that branched hydrocarbons as well as MEOH can be made successfully at the same time. Addition of i-butylene over this catalyst only (i.e. without other zeolite) results in the formation of trace amounts of MTBE.

  3. BulletinofMathematicalBiologyVol.47,No.3,pp.367 407,1985. PrintedinGreatBritain

    E-Print Network [OSTI]

    Cariani, Peter

    the tertiary structure. Five proteins, parvalbumin, hemerythrin, human hemoglobin, lamprey hemoglobin

  4. Spring 2009 Student Presentations COMPUTER NETWORK & SYSTEM ADMINISTRATION PROGRAM

    E-Print Network [OSTI]

    rainwater collection, grey water reuse, composting and low flush toilets, and on-site tertiary wastewater

  5. Void-induced dissolution in molecular dynamics simulations of NaCl Ranjit Bahadur and Lynn M. Russella

    E-Print Network [OSTI]

    such as corrosion, tertiary oil recovery, and crystallization. The industrial process of floatation, which is used

  6. Void-induced dissolution in molecular dynamics simulations of NaCl Ranjit Bahadur and Lynn M. Russella

    E-Print Network [OSTI]

    Russell, Lynn

    in the characterization of processes such as corrosion, tertiary oil recovery, and crystallization. The industrial process

  7. Experimental Autoignition of C4-C6 Saturated and Unsaturated Methyl and Ethyl Esters H. Bennadji*, J. Biet, L. Coniglio-Jaubert, F. Billaud, P.A. Glaude, F. Battin-Leclerc

    E-Print Network [OSTI]

    Boyer, Edmond

    is an alternative fuel which can be used directly to a diesel engine without modifying the engine system. Basically lubricity and no sulfur content [2]. It can be stored just like mineral diesel and hence does not require separate infrastructure. The use of biodiesel in conventional diesel engines results in substantial

  8. Production of methyl tert-alkyl ethers

    SciTech Connect (OSTI)

    Trofimov, V.A.

    1995-01-01T23:59:59.000Z

    The transition to the use of unleaded gasolines has required the replacement of tetraethyl lead by oxygen-containing compounds such as methanol, ethanol, and ethers, which are termed {open_quotes}oxygenates{close_quotes} in the technical literature. These may be used in commercial gasolines in amounts of 10-15% by volume, equivalent to 2% oxygen by weight. When methyl tert-butyl ether (MTBE) is used, the oxygen content may amount to 2.7% by weight. This oxygenate gives a significant improvement of knock resistance of naphtha fractions, the greatest effects being observed for straight-run naphthas and reformer naphthas produced under normal conditions; the MTBE also improves the engine power and economy characteristics and lowers the carbon monoxide content in the exhaust by 15-30% and the hydrocarbon content by 7-8%. This paper describes methods for the production of MTBE and also methyl tert-alkyl ethers.

  9. Coadsorption of methanol and isobutene on HY zeolite

    SciTech Connect (OSTI)

    Kogelbauer, A.; Goodwin, J.G. Jr. [Univ. of Pittsburgh, PA (United States); Lercher, J.A. [Univ. of Twente, Enschede (Netherlands)

    1995-05-25T23:59:59.000Z

    In order to develop a better understanding of methyl tert-butyl ether (MTBE) synthesis on zeolites, the coadsorption of methanol and isobutene on HY zeolite was investigated using IR spectroscopy. Initial adsorption of isobutene alone at 35{degree}C led to rapid oligomerization yielding strongly bound oligomers. The subsequent coadsorption of methanol did not induce any changes in the zeolite-adsorbate complexes. TPD following the coadsorption showed that the Bronsted acid sites could be restored by temperature treatment above approximately 300{degree}C. When methanol was adsorbed first and isobutene was subsequently coadsorbed, MTBE was formed even at 35{degree}C on the catalyst surface. MTBE desorbed easily at a temperature of 70{degree}C, restoring a major fraction of the Bronsted acid sites. Methanol was concluded to decrease the probability of oligomerization by effectively competing for the acid sites. 34 refs., 6 figs.

