Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mt princeton hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Vertical Electrical Sounding Configurations At Mt Princeton Hot...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Vertical Electrical Sounding Configurations At Mt Princeton Hot Springs Geothermal Area (Zohdy, Et Al.,...

2

Self Potential At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) |  

Open Energy Info (EERE)

Self Potential At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Self Potential At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Exploration Activity Details Location Mt Princeton Hot Springs Area Exploration Technique Self Potential Activity Date Usefulness useful DOE-funding Unknown Notes Used to map fracture and fluid flow patterns. References K. Richards, A. Revil, A. Jardani, F. Henderson, M. Batzle, A. Haas (2010) Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Colorado, Using Geoelectrical Methods Retrieved from "http://en.openei.org/w/index.php?title=Self_Potential_At_Mt_Princeton_Hot_Springs_Area_(Richards,_Et_Al.,_2010)&oldid=388680"

3

Mt Princeton Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Princeton Hot Springs Geothermal Area Princeton Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt Princeton Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.73166667,"lon":-106.17,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

4

Direct-Current Resistivity Survey At Mt Princeton Hot Springs Area  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity Survey At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Exploration Activity Details Location Mt Princeton Hot Springs Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Used to map fracture and fluid flow patterns. References K. Richards, A. Revil, A. Jardani, F. Henderson, M. Batzle, A. Haas (2010) Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs,

5

DC Resistivity Survey (Wenner Array) At Mt Princeton Hot Springs...  

Open Energy Info (EERE)

Determination of groundwater flux patterns Notes Researchers measured DC resistivity and produced 12 resistivity profiles, each approximately 1.3 km in length. Equilibrium...

6

Direct-Current Resistivity Survey At Mt Princeton Hot Springs...  

Open Energy Info (EERE)

Survey Activity Date 2010 Usefulness useful DOE-funding Unknown Notes Used to map fracture and fluid flow patterns. References K. Richards, A. Revil, A. Jardani, F. Henderson,...

7

Refraction Survey At Mt Princeton Hot Springs Geothermal Area...  

Open Energy Info (EERE)

fault locations and orientations, depth to basement Notes 2D and 3D refraction tomography; 192 channel recording system & 576 receiver spread; results yielded angles of...

8

Mount Princeton Hot Springs Pool & Spa Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Mount Princeton Hot Springs Pool & Spa Low Temperature Geothermal Facility Mount Princeton Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Mount Princeton Hot Springs Sector Geothermal energy Type Pool and Spa Location Mount Princeton, Colorado Coordinates 38.749167°, -106.2425° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

9

Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs,  

Open Energy Info (EERE)

Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Colorado, Using Geoelectrical Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Colorado, Using Geoelectrical Methods Details Activities (2) Areas (1) Regions (0) Abstract: In geothermal fields, open faults and fractures often act as high permeability pathways bringing hydrothermal fluids to the surface from deep reservoirs. The Mount Princeton area, in south-central Colorado, is an area that has an active geothermal system related to faulting and is therefore a suitable natural laboratory to test geophysical methods. The Sawatch range-front normal fault bordering the half-graben of the Upper Arkansas

10

Controlled Source Audio MT At Pilgrim Hot Springs Area (DOE GTP...  

Open Energy Info (EERE)

Details Location Pilgrim Hot Springs Area Exploration Technique Controlled Source Audio MT Activity Date Usefulness not indicated DOE-funding Unknown References (1 January...

11

History | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

under the code name Project Matterhorn. Lyman Spitzer, Jr., Professor of Astronomy at Princeton University, had for many years been involved in the study of very hot rarefied...

12

Princeton Frist  

E-Print Network [OSTI]

Princeton Hospital Forrestal PPPL Millstone Apartments Dean Mathey South Campus Guyot Dean Mathey Princeton Hospital Forrestal PPPL Millstone Apartments Dean

Rowley, Clarence W.

13

Princeton Conference  

Science Journals Connector (OSTI)

Princeton Conference ... The Princeton Scientific Community Conference on New Tools and Techniques in Chemical Research will be held Jan. ...

1961-01-09T23:59:59.000Z

14

PPPL Open House | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

June 1, 2013, 9:00am to 4:00pm Open House at Princeton Plasma Physics Laboratory PPPL Open House Hot Plasma, Cool Science: Princeton Plasma Physics Lab Open House on June 1 Mark...

15

PRINCETON UNIVERSITY FINANCIAL AID INFORMATION  

E-Print Network [OSTI]

in Dar es Salaam Princeton in Ishikawa Princeton in Munich Princeton in St. Petersburg Princeton in Spain

16

Princeton Station Lewis  

E-Print Network [OSTI]

Dean Mathey Princeton Hospital Forrestal AOS PPPL Millstone Apts Dean Mathey Icahn 8:00 AM Mathey Princeton Hospital Forrestal AOS PPPL Millstone Apts Dean Mathey Icahn Order of Stops: Princeton Station; Lewis Lirbary; Dean Mathey; Princeton Hospital Forrestal AOS; PPPL

Singh, Jaswinder Pal

17

Research at Princeton ContentsDISCOVERY Research at Princeton 2012  

E-Print Network [OSTI]

-Performance Computers Princeton's International Research Sun on Earth: the Princeton Plasma Physics Laboratory Faculty winners. We are privileged and honored to manage the nearby Princeton Plasma Physics Laboratory (PPPLResearch at Princeton #12;ContentsDISCOVERY Research at Princeton 2012 Research Briefs Research

Rowley, Clarence W.

18

Research | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview Experimental Fusion Research Theoretical Fusion Research Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports Education Organization Contact Us Overview Experimental Fusion Research Theoretical Fusion Research Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports Research The U.S. Department of Energy's Princeton Plasma Physics Laboratory is dedicated to developing fusion as a clean and abundant source of energy and to advancing the frontiers of plasma science. The Laboratory pursues these goals through experiments and computer simulations of the behavior of plasma, the hot electrically charged gas that fuels fusion reactions and has a wide range of practical applications.

19

Communiversity | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 27, 2014, 1:00pm to 6:00pm Princeton University Princeton University Communiversity Princeton Festival of the Arts The countdown is on for Communiversity, one of Central New...

20

Princeton Site Ofice  

Broader source: Energy.gov (indexed) [DOE]

Princeton Site Ofice Princeton Site Ofice P.O. Box 102 Princeton, New Jersey 08542-0102 TO: Gregory H. Woods, General Counsel JA N Z Q= LMN N= SUBJECT: PRINCETON SITE OFFICE (PSO) 2013 ANNUAL NATIONAL ENVIRONMENTAL POLICY ACT (NEPA) PLANNING SUMMARY Section 5(a)(7) of DOE Order 451.1B Change 3, NEPA Compliance Program, requires each Secretarial Oficer and Head of Field Organization to submit an Annual NEPA Planning Summary to the General Coun. s el. We have reviewed

Note: This page contains sample records for the topic "mt princeton hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Princeton Site Office  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

or Environmental Impact Statements (EISs) are being prepared, and in consultation with Princeton Plasma Physic Laboratory staff we have determined that no new EAs or EISs are...

22

News | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Princeton Journal Watch Blog Events Research Education Organization Contact Us News Room News Archive American Fusion News Press Releases Publications Princeton...

23

News | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Princeton Journal Watch Blog Events Research Education Organization Contact Us News Room News Archive American Fusion News Press Releases Publications Princeton Journal Watch Blog...

24

Princeton Site Office  

Broader source: Energy.gov (indexed) [DOE]

Princeton Site Office Princeton Site Office P.O. Box 102 Princeton, New Jersey 08542-0102 JAN 18 2012 To: Timothy G. Lynch , Acting General Counsel Subject: Princeton Site Office (PSO) 2012 Annual National Environmental Policy Act (NEPA) Planning Summary Section 5(a)(7) of DOE Order 451 .1 B Change 2, NEPA Compliance Program , requires each Secretarial Officer and Head of Field Organization to submit an annual NEPA Planning Summary to the General Counsel. We have reviewed your associated December 5, 2011 , memorandum and in consultation with Princeton Plasma Physics Laboratory (PPPL) staff determined that we have no Environmental Impacts Statements or Environmental Assessments either ongoing or forecast for the next 12 to 24 months. If you have any questions or need additional information

25

E-Print Network 3.0 - alara-conscious hot particle Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

all particles must leave at low energy. Fig. 1. Diffusion path from hot core to cold... , the diffusion path must connect hot ... Source: Fisch, Nathaniel J.- Princeton...

26

Home | Menu PrincetonUniversity  

E-Print Network [OSTI]

Home | Menu PrincetonUniversity Tips for Completing the Princeton Financial Aid Application, the family home and retirement funds. · Student's taxable and untaxed income for 2013 - wages, interest

27

Press Releases Archive | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

August 11, 2011 August 11, 2011 PPPL awards coil contract to Pennsylvania firm By Kitta MacPherson The U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) has awarded an $800,000 contract to a Nazareth, Pa.-based magnet manufacturer that will enable the production of essential components designed for an advanced fusion experiment. Read more... August 3, 2011 Fusion diagnostic developed at PPPL sheds light on plasma behavior at EAST By Kitta MacPherson An instrument developed by researchers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) has enabled a research team at a fusion energy experiment in China to observe--in startling detail--how a particular type of electromagnetic wave known as a radiofrequency (RF) wave affects the behavior of hot ionized gas.

28

Contact Information | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contact Information Princeton Plasma Physics Laboratory P.O. Box 451 Princeton, NJ 08543-0451 GPS: 100 Stellarator Road Princeton, NJ 08540 U.S.A. Main Telephone: (609) 243-2000...

29

Engineering | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

developing an advanced power switch Scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) are assisting General Electric Co. in...

30

News | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contact Us News Room News Archive American Fusion News Press Releases Publications Princeton Journal Watch Blog News Primary tabs View High Resolution(active tab) Scientists...

31

Purpose | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Our goal is to support as many projects as possible. As a DOE National Laboratory, the Princeton Plasma Physics Laboratory maintains an experienced staff of scientists,...

32

ITER | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pioneering plasma physicist whose contributions to the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) ranged from seminal advances in fusion energy...

33

News | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Press Releases Archive Publications Princeton Journal Watch Blog Events Research Education Organization Contact Us News Room News Archive American Fusion News Press Releases Press...

34

News | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Room News Archive American Fusion News Press Releases Press Releases Archive Publications Princeton Journal Watch Blog News Primary tabs View High Resolution(active tab) Scientists...

35

Stellarators | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in stellarators By John Greenwald Researchers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) and the Max Planck Institute of Plasma Physics...

36

Tours | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contract Documents Speakers Bureau Tours Virtual Tour Tours Tour Arrangements at the Princeton Plasma Physics Laboratory Come see first-hand the exciting world of fusion...

37

STEM | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

glimpse at the cutting edge research taking place at the U.S. Department of Energy's Princeton Plasma Physics Laboratory when the Laboratory, which already offers tours to...

38

News | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simulation of microturbulence in a tokamak fusion device. (Credit: Chad Jones and Kwan-Liu Ma, University of California, Davis; Stephane Ethier, Princeton Plasma Physics Laboratory...

39

Education | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Education Science Education Welcome to the Science Education Department at the Princeton Plasma Physics Laboratory (PPPL), where we combine the lab's core research activities with...

40

News | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Room News Archive American Fusion News Press Releases Press Releases Archive Publications Princeton Journal Watch Blog News Primary tabs View High Resolution(active tab) PPPL...

Note: This page contains sample records for the topic "mt princeton hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Education | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

glimpse at the cutting edge research taking place at the U.S. Department of Energy's Princeton Plasma Physics Laboratory when the Laboratory, which already offers tours to...

42

News | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

collaborators push for energy solutions By Catherine Shen Stewart Prager, director of the Princeton Plasma Physics Laboratory, gives the opening talk Nov. 14 at the third annual...

43

Procurement Division Introduction | Princeton Plasma Physics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Furth Plasma Physics Library Procurement Division Introduction The Princeton Plasma Physics Laboratory (PPPL) is operated by Princeton University under...

44

Interdisciplinary plasma theory workshop | Princeton Plasma Physics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science sponsored the week-long event with additional support from the Max Planck-Princeton Center for Plasma Physics, whose members include PPPL and the Princeton...

45

Adam Cohen | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Adam Cohen Adam Cohen Deputy Director for Operations From Hot Cells to Hot Plasmas Cohen approaches science challenges with practicality By John Greenwald Adam Cohen grew up as the family handyman. "I was the kid who tacked down the carpet, repaired the roof, fixed the toilet and worked on the car," he said of his youth in northern New Jersey. "I would pull apart batteries and tear apart things and try to make them work again." That Mr. Fixit attitude has taken Cohen from nuclear submarine service in the U.S. Navy to chief operations officer at Argonne National Laboratory to senior science adviser at the U.S. Department of Energy. Now as deputy director for operations at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) since 2009, he oversees functions ranging

46

Physics & Astrophysics press.princeton.edu  

E-Print Network [OSTI]

Physics & Astrophysics 2013 press.princeton.edu #12;in a nutshell 1 in a nutshell 2 princeton frontiers in physics 3 textbooks 7 astronomy & astrophysics 10 princeton series in astrophysics 12 physics 15 princeton series in physics 16 quantum physics 17 condensed matter 18 mathematics, mathematical

Landweber, Laura

47

H IGHLIGHTS PRINCETON PLASMA PHYSICS LABORATORY  

E-Print Network [OSTI]

H IGHLIGHTS PRINCETON PLASMA PHYSICS LABORATORY Princeton Plasma Physics Laboratory Fiscal Year 1996 #12; This publication highlights activities at the Princeton Plasma Physics Laboratory for fiscal support, see the PPPL fiscal year 1996 Annual Report. About PPPL Established in 1951, the Princeton Plasma

48

Princeton University Health Services *** CONFIDENTIAL***  

E-Print Network [OSTI]

Princeton University Health Services *** CONFIDENTIAL*** Medical Profile and Consent for Care Give/program abroad sponsor and to be provided to health care personnel in the event that I require medical care: ____________________________________________________________________ Health Insurance: Company: ________________________ Policy No.: ______________________________ Group No

Singh, Jaswinder Pal

49

Newsletters | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to the second issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). We are pleased to provide this news of our...

50

News | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(Elle StarkmanPPPL Office of Communications) John Witherspoon Middle School, of Princeton, N.J., focuses intently on their answer in the N.J. Regional Middle School Science...

51

ITER | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ITER http:mediacentral.princeton.eduid04m7zh6z3 What is ITER? ITER is a large international fusion experiment aimed at demonstrating the scientific and technological...

52

News | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

as she tries out the Van de Graaff generator at PPPL's Communiversity booth. Clarisse Regnault, 4, right, and sister Charlotte, 8, of Princeton, focus on playing with a plasma ball...

53

News | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News Primary tabs View High Resolution(active tab) Princeton, Max Planck Society launch new research center for plasma physics Click on an image below to view the high resolution...

54

News | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the image and select "Save Image" or "Save Image As..." Stewart Prager, director of the Princeton Plasma Physics Laboratory, gives the opening talk Nov. 14 at the third annual...

55

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory  

E-Print Network [OSTI]

Physics Laboratory Controlled Fusion with Hot-ion Mode in a Degenerate Plasma S. Son and N.J. Fisch December 2005 PPPL-4133 PPPL-4133 #12;Princeton Plasma Physics Laboratory Report Disclaimers Full Legal Availability Princeton Plasma Physics Laboratory This report is posted on the U.S. Department of Energy

56

PPPL Area Map | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PPPL Area Map PPPL Area Map Screen reader users: click here for plain HTML Go to Google Maps Home PPPL, Stellarator Road, Princeton, NJ Loading... Map Sat Ter Did you mean a different: Did you mean a different: Did you mean a different: Add Destination - Show options Hide options Get Directions Note: Public transit coverage may not be available in this area. PPPL, Stellarator Road, Princeton, NJ A Princeton Plasma Physics Laboratory Photo 100 Stellarator Rd, Plainsboro Township, NJ ‎ (609) 243-2000 () ‎ · pppl.gov 2 reviews · fusion science · lyman spitzer · ncsx · evolution "Princeton University Princeton Plasma Physics Laboratory P.O. Box 451. Princeton, NJ 08543-0451. GPS: 100 Stellarator Road Princeton, NJ, 08540 (609) 243-2000" - pppl.gov B James Forrestal Campus of Princeton University

57

Visiting PPPL | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fusion Basics DOE and Fusion Links Contract Documents Speakers Bureau Tours Visiting PPPL Princeton Plasma Physics Laboratory P.O. Box 451 Princeton, NJ 08543-0451 GPS: 100...

58

Contract Documents | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

between Princeton University and the U.S. Department of Energy for operating the Princeton Plasma Physics Laboratory. Associated Files: Contract No. DE-AC02-09CH11466,...

59

Open House | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contact Us Open House PPPL Open House Saturday, June 1 9 a.m. to 4 p.m. Princeton Plasma Physics Laboratory 100 Stellarator Road Princeton, NJ, 08540 OPEN HOUSE PROGRAM BOOKLET...

60

PPPL Technical Reports | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phone: (609) 243-2245 Fax: (609) 243-2751 Mailing Address: Publications and Reports Princeton Plasma Physics Laboratory P.O. Box 451 MS 40 Princeton, NJ 08543 USA...

Note: This page contains sample records for the topic "mt princeton hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

press.princeton.edu Ancient World  

E-Print Network [OSTI]

.princeton.edu 1 New Rethinking the Other in Antiquity Erich S. Gruen "Did ancient Greeks regard Persians and egyp

Landweber, Laura

62

OptimizingResourceUtilizationandTestability Using Hot Potato Techniques  

E-Print Network [OSTI]

OptimizingResourceUtilizationandTestability Using Hot Potato Techniques Miodrag Potkonjak Sujit Dey C&C Research Laboratories, NEC USA, Princeton, NJ 08540 ABSTRACT This paper introduces hot potato reduced using new technique. It is also dem- onstrated how hot potato techniques can be effectively used

Potkonjak, Miodrag

63

PPPL Princeton Plasma Physics Laboratory  

E-Print Network [OSTI]

PPPL Princeton Plasma Physics Laboratory PROCEDURE GEN-034 Rev 0 page 1 of 4 Effective Date: Dec. 20, 2012 Initiated by: Head, Technology Transfer, Patents & Publications Subject: Sharing PPPL or modified by PPPL staff for use on PPPL operating experiments, analyzing experimental data, engineering

Princeton Plasma Physics Laboratory

64

Princeton Plasma Physics laboratory weekly  

E-Print Network [OSTI]

At PPPL This Week Princeton Plasma Physics laboratory weekly DECEMBER 9, 2013 continued on page 2 ......... page 6 Cafe@PPPL Menu ... page 7 INsIde... page 1 of 7 MONDAY, DEC. 9MONDAY, DEC. 9 Group Photo for holiday card 9:45 a.m. Meet in LsB Lobby All Employees TUESDAY, DEC. 10TUESDAY, DEC. 10 PPPl colloquium

65

Princeton University Health Services *** CONFIDENTIAL***  

E-Print Network [OSTI]

/program abroad sponsor and to be provided to health care personnel in the event that I require medical care(over) Princeton University Health Services *** CONFIDENTIAL*** Travel Abroad Medical Profile and Consent for Care Give this form to your trip leader/designated program abroad sponsor in a sealed envelope

Singh, Jaswinder Pal

66

Mt Playfair Blair Athol  

E-Print Network [OSTI]

Norwich Park Epping Forest Yatton Outstation Injune Lockington Augathella Crystalbrook Bluff Dysart Saraji CALDERVALE BABBILOORA MT MOFFATT FRANKFIELD WETLANDS MT PLAYFAIR LOCHINVAR PENJOBE TM FOREST VALE TM/MAN DERBYSHIRE DOWNS BILLABOO AL CHESTERTON TM/MAN GLEN ROCK AL SPRINGSURE TM/(SYN) ECHO HILLS AL GREEN VALLEY AL

Greenslade, Diana

67

PRINCETON UNIVERSITY DEPARTMENT OF CHEMISTRY PRINCETON NEW JERSEY  

Office of Legacy Management (LM)

PRINCETON UNIVERSITY PRINCETON UNIVERSITY DEPARTMENT OF CHEMISTRY PRINCETON NEW JERSEY ry'ovPn'c?r 11, 1947 Yr. F. ::. L ::LJo;:z 'J. s. C.toriic Lnerg;S- Co!:;!nisFiOn P. C. Box 42, VurrEr;' Wil Ztrtl3,.': 3 0';' u- 'Zork 16, N. p. Zear l' r. Eelmore: In sccor&nce vlth our recent telegkane ccn- vcrsation, 1 wish to advise you th*zt the ln- vcntory cf urpKiun+beerlnE ctzterlels in thic c"r'ice his rmsln5d st.+tic since Cecember 31, 194c. I enclss e p Ijrlef stfiteaent of mftterifil T.0' 4,' Gn kl?ne. I &all try to remember to dupl-i- cnte tlbfr Etc-txent on the first of each month until such time ns the mgtcritrtl is disposed of. Sir.cerely youre, 19. H. Furman Professor of Chcmifitry !XF : ma Encl. C~AsSlFlCATlON CANCELLEO 0~ CHANGED TO -------- --__I--

68

PPPL Publications | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Weekly Highlights White Papers Fact Sheets Newsletters PPPL News Princeton Journal Watch Blog Events Research Education Organization Contact Us News Room News Archive...

69

Lewis D Meixler | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lewis D Meixler Head, Technology Transfer and Applications Research Lew Meixler is presently Head of the Princeton Plasma Physics Laboratory (PPPL) Office of Technology Transfer,...

70

Colloquia Archive | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Achieving 10MW Fusion Power in TFTR: a Retrospective November 18, 2014 Dr. Michael Bell Princeton Plasma Physics Laboratory COLLOQUIUM: Smaller & Sooner: The ARC Pilot Design for...

71

Graduate Programs | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Graduate Programs PPPL supports graduate education primarily through the Program in Plasma Physics in the Department of Astrophysical Sciences of Princeton University. Students are...

72

COLLOQUIUM: "Laboratory Dynamos" | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

video platform video management video solutionsvideo player Colloquium Committee: The Princeton Plasma Physics Laboratory 2014-2015 Colloquium Committee is comprised of the...

73

Theoretical Fusion Research | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Theory Department The fusion energy sciences mission of the Theory Department at the Princeton Plasma Physics Laboratory (PPPL) is to help provide the scientific foundations...

74

Press Releases Archive | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

greenhouse gas emissions by 48 percent between 2008 and 2011. The Department of Energy's Princeton Plasma Physics Laboratory has received a Sustainability Award from the...

75

Power system design | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

developing an advanced power switch Scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) are assisting General Electric Co. in...

76

AC power | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

developing an advanced power switch Scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) are assisting General Electric Co. in...

77

John A Krommes | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

where he majored in Engineering Science. In 1975 he received the PhD degree from Princeton University's Dept. of Astrophysics, presenting under the supervision of Carl...

78

International collaborations | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in stellarators By John Greenwald Researchers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) and the Max Planck Institute of Plasma Physics...

79

Star Power | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Star Power Star Power The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released "Star Power," a new informational video that uses dramatic and beautiful...

80

Harry E Mynick | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory. Dr. Mynick is a Principal Research Physicist in the Theory Department at the Princeton Plasma Physics Laboratory (PPPL). Mynick is the author of more than 120...

Note: This page contains sample records for the topic "mt princeton hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

PathSci | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PathSci The Princeton Plasma Physics Laboratory's Pathways to Science program is now partnering with ARISE (Advanced Research and Innovation in Science Education) and the...

82

Allan H Reiman | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cornell University and a staff position at the University of Maryland before joining the Princeton Plasma Physics Laboratory in 1981. He has been a consultant at Science...

83

Michael D Williams | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Engineer's Engineer, sets standard for excellence As an early career engineer at the Princeton Plasma Physics Laboratory (PPPL), Mike Williams found himself in the midst of a...

84

Electrical Power Supply Applications Engineer | Princeton Plasma...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrical Power Supply Applications Engineer Department: Engineering Supervisor(s): John Lacenere Staff: ENG 04 Requisition Number: 1400303 The Princeton University Plasma Physics...

85

MT 300 POZEN  

Science Journals Connector (OSTI)

In September 2003, POZEN announced that it had formed a commercialisation agreement with Xcel Pharmaceuticals. Under the terms of the agreement Xcel will have exclusive rights to commercialise MT...1

2003-11-01T23:59:59.000Z

86

Princeton University Housing Information Princeton University offers assistance and resources to incoming postdocs in support of finding  

E-Print Network [OSTI]

. http://www.sonesta.com/Princeton/index.cfm?fa=diningentertainment.home Dining and Entertainment http://www.sonesta.com/Princeton/index.cfm?fa=guestrooms

Torquato, Salvatore

87

Property:CSC-Participant | Open Energy Information  

Open Energy Info (EERE)

+ M Magic Reservoir Geothermal Area + Mt Princeton Hot Springs Geothermal Area + R Rye Patch Geothermal Area + W Waunita Hot Springs Geothermal Area + Kamran Jahan Bakhsh,Travis...

88

Property:CSC-University | Open Energy Information  

Open Energy Info (EERE)

+ Mt Princeton Hot Springs Geothermal Area + University of North Dakota + R Rye Patch Geothermal Area + University of North Dakota + W Waunita Hot Springs Geothermal Area +...

89

Doing Business with Princeton Plasma Physics Laboratory  

E-Print Network [OSTI]

Princeton, NJ 08543 Telephone (609) 243-2428 Fax (609) 243-2021 -mail U.S. Department of Energy's e http://procurement.pppl.gov List your business in PPPL's supplier database by going to http://procurement.pppl.gov and clicking community. #12;Welcome to PPPL Procurement! The U.S. Department of Energy's Princeton Plasma Physics

90

Political Science & Law press.princeton.edu  

E-Print Network [OSTI]

Political Science & Law 2010 press.princeton.edu #12;Forthcoming The Whites of Their Eyes the tea's Slaves Americans have always put the past to political ends. the Union laid claim to the revolution the clinton presidency. Princeton Studies in International History and Politics A Council on Foreign Relations

Landweber, Laura

91

Princeton University Outdoor Action Sustainability Guide  

E-Print Network [OSTI]

Princeton University Outdoor Action Sustainability Guide #12;Over the past thirty-five years students in the outdoors and how to facilitate team building and positive group interaction. In addition Itinerary ·Defining sustainability ·Princeton's Sustainability Plan ·Focus: fresh water and climate change

92

Plasmas are Hot and Fusion is Cool  

SciTech Connect (OSTI)

Plasmas are Hot and Fusion is Cold. The DOE Princeton Plasma Physics Laboratory (PPPL) collaborates to develop fusion as a safe, clean and abundant energy source for the future. This video discusses PPPL's research and development on plasma, the fourth state of matter.

None

2011-01-01T23:59:59.000Z

93

Princeton Plasma Physics Laboratory D-SITE Procedure  

E-Print Network [OSTI]

Refrigerator Operator Attachment 12 ­ NSTX NB Ion Source Operator #12;NSTX PRINCETON PLASMA PHYSICS LABORATORY

Princeton Plasma Physics Laboratory

94

Nonlocal collisionless phenomena in Plasmas PPPL, Princeton 2005  

E-Print Network [OSTI]

1 Nonlocal collisionless phenomena in Plasmas PPPL, Princeton 2005 A. Dunaevsky Measurements. of Astrophysical Sciences Princeton University, Princeton, NJ 08543 #12;2 Diagnostics in expanding plasmas" by A. Dunaevsky Princeton 2005 #12;3 Kinetics of expanding plasmaKinetics of expanding plasma Kinetics

Kaganovich, Igor

95

Management Alert - Extended Assignments at Princeton Plasma Physics Laboratory  

Broader source: Energy.gov (indexed) [DOE]

Extended Assignments at Princeton Extended Assignments at Princeton Plasma Physics Laboratory DOE/IG-0864 May 2012 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 May 17, 2012 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Management Alert on "Extended Assignments at Princeton Plasma Physics Laboratory" BACKGROUND Princeton University operates the Princeton Plasma Physics Laboratory (Princeton) under a contract with the Department of Energy's Office of Science. Princeton works with partners around the world to develop fusion as an energy source. The Laboratory's annual operating costs

96

Princeton Lot 33 Frist/ Dean AOS PPPL Millstone Dean South Princeton Station Guyot Mathey Apts Mathey Campus Station  

E-Print Network [OSTI]

Princeton Lot 33 Frist/ Dean AOS PPPL Millstone Dean South Princeton Station Guyot Mathey Apts Princeton Lot 33 Frist/ Dean AOS PPPL Millstone Dean South Princeton Station Guyot Mathey Apts Mathey Campus Station Forrestal/PPPL Effective 6/1/11 #12;

Bou-Zeid, Elie

97

Princeton Lot 33 Frist/ Dean AOS PPPL Millstone Dean South Princeton Station Guyot Mathey Apts Mathey Campus Station  

E-Print Network [OSTI]

Princeton Lot 33 Frist/ Dean AOS PPPL Millstone Dean South Princeton Station Guyot Mathey Apts Princeton Lot 33 Frist/ Dean AOS PPPL Millstone Dean South Princeton Station Guyot Mathey Apts Mathey Campus Station Forrestal/PPPL Effective 2/6/12 #12;

Bou-Zeid, Elie

98

Princeton Lot 33 Frist/ Dean AOS PPPL Millstone Dean South South Princeton Station Guyot Mathey Apts Mathey Campus Campus Station  

E-Print Network [OSTI]

Princeton Lot 33 Frist/ Dean AOS PPPL Millstone Dean South South Princeton Station Guyot Mathey:45 PM Princeton Lot 33 Frist/ Dean AOS PPPL Millstone Dean South South Princeton Station Guyot Mathey Apts Mathey Campus Campus Station Forrestal/PPPL 12/19-22 & 12/27-29 #12;

99

Ordinary-Mode Fundamental Electron-Cyclotron Resonance Absorption and Emission in the Princeton Large Torus  

Science Journals Connector (OSTI)

Fundamental electron-cyclotron resonance damping for 4-mm waves with ordinary polarization as well as blackbody emission is measured along the midplane of the plasma in the Princeton Large Torus. Optical depths obtained from the data are in good agreement with those predicted by hot-plasma theory. The use of ordinary-mode fundamental electron-cyclotron resonance heating in existing and future toroidal devices is supported by these results.

P. C. Efthimion; V. Arunasalam; J. C. Hosea

1980-02-11T23:59:59.000Z

100

Execution Monitoring in MT Icon  

Science Journals Connector (OSTI)

MT Icon allows the execution of multiple Icon programs in almost any configuration, including execution ... monitoring. As motivated in Chapter 4, MT Icon characterizes monitoring as a special case of ... languag...

Clinton L. Jeffery

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mt princeton hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Timeline | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Visiting PPPL Visiting PPPL History Timeline Fusion Basics DOE and Fusion Links Contract Documents Speakers Bureau Tours News Events Research Education Organization Contact Us Overview Learn More Visiting PPPL History Timeline Fusion Basics DOE and Fusion Links Contract Documents Speakers Bureau Tours Timeline 1951 In March, Lyman Spitzer, Jr. proposes to the Atomic Energy Commission (AEC) the construction of a magnetic plasma device to study controlled fusion. On July 1, the AEC approves funding. The research effort becomes part of Project Matterhorn, a classified project studying the hydrogen bomb. Spitzer heads the controlled thermonuclear research section. A former rabbit hutch becomes the initial home for the Project. 1953 Princeton's first research device is the Model A stellarator. Experiments

102

Princeton Plasma Physics Lab - Education  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

education The PPPL function that education The PPPL function that reaches out to students, teachers and the general public through programs ranging from student internships to weekly talks on scientific topics from January through April. en Science on Saturday starts Jan. 11 http://www.pppl.gov/news/2014/01/science-saturday-starts-jan-11

Science fans of all ages can explore a rich variety of science and technology topics at the popular Science on Saturday lecture series hosted by the U.S. Department of Energy's Princeton Plasma Physics Laboratory. The series marks its 30-year anniversary when it begins on Saturday, Jan.

103

Princeton Plasma Physics Lab - Magnetic reconnection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

magnetic-reconnection Magnetic magnetic-reconnection Magnetic reconnection (henceforth called "reconnection") refers to the breaking and reconnecting of oppositely directed magnetic field lines in a plasma. In the process, magnetic field energy is converted to plasma kinetic and thermal energy. en Princeton and PPPL launch center to study volatile space weather and violent solar storms http://www.pppl.gov/news/2013/12/princeton-and-pppl-launch-center-study-volatile-space-weather-and-violent-solar-storms

Researchers at Princeton University and the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have

104

Princeton Plasma Physics Lab - NSTX-U  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

certified safe to operate. At the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), the task of evaluating the safety of the 94 million upgrade...

105

Princeton Plasma Physics Laboratory NSTX Experimental Proposal  

E-Print Network [OSTI]

and that this may effect the energy confinement time as well as provide current drive. Of course, other effects mayPrinceton Plasma Physics Laboratory NSTX Experimental Proposal Title: CHI into an ohmic discharge

Princeton Plasma Physics Laboratory

106

News Archive | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

With the click of a computer mouse, a scientist at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) sends 10,000 volts of electricity into a...

107

Robert J Goldston | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Society. From 1997 to 2009, he served as Director of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL), a collaborative national center for plasma and...

108

Press Releases | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the highest strength are shown in yellow. Researchers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) and the Max Planck Institute of Plasma Physics...

109

Michael C Zarnstorff | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

said Zarnstorff, an award-winning physicist who joined the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) in 1984, and has been deputy director for...

110

Princeton Plasma Physics Lab - PPPL News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

directly to you)

Please send an email to listserv@princeton.edu and put in the body of the email, "subscribe ppplenews<...

111

Stewart Prager | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the 60-mile trip from his childhood home in the Bronx to the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL), which he now directs. Along the way came...

112

Press Releases Archive | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the highest strength are shown in yellow. Researchers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) and the Max Planck Institute of Plasma Physics...

113

News Archive | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy - the process that powers the sun and other stars. The U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) will host an Open House on Saturday, May 1,...

114

Princeton Center for Theoretical Science The Princeton Center for Theoretical Science is dedicated to exploring the  

E-Print Network [OSTI]

Princeton Center for Theoretical Science The Princeton Center for Theoretical Science is dedicated to exploring the frontiers of theory in the natural sciences. Its purpose is to promote interaction among by senior theoretical scientists around the world. A group of senior Faculty Fellows, chosen from science

115

Categorical Exclusion Determinations: Princeton Site Office | Department of  

Broader source: Energy.gov (indexed) [DOE]

Princeton Site Office Princeton Site Office Categorical Exclusion Determinations: Princeton Site Office Categorical Exclusion Determinations issued by Princeton Site Office. DOCUMENTS AVAILABLE FOR DOWNLOAD August 16, 2012 CX-009095: Categorical Exclusion Determination ITER Port Plug Test Facility CX(s) Applied: B3.6 Date: 08/16/2012 Location(s): New Jersey Offices(s): Princeton Site Office June 3, 2010 CX-002666: Categorical Exclusion Determination Plasma Based Nanotechnology Research and Development Laboratory CX(s) Applied: B3.6 Date: 06/03/2010 Location(s): New Jersey Office(s): Princeton Site Office, Science May 4, 2010 CX-002196: Categorical Exclusion Determination STS-100 Test Stand Experiment CX(s) Applied: B3.6 Date: 05/04/2010 Location(s): Princeton, New Jersey Office(s): Princeton Site Office, Science

116

ROBERT H. SOCOLOW Office Address: Princeton Environmental Institute  

E-Print Network [OSTI]

, Department of Aerospace and Mechanical Sciences; Acting Director, Center for Environmental Studies, Princeton University 1977-78: Professor, Department of Aerospace and Mechanical Sciences; Associate Director, Center Sciences; Member, Center for Environmental Studies, Princeton University 1971: Summer: Research Associate

117

2013 Annual Planning Summary for the Princeton Site Office  

Broader source: Energy.gov [DOE]

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Princeton Site Office.

118

2011 Annual Planning Summary for Princeton Site Office (PSO)  

Broader source: Energy.gov [DOE]

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Princeton Site Office (PSO).

119

2014 Annual Planning Summary for the Princeton Site Office  

Broader source: Energy.gov [DOE]

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within the Princeton Site Office.

120

2012 Annual Planning Summary for Princeton Site Office  

Broader source: Energy.gov [DOE]

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Princeton Site Office.

Note: This page contains sample records for the topic "mt princeton hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

News Archive | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

12, 2013 12, 2013 Princeton and PPPL launch center to study volatile space weather and violent solar storms By John Greenwald Computer simulation of the solar wind in contact with the Earth's magnetosphere. The streaming wind compresses the magnetosphere on the side of the Earth that is nearest the sun, and stretches the magnetosphere into a long "tail" as the wind blows past the Earth and farther away from the sun. Researchers at Princeton University and the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have launched a new center to study the volatile heliosphere - a complex and frequently violent region of space that encompasses the solar system. Read more... December 9, 2013 New imaging technique provides improved insight into controlling the plasma

122

Surface science | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Surface science Surface science Subscribe to RSS - Surface science The study of the chemical and physical processes that occur in the interface between two phases of matter, such as solid to liquid or liquid to gas. Bruce E Koel Bruce Koel is professor of chemical and biological engineering at Princeton University. He is associated faculty in chemistry at the Princeton Institute for the Science and Technology of Materials (PRISM); associated faculty in the Princeton Department of Mechanical and Aerospace Engineering, and a collaborator on the National Spherical Torus Experiment at PPPL. Koel is a Fellow of the American Association for the Advancement of Science, the American Physical Society and the American Vacuum Society, and a member of the governing board of the Council for Chemical Research.

123

Joshua A Breslau | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Joshua A Breslau Joshua A Breslau Research Physicist, Plasma Physics Laboratory. Dr. Breslau is a research physicist in the Theory department at the Princeton Plasma Physics Laboratory (PPPL). He received a B.S. in physics from the Massachusetts Institute of Technology (M.I.T.) in 1995 and a Ph.D. in plasma physics from Princeton in 2001. His doctoral research, with Dr. Stephen Jardin, involved a numerical study of fast collisionless magnetic reconnection in merging spheromaks and flux tubes with an original parallel semi-implicit fluid code. For this work, he was awarded the Procter Honorific Fellowship by Princeton University. During this period, he also conducted research with Steven Hirshman at the Oak Ridge National Laboratory into compact spectral representations of magnetic flux surfaces

124

News Archive | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Press Releases Press Releases Publications Princeton Journal Watch Blog Events Research Education Organization Contact Us News Room News Archive American Fusion News Press Releases Publications Princeton Journal Watch Blog News Archive Subscribe to News Archive January 10, 2014 Science on Saturday starts Jan. 11 By Jeanne Jackson DeVoe Joshua E. G. Peek, a Hubble Fellow at Columbia University's Department of Astronomy and son of PPPL physicist and former director Robert Goldston, discussed "Outer Space!" at a Science on Saturday lecture in 2013. Science fans of all ages can explore a rich variety of science and technology topics at the popular Science on Saturday lecture series hosted by the U.S. Department of Energy's Princeton Plasma Physics Laboratory. The series marks its 30-year anniversary when it begins on Saturday, Jan.

125

PRINCETON PLASMA PHYSICS LABORATORY This publication highlights activities at the Princeton Plasma Physics Laboratory for fiscal year 1996 --1 October  

E-Print Network [OSTI]

HIGHLIGHTS PRINCETON PLASMA PHYSICS LABORATORY #12;This publication highlights activities at the Princeton Plasma Physics Laboratory for fiscal year 1996 -- 1 October 1995 through 30 September 1996 Established in 1951, the Princeton Plasma Physics Laborato- ry (PPPL) is dedicated to developing

126

Princeton's "From athletics to the arts, from  

E-Print Network [OSTI]

's main campus currently consists of approximately 8.5 million square feet of space in 180 buildings by visiting the campus. The main facility of the Princeton Univer- sity Library system, Firestone Library Children's Library offers year-round c

127

Princeton Plasma Physics Laboratory NSTX Experimental Proposal  

E-Print Network [OSTI]

Princeton Plasma Physics Laboratory NSTX Experimental Proposal Title: Dependence of ELM size Thermonuclear Experimental Reactor (ITER) have yielded a pedestal energy loss fraction between 5% and 20 with resonant magnetic perturbations2 or by access to small ELM regimes. Fig. 1 from reference1 , where

Princeton Plasma Physics Laboratory

128

Princeton Plasma Physics Laboratory NSTX Experimental Proposal  

E-Print Network [OSTI]

Princeton Plasma Physics Laboratory NSTX Experimental Proposal Title: Dependence of ELM size Projections1 of the energy loss from Type I ELMs for the International Thermonuclear Experimental Reactor perturbations2 or by access to small ELM regimes. Fig. 1 from reference1 , where extrapolation to ITER is done

Princeton Plasma Physics Laboratory

129

Art & Architecture press.princeton.edu  

E-Print Network [OSTI]

Art & Architecture 2013 press.princeton.edu #12;2 The A. W. Mellon Lectures in the Fine Arts 3 Architecture 4 POINT: Essays on Architecture 5 Visual Culture 8 Essays in the Arts 9 American 10 Museum Studies, and wise book about the fundamental ele- ments of architecture, including the basic needs that it addresses

Landweber, Laura

130

Category:Billings, MT | Open Energy Information  

Open Energy Info (EERE)

MT MT Jump to: navigation, search Go Back to PV Economics By Location Media in category "Billings, MT" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Billings MT NorthWestern Corporation.png SVFullServiceRestauran... 64 KB SVHospital Billings MT NorthWestern Corporation.png SVHospital Billings MT... 62 KB SVLargeHotel Billings MT NorthWestern Corporation.png SVLargeHotel Billings ... 62 KB SVLargeOffice Billings MT NorthWestern Corporation.png SVLargeOffice Billings... 62 KB SVMediumOffice Billings MT NorthWestern Corporation.png SVMediumOffice Billing... 62 KB SVMidriseApartment Billings MT NorthWestern Corporation.png SVMidriseApartment Bil... 63 KB SVOutPatient Billings MT NorthWestern Corporation.png SVOutPatient Billings ...

131

Roscoe B White | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Roscoe B White Roscoe B White Principal Research Physicist, Plasma Physics Laboratory. Lecture Dr. White is a distinguished research fellow in the theory department and a faculty lecturer with rank of Professor. He graduated in Physics from the University of Minnesota and then obtained his Ph.D. in Physics from Princeton in 1963. After a year at the Lebedev Institute in Moscow as an Academy of Science exchange scientist, and two years at The International Centre for Theoretical Physics in Trieste, he taught for six years at UCLA. In 1972, he returned to Princeton, first for two years at the Institute for Advanced Study and then to PPPL. Primary interests include ideal and resistive magnetohydrodynamics, wave-particle interactions, and nonlinear dynamics. Contact Information

132

Princeton, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Princeton, Florida: Energy Resources Princeton, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.5384417°, -80.408944° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.5384417,"lon":-80.408944,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

133

Princeton Public Utils Comm | Open Energy Information  

Open Energy Info (EERE)

Princeton Public Utils Comm Princeton Public Utils Comm Place Minnesota Utility Id 15387 Utility Location Yes Ownership M NERC Location MAPP NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100W High Pressure Sodium Lighting 1500W Quartz Commercial 250W High Pressure Sodium Lighting 250W Spot Commercial 400W High Pressure Sodium Lighting Large General Service Commercial Large General Service- Time of Use Commercial Large Power Service Industrial Large Power Service- Time of Use Industrial Residential Service Residential

134

Elena Belova | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Elena Belova Elena Belova Principal Research Physicist, Plasma Physics Laboratory. Elena V. Belova is a Principal Research Physicist at the Princeton University Plasma Physics Laboratory. Her research interests include: kinetic effects on the MHD stability; interaction of energetic particles with MHD waves; global stability of the Field-Reversed Configurations; numerical simulations, and fluid/kinetic(gyro-kinetic) hybrid models of plasmas. She received a M.S. in physics from Moscow Institute of Physics and Technology (Russia), and worked at the Space Research Institute in Moscow, Russia till 1992. She received a Ph. D. in plasma physics from Dartmouth College, Hanover NH in 1997. Following a three year post doctoral position with Princeton Plasma Physics Laboratory, she joined PPPL staff in

135

Stephane Ethier | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stephane Ethier Stephane Ethier Deputy Head of Computational Plasma Physics Group, Plasma Physics Laboratory Dr. Stephane Ethier is a Computational Physicist in CPPG at the Princeton Plasma Physics Laboratory. Previously, he was a postdoctoral researcher in the Applied Physics group of the Mechanical and Aerospace Engineering Department of Princeton University, a computer consultant at INRS-Energie et Materiaux, and a research assistant at McGill University in Montreal, Canada. He received his Ph.D. from the Department of Energy and Materials Institut National de la Recherche Scientifique (INRS), Montreal, Canada. He has been the recipient of numerous awards including two postdoctoral fellowships from the Fonds pour la Formation de Chercheurs et Aide a la Recherche, the Lumonics Student Paper Competion Award, High Performance

136

Upcoming Events | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Upcoming Events Upcoming Events University Physics Events Upcoming Events Events Calendar Event Type - Any - Colloquia Conference Geophysical Fluid Dynamics Laboratory Open House Princeton University Research Seminar Science Education Science On Saturday Apply Reset There are no Ongoing Events. Check back soon! January 11, 2014, 9:00am to 11:00am MBG Auditorium Containing A Star On Earth: Understanding Turbulence At 100 Million Degrees Dr. Walter Guttenfelder, Research Physicist Princeton Plasma Physics Laboratory January 15, 2014, 4:00pm to 5:30pm MBG Auditorium COLLOQUIUM: The Global Carbon Cycle and Earth's Climate Professor David Archer University of Chicago January 18, 2014, 9:30am to 11:00am MBG Auditorium Physics of Cancer Professor Wolfgang Losert, Associate Professor, and Director, Partnership

137

Princeton Power Systems | Open Energy Information  

Open Energy Info (EERE)

Power Systems Power Systems Jump to: navigation, search Name Princeton Power Systems Place Princeton, New Jersey Zip 8540 Product Focused on advanced power conversion technologies -controllers and inverters. Coordinates 43.85105°, -89.129909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.85105,"lon":-89.129909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

138

K. McDonald Princeton U.  

E-Print Network [OSTI]

called gun drilling. In this the lubrication is provided by high-pressure oil that flows through for the coolant oil and the V-groove for chip removal. Figures 1-4 show various aspects of a gun-drill bitK. McDonald Princeton U. Apr. 13, 1996 BaBar TNDC-96-28 Deep Hole Drilling for the Rear Endplate

McDonald, Kirk

139

PPPL News - a quarterly E-newsletter | Princeton Plasma Physics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News Press Releases Publications Weekly Highlights White Papers Fact Sheets Newsletters PPPL News Princeton Journal Watch Blog Events Research Education Organization Contact Us...

140

PPPL's dynamic diagnostic duo | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Zarnstorff, deputy director for research at DOE's Princeton Plasma Physics Laboratory(PPPL), where the duo has worked for nearly four decades. "Over the years they have developed...

Note: This page contains sample records for the topic "mt princeton hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

PPPL and Princeton scientists developing a novel system for verifying...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) are developing a unique process to verify that nuclear weapons to be dismantled or...

142

Fusion Energy Greg Hammett & Russell Kulsred Princeton University  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spitzer's 100th: Founding PPPL & Pioneering Work in Fusion Energy Greg Hammett & Russell Kulsred Princeton University Wednesday, Dec 4, 2013 - 4:15PM MBG AUDITORIUM Refreshments at...

143

COLLOQUIUM: Consciousness and the Social Brain | Princeton Plasma...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Consciousness and the Social Brain Professor Michael Graziano Princeton University Presentation: Presentation What is...

144

Princeton-CEFRC Summer Program on Combustion: 2013 Session |...  

Office of Science (SC) Website

EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 03.11.13 Princeton-CEFRC Summer...

145

Power System Design Engineer | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

System Design Engineer Department: Engineering Supervisor(s): John Lacenere Staff: ENG 04 Requisition Number: 1400304 The Princeton University Plasma Physics Laboratory (PPPL), a...

146

Sample SULI Program Student Work | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sample SULI Program Student Work 2014 Implementation of remote capabilities for the planeterrella experiment at the Princeton Plasma Physics Laboratory, Adrianna Angulo, Florida...

147

COLLOQUIUM: The Fate of the Land Carbon Sink | Princeton Plasma...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Princeton University Models of the global terrestrial biosphere in current Earth system models (climate models with coupled atmosphere, ocean and biosphere) uniformly predict...

148

Christie Administration Honors Princeton Plasma Physics Lab As...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Christie Administration Honors Princeton Plasma Physics Lab As New Jersey's Top Environmental Steward May 21, 2013 Tweet Widget Google Plus One Share on Facebook The Christie...

149

Other Physics and Engineering Research | Princeton Plasma Physics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

into the formation of the early universe. Developing Medical Isotopes Researchers at the Princeton Plasma Physics Laboratory are using their knowledge of fusion to develop a...

150

ENVIRONMENTAL EVALUATION NOTIFICATION FORM Grantee/Contractor Laboratory: Princeton University/Princeton Plasma Physics Laboratory (PPPL)  

Broader source: Energy.gov (indexed) [DOE]

EVALUATION NOTIFICATION FORM EVALUATION NOTIFICATION FORM Grantee/Contractor Laboratory: Princeton University/Princeton Plasma Physics Laboratory (PPPL) Project! Activity Title: STS-100 Test Stand Experiment NEPA Tracking No.: Type of Funding _ _ --=S=C'---_ _ _ _ _ _ _ _ _ _ _ _ B&R Code: Total Estimated Cost _ _ ---"'$=2=-OO"'-',=OO=O"--_ _ _ _ _ _ _ DOE Cognizant Secretarial Officer (CSO):--'W~il=lia=m~F'-'-.-"=B=r=in=km=a=n'__ _ _ _ _ _ _ _ _ _ _ _ Contractor Project Manager: ____ -_-_--_--_-_--_-_-_ _ _ _ _ Signature: ------------- Contractor NEPA Reviewer: Jerry D. Levine Date: ( S--Q--------f-- /:/1 Signature: "~ ~ ~ Date: I ~lJO I * I. Description of Proposed Action: The proposed action would consist of operation of a 100

151

Princeton fusion experiment axed DOE Under Secretary Ray Orbach reportedly told Princeton University officials  

E-Print Network [OSTI]

Laboratory (PPPL) In late 2006, it became clear that National Compact Stellarator Experiment (NCSX completion date of July 2009. Since then, DOE, Princeton University, and PPPL have worked extensively for the scientific community and the taxpayers, and ensures an exciting path for PPPL research well into the future

152

Energetic-Particle-Induced Geodesic Acoustic Mode Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA  

E-Print Network [OSTI]

Energetic-Particle-Induced Geodesic Acoustic Mode G. Y. Fu* Princeton Plasma Physics Laboratory-induced geodesic acoustic mode (EGAM) is shown to exist. The mode frequency and mode structure are determined comparable to that of geodesic acoustic mode (GAM) [4]. Here it is shown analytically and numerically

153

K.T. McDonald Princeton U.  

E-Print Network [OSTI]

K.T. McDonald Princeton U. October 29, 1996 http://puhep1.princeton.edu/~mcdonald/accel/positron.pdf Positron Production in a Plasma Wakefield Accelerator In a visit on Oct. 28, 1996 to the Center Umstadter about possible mechanisms for positron production in a plasma that is illuminated with a strong

McDonald, Kirk

154

2008 Trustees of Princeton University October 16, 2008  

E-Print Network [OSTI]

© 2008 Trustees of Princeton University October 16, 2008 Research announcement: PLASMA The Princeton Locomotive and Shop Management System After over 12 years of research, we are ready to announce the development of PLASMA, a new planning system for locomotives which has been under development at CASTLE Lab

Powell, Warren B.

155

DOE - Office of Legacy Management -- Princeton University - NJ 08  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Princeton University - NJ 08 Princeton University - NJ 08 FUSRAP Considered Sites Site: PRINCETON UNIVERSITY (NJ.08) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Princeton , New Jersey NJ.08-1 Evaluation Year: 1985 NJ.08-2 Site Operations: During 1940's, performed experiments on uranium isotope separation and experiments for the development of diffusion barrier material for the gaseous diffusion enrichment process. NJ.08-2 Site Disposition: Eliminated - Radiation levels below criteria NJ.08-1 NJ.08-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium NJ.08-2 NJ.08-3 Radiological Survey(s): Yes NJ.08-1 NJ.08-4 Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to PRINCETON UNIVERSITY

156

Cancer: Detect and DestroyCancer: Detect and Destroy PrincetonPrinceton iGEMiGEM TeamTeam  

E-Print Network [OSTI]

Cancer: Detect and DestroyCancer: Detect and Destroy PrincetonPrinceton iGEMiGEM TeamTeam PresentedPresentation Overview What is Synthetic Biology?What is Synthetic Biology? ProjectProject Cancer: Detect and DestroyCancer regeneration Diabetes Cancer therapy Artificial immune system Environmental Biosensing Environmental

Petta, Jason

157

Princeton's undergraduate exchange agreement with ETH Zurich allows Princeton undergraduates to spend the semester at ETH engaging in a  

E-Print Network [OSTI]

Overview Princeton's undergraduate exchange agreement with ETH Zurich allows Princeton. Although the principal language of instruction at ETH Zurich is German, an increasing number of upper is free of charge for exchange students. ETH Zurich ETH Zurich, or The Swiss Federal Institute

Singh, Jaswinder Pal

158

National Spherical Torus Experiment (NSTX) | Princeton Plasma...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the physics principles of spherically shaped plasmas -- hot ionized gases in which nuclear fusion will occur under the appropriate conditions of temperature, density, and...

159

Princeton Energy Systems PES | Open Energy Information  

Open Energy Info (EERE)

PES PES Jump to: navigation, search Name Princeton Energy Systems (PES) Place Philadelphia, Pennsylvania Zip PA 19118 Sector Efficiency, Services, Solar Product US-based energy services that combines distributed power generation (solar electric and combined heat and power) with traditional energy efficiency technologies. Coordinates 39.95227°, -75.162369° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.95227,"lon":-75.162369,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

160

Princeton Plasma Physics Lab - Nuclear safety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

safety Actions taken to safety Actions taken to prevent nuclear and radiation accidents or to limit their consequences. en Celebrating the 20th anniversary of the tritium shot heard around the world http://www.pppl.gov/news/2013/12/celebrating-20th-anniversary-tritium-shot-heard-around-world-2

Tensions rose in the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) as the seconds counted down. At stake was the first crucial test of a high-powered mixture of fuel for producing fusion energy. As the control-room clock reached "zero," a flash of light on a closed-circuit television monitor marked a historic achievement:

Note: This page contains sample records for the topic "mt princeton hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Princeton Plasma Physics Lab - Science literacy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

science-literacy Having the knowledge science-literacy Having the knowledge and understanding of scientific concepts and processes necessary to make informed decisions on scientific issues. en Science on Saturday starts Jan. 11 http://www.pppl.gov/news/2014/01/science-saturday-starts-jan-11

Science fans of all ages can explore a rich variety of science and technology topics at the popular Science on Saturday lecture series hosted by the U.S. Department of Energy's Princeton Plasma Physics Laboratory. The series marks its 30-year anniversary when it begins on Saturday, Jan. 11.Science on Saturday offers free lectures about current

162

Nuclear energy | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear energy Nuclear energy Subscribe to RSS - Nuclear energy Energy that originates from the splitting of uranium atoms in a process called fission. This is distinct from a process called fusion where energy is released when atomic nuclei combine or fuse. Two PPPL-led teams win increased supercomputing time to study conditions inside fusion plasmas Researchers led by scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have won highly competitive allocations of time on two of the world's fastest supercomputers. The increased awards are designed to advance the development of nuclear fusion as a clean and abundant source of energy for generating electricity. Read more about Two PPPL-led teams win increased supercomputing time

163

Science literacy | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science literacy Science literacy Subscribe to RSS - Science literacy Having the knowledge and understanding of scientific concepts and processes necessary to make informed decisions on scientific issues. Science on Saturday starts Jan. 11 Science fans of all ages can explore a rich variety of science and technology topics at the popular Science on Saturday lecture series hosted by the U.S. Department of Energy's Princeton Plasma Physics Laboratory. The series marks its 30-year anniversary when it begins on Saturday, Jan. 11. Science on Saturday offers free lectures about current topics from "The physics of cancer," to "What art can tell us about the brain," that are aimed at the general public from high school age and up. Read more about Science on Saturday starts Jan. 11

164

Quality assurance | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quality assurance Quality assurance Subscribe to RSS - Quality assurance Quality: the characteristics of a product or service that bear on its ability to satisfy stated or implied needs. Quality Assurance: the planned and systematic activities implemented to provide confidence that a product or service will fulfill its requirements for quality. PPPL teams up with USDA to produce new egg pasteurization method Researchers at the Princeton Plasma Physics Laboratory (PPPL) and the U.S. Department of Agriculture (USDA) have developed a novel technique and device for rapidly pasteurizing eggs in the shell without damaging the delicate egg white. The process could lead to a sharp reduction in illnesses caused by egg-borne salmonella bacteria, a widespread public health concern.

165

Princeton Plasma Physics Lab - Power systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

systems The systems, such as systems The systems, such as fusion power plants, that would generate electricity from fusion. en Celebrating the 20th anniversary of the tritium shot heard around the world http://www.pppl.gov/news/2013/12/celebrating-20th-anniversary-tritium-shot-heard-around-world-2

Tensions rose in the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) as the seconds counted down. At stake was the first crucial test of a high-powered mixture of fuel for producing fusion energy. As the control-room clock reached "zero," a flash of light on a closed-circuit television monitor marked a historic achievement:

166

Andrew P Zwicker | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Andrew P Zwicker Andrew P Zwicker Head, Science Education Andrew Zwicker is a physicist and science educator. A Fellow of the American Physical Society, The American Association of Physics Teachers has named him to its list of 75 leading contributors to physics education. He is currently the Editor of the APS Forum on Physics and Society's newsletter and a past chair of that Forum. Additionally, he is a past member of the APS Committee on Education. At Princeton University he is a lecturer in the Writing Program and a faculty advisor for freshmen and sophomores. He and a collaborator won the University's 2006 Art of Science competition for a photograph entitled "Plasma Table" and he is now a co-organizer. In 2012, Zwicker and a collaborator won an honorable mention

167

Princeton Plasma Physics Lab - Quality assurance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

quality-assurance Quality: the quality-assurance Quality: the characteristics of a product or service that bear on its ability to satisfy stated or implied needs.Quality Assurance: the planned and systematic activities implemented to provide confidence that a product or service will fulfill its requirements for quality. en PPPL teams up with USDA to produce new egg pasteurization method http://www.pppl.gov/news/press-releases/2013/09/pppl-teams-usda-produce-new-egg-pasteurization-method

Researchers at the Princeton Plasma Physics Laboratory (PPPL) and the U.S. Department of Agriculture (USDA) have developed a novel technique

168

Robert Kaita | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kaita Kaita Principal Research Physicist, P.I., LTX Robert (Bob) Kaita is the head of plasma diagnostic operations and acting head of boundary physics operations for the National Spherical Torus Experiment (NSTX). Kaita is also a co-principal investigator of the Lithium Tokamak Experiment (LTX). He is a Fellow of the American Physical Society and a recipient of the Kaul Foundation Prize for Excellence in Plasma Physics Research. He has supervised the research of many students in the PPPL Program in Plasma Physics in the Department of Astrophysical Sciences at Princeton University. Interests Neutral beam and radiofrequency plasma heating Plasma diagnostics Plasma-surface interactions Solid and liquid plasma-facing components Contact Information Phone: 609-243-3275

169

Current Projects | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Current Projects Current Projects In Situ Production of Radionuclide Technetium-99m Researchers at Princeton Plasma Physics Laboratory have developed a new process for the production of Molybdenum 99 (Mo-99), a man made radionuclide which decays (T 1/2 = 66 hours) to Technetium-99m (Tc-99m). Tc-99 m is a radioactive tracer isotope, used in the nuclear medical field for diagnostic imaging, for 2/3 of all diagnostic medical isotope procedures In the United States. Tc-99m has a relatively short half life of 6 hours, which makes it ideal in medical diagnostic tests where the patient only retains a minimal amount of radiation from the examination. (See PPPL Digest) Plasma Treatment of Electrodes for Intelligent Materials Ras Labs, LLC, a woman-owned small business, committed to producing

170

Princeton Plasma Physics Lab - Nuclear energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy Energy that originates energy Energy that originates from the splitting of uranium atoms in a process called fission. This is distinct from a process called fusion where energy is released when atomic nuclei combine or fuse. en Two PPPL-led teams win increased supercomputing time to study conditions inside fusion plasmas http://www.pppl.gov/news/press-releases/2014/01/two-pppl-led-teams-win-increased-supercomputing-time-study-conditions

Researchers led by scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have won highly competitive allocations of time on two of the world's fastest

171

Power systems | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power systems Power systems Subscribe to RSS - Power systems The systems, such as fusion power plants, that would generate electricity from fusion. Celebrating the 20th anniversary of the tritium shot heard around the world PPPL's historic experiment made global headlines and marked a milestone in the development of fusion energy Read more about Celebrating the 20th anniversary of the tritium shot heard around the world Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science Quest Magazine Summer 2013 Welcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). Read more about Premiere issue of "Quest" magazine details PPPL's

172

Events Calendar | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Events Calendar Events Calendar University Physics Events Upcoming Events Events Calendar Type of Event - Any - Colloquia Conference Geophysical Fluid Dynamics Laboratory Open House Princeton University Research Seminar Science Education Science On Saturday Apply COLLOQUIUM: "The Usefulness of Useless Knowledge": The History of the Institute for Advanced Study, Christine Di Bella, Institute for Advanced Study Wednesday, January 29, 2014 - 16:00 to 18:30 COLLOQUIUM: Addressing Big Data Challenges in Simulation-based Science, Professor Manish Prashar, Rutgers University Wednesday, January 22, 2014 - 16:00 to 17:30 COLLOQUIUM: The Global Carbon Cycle and Earth's Climate, Professor David Archer, University of Chicago Wednesday, January 15, 2014 - 16:00 to 17:30 COLLOQUIUM: On Tracing the Origins of the Solar Wind, Dr. Sarah McGregor,

173

Fusion roadmapping | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fusion roadmapping Fusion roadmapping Subscribe to RSS - Fusion roadmapping The process of mapping a path to a commercial fusion reactor by planning a sequence of future machines. Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science Quest Magazine Summer 2013 Welcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). Read more about Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science PPPL and ITER: Lab teams support the world's largest fusion experiment with leading-edge ideas and design Read more about PPPL and ITER: Lab teams support the world's largest fusion experiment with leading-edge ideas and design

174

Fusion energy | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy energy Subscribe to RSS - Fusion energy The energy released when two atomic nuclei fuse together. This process powers the sun and stars. Read more Two PPPL-led teams win increased supercomputing time to study conditions inside fusion plasmas Researchers led by scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have won highly competitive allocations of time on two of the world's fastest supercomputers. The increased awards are designed to advance the development of nuclear fusion as a clean and abundant source of energy for generating electricity. Read more about Two PPPL-led teams win increased supercomputing time to study conditions inside fusion plasmas Two PPPL-led teams win increased supercomputing time to study conditions

175

Particle beam dynamics | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Particle beam dynamics Particle beam dynamics Subscribe to RSS - Particle beam dynamics The study of the physics of charged particle beams and the accelerators that produce them. This cross-disciplinary area intersects with fields such as plasma physics, high-energy density science, and ultra-fast lasers. Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science Quest Magazine Summer 2013 Welcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). Read more about Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science Ronald C Davidson Ronald Davidson heads PPPL research on charged particle beam dynamics and

176

Mechanics of rollable and foldable film-on-foil electronics Department of Mechanical and Aerospace Engineering and Princeton Materials Institute,  

E-Print Network [OSTI]

and Aerospace Engineering and Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544 E and Optoelectronic Materials, Princeton University, Princeton, New Jersey 08544 Received 27 October 1998; accepted °C for polyimide. All silicon-containing layers were grown by plasma-enhanced chemical vapor

Suo, Zhigang

177

THE MERIT HIGHPOWER TARGET EXPERIMENT AT THE CERN PS K.T. McDonald, # Princeton University, Princeton, NJ 08544, U.S.A.  

E-Print Network [OSTI]

37831, U.S.A. P.H. Titus, Princeton Plasma Physics Laboratory, Princeton, NJ 08543, U.S.A. JTHE MERIT HIGH­POWER TARGET EXPERIMENT AT THE CERN PS K.T. McDonald, # Princeton University, Princeton, NJ 08544, U.S.A. H.G. Kirk, H. Park, T. Tsang, BNL, Upton, NY 11973, U.S.A. I. Efthymiopoulos, A

McDonald, Kirk

178

Christie Administration Honors Princeton Plasma Physics Lab As New Jersey's  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Christie Administration Honors Princeton Plasma Physics Lab As New Jersey's Christie Administration Honors Princeton Plasma Physics Lab As New Jersey's Top Environmental Steward May 21, 2013 Tweet Widget Facebook Like Google Plus One The Christie Administration has honored the U.S. Department of Energy's Princeton Plasma Physics Laboratory as the state's top environmental steward in a Department of Environmental Protection program that encourages companies and facilities to go above and beyond regulatory requirements to protect and enhance New Jersey's environment. "The Princeton Plasma Physics Laboratory, long a leader in the area of fusion energy research, is also a leader in the area of being a good steward of the environment," DEP Commissioner Bob Martin said today. "I commend their efforts at making sound environmental practices that benefit

179

National Science Bowl bound! | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Science Bowl bound! National Science Bowl bound! April 28, 2013 Congratulations to Princeton High School, of Princeton, NJ for ranking 14th place in the top 16 High School teams at the National Science Bowl from April 26-30, 2012. Gallery: Out of 69 high school teams from all 50 states, Puerto Rico and the U.S. Virgin Islands, the Princeton High School Science Team placed 14th in the top 16 High School teams at the National Science bowl!! Thanks to their efforts Princeton High School will receive $1000 towards the purchase of supplies for their Science Department! Kudos to Thomas Grover Middle School for making it to and for participating at finals... They competed like champs!!! See you next year!! You can learn more about the National Science Bowl here. To learn more about the NJ Regional Science Bowl competition visit our website.

180

New Theory Head to join PPPL | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Returning to his Princeton roots: Returning to his Princeton roots: New Theory Head to join PPPL By John Greenwald August 27, 2012 Tweet Widget Facebook Like Google Plus One Amitava Bhattacharjee. (Photo by Kristi Donahue, University of New Hampshire Institute for the Study of Earth, Oceans and Space) Amitava Bhattacharjee. Physicist Amitava Bhattacharjee is returning to his academic roots. He arrives as the new head of the Theory Department at the Princeton Plasma Physics Laboratory (PPPL) on August 27, more than 30 years after completing his doctoral work here. He studied at PPPL from 1977 to 1980 while earning his M. A. and Ph.D. in astrophysical sciences from Princeton University, which runs the Laboratory for the U.S. Department of Energy (DOE). His past came flooding back to Bhattacharjee when he gave a talk at PPPL in

Note: This page contains sample records for the topic "mt princeton hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

PPPL and Princeton scientists developing a novel system for verifying  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Princeton scientists developing a novel system for verifying and Princeton scientists developing a novel system for verifying nuclear warheads By John Greenwald April 25, 2013 Tweet Widget Facebook Like Google Plus One Scientists at Princeton University and the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) are developing a unique process to verify that nuclear weapons to be dismantled or removed from deployment contain true warheads. The system could confirm this without measuring classified information that could lead to nuclear proliferation if the data were to be leaked. The novel verification process draws upon principles used in cryptography, the science of disguising secret information. "The goal is to prove with as high confidence as required that an object is a true nuclear warhead

182

PPPL Founded in 1951 | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Founded in 1951 January 1, 1951 Tweet Widget Google Plus One Share on Facebook Magnetic fusion research at Princeton began in 1951 under the code name Project Matterhorn. Lyman...

183

COLLOQUIUM: The NASA Planetary Science Program | Princeton Plasma...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

February 25, 2015, 4:00pm to 6:30pm Colloquia MBG Auditorium COLLOQUIUM: The NASA Planetary Science Program Dr. James Green NASA Colloquium Committee: The Princeton Plasma Physics...

184

DOE and Fusion Links | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE and Fusion Links United States Department of Energy U.S. Department of Energy Office of Science Office of Fusion Energy Sciences U.S. D.O.E. Princeton Site Office Map showing...

185

Offshore Wind and Vehicle to Grid Power | Princeton Plasma Physics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

11, 2013, 4:30pm to 6:00pm Princeton University Computer Science Auditorium 104 Offshore Wind and Vehicle to Grid Power Professor Willett Kempton University of Delaware...

186

Physicist honored with new APS award | Princeton Plasma Physics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Plasma Physics meeting in New Orleans in October, was recognized for his research on waves in plasmas. The award is named for the late Princeton University Physics Professor...

187

Consciousness and the Social Brain | Princeton Plasma Physics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0, 2015, 9:30am to 11:00am MBG Auditorium Consciousness and the Social Brain Professor Michael Graziano, Department of Psychology Princeton University Abstract: Graziano.pdf...

188

Science Education on the Road: 2013 Princeton University Community and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Education on the Road: 2013 Princeton University Community and Science Education on the Road: 2013 Princeton University Community and Staff Day October 12, 2013 Gallery: It was a beautiful autumn day in Princeton, NJ. As tailgaters got ready for the football game (Princeton vs. Lafayette) in Lot 21, others took the short walk into Jadwin Gym to take part in the University's Annual Community & Staff Day. PPPL was represented by the Science Education Department and in usual Science Ed. fashion, we did not disappoint! The table was busy all day with kids and adults equally fascinated by what they learned... Plasma! From the hair-raising Van de Graaff generator to the innovative Plasma Speaker to the surprising vacuum pump marshmallow experiment, folks were wowed by what they saw. Spreading the word about Plasma while having a great time, check!

189

PPPL, Princeton launch hunt for Big Bang particles offering clues...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

do you interrogate something so elusive that it could zip through a barrier of iron a light-year thick as if it were empty space? At the U.S. Department of Energy's Princeton...

190

Reliabilityof Interconnect Structures MechanicalandAerospace Engineering Department and Princeton  

E-Print Network [OSTI]

: Subcritical Cracking and Substrate Creep 14 8.7.3 DEBONDING AND MIXED MODE CRACK 15 8.7.3.1 Mixed Mode Crack 8.7.4.6 Ratcheting-induced Crack Growth 38 8.7.5 STRESS-INDUCED VOIDING 38 8.7.5.1 Stress and Princeton Materials Institute, Princeton University, NJ, USA 8.7.1 INTRODUCTION 2 8.7.2 CRACKING 4 8

Suo, Zhigang

191

Mt. Vernon Tap : Environmental Assessment.  

SciTech Connect (OSTI)

The proposed Mt. Vernon project would consist of the construction of a substation and transmission line by the Springfield Utility Board (SUB) to the south of the boundary of the City of Springfield in Lane County, Oregon. Bonneville Power Administration (BPA) would participate in the project by furnishing equipment for the project and modifying its transmission lines to provide a new point of delivery to SUB, its public utility customer at the new site. This document addresses the environmental impacts of various alternative solutions. 3 figs.

United States. Bonneville Power Administration.

1982-09-01T23:59:59.000Z

192

Princeton Site Office Homepage | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Home Home Princeton Site Office (PSO) PSO Home About Current Projects Contract Management Environment, Safety and Health (ES&H) Contact Information Princeton Site Office U.S. Department of Energy P.O. Box 102 Princeton, NJ 08543 P: (609) 243-3700 F: (609) 243-2032 Princeton Site Office Pictured Right: Aerial view of Princeton Plasma Physics Laboratory Aerial view of Princeton Plasma Physics Laboratory. 1 of 2 Print Text Size: A A A RSS Feeds FeedbackShare Page The Princeton Site Office (PSO) is an organization within the U.S. Department of Energy's Office of Science with responsibility to oversee and manage the Management and Operating (M&O) contract for the Princeton Plasma Physics Laboratory (PPPL) in Princeton, New Jersey. PPPL is one of ten Office of Science Laboratories and is a multi-program

193

Fusion scientists gear up to learn how to harness plasma energy | Princeton  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Living on the edge Living on the edge Fusion scientists gear up to learn how to harness plasma energy By Kitta MacPherson March 30, 2011 Tweet Widget Facebook Like Google Plus One Researchers working on an advanced experimental fusion machine are readying experiments that will investigate a host of scientific puzzles, including how heat escapes as hot magnetized plasma, and what materials are best for handling intense plasma powers. Scientists conducting research on the National Spherical Torus Experiment (NSTX) at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have mapped out a list of experiments to start in July and run for eight months. The experimental machine is designed to deepen understanding of how plasmas can be mined for energy. A major topic of investigation by scientists for the coming round of

194

Labs at-a-Glance: Princeton Plasma Physics Laboratory | U.S. DOE Office of  

Office of Science (SC) Website

Princeton Plasma Princeton Plasma Physics Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Princeton Plasma Physics Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Princeton Plasma Physics Laboratory Logo Visit the Princeton Plasma Physics

195

Princeton University Plasma Physics Laboratory, Princeton, New Jersey. Annual report, October 1, 1990--September 30, 1991  

SciTech Connect (OSTI)

This report discusses the following topics: Principal parameters of experimental devices; Tokamak Fusion Test Reactor; Burning Plasma Experiment; Princeton Beta Experiment-Modification; Current Drive Experiment-Upgrade; International Thermonuclear Experimental Reactor; International Collaboration; X-Ray Laser Studies; Hyperthermal Atomic Beam Source; Pure Electron Plasma Experiments; Plasma Processing: Deposition and Etching of Thin Films; Theoretical Studies; Tokamak Modeling; Engineering Department; Environment, Safety, and Health and Quality Assurance; Technology Transfer; Office of Human Resources and Administration; PPPL Patent Invention Disclosures; Office of Resource Management; Graduate Education: Plasma Physics; Graduate Education: Program in Plasma Science and Technology; and Science Education Program.

Not Available

1991-12-31T23:59:59.000Z

196

Hot Canyon  

ScienceCinema (OSTI)

This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

None

2013-03-01T23:59:59.000Z

197

Town of Princeton, Massachusetts (Utility Company) | Open Energy  

Open Energy Info (EERE)

Princeton Princeton Place Massachusetts Utility Id 15371 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Commercial Farm Rate Commercial Municipal Rate Commercial Residential Rate Residential Average Rates Residential: $0.2090/kWh Commercial: $0.2010/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Town_of_Princeton,_Massachusetts_(Utility_Company)&oldid=411800

198

Mount Princeton Area Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Area Space Heating Low Temperature Geothermal Facility Area Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Mount Princeton Area Space Heating Low Temperature Geothermal Facility Facility Mount Princeton Area Sector Geothermal energy Type Space Heating Location Mount Princeton, Colorado Coordinates 38.749167°, -106.2425° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

199

Princeton Professor Resolves Complex Puzzle | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Princeton Professor Resolves Complex Puzzle Princeton Professor Resolves Complex Puzzle Princeton Professor Resolves Complex Puzzle November 24, 2010 - 11:32am Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this mean for me? Dr. Torquato's work -- in addition to detecting gravitational waves and improving understanding of low-temperature states of matter -- could have applications in areas ranging from wireless communications network layouts to data compression and coding and cryptography. A change in perspective can change everything. A complex jigsaw puzzle may suddenly be solved by stepping back ... Taking the dog for a walk ... Or going to the gym. Physicists and mathematicians often work in similar fashion: taking a step back, looking at a complex problem in a new way, and

200

Miniature Integrated Nuclear Detection System (MINDS) | Princeton Plasma  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News Room News Archive American Fusion News Press Releases Publications Weekly Highlights White Papers Fact Sheets Newsletters PPPL News Princeton Journal Watch Blog Events Research Education Organization Contact Us News Room News Archive American Fusion News Press Releases Publications Weekly Highlights White Papers Fact Sheets Newsletters PPPL News Princeton Journal Watch Blog Miniature Integrated Nuclear Detection System (MINDS) Anti-terrorism efforts are getting a boost from the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). A team led by PPPL engineer Charles Gentile has developed a Miniature Integrated Nuclear Detection System, called MINDS, which can be used to scan moving vehicles, luggage, cargo vessels, and the like for specific nuclear signatures

Note: This page contains sample records for the topic "mt princeton hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Muon Collider R&D at Princeton Shoibal Chakravarty (graduate student)  

E-Print Network [OSTI]

Muon Collider R&D at Princeton Shoibal Chakravarty (graduate student) Hulya Guler (undergraduate) Changguo Lu Kirk McDonald Eric Prebys Sven Vahsen (graduate student) [Members of the Muon Collider Advisory Council Meeting Princeton Muon Collider page: http://puhep1.princeton.edu/mumu/ 1 #12; What

McDonald, Kirk

202

PPPL PRINCETON PLASMA PHYSICS LABORATORY TERMS & CONDITIONS FOR COMMERCIAL ITEMS OR SERVICES  

E-Print Network [OSTI]

) "Agreement" means Purchase Order, Subcontract, Price Agreement, Basic Ordering Agreement, or any mod by Princeton for DOE under Prime Contract No. DE-AC02-09CH11466. (f) "Princeton" means the Trustees orders and agreements for commer- cial items or services awarded by Princeton University Plasma Physics

203

Testimony of Dr. Stewart C. Prager Director, Princeton Plasma Physics Laboratory  

E-Print Network [OSTI]

1 Testimony of Dr. Stewart C. Prager Director, Princeton Plasma Physics Laboratory you for this opportunity to discuss fusion energy. I am Director of the Princeton Plasma Physics Laboratory ­ a Department of Energy national lab, managed by Princeton University, dedicated

204

Princeton Plasma Physics Lab - Lab Leadership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

lab-leadership en Adam Cohen lab-leadership en Adam Cohen http://www.pppl.gov/people/adam-cohen

From Hot Cells to Hot PlasmasCohen approaches science challenges with practicalityBy John GreenwaldAdam Cohen grew up as the family handyman. "I was the kid who tacked down the carpet, repaired the roof, fixed the toilet and worked on the car," he said of his youth in northern New Jersey. "I would pull apart batteries and tear apart things and try to make them work again."That Mr. Fixit

205

Controlled Source Audio MT | Open Energy Information  

Open Energy Info (EERE)

Controlled Source Audio MT Controlled Source Audio MT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Controlled Source Audio MT Details Activities (5) Areas (5) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Magnetotelluric Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Cost Information Low-End Estimate (USD): 1,866.44186,644 centUSD

206

Marysville Mt Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Marysville Mt Geothermal Area Marysville Mt Geothermal Area (Redirected from Marysville Mt Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Marysville Mt Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Montana Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

207

PrincetonUniversity In-Vitro Studies of Cancer  

E-Print Network [OSTI]

PrincetonUniversity In-Vitro Studies of Cancer Cell Death Due to Hyperthermia C. Barkey1, RUniversity Cancer: Facts and Figures World Wide 10.1 million newly diagnoses/year with ~10% increase 6.2 million deaths are attributed to cancer and its complication each year American Cancer Society 2007 and Le Cancer

Petta, Jason

208

U.S. Department of energy'S Princeton Plasma Physics laboratory  

E-Print Network [OSTI]

Princeton, nJ 08543 Fax (609) 243-2021 e-mail ppplproc@pppl.gov List your business in PPPL's supplier database by going to http://procurement.pppl.gov and clicking on the "Supplier Information Form" link. Your listing will be accessible to the Laboratory's entire requisitioner community. Doing business with PPPL

209

Last-minute lifeline for Princeton Tokamak tests  

Science Journals Connector (OSTI)

... The US Senate has thrown a desperately needed lifeline to the Princeton Plasma Physics Laboratory (PPPL) in New Jersey, raising hopes that the fusion laboratory will obtain the money needed ... without cutting other research programmes, for example, by reducing general administrative expenses.

Colin Macilwain

1995-08-17T23:59:59.000Z

210

First day in Princeton The Joseph Henry Project  

E-Print Network [OSTI]

#12;First day in Princeton #12;The Joseph Henry Project Goals: Recreate experiments conducted projects I. Why: his motivation II. Who: the people he worked with III. What: his accomplishments Publish directed your attention in Washington, and I trust that I do not take too great a liberty in addressing you

Petta, Jason

211

Princeton University Using Multi-Sensor Remote Sensing  

E-Print Network [OSTI]

(McCabe et al, 2003) Atmospheric Water Budget: Terrestrial (Land) Water Budget: QETP dt dSl --= )( #12/Particle Generator) VIC + LSMEM Ensemble/Particle Filter/Smoother Water (Energy) Balance Constrainer MeteorologicalPrinceton University Using Multi-Sensor Remote Sensing Observations for Regional Water Budget

Pan, Ming

212

Fusion Ignition Research Experiment Princeton Plasma Physics Laboratory  

E-Print Network [OSTI]

Fusion Ignition Research Experiment Dale Meade Princeton Plasma Physics Laboratory Abstract Understanding the properties of high gain (alpha­dominated) fusion plasmas in an advanced toroidal configuration­dominated plasmas in advanced toroidal systems. Technical Challenges for Major Next Steps in Magnetic Fusion Energy

213

Fusion Basics | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fusion Basics Fusion Basics What is Plasma? Plasma is a state of matter along with solids, liquids and gases. It consists of a partially-ionized gas, containing ions, electrons, and neutral atoms. So what does that mean? In a plasma, some electrons are freed from their atoms, allowing current and electricity to flow. In fact, one of the few naturally-occurring plasmas found here on Earth is lightning! Can you think of other plasmas? Fluorescent light bulbs contain mercury plasma. Stars, such as the sun are hot balls of plasma. Aurora Borealis and Aurora Australis Fusion reactors, like NSTX, use plasma to fuse atoms to make energy. Plasma displays use small cells of plasma to illuminate images. What is Fusion? Light atoms like hydrogen (one proton and one neutron) can fuse together so

214

Environmental Survey preliminary report, Princeton Plasma Physics Laboratory, Princeton, New Jersey  

SciTech Connect (OSTI)

This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), conducted June 13 through 17, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Team members are being provided by private contractors. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with PPPL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at PPPL, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environment problems identified during its on-site activities. The S A plan is being developed by the Idaho National Engineering Laboratory. When completed, the S A results will be incorporated into the PPPL Survey findings for inclusion in the Environmental Survey Summary Report. 70 refs., 17 figs., 21 tabs.

Not Available

1989-05-01T23:59:59.000Z

215

Pattern of shallow ground water flow at Mount Princeton Hot Springs...  

Open Energy Info (EERE)

deposits (including glacial and fluvial deposits), we use DC electrical resistivity tomography and self-potential mapping to identify preferential fluid flow pathways. The...

216

Mt. Baker Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Mt. Baker Geothermal Project Mt. Baker Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Mt. Baker Geothermal Project Project Location Information Coordinates 48.777222222222°, -121.81333333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.777222222222,"lon":-121.81333333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

217

Marysville Mt Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Marysville Mt Geothermal Area Marysville Mt Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Marysville Mt Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Montana Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

218

Mt Ranier Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mt Ranier Geothermal Area Mt Ranier Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt Ranier Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Washington Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

219

Digital Television and Media Innovations | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8, 2007, 4:15pm to 5:15pm 8, 2007, 4:15pm to 5:15pm Colloquia MBG Auditorium Digital Television and Media Innovations Dr. Michael A. Isnardi Sarnoff Corporation Colloquium Committee: The Princeton Plasma Physics Laboratory 2013-2014 Colloquium Committee is comprised of the following people. Please feel free to contact them by e-mail regarding any possible speakers or topics for future colloquia. Carol Ann Austin caustin@pppl.gov John Greenwald, Chair jgreenwa@pppl.gov Charles H. Skinner cskinner@pppl.gov Daren Stotler dstotler@pppl.gov Carol Ann Austin 609-243-2484 PPPL Entrance Procedures Visitor Information, Directions, Security at PPPL As a federal facility, the Princeton Plasma Physics Laboratory is operating under heightened security measures because of the events of September 11,

220

City of Princeton, Illinois (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Princeton Princeton Place Illinois Utility Id 15388 Utility Location Yes Ownership M NERC Location MAIN NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate 101- Residential Inside Corporate Limits 2012 Residential Rate 101- Residential Inside Corporate Limits 2013 Residential Rate 102- Residential Outside Corporate Limits 2012 Residential Rate 102- Residential Outside Corporate Limits 2013 Residential Rate 103- All Electric 2012 Residential

Note: This page contains sample records for the topic "mt princeton hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Scientist finds new way to predict heat layer troublemaker | Princeton  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Boon to fusion: Boon to fusion: Scientist finds new way to predict heat layer troublemaker By John Greenwald August 27, 2012 Tweet Widget Facebook Like Google Plus One Rob Goldston. (Photo by Elle Starkman, PPPL Office Of Communications) Rob Goldston. Researchers at a recent worldwide conference on fusion power have confirmed the surprising accuracy of a new model for predicting the size of a key barrier to fusion that a top scientist at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) has developed. The model could serve as a starting point for overcoming the barrier. "This allows you to depict the size of the challenge so you can think through what needs to be done to overcome it," said physicist Robert Goldston, the Princeton University professor of astrophysical sciences and former PPPL director who

222

Test report : Princeton power systems prototype energy storage system.  

SciTech Connect (OSTI)

The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. Princeton Power Systems has developed an energy storage system that utilizes lithium ion phosphate batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Princeton Power Systems Prototype Energy Storage System.

Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

2013-08-01T23:59:59.000Z

223

U.S. Department of Energy Awards New Contract for its Princeton Plasma  

Broader source: Energy.gov (indexed) [DOE]

New Contract for its Princeton New Contract for its Princeton Plasma Physics Laboratory U.S. Department of Energy Awards New Contract for its Princeton Plasma Physics Laboratory January 15, 2009 - 9:33am Addthis WASHINGTON, DC -- The U.S. Department of Energy (DOE) today announced the award of a new contract to Princeton University for the management and operation of DOE's Princeton Plasma Physics Laboratory (PPPL) in New Jersey. The contract is a cost-plus, award-fee contract for five years, with an award term provision under which Princeton can earn up to five additional years of contract term. The base performance period of the contract will be from April 1, 2009 through March 31, 2014. A 60-day transition period will begin in January 2009. Based on current funding, the five-year base term of the contract is valued at approximately $390

224

Electron Cyclotron Emission from the Princeton Large Tokamak  

Science Journals Connector (OSTI)

Experimental measurements of electron cyclotron emission from the Princeton Large Tokamak plasma reveal that blackbody emission occurs at the fundamental frequency. Such emission, not possible by direct thermal excitation of electromagnetic waves, is herein attributed to thermal excitation of electrostatic (Bernstein) waves which then mode convert into electromagnetic waves. The local feature of the electrostatic wave generation permits spatially and temporally resolved measurements of electron temperature as for the second-harmonic emission.

J. Hosea; V. Arunasalam; R. Cano

1977-08-15T23:59:59.000Z

225

Turbulent Temperature Fluctuations in the Princeton Large Tokamak Plasma  

Science Journals Connector (OSTI)

We present the first experimental evidence for the existence of turbulent temperature fluctuations in plasmas. These measurements were accomplished by a spectral analysis of blackbody electron cyclotron emission. The fractional fluctuation in the mean electron energy is up to 10% for typical Princeton Large Tokamak discharges. The spectrum of temperature turbulence extends well beyond the electron diamagnetic-drift frequency f* and shows no resemblance to the simultaneously existing turbulent density fluctuations.

V. Arunasalam; R. Cano; J. C. Hosea; E. Mazzucato

1977-10-03T23:59:59.000Z

226

E-Print Network 3.0 - advanced study princeton Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Princeton University Collection: Environmental Sciences and Ecology ; Engineering 73 Phillip A. Griffiths Institute for Advanced Study Summary: Phillip A. Griffiths Institute for...

227

Princeton Plasma Physics Laboratory | U.S. DOE Office of Science...  

Office of Science (SC) Website

Princeton Plasma Physics Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2013 Report Cards FY 2012 Report Cards FY 2011 Report Cards Report Card...

228

Wind speed vertical distribution at Mt Graham  

Science Journals Connector (OSTI)

......October 2010 research-article Papers Wind speed vertical distribution at Mt Graham...characterization of the vertical distribution of wind speed, V(h), is fundamental for an...many different reasons: (i) the wind speed shear contributes to trigger optical......

S. Hagelin; E. Masciadri; F. Lascaux

2010-10-01T23:59:59.000Z

229

Welcome to Princeton! This 2009 booklet is designed to assist you with the completion of the forms you need to get paid  

E-Print Network [OSTI]

: Main Campus (609) 258­3302 benefits@princeton.edu www.princeton.edu/hr PPPL (609) 243­2101 kmastrom@pppl

230

RAPID/Roadmap/3-MT-b | Open Energy Information  

Open Energy Info (EERE)

3-MT-b.6 - Is a Geothermal Resource to Be Developed? If the geothermal fluids are to be produced, the developer must have the proper appropriation rights. 3-MT-b.7 - Initiate...

231

Princeton Power Systems (TRL 5 6 Component)- Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage  

Broader source: Energy.gov [DOE]

Princeton Power Systems (TRL 5 6 Component) - Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage

232

The Daily Princetonian -International fusion project will use Princeton physics lab Summer Program  

E-Print Network [OSTI]

to determine the viability of exploiting cold fusion as an energy source around the world. Much of the researchThe Daily Princetonian - International fusion project will use Princeton physics lab Summer Program | Previous | Next | Calendar International fusion project will use Princeton physics lab By ABBY WILLIAMS

233

Microsoft Word - MtRichmond_CX  

Broader source: Energy.gov (indexed) [DOE]

3 3 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Dorie Welch Project Manager - KEWM-4 Proposed Action: Mt. Richmond property funding Fish and Wildlife Project No.: 2011-003-00, BPA-007071 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Real Property transfers for cultural protection, habitat preservation, and wildlife management. Location: Fairdale and Yamhill quadrangles, in Yamhill County, Oregon (near Yamhill, Oregon). Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA is proposing to fund the Yamhill Soil and Water Conservation District's (YSWCD) purchase of the Mt. Richmond property (Property), a 284.66-acre parcel of land located west of the City of Yamhill in Yamhill County Oregon.

234

Mt Peak Utility | Open Energy Information  

Open Energy Info (EERE)

Peak Utility Peak Utility Jump to: navigation, search Name Mt Peak Utility Facility Mt Peak Utility Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Mnt Peak Utility Energy Purchaser Mnt Peak Utility Location Midlothian TX Coordinates 32.42144978°, -97.02427357° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.42144978,"lon":-97.02427357,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Mt Poso Cogeneration | Open Energy Information  

Open Energy Info (EERE)

Poso Cogeneration Poso Cogeneration Jump to: navigation, search Name Mt Poso Cogeneration Place Bakersfield, California Zip 93308 Product California-based project developer for the Mt Poso Cogeneration project near Bakersfield, California. Coordinates 44.78267°, -72.801369° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.78267,"lon":-72.801369,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

236

Neutral-Beam-Heating Results from the Princeton Large Torus  

Science Journals Connector (OSTI)

Experimental results from high-power neutral-beam-injection experiments on the Princeton Large Torus tokamak are reported. At the highest beam powers (2.4 MW) and lowest plasma densities [ne(0)=51013 cm-3], ion temperatures of 6.5 keV are achieved. The ion collisionality ?i* drops below 0.1 over much of the radial profile. Electron heating of ?TeTe?50% has also been observed, consistent with the gross energy-confinement time of the Ohmically heated plasma, but indicative of enhanced electron-energy confinement in the core of the plasma.

H. Eubank et al.

1979-07-23T23:59:59.000Z

237

SBOT NEW JERSEY PRINCETON PLASMA LAB POC Arlene White Telephone  

Broader source: Energy.gov (indexed) [DOE]

JERSEY JERSEY PRINCETON PLASMA LAB POC Arlene White Telephone (609) 243-2080 Email awhite@pppl.gov ADMINISTATIVE / WASTE / REMEDIATION Facilities Support Services 561210 Employment Placement Agencies 561311 Travel Agencies 561510 Locksmiths 561622 Exterminating and Pest Control Services 561710 Janitorial Services 561720 Landscaping Services 561730 Carpet and Upholstery Cleaning Services 561740 Hazardous Waste Collection 562112 CONSTRUCTION Industrial Building Construction 236210 Commercial and Institutional Building Construction 236220 Water and Sewer Line and Related Structures Construction 237110 Power and Communication Line and Related Structures Construction 237130 Highway, Street, and Bridge Construction 237310 Other Heavy and Civil Engineering Construction 237990 Other Foundation, Structure, and Building Exterior Contractors

238

Developing Mt. Hope: The megawatt line  

SciTech Connect (OSTI)

After facing numerous obstacles, including opposition and competition, the Mt. Hope pumped-storage project in New Jersey has been licensed by FERC. That license will allow a former iron ore mine site to be used in producing a new resource-hydroelectricity. In early August 1992, after more than seven years of effort, the 2,000-MW Mt. Hope Waterpower Project was licensed by the Federal Energy Regulatory Commission (FERC). Getting the $1.8 billion pumped-storage project licensed was not an easy task. It involved 54 submittals to FERC, six public meetings, and costs of more than $12 million. Along the way, the project has withstood competing applications, community opposition, and legal battles. Getting a project of this magnitude off the ground is a challenge for even the most experienced developer. The effort was especially challenging for the Halecrest Company, a local family-owned and operated firm with no previous experience in hydroelectric development. When financing became tight, creative ways were found to raise seed capital for the project. When hydroelectric experience was needed, the company developed a world-class corporate team that carried Mt. Hope through the complexities of the licensing process and beyond. With license now in hand, the project developers are ready to move forward with negotiating power sales contracts and securing construction financing. The resulting project will be the second largest pumped-storage facility in the country-second only to the 2,100-MW Bath County project in Virginia. Mt. Hope will take six years to construct and is scheduled to be phased into operation beginning in 1999.

Rodzianko, P.; Fisher, F.S.

1992-12-01T23:59:59.000Z

239

VWD-0004 - In the Matter of Princeton University | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

VWD-0004 - In the Matter of Princeton University VWD-0004 - In the Matter of Princeton University VWD-0004 - In the Matter of Princeton University This decision will consider a Motion for Discovery filed jointly by Princeton University (Princeton) and General Physics Corporation (GPC) on June 10, 1999 with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). The discovery motion relates to a hearing requested by David Turner under the DOE's Contractor Employee Protection Program, 10 C.F.R. Part 708 (Part 708). The OHA has assigned Mr. Turner's hearing request Case No. VWA-0038, and the discovery request under consideration Case No. VWD-0004. vwd0004.pdf More Documents & Publications VWD-0003 - In the Matter of David M. Turner VWD-0005 - In the Matter of David M. Turner VWD-0007 - In the Matter of Linda D. Gass

240

EA-1108: The National Spherical Tokamah Experiment at the Princeton Plasma  

Broader source: Energy.gov (indexed) [DOE]

8: The National Spherical Tokamah Experiment at the Princeton 8: The National Spherical Tokamah Experiment at the Princeton Plasma Physics Laboratory, Plainsboro Township, New Jersey EA-1108: The National Spherical Tokamah Experiment at the Princeton Plasma Physics Laboratory, Plainsboro Township, New Jersey SUMMARY This EA evaluates the environmental impacts of the proposal to support fusion physics development and technology, by providing an experimental device to investigate the confinement and performance of plasmas produced in a spherical shaped tokamak at the U.S. Department of Energy Princeton Plasma Physics Laboratory. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 1, 1995 EA-1108: Final Environmental Assessment The National Spherical Tokamah Experiment at the Princeton Plasma Physics

Note: This page contains sample records for the topic "mt princeton hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Data Acquisition-Manipulation At Marysville Mt Area (Blackwell) | Open  

Open Energy Info (EERE)

Marysville Mt Area (Blackwell) Marysville Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful DOE-funding Unknown Notes Heat flow analysis. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Retrieved from "http://en.openei.org/w/index.php?title=Data_Acquisition-Manipulation_At_Marysville_Mt_Area_(Blackwell)&oldid=388982" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs

242

E-Print Network 3.0 - arvilla mt-2 evidence Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vol. 44 No. 4 Apr. 2003 IBM pSeries690 Regatta 16 SPEC95FP Summary: 2nd layer 3rd layer MTG0 MT3 (BB) (BB) (BB) (BB) (BB) (BB) (SB)(BB) (RB)(SB) MT1MT2 MT1-3 MT1-2 MTG2... MT2-1...

243

HOT TOPIC: Nanotechnology lecture  

Science Journals Connector (OSTI)

...Check-Bits HOT TOPIC: Nanotechnology lecture TOP SITE www.ukonlineforbusiness...proper handling. HOT TOPIC Nanotechnology lecture FUTURESHOCK Cyborgs...Cheltenham and Gloucester Branch. Nanotechnology Devices Defying Nature is taking......

HOT TOPIC: Nanotechnology lecture

2003-11-01T23:59:59.000Z

244

PPPL in the News | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PPPL in the News PPPL in the News From research into how to pasteurize eggs to an interview with Lab Director Stewart Prager, PPPL has been all over the news! "A dazzling bright future dawns in New Jersey" by George F. Will; published: December 20, 2013. The story about research by PPPL and the USDA on egg pasteurization appeared in Innovation magazine and on its website this fall. A photo and story about how the Lab celebrated America Recycles Day with a fashion show made of recycled goods appeared on Princeton Patch: An article about how PPPL opened its doors to the community during Hurricane Sandy appeared on the Department of Energy Office of Science website on Oct. 29 Photos of the Boy Scout STEM Merit Badge Fair, in which PPPL hosted more than 250 Boy Scouts who spent the day learning about science and technology

245

PPPL Scientists bring mysterious process down to earth | Princeton Plasma  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bottling Magnetic Reconnection: Bottling Magnetic Reconnection: PPPL Scientists bring mysterious process down to earth By John Greenwald September 30, 2011 Tweet Widget Facebook Like Google Plus One With the click of a computer mouse, a scientist at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) sends 10,000 volts of electricity into a chamber filled with hydrogen gas. The charge heats the gas to 100,000 degrees Centigrade. In an instant -- one-thousandth of a second, to be precise -- a process called "magnetic reconnection" takes place. Researchers have run this and similar experiments-called "shots"-more than 100,000 times since 1995 and amassed volumes of data and numerous scientific papers. The carefully controlled shots recreate one of the most common but least understood phenomena in the

246

For Spitzer building, green is gold | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

For Spitzer building, green is gold For Spitzer building, green is gold By Patti Wieser May 26, 2011 Tweet Widget Facebook Like Google Plus One The Lyman Spitzer Building. (Photo by Elle Starkman, PPPL Office of Communications) The Lyman Spitzer Building. Gallery: Keith Rule (Photo by Elle Starkman, PPPL Office of Communications) Keith Rule Shawn Connolly, Adam Cohen, William Gervasi. (Photo by Elle Starkman, PPPL Office of Communications) Shawn Connolly, Adam Cohen, William Gervasi. The Lyman Spitzer Building, the main administration building at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL), has been certified LEED gold, one of the highest environmental distinctions for buildings. "We are delighted to receive this designation for the Lyman Spitzer Building - or LSB - from the U.S. Green Building Council," said Adam

247

RAPID/Roadmap/8-MT-a | Open Energy Information  

Open Energy Info (EERE)

Agency Montana Department of Environmental Quality Position Environmental Management Bureau Chief Name Warren McCullough Email wmccullough@mt.gov Phone 406.444.6791...

248

RAPID/Roadmap/20-MT-a | Open Energy Information  

Open Energy Info (EERE)

Contact Information Agency Montana Department of Environmental Quality Position Environmental Management Bureau Chief Name Warren McCullough Email wmccullough@mt.gov Phone...

249

COLLOQUIUM: Excitement at the Plasma Boundary" | Princeton Plasma...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Presentation: WC16JAN2013RGoldston.pdf We now know how to heat plasmas to thermonuclear temperatures, and even how to confine the resulting hot plasmas to produce immense...

250

Princeton and PPPL share in $25 million nuclear arms-control...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Princeton and PPPL share in 25 million nuclear arms-control project By John Greenwald April 10, 2014 Tweet Widget Google Plus One Share on Facebook Physicists Alexander Glaser,...

251

Princeton and PPPL share in $25 million nuclear arms-control...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Princeton and PPPL share in 25 million nuclear arms-control project By John Greenwald April 10, 2014 Tweet Widget Google Plus One Share on Facebook (Photo by Elle StarkmanPPPL...

252

Near-Surface imaging of a hydrogeothermal system at Mount Princeton...  

Open Energy Info (EERE)

imaging of a hydrogeothermal system at Mount Princeton, Colorado using 3D seismic, self-potential, and dc resistivity data Jump to: navigation, search OpenEI Reference LibraryAdd...

253

A.J. Stewart Smith, Princeton's first dean for research, becomes...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A.J. Stewart Smith, Princeton's first dean for research, becomes vice president for PPPL By Catherine Zandonella, Office of the Dean for Research June 28, 2013 Tweet Widget Google...

254

MiniBooNE H. A. Tanaka Princeton University Neutrino Factory...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

H. A. Tanaka Princeton University Neutrino Factory 2004 Osaka, Japan The MiniBooNE Collaboration University of Alabama: Y.Liu, I.Stancu Bucknell University: S.Koutsoliotas...

255

Mt Signal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Signal Geothermal Area Signal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt Signal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.65,"lon":-115.71,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

256

WPA Omnibus Award MT Wind Power Outreach  

SciTech Connect (OSTI)

The objective of this grant was to further the development of Montana??s vast wind resources for small, medium, and large scale benefits to Montana and the nation. This was accomplished through collaborative work with wind industry representatives, state and local governments, the agricultural community, and interested citizens. Through these efforts MT Dept Environmental Quality (DEQ) was able to identify development barriers, educate and inform citizens, as well as to participate in regional and national dialogue that will spur the development of wind resources. The scope of DEQ??s wind outreach effort evolved over the course of this agreement from the development of the Montana Wind Working Group and traditional outreach efforts, to the current focus on working with the state??s university system to deliver a workforce trained to enter the wind industry.

Brian Spangler, Manager Energy Planning and Renewables

2012-01-30T23:59:59.000Z

257

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA July 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for July 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

258

Data Update for Mt. Tom, Holyoke, MA February 2006  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA February 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for February 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

259

Data Update for Mt. Tom, Holyoke, MA January 2006  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA January 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for December 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

260

Data Update for Mt. Tom, Holyoke, MA February 2008  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA February 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for February 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

Note: This page contains sample records for the topic "mt princeton hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Data Update for Mt. Tom, Holyoke, MA January 2007  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA January 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for January 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

262

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA June 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for June 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

263

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA March 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for March 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

264

Data Update for Mt. Tom, Holyoke, MA August 2007  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA August 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for August 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

265

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA April 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for April 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

Massachusetts at Amherst, University of

266

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA March 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for March 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

267

Data Update for Mt. Tom, Holyoke, MA February 2007  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA February 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for February 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

268

Data Update for Mt. Tom, Holyoke, MA November 2007  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA November 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for November 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

269

Data Update for Mt. Tom, Holyoke, MA September 2007  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA September 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for September 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

270

Data Update for Mt. Tom, Holyoke, MA September 2005  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA September 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for September 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

271

Data Update for Mt. Tom, Holyoke, MA January 2008  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA January 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for January 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

272

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA April 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for April 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

273

Data Update for Mt. Tom, Holyoke, MA October 2005  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA October 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for October 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

274

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA March 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for March 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

Massachusetts at Amherst, University of

275

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA May 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for May 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

276

Data Update for Mt. Tom, Holyoke, MA October 2007  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA October 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for October 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

277

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA May 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for May 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

278

Hot Plate Station  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

temperature is limited to 200C in order to maintain temperature inside the cleanroom. A hood located over the hot plate station ensures evaporated fumes are not released...

279

Pilgrim Hot Springs, Alaska  

Broader source: Energy.gov (indexed) [DOE]

data processing and use of FLIR - fast, cost effective method to measure natural heat loss * Pilgrim Hot Springs Resource Development - baseload power for the Nome area....

280

Ground Magnetics At Marysville Mt Area (Blackwell) | Open Energy  

Open Energy Info (EERE)

Ground Magnetics At Marysville Mt Area (Blackwell) Ground Magnetics At Marysville Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Ground Magnetics Activity Date Usefulness not useful DOE-funding Unknown Notes A ground magnetic survey located no anomaly with an amplitude of more than 20 or 30 gammas that could be associated with the thermal anomaly, however the magnetic data did outline the Cretaceous stock in great detail and allow the removal from the gravity field of the effect of the stock. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Retrieved from "http://en.openei.org/w/index.php?title=Ground_Magnetics_At_Marysville_Mt_Area_(Blackwell)&oldid=389390"

Note: This page contains sample records for the topic "mt princeton hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Superradiant pulse compression using freecarrier plasma G. Shvets and N. J. Fisch, Princeton University, Plasma Physics Laboratory, Princeton, NJ 08543, tel. (609)  

E-Print Network [OSTI]

medium for parametric conversion of the energy of a long higher­frequency laser beam into the energy in this paper, utilizes the free­electron plasma as a nonlinear medium for parametric conversion of the energySuperradiant pulse compression using free­carrier plasma G. Shvets and N. J. Fisch, Princeton

282

Princeton Plasma Physics Laboratory FY2003 Annual Highlights  

SciTech Connect (OSTI)

The Princeton Plasma Physics Laboratory FY2003 Annual Highlights report provides a summary of the activities at the Laboratory for the fiscal year--1 October 2002 through 30 September 2003. The report includes the Laboratory's Mission and Vision Statements, a message ''From the Director,'' summaries of the research and engineering activities by project, and sections on Technology Transfer, the Graduate and Science Education Programs, Awards and Honors garnered by the Laboratory and the employees, and the Year in Pictures. There is also a listing of the Laboratory's publications for the year and a section of the abbreviations, acronyms, and symbols used throughout the report. In the PDF document, links have been created from the Table of Contents to each section. You can also return to the Table of Contents from the beginning page of each section. The PPPL Highlights for fiscal year 2003 is also available in hardcopy format. To obtain a copy e-mail Publications and Reports at: pub-reports@pppl.gov. Be sure to include your complete mailing address

Editors: Carol A. Phillips; Anthony R. DeMeo

2004-08-23T23:59:59.000Z

283

Time-Domain Electromagnetics At Dixie Hot Springs Area (Combs 2006) | Open  

Open Energy Info (EERE)

Hot Springs Area (Combs 2006) Hot Springs Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Dixie Hot Springs Area (Combs 2006) Exploration Activity Details Location Dixie Hot Springs Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness not indicated DOE-funding Unknown Notes "MT, EM sounding, SP?; SP data and reservoir model may be proprietary" References Jim Combs (1 January 2006) Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Time-Domain_Electromagnetics_At_Dixie_Hot_Springs_Area_(Combs_2006)&oldid=388997" Category: Exploration

284

Direct-Current Resistivity Survey At Roosevelt Hot Springs Area (Combs  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Roosevelt Hot Springs Area (Combs Direct-Current Resistivity Survey At Roosevelt Hot Springs Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Roosevelt Hot Springs Area (Combs 2006) Exploration Activity Details Location Roosevelt Hot Springs Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes "SP, MT, dipole-dipole resistivity, CSAMT; sufficient electrical data may be available" References Jim Combs (1 January 2006) Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Roosevelt_Hot_Springs_Area_(Combs_2006)&oldid=510548"

285

Mt St Helens Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mt St Helens Geothermal Area Mt St Helens Geothermal Area (Redirected from Mt St Helens Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt St Helens Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Washington Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

286

3D Mt Resistivity Imaging For Geothermal Resource Assessment And  

Open Energy Info (EERE)

Resistivity Imaging For Geothermal Resource Assessment And Resistivity Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: 3D Mt Resistivity Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Details Activities (3) Areas (2) Regions (0) Abstract: MT and TDEM surveys acquired in 2005 were integrated with existing MT and TDEM data recovered from obsolete formats to characterize the geometry of the geothermal reservoir. An interpretation based on the correlation of the 3D MT resistivity with well properties indicated that most of the previous exploration wells had been tarted close to but not in the center of areas tha appeared most likely to be permeable. Such

287

Definition: Controlled Source Audio MT | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Controlled Source Audio MT Jump to: navigation, search Dictionary.png Controlled Source Audio MT Controlled Source Audio-Magnetotellurics (CSAMT) is an active source application of a magnetotelluric survey aimed at providing a more reliable signal and rapid acquisition time relative to a natural source MT measurement.[1] View on Wikipedia Wikipedia Definition Magnetotellurics (MT) is an electromagnetic geophysical method of imaging the earth's subsurface by measuring natural variations of electrical and magnetic fields at the Earth's surface. Investigation depth ranges from 300m below ground by recording higher frequencies down to 10,000m or deeper with long-period soundings. Developed in Russia and

288

Field Mapping At Marysville Mt Area (Blackwell) | Open Energy Information  

Open Energy Info (EERE)

Mt Area (Blackwell) Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Field Mapping Activity Date Usefulness useful DOE-funding Unknown Notes Geologic mapping has outlined a structure which may be a partial control on the high heat flow. The Cretaceous intrusive (outlined by the magnetic data) and the heat flow anomaly occupy a broad dome in the Precambrian rocks, the stock outcropping in the northwest portion of the dome, and the heat flow anomaly restricted to the southwest portion of the dome. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa

289

MT Energie GmbH Co KG | Open Energy Information  

Open Energy Info (EERE)

Saxony, Germany Zip: 27404 Sector: Services Product: MT-Energie provides both turn-key biogas plants and related components and services. Coordinates: 53.295765, 9.27964...

290

RAPID/Roadmap/11-MT-b | Open Energy Information  

Open Energy Info (EERE)

Error creating thumbnail: Page number not in range. Flowchart Narrative 11-MT-b.1 - Cease Operations and Contact County Coroner MCA 22-3-805: (1) A developer who...

291

RAPID/Roadmap/3-MT-f | Open Energy Information  

Open Energy Info (EERE)

3-MT-f Right-of-Way Easement for Utilities 03MTFRightOfWayEasementForUtilitiesProcess.pdf Click to View Fullscreen Permit Overview This flowchart is intended to describe the...

292

Hot and dark matter  

E-Print Network [OSTI]

In this thesis, we build new Effective Field Theory tools to describe the propagation of energetic partons in hot and dense media, and we propose two new reactions for dark matter in the early universe. In the first part, ...

D'Eramo, Francesco

2012-01-01T23:59:59.000Z

293

Reactor hot spot analysis  

SciTech Connect (OSTI)

The principle methods for performing reactor hot spot analysis are reviewed and examined for potential use in the Applied Physics Division. The semistatistical horizontal method is recommended for future work and is now available as an option in the SE2-ANL core thermal hydraulic code. The semistatistical horizontal method is applied to a small LMR to illustrate the calculation of cladding midwall and fuel centerline hot spot temperatures. The example includes a listing of uncertainties, estimates for their magnitudes, computation of hot spot subfactor values and calculation of two sigma temperatures. A review of the uncertainties that affect liquid metal fast reactors is also presented. It was found that hot spot subfactor magnitudes are strongly dependent on the reactor design and therefore reactor specific details must be carefully studied. 13 refs., 1 fig., 5 tabs.

Vilim, R.B.

1985-08-01T23:59:59.000Z

294

Princeton Site Office CX Determinations | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Princeton Site Office CX Determinations Princeton Site Office CX Determinations Integrated Support Center (ISC) ISC Home About Services Freedom of Information Act (FOIA) Privacy Act Categorical Exclusion Determinations Contact Information Integrated Support Center Roxanne Purucker U.S. Department of Energy 9800 S. Cass Avenue Argonne, IL 60439 P: (630) 252-2110 Larry Kelly U.S. Department of Energy 200 Administration Road Oak Ridge, TN 37830 P: (865) 576-0885 Categorical Exclusion (CX) Determinations Princeton Site Office CX Determinations Print Text Size: A A A RSS Feeds FeedbackShare Page Note: ARRA is the American Recovery and Reinvestment Act of 2009 Funded Projects. PSO CX Posting Statement .pdf file (73KB) Categorical Exclusion Determination Documents (CX Determinations): * Determination Date Name of Action: Description Categorical Exclusion Number External link

295

Magnetic Resonance Imaging at Princeton, UofV, and UNH | U.S. DOE Office of  

Office of Science (SC) Website

Magnetic Resonance Imaging at Magnetic Resonance Imaging at Princeton, UofV, and UNH Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Magnetic Resonance Imaging at Princeton, UofV, and UNH Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: MRI for hyperpolarized gases Developed at: Princeton, University of Virginia, University of New Hampshire

296

Princeton Site Office CX Determinations | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Princeton Site Office CX Determinations Princeton Site Office CX Determinations Safety, Security and Infrastructure (SSI) SSI Home Facilities and Infrastructure Safeguards & Security Environment, Safety and Health (ES&H) Organization Chart .pdf file (82KB) Phone Listing .pdf file (129KB) SC HQ Continuity of Operations (COOP) Implementation Plan .pdf file (307KB) Categorical Exclusion Determinations SLI & SS Budget Contact Information Safety, Security and Infrastructure U.S. Department of Energy SC-31/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4097 F: (301) 903-7047 Categorical Exclusion (CX) Determinations Princeton Site Office CX Determinations Print Text Size: A A A RSS Feeds FeedbackShare Page Note: ARRA is the American Recovery and Reinvestment Act of 2009 Funded

297

The National Compact Stellarator Experiment at the Princeton Plasma Physics Laboratory  

Broader source: Energy.gov (indexed) [DOE]

Finding of No Significant Impact Finding of No Significant Impact Proposed National Compact Stellarator Experiment Princeton Plasma Physics Laboratory, New Jersey AGENCY: U.S. Department of Energy ACTION: Finding of No Significant Impact SUMMARY: The Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1437, evaluating the environmental effects of the proposed fabrication, assembly and operation of a National Compact Stellarator Experiment (NCSX) within the existing C- Stellarator (CS) Building at C-Site of the Princeton Plasma Physics Laboratory (PPPL), Princeton, New Jersey. The purpose of the NCSX is to provide an experimental device to investigate the attractiveness of a compact stellarator as the basis for a fusion power reactor. Fusion energy has the potential to help compensate for dwindling supplies of fossil fuels, the

298

At Princeton Plasma Physics Laboratory, buying small is a big win |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

At Princeton Plasma Physics Laboratory, buying small is a big win At Princeton Plasma Physics Laboratory, buying small is a big win By Gale Scott May 23, 2011 Tweet Widget Facebook Like Google Plus One When scientists at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) needed metal flanges for a specialized piece of equipment, