National Library of Energy BETA

Sample records for mt princeton hot

  1. Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson...

    Open Energy Info (EERE)

    Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson & Dellechaie, 1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water...

  2. Refraction Survey At Mt Princeton Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    Refraction Survey At Mt Princeton Hot Springs Geothermal Area (Lamb, Et Al., 2012) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction...

  3. Vertical Electrical Sounding Configurations At Mt Princeton Hot...

    Open Energy Info (EERE)

    Vertical Electrical Sounding Configurations At Mt Princeton Hot Springs Geothermal Area (Zohdy, Et Al., 1971) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

  4. Direct-Current Resistivity Survey At Mt Princeton Hot Springs...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  5. Geothermometry At Mt Princeton Hot Springs Geothermal Area (Pearl...

    Open Energy Info (EERE)

    Et Al., 1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Mt Princeton Hot Springs Geothermal Area (Pearl, Et Al., 1976)...

  6. DC Resistivity Survey (Dipole-Dipole Array) At Mt Princeton Hot...

    Open Energy Info (EERE)

    1971) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: DC Resistivity Survey (Dipole-Dipole Array) At Mt Princeton Hot Springs Geothermal Area...

  7. Mt Princeton Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation,Mereg GmbHMontebalitoMt Princeton Hot Springs Geothermal

  8. Ground Gravity Survey At Mt Princeton Hot Springs Geothermal...

    Open Energy Info (EERE)

    lithologic distrubtions Notes Gravity low associated with Mt. Princeton Batholith; density contrast of -0.5 gcm3 of valley-fill sediments relative to batholith References J.E....

  9. Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs...

    Open Energy Info (EERE)

    and Geothermal Research. () . Related Geothermal Exploration Activities Activities (1) Direct-Current Resistivity Survey At Mt Princeton Hot Springs Area (Richards, Et Al.,...

  10. Pattern of shallow ground water flow at Mount Princeton Hot Springs...

    Open Energy Info (EERE)

    Pattern of shallow ground water flow at Mount Princeton Hot Springs, Colorado, using geoelectrical methods Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  11. Vertical Electrical Sounding Configurations At Mt Princeton Hot Springs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, NewArkansas:Standards Jump to:VernonWisconsin:Labs LLP

  12. Thermal Gradient Holes At Mt Princeton Hot Springs Geothermal...

    Open Energy Info (EERE)

    the area References J. Held, F. Henderson (2012) New developments in Colorado geothermal energy projects Additional References Retrieved from "http:en.openei.orgw...

  13. Self Potential At Mt Princeton Hot Springs Geothermal Area (Richards...

    Open Energy Info (EERE)

    2008 - 2010 Usefulness useful DOE-funding Unknown Exploration Basis Determination of groundwater flux patterns Notes Researchers collected 2700 SP measurements. Equilibrium...

  14. DC Resistivity Survey (Wenner Array) At Mt Princeton Hot Springs...

    Open Energy Info (EERE)

    2008 - 2010 Usefulness useful DOE-funding Unknown Exploration Basis Determination of groundwater flux patterns Notes Researchers measured DC resistivity and produced 12 resistivity...

  15. Magnetotelluric Techniques At Mt Princeton Hot Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump to:New(Held & Henderson,

  16. Direct-Current Resistivity Survey At Mt Princeton Hot Springs Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOE GTP) JumpDillard(Kauahikaua &1986) |

  17. Refraction Survey At Mt Princeton Hot Springs Geothermal Area (Lamb, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergyRedfield1989) Jump to:| Open1979) |Al., 2012) |

  18. Self Potential At Mt Princeton Hot Springs Geothermal Area (Richards, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewableSMUDSectional Modelof the

  19. Thermal Gradient Holes At Mt Princeton Hot Springs Geothermal Area (Held &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpen EnergyInformation Mcgee

  20. Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPageEnergyDellechaie, 1976) | Open Energy

  1. Analysis of borehole temperature data from the Mt. Princeton Hot Springs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground Source Heat Pumparea,

  2. Aeromagnetic Survey At Mt Princeton Hot Springs Geothermal Area (Case, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar EnergyAerodyn Energiesysteme GmbHOpenAl., 1984) | Open

  3. DC Resistivity Survey (Wenner Array) At Mt Princeton Hot Springs Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc Jump to: navigation,(RECP) in Jump to: navigation,Area

  4. Geothermometry At Mt Princeton Hot Springs Geothermal Area (Pearl, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlant < Geothermal(Redirected

  5. Ground Gravity Survey At Mt Princeton Hot Springs Geothermal Area (Case, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New PagesInformationEnergy Information 2)EnergyAl., 1984) |

  6. DC Resistivity Survey (Dipole-Dipole Array) At Mt Princeton Hot Springs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9) Wind Farm JumpAlum|Cyclone PowerD1

  7. Mt Wheeler Power, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation,Mereg GmbHMontebalitoMt Princeton Hot Springs

  8. Princeton Plasma Physics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Laboratory P.O. Box 451 Princeton, NJ 08543-0451 GPS: 100 Stellarator Road Princeton, NJ 08540 www.pppl.gov 2015 Princeton Plasma Physics Laboratory. A...

  9. MIT Princeton September 28, 2012

    E-Print Network [OSTI]

    Huang, Rui Xin

    Williams : "" " NCAR ?" MIT NCAR #12;3 3 Princeton 1983 3 Princeton GFDL Kirk Bryan , Princeton Faculty Club Princeton Kirk Bryan , Gentleman, GFDL BryanGFDL z-Bleck 1 #12;4 1 179.5o 7080 "" MIT Bryan Bryan "" Princeton 5 Kirk Bryan Kirk Bryan Princeton #12;

  10. Hot

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street LightingFrom theHigh EfficiencyHot electron

  11. Princeton Materials Institute PrincetonUniversity

    E-Print Network [OSTI]

    Petta, Jason

    #12;PrincetonUniversity Beer-Lambert's Law: A = bc absorbance in directly proportional/Avidin/Biotin 0.703 0.810 Molecular weight of protein 67,000 daltons 530,000 daltons Protein concentration (c) 1

  12. Princeton Plasma Physics Laboratory:

    SciTech Connect (OSTI)

    Phillips, C.A.

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  13. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Princeton Journal Watch Blog Events Research Education Organization Contact Us News Room News Archive American Fusion News Press Releases Publications Princeton...

  14. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Journal Watch Blog Events Research Education Organization Contact Us News Room News Archive American Fusion News Press Releases Publications Princeton Journal Watch Blog...

  15. Site Office Manager, Princeton

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will serve as the Princeton Site Office (PSO) Manager by providing overall executive leadership to the PSO.

  16. Grad Princeton Lakeside Lawrence Wegmans Walmart Trader Lawrence Lakeside Princeton College Station Apts Apts Joe's Apts Apts Station

    E-Print Network [OSTI]

    Rowley, Clarence W.

    Grad Princeton Lakeside Lawrence Wegmans Walmart Trader Lawrence Lakeside Princeton College Station:53 PM Grad Princeton Lakeside Lawrence Wegmans Walmart Trader Lawrence Lakeside Princeton College

  17. A Sustainability Plan for Princeton

    E-Print Network [OSTI]

    Singh, Jaswinder Pal

    A Sustainability Plan for Princeton #12;Princeton University adopted its Sustainability Plan and environmental degradation, Princeton has a responsibility to shape the national sustainability agenda and alternative energy sources. The campus can serve as both a model for advanced sustainability practices

  18. Princeton Plasma Physics Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  19. Analysis of borehole temperature data from the Mt. Princeton...

    Open Energy Info (EERE)

    Colorado (abstract only) Author P. Morgan Conference AAPG Rocky Mountain Meeting; Salt Lake County, Utah; 10811 Published AAPG Rocky Mountain Meeting, 2013 DOI Not Provided...

  20. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    click on the image and select "Save Image" or "Save Image As..." Michael Graziano, a psychology professor at Princeton University, discussed "Consciousness and the Social Brain" at...

  1. Princeton Site Ofice

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits theCommitteeCrystallineReserve | DepartmentFederalPolicy StatementPrinceton

  2. ATR APS/DPP 1996 Princeton Plasma

    E-Print Network [OSTI]

    Budny, Robert

    ATR APS/DPP 1996 Princeton Plasma Physics Laboratory Looking for a Transport Barrier in the TFTR VB. A. T. Ramsey and S. D Scott, Princeton Plasma Physics Laboratory Princeton University #12;ATR APS/DPP 1996 Princeton Plasma Physics Laboratory page 2 =1.89 ◊10 -28 Zeff gff n e 2 T (eV)e 1/2 2 e - 12

  3. TEXT-ALTERNATIVE VERSION: PRINCETONíS DILLON GYM

    Broader source: Energy.gov [DOE]

    Narrator: Opened in 1947, Dillon Gymnasium once served as home to nearly all varsity athletics at Princeton University. Today, Dillon remains the site of NCAA wrestling and volleyball matches, and...

  4. LEDs Go Ivy League: Princetonís Dillon Gymnasium

    Broader source: Energy.gov [DOE]

    View the video about LED lighting in Dillon Gymnasium, a focal point of sports and recreation at Princeton since 1947. William Evans discusses measurable benefits of LED lighting in the gym and...

  5. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A.J. Stewart Smith to step down as Princeton University vice president for PPPL in 2016 Click on an image below to view the high resolution image. Then right click on the image and...

  6. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eliot Feibush leads new Princeton consortium to visualize Big Data Click on an image below to view the high resolution image. Then right click on the image and select "Save Image"...

  7. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News RSS Feed July 24, 2015 A.J. Stewart Smith to step down as Princeton University vice president for PPPL in 2016 By John Greenwald A.J. Stewart Smith As a young man, A.J....

  8. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton and PPPL projects selected to run on super-powerful computer to be delivered to Oak Ridge Leadership Computing Facility Click on an image below to view the high...

  9. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Princeton News Primary tabs View High Resolution(active tab) Rob Goldston wins 2015 Nuclear Fusion Award for best paper published in 2012 Click on an image below to view the...

  10. PRINCETON UNIVERSITY PRESS 41 William Street Permissions Department Princeton, NJ 08540-5237

    E-Print Network [OSTI]

    Landweber, Laura

    PRINCETON UNIVERSITY PRESS 41 William Street Permissions Department Princeton, NJ 08540-5237 fax REQUEST FORM Please submit this form to request electronic files of a Princeton University Press that the student and the institution respect the author's and Princeton University Press's copyright

  11. PRINCETON UNIVERSITY PRESS 41 William Street Permissions Department Princeton, NJ 08540-5237

    E-Print Network [OSTI]

    Landweber, Laura

    PRINCETON UNIVERSITY PRESS 41 William Street Permissions Department Princeton, NJ 08540-5237 Fax: 609-258-6305 permissions@press.princeton.edu REPUBLICATION PERMISSION REQUEST - Print & Electronic Media Thank you for your request to reproduce copyrighted material from a Princeton University Press

  12. Princeton University OTL Office of Technology Licensing

    E-Print Network [OSTI]

    Torquato, Salvatore

    Princeton University OTL Office of Technology Licensing Inventor's Guide to Technology Transfer #12 for Research (DFR) Phone: 609-258-5500 Email: dfr@princeton.edu www.princeton.edu/research #12;Inventor's Guide 550141 Note: This booklet is based on the University of Michigan's "Inventor's Guide to Technology

  13. Saving Mt. Fuji

    E-Print Network [OSTI]

    Hacker, Randi

    2013-09-12

    Broadcast Transcript: Mt. Fuji, or Fujisan is it is known here in Japan, has just been added to Unesco's World Heritage list as a cultural asset, honoring it for providing thousands of years of inspiration to artists, poets ...

  14. Pipeline MT Instructions Identification Number

    E-Print Network [OSTI]

    Hong, Don

    Pipeline MT Instructions Identification Number For identification purposes, you will be assigned a special identification number. M# You can activate your MT email, login to PipelineMT to register for classes or pay tuition and fees. Activating the MTSU Email and PipelineMT accounts: Visit the website

  15. Plasmas are Hot and Fusion is Cool

    SciTech Connect (OSTI)

    2011-01-01

    Plasmas are Hot and Fusion is Cold. The DOE Princeton Plasma Physics Laboratory (PPPL) collaborates to develop fusion as a safe, clean and abundant energy source for the future. This video discusses PPPL's research and development on plasma, the fourth state of matter.

  16. Detector Research and Development Kirk McDonald, Princeton University

    E-Print Network [OSTI]

    McDonald, Kirk

    June, 1989 Detector Research and Development Kirk McDonald, Princeton University ∑ Physics Goal and Development Kirk McDonald, Princeton University ∑ Princeton Effort ≠ Infrared-laser test facility for silicon

  17. PPPL and Princeton scientists developing a novel system for verifying...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    investigator for the project and professor of astrophysical sciences at Princeton, and a fusion researcher and former director of PPPL Goldston and Princeton physicist Alexander...

  18. Prospects for Relic Neutrino Detection at PTOLEMY: Princeton...

    Office of Environmental Management (EM)

    Relic Neutrino Detection at PTOLEMY: Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield Prospects for Relic Neutrino Detection at PTOLEMY: Princeton...

  19. The Princeton Tritium Observatory for Light, Early Universe,...

    Office of Environmental Management (EM)

    The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield...

  20. Electrical Engineer (Power Electronics, Lead Engineer) | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineer (Power Electronics, Lead Engineer) Department: Engineering Supervisor(s): Albert von Halle Requisition Number: 1500733 The Princeton University Plasma Physics Laboratory...

  1. www.princeton.edu/admission Profile 201011

    E-Print Network [OSTI]

    Bou-Zeid, Elie

    goals. At Princeton, we are committed to identifying students who possess the academic ability, energy Nepal Netherlands New Zealand Nigeria Pakistan Peru Philippines Romania Russian Federation Senegal

  2. About Prospect Eleven Princeton University's "DARPA Project"

    E-Print Network [OSTI]

    Singh, Jaswinder Pal

    About Prospect Eleven and Princeton University's "DARPA Project" Background: Prospect Eleven) miles of the more than 150 mile course. As a result, DARPA (Defense Advanced Research Projects Administration), decided to organize a second Challenge that is to take place in October, 2005. Princeton

  3. Economics & Finance press.princeton.edu

    E-Print Network [OSTI]

    Landweber, Laura

    Economics & Finance 2012 press.princeton.edu #12;TEXT Professors who wish to consider a book from & Research 18 Game Theory 22 Finance 23 Econometrics, Mathematical & Applied Economics 26 Political Economy page 25 see page 3 see page 12 see page 20 Contents #12;press.princeton.edu 1 forThcoming Finance

  4. 2011-12 Princeton Global Scholar Slavoj Zizek

    E-Print Network [OSTI]

    , Spanish, Religion, and the Center for African American Studies at Princeton University, and the Department

  5. Parking Instructions for Princeton Public Library 65 Witherspoon Street

    E-Print Network [OSTI]

    Petta, Jason

    Parking Instructions for Princeton Public Library 65 Witherspoon Street Princeton, NJ 08542 Princeton Public Library is located at the corner of Witherspoon Street and Wiggins Street in downtown Princeton, NJ. Unloading: Vechilcles may pull up to the back entrance of the library to unload materials

  6. Hutch Neilson Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    fusion science. Status ∑ Physics basis for compact stellarator experiments. ∑ Design. ∑ ConstructionNCSX Hutch Neilson Princeton Plasma Physics Laboratory Fusion Power Associates Symposium Gaithersburg, MD December 13, 2004 The Promise and Status of Compact Stellarators #12;2 NCSX Compact

  7. Jonathan Squire wins Princeton University Honorific Fellowship...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    study at Princeton. "It will definitely help in allowing me to focus more on my thesis research," since fellowship winners are required to spend full time on their research...

  8. www.princeton.edu/admission Profile 201213

    E-Print Network [OSTI]

    Rowley, Clarence W.

    . At Princeton, we are committed to identifying students who possess the academic ability, energy, enthusiasm of Malaysia Mexico Nepal Netherlands New Zealand Nigeria Pakistan Peru Poland Portugal Romania Singapore South

  9. H IGHLIGHTS PRINCETON PLASMA PHYSICS LABORATORY

    E-Print Network [OSTI]

    of materials. The Laboratory's Office of Technology Transfer assists industry, other universities, and state. Park. 2 #12; Vision Statement Mission Statement The primary mission of the Princeton Plasma Physics

  10. Princeton University Parking Rules & Regulations Transportation & Parking Services at Princeton University is committed to providing

    E-Print Network [OSTI]

    Torquato, Salvatore

    for a vehicle to be legally parked on campus. The hangtag indicates parking zone and lot assignments and must will be issued. II. Parking Zone and lot assignments FacUlty/StaFF PaRkIng Each UniversiPrinceton University Parking Rules & Regulations Transportation & Parking Services at Princeton

  11. VWD-0004- In the Matter of Princeton University

    Broader source: Energy.gov [DOE]

    This decision will consider a Motion for Discovery filed jointly by Princeton University (Princeton) and General Physics Corporation (GPC) on June 10, 1999 with the Office of Hearings and Appeals ...

  12. DOE Publishes GATEWAY Report on Exterior Lighting at Princeton...

    Office of Environmental Management (EM)

    Exterior Lighting at Princeton University DOE Publishes GATEWAY Report on Exterior Lighting at Princeton University October 30, 2015 - 1:46pm Addthis The U.S. Department of...

  13. Grad Princeton Lakeside Lawrence Wegmans Walmart Trader Lawrence Lakeside Princeton Grad College Station Apts Apts Joe's Apts Apts Station College

    E-Print Network [OSTI]

    Rowley, Clarence W.

    Grad Princeton Lakeside Lawrence Wegmans Walmart Trader Lawrence Lakeside Princeton Grad College:25 PM 3:30 PM 3:37 PM 3:44 PM 3:49 PM 3:53 PM 4:00 PM Grad Princeton Lakeside Lawrence Wegmans Walmart

  14. Princeton University High Energy Physics Research

    SciTech Connect (OSTI)

    Marlow, Daniel R.

    2015-06-30

    This is the Final Report on research conducted by the Princeton Elementary Particles group over the approximately three-year period from May 1, 2012 to April 30, 2015. The goal of our research is to investigate the fundamental constituents of matter, their fields, and their interactions; to understand the properties of space and time; and to study the profound relationships between cosmology and particle physics. During the funding period covered by this report, the group has been organized into a subgroup concentrating on the theory of particles, strings, and cosmology; and four subgroups performing major experiments at laboratories around the world: CERN, Daya Bay, Gran Sasso as well as detector R\\&D on the Princeton campus. Highlights in of this research include the discovery of the Higgs Boson at CERN and the measurement of $\\sin^22\\theta_{13}$ by the Daya Bay experiment. In both cases, Princeton researchers supported by this grant played key roles.

  15. Page 1 of 19 Princeton University

    E-Print Network [OSTI]

    Mauzerall, Denise

    the planning workshop requirement for the MPA-URP degree, attention will be paid to the urban and regional University on energy, climate change and sustainable development. Kinsey is a practicing urban and regional at Princeton University on land use policy, affordable housing, and environmental justice, and urban planning

  16. Princeton, Max Planck Society launch new research center for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Federal Republic of Germany in New York Busso von Alvensleben meet to sign an agreement launching the new Max Planck Princeton Research Center for Plasma Physics....

  17. Princeton-CEFRC Summer Program on Combustion: 2010 Session |...

    Office of Science (SC) Website

    EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 03.16.11 Princeton-CEFRC Summer...

  18. Princeton-CEFRC Summer Program on Combustion: 2013 Session |...

    Office of Science (SC) Website

    EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 03.11.13 Princeton-CEFRC Summer...

  19. Science on Saturday: Dr. Sabine Kastner, Princeton University...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MBG Auditorium Science on Saturday: Dr. Sabine Kastner, Princeton University: Words, Tools and the Brain: Why Humans Aren't Just Another Ape Dr. Sabine Kastner, Neuroscientist...

  20. LEDs Go Ivy League: Princeton University and DOE GATEWAY Demonstrations

    Broader source: Energy.gov [DOE]

    View the video about LED lighting at Princeton University, which has dramatically reduced energy costs in a number of installations around campus. William Evans, electrical engineer, describes the...

  1. K. McDonald Princeton U.

    E-Print Network [OSTI]

    McDonald, Kirk

    of a solid≠carbide gun≠drill bit is 1≠2 shifts. Each bit costs about $125. The bits are resharpenable (inK. McDonald Princeton U. Apr. 13, 1996 BaBar TNDC≠96≠28 Deep Hole Drilling for the Rear Endplate of the BaBar Drift Chamber 1 Gun Drilling The holes for the field≠wire feedthroughs in the drift chamber

  2. Princeton fusion experiment axed DOE Under Secretary Ray Orbach reportedly told Princeton University officials

    E-Print Network [OSTI]

    necessitate its closure, and that PPPL's future as a world-leading center of fusion energy and plasma sciences the project's scientific value against the taxpayer interests: Future of the Princeton Plasma Physics for the scientific community and the taxpayers, and ensures an exciting path for PPPL research well into the future

  3. Kirk T McDonald, Princeton. M. Palm, Hipot test of solenoid

    E-Print Network [OSTI]

    McDonald, Kirk

    Kirk T McDonald, Princeton. M. Palm, CERN 1 Hipot test of solenoid #12;Kirk T McDonald, Princeton;Kirk T McDonald, Princeton. M. Palm, CERN 3 Results With the "shorting cable" connected, a resistance values for Coil #1 are a lower limit.) #12;Kirk T McDonald, Princeton. M. Palm, CERN 4 Conclusions

  4. PRINCETON PLASMA PHYSICS LABORATORY This publication highlights activities at the Princeton Plasma Physics Laboratory for fiscal year 1996 --1 October

    E-Print Network [OSTI]

    , and additional information on administrative support, see the PPPL fiscal year 1996 Annual Report. About PPPL at the Princeton Plasma Physics Laboratory for fiscal year 1996 -- 1 October 1995 through 30 September 1996 by Princeton University under contract with the U.S. Department of Energy. The fiscal year 1996 budget

  5. Cancer: Detect and DestroyCancer: Detect and Destroy PrincetonPrinceton iGEMiGEM TeamTeam

    E-Print Network [OSTI]

    Petta, Jason

    Cancer: Detect and DestroyCancer: Detect and Destroy PrincetonPrinceton iGEMiGEM TeamTeam PresentedPresentation Overview What is Synthetic Biology?What is Synthetic Biology? ProjectProject Cancer: Detect and DestroyCancer regeneration Diabetes Cancer therapy Artificial immune system Environmental Biosensing Environmental

  6. COLLOQUIUM: Sustainability Economics | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1, 2013, 4:15pmEnergy | Princeton

  7. 2010-2011 Princeton Graduate Students with Academic Interests in South Asia Shahana Chattaraj, PHD, Woodrow Wilson School, Urban Policy shahanac@princeton.edu

    E-Print Network [OSTI]

    Rowley, Clarence W.

    2010-2011 Princeton Graduate Students with Academic Interests in South Asia Shahana Chattaraj, PHD, Woodrow Wilson School, Urban Policy shahanac@princeton.edu Barret F Bradstreet, Phd, WWS, Security Studies, Indian military strategy bbradstr@princeton.edu Diane L Coffey, Phd, WWS, Population coffey

  8. Hot Canyon

    ScienceCinema (OSTI)

    None

    2013-03-01

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  9. To learn the many ways to stay connected to Princeton,

    E-Print Network [OSTI]

    ." He thoroughly enjoyed becoming part of a multi-cultural community, learning Spanish as much from lunch conversations in Commons as from his Spanish classes. So enthusiastic was he about Princeton

  10. 2011-12 Princeton Global Scholar Rafael Rojas

    E-Print Network [OSTI]

    at Princeton as a Global Scholar in the Department of Spanish and Portuguese Languages and Cultures of Spanish and Portuguese Languages and Cultures, the Center for African American Studies, and the programs

  11. COLLOQUIUM: Technical Aspects of the Iran Nuclear Deal | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 6, 2015, 2:15pm to 3:30pm MBG Auditorium COLLOQUIUM: Technical Aspects of the Iran Nuclear Deal Professor Robert Goldston Princeton University Contact Information...

  12. Eliot Feibush leads new Princeton consortium to visualize Big...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eliot Feibush leads new Princeton consortium to visualize Big Data By John Greenwald April 22, 2015 Tweet Widget Google Plus One Share on Facebook Eliot Feibush (Photo by Elle...

  13. An active seismic reconnaissance survey of the Mount Princeton...

    Open Energy Info (EERE)

    An active seismic reconnaissance survey of the Mount Princeton area, Chaffee County, Colorado Jump to: navigation, search OpenEI Reference LibraryAdd to library Thesis: An active...

  14. Mt. Baker Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformationOliver, Pennsylvania:(CTI PFAN) | OpenMt St HelensMt StMt.

  15. Princeton University Plasma Physics Laboratory, Princeton, New Jersey. Annual report, October 1, 1990--September 30, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    This report discusses the following topics: Principal parameters of experimental devices; Tokamak Fusion Test Reactor; Burning Plasma Experiment; Princeton Beta Experiment-Modification; Current Drive Experiment-Upgrade; International Thermonuclear Experimental Reactor; International Collaboration; X-Ray Laser Studies; Hyperthermal Atomic Beam Source; Pure Electron Plasma Experiments; Plasma Processing: Deposition and Etching of Thin Films; Theoretical Studies; Tokamak Modeling; Engineering Department; Environment, Safety, and Health and Quality Assurance; Technology Transfer; Office of Human Resources and Administration; PPPL Patent Invention Disclosures; Office of Resource Management; Graduate Education: Plasma Physics; Graduate Education: Program in Plasma Science and Technology; and Science Education Program.

  16. Princeton University Vice President and Secretary Telephone: 609-258-6428

    E-Print Network [OSTI]

    Bou-Zeid, Elie

    Princeton University Vice President and Secretary Telephone: 609-258-6428 One Nassau Hall, light, and materials. He is the recipient of the 2002 American Academy of Arts and letters Award, Princeton, New Jersey 08544 Email: durkee@princeton.edu February 2, 2012 To: Members of the Planning Board

  17. Mt Rainier Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformationOliver, Pennsylvania:(CTI PFAN) | Open Energy(RECP)MtMt

  18. COLLOQUIUM: The Promise of Urban Science | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1, 2013, 4:15pmEnergy |Princeton PlasmaPrincetonApril

  19. 2010-11 Princeton Global Scholar Giacomo Luciani

    E-Print Network [OSTI]

    Singh, Jaswinder Pal

    2010-11 Princeton Global Scholar Giacomo Luciani Giacomo Luciani is the director of the Dubai economy of the Middle East, as well as the economics of energy in the Persian Gulf and the Arab world the rest of the world. He currently leads research on security of oil supplies within the SECURE project

  20. Resources at Princeton U. Relevant to BABAR Drift Chamber

    E-Print Network [OSTI]

    McDonald, Kirk

    (+ VPI), '95--. 4 #12; Present Resources Elementary Particles Lab Mechanical Group: -- Bill Sands at BNL, FNAL, SLAC after construction at Princeton. Mechanical design aided by AutoCAD and ALGOR (FEA≠ray group founded by J.A. Wheeler in 1946. The present Elementary Particle Laboratory buildings housed

  1. Resources at Princeton U. Relevant to BABAR Drift Chamber

    E-Print Network [OSTI]

    McDonald, Kirk

    ;Present Resources Elementary Particles Lab Mechanical Group: ≠ Bill Sands, engineer ≠ Bill Groom, Bob construction at Princeton. Mechanical design aided by AutoCAD and ALGOR (FEA). Two assembly buildings with 7 group founded by J.A. Wheeler in 1946. The present Elementary Particle Laboratory buildings housed fac

  2. The Princeton Companion to Mathematics This page intentionally left blank

    E-Print Network [OSTI]

    Zeilberger, Doron

    , Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data The Princeton, date­ III. Leader, Imre. QA11.2.P745 2008 510--dc22 2008020450 British Library Cataloging-in-Publication Expanders 196 III.25 The Exponential and Logarithmic Functions 199 III.26 The Fast Fourier Transform 202 III

  3. PrincetonUniversity In-Vitro Studies of Cancer

    E-Print Network [OSTI]

    Petta, Jason

    PrincetonUniversity In-Vitro Studies of Cancer Cell Death Due to Hyperthermia C. Barkey1, RUniversity Cancer: Facts and Figures World Wide 10.1 million newly diagnoses/year with ~10% increase 6.2 million deaths are attributed to cancer and its complication each year American Cancer Society 2007 and Le Cancer

  4. Java Libraries for Accessing the Princeton Wordnet: Comparison and Evaluation

    E-Print Network [OSTI]

    direct access to the Princeton Wordnet data, so as to help Java developers find the library 1 See Table 6- cess the information in the original Prince- ton Wordnet databases. From this compari- son emerges-coverage, easiest-to-use library available. A Java developer seeking to access the Prince- ton Wordnet is faced

  5. Arnett, D. 1996, Supernovae and Nucleosynthesis: An Investigation of the History of Matter, from the Big Bang to the Present. Princeton: Princeton University Press.

    E-Print Network [OSTI]

    Mamajek, Eric E.

    of Matter, from the Big Bang to the Present. Princeton: Princeton University Press. Carroll, B. W., & Ostlie, Principles of Stellar Evolution and Nucleosynthesis. Chicago: University of Chicago Press. Collins, G. W, The Observation and Analysis of Stellar Photospheres, 3rd ed. Cambridge, UK: Cambridge University Press. Hansen, C

  6. Developing Mt. Hope: The megawatt line

    SciTech Connect (OSTI)

    Rodzianko, P.; Fisher, F.S.

    1992-12-01

    After facing numerous obstacles, including opposition and competition, the Mt. Hope pumped-storage project in New Jersey has been licensed by FERC. That license will allow a former iron ore mine site to be used in producing a new resource-hydroelectricity. In early August 1992, after more than seven years of effort, the 2,000-MW Mt. Hope Waterpower Project was licensed by the Federal Energy Regulatory Commission (FERC). Getting the $1.8 billion pumped-storage project licensed was not an easy task. It involved 54 submittals to FERC, six public meetings, and costs of more than $12 million. Along the way, the project has withstood competing applications, community opposition, and legal battles. Getting a project of this magnitude off the ground is a challenge for even the most experienced developer. The effort was especially challenging for the Halecrest Company, a local family-owned and operated firm with no previous experience in hydroelectric development. When financing became tight, creative ways were found to raise seed capital for the project. When hydroelectric experience was needed, the company developed a world-class corporate team that carried Mt. Hope through the complexities of the licensing process and beyond. With license now in hand, the project developers are ready to move forward with negotiating power sales contracts and securing construction financing. The resulting project will be the second largest pumped-storage facility in the country-second only to the 2,100-MW Bath County project in Virginia. Mt. Hope will take six years to construct and is scheduled to be phased into operation beginning in 1999.

  7. Mount Princeton Hot Springs Pool & Spa Low Temperature Geothermal Facility

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformationOliver, Pennsylvania: Energy Resources Jump| Open Energy

  8. Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program |View NewParatekPassaic County, NewRenewables LLCColorado,

  9. Pattern of shallow ground water flow at Mount Princeton Hot Springs,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program |View NewParatekPassaic County, NewRenewables

  10. Environmental Survey preliminary report, Princeton Plasma Physics Laboratory, Princeton, New Jersey

    SciTech Connect (OSTI)

    Not Available

    1989-05-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), conducted June 13 through 17, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Team members are being provided by private contractors. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with PPPL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at PPPL, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environment problems identified during its on-site activities. The S A plan is being developed by the Idaho National Engineering Laboratory. When completed, the S A results will be incorporated into the PPPL Survey findings for inclusion in the Environmental Survey Summary Report. 70 refs., 17 figs., 21 tabs.

  11. 2014 Princeton CEFRC Summer School on Combustion | U.S. DOE Office...

    Office of Science (SC) Website

    EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 02.07.14 2014 Princeton CEFRC...

  12. Test report : Princeton power systems prototype energy storage system.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. Princeton Power Systems has developed an energy storage system that utilizes lithium ion phosphate batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Princeton Power Systems Prototype Energy Storage System.

  13. Mt Rainier Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformationOliver, Pennsylvania:(CTI PFAN) | Open Energy(RECP)Mt

  14. Marysville Mt Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville Mt Geothermal Area Jump to: navigation, search

  15. Mt Signal Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource HistoryCharleston,Peak Utility Jump to:PosoMt

  16. Princeton Power Systems (TRL 5 6 Component)- Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage

    Broader source: Energy.gov [DOE]

    Princeton Power Systems (TRL 5 6 Component) - Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage

  17. 3D Mt Resistivity Imaging For Geothermal Resource Assessment...

    Open Energy Info (EERE)

    3D Mt Resistivity Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Jump to: navigation, search OpenEI Reference...

  18. International Workshop on MFE Roadmapping in the ITER Era Princeton University, McDonnell Hall

    E-Print Network [OSTI]

    International Workshop on MFE Roadmapping in the ITER Era Princeton University, McDonnell Hall Princeton, NJ, U.S.A. 7 -10 September 2011 Roadmap Agenda r12 20110910.doc Agenda Workshop Topics ∑ Perspectives on Demo and the Roadmap to Demo ∑ Technology: Basis, Gaps, Risks, and Facility Needs ∑ Physics

  19. The Daily Princetonian -International fusion project will use Princeton physics lab Summer Program

    E-Print Network [OSTI]

    to determine the viability of exploiting cold fusion as an energy source around the world. Much of the researchThe Daily Princetonian - International fusion project will use Princeton physics lab Summer Program | Previous | Next | Calendar International fusion project will use Princeton physics lab By ABBY WILLIAMS

  20. Subscriber: Princeton University Library | Sign In as Individual | FAQ | Access Rights | Join AAAS 31 January 2003

    E-Print Network [OSTI]

    Subscriber: Princeton University Library | Sign In as Individual | FAQ | Access Rights | Join AAAS of Energy make it public, we can all be sure that they are committed, and we are happy," says Bernd Kramer trap that ITER will make obsolete. Taking the tour. Subscriber: Princeton University Library | Sign

  1. GRADUATE STUDENT HANDBOOK Princeton's Sociology Department offers graduate training across a range of specialty areas

    E-Print Network [OSTI]

    Bou-Zeid, Elie

    SOCIOLOGY GRADUATE STUDENT HANDBOOK #12;2 SUMMARY Princeton's Sociology Department offers years have usually ranged from about eight to fifteen new students) and admissions is highly selective at Princeton. Applicants whose native language is not English should carefully read the material at http

  2. The 29th International Electric Propulsion Conference, Princeton University, October 31 November 4, 2005

    E-Print Network [OSTI]

    Walker, Mitchell

    The 29th International Electric Propulsion Conference, Princeton University, October 31 ≠ November International Electric Propulsion Conference, Princeton University, October 31 ≠ November 4, 2005 James H magnetic field transient with the vacuum facility. The thrust stand has been revamped to allow for active

  3. International Electric Propulsion Conference, Princeton University, October 31 November 4, 2005

    E-Print Network [OSTI]

    King, Lyon B.

    The 29th International Electric Propulsion Conference, Princeton University, October 31 ≠ November-effect Thruster IEPC-2005-274 Presented at the 29th International Electric Propulsion Conference, Princeton electron plasma in a pristine environment. A purely radial magnetic field is applied with a crossed

  4. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    .E. Sugiyamac aPrinceton Plasma Physics Laboratory, Princeton, New Jersey 08543 b New York University, New YorkPrepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports web site in Fiscal Year

  5. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    Physics Laboratory, Princeton, NJ 08543, USA W. Dorland Institute for Plasma Research, U. MD, College Park

  6. MT3DMS v5.3 Supplemental User's Guide

    E-Print Network [OSTI]

    Zheng, Chunmiao

    published by the U.S. Army Corps of Engineers (Zheng and Wang, 1999; available at http://hydro.geo.ua.edu/mt3d). Readers should refer to Zheng and Wang (1999) for complete information on the theoretical Tonkin, Henning Prommer, Chris Langevin, Ned Banta, Eileen Poeter, and Rui Ma in various aspects of MT3

  7. MOBILE INTERACTIVE VISITOR INFORMATION SERVICE: PUKAHA MT. BRUCE TRIAL RESULTS

    E-Print Network [OSTI]

    Zealand Tourism Research Institute Sept 2005 #12;New Zealand Tourism Research Institute September 2005 www Information Service (MIVIS) mobile phones to access audio information at Pukaha Mt Bruce (PMB) were collected and range of visitors using the MIVIS phones in the Pukaha Mt Bruce setting. #12;New Zealand Tourism

  8. WPA Omnibus Award MT Wind Power Outreach

    SciTech Connect (OSTI)

    Brian Spangler, Manager Energy Planning and Renewables

    2012-01-30

    The objective of this grant was to further the development of Montana‚??s vast wind resources for small, medium, and large scale benefits to Montana and the nation. This was accomplished through collaborative work with wind industry representatives, state and local governments, the agricultural community, and interested citizens. Through these efforts MT Dept Environmental Quality (DEQ) was able to identify development barriers, educate and inform citizens, as well as to participate in regional and national dialogue that will spur the development of wind resources. The scope of DEQ‚??s wind outreach effort evolved over the course of this agreement from the development of the Montana Wind Working Group and traditional outreach efforts, to the current focus on working with the state‚??s university system to deliver a workforce trained to enter the wind industry.

  9. Chi tit mn hc mt bn kia.

    E-Print Network [OSTI]

    California at Davis, University of

    v x√£ hi, √Ĺ n m√īi trng v√† s√°ng to. "Th √ī xe p ca Hoa K," Davis l√† mt cng ng a dng v√† nng ng ch√†o √≥n, Ph√°t √?m v√† Nghe Trong L√£nh Vc Hc Tp, v√† c√°c l√£nh vc kh√°c. Ngo√†i ra cng c√≥ nhiu c hi tham gia c√°c t chc ti trng v√† phc v cng ng. Mun bit ng√†y th√°ng, hc ph√≠ v√† c√°c chi tit kh√°c, h√£y n: www

  10. COLLOQUIUM: Stellarator Research at PPPL and Beyond | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1, 2013, 4:15pmEnergy | Princeton PlasmaPhysics

  11. COLLOQUIUM: Superconductors for Fusion for Next Ten Years | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1, 2013, 4:15pmEnergy | Princeton PlasmaPhysicsPlasma

  12. COLLOQUIUM: Technical Aspects of the Iran Nuclear Agreement | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1, 2013, 4:15pmEnergy | PrincetonPlasma Physics

  13. COLLOQUIUM: The Chorus of the Magnetosphere | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1, 2013, 4:15pmEnergy | PrincetonPlasma

  14. COLLOQUIUM: The Electrical System of the Heart | Princeton Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1, 2013, 4:15pmEnergy | PrincetonPlasmaLab May 20,

  15. COLLOQUIUM: The Formation of Stellar Groups | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1, 2013, 4:15pmEnergy | PrincetonPlasmaLab

  16. COLLOQUIUM: The Many Faces of Fusion | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1, 2013, 4:15pmEnergy |Princeton Plasma

  17. COLLOQUIUM: Uncovering the Hidden Skeleton of Flow Transport | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1, 2013, 4:15pmEnergy |PrincetonCombiningPlasma

  18. Cooling Fusion in a Flash | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsClusterInformationContract Management Princeton16,558.1CoolDesignWhy

  19. New season of colloquia begins at Princeton Plasma Physics Laboratory |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNew scholarship supportsFeet)New research, publicationsNewPrinceton

  20. City of Princeton, Kentucky (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler, Iowa (UtilityIowaIowaKansas (Utility Company) JumpPrinceton,

  1. PPPL now offering SUMMER high school internship! | Princeton Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| Department ofStephen P rice Los ANotPlasmanewonPrincetonLab

  2. PPPL recognized for green electronics purchasing program | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| Department ofStephen P rice Los| Princeton

  3. PPPL's Hawryluk Named ITER Deputy Director-General | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| Department ofStephen P riceawards | Princeton Plasma

  4. PPPL's booth is a crowd pleaser at Communiversity | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| Department ofStephen P riceawards | Princeton

  5. PPPL's dynamic diagnostic duo | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| Department ofStephen P riceawards | PrincetonPPPL's dynamic

  6. PPPL's dynamic diagnostic duo | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| Department ofStephen P riceawards | PrincetonPPPL's dynamicPPPL's

  7. Plasma Synthesis of Hydrogen Peroxide | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeerFederal FleetUpSmall WindPrincetonPlasma Synthesis

  8. Princeton Plasma Lab funded to explore nanoparticles with plasma |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram GuidelinesThousand CubicCubic Feet)11,764.9 12,273.1Princeton

  9. Eliot Feibush leads new Princeton consortium to visualize Big Data |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas NuclearElectronic Structure andEligibility AlbertEligiblePrinceton

  10. Hawaiian Hot-spot Swell Structure from Seafloor MT Sounding Steven Constable

    E-Print Network [OSTI]

    Key, Kerry

    on the hotspot (Cough, 1979; Detrick and Crough, 1978); (ii) compositional underplating of depleted mantle

  11. Controlled Source Audio MT At Pilgrim Hot Springs Area (DOE GTP) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercialRenewableGlobal L P Jump to:

  12. Controlled Source Audio MT At Roosevelt Hot Springs Area (Combs 2006) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercialRenewableGlobal L P Jump to:Open Energy

  13. Medical Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville MtMedical Area Total Egy Plt Inc Jump to:Medical Hot

  14. Mickey Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville MtMedical AreaInformationMickey Hot Springs

  15. Solar energy research at Princeton University Universities today bear the same responsibility to confront environmental challenges

    E-Print Network [OSTI]

    Solar energy research at Princeton University Universities today bear the same responsibility, campus- based research projects are increasingly being integrated into courses, the results of which, but they can make unique contributions through research, teaching, and student initiatives. Universities also

  16. A.J. Stewart Smith, Princeton's first dean for research, becomes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A.J. Stewart Smith, Princeton's first dean for research, becomes vice president for PPPL By Catherine Zandonella, Office of the Dean for Research June 28, 2013 Tweet Widget Google...

  17. A.J. Stewart Smith to step down as Princeton University vice...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A.J. Stewart Smith to step down as Princeton University vice president for PPPL in 2016 By John Greenwald July 24, 2015 Tweet Widget Google Plus One Share on Facebook A.J. Stewart...

  18. Princeton and PPPL projects selected to run on super-powerful...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton and PPPL projects selected to run on super-powerful computer to be delivered to Oak Ridge Leadership Computing Facility By John Greenwald June 1, 2015 Tweet Widget Google...

  19. Near-Surface imaging of a hydrogeothermal system at Mount Princeton...

    Open Energy Info (EERE)

    Near-Surface imaging of a hydrogeothermal system at Mount Princeton, Colorado using 3D seismic, self-potential, and dc resistivity data Jump to: navigation, search OpenEI Reference...

  20. Recycling Lingware in a Multilingual MT System Steffen Leo Hansen

    E-Print Network [OSTI]

    Recycling Lingware in a Multilingual MT System Steffen Leo Hansen Manny Rayner David Carter Ivan (Rayner and Carter, 1997). The first is the most obvious: we start with a function- ing grammar

  1. Charmonium in Hot Medium†

    E-Print Network [OSTI]

    Zhao, Xingbo

    2012-02-14

    We investigate charmonium production in the hot medium created by heavy-ion collisions by setting up a framework in which in-medium charmonium properties are constrained by thermal lattice QCD (lQCD) and subsequently ...

  2. Hot and dark matter

    E-Print Network [OSTI]

    D'Eramo, Francesco

    2012-01-01

    In this thesis, we build new Effective Field Theory tools to describe the propagation of energetic partons in hot and dense media, and we propose two new reactions for dark matter in the early universe. In the first part, ...

  3. NEAFS Y-mtDNA Workshop (Butler and Coble) November 1, 2006

    E-Print Network [OSTI]

    NEAFS Y-mtDNA Workshop (Butler and Coble) mtDNA November 1, 2006 http://www.cstl.nist.gov/biotech) mtDNA November 1, 2006 http://www.cstl.nist.gov/biotech/strbase/training.htm 2 Data Review-mtDNA Workshop (Butler and Coble) mtDNA November 1, 2006 http://www.cstl.nist.gov/biotech/strbase/training.htm 3

  4. Superradiant pulse compression using freecarrier plasma G. Shvets and N. J. Fisch, Princeton University, Plasma Physics Laboratory, Princeton, NJ 08543, tel. (609)

    E-Print Network [OSTI]

    Superradiant pulse compression using free≠carrier plasma G. Shvets and N. J. Fisch, Princeton, Germany Free≠carrier plasma can be used as an e#ective nonlinear medium for pulse compression a novel method of compressing laser pulses to femtosecond duration using tenuous plasma as the nonlinear

  5. LEAH PRICE. How to Do Things with Books in Victorian Britain. Pp. ix + 350. Princeton and Oxford: Princeton University Press, 2012. Cloth, 19.95.

    E-Print Network [OSTI]

    Napadow, Vitaly

    REVIEW LEAH PRICE. How to Do Things with Books in Victorian Britain. Pp. ix + 350. Princeton and ink, bindings, covers, and wrappers? This is the topic of Leah Price's study. It is dense, original, or volumes. Price's basic argument is that physical books play many roles: as shields against as well

  6. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    , Princeton, NJ 08543, U.S.A. 2) New York University, New York, NY e-mail: fu@pppl.gov Abstract Global hybridPrepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma is posted on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports

  7. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma, Charles Gentile, Craig Priniski, and John Sethian February 2006 PPPL-4147 PPPL-4147 #12;Princeton Plasma agency thereof or its contractors or subcontractors. PPPL Report Availability Princeton Plasma Physics

  8. Audit of selected government-funded grants and contracts at Princeton University

    SciTech Connect (OSTI)

    NONE

    1997-11-24

    This audit was performed to determine the allowability of costs claimed by Princeton under 20 Government-funded, cost-reimbursement grants and contracts (agreements). The agreements audited were those assigned to two principal investigators who were also employed by a commercial business. The audit included test procedures for validating claimed costs by records tracing. For indirect costs and employee benefit costs, the audit analyzed whether claimed costs were based on approved fixed rates applied to appropriate allocation bases. In addition to reviewing Princeton`s records, documentation from the commercial business was reviewed. The audit identified conditions that called into question the amount of labor effort and expenditures incurred on the 20 Princeton agreements. Specifically, the number of hours that the principal investigators reported to have worked at the commercial business raised doubt about the amount of effort that was actually devoted to the agreements. Based on audit findings, recommendations were made for corrective actions by Princeton and for cost recovery by the contracting officers.

  9. Mt St Helens Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformationOliver, Pennsylvania:(CTI PFAN) | OpenMt St HelensMt St

  10. Princeton -Weekly Bulletin 06/14/04 -Grants fund research on underwater vehicles, high-tech materials June 14, 2004

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    Princeton - Weekly Bulletin 06/14/04 - Grants fund research on underwater vehicles, high-tech research on underwater vehicles, high- tech materials By Steven Schultz Princeton NJ -- University mobile unmanned networks of underwater sensors and to develop new high-tech materials. The Department

  11. Princeton Plasma Physics Laboratory FY2003 Annual Highlights

    SciTech Connect (OSTI)

    Editors: Carol A. Phillips; Anthony R. DeMeo

    2004-08-23

    The Princeton Plasma Physics Laboratory FY2003 Annual Highlights report provides a summary of the activities at the Laboratory for the fiscal year--1 October 2002 through 30 September 2003. The report includes the Laboratory's Mission and Vision Statements, a message ''From the Director,'' summaries of the research and engineering activities by project, and sections on Technology Transfer, the Graduate and Science Education Programs, Awards and Honors garnered by the Laboratory and the employees, and the Year in Pictures. There is also a listing of the Laboratory's publications for the year and a section of the abbreviations, acronyms, and symbols used throughout the report. In the PDF document, links have been created from the Table of Contents to each section. You can also return to the Table of Contents from the beginning page of each section. The PPPL Highlights for fiscal year 2003 is also available in hardcopy format. To obtain a copy e-mail Publications and Reports at: pub-reports@pppl.gov. Be sure to include your complete mailing address

  12. Coping with Hot Work Environments†

    E-Print Network [OSTI]

    Smith, David

    2005-04-28

    Many people work under hot, humid conditions. Summer heat is a particular hazard to agricultural producers who work long hours under the sun. However, other people working in hot yards, gardens, kitchens or industry jobs are also exposed...

  13. U.S. DEPARTMENT OF ENERGY'S PRINCETON PLASMA PHYSICS LABORATORY

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    , there is the possibility of an ST-based compact Component Test Facility (CTF) to develop and test fusion power plant research results that may open an attractive path towards developing fusion energy as an abundant, safe.TheNSTXdeviceisexploringanovelstructureforthe magnetic field used to contain the hot ionized gas, called "plasma", the fuel for the production of fusion

  14. Green Systems Solar Hot Water

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    Green Systems Solar Hot Water Heating the Building Co-generation: Heat Recovery System: Solar Thermal Panels (Trex enclosure) Hot Water Storage Tank (TS-5; basement) Hot Water Heaters (HW-1,2; basement) Pre-heats water so water heaters don't need to use as much energy Gas-powered, high efficiency

  15. Probing the lexicon in evaluating commercial MT systems Martin Volk

    E-Print Network [OSTI]

    for self evaluation consisted of technical, linguistic and ergonomic issues. As part of the linguisticProbing the lexicon in evaluating commercial MT systems Martin Volk University of Zurich Department Abstract In the past the evaluation of machine trans- lation systems has focused on single sys- tem

  16. Princeton University, Plasma Physics Laboratory annual report, October 1, 1988--September 30, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-31

    This report contains discussions on the following topics: principal parameters achieved in experimental devices (FY89); tokamak fusion test reactor; compact ignition tokamak; princeton beta experiment- modification; current drive experiment; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for (FY89); graduate education: plasma physics; graduate education: plasma science and technology; and Princeton Plasmas Physics Laboratory Reports (FY89).

  17. Princeton University, Plasma Physics Laboratory annual report, October 1, 1988--September 30, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This report contains discussions on the following topics: principal parameters achieved in experimental devices (FY89); tokamak fusion test reactor; compact ignition tokamak; princeton beta experiment- modification; current drive experiment; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for (FY89); graduate education: plasma physics; graduate education: plasma science and technology; and Princeton Plasmas Physics Laboratory Reports (FY89).

  18. Princeton Plasma Physics Laboratory. Annual report, October 1, 1989--September 30, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  19. Princeton Plasma Physics Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011 HighMayOctoberPrinceton Plasma PhysicsPrinceton

  20. Princeton Plasma Physics Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011 HighMayOctoberPrinceton PlasmaPrinceton Plasma

  1. Princeton Plasma Physics Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011 HighMayOctoberPrinceton PlasmaPrinceton

  2. Princeton-CEFRC Summer Program on Combustion: 2010 Session | U.S. DOE

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011 HighMayOctoberPrinceton PlasmaPrincetonOffice of

  3. Princeton-CEFRC Summer Program on Combustion: 2013 Session | U.S. DOE

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011 HighMayOctoberPrinceton PlasmaPrincetonOffice

  4. Princeton Plasma Physics Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thIWalter H.4 ¬Ľ InsidePacificPresidentPrincetonPrinceton

  5. (Have we found the Holy Grail?) Panel at MT-Summit 2003

    E-Print Network [OSTI]

    Wu, Dekai

    (Have we found the Holy Grail?) Panel at MT-Summit 2003 #12;The HKUST Leading Question Translation? If not, is the Holy Grail just around the corner? Translation Are we just about done? #12;Dekai Wu, MT

  6. Session: Hot Dry Rock

    SciTech Connect (OSTI)

    Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

  7. HBLED Hot Testing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing Programs |Reference Station Design TaskHANFORDHBLED Hot

  8. always free and open to the public artmuseum.princeton.edu

    E-Print Network [OSTI]

    Rowley, Clarence W.

    always free and open to the public artmuseum.princeton.edu How's the Weather Today, Monet? SMART KIDS Claude Monet, Water Lilies and Japanese Bridge, 1899. From the collection of William Church Osborn, France. Monet loved his garden and often went there to paint--he painted this bridge several times. He

  9. P. J. Conkwright and Book Design Throughout its history, Princeton University Press has produced

    E-Print Network [OSTI]

    Landweber, Laura

    P. J. Conkwright and Book Design Throughout its history, Princeton University Press has produced, the Press has shown a strong commitment to the craft of book design. By the middle of the twentieth century's reputation as a press with the highest design standards. Even as technology has evolved and working

  10. Princeton Plasma Physics Laboratory: Annual report, October 1, 1986--September 30, 1987

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    This report contains papers on the following topics: Principle Parameters Achieved in Experimental Devices (FY87); Tokamak Fusion Test Reactor; Princeton Beta Experiment-Modification; S-1 Spheromak; Current-Drive Experiment; X-Ray Laser Studies; Theoretical Division; Tokamak Modeling; Compact Ignition Tokamak; Engineering Department; Project Planning and Safety Office; Quality Assurance and Reliability; Administrative Operations; and PPPL Patent Invention Disclosures (FY87).

  11. PRINCETON CHARITABLE FOUNDATION LIMITED 19 NORCOTT ROAD LONDON N16 7EJ UNITED KINGDOM

    E-Print Network [OSTI]

    Rowley, Clarence W.

    PRINCETON CHARITABLE FOUNDATION LIMITED 19 NORCOTT ROAD ∑ LONDON N16 7EJ ∑ UNITED KINGDOM GIFT AID have paid or will pay an amount of Income Tax and/or Capital Gains Tax for each tax year (6 April to 5 April) that is at least equal to the amount of tax that all the charities or Community Amateur Sports

  12. SeyedHosseinHezaveh 410-662-2787 | shezaveh@princeton.edu

    E-Print Network [OSTI]

    Bou-Zeid, Elie

    research area: Large eddy simulations of Vertical Axis Wind Turbines M.Sc. | 2008-2011 | Sharif University://powerbox.princeton.edu/Home #12;Page 2 Conference Hezaveh S.H. and Bou-Zeid E. "Large eddy simulations of vertical axis wind Research Interests Hybrid Wind Turbine Design Computational Mechanics Green Energy Large Eddy Simulations

  13. Analysis of a Third-Generation Princeton Tri-leaflet Mechanical Heart Valve

    E-Print Network [OSTI]

    Petta, Jason

    Analysis of a Third-Generation Princeton Tri-leaflet Mechanical Heart Valve Michael Hsu Advisor heart valve ∑ Static analysis of leaflet under uniform pressure of 10 MPa Summer Objectives ∑ Find Heart valve disease ∑ Over 5 million affected ∑ Over 225,000 valve- replacement surgeries performed

  14. La Universidad de Princeton es una comunidad acadmica de gran dina-

    E-Print Network [OSTI]

    Rowley, Clarence W.

    Comunicaciůn Intercultural Oferta acadťmica #12;Estudiar en una escuela de artes liberales es una experiencia solidez de una importante instituciůn de investigaciůn y las caracterŪsticas de una excepcional escuela de artes liberales. #12;Los estudiantes de grado son nuestra prioridad En Princeton, todos los profesores

  15. Pyne Library Praised "Princeton had no separate library building until 1873, when the books

    E-Print Network [OSTI]

    1897 Pyne Library Praised "Princeton had no separate library building until 1873, when the books belonging to the college collection were transferred to the Chancellor Green Library of the library were what one would expect in view of the exterior form. The librarian's desk was placed

  16. Hot cell examination table

    DOE Patents [OSTI]

    Gaal, Peter S. (Monroeville, PA); Ebejer, Lino P. (Weston, MA); Kareis, James H. (Slickville, PA); Schlegel, Gary L. (McKeesport, PA)

    1991-01-01

    A table for use in a hot cell or similar controlled environment for use in examining specimens. The table has a movable table top that can be moved relative to a table frame. A shaft is fixedly mounted to the frame for axial rotation. A shaft traveler having a plurality of tilted rollers biased against the shaft is connected to the table top such that rotation of the shaft causes the shaft traveler to roll along the shaft. An electromagnetic drive is connected to the shaft and the frame for controllably rotating the shaft.

  17. Hot Plate Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energyHighland ViewdefaultJulySeptemberMovingHot Plate

  18. Development of an Extreme Environment Materials Research Facility at Princeton

    SciTech Connect (OSTI)

    Cohen, A B; Tully, C G; Austin, R; Calaprice, F; McDonald, K; Ascione, G; Baker, G; Davidson, R; Dudek, L; Grisham, L; Kugel, H; Pagdon, K; Stevenson, T; Woolley, R

    2010-11-17

    The need for a fundamental understanding of material response to a neutron and/or high heat flux environment can yield development of improved materials and operations with existing materials. Such understanding has numerous applications in fields such as nuclear power (for the current fleet and future fission and fusion reactors), aerospace, and other research fields (e.g., high-intensity proton accelerator facilities for high energy physics research). A proposal has been advanced to develop a facility for testing various materials under extreme heat and neutron exposure conditions at Princeton. The Extreme Environment Materials Research Facility comprises an environmentally controlled chamber (48 m^3) capable of high vacuum conditions, with extreme flux beams and probe beams accessing a central, large volume target. The facility will have the capability to expose large surface areas (1 m^2) to 14 MeV neutrons at a fluence in excess of 10^13 n/s. Depending on the operating mode. Additionally beam line power on the order of 15-75 MW/m2 for durations of 1-15 seconds are planned... The multi-second duration of exposure can be repeated every 2-10 minutes for periods of 10-12 hours. The facility will be housed in the test cell that held the Tokamak Fusion Test Reactor (TFTR), which has the desired radiation and safety controls as well as the necessary loading and assembly infrastructure. The facility will allow testing of various materials to their physical limit of thermal endurance and allow for exploring the interplay between radiation-induced embrittlement, swelling and deformation of materials, and the fatigue and fracturing that occur in response to thermal shocks. The combination of high neutron energies and intense fluences will enable accelerated time scale studies. The results will make contributions for refining predictive failure modes (modeling) in extreme environments, as well as providing a technical platform for the development of new alloys, new materials, and the investigation of repair mechanisms. Effects on materials will be analyzed with in situ beam probes and instrumentation as the target is exposed to radiation, thermal fluxes and other stresses. Photon and monochromatic neutron fluxes, produced using a variable-energy (4-45 MeV) electron linac and the highly asymmetric electron-positron collisions technique used in high-energy physics research, can provide non-destructive, deep-penetrating structural analysis of materials while they are undergoing testing. The same beam lines will also be able to generate neutrons from photonuclear interactions using existing Bremsstrahlung and positrons on target quasi-monochromatic gamma rays. Other diagnostics will include infrared cameras, residual gas analyzer (RGA), and thermocouples; additional diagnostic capability will be added.

  19. Geothermal Exploration in Hot Springs, Montana

    SciTech Connect (OSTI)

    Toby McIntosh, Jackola Engineering

    2012-09-26

    The project involves drilling deeper in the Camp Aqua well dri lled in June 1982 as part of an effort to develop an ethanol plant. The purpose of the current drill ing effort is to determine if water at or above 165√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬įF exists for the use in low temperature resource power generation. Previous geothermal resource study efforts in and around Hot Springs , MT and the Camp Aqua area (NE of Hot Springs) have been conducted through the years. A confined gravel aquifer exists in deep alluvium overlain by approximately 250√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬? of si lt and c lay deposits from Glacial Lake Missoula. This gravel aquifer overlies a deeper bedrock aquifer. In the Camp Aqua area several wel l s exist in the gravel aquifer which receives hot water f rom bedrock fractures beneath the area. Prior to this exploration, one known well in the Camp Aqua area penetrated into the bedrock without success in intersecting fractures transporting hot geothermal water. The exploration associated with this project adds to the physical knowledge database of the Camp Aqua area. The dri l l ing effort provides additional subsurface information that can be used to gain a better understanding of the bedrock formation that i s leaking hot geothermal water into an otherwise cold water aquifer. The exi s t ing well used for the explorat ion is located within the √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?center√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ě of the hottest water within the gravel aquifer. This lent i t sel f as a logical and economical location to continue the exploration within the existing well. Faced with budget constraints due to unanticipated costs, changing dril l ing techniques stretched the limited project resources to maximize the overa l l well depth which f e l l short of original project goals. The project goal of finding 165√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬įF or hotter water was not achieved; however the project provides additional information and understanding of the Camp Aqua area that could prove valuable in future exploration efforts

  20. Geothermal energy resource investigations at Mt. Spurr, Alaska

    SciTech Connect (OSTI)

    Turner, D.L.; Wescott, E.M. (eds.)

    1986-12-01

    Spurr volcano is a composite Quaternary cone of largely andesitic composition located on the west side of Cook Inlet about 80 miles west of Anchorage and about 40 miles from the Beluga electrical transmission line. Geologic mapping (Plate 1-1) shows that the present summit depression was produced by a Mt. St. Helens-type sector collapse, rather than by a caldera collapse. Geochronologic and previous tephrachronologic studies show that there has been an active magmatic system at Spurr volcano during the late Pleistocene-to-Holocene time interval that is of critical interest for geothermal energy resource assessment. Major effort was devoted to geochemical and geophysical surveys of the accessible area south of Mt. Spurr, in addition to geologic mapping and geochronologic studies. Many coincident mercury and helium anomalies were found, suggesting the presence of geothermal systems at depth. Extremely large electrical self-potential anomalies were also found, together with extensive zones of low resistivity discovered by our controlled-source audiomagnetotelluric survey. The juxtaposition of all of these different types of anomalies at certain areas on the south slope of Crater Peak indicates the presence of a geothermal system which should be accessible by drilling to about 2000 ft depth. It is also evident that there is a strong volcanic hazard to be evaluated in considering any development on the south side of Mt. Spurr. This hazardous situation may require angle drilling of production wells from safer areas and placement of power generation facilities at a considerable distance from hazardous areas.

  1. Hot hollow cathode gun assembly

    DOE Patents [OSTI]

    Zeren, J.D.

    1983-11-22

    A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  2. Spectral Modeling Hot Star Winds

    E-Print Network [OSTI]

    Cohen, David

    Spectral Modeling of X-Rays from Hot Star Winds Emma Wollman Advisor: David Cohen #12;Hot Stars ∑∑ Short-livedShort-lived (~ 1-10 million yrs)(~ 1-10 million yrs) #12;Stellar Winds ∑ Net momentum ∑ More luminosity !"stronger wind ∑ Mass-loss rate determines the fate of the star #12;X-ray Production

  3. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01

    in order to reduce the water and energy wasted in hot waterhot water) and 17% if hot water energy is included. The datafrom the delivered hot water energy of 66% to provide the

  4. Mt St Helens Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformationOliver, Pennsylvania:(CTI PFAN) | OpenMt St Helens

  5. MT Energie GmbH Co KG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 < MHKKemblaSolar Jump to:Industries Inc JumpMT

  6. RAPID/Roadmap/12-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevada <UtahMontanasourceWA-aCA-aMT-a <

  7. RAPID/Roadmap/15-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevadaa < RAPID‚Äé | RoadmapCO-ceWA-eb <MT-a

  8. RAPID/Roadmap/17-MT-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevadaa < RAPID‚Äé |a < RAPID‚ÄéCA-aHI-aaMT-c

  9. RAPID/Roadmap/18-MT-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevadaa < RAPID‚Äé |a <-AK-b <CO-badMT-b

  10. RAPID/Roadmap/4-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevadaa < RAPID‚Äéf <CA-aab <cdMT-a <

  11. RAPID/Roadmap/6-MT-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevadaa < RAPID‚ÄéfRAPID/Roadmap/6-CO-bacMT-d

  12. RAPID/Roadmap/6-MT-f | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevadaa < RAPID‚ÄéfRAPID/Roadmap/6-CO-bacMT-df

  13. City of Mt Pleasant, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler, Iowa (UtilityIowa Phone Number: (319) 385-2121City of Mt

  14. RAPID/Roadmap/14-MT-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‚Äé | Roadmap JumpNV-a <CA-cID-aMT-b <

  15. RAPID/Roadmap/14-MT-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‚Äé | Roadmap JumpNV-a <CA-cID-aMT-b

  16. RAPID/Roadmap/14-MT-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‚Äé | Roadmap JumpNV-a <CA-cID-aMT-bd

  17. RAPID/Roadmap/17-MT-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‚Äé | Roadmap JumpNV-ad-MT-d < RAPID‚Äé |

  18. RAPID/Roadmap/20-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‚Äé | RoadmapAK-a < RAPID‚Äé |MT-a <

  19. RAPID/Roadmap/8-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‚Äé | RoadmapAK-abFD-a < RAPID‚ÄéID-eMT-a

  20. Micro-Earthquake At Marysville Mt Area (Blackwell) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville MtMedicalInformation 2-2005)1995) |Information

  1. HERO Ski Trip to Mt. Hood Meadows February

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose LowÔāó WeUpdateScienceForTrip to Mt. Hood Meadows

  2. Micro-Earthquake At Brady Hot Springs Geothermal Area (2011) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville MtMedical AreaInformationMickey Hot(Majer,

  3. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01

    Strategies for Rural Communities. Ē National Conference onallocation facing the rural community of Mt. Laguna? (EquityStrategies for Rural Communities. Ē National Conference on

  4. The decay of hot nuclei

    SciTech Connect (OSTI)

    Moretto, L.G.; Wozniak, G.J.

    1988-11-01

    The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs.

  5. Hot carrier diffusion in graphene

    E-Print Network [OSTI]

    Ruzicka, Brian Andrew; Wang, Shuai; Werake, Lalani Kumari; Weintrub, Ben; Loh, Kian Ping; Zhao, Hui

    2010-11-01

    We report an optical study of charge transport in graphene. Diffusion of hot carriers in epitaxial graphene and reduced graphene oxide samples are studied using an ultrafast pump-probe technique with a high spatial resolution. Spatiotemporal...

  6. Hot Pot Detail - Evidence of Quaternary Faulting

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    2013-06-27

    Compilation of published data, field observations and photo interpretation relevant to Quaternary faulting at Hot Pot.

  7. Hot Pot Detail - Evidence of Quaternary Faulting

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Compilation of published data, field observations and photo interpretation relevant to Quaternary faulting at Hot Pot.

  8. Visual Field Maps, Population Receptive Field Sizes, and Visual Field Coverage in the Human MT Complex

    E-Print Network [OSTI]

    Dumoulin, Serge O.

    of processing in human motion-selective cortex. I N T R O D U C T I O N Neuroimaging experiments localize human by additional experiments. Defining human MT based on stimulus selectivity means that the identificationVisual Field Maps, Population Receptive Field Sizes, and Visual Field Coverage in the Human MT

  9. Bitcoin Transaction Malleability and MtGox Christian Decker and Roger Wattenhofer

    E-Print Network [OSTI]

    Bitcoin Transaction Malleability and MtGox Christian Decker and Roger Wattenhofer ETH Zurich International Publishing Switzerland 2014 #12;314 C. Decker and R. Wattenhofer exchanges its monopoly slowly doubled the withdrawn bitcoins, once from the withdrawal and once on its account on MtGox. In this work we

  10. An assessment of regional climate trends and changes to the Mt. Jaya glaciers of Irian Jaya†

    E-Print Network [OSTI]

    Kincaid, Joni L.

    2007-09-17

    on the Mt. Jaya glaciers has been lacking since the early 1970s. Using IKONOS satellite images, the ice extents of the Mt. Jaya glaciers in 2000, 2002, 2003, 2004, and 2005 were mapped. The mapping indicates that the recessional trend which began in the mid...

  11. Mt. Etna tropospheric ash retrieval and sensitivity analysis using Moderate Resolution Imaging

    E-Print Network [OSTI]

    Oxford, University of

    Mt. Etna tropospheric ash retrieval and sensitivity analysis using Moderate Resolution Imaging.pugnaghi@unimore.it, gabriele.gangale@unimore.it Abstract. A retrieval of tropospheric volcanic ash from Mt Etna has been. In order to derive the ash plume optical thickness, the particle effective radius and the total mass

  12. A MT System from Turkmen to Turkish Employing Finite State and Statistical Methods

    E-Print Network [OSTI]

    Yanikoglu, Berrin

    between close language pairs can be relatively easier and can still benefit from simple(r) paradigms in MT with a disambiguation post-processing stage based on statistical language models. The very productive inflectionalA MT System from Turkmen to Turkish Employing Finite State and Statistical Methods A. CŁneyd TANTU

  13. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    , California 92186 3 Columbia University, New York, New York 10027 Abstract Plasma shape control using realPrepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma is posted on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports

  14. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    in the discharge voltage range of 200-700 V. The arcing between the floating velvet electrodes and the plasmaPrepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma. Raitses, D. Staack, A. Dunaevsky, and N.J. Fisch December 2005 PPPL-4136 PPPL-4136 #12;Princeton Plasma

  15. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory Calculation of the Vacuum Green's Function Valid even for High Toroidal Mode Number Laboratory This report is posted on the U.S. Department of Energy's Princeton Plasma Physics Laboratory

  16. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    Energy Res. Inst., Naka, JAPAN 13 Max-Planck Institut fur Plasmaphysik, Garching, GERMANY 14 A.F. IoffePrepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma This report is posted on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications

  17. Hot conditioning equipment conceptual design report

    SciTech Connect (OSTI)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  18. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1993

    SciTech Connect (OSTI)

    Finley, V.L.; Wiezcorek, M.A.

    1995-01-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY93. The report is prepared to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1993. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1993, PPPL had both of its two large tokamak devices in operation; the Tokamak Fusion Test Reactor (TFTR) and the Princeton Beta Experiment-Modification (PBX-M). PBX-M completed its modifications and upgrades and resumed operation in November 1991. TFTR began the deuterium-tritium (D-T) experiments in December 1993 and set new records by producing over six million watts of energy. The engineering design phase of the Tokamak Physics Experiment (TPX), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL`s next machine, began in 1993 with the planned start up set for the year 2001. In 1993, the Environmental Assessment (EA) for the TFRR Shutdown and Removal (S&R) and TPX was prepared for submittal to the regulatory agencies.

  19. Hot Gas Halos in Galaxies

    SciTech Connect (OSTI)

    Mulchaey, John S. [Carnegie Observatories (United States); Jeltema, Tesla E. [UCO/Lick Observatories (United States)

    2010-06-08

    We use Chandra and XMM-Newton to study how the hot gas content in early-type galaxies varies with environment. We find that the L{sub X}-L{sub K} relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. This suggests that internal processes such as supernovae driven winds or AGN feedback may expel hot gas from low mass field galaxies. Such mechanisms are less effective in groups and clusters where the presence of an intragroup or intracluster medium may confine outflowing material.

  20. Hot Spot | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey:Hopkinsville, Kentucky:OpenHot Pot GeothermalHot

  1. Hot Springs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine Jump to:II Wind FarmHorstHotHotSprings

  2. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for Calendar Year 1992

    SciTech Connect (OSTI)

    Finley, V.L.; Wieczorek, M.A.

    1994-03-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY92. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health.

  3. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1998

    SciTech Connect (OSTI)

    V. Finley

    2000-03-06

    The results of the 1998 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the US Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1998. One significant initiative is the Integrated Safety Management (ISM) program that embraces environment, safety, and health principles as one.

  4. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1991

    SciTech Connect (OSTI)

    Finley, V.L.; Stencel, J.R.

    1992-11-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY91. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health.

  5. Princeton Plasma Physics Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011 HighMayOctoberPrinceton Plasma Physics Laboratory

  6. Princeton Plasma Physics Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011 HighMayOctoberPrinceton Plasma Physics

  7. Princeton Plasma Physics Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011 HighMayOctoberPrinceton Plasma

  8. 2015 Princeton-CEFRC Summer School on Combustion - Schedule of Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPONeApril 30, 2013Program952015 HourPrinceton-CEFRC

  9. COLLOQUIUM: On Tracing the Origins of the Solar Wind | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1, 2013, 4:15pm Colloquia MBGLabPrinceton

  10. COLLOQUIUM: One Second After the Big Bang | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1, 2013, 4:15pm Colloquia MBGLabPrincetonOctober

  11. COLLOQUIUM: The Alfvénic Motions of the Sun's Outer Atmosphere | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1, 2013, 4:15pmEnergy | PrincetonPlasma PhysicsPlasma

  12. COLLOQUIUM: The Fate of the Land Carbon Sink | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1, 2013, 4:15pmEnergy | PrincetonPlasmaLab May

  13. COLLOQUIUM: The Lithium Tokamak eXperiment (LTX) | Princeton Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1, 2013, 4:15pmEnergy | PrincetonPlasmaLabLab

  14. COLLOQUIUM: The Main Results from the C-2 Device | Princeton Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1, 2013, 4:15pmEnergy |Princeton Plasma PhysicsLab

  15. PPPL, Princeton launch hunt for Big Bang particles offering clues to the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| Department ofStephen P riceawards | PrincetonPPPL'sorigin of the

  16. Princeton Site Office CX Determinations | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D-Nicholas Turro,Science (SC) and SubmittingPrinceton

  17. Princeton Plasma Physics Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thIWalter H.4 ¬Ľ InsidePacificPresidentPrinceton Plasma

  18. Princeton Plasma Physics Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thIWalter H.4 ¬Ľ InsidePacificPresidentPrinceton

  19. Alpha Gamma Hot Cell Facility

    E-Print Network [OSTI]

    Kemner, Ken

    . These operations can result in elevated radiological risks to the facility and workers. ARG-US -- meaning and should be developed for and deployed in nuclear and radiological facilities to aid operation and reduceAlpha Gamma Hot Cell Facility Argonne National Laboratory is a U.S. Department of Energy laboratory

  20. Stratification in hot water tanks

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1982-04-01

    Stratification in a domestic hot water tank, used to increase system performance by enabling the solar collectors to operate under marginal conditions, is discussed. Data taken in a 120 gallon tank indicate that stratification can be achieved without any special baffling in the tank. (MJF)

  1. MT3D: a 3 dimensional magnetotelluric modeling program (user's guide and documentation for Rev. 1)

    SciTech Connect (OSTI)

    Nutter, C.; Wannamaker, P.E.

    1980-11-01

    MT3D.REV1 is a non-interactive computer program written in FORTRAN to do 3-dimensional magnetotelluric modeling. A 3-D volume integral equation has been adapted to simulate the MT response of a 3D body in the earth. An integro-difference scheme has been incorporated to increase the accuracy. This is a user's guide for MT3D.REV1 on the University of Utah Research Institute's (UURI) PRIME 400 computer operating under PRIMOS IV, Rev. 17.

  2. Ground Magnetics At Marysville Mt Area (Blackwell) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar JumpInformation Crump's Hot Springs Area (DOE

  3. Commonwealth Solar Hot Water Residential Program

    Broader source: Energy.gov [DOE]

    Since February 2011, the Massachusetts Clean Energy Center (MassCEC) has provided rebates for the installation of residential solar hot water systems through the Commonwealth Solar Hot Water Prog...

  4. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1990

    SciTech Connect (OSTI)

    Stencel, J.R.; Finley, V.L.

    1991-12-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory for CY90. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The PPPL has engaged in fusion energy research since 1951 and in 1990 had one of its two large tokamak devices in operation: namely, the Tokamak Fusion Test Reactor. The Princeton Beta Experiment-Modification is undergoing new modifications and upgrades for future operation. A new machine, the Burning Plasma Experiment -- formerly called the Compact Ignition Tokamak -- is under conceptual design, and it is awaiting the approval of its draft Environmental Assessment report by DOE Headquarters. This report is required under the National Environmental Policy Act. The long-range goal of the US Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. 59 refs., 39 figs., 45 tabs.

  5. Solar Works in Seattle: Domestic Hot Water

    Office of Energy Efficiency and Renewable Energy (EERE)

    Seattle's residential solar hot water workshop. Content also covers general solar resource assessment, siting, and financial incentives.

  6. 2009-10 Princeton Global Scholar Ge Zhaoguang. Professor Ge is the founding director of the National Institute for Advanced

    E-Print Network [OSTI]

    2009-10 Princeton Global Scholar Ge Zhaoguang. Professor Ge is the founding director, and emendation of all sorts of newly discovered texts (mostly found at archaeological sites). Professor Ge University, Professor Ge taught at Tsinghua University for a number of years. He is known for many important

  7. 2009-10 Princeton Global Scholar Yasushi Suto. Dr. Yasushi Suto, Professor of University of Tokyo, and the Council of

    E-Print Network [OSTI]

    Singh, Jaswinder Pal

    of the field of Cosmology not only in Japan but also in the world. Dr. Suto also works in the field studying distant galaxies and universe but also the important study the origins of our physical world. He is an international scientist working with many excellent colleagues over the world, including Princeton University

  8. Learning How to Match Fresco Fragments THOMAS FUNKHOUSER, HIJUNG SHIN, and COREY TOLER-FRANKLIN, Princeton University

    E-Print Network [OSTI]

    -FRANKLIN, Princeton University ANTONIO GARCīIA CASTA ~NEDA, University College London BENEDICT BROWN, Katholieke Reference Format: Funkhouser, T., Shin, H., Toler-Franklin, C., Garcīia Casta~neda, A., Brown, B., Dobkin, Dīia Casta~neda, University College London, UK; B. Brown, Katholieke Universiteit Leuven, Belgium; D. Dobkin

  9. NEAFS Y-mtDNA Workshop (Butler and Coble) Markers, Core Loci, and Kits

    E-Print Network [OSTI]

    ) ≠ Ann Gross (MN) ≠ Jill Smerick (FBI) ≠ Sam Baechtel (FBI) ≠ Roger Frappier (CFS) ≠ Phil Kinsey (OR now MT) ≠ Gary Sims (CA DOJ) ≠ George Carmody (retired) ≠ Mike Adamowicz (CT) ≠ Bruce Budowle (FBI

  10. TIME-VARIABLEFILTERING OF MtTLTI[CHANNELSIGNALS USING MULTIPLE WINDOWS COHERENCEAND THE WEYL TRANSFORM

    E-Print Network [OSTI]

    Sandsten, Maria

    TIME-VARIABLEFILTERING OF MtTLTI[CHANNELSIGNALS USING MULTIPLE WINDOWS COHERENCEAND THE WEYL between all channel pairs. Time-frequency coherence functions are estimated using the multiple window

  11. The Genetic Structure of the Kuwaiti Population: mtDNA Inter- and Intra-population Variation

    E-Print Network [OSTI]

    Theyab, Jasem; Al-Bustan, Suzanne; Crawford, Michael H.

    2012-08-01

    it to their neighboring populations. These subpopulations were tested for genetic homogeneity and shown to be heterogeneous. Restriction fragment length polymorphism (RFLP) and mtDNA sequencing analyses of HVRI were used to reconstruct the genetic structure of Kuwait...

  12. Implied motion activation in cortical area MT can be explained by visual low-level features

    E-Print Network [OSTI]

    Oram, Mike

    ForReview Only Implied motion activation in cortical area MT can be explained by visual low Neuroscience #12;ForReview Only 1 Implied motion activation in cortical area MT can be explained by visual low, The Netherlands Page 1 of 51 Jounal of Cognitive Neuroscience 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

  13. Hot atom chemistry and radiopharmaceuticals

    SciTech Connect (OSTI)

    Krohn, Kenneth A.; Moerlein, Stephen M.; Link, Jeanne M.; Welch, Michael J.

    2012-12-19

    The chemical products made in a cyclotron target are a combined result of the chemical effects of the nuclear transformation that made the radioactive atom and the bulk radiolysis in the target. This review uses some well-known examples to understand how hot atom chemistry explains the primary products from a nuclear reaction and then how radiation chemistry is exploited to set up the optimal product for radiosynthesis. It also addresses the chemical effects of nuclear decay. There are important principles that are common to hot atom chemistry and radiopharmaceutical chemistry. Both emphasize short-lived radionuclides and manipulation of high specific activity nuclides. Furthermore, they both rely on radiochromatographic separation for identification of no-carrieradded products.

  14. Cool Stars in Hot Places

    E-Print Network [OSTI]

    S. T. Megeath; E. Gaidos; J. J. Hester; F. C. Adams; J. Bally; J. -E. Lee; S. Wolk

    2007-04-08

    During the last three decades, evidence has mounted that star and planet formation is not an isolated process, but is influenced by current and previous generations of stars. Although cool stars form in a range of environments, from isolated globules to rich embedded clusters, the influences of other stars on cool star and planet formation may be most significant in embedded clusters, where hundreds to thousands of cool stars form in close proximity to OB stars. At the cool stars 14 meeting, a splinter session was convened to discuss the role of environment in the formation of cool stars and planetary systems; with an emphasis on the ``hot'' environment found in rich clusters. We review here the basic results, ideas and questions presented at the session. We have organized this contribution into five basic questions: what is the typical environment of cool star formation, what role do hot star play in cool star formation, what role does environment play in planet formation, what is the role of hot star winds and supernovae, and what was the formation environment of the Sun? The intention is to review progress made in addressing each question, and to underscore areas of agreement and contention.

  15. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1999

    SciTech Connect (OSTI)

    Virginia Finley

    2001-04-20

    The results of the 1999 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1999. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality--an alternative energy source. 1999 marked the first year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. The 1999 performance of the Princeton Plasma Physics Laboratory was rated ''outstanding'' by the U.S. Department of Energy in the Laboratory Appraisal report issued early in 2000. The report cited the Laboratory's consistently excellent scientific and technological achievements, its successful management practices, and included high marks in a host of other areas including environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of non-radiological contaminants, mainly volatile organic compounds (components of degreasing solvents). Monitoring revealed the presence of low levels of volatile organic compounds in an area adjacent to PPPL. Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the TFTR stack; the data are presented in this report.

  16. Prepared for the U.S. Department of Energy under Contract DE-AC02-09CH11466. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    Biewer, Theodore

    -radioactive pollutants (if any) that are added to the environment as a result of Princeton program measured tritium in the air at the NSTX Stack and at on -site samp

  17. FY93 Princeton Plasma Physics Laboratory. Annual report, October 1, 1992--September 30, 1993

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    This is the annual report from the Princeton Plasma Physics Laboratory for the period October 1, 1992 to September 30, 1993. The report describes work done on TFTR during the year, as well as preparatory to beginning of D-T operations. Design work is ongoing on the Tokamak Physics Experiment (TPX) which is to test very long pulse operations of tokamak type devices. PBX has come back on line with additional ion-Bernstein power and lower-hybrid current drive. The theoretical program is also described, as well as other small scale programs, and the growing effort in collaboration on international design projects on ITER and future collaborations at a larger scale.

  18. Princeton Plasma Physics Laboratory annual report, October 1, 1991--September 30, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    This report discusses the following topics: Principal parameters achieved in experimental devices for fiscal year 1992; tokamak fusion test reactor; princeton beta experiment-modification; current drive experiment-upgrade; tokamak physics experiment/steady-state advanced tokamak; international thermonuclear experimental reactor; international collaboration; x-ray laser studies; plasma processing: Deposition and etching of thin films; pure electron plasma experiments; theoretical studies; tokamak modeling; high-field magnet project; engineering department; environment, safety, and health and quality assurance; technology transfer; office of human resources and administration; PPPL invention disclosures for fiscal year 1992; office of resource management; graduate education: plasma physics; graduate education: program in plasma science and technology; and science education program.

  19. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1996

    SciTech Connect (OSTI)

    J.D. Levine; V.L. Finley

    1998-03-01

    The results of the 1996 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the US Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1996, PPPL's Tokamak Fusion Test Reactor (TFTR) continued to conduct fusion experiments. Having set a world record on November 2, 1994, by achieving approximately 10.7 million watts of controlled fusion power during the deuterium-tritium (D-T) plasma experiments, researchers turned their attention to studying plasma science experiments, which included ''enhanced reverse shear techniques.'' Since November 1993, more than 700 tritium-fueled experiments were conducted, which generated more than 4 x 10(superscript 20) neutrons and 1.4 gigajoules of fusion energy. In 1996, the overall performance of Princeton Plasma Physics Laboratory was rated ''excellent'' by the US Department of Energy in the Laboratory Appraisal report issued in early 1997. The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents) and petroleum hydrocarbons (past leaks of releases of diesel fuel from underground storage tanks). Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the TFTR stack; the data are presented in this report. During 1996, PPPL completed the removal of contaminated soil from two locations that were identified through the monitoring program: petroleum hydrocarbons along a drainage swale and chromium adjacent to the cooling tower.

  20. Image Storage in Hot Vapors

    E-Print Network [OSTI]

    L. Zhao; T. Wang; Y. Xiao; S. F. Yelin

    2007-10-22

    We theoretically investigate image propagation and storage in hot atomic vapor. A $4f$ system is adopted for imaging and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of ``light storage''. We investigate how the stored diffraction pattern evolves under diffusion. Our result indicates, under appropriate conditions, that an image can be reconstructed with high fidelity. The main reason for this procedure to work is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively.

  1. Princeton and PPPL projects selected to run on super-powerful...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that are limited to simulating less frequent waves are able to produce. Simulating fusion plasmas from hot core to cold wall. Physicists led by C.S. Chang of PPPL will use...

  2. Geothermal resistivity resource evaluation survey Waunita Hot...

    Open Energy Info (EERE)

    Geothermal resistivity resource evaluation survey Waunita Hot Springs project, Gunnison County, Colorado Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  3. Covered Product Category: Hot Food Holding Cabinets

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for hot food holding cabinets, which are covered by the ENERGY STAR program.

  4. Paleomagnetic Measurements At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    Hot Springs Geothermal Area. Notes Paleomagnetic dating performed by Brown (1977) on opal samples in order to date the age of the hydrothermal system. The results were highly...

  5. Hot Outflows in Galaxy Clusters

    E-Print Network [OSTI]

    Kirkpatrick, C C

    2015-01-01

    The gas-phase metallicity distribution has been analyzed for the hot atmospheres of 29 galaxy clusters using {\\it Chandra X-ray Observatory} observations. All host brightest cluster galaxies (BCGs) with X-ray cavity systems produced by radio AGN. We find high elemental abundances projected preferentially along the cavities of 16 clusters. The metal-rich plasma was apparently lifted out of the BCGs with the rising X-ray cavities (bubbles) to altitudes between twenty and several hundred kiloparsecs. A relationship between the maximum projected altitude of the uplifted gas (the "iron radius") and jet power is found with the form $R_{\\rm Fe} \\propto P_{\\rm jet}^{0.45}$. The estimated outflow rates are typically tens of solar masses per year but exceed $100 ~\\rm M_\\odot ~yr^{-1}$ in the most powerful AGN. The outflow rates are 10% to 20% of the cooling rates, and thus alone are unable to offset a cooling inflow. Nevertheless, hot outflows effectively redistribute the cooling gas and may play a significant role at ...

  6. Hot Jupiters: Lands of Plenty

    E-Print Network [OSTI]

    David Charbonneau

    2005-11-22

    In late August 2005, 80 researchers from more than 15 countries convened for a 4-day conference entitled ``The Tenth Anniversary of 51 Peg b: Status and Prospects for Hot Jupiter Studies''. The meeting was held at l'Observatoire de Haute-Provence, the location of the 1.93-m telescope and ELODIE spectrograph used to discover the planetary companion to 51 Peg roughly 10 years ago. I summarize several dominant themes that emerged from the meeting, including (i) recent improvements in the precision of radial velocity measurements of nearby, Sun-like stars, (ii) the continued value of individual, newly-discovered planets of novel character to expand the parameter space with which the theory must contend, and (iii) the crucial role of space-based observatories in efforts to characterize hot Jupiter planets. I also present the returns of an informal poll of the conference attendees conducted on the last day of the meeting, which may be amusing to revisit a decade hence.

  7. Princeton Environmental Institute PRINCETON UNIVERSITY

    E-Print Network [OSTI]

    ...................................................................12 1.2. CAES OPERATION ...............................................................................................................................15 1.3. SUITABLE GEOLOGIES FOR CAES.................................................................................................................................21 1.4. EXISTING AND PROPOSED CAES PLANTS

  8. Experiment operations plan for the MT-4 experiment in the NRU reactor. [PWR

    SciTech Connect (OSTI)

    Russcher, G.E.; Wilson, C.L.; Parchen, L.J.; Marshall, R.K.; Hesson, G.M.; Webb, B.J.; Freshley, M.D.

    1983-06-01

    A series of thermal-hydraulic and cladding materials deformation experiments were conducted using light-water reactor fuel bundles as part of the Pacific Northwest Laboratory Loss-of-Coolant Accident (LOCA) Simulation Program. This report is the formal operations plan for MT-4 - the fourth materials deformation experiment conducted in the National Research Universal (NRU) reactor, Chalk River, Ontario, Canada. A major objective of MT-4 was to simulate a pressurized water reactor LOCA that could induce fuel rod cladding deformation and rupture due to a short-term adiabatic transient and a peak fuel cladding temperature of 1200K (1700/sup 0/F).

  9. Ceramic hot-gas filter

    DOE Patents [OSTI]

    Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

    1999-05-11

    A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

  10. Ceramic hot-gas filter

    DOE Patents [OSTI]

    Connolly, Elizabeth Sokolinski (Wilmington, DE); Forsythe, George Daniel (Landenberg, PA); Domanski, Daniel Matthew (New Castle, DE); Chambers, Jeffrey Allen (Hockessin, DE); Rajendran, Govindasamy Paramasivam (Boothwyn, PA)

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  11. HotSpot Software Configuration Management Plan

    SciTech Connect (OSTI)

    Walker, H; Homann, S G

    2009-03-12

    This Software Configuration Management Plan (SCMP) describes the software configuration management procedures used to ensure that the HotSpot dispersion model meets the requirements of its user base, which includes: (1) Users of the PC version of HotSpot for consequence assessment, hazard assessment and safety analysis calculations; and (2) Users of the NARAC Web and iClient software tools, which allow users to run HotSpot for consequence assessment modeling These users and sponsors of the HotSpot software and the organizations they represent constitute the intended audience for this document. This plan is intended to meet Critical Recommendations 1 and 3 from the Software Evaluation of HotSpot and DOE Safety Software Toolbox Recommendation for inclusion of HotSpot in the Department of Energy (DOE) Safety Software Toolbox. HotSpot software is maintained for the Department of Energy Office of Emergency Operations by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL). An overview of HotSpot and NARAC are provided.

  12. HOT Lane Policies and Their Implications†

    E-Print Network [OSTI]

    Goel, Rahul

    2011-08-08

    objectives in congested urban freeway corridors. Currently there are ten fully operational HOT lanes around the country in seven different states and this research examined the nine of them (excluding I-35 W). Even with only a handful of operational HOT lane...

  13. Are we putting in hot water?

    E-Print Network [OSTI]

    Combes, Stacey A.

    Are we putting our fish in hot water? Global warming and the world's fisheries ∑ Hot, hungry, and gasping for air ∑ Shrinking fish and fewer babies? ∑ Global warming puts fish on the run ∑ Warm water ∑ Howmucharefishworth? ∑ Which fish are feeling the heat? ∑ How will fisheries change? ∑ 2įC is too much! ∑ What needs

  14. Hot Dry Rock; Geothermal Energy

    SciTech Connect (OSTI)

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

  15. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 2000

    SciTech Connect (OSTI)

    Virginia L. Finley

    2002-04-22

    The results of the 2000 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2000. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality -- an alternative energy source. The year 2000 marked the second year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion power plants. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. In 2000, PPPL's radiological environmental monitoring program measured tritium in the air at on-site and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations with limits set by the Environmental Protection Agency (EPA). Also included in PPPL's radiological environmental monitoring program, are precipitation, surface, ground, a nd waste water monitoring. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents). Monitoring revealed the presence of low levels of volatile organic compounds in an area adjacent to PPPL. Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the D-site stack; the data are presented in this report.

  16. Emission of Visible Light by Hot Dense Metals

    E-Print Network [OSTI]

    More, R.M.

    2010-01-01

    HIFAN 1761 EMISSION OF VISIBLE LIGHT BY HOT DENSE METALS ByDE-AC52-07NA27344. HI FAN Emission of Visible Light by HotABSTRACT We consider the emission of visible light by hot

  17. Dr. Joseph A. Shaw Electrical & Computer Engineering Dept., Montana State University, Bozeman, MT 59717

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Dr. Joseph A. Shaw Electrical & Computer Engineering Dept., Montana State University, Bozeman, MT M.S. Electrical Engineering University of Utah 1987 B.S. Electrical Engineering University of Alaska Experience: 2008 ≠ present Professor ≠ Electrical & Computer Engineering (ECE) Department, Montana State

  18. Synchronous Dependency Insertion Grammars A Grammar Formalism for Syntax Based Statistical MT

    E-Print Network [OSTI]

    Synchronous Dependency Insertion Grammars A Grammar Formalism for Syntax Based Statistical MT Yuan formalism specifically designed for syntax-based sta- tistical machine translation. The synchro- nous between lan- guages, which many other synchronous grammars are unable to model. A Depend- ency Insertion

  19. MONTANA OUTDOORS 3130 MARCH APRIL 2014 FWP.MT.GOV/MTOUTDOORS Why mountain bluebirds

    E-Print Network [OSTI]

    Duckworth, Renťe

    MONTANA OUTDOORS 3130 MARCH APRIL 2014 FWP.MT.GOV/MTOUTDOORS TURF WAR TWIST Why mountain bluebirds are good for this species in western Montana valleys but don't benefit, in the long run, mountain bluebirds. Although mountain blue- birds also lost nesting sites, they had evolved to also use habitats at higher

  20. Intermountain GIS Conference. April 1923 2010, Bozeman, MT. Patrick Lawrence, Maxwell BD, Rew LJ

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Intermountain GIS Conference. April 1923 2010, Bozeman, MT. Patrick Lawrence, Maxwell BD, Rew in the Python programming language, drawing on Python's builtin library, the RPy extension, ArcGIS geoprocessing and ArcGIS Server. As inputs, it accepts transect shapefiles, transect text files, or point

  1. MT3DMS, A Modular Three-Dimensional Multispecies Transport Model User Guide to the

    E-Print Network [OSTI]

    Zheng, Chunmiao

    .M. Cozzarelli, M.H. Lahvis, and B.A. Bekins. 1998. Ground water contamination by crude oil near Bemidji (LNAPL) contaminant through the unsaturated zone and the formation of an oil lens on the water tableMT3DMS, A Modular Three-Dimensional Multispecies Transport Model ≠ User Guide to the Hydrocarbon

  2. Hybrid Rule-Based Example-Based MT: Feeding Apertium with Sub-sentential Translation Units

    E-Print Network [OSTI]

    Way, Andy

    Hybrid Rule-Based ≠ Example-Based MT: Feeding Apertium with Sub-sentential Translation Units Felipe Sīanchez-Martīinez Mikel L. Forcada Andy Way Dept. Llenguatges i Sistemes Inform`atics Universitat University Dublin 9, Ireland {mforcada,away}@computing.dcu.ie Abstract This paper describes a hybrid machine

  3. Stress magnitude and its temporal variation at Mt. Asama Volcano, Japan, from seismic anisotropy and GPS

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Stress magnitude and its temporal variation at Mt. Asama Volcano, Japan, from seismic anisotropy stress Japan The Earth's stress regime is fundamental to its physical processes, yet few methods can determine absolute stress, and measurements of temporal variations in stress are controversial. The Global

  4. Some Effects of Mt. St. Helens Volcanic Ash on Juvenile Salmon Smolts

    E-Print Network [OSTI]

    Some Effects of Mt. St. Helens Volcanic Ash on Juvenile Salmon Smolts TIMOTHY W. NEWCOMB and THOMAS. Helens, which was completely decimated with vol- canic ash and mud slides. Heavy sediment loads smolts were exposed to various concentrations ofairborne volcanic ash from the 18 May 1980 eruption

  5. High-latitude vegetation dynamics: 850 years of vegetation development on Mt Hekla, Iceland†

    E-Print Network [OSTI]

    Cutler, Nick

    2008-01-01

    on Mt Hekla in south-central Iceland. The chronosequence approach was used to infer 850 years of vegetation development from a suite of 14 lava flows (five of which had been disturbed by the deposition of volcanic tephra). The thesis is organised around...

  6. Geophys. 1. R. astr. Soc. (1987),89,7-18 MT and reflection: an essential combination

    E-Print Network [OSTI]

    Jones, Alan G.

    1987-01-01

    ) studies and seismic reflection profiles conducted. Unfortunately, over many more regions the seismic of the magnetotelluric (MT) technique as having a vertical resolution equivalent to the seismic refraction method, in almost every case, be made wherever a seismic reflection survey is undertaken. Examples are shown from

  7. Webinar: ENERGY STAR Hot Water Systems for High Performance Homes...

    Energy Savers [EERE]

    Webinar: ENERGY STAR Hot Water Systems for High Performance Homes Webinar: ENERGY STAR Hot Water Systems for High Performance Homes This presentation is from the Building America...

  8. Model Simulating Real Domestic Hot Water Use - Building America...

    Energy Savers [EERE]

    Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Image of a pipe...

  9. Astoria Mineral Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Astoria Mineral Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Astoria Mineral Hot Springs Pool & Spa Low Temperature Geothermal...

  10. Paraiso Hot Springs Resort Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Paraiso Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Paraiso Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility...

  11. Caliente Hot Springs Motel Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hot Springs Motel Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Caliente Hot Springs Motel Pool & Spa Low Temperature Geothermal Facility Facility...

  12. Democrat Hot Springs Resort Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Democrat Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Democrat Hot Springs Resort Pool & Spa Low Temperature Geothermal...

  13. Camp Preventorium Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Preventorium Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Camp Preventorium Hot Springs Pool & Spa Low Temperature Geothermal...

  14. Ringboldt Rapids Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Ringboldt Rapids Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Ringboldt Rapids Hot Springs Pool & Spa Low Temperature Geothermal...

  15. Sycamore Hot Spring Resort Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Sycamore Hot Spring Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Sycamore Hot Spring Resort Pool & Spa Low Temperature Geothermal Facility...

  16. Thermal Gradient Holes At Waunita Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    regional heat flux around the hot springs and potentially identify the location of the geothermal reservoir feeding the hot springs Notes Eight thermal gradient boreholes were...

  17. Hot Rolling Scrap Reduction through Edge Cracking and Surface...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    reduce both planned and incidental scrap in hot rolling Milestones * Development of mesoscale model for damage evolution in hot working (Completed) * 3-D Finite Element...

  18. Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

  19. Raman spectroscopy in hot compressed hydrogen and nitrogen -...

    Office of Scientific and Technical Information (OSTI)

    Raman spectroscopy in hot compressed hydrogen and nitrogen - implications for the intramolecular potential Citation Details In-Document Search Title: Raman spectroscopy in hot...

  20. Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature...

  1. Abraham Hot Springs Geothermal Area Northern Basin and Range...

    Open Energy Info (EERE)

    Basin and Range Geothermal Region Medical Hot Springs Geothermal Area Idaho Batholith Medicine Lake Geothermal Area Cascades Melozi Hot Springs Geothermal Area Alaska Geothermal...

  2. Energy Design Guidelines for High Performance Schools: Hot and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Guidelines for High Performance Schools: Hot and Humid Climates Energy Design Guidelines for High Performance Schools: Hot and Humid Climates School districts around the...

  3. Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal...

  4. Bush the Empire Slayer http://www.cs.princeton.edu/~chazelle/politics/bush-jan07-print.html 1 of 11 1/14/2007 7:02 PM

    E-Print Network [OSTI]

    Chazelle, Bernard

    Bush the Empire Slayer http://www.cs.princeton.edu/~chazelle/politics/bush-jan07-print.html 1 of 11 empire left bleeding from its Afghan travails. Defusing half a century of nuclear tension can leave;Bush the Empire Slayer http://www.cs.princeton.edu/~chazelle/politics/bush-jan07-print.html 2 of 11 1

  5. Hot Topic Workshop | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energyHighland ViewdefaultJulySeptemberMovingHot PlateHotHot

  6. Arnold Schwarzenegger WATER HEATERS AND HOT WATER

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor WATER HEATERS AND HOT WATER DISTRIBUTION SYSTEMS;#12;Appendices Appendix A. Multifamily Water Heating Construction Practices, Pricing and Availability Survey Report Appendix B. Multifamily Water Heating Controls Performance Field Report Appendix C. Pipe

  7. Extracting hot carriers from photoexcited semiconductor nanocrystals

    SciTech Connect (OSTI)

    Zhu, Xiaoyang [Columbia University Department of Chemistry

    2013-09-12

    During this funding period, we made a significant breakthrough and established for the first time that hot electron transfer from photoexcited NCs to an electron acceptor was indeed possible.

  8. Light Duty Utility Arm System hot test

    SciTech Connect (OSTI)

    Howden, G.F.; Conrad, R.B.; Kiebel, G.R.

    1996-02-01

    This Engineering Task Plan describes the scope of work and cost for implementing a hot test of the Light Duty Utility Arm System in Tank T-106 in September 1996.

  9. Graphene-Base Hot-Electron Transistor

    E-Print Network [OSTI]

    Zeng, Caifu

    2014-01-01

    B. H. ; Wang, K. L. "Vertical Graphene-Base Hot-Electronoperation in single-layer graphene ferroelectric memory",of Dirac Point Energy at the Graphene/Oxide Interface", Nano

  10. Microstructure Engineering for Hot Strip Mills

    Broader source: Energy.gov [DOE]

    Many hot rolled products must achieve strict strength and toughness requirements, making control of the microstructure critical. This causes these products to be difficult to make and requires many...

  11. HotEyeģ Steel Surface Inspection System

    Broader source: Energy.gov [DOE]

    A new inspection system, the HotEyeģ Rolled Steel Bar (RSB) System, has been developed and demonstrated by OG Technologies (OGT) Inc., with the help of both a NICE3 grant and a project under the...

  12. HotSpot Health Physics Codes

    SciTech Connect (OSTI)

    2013-04-18

    The HotSpot Health Physics Codes were created to provide emergency response personnel and emergency planners with a fast, field-portable set of software tools for evaluating insidents involving redioactive material. The software is also used for safety-analysis of facilities handling nuclear material. HotSpot provides a fast and usually conservative means for estimation the radiation effects associated with the short-term (less than 24 hours) atmospheric release of radioactive materials.

  13. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    SciTech Connect (OSTI)

    Henderson, H.; Wade, J.

    2014-04-01

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  14. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    SciTech Connect (OSTI)

    Henderson, Hugh; Wade, Jeremy

    2014-04-01

    While it is important to make the equipment (or "plant") in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10%-30% of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) in five houses near Syracuse, NY, and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  15. Hot/Warm Gas Cleanup

    SciTech Connect (OSTI)

    Bissett, Larry A.

    2001-11-06

    Using regenerable sorbents and transport or fluid-bed contacting, the Gas Process Development Unit (GPDU) at NETL-Morgantown will be used to demonstrate the process feasibility of removing sulfur from coal gasification or other fuel gas streams at temperatures above dew point of the gas. This technology, also known as hot or warm gas desulfurization, is expected to remove sulfur to concentrations lower than conventional systems at comparable cost. The project was constructed under the U.S. Department of Energy (DOE) Integrated Gasification Combined Cycle (IGCC) power system program and is an ''enabling technology'' in the Vision 21 program. The GPDU was designed to be the smallest scale research and development facility capable of providing viable scale-up design data for new integrated transport or fluid-bed desulfurization processes. With the capability to test at process conditions representative of anticipated commercial applications in terms of temperatures, pressures, major compositions, velocities, and sorbent cycling, the unit is expected to generate important information on process control, configuration, and sorbent suitability. In this way, the GPDU fills a strategic role between past/current small-scale testing and large-scale demonstrations. A primary objective of the project is to gain insight into which reactor combination (i.e., both transport, both fluid bed, or mixed) is more suitable for desulfurization technology and why. Assuming process feasibility is demonstrated, this guides future development or commercial ventures by answering the question of what to build, and provides performance and scale-up data (e.g., required transport reactor densities). Another important objective, which naturally derives from the process development activities, is demonstration of sorbent suitability and readiness for commercial deployment (e.g., sorbent attrition and cycle life). In this sense, the GPDU can serve as a final testing ground to reduce the risks of large-scale sorbent failure.

  16. Paleomycology of the Princeton Chert I. Fossil hyphomycetes associated with the early Eocene aquatic angiosperm, Eorhiza arnoldii

    E-Print Network [OSTI]

    Klymiuk, Ashley A.; Taylor, Thomas N.; Taylor, Edith L.; Krings, Michael

    2013-05-01

    or sympodial co- nidiogenous cells, and in the latter conidiogenous cells are percurrent (Subramanian and Bhat 1987, Mena-Portales et al. 1999, Leaėo-Ferreira et al. 2008), while the fossils are solitary and terminal. The apical inflation of these fossil... allenbyensis (Lythraceae) from the Middle Eocene Princeton Chert with anatomical comparisons to D. verticillatus. Int J Plant Sci 164:453Ė469, doi:10.1086/ 367811 Mena-Portales J, Hernaīndez-Gutieīrrez A, Mercado-Sierra A. 1999. Acarocybiopsis, a new genus...

  17. CC Retrofits and Optimal Controls for Hot Water Systems†

    E-Print Network [OSTI]

    Wu, L.; Liu, M.; Wang, G.

    2007-01-01

    Continuous Commissioning (CC) technologies, three old boilers (13.39 MMBH each) were replaced by three new boilers (1.675 MMBH each) and hot water pumps. Optimal controls for the hot water systems included optimal hot water temperature reset, hot water pump...

  18. Princeton Plasma Physics Laboratory annual report, October 1, 1982-September 30, 1983

    SciTech Connect (OSTI)

    Phillips, C.A.

    1983-01-01

    The Tokamak Fusion Test Reactor (TFTR) achieved first plasma at 3:05 a.m. on December 24, 1982. During the course of the year, the plasma current was raised to a maximum of 1 MA, and extensive confinement studies were carried out with ohmic-heated plasmas. The most important finding was that tokamak energy confinement time increases as the cube of the plasma size. The Princeton Large Torus (PLT) carried out a number of high-powered plasma-heating experiments in the ion cyclotron frequency range, and also demonstrated for the first time that a 100-kA tokamak discharge can be built up by means of rf-waves in the lower hybrid range, without any need for inductive current drive by the conventional tokamak transformer system. The Poloidal Divertor Experiment (PDX) demonstrated that substantial improvements in plasma confinement during intense neutral-beam heating can be obtained by means of either a magnetic divertor or a mechanical scoop limiter. The S-1 spheromak experiment has come into operation, with first plasma in January 1983, and machine completion in August. The soft X-ray laser development experiment continues to make strong progress towards the demonstration of laser amplification. Thus far, a single-pass gain of 3.5 has been achieved, using the 182 A line of CVI. Theoretical MHD-stability studies have shed new light on the nature of the energetic-ion-driven ''fishbone instability,'' and the utilization of the bean-shaping technique to reach higher beta values in the tokamak.

  19. Hazard assessment in geothermal exploration: The case of Mt. Parker, Southern Philippines

    SciTech Connect (OSTI)

    Delfin, F.G. Jr.; Salonga, N.D.; Bayon, F.E.B.

    1996-12-31

    Hazard assessment of the Mt. Parker geothermal prospect, conducted in parallel with the surface exploration from 1992 to 1994, was undertaken to determine the long-term suitability of the prospect for development. By comparison with other acidic magmatic-hydrothermal systems in the Philippines, the geochemical data indicated minimal input of acidic magmatic fluids into Mt. Parker`s hydrothermal system. This system was regarded to be a neutral-pH and high-enthalpy chloride reservoir with temperature of at least 200-250{degrees}C. These favorable geochemical indications contrasted sharply with the C-14 and volcanological data indicating a shallow magmatic body with a potential for future eruption. This hazard led PNOC EDC to discontinue the survey and abandon the prospect by late 1994. On September 6, 1995, a flashflood of non-volcanic origin from the caldera lake killed nearly 100 people on the volcano`s northwestern flank.

  20. Rock Sampling At Mt Ranier Area (Frank, 1995) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan: Energy Resources JumpMt Ranier Area (Frank, 1995)

  1. EC305 Problem Set 1 1. Let x(t) = m(t) cos 2fct, where m(t) is a real lowpass signal with bandwidth W and

    E-Print Network [OSTI]

    Bhashyam, Srikrishna

    EC305 Problem Set 1 1. Let x(t) = m(t) cos 2fct, where m(t) is a real lowpass signal with bandwidth a bandpass signal x(t) = m1(t) cos 2fct - m2(t) sin 2fct. (a) Determine the in-phase and quadrature components of this signal when the local os- cillators used have a phase offset of , i.e., they are cos (2fct

  2. Tidally dominated depositional environment for the Mt. Simon Sandstone in central Illinois

    SciTech Connect (OSTI)

    Sargent, M.L.; Lasemi, Z. (Illinois State Geological Survey, Champaign, IL (United States))

    1993-03-01

    Several hundred feet of core from the upper part of the Mt. Simon in central Illinois have been examined macroscopically. Grain sizes and their systematics, bedding characteristics, sedimentary structures, and relationships among beds show that the upper Mt. Simon Sandstone is composed of a series of fining-upward cycles up to 10 m (30 feet) thick. A typical cycle consists, in ascending order, of a sandy subtidal facies, a mixed sand and mud intertidal-flat facies, and a muddy upper tidal-flat facies upward through the succession, the maximum and average grain size becomes progressively finer and the cycles thinner. The lower sandstone of each cycle contains beds that are massive to cross bedded and cross laminated; some beds show scoured reactivation surfaces. A few cycles contain a middle unit characterized by flaser and lenticular bedding and abundant mudcracks. Mudcracks also are common in the shale beds at the top of each cycle. Sedimentary structures such as reactivation surfaces, flaser and lenticular bedding, and mudcracks suggest that these cycles were deposited in peritidal environments. The presence of Skolithos in some cycles suggests very shallow marine conditions. The within-cycle upward fining is caused by regression or progradation that reflects a progressive decrease in current velocity from subtidal to intertidal parts of the tidal flat. Frequent flooding of the tidal flat resulted in repeated fining-upward cycles within the upper part of the Mt. Simon Sandstone.

  3. Hot Water DJ: Saving Energy by Pre-mixing Hot Water Md Anindya Prodhan

    E-Print Network [OSTI]

    Whitehouse, Kamin

    Hot Water DJ: Saving Energy by Pre-mixing Hot Water Md Anindya Prodhan Department of Computer University of Virginia whitehouse@virginia.edu Abstract After space heating and cooling, water heating consumption. Current water heating systems waste up to 20% of their energy due to poor insulation in pipes

  4. Application of Remote Sensing Technology and Ecological Modeling of Forest Carbon Stocks in Mt. Apo Natural Park, Philippines†

    E-Print Network [OSTI]

    Leal, Ligaya Rubas

    2015-01-23

    This dissertation work explored the application of remote sensing technology for the assessment of forest carbon storage in Mt. Apo Natural Park. Biomass estimation is traditionally conducted using destructive sampling with high levels...

  5. Sequence Stratigraphy and Detrital Zircon Geochronology of Middle-Late Ordovician Mt. Wilson Quartzite, British Columbia, Canada†

    E-Print Network [OSTI]

    Hutto, Andrew Paul

    2012-07-16

    STRATIGRAPHY AND DETRITAL ZIRCON GEOCHRONOLOGY OF MIDDLE-LATE ORDOVICIAN MT. WILSON QUARTZITE, BRITISH COLUMBIA CANADA A Thesis by ANDREW PAUL HUTTO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 2012 Major Subject: Geology Sequence Stratigraphy and Detrital Zircon Geochronology of Middle-Late Ordovician Mt. Wilson...

  6. Extracting hot carriers from photoexcited semiconductor nanocrystals

    SciTech Connect (OSTI)

    Zhu, Xiaoyang

    2014-12-10

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called ďShockley-QueisserĒ limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates ďhotĒ charge carriers that quickly ďcoolĒ to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a ďphonon bottleneckĒ wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  7. _____________________________2008 Conference on Information Sciences and Systems, The Princeton University, March 19--21, 2008 Identifying Sufficient Statistics in Information Networks

    E-Print Network [OSTI]

    Dai, Huaiyu

    _____________________________2008 Conference on Information Sciences and Systems, The Princeton University, March 19--21, 2008 Identifying Sufficient Statistics in Information Networks Huaiyu Dai1-mail: Huaiyu_Dai@ncsu.edu 2 Department of Electrical Engineering and Computer Sciences, University of Tennessee

  8. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    of the observed FRC equilibrium and stability proper- ties presents significant challenges due to the high plasma numerical simulations are generally required to describe and understand the detailed behavior of FRC plasmasPrepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma

  9. The Atom and the Apple, Princeton University Press, "The Atom and the Apple is a delightful ramble through many areas of science as well as

    E-Print Network [OSTI]

    Balibar, Sťbastien

    The Atom and the Apple, Princeton University Press, Reviews: "The Atom and the Apple and stimulating, and it frequently challenges political correctness. . . . The Atom and the Apple provides." --Publishers Weekly (Starred Review) #12;Science Teacher Association recommends : The Atom and the Apple

  10. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    are observed. It is found that during regular oscillations the energy of the thermal ions can reach magnitudesPrepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does

  11. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory Efficient Coupling of Thermal Electron Bernstein Waves to the Ordinary Electromagnetic by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

  12. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    . Super-thermal fast ions provide a source of free energy to excite instabilities, which in turn can particles from the D-T fusion reaction. These fast ions provide a potential source of free energy to excitePrepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma

  13. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    many attractive features including power production not dependant on weather or solar conditions web site in Fiscal Year 2005. The home page for PPPL Reports and Publications is: http, Princeton, NJ, USA jschmidt@pppl.gov Abstract. Fusion power systems, if developed and deployed, would have

  14. Prepared for the U.S. Department of Energy under Contract DE-AC02-09CH11466. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    Biewer, Theodore

    .......................................................................................................... 23 3.2 Energy Efficient "Green" BuildingsPrepared for the U.S. Department of Energy under Contract DE-AC02-09CH11466. Princeton Plasma ............................................... 17 2.6.2 PPPL Participates in the EnergyEfficient Building (EEB) Hub Program Mentoring

  15. Kepler constraints on planets near hot Jupiters

    SciTech Connect (OSTI)

    Steffen, Jason H.; /Fermilab; Ragozzine, Darin; /Harvard-Smithsonian Ctr. Astrophys.; Fabrycky, Daniel C.; /UC, Santa Cruz, Astron. Astrophys.; Carter, Joshua A.; /Harvard-Smithsonian Ctr. Astrophys.; Ford, Eric B.; /Florida U.; Holman, Matthew J.; /Harvard-Smithsonian Ctr. Astrophys.; Rowe, Jason F.; /NASA, Ames; Welsh, William F.; /San Diego State U., Astron. Dept.; Borucki, William J.; /NASA, Ames; Boss, Alan P.; /Carnegie Inst., Wash., D.C., DTM; Ciardi, David R.; /Caltech /Harvard-Smithsonian Ctr. Astrophys.

    2012-05-01

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2:1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

  16. Hot gas filter and system assembly

    DOE Patents [OSTI]

    Lippert, Thomas Edwin (Murrysville, PA); Palmer, Kathryn Miles (Monroeville, PA); Bruck, Gerald Joseph (Murrysville, PA); Alvin, Mary Anne (Pittsburgh, PA); Smeltzer, Eugene E. (Export, PA); Bachovchin, Dennis Michael (Murrysville, PA)

    1999-01-01

    A filter element for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system.

  17. Hot gas filter and system assembly

    DOE Patents [OSTI]

    Lippert, T.E.; Palmer, K.M.; Bruck, G.J.; Alvin, M.A.; Smeltzer, E.E.; Bachovchin, D.M.

    1999-08-31

    A filter element is described for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system. 8 figs.

  18. TOWARD CHEMICAL CONSTRAINTS ON HOT JUPITER MIGRATION

    SciTech Connect (OSTI)

    Madhusudhan, Nikku; Amin, Mustafa A.; Kennedy, Grant M., E-mail: nmadhu@ast.cam.ac.uk [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2014-10-10

    The origin of hot Jupitersógas giant exoplanets orbiting very close to their host starsóis a long-standing puzzle. Planet formation theories suggest that such planets are unlikely to have formed in situ but instead may have formed at large orbital separations beyond the snow line and migrated inward to their present orbits. Two competing hypotheses suggest that the planets migrated either through interaction with the protoplanetary disk during their formation, or by disk-free mechanisms such as gravitational interactions with a third body. Observations of eccentricities and spin-orbit misalignments of hot Jupiter systems have been unable to differentiate between the two hypotheses. In the present work, we suggest that chemical depletions in hot Jupiter atmospheres might be able to constrain their migration mechanisms. We find that sub-solar carbon and oxygen abundances in Jovian-mass hot Jupiters around Sun-like stars are hard to explain by disk migration. Instead, such abundances are more readily explained by giant planets forming at large orbital separations, either by core accretion or gravitational instability, and migrating to close-in orbits via disk-free mechanisms involving dynamical encounters. Such planets also contain solar or super-solar C/O ratios. On the contrary, hot Jupiters with super-solar O and C abundances can be explained by a variety of formation-migration pathways which, however, lead to solar or sub-solar C/O ratios. Current estimates of low oxygen abundances in hot Jupiter atmospheres may be indicative of disk-free migration mechanisms. We discuss open questions in this area which future studies will need to investigate.

  19. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 2001

    SciTech Connect (OSTI)

    Virginia L. Finley

    2004-04-07

    The purpose of this report is to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of the Princeton Plasma Physics Laboratory's (PPPL) operations. The results of the 2001 environmental surveillance and monitoring program for PPPL are presented and discussed. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2001. PPPL has engaged in fusion energy research since 1951. The vision of the Laboratory is to create innovations to make fusion power a practical reality--a clean, alternative energy source. The Year 2001 marked the third year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. In 2001, PPPL's radiological environmental monitoring program measured tritium in the air at on- and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations; also included in PPPL's radiological environmental monitoring program, are water monitoring--precipitation, ground-, surface-, and waste-waters. PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the D-site stack; the data are presented in this report. Groundwater monitoring continue d under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents). Monitoring revealed the low levels of volatile organic compounds in an area adjacent to PPPL. In 2001, PPPL was in compliance with its permit limits for surface and sanitary discharges and had no reportable releases. Additionally, as part of DOE's program for the purchase of recycled content and other environmentally preferred products, PPPL has ranked in the excellent category of 80 to 90% of the goal.

  20. Axions as hot and cold dark matter

    SciTech Connect (OSTI)

    Jeong, Kwang Sik; Kawasaki, Masahiro; Takahashi, Fuminobu E-mail: kawasaki@icrr.u-tokyo.ac.jp

    2014-02-01

    The presence of a hot dark matter component has been hinted at 3? by a combination of the results from different cosmological observations. We examine a possibility that pseudo Nambu-Goldstone bosons account for both hot and cold dark matter components. We show that the QCD axions can do the job for the axion decay constant f{sub a}?

  1. Hot dry rock venture risks investigation:

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This study assesses a promising resource in central Utah as the potential site of a future commerical hot dry rock (HDR) facility for generating electricity. The results indicate that, if the HDR reservoir productivity equals expectations based on preliminary results from research projects to date, a 50 MWe HDR power facility at Roosevelt Hot Springs could generate power at cost competitive with coal-fired plants. However, it is imperative that the assumed productivity be demonstrated before funds are committed for a commercial facility. 72 refs., 39 figs., 38 tabs.

  2. Hot Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine Jump to:II Wind FarmHorstHotHot

  3. Hot Plasma Partial to Bootstrap Current

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.Food Drive HolidayHours UsedFire Department HotHot

  4. Kiln for hot-pressing compacts in a continuous manner

    DOE Patents [OSTI]

    Reynolds, Jr., Carl D. (Clinton, TN)

    1985-01-01

    The present invention is directed to a hot pressing furnace or kiln which is capable of preheating, hot pressing, and cooling a plurality of articles in a sequential and continuous manner. The hot pressing furnace of the present invention comprises an elongated, horizontally disposed furnace capable of holding a plurality of displaceable pusher plates each supporting a die body loaded with refractory or ceramic material to be hot pressed. Each of these plates and the die body supported thereby is sequentially pushed through the preheating zone, a temperature stabilizing and a hot pressing zone, and a cooling zone so as to provide a continuous hot-pressing operation of a plurality of articles.

  5. Audio-Magnetotellurics At Roosevelt Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    MT data. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  6. Forecasting Hot Water Consumption in Residential Houses

    E-Print Network [OSTI]

    MacDonald, Mark

    and technological advancement in energy-intensive applications are causing fast electric energy consumption growth and consumption of electricity [8], as long as there is no significant correlation between intermittent energyArticle Forecasting Hot Water Consumption in Residential Houses Linas Gelazanskas * and Kelum A

  7. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, Donald W. (Los Alamos, NM)

    1997-01-01

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  8. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, D.W.

    1997-11-11

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  9. Transfer of hot dry rock technology

    SciTech Connect (OSTI)

    Smith, M.C.

    1985-11-01

    The Hot Dry Rock Geothermal Energy Development Program has focused worldwide attention on the facts that natural heat in the upper part of the earth's crust is an essentially inexhaustible energy resource which is accessible almost everywhere, and that practical means now exist to extract useful heat from the hot rock and bring it to the earth's surface for beneficial use. The Hot Dry Rock Program has successfully constructed and operated a prototype hot, dry rock energy system that produced heat at the temperatures and rates required for large-scale space heating and many other direct uses of heat. The Program is now in the final stages of constructing a larger, hotter system potentially capable of satisfying the energy requirements of a small, commercial, electrical-generating power plant. To create and understand the behavior of such system, it has been necessary to develop or support the development of a wide variety of equipment, instruments, techniques, and analyses. Much of this innovative technology has already been transferred to the private sector and to other research and development programs, and more is continuously being made available as its usefulness is demonstrated. This report describes some of these developments and indicates where this new technology is being used or can be useful to industry, engineering, and science.

  10. Six Hot Topics in Planetary Astronomy

    E-Print Network [OSTI]

    David Jewitt

    2008-11-14

    Six hot topics in modern planetary astronomy are described: 1) lightcurves and densities of small bodies 2) colors of Kuiper belt objects and the distribution of the ultrared matter 3) spectroscopy and the crystallinity of ice in the outer Solar system 4) irregular satellites of the giant planets 5) the Main Belt Comets and 6) comets and meteor stream parents.

  11. World launch! Hot-Steam Aerostat

    E-Print Network [OSTI]

    Berlin,Technische Universitšt

    to the first operable balloon ever that became buoyant by means of superheated steam. The performance of Hei-light and flocked insulation material superheated steam could be maintained also close to the envelopeInfo HeiDAS UH World launch! Hot-Steam Aerostat #12;"If you intend to view the land, if you plan

  12. Havre, MT Natural Gas Pipeline Imports From Canada (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillion Cubic Feet) Havre, MT Natural Gas Pipeline

  13. Reduce Hot Water Use for Energy Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduce Hot Water Use for Energy Savings Reduce Hot Water Use for Energy Savings June 15, 2012 - 5:51pm Addthis Low-flow fixtures and showerheads can achieve water savings of...

  14. Estimation of microbial cover distributions at Mammoth Hot

    E-Print Network [OSTI]

    Goldenfeld, Nigel

    library information from travertine-forming hot springs in Yellowstone Na- tional Park to provide to be obtained in a va- riety of environments ranging from geothermal hot springs to the oral cav- ity. Clone

  15. Continuous Commissioning of a Central Chilled Water & Hot Water System†

    E-Print Network [OSTI]

    Deng, S.; Turner, W. D.; Batten, T.; Liu, M.

    2000-01-01

    A central chilled water / hot water system provides cooling / heating energy from central utility plants to multiple customers (buildings) through campus distribution loops. To effectively transport the chilled water and hot water to the buildings...

  16. Insulation of Pipe Bends Improves Efficiency of Hot Oil Furnaces†

    E-Print Network [OSTI]

    Haseltine, D. M.; Laffitte, R. D.

    1999-01-01

    Thermodynamic analyses of processes indicated low furnace efficiencies on certain hot oil furnaces. Further investigation, which included Infrared (IR) thermography testing of several furnaces, identified extremely hot surfaces on the outside...

  17. Sun-Sentinel Red hot email heats up Wasserman Schultz,

    E-Print Network [OSTI]

    Fernandez, Eduardo

    Sun-Sentinel Red hot email heats up Wasserman Schultz, West rift South Florida members of Congress take feud public July 20, 2011|By Anthony Man, Sun Sentinel Congressman Allen West's red hot response

  18. Hot Water Heating System Operation and Energy Conservation†

    E-Print Network [OSTI]

    Shao, Z.; Chen, H.; Wei, P.

    2006-01-01

    Based on an example of the reconstruction of a hot water heating system, this paper provides an analysis and comparison of the operations of hot water heating systems, including supply water temperature adjustment, flow adjustment during each...

  19. Hot Springs Point Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Point Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Hot Springs Point Geothermal Project Project Location Information...

  20. Detachment Faulting & Geothermal Resources- Pearl Hot Spring, NV

    Broader source: Energy.gov [DOE]

    Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV presentation at the April 2013 peer review meeting held in Denver, Colorado.

  1. X-rays from Hot Stars: Stellar Astronomy Research with

    E-Print Network [OSTI]

    Cohen, David

    emission lines Hot stars*: massive outflows ("stellar winds") ≠ are the x-rays associated with these winds can actually take an image of its "wind nebula" ≠ in all other cases, we infer the presence of a wind a model for fitting the detailed shapes of x-ray emission line profiles from hot star winds The very hot

  2. Method for hot pressing beryllium oxide articles

    DOE Patents [OSTI]

    Ballard, Ambrose H. (Oak Ridge, TN); Godfrey, Jr., Thomas G. (Oak Ridge, TN); Mowery, Erb H. (Clinton, TN)

    1988-01-01

    The hot pressing of beryllium oxide powder into high density compacts with little or no density gradients is achieved by employing a homogeneous blend of beryllium oxide powder with a lithium oxide sintering agent. The lithium oxide sintering agent is uniformly dispersed throughout the beryllium oxide powder by mixing lithium hydroxide in an aqueous solution with beryllium oxide powder. The lithium hydroxide is converted in situ to lithium carbonate by contacting or flooding the beryllium oxide-lithium hydroxide blend with a stream of carbon dioxide. The lithium carbonate is converted to lithium oxide while remaining fixed to the beryllium oxide particles during the hot pressing step to assure uniform density throughout the compact.

  3. The decay of hot KK space

    E-Print Network [OSTI]

    Adam R. Brown

    2015-04-30

    The non-perturbative instabilities of hot Kaluza-Klein spacetime are investigated. In addition to the known instability of hot space (the nucleation of 4D black holes) and the known instability of KK space (the nucleation of bubbles of nothing by quantum tunneling), we find two new instabilities: the nucleation of 5D black holes, and the nucleation of bubbles of nothing by thermal fluctuation. These four instabilities are controlled by two Euclidean instantons, with each instanton doing double duty via two inequivalent analytic continuations; thermodynamic instabilities of one are shown to be related to mechanical instabilities of the other. I also construct bubbles of nothing that are formed by a hybrid process involving both thermal fluctuation and quantum tunneling. There is an exact high-temperature/low-temperature duality that relates the nucleation of black holes to the nucleation of bubbles of nothing.

  4. X-rays from Hot Subdwarfs

    E-Print Network [OSTI]

    Mereghetti, Sandro

    2015-01-01

    Thanks to the high sensitivity of the instruments on board the XMM-Newton and Chandra satellites, it has become possible to explore the properties of the X-ray emission from hot subdwarfs. The small but growing sample of hot subdwarfs detected in X-rays includes binary systems, in which the X-rays result from wind accretion onto a compact companion (white dwarf or neutron star), as well as isolated sdO stars in which X-rays are probably due to shock instabilities in the wind. X-ray observations of these low mass stars provide information which can be useful also for our understanding of the winds of more luminous and massive early-type stars and can lead to the discovery of particularly interesting binary systems.

  5. Enabling Technologies for Ceramic Hot Section Components

    SciTech Connect (OSTI)

    Venkat Vedula; Tania Bhatia

    2009-04-30

    Silicon-based ceramics are attractive materials for use in gas turbine engine hot sections due to their high temperature mechanical and physical properties as well as lower density than metals. The advantages of utilizing ceramic hot section components include weight reduction, and improved efficiency as well as enhanced power output and lower emissions as a result of reducing or eliminating cooling. Potential gas turbine ceramic components for industrial, commercial and/or military high temperature turbine applications include combustor liners, vanes, rotors, and shrouds. These components require materials that can withstand high temperatures and pressures for long duration under steam-rich environments. For Navy applications, ceramic hot section components have the potential to increase the operation range. The amount of weight reduced by utilizing a lighter gas turbine can be used to increase fuel storage capacity while a more efficient gas turbine consumes less fuel. Both improvements enable a longer operation range for Navy ships and aircraft. Ceramic hot section components will also be beneficial to the Navy's Growth Joint Strike Fighter (JSF) and VAATE (Versatile Affordable Advanced Turbine Engines) initiatives in terms of reduced weight, cooling air savings, and capability/cost index (CCI). For DOE applications, ceramic hot section components provide an avenue to achieve low emissions while improving efficiency. Combustors made of ceramic material can withstand higher wall temperatures and require less cooling air. Ability of the ceramics to withstand high temperatures enables novel combustor designs that have reduced NO{sub x}, smoke and CO levels. In the turbine section, ceramic vanes and blades do not require sophisticated cooling schemes currently used for metal components. The saved cooling air could be used to further improve efficiency and power output. The objectives of this contract were to develop technologies critical for ceramic hot section components for gas turbine engines. Significant technical progress has been made towards maturation of the EBC and CMC technologies for incorporation into gas turbine engine hot-section. Promising EBC candidates for longer life and/or higher temperature applications relative to current state of the art BSAS-based EBCs have been identified. These next generation coating systems have been scaled-up from coupons to components and are currently being field tested in Solar Centaur 50S engine. CMC combustor liners were designed, fabricated and tested in a FT8 sector rig to demonstrate the benefits of a high temperature material system. Pretest predictions made through the use of perfectly stirred reactor models showed a 2-3x benefit in CO emissions for CMC versus metallic liners. The sector-rig test validated the pretest predictions with >2x benefit in CO at the same NOx levels at various load conditions. The CMC liners also survived several trip shut downs thereby validating the CMC design methodology. Significant technical progress has been made towards incorporation of ceramic matrix composites (CMC) and environmental barrier coatings (EBC) technologies into gas turbine engine hot-section. The second phase of the program focused on the demonstration of a reverse flow annular CMC combustor. This has included overcoming the challenges of design and fabrication of CMCs into 'complex' shapes; developing processing to apply EBCs to 'engine hardware'; testing of an advanced combustor enabled by CMCs in a PW206 rig; and the validation of performance benefits against a metal baseline. The rig test validated many of the pretest predictions with a 40-50% reduction in pattern factor compared to the baseline and reductions in NOx levels at maximum power conditions. The next steps are to develop an understanding of the life limiting mechanisms in EBC and CMC materials, developing a design system for EBC coated CMCs and durability testing in an engine environment.

  6. THERMAL PROCESSES GOVERNING HOT-JUPITER RADII

    SciTech Connect (OSTI)

    Spiegel, David S.; Burrows, Adam E-mail: burrows@astro.princeton.edu

    2013-07-20

    There have been many proposed explanations for the larger-than-expected radii of some transiting hot Jupiters, including either stellar or orbital energy deposition deep in the atmosphere or deep in the interior. In this paper, we explore the important influences on hot-Jupiter radius evolution of (1) additional heat sources in the high atmosphere, the deep atmosphere, and deep in the convective interior; (2) consistent cooling of the deep interior through the planetary dayside, nightside, and poles; (3) the degree of heat redistribution to the nightside; and (4) the presence of an upper atmosphere absorber inferred to produce anomalously hot upper atmospheres and inversions in some close-in giant planets. In particular, we compare the radius expansion effects of atmospheric and deep-interior heating at the same power levels and derive the power required to achieve a given radius increase when night-side cooling is incorporated. We find that models that include consistent day/night cooling are more similar to isotropically irradiated models when there is more heat redistributed from the dayside to the nightside. In addition, we consider the efficacy of ohmic heating in the atmosphere and/or convective interior in inflating hot Jupiters. Among our conclusions are that (1) the most highly irradiated planets cannot stably have uB {approx}> 10 km s{sup -1} G over a large fraction of their daysides, where u is the zonal wind speed and B is the dipolar magnetic field strength in the atmosphere, and (2) that ohmic heating cannot in and of itself lead to a runaway in planet radius.

  7. Hot Jupiters and stellar magnetic activity

    E-Print Network [OSTI]

    A. F. Lanza

    2008-05-20

    Recent observations suggest that stellar magnetic activity may be influenced by the presence of a close-by giant planet. Specifically, chromospheric hot spots rotating in phase with the planet orbital motion have been observed during some seasons in a few stars harbouring hot Jupiters. The spot leads the subplanetary point by a typical amount of about 60-70 degrees, with the extreme case of upsilon And where the angle is about 170 degrees. The interaction between the star and the planet is described considering the reconnection between the stellar coronal field and the magnetic field of the planet. Reconnection events produce energetic particles that moving along magnetic field lines impact onto the stellar chromosphere giving rise to a localized hot spot. A simple magnetohydrostatic model is introduced to describe the coronal magnetic field of the star connecting its surface to the orbiting planet. The field is assumed to be axisymmetric around the rotation axis of the star and its configuration is more general than a linear force-free field. With a suitable choice of the free parameters, the model can explain the phase differences between the hot spots and the planets observed in HD 179949, upsilon And, HD 189733, and tau Bootis, as well as their visibility modulation on the orbital period and seasonal time scales. The possible presence of cool spots associated with the planets in tau Boo and HD 192263 cannot be explained by the present model. However, we speculate about the possibility that reconnection events in the corona may influence subphotospheric dynamo action in those stars producing localized photospheric (and chromospheric) activity migrating in phase with their planets.

  8. Hot filament CVD of boron nitride films

    DOE Patents [OSTI]

    Rye, Robert R. (Albuquerque, NM)

    1992-01-01

    Using a hot filament (.apprxeq.1400.degree. C.) to activate borazine (B.sub.3 N.sub.3 H.sub.6) molecules for subsequent reaction with a direct line-of-sight substrate, transparent boron ntiride films as thick as 25,000 angstroms are grown for a substrate temperature as low as 100.degree. C. The minimum temperature is determined by radiative heating from the adjacent hot filament. The low temperature BN films show no indication of crystallinity with X-ray diffraction (XRD). X-ray photoelectron spectra (XPS) show the films to have a B:N ratio of 0.97:1 with no other XPS detectable impurities above the 0.5% level. Both Raman and infrared (IR) spectroscopy are characteristic of h-BN with small amounts of hydrogen detected as N-H and B-H bands in the IR spectrum. An important feature of this method is the separation and localization of the thermal activation step at the hot filament from the surface reaction and film growth steps at the substrate surface. This allows both higher temperature thermal activation and lower temperature film growth.

  9. Residential hot water distribution systems: Roundtablesession

    SciTech Connect (OSTI)

    Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

    2002-08-01

    Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

  10. Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory

    E-Print Network [OSTI]

    .A. Gates, R.W. Harvey, S.M. Kaye, T.K. Mau, J. Menard, C.K. Phillips, G. Taylor, R. Wilson, and the NSTX. Mau2 , J. Menard, C. K. Phillips, G. Taylor, R. Wilson and the NSTX Research Team Princeton Plasma Scenario Simulations for NSTX C. E. Kessel, E. J. Synakowski, D. A. Gates, R. W. Harvey1 , S. M. Kaye, T. K

  11. MT1-MMP promotes cell growth and ERK activation through c-Src and paxillin in three-dimensional collagen matrix

    SciTech Connect (OSTI)

    Takino, Takahisa; Tsuge, Hisashi; Ozawa, Terumasa [Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)] [Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Sato, Hiroshi, E-mail: vhsato@kenroku.kanazawa-u.ac.jp [Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)] [Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)

    2010-06-11

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is essential for tumor invasion and growth. We show here that MT1-MMP induces extracellular signal-regulated kinase (ERK) activation in cancer cells cultured in collagen gel, which is indispensable for their proliferation. Inhibition of MT1-MMP by MMP inhibitor or small interfering RNA suppressed activation of focal adhesion kinase (FAK) and ERK in MT1-MMP-expressing cancer cells, which resulted in up-regulation of p21{sup WAF1} and suppression of cell growth in collagen gel. Cell proliferation was also abrogated by the inhibitor against ERK pathway without affecting FAK phosphorylation. MT1-MMP and integrin {alpha}{sub v}{beta}{sub 3} were shown to be involved in c-Src activation, which induced FAK and ERK activation in collagen gel. These MT1-MMP-mediated signal transductions were paxillin dependent, as knockdown of paxillin reduced cell growth and ERK activation, and co-expression of MT1-MMP with paxillin induced ERK activation. The results suggest that MT1-MMP contributes to proliferation of cancer cells in the extracellular matrix by activating ERK through c-Src and paxillin.

  12. Uranium hydrogeochemical and stream sediment reconnaissance of the Mt. Hayes NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Not Available

    1981-05-01

    Results of a hydrogeochemical and stream sediment reconnaissance of the Mt. Hayes quadrangle, Alaska, are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and Laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A to D describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment, lake sediment, stream water, lake water, and ground water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report.

  13. EIS-0092: Conversion to Coal, Holyoke Water Power Company, Mt. Tom Generating Station Unit 1 Holyoke, Hampden County, Massachusetts

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration prepared this statement to assess the environmental impacts of prohibiting Unit 1 of the Mt. Tom Generation Station Unit 1 from using either natural gas or petroleum products as a primary energy source, which would result in the utility burning low-sulfur coal.

  14. The Mechanism of Inhibition of Antibody-based Inhibitors of Membrane-type Serine Protease 1 (MT-SP1)

    E-Print Network [OSTI]

    Craik, Charles S.

    The Mechanism of Inhibition of Antibody-based Inhibitors of Membrane-type Serine Protease 1 (MT-SP1, 600 16th St. Genentech Hall, San Francisco, CA 94143, USA The mechanisms of inhibition of two novel sc-SP1 at low pH, and is a standard mechanism inhibitor of the protease. The mechanisms of inhibition

  15. Method for hot press forming articles

    DOE Patents [OSTI]

    Baker, Robert R. (Livonia, MI); Hartsock, Dale L. (Livonia, MI)

    1982-01-01

    This disclosure relates to an improved method for achieving the best bond strength and for minimizing distortion and cracking of hot pressed articles. In particular, in a method for hot press forming both an outer facing circumferential surface of and an inner portion of a hub, and of bonding that so-formed outer facing circumferential surface to an inner facing circumferential surface of a pre-formed ring thereby to form an article, the following improvement is made. Normally, in this method, the outside ring is restrained by a restraining sleeve of ring-shaped cross-section having an inside diameter. A die member, used to hot press form the hub, is so-formed as to have an outside diameter sized to engage the inside diameter of the restraining sleeve in a manner permitting relative movement therebetween. The improved method is one in which several pairs of matched restraining sleeve and die member are formed with each matched pair having a predetermined diameter. The predetermined diameter of each matched pair is different from another matched pair by stepped increments. The largest inside diameter of a restraining sleeve is equal to the diameter of the outer facing circumferential surface of the hub. Each pair of the matched restraining sleeve and die member is used to form an article in which an inside hub is bonded to an outside ring. The several samples so-formed are evaluated to determine which sample has the best bond formed between the hub and the ring with the least or no cracking or distortion in the ring portion of the article. Thereafter, the matched restraining sleeve and die member which form the article having the best bonding characteristics and least distortion cracking is then used for repeated formations of articles.

  16. Hot air drum evaporator. [Patent application

    DOE Patents [OSTI]

    Black, R.L.

    1980-11-12

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  17. Ventilation Requirements in Hot Humid Climates†

    E-Print Network [OSTI]

    Walker, I. S.; Sherman, M. H.

    2006-01-01

    ,Ē To be publicshed ASHRAE Trans. Sherman, M.H. and Matson, N.E ďResidential Ventilation and Energy Characteristics,Ē ASHRAE Trans. 103(1), 1997, [LBNL- 39036]. Sherman M. H., ďOver-ventilating in Hot, Humid ClimatesĒ, IAQ Applications, 7(1) pp. 1-4 ASHRAE, 2006...a. Sherman M. H. , ďHouse Need to BreatheÖRight?Ē Fine Homebuilding, April/May 2006; pp. 64-69, LBL Report 54496. Sherman M.H, Matson N.E. , ďAir Tightness in New U.S. HousingĒ Proc. 22 nd AIVC Conference, Air Infiltration and Ventilation...

  18. Hot Fuel Examination Facility/South

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    This document describes the potential environmental impacts associated with proposed modifications to the Hot Fuel Examination Facility/South (HFEF/S). The proposed action, to modify the existing HFEF/S at the Argonne National Laboratory-West (ANL-W) on the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, would allow important aspects of the Integral Fast Reactor (IFR) concept, offering potential advantages in nuclear safety and economics, to be demonstrated. It would support fuel cycle experiments and would supply fresh fuel to the Experimental Breeder Reactor-II (EBR-II) at the INEL. 35 refs., 12 figs., 13 tabs.

  19. Hot cell shield plug extraction apparatus

    DOE Patents [OSTI]

    Knapp, Philip A. (Moore, ID); Manhart, Larry K. (Pingree, ID)

    1995-01-01

    An apparatus is provided for moving shielding plugs into and out of holes in concrete shielding walls in hot cells for handling radioactive materials without the use of external moving equipment. The apparatus provides a means whereby a shield plug is extracted from its hole and then swung approximately 90 degrees out of the way so that the hole may be accessed. The apparatus uses hinges to slide the plug in and out and to rotate it out of the way, the hinge apparatus also supporting the weight of the plug in all positions, with the load of the plug being transferred to a vertical wall by means of a bolting arrangement.

  20. Control apparatus for hot gas engine

    DOE Patents [OSTI]

    Stotts, Robert E. (Clifton Park, NY)

    1986-01-01

    A mean pressure power control system for a hot gas (Stirling) engine utilizing a plurality of supply tanks for storing a working gas at different pressures. During pump down operations gas is bled from the engine by a compressor having a plurality of independent pumping volumes. In one embodiment of the invention, a bypass control valve system allows one or more of the compressor volumes to be connected to the storage tanks. By selectively sequencing the bypass valves, a capacity range can be developed over the compressor that allows for lower engine idle pressures and more rapid pump down rates.

  1. Multiple volume compressor for hot gas engine

    DOE Patents [OSTI]

    Stotts, Robert E. (Clifton Park, NY)

    1986-01-01

    A multiple volume compressor for use in a hot gas (Stirling) engine having a plurality of different volume chambers arranged to pump down the engine when decreased power is called for and return the working gas to a storage tank or reservoir. A valve actuated bypass loop is placed over each chamber which can be opened to return gas discharged from the chamber back to the inlet thereto. By selectively actuating the bypass valves, a number of different compressor capacities can be attained without changing compressor speed whereby the capacity of the compressor can be matched to the power available from the engine which is used to drive the compressor.

  2. Hot Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey:Hopkinsville, Kentucky:Open EnergyInformationHot

  3. Hot Pot Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey:Hopkinsville, Kentucky:OpenHot Pot Geothermal Area

  4. Just Hot Resources Consulting | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,New York:Just Hot Resources Consulting Jump to:

  5. Ames Laboratory Hot Canyon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith PropaneNaturalTest YourProgramAmes Laboratory Hot Canyon

  6. Solar Hot Water Heater Industry in Barbados

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4Energy SmoothEquipment CertificationSolar Hot Water

  7. Hot Pot Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine Jump to:II Wind FarmHorstHot Pot

  8. Hot Pot Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine Jump to:II Wind FarmHorstHot PotPot

  9. Hot Links to Cool Spots - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.Food Drive HolidayHours UsedFire Department Hot

  10. Winner: Hot Rocks | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuelWeatherize ¬Ľ AirareAbout Keyof EnergyWinner: Hot

  11. Hot Springs Metropolitan Planning Organization 2030 Long Range Transportation Plan†

    E-Print Network [OSTI]

    Hot Springs Metropolitan Planning Organization

    2005-11-03

    of Mountain Pine Hot Springs Village The Greater Hot Springs Chamber of Commerce The Arkansas State Highway and Transportation Department In Cooperation With United States Department of Transportation Federal Highway Administration Federal Transit... Administration 2030 Long Range Transportation Plan for the Hot Springs Area Metropolitan Planning Organization This LRTP has been funded with federal Metropolitan Planning (PL) funds through the Federal Highway Administration, Section 5303 funds...

  12. Ground Gravity Survey At Roosevelt Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    Ground Gravity Survey At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity...

  13. Ground Gravity Survey At Neal Hot Springs Geothermal Area (Colwell...

    Open Energy Info (EERE)

    Ground Gravity Survey At Neal Hot Springs Geothermal Area (Colwell, Et Al., 2012) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity...

  14. Ground Gravity Survey At Lake City Hot Springs Area (Warpinski...

    Open Energy Info (EERE)

    Ground Gravity Survey At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity...

  15. Ground Gravity Survey At Neal Hot Springs Geothermal Area (U...

    Open Energy Info (EERE)

    Ground Gravity Survey At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc., 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground...

  16. Controlled Source Frequency-Domain Electromagnetics At Neal Hot...

    Open Energy Info (EERE)

    2012 Colorado School of Mines and Imperial College London (2011) Geophysical Characterization of a Geothermal System Neal Hot Springs, Oregon, USA Additional References...

  17. Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen, Et Al., 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  18. Thermal Gradient Holes At Neal Hot Springs Geothermal Area (U...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  19. Sampling System for Hot Cell Aqueous Processing Streams Julia...

    Office of Scientific and Technical Information (OSTI)

    and Sampling System for Hot Cell Aqueous Processing Streams Julia Tripp; Jack Law; Tara Smith 11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS microfluidics; robotic; sampling...

  20. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  1. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area (Petersen, 1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  2. Micro-Earthquake At Roosevelt Hot Springs Geothermal Area (Zandt...

    Open Energy Info (EERE)

    Micro-Earthquake At Roosevelt Hot Springs Geothermal Area (Zandt, Et Al., 1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake...

  3. Camperworld Hot Springs SCUBA Dive Pool Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    SCUBA Dive Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Camperworld Hot Springs SCUBA Dive Pool Pool & Spa Low Temperature Geothermal...

  4. Ground Magnetics At Neal Hot Springs Geothermal Area (Colwell...

    Open Energy Info (EERE)

    Area (Colwell, Et Al., 2012) Exploration Activity Details Location Neal Hot Springs Geothermal Area Exploration Technique Ground Magnetics Activity Date 2011 - 2011...

  5. Modeling the emergence of the 'hot zones': tuberculosis and the ...

    E-Print Network [OSTI]

    2004-09-10

    Sep 19, 2004 ... Tuberculosis and Lung Disease have defined a hot zone as an area where the prevalence of MDRTB cases is >5% (that is, where >5% of.

  6. Compound and Elemental Analysis At Buffalo Valley Hot Springs...

    Open Energy Info (EERE)

    Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated...

  7. Geologic Setting of the Central Alaskan Hot Springs Belt: Implications...

    Open Energy Info (EERE)

    the Central Alaskan Hot Springs Belt: Implications for Geothermal Resource Capacity and Sustainable Energy Production Jump to: navigation, search OpenEI Reference LibraryAdd to...

  8. Updated Spitzer emission spectroscopy of bright transiting hot...

    Office of Scientific and Technical Information (OSTI)

    Updated Spitzer emission spectroscopy of bright transiting hot Jupiter HD 189733b Citation Details In-Document Search Title: Updated Spitzer emission spectroscopy of bright...

  9. Idaho Public Utilities Commission Approves Neal Hot Springs Power...

    Open Energy Info (EERE)

    Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Idaho Public...

  10. Compound and Elemental Analysis At Lake City Hot Springs Area...

    Open Energy Info (EERE)

    Sladek, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful...

  11. Data Acquisition-Manipulation At Lake City Hot Springs Area ...

    Open Energy Info (EERE)

    Data Acquisition-Manipulation At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data...

  12. Soil Sampling At Waunita Hot Springs Geothermal Area (Ringrose...

    Open Energy Info (EERE)

    Soil Sampling At Waunita Hot Springs Geothermal Area (Ringrose & Pearl, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At...

  13. Analysis Of Hot Springs And Associated Deposits In Yellowstone...

    Open Energy Info (EERE)

    analysis, and VNIR spectroscopy. Samples of hot spring deposits, geyser deposits, and soil were also collected. Analysis of ASTER data provided broad scale characteristics of the...

  14. Geothermal Literature Review At Breitenbush Hot Springs Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Breitenbush Hot Springs Area (Ingebritsen, Et Al., 1996) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  15. Geothermal Literature Review At Lake City Hot Springs Area (Benoit...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lake City Hot Springs Area (Benoit, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  16. Hydrogeologic investigation of Coso Hot Springs, Inyo County...

    Open Energy Info (EERE)

    for chemical analysis; determination of the local Coso Hot Springs and regional groundwater hydrology, including consideration of recharge, discharge, movement, and water...

  17. Solar Hot Water Creates Savings for Homeless Shelters

    Broader source: Energy.gov [DOE]

    The state of Arizona and the House of Refuge Sunnyslope are partnering to install solar hot water systems at five Phoenix-area housing sites for homeless men.

  18. An inequality for potentials and the ďhotĖspotsĒ conjecture

    E-Print Network [OSTI]

    2003-06-04

    inequality, by the conformal invariance of Brownian motion, implies a result of Pascu [13] on ďhotĖspotsĒ for certain symmetric convex domains. ?Supported in†...

  19. TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA

    E-Print Network [OSTI]

    Lutz, Jim

    2014-01-01

    for Rating Residential Water Heaters. Atlanta, GA: ASHRAE,Procedures for Residential Water Heaters, Direct HeatingY. Qin, and M. Melody. "Hot Water Draw Patterns in Single-

  20. Tool for Generating Realistic Residential Hot Water Event Schedules...

    Energy Savers [EERE]

    Paper NRELCP-550-47685 August 2010 Tool for Generating Realistic Residential Hot Water Event Schedules Preprint Bob Hendron and Jay Burch National Renewable Energy...

  1. Direct-Current Resistivity Survey At Beowawe Hot Springs Area...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Beowawe Hot Springs Area (Garg, Et Al., 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current...

  2. Direct-Current Resistivity At Beowawe Hot Springs Area (Garg...

    Open Energy Info (EERE)

    Direct-Current Resistivity At Beowawe Hot Springs Area (Garg, Et Al., 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current...

  3. Direct-Current Resistivity Survey At Roosevelt Hot Springs Area...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Roosevelt Hot Springs Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current...

  4. Advanced Seismic data Analysis Program (The "Hot Pot Project...

    Open Energy Info (EERE)

    Advanced Seismic data Analysis Program (The "Hot Pot Project") Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Advanced Seismic data...

  5. Seismic baseline and induction studies- Roosevelt Hot Springs...

    Open Energy Info (EERE)

    Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Seismic...

  6. Vertical Seismic Profiling At Neal Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    Vertical Seismic Profiling At Neal Hot Springs Geothermal Area (Colorado School of Mines and Imperial College London, 2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal...

  7. Hot water can freeze faster than cold?!?

    E-Print Network [OSTI]

    Monwhea Jeng

    2005-12-29

    We review the Mpemba effect, where intially hot water freezes faster than initially cold water. While the effect appears impossible at first sight, it has been seen in numerous experiments, was reported on by Aristotle, Francis Bacon, and Descartes, and has been well-known as folklore around the world. It has a rich and fascinating history, which culminates in the dramatic story of the secondary school student, Erasto Mpemba, who reintroduced the effect to the twentieth century scientific community. The phenomenon, while simple to describe, is deceptively complex, and illustrates numerous important issues about the scientific method: the role of skepticism in scientific inquiry, the influence of theory on experiment and observation, the need for precision in the statement of a scientific hypothesis, and the nature of falsifiability. We survey proposed theoretical mechanisms for the Mpemba effect, and the results of modern experiments on the phenomenon. Studies of the observation that hot water pipes are more likely to burst than cold water pipes are also described.

  8. Hot Cell Window Shielding Analysis Using MCNP

    SciTech Connect (OSTI)

    Chad L. Pope; Wade W. Scates; J. Todd Taylor

    2009-05-01

    The Idaho National Laboratory Materials and Fuels Complex nuclear facilities are undergoing a documented safety analysis upgrade. In conjunction with the upgrade effort, shielding analysis of the Fuel Conditioning Facility (FCF) hot cell windows has been conducted. This paper describes the shielding analysis methodology. Each 4-ft thick window uses nine glass slabs, an oil film between the slabs, numerous steel plates, and packed lead wool. Operations in the hot cell center on used nuclear fuel (UNF) processing. Prior to the shielding analysis, shield testing with a gamma ray source was conducted, and the windows were found to be very effective gamma shields. Despite these results, because the glass contained significant amounts of lead and little neutron absorbing material, some doubt lingered regarding the effectiveness of the windows in neutron shielding situations, such as during an accidental criticality. MCNP was selected as an analysis tool because it could model complicated geometry, and it could track gamma and neutron radiation. A bounding criticality source was developed based on the composition of the UNF. Additionally, a bounding gamma source was developed based on the fission product content of the UNF. Modeling the windows required field inspections and detailed examination of drawings and material specifications. Consistent with the shield testing results, MCNP results demonstrated that the shielding was very effective with respect to gamma radiation, and in addition, the analysis demonstrated that the shielding was also very effective during an accidental criticality.

  9. The Chilled Water and Hot Water Building Differential Pressure Setpoint Calculation - Chilled Water and Hot Water Pump Speed Control†

    E-Print Network [OSTI]

    Turner, W. D.; Bruner, H., Jr.; Claridge, D.; Liu, C.; Deng, S.

    2002-01-01

    Water and Hot Water Building Deferential Pressure Setpoint Calculation ? Chilled Water and Hot Water Pump Speed Control Chenggang Liu Research Associate Energy Systems Laboratory Texas A&M University College Station, TX Homer L. Bruner... of chilled water and hot water consumption with the leaking control valves on the cooling and heating coils. Variable speed pumps save cooling and heating energies. However, most of these advantages are lost when proper speed control is not maintained...

  10. Optical NEP in Hot-Electron Nanobolometers

    E-Print Network [OSTI]

    Karasik, Boris S

    2010-01-01

    For the first time, we have measured the optical noise equivalent power (NEP) in titanium (Ti) superconducting hot-electron nanobolometers (nano-HEBs). The bolometers were 2{\\mu}mx1{\\mu}mx20nm and 1{\\mu}mx1{\\mu}mx20nm planar antenna-coupled devices. The measurements were done at {\\lambda} = 460 {\\mu}m using a cryogenic black body radiation source delivering optical power from a fraction of a femtowatt to a few 100s of femtowatts. A record low NEP = 3x10^{-19} W/Hz^{1/2} at 50 mK has been achieved. This sensitivity meets the requirements for SAFARI instrument on the SPICA telescope. The ways for further improvement of the nano-HEB detector sensitivity are discussed.

  11. Electrically tunable hot-silicon terahertz attenuator

    SciTech Connect (OSTI)

    Wang, Minjie; Vajtai, Robert; Ajayan, Pulickel M.; Kono, Junichiro

    2014-10-06

    We have developed a continuously tunable, broadband terahertz attenuator with a transmission tuning range greater than 10{sup 3}. Attenuation tuning is achieved electrically, by simply changing the DC voltage applied to a heating wire attached to a bulk silicon wafer, which controls its temperature between room temperature and ?550?K, with the corresponding free-carrier density adjusted between ?10{sup 11?}cm{sup ?3} and ?10{sup 17?}cm{sup ?3}. This ďhot-siliconĒ-based terahertz attenuator works most effectively at 450Ė550?K (corresponding to a DC voltage variation of only ?7?V) and completely shields terahertz radiation above 550?K in a frequency range of 0.1Ė2.5 THz. Both intrinsic and doped silicon wafers were tested and demonstrated to work well as a continuously tunable attenuator. All behaviors can be understood quantitatively via the free-carrier Drude model taking into account thermally activated intrinsic carriers.

  12. Hot gas path component cooling system

    DOE Patents [OSTI]

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  13. Magnetic island evolution in hot ion plasmas

    SciTech Connect (OSTI)

    Ishizawa, A.; Nakajima, N.; Waelbroeck, F. L.; Fitzpatrick, R.; Horton, W.

    2012-07-15

    Effects of finite ion temperature on magnetic island evolution are studied by means of numerical simulations of a reduced set of two-fluid equations which include ion as well as electron diamagnetism in slab geometry. The polarization current is found to be almost an order of magnitude larger in hot than in cold ion plasmas, due to the strong shear of ion velocity around the separatrix of the magnetic islands. As a function of the island width, the propagation speed decreases from the electron drift velocity (for islands thinner than the Larmor radius) to values close to the guiding-center velocity (for islands of order 10 times the Larmor radius). In the latter regime, the polarization current is destabilizing (i.e., it drives magnetic island growth). This is in contrast to cold ion plasmas, where the polarization current is generally found to have a healing effect on freely propagating magnetic island.

  14. Telescopic nanotube device for hot nanolithography

    DOE Patents [OSTI]

    Popescu, Adrian; Woods, Lilia M

    2014-12-30

    A device for maintaining a constant tip-surface distance for producing nanolithography patterns on a surface using a telescopic nanotube for hot nanolithography. An outer nanotube is attached to an AFM cantilever opposite a support end. An inner nanotube is telescopically disposed within the outer nanotube. The tip of the inner nanotube is heated to a sufficiently high temperature and brought in the vicinity of the surface. Heat is transmitted to the surface for thermal imprinting. Because the inner tube moves telescopically along the outer nanotube axis, a tip-surface distance is maintained constant due to the vdW force interaction, which in turn eliminates the need of an active feedback loop.

  15. Thermodynamics of pairing transition in hot nuclei

    E-Print Network [OSTI]

    Lang Liu; Zhen-Hua Zhang; Peng-Wei Zhao

    2014-12-16

    The pairing correlations in hot nuclei $^{162}$Dy are investigated in terms of the thermodynamical properties by covariant density functional theory. The heat capacities $C_V$ are evaluated in the canonical ensemble theory and the paring correlations are treated by a shell-model-like approach, in which the particle number is conserved exactly. A S-shaped heat capacity curve, which agrees qualitatively with the experimental data, has been obtained and analyzed in details. It is found that the one-pair-broken states play crucial roles in the appearance of the S shape of the heat capacity curve. Moreover, due to the effect of the particle-number conservation, the pairing gap varies smoothly with the temperature, which indicates a gradual transition from the superfluid to the normal state.

  16. Thermodynamics of pairing transition in hot nuclei

    E-Print Network [OSTI]

    Lang Liu; Zhen-Hua Zhang; Peng-Wei Zhao

    2015-10-09

    The pairing correlations in hot nuclei $^{162}$Dy are investigated in terms of the thermodynamical properties by covariant density functional theory. The heat capacities $C_V$ are evaluated in the canonical ensemble theory and the paring correlations are treated by a shell-model-like approach, in which the particle number is conserved exactly. A S-shaped heat capacity curve, which agrees qualitatively with the experimental data, has been obtained and analyzed in details. It is found that the one-pair-broken states play crucial roles in the appearance of the S shape of the heat capacity curve. Moreover, due to the effect of the particle-number conservation, the pairing gap varies smoothly with the temperature, which indicates a gradual transition from the superfluid to the normal state.

  17. Process for making ceramic hot gas filter

    DOE Patents [OSTI]

    Connolly, Elizabeth Sokolinski (Wilmington, DE); Forsythe, George Daniel (Landenberg, PA); Domanski, Daniel Matthew (New Castle, DE); Chambers, Jeffrey Allen (Hockessin, DE); Rajendran, Govindasamy Paramasivam (Boothwyn, PA)

    2001-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  18. The HotQCD Equation of State

    E-Print Network [OSTI]

    R. A. Soltz

    2009-09-14

    We present results from recent calculations of the QCD equation of state by the HotQCD Collaboration and review the implications for hydrodynamic modeling. The equation of state of QCD at zero baryon density was calculated on a lattice of dimensions $32^3 \\times 8$ with $m_l = 0.1 m_s$ (corresponding to a pion mass of $\\sim$220 MeV) using two improved staggered fermion actions, p4 and asqtad. C alculations were performed along lines of constant physics using more than 100M cpu-hours on BG/L supercomputers at LLNL, NYBlue, and SDSC. We present paramete rizations of the equation of state suitable for input into hydrodynamics models of heavy ion collisions.

  19. Hot Cell Facility (HCF) Safety Analysis Report

    SciTech Connect (OSTI)

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

    2000-11-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

  20. Hot Springs-Garrison Fiber Optic Project

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    Bonneville Power Administration (BPA) is proposing to upgrade its operational telecommunications system between the Hot Springs Substation and the Garrison Substation using a fiber optic system. The project would primarily involve installing 190 kilometers (120 miles) of fiber optic cable on existing transmission structures and installing new fiber optic equipment in BPA`s substation yards and control houses. BPA prepared an environmental assessment (EA) evaluating the proposed action. This EA was published in October 1994. The EA identifies a number of minor impacts that might occur as a result of the proposed action, as well as some recommended mitigation measures. This Mitigation Action Plan (MAP) identifies specific measures to avoid, minimize, or compensate for impacts identified in the EA.

  1. Dynamical Modelling of Hot Stellar Systems

    E-Print Network [OSTI]

    David Merritt

    1995-10-30

    Estimation of the distribution function f and potential Phi of hot stellar systems from kinematical data is discussed. When the functional forms of f and Phi are not specified a priori, accurate estimation of either function requires very high quality data: either accurate ``line profiles'' at radii extending well beyond an effective radius, or large samples of discrete radial velocities. Estimates of Phi(r) based on much smaller data sets can be very strongly influenced by assumptions, explicit or implicit, about the form of f. The importance of casting the estimation problem into a mathematically determined form is stressed. Some techniques for nonparametric estimation are presented, with some preliminary results of their application to real stellar systems.

  2. Superconducting cuprate heterostructures for hot electron bolometers

    SciTech Connect (OSTI)

    Wen, B.; Yakobov, R.; Vitkalov, S. A.; Sergeev, A.

    2013-11-25

    Transport properties of the resistive state of quasi-two dimensional superconducting heterostructures containing ultrathin La{sub 2?x}Sr{sub x}CuO{sub 4} layers synthesized using molecular beam epitaxy are studied. The electron transport exhibits strong deviation from Ohm's law, ?V??I{sup 3}, with a coefficient ?(T) that correlates with the temperature variation of the resistivity d?/dT. Close to the normal state, analysis of the nonlinear behavior in terms of electron heating yields an electron-phonon thermal conductance per unit area g{sub e?ph}?1 W/K cm{sup 2} at T = 20 K, one-two orders of magnitude smaller than in typical superconductors. This makes superconducting LaSrCuO heterostructures to be attractive candidate for the next generation of hot electron bolometers with greatly improved sensitivity.

  3. Use of low temperature blowers for recirculation of hot gases

    DOE Patents [OSTI]

    Maru, H.C.; Forooque, M.

    1982-08-19

    An apparatus is described for maintaining motors at low operating temperatures during recirculation of hot gases in fuel cell operations and chemical processes such as fluidized bed coal gasification. The apparatus includes a means for separating the hot process gas from the motor using a secondary lower temperature gas, thereby minimizing the temperature increase of the motor and associated accessories.

  4. Forecasting Hot Water Consumption in Dwellings Using Artifitial Neural Networks

    E-Print Network [OSTI]

    MacDonald, Mark

    electricity consumption in time. This paper investigates the ability on Artificial Neural Networks to predict shift electric energy. Keywords--Hot Water Consumption; Forecasting; Artifitial Neural Networks; SmartForecasting Hot Water Consumption in Dwellings Using Artifitial Neural Networks Linas Gelazanskas

  5. Self-contained hot-hollow cathode gun source assembly

    DOE Patents [OSTI]

    Zeren, J.D.

    1984-08-01

    A self-contained hot-hollow cathode gun source assembly for use in a vacuum chamber includes a crucible block having a hot-hollow cathode gun mounted underneath and providing a hole for the magnetic deflection of the ion/electron beam into a crucible on top the block.

  6. Self-contained hot-hollow cathode gun source assembly

    DOE Patents [OSTI]

    Zeren, Joseph D. (Boulder, CO)

    1986-01-01

    A self-contained hot-hollow cathode gun source assembly for use in a vacuum chamber includes a crucible block having a hot-hollow cathode gun mounted underneath and providing a hole for the magnetic deflection of the ion/electron beam into a crucible on top the block.

  7. Hot Interstellar Matter in Elliptical Galaxies For further volumes

    E-Print Network [OSTI]

    Kim, Dong-Woo

    , India B. V. SOMOV, Astronomical Institute, Moscow State University, Russia R. A. SUNYAEV, Space Research Institute, Moscow, Russia #12;Dong-Woo Kim Silvia Pellegrini Editors Hot Interstellar Matter in Elliptical and the large collecting area of XMM-Newton, the fine structure of the hot gas has been imaged in detail

  8. Hot neutron star in generalized thermo-statistics

    E-Print Network [OSTI]

    Hot neutron star in generalized thermo-statistics K. Miyazaki E-mail: miyazakiro@rio.odn.ne.jp Abstract The hot neutron star (NS) is investigated for the ...rst time in the generalized thermo-statistics. The study of neutron star (NS) is an important subject in nuclear physics and astro- physics. The equation

  9. ADVANCED HOT SECTION MATERIALS AND COATINGS TEST RIG

    SciTech Connect (OSTI)

    Scott Reome; Dan Davies

    2004-04-30

    The Hyperbaric Advanced Hot Section Materials & Coating Test Rig program provides design and implementation of a laboratory rig capable of simulating the hot gas path conditions of coal-gas fired industrial gas turbine engines. The principal activity during this reporting period were the evaluation of syngas combustor concepts, the evaluation of test section concepts and the selection of the preferred rig configuration.

  10. Advanced Hot Section Materials and Coatings Test Rig

    SciTech Connect (OSTI)

    Dan Davies

    2004-10-30

    The Hyperbaric Advanced Hot Section Materials & Coating Test Rig program provides design and implementation of a laboratory rig capable of simulating the hot gas path conditions of coal-gas fired industrial gas turbine engines. The principal activities during this reporting period were the continuation of test section detail design and developing specifications for auxiliary systems and facilities.

  11. RESONANT FARADAY ROTATION IN A HOT LITHIUM VAPOR

    E-Print Network [OSTI]

    Cronin, Alex D.

    RESONANT FARADAY ROTATION IN A HOT LITHIUM VAPOR By SCOTT RUSSELL WAITUKAITIS A Thesis Submitted: #12;Abstract I describe a study of Faraday rotation in a hot lithium vapor. I begin by dis- cussing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 The Lithium Oven and Solenoid . . . . . . . . . . . . . . . . . 7 3 Theoretical Framework

  12. Analysis Model for Domestic Hot Water Distribution Systems: Preprint

    SciTech Connect (OSTI)

    Maguire, J.; Krarti, M.; Fang, X.

    2011-11-01

    A thermal model was developed to estimate the energy losses from prototypical domestic hot water (DHW) distribution systems for homes. The developed model, using the TRNSYS simulation software, allows researchers and designers to better evaluate the performance of hot water distribution systems in homes. Modeling results were compared with past experimental study results and showed good agreement.

  13. Redshift of photons penetrating a hot plasma

    E-Print Network [OSTI]

    Ari Brynjolfsson

    2005-10-07

    A new interaction, plasma redshift, is derived, which is important only when photons penetrate a hot, sparse electron plasma. The derivation of plasma redshift is based entirely on conventional axioms of physics. When photons penetrate a cold and dense plasma, they lose energy through ionization and excitation, Compton scattering on the individual electrons, and Raman scattering on the plasma frequency. But in sparse hot plasma, such as in the solar corona, the photons lose energy also in plasma redshift. The energy loss per electron in the plasma redshift is about equal to the product of the photon's energy and one half of the Compton cross-section per electron. In quiescent solar corona, this heating starts in the transition zone to the corona and is a major fraction of the coronal heating. Plasma redshift contributes also to the heating of the interstellar plasma, the galactic corona, and the intergalactic plasma. Plasma redshift explains the solar redshifts, the redshifts of the galactic corona, the cosmological redshifts, the cosmic microwave background, and the X-ray background. The plasma redshift explains the observed magnitude-redshift relation for supernovae SNe Ia without the big bang, dark matter, or dark energy. There is no cosmic time dilation. The universe is not expanding. The plasma redshift, when compared with experiments, shows that the photons' classical gravitational redshifts are reversed as the photons move from the Sun to the Earth. This is a quantum mechanical effect. As seen from the Earth, a repulsion force acts on the photons. This means that there is no need for Einstein's Lambda term. The universe is quasi-static, infinite, and everlasting.

  14. Applications of stable isotopes in hydrological studies of Mt. Apo geothermal field, Philippines

    SciTech Connect (OSTI)

    Salonga, N.D.; Aragon, G.M.; Nogara, J.B.; Sambrano, B.G.

    1996-12-31

    The local precipitation in Mt. Apo is depleted of heavy isotopes owing to high elevation and landward location of the field. Rainwaters infiltrate the shallow grounds, circulate in short distances with almost no interaction with the host bed rocks, and effuse in the surface as cold springs. Lakes and rivers are affected by surface evaporation while the acid SO{sub 4} springs are affected by both evaporation and steam-heating. Only the neutral-pH Cl springs have the signature of the deep thermal fluids. The parent fluids of the deep thermal brine contain Cl of 4,800 to 5,000 mg/kg, {delta}{sup 18}O of -4.62 to -4.13 {per_thousand} and {delta}{sup 2}H of -60.0 to -57.8 {per_thousand}. Inside the Sandawa Collapse, boiling of the parent fluids resulted in a two-phase reservoir with lighter isotope contents. The thermal fluids laterally flow towards the west where they are affected by cooling and mixing of cold waters. Deep water recharge has {delta}{sup 18}O of -10.00 {per_thousand} and {delta}{sup 2}H = -61.20 {per_thousand} which come from the upper slopes of Sandawa Collapse (1580-1700 mASL).

  15. Four-year prospective study of the respiratory effects of volcanic ash from Mt. St. Helens

    SciTech Connect (OSTI)

    Buist, A.S.; Vollmer, W.M.; Johnson, L.R.; Bernstein, R.S.; McCamant, L.E.

    1986-04-01

    This report describes the 4-yr follow-up of 712 loggers exposed over an extended period to varying levels of fresh volcanic ash from the 1980 eruptions of Mt. St. Helens. Concerns related to the irritant effect the ash might have on the airways and also to its fibrogenic potential if exposures were intense and continued over many years. Our subjects were divided into 3 groups: high, low, and no exposure. Baseline testing was begun in June 1980, 1 month after the major eruption, and follow-up testing continued on an annual basis through 1984; 88% of the loggers have been tested at least 3 times. Analysis of lung function data showed that a significant, exposure-related decline in FEV1 occurred during the first year after the eruption. The decline was short-lived, however, and by 1984 the differences between exposure groups were no longer significant. Self-reported symptoms of cough, phlegm, and wheeze showed a similar pattern. No ash-related changes were seen in chest roentgenograms taken in 1980 and in 1984. Our findings are consistent with the hypothesis that the inhaled ash caused mucus hypersecretion and/or airway inflammation that reversed when the exposure levels decreased. The ash levels to which the loggers were exposed were low compared with permissible occupational levels for nuisance dusts, but generally higher than the total suspended particulate levels permissible in ambient air.

  16. CO2 flood tests on whole core samples of the Mt. Simon sandstone, Illinois Basin

    SciTech Connect (OSTI)

    O'Connor, William K.; Rush, Gilbert E.

    2005-09-01

    Geological sequestration of CO2, whether by enhanced oil recovery (EOR), coal-bed methane (CBM) recovery, or saline aquifer injection is a promising near-term sequestration methodology. While tremendous experience exists for EOR, and CBM recovery has been demonstrated in existing fields, saline aquifer injection studies have only recently been initiated. Studies evaluating the availability of saline aquifers suitable for CO2 injection show great potential, however, the long-term fate of the CO2 injected into these ancient aqueous systems is still uncertain. For the subject study, a series of laboratory-scale CO2 flood tests were conducted on whole core samples of the Mt. Simon sandstone from the Illinois Basin. By conducting these tests on whole core samples rather than crushed core, an evaluation of the impact of the CO2 flood on the rock mechanics properties as well as the geochemistry of the core and brine solution has been possible. This empirical data could provide a valuable resource for the validation of reservoir models under development for these engineered CO2 systems.

  17. Kelley Hot Spring Geothermal Project: Kelly Hot Spring Agricultural Center conceptual design

    SciTech Connect (OSTI)

    Longyear, A.B. (ed.)

    1980-06-01

    The proposed core activity in the Kelly Hot Spring Agricultural Center is a nominal 1200 sow swine raising complex. The swine raising is to be a totally confined operation for producing premium pork in controlled environment facilities that utilize geothermal energy. The complex will include a feedmill for producing the various feed formulae required for the animals from breeding through gestation, farrowing, nursery, growing and finishing. The market animals are shipped live by truck to slaughter in Modesto, California. A complete waste management facility will include manure collection from all raising areas, transport via a water flush sysem to methane (biogas) generators, manure separation, settling ponds and disposition of the surplus agricultural quality water. The design is based upon the best commercial practices in confined swine raising in the US today. The most unique feature of the facility is the utilization of geothermal hot water for space heating and process energy throughout the complex.

  18. PRINCETON//989 Princeton WarmBore Magnet

    E-Print Network [OSTI]

    McDonald, Kirk

    in that it has a horizontal ``warm bore'' passing completely through the solenoidal coil, giving easy access, the internal Helium valve has been capped off. On the other hand, the cold volume service lines open directly pumpout port, opening the valve and pumping down. When warm, the system will eventually pump down to about

  19. ExperiencePrinceton At Princeton, you will

    E-Print Network [OSTI]

    Politics Psychology Religion Slavic Languages and Literatures Sociology Spanish and Portuguese Languages

  20. Assignment 4 BS4a Actuarial Science Oxford MT 2011 IX A.4 Inflation, taxation and project appraisal

    E-Print Network [OSTI]

    Winkel, Matthias

    Assignment 4 ­ BS4a Actuarial Science ­ Oxford MT 2011 IX A.4 Inflation, taxation and project are indexed by reference to the value of a retail price index with a time lag of 8 months. The retail price index value in September 1996 was Q(-8/12) = 200 and in March 1997 was Q(-2/12) = 206. The issue price

  1. ANALYSIS OF OFF-GRID, OFF-PIPE HOUSING FOR HOT-HUMID AND HOT-ARID CLIMATES†

    E-Print Network [OSTI]

    Malhotra, M.; Haberl, J.

    2008-01-01

    This paper investigates the feasibility of off-grid, off-pipe housing in hot-humid and hot-arid climates in the U.S. The study aims to eliminate the need for non-renewable sources of energy and municipal water in residences by using off-grid, off...

  2. SIMULATION OF POROSITY AND HOT TEARS IN A SQUEEZE CAST MAGNESIUM CONTROL ARM

    E-Print Network [OSTI]

    Beckermann, Christoph

    : Magnesium Alloys, Casting, Shrinkage Porosity, Hot Tears, Modeling Abstract Simulations are performed within commercial casting simulation software to predict shrinkage porosity and hot tears changes are introduced to mitigate the shrinkage and hot tear problems in these castings. The comparisons

  3. Floating loop method for cooling integrated motors and inverters using hot liquid refrigerant

    DOE Patents [OSTI]

    Hsu, John S.; Ayers, Curtis W.; Coomer, Chester; Marlino, Laura D.

    2007-03-20

    A method for cooling vehicle components using the vehicle air conditioning system comprising the steps of: tapping the hot liquid refrigerant of said air conditioning system, flooding a heat exchanger in the vehicle component with said hot liquid refrigerant, evaporating said hot liquid refrigerant into hot vapor refrigerant using the heat from said vehicle component, and returning said hot vapor refrigerant to the hot vapor refrigerant line in said vehicle air conditioning system.

  4. Hot spot generation in energetic materials created by long-wavelength...

    Office of Scientific and Technical Information (OSTI)

    Hot spot generation in energetic materials created by long-wavelength infrared radiation Citation Details In-Document Search Title: Hot spot generation in energetic materials...

  5. Hot Water Draw Patterns in Single-Family Houses: Findings from Field Studies

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01

    LBNL-4830E Hot Water Draw Patterns in Single-Family Houses:Program, under Residential Water Heating Program Contractunderstand residential hot water draw patterns. We hope to

  6. Dark Matter Particle Spectroscopy at the LHC: Generalizing M(T2) to Asymmetric Event Topologies

    SciTech Connect (OSTI)

    Konar, Partha; Kong, Kyoungchul; Matchev, Konstantin T.; Park, Myeonghun; /Florida U.

    2012-04-03

    We consider SUSY-like missing energy events at hadron colliders and critically examine the common assumption that the missing energy is the result of two identical missing particles. In order to experimentally test this hypothesis, we generalize the subsystem M{sub T2} variable to the case of asymmetric event topologies, where the two SUSY decay chains terminate in different 'children' particles. In this more general approach, the endpoint M{sub T2(max)} of the M{sub T2} distribution now gives the mass {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}) of the parent particles as a function of two input children masses {tilde M}{sub c}{sup (a)} and {tilde M}{sub c}{sup (b)}. We propose two methods for an independent determination of the individual children masses M{sub c}{sup (a)} and M{sub c}{sup (b)}. First, in the presence of upstream transverse momentum PUTM the corresponding function {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}, P{sub UTM}) is independent of P{sub UTM} at precisely the right values of the children masses. Second, the previously discussed MT2 'kink' is now generalized to a 'ridge' on the 2-dimensional surface {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}). As we show in several examples, quite often there is a special point along that ridge which marks the true values of the children masses. Our results allow collider experiments to probe a multi-component dark matter sector directly and without any theoretical prejudice.

  7. Uranium hydrogeochemical and stream-sediment reconnaissance of the Mt. Michelson NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.

    1982-04-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Mt. Michelson NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

  8. HOT GAS HALOS IN EARLY-TYPE FIELD GALAXIES

    SciTech Connect (OSTI)

    Mulchaey, John S. [Observatories of the Carnegie Institution of Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Jeltema, Tesla E., E-mail: mulchaey@obs.carnegiescience.ed, E-mail: tesla@ucolick.or [UCO/Lick Observatories, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2010-05-20

    We use Chandra and XMM-Newton to study the hot gas content in a sample of field early-type galaxies. We find that the L {sub X}-L {sub K} relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. The low hot gas content of field galaxies with L {sub K} {approx_lt} L {sub *} suggests that internal processes such as supernovae-driven winds or active galactic nucleus feedback expel hot gas from low-mass galaxies. Such mechanisms may be less effective in groups and clusters where the presence of an intragroup or intracluster medium can confine outflowing material. In addition, galaxies in groups and clusters may be able to accrete gas from the ambient medium. While there is a population of L {sub K} {approx_lt} L {sub *} galaxies in groups and clusters that retain hot gas halos, some galaxies in these rich environments, including brighter galaxies, are largely devoid of hot gas. In these cases, the hot gas halos have likely been removed via ram pressure stripping. This suggests a very complex interplay between the intragroup/intracluster medium and hot gas halos of galaxies in rich environments, with the ambient medium helping to confine or even enhance the halos in some cases and acting to remove gas in others. In contrast, the hot gas content of more isolated galaxies is largely a function of the mass of the galaxy, with more massive galaxies able to maintain their halos, while in lower mass systems the hot gas escapes in outflowing winds.

  9. Hot Sulphur Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey:Hopkinsville, Kentucky:OpenHot PotCounty,|OpenHotHot

  10. Superheated water drops in hot oil

    E-Print Network [OSTI]

    Soto, Enrique; Belmonte, Andrew

    2009-01-01

    Drops of water at room temperature were released in hot oil, which had a temperature higher than that of the boiling point of water. Initially, the drop temperature increases slowly mainly due to heat transfer diffusion; convective heat transfer is small because the motion takes place at a small Reynolds number. Once the drop reaches the bottom of the container, it sticks to the surface with a certain contact angle. Then, a part of the drop vaporizes: the nucleation point may appear at the wall, the interface or the bulk of the drop. The vapor expands inside the drop and deforms its interface. The way in which the vapor expands, either smooth or violent, depends on the location of the nucleation point and oil temperature. Furthermore, for temperatures close to the boiling point of water, the drops are stable (overheated); the vaporization does not occur spontaneously but it may be triggered with an external perturbation. In this case the growth of the vapor bubble is rather violent. Many visualization for dif...

  11. Hot isostatic press waste option study report

    SciTech Connect (OSTI)

    Russell, N.E.; Taylor, D.D.

    1998-02-01

    A Settlement Agreement between the Department of Energy and the State of Idaho mandates that all high-level radioactive waste now stored at the Idaho Chemical Processing Plant be treated so that it is ready to move out of Idaho for disposal by the target date of 2035. This study investigates the immobilization of all Idaho Chemical Processing Plant calcine, including calcined sodium bearing waste, via the process known as hot isostatic press, which produces compact solid waste forms by means of high temperature and pressure (1,050 C and 20,000 psi), as the treatment method for complying with the settlement agreement. The final waste product would be contained in stainless-steel canisters, the same type used at the Savannah River Site for vitrified waste, and stored at the Idaho National Engineering and Environmental Laboratory until a national geological repository becomes available for its disposal. The waste processing period is from 2013 through 2032, and disposal at the High Level Waste repository will probably begin sometime after 2065.

  12. Heat pump system with hot water defrost

    SciTech Connect (OSTI)

    Dudley, K.F.

    1988-08-30

    This patent describes an integrated heat pump and hot water system that includes, a heat pump having an indoor heat exchanger unit and an outdoor heat exchanger unit that are selectively connected to a compressor inlet and a compressor outlet by a flow reversing means and to each other by a flow reversing means and to each other by a refrigerant liquid line containing a bi-flow expansion valve for metering refrigerant moving in either direction through the liquid line, and bi-flow expansion valve having a positive shut off means to prevent refrigerant from flowing therethrough, a refrigerant to water heat exchanger having a water flow circuit that is in heat transfer relation with a first refrigerant condensing circuit and a second refrigerant evaporating circuit. The refrigerant condensing circuit is connected into a discharge line connecting the outlet of the compressor to the reversing means whereby all the refrigerant discharged by the compressor passes through the condensing circuit. The refrigerant evaporating circuit is connected at one end to the inlet of the compressor and at the other end to an evaporator line that is operatively joined to the liquid line at a point between the bi-flow expansion valve and the outdoor heat exchanger, a metering valve in the evaporator line that is selectively movable between a first closed position whereby refrigerant is prevented from moving through the evaporator line and an open position whereby refrigerant is throttled from the liquid line into the evaporator circuit.

  13. Statistical Hot Channel Analysis for the NBSR

    SciTech Connect (OSTI)

    Cuadra A.; Baek J.

    2014-05-27

    A statistical analysis of thermal limits has been carried out for the research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The objective of this analysis was to update the uncertainties of the hot channel factors with respect to previous analysis for both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuels. Although uncertainties in key parameters which enter into the analysis are not yet known for the LEU core, the current analysis uses reasonable approximations instead of conservative estimates based on HEU values. Cumulative distribution functions (CDFs) were obtained for critical heat flux ratio (CHFR), and onset of flow instability ratio (OFIR). As was done previously, the Sudo-Kaminaga correlation was used for CHF and the Saha-Zuber correlation was used for OFI. Results were obtained for probability levels of 90%, 95%, and 99.9%. As an example of the analysis, the results for both the existing reactor with HEU fuel and the LEU core show that CHFR would have to be above 1.39 to assure with 95% probability that there is no CHF. For the OFIR, the results show that the ratio should be above 1.40 to assure with a 95% probability that OFI is not reached.

  14. Axion hot dark matter bounds after Planck

    SciTech Connect (OSTI)

    Archidiacono, Maria; Hannestad, Steen; Mirizzi, Alessandro; Raffelt, Georg; Wong, Yvonne Y.Y. E-mail: sth@phys.au.dk E-mail: raffelt@mpp.mpg.de

    2013-10-01

    We use cosmological observations in the post-Planck era to derive limits on thermally produced cosmological axions. In the early universe such axions contribute to the radiation density and later to the hot dark matter fraction. We find an upper limit m{sub a} < 0.67 eV at 95% C.L. after marginalising over the unknown neutrino masses, using CMB temperature and polarisation data from Planck and WMAP respectively, the halo matter power spectrum extracted from SDSS-DR7, and the local Hubble expansion rate H{sub 0} released by the Carnegie Hubble Program based on a recalibration of the Hubble Space Telescope Key Project sample. Leaving out the local H{sub 0} measurement relaxes the limit somewhat to 0.86 eV, while Planck+WMAP alone constrain the axion mass to 1.01 eV, the first time an upper limit on m{sub a} has been obtained from CMB data alone. Our axion limit is therefore not very sensitive to the tension between the Planck-inferred H{sub 0} and the locally measured value. This is in contrast with the upper limit on the neutrino mass sum, which we find here to range from ? m{sub ?} < 0.27 eV at 95% C.L. combining all of the aforementioned observations, to 0.84 eV from CMB data alone.

  15. Cold versus hot fusion deuterium branching ratios

    SciTech Connect (OSTI)

    Fox, H.; Bass, R.

    1995-12-31

    A major source of misunderstanding of the nature of cold nuclear fusion has been the expectation that the deuterium branching ratios occurring within a palladium lattice would be consistent with the gas-plasma branching ratios. This misunderstanding has led to the concept of the dead graduate student, the 1989`s feverish but fruitless search for neutron emissions from cold fusion reactors, and the follow-on condemnation of the new science of cold fusion. The experimental facts are that in a properly loaded palladium lattice, the deuterium fusion produces neutrons at little above background, a greatly less-than-expected production of tritium (the tritium desert), and substantially more helium-4 than is observed in hot plasma physics. The experimental evidence is now compelling (800 reports of success from 30 countries) that cold nuclear fusion is a reality, that the branching ratios are unexpected, and that a new science is struggling to be recognized. Commercialization of some types of cold fusion devices has already begun.

  16. Exploration model for possible geothermal reservoir, Coso Hot...

    Open Energy Info (EERE)

    reservoir exists at Coso Hot Springs KGRA, as proposed by Combs and Jarzabek (1977). Gravity data collected by the USGS (Isherwood and Plouff, 1978) was plotted and compared with...

  17. Hot Topics: Renewable Energy Open House | Photosynthetic Antenna...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in one or more Hot Topics Workshops the opportunity to revisit the materials and curriculum covered in the workshops, as well as to explore new kits and activities at their own...

  18. Mandating Solar Hot Water by California Local Governments: Legal Issues

    E-Print Network [OSTI]

    Hoffman,, Peter C.

    1981-01-01

    specifically studied solar water heaters because of theirheaters. Other than this single reference to solar hot waterheater in the summer and preheater in the winter. The ratio of solar-exposed surface area to water

  19. BC TIPS - Hot-Humid Climate: New Orleans

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot-Humid Climate: New Orleans Building Technologies Program The U.S. Department of Energy's Builders Challenge recognizes quality homes that also save you money. U.S. homebuilders...

  20. Process characterization of a PMMA hot embossing system

    E-Print Network [OSTI]

    Luginbuhl, Katharine

    2014-01-01

    Microfluidics devices are important both for research use and medical application. To create these microfluidics devices, the hot embossing process is commonly used. In order to characterize this process to enable cycle ...