  10. Autoignition behavior of lean mixtures: Chemical and thermodynamics effects

    SciTech Connect (OSTI)

    Ronney, P.D.; Shoda, M.; Waida, S.T. [Princeton Univ., NJ (United States). Dept. of Mechanical and Aerospace Engineering; Westbrook, C.K.; Pitz, W.J. [Lawrence Livermore National Lab., CA (United States)

    1992-01-15T23:59:59.000Z

    Knock characteristics of natural gas (NG), 89 octane unleaded gasoline, 2,2-dimethyl butane (22DMB), and methyl tert-butyl ether (MTBE) in stoichiometric and lean fuel-air mixtures were studied in a production 4-cylinder automotive engine. The Intake Temperature at the Knock Limit (ITKL) was different for each fuel but always higher in lean mixtures. Gasoline and 22DMB exhibited much greater increases in ITKL than MTBE and NG at lean conditions. Surprisingly, for lean mixtures 22DMB exhibited higher ITKL than MTBE and was almost as high as NG. Comparison with detailed numerical modelling was very favorable. Computations show that both differences in chemistry and end-gas temperature and pressure histories are responsible for these trends. This behavior is interpreted in terms of the Negative Temperature Coefficient behavior of hydrocarbon oxidation. The implication of these results for the specification of optimal fuels for lean-burn engine is discussed.

  11. Oligomerize for better gasoline

    SciTech Connect (OSTI)

    Nierlich, F. (Huls AG, Marl (DE))

    1992-02-01T23:59:59.000Z

    This paper reports on normal butene containing isobutene-depleted C{sub 4} hydrocarbons like raffinate II which are oligomerized using the Octol process in the liquid phase on a heterogeneous catalyst system to yield mainly C{sub 8} and C{sub 12} olefins. Raffinate II, the spent C{sub 4} fraction of an MTBE unit, is an ideal feedstock for further n-butene processing because of its high olefin concentration ranging between 70% and 80%. By modifications of MTBE technology, implementation of selective hydrogenation for removal of residual butadiene and superfractionating raffinate II, polymer grade 1-butene can be produced. Until the mid-70s raffinate I, the team cracker C{sub 4} cut after butadiene extraction, was mainly burned or blended into gasoline. Now nearly all raffinate I is or will be consumed for the purpose of converting isobutylene to MTBE.

  12. Why methyl tert-butyl ether production by reactive distillation may yield multiple solutions

    SciTech Connect (OSTI)

    Hauan, S.; Hertzberg, T.; Lien, K.M. [Univ. of Trondheim (Norway)

    1995-03-01T23:59:59.000Z

    This paper presents an explanation of why methyl tert-butyl ether (MTBE) production by reactive distillation may yield multiple solutions. Widely different composition profiles and conversions may, as already reported by Krishna and others, results with identical column specifications, depending on the initial estimates provided. A hypothesis yielding a qualitative understanding of this phenomenon has been developed. The inert n-butene plays a key role in the proposed explanation: As the reaction mixture is diluted with n-butene, the activity coefficient of methanol increases substantially and the temperature decreases. This dilution has a profound effect on the equilibrium conversion, enabling MTBE to escape from the reactive zone without decomposition. When methanol is fed below or in the lower part of the reactive zone of the column, the ``lifting capacity`` of the minimum boiling point MTBE-methanol azeotrope will also be important.

  13. Refinery fuel oxygenates in view of the complex model for reformulated gasline

    SciTech Connect (OSTI)

    Crawford, C.D.; Haelsig, C.P. [Fluor Daniel, Irvine, CA (United States)

    1994-12-31T23:59:59.000Z

    The final version of the Complex Model for reformulated gasoline (RFG) has now been issued with some surprising features that will significantly affect refinery fuel oxygenates planning. These include the following: (1) The only oxygenates included in the model are MTBE, ETBE, TAME, and Ethanol. (2) The Complex Model calculates that MTBE and TAME are significantly more effective for reduction of air toxics emissions than Ethanol and ETBE. (3) The Complex Model calculates that MTBE and TAME typically produce about equal reduction in air toxics emissions at the same RFG oxygen content. Although gasoline certification by the Complex Model is optional prior to 1998, after 1998 it will be mandatory for both reformulated and conventional gasolines. This paper considers refinery oxygenates production in view of these features of the Complex Model for RFG, basing the discussion on 2.0 weight percent oxygen content for RFG.

  14. IsoTex: Texaco`s olefin skeletal isomerization process

    SciTech Connect (OSTI)

    Sawicki, R.A.; Pellet, R.J.; Kuhlmann, E.J.; Huang, H.M.; O`Young, C.L.; Kessler, R.V.; Casey, D.G. [Texaco Research and Development, Beacon, NY (United States)

    1995-09-01T23:59:59.000Z

    Texaco has developed a new process (IsoTex) for the skeletal isomerization of n-olefins. The IsoTex process can convert normal butenes to isobutylene or normal pentenes to isoamylenes. The resulting product stream is an excellent feed for MTBE, ETBE or TAME units. The process has isomerized an untreated refinery C4 raffinate stream from an MTBE plant. A kinetic model was developed for the butene system. This model accurately predicted IsoTex performance in a one barrel per day skid unit at a Gulf Coast chemical plant. Process economics have been calculated for a once through 54,000 BPD C{sub 4} isomerization plant as well as a 10,000 BPD plant for recycle to an existing MTBE reactor. Economics have also been completed for a 6,800 BPD pentene once through isomerization unit.

  15. High octane ethers from synthesis gas-derived alcohols. Quarterly technical progress report, April--June 1993

    SciTech Connect (OSTI)

    Klier, K.; Herman, R.G.; Menszak, J.; Johansson, M.A.; Feeley, O.C.; Kim, D.

    1993-07-01T23:59:59.000Z

    The results shown in Figures 10 and 11 demonstrate that the formation of butenes was very sensitive to the alcohol partial pressure. A small elevation of the alcohol pressure suppressed the formation of butenes rather drastically at both 90 and 117{degree}C. The synthesis rates of DME, MIBE, and MTBE ethers were not significantly affected at 90{degree}C, although there was a trend to increase the space time yield of DME as the alcohol pressure was increased. At the reaction temperature of 117{degree}C, all of the ethers showed increasing productivities as the pressure of the reactants was increased (Figure 11). An isotope labelling experiment was carried out to provide mechanistic insight into the manner in which methanol and isobutanol react together to form DME, MIBE, and MTBE ethers and to determine if MTBE were derived from MIBE.

  16. Photocatalytic reactions of oxygenates on tropospheric oxide particles

    SciTech Connect (OSTI)

    Idriss, H.; Seebauer, E.G.; Miller, A. [Univ. of Illinois, Urbana, IL (United States)

    1996-10-01T23:59:59.000Z

    Oxygenates such as ethanol and tert-butyl methyl ether (MTBE) are finding increased use as additives to fuels. The relative merits of ethanol and MTBE have become the focus of intense debate with their ultimate fate as fugitive emissions representing one aspect of this controversy. Both species are known to react homogeneously with photogenerated OH radicals. Here we show that both can also photoreact on suspended solid particulates in the atmosphere with rates comparable to those of OH reactions. Heterogeneous reactions of ethanol yield acetaldehyde and those of MTBE give isobutene and formaldehyde (carcinogenic). Experiments by spectroscopic and kinetic techniques show that the active phases in fly ash are Fe and Ti oxides. In addition, the effects of humidity and alkali addition on the activity and selectivity of these reactions are also discussed. This work appears to be the first demonstration that volatile organic compounds can react as fast by a heterogeneous mechanism as by a homogeneous one in the atmosphere.

  17. Whole-genorne analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1

    SciTech Connect (OSTI)

    Kane, Staci R. [Lawrence Livermore National Laboratory (LLNL); Chakicherla, Anu Y. [Lawrence Livermore National Laboratory (LLNL); Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Schmidt, Radomir [University of California, Davis; Shin, M [U.S. Department of Energy, Joint Genome Institute; Legler, Tina C. [Lawrence Livermore National Laboratory (LLNL); Scow, Kate M. [University of California, Davis; Larimer, Frank W [ORNL; Lucas, Susan [Joint Genome Institute, Walnut Creek, California; Richardson, P M [U.S. Department of Energy, Joint Genome Institute; Hristova, Krassimira R. [University of California, Davis

    2007-03-01T23:59:59.000Z

    Methylibium petroleiphilum PM1 is a methylotroph distinguished by its ability to completely metabolize the fuel oxygenate methyl tert-butyl ether (MTBE). Strain PM1 also degrades aromatic (benzene, toluene, and xylene) and straight-chain (C, to C,,) hydrocarbons present in petroleum products. Whole-genome analysis of PM1 revealed an similar to 4-Mb circular chromosome and an similar to 600-kb megaplasmid, containing 3,831 and 646 genes, respectively. Aromatic hydrocarbon and alkane degradation, metal resistance, and methylotrophy are encoded on the chromosome. The megaplasmid contains an unusual t-RNA island, numerous insertion sequences, and large repeated elements, including a 40-kb region also present on the chromosome and a 29-kb tandem repeat encoding phosphonate transport and cobalamin biosynthesis. The megaplasmid also codes for alkane degradation and was shown to play an essential role in MTBE degradation through plasmid-curing experiments. Discrepancies between the insertion sequence element distribution patterns, the distributions of best BLASTP hits among major phylogenetic groups, and the G+C contents of the chromosome (69.2%) and plasmid (66%), together with comparative genome hybridization experiments, suggest that the plasmid was recently acquired and apparently carries the genetic information responsible for PM1's ability to degrade MTBE. Comparative genomic hybridization analysis with two PM1-like MTBE-degrading environmental isolates (similar to 99% identical 16S rRNA gene sequences) showed that the plasmid was highly conserved (ca. 99% identical), whereas the chromosomes were too diverse to conduct resequencing analysis. PM1's genome sequence provides a foundation for investigating MTBE biodegradation and exploring the genetic regulation of multiple biodegradation pathways in M. petroleiphilum and other MTBE-degrading beta-proteobacteria.

  18. Synthesis of octane enhancer during slurry-phase Fischer-Tropsch. Quarterly technical progress report No. 4, July 1, 1991--September 30, 1991

    SciTech Connect (OSTI)

    Marcelin, G.

    1991-12-15T23:59:59.000Z

    The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl ether (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: Addition of isobutylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch. Addition of isobutylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst. Addition of methanol to slurry phase FT synthesis making iso-olefins.

  19. Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. Quarterly technical progress report No. 5, October 1, 1991--December 31, 1991

    SciTech Connect (OSTI)

    Marcelin, G.

    1992-06-10T23:59:59.000Z

    The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl ether (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: Addition of isobutylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch. Addition of isobutylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst. Addition of methanol to slurry phase FT synthesis making iso-olefins.

  20. Natural attenuation: Chlorinated and recalcitrant compounds

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    Natural, or intrinsic, attenuation is an increasingly important component of site closure strategy. At first maligned as a do-nothing alternative, natural attenuation is now being recognized as a legitimate approach that can supplement and sometimes even supplant more costly approaches. Having gained more widespread acceptance as an option at hydrocarbon-contaminated sites, natural attenuation is now beginning to emerge as an option for sites contaminated with chlorinated solvents and other recalcitrant compounds such as MTBE. This book brings together the latest research and field applications, with chapters covering field characterization and monitoring, transformation processes, natural attenuation of MTBE, and a number of natural attenuation case studies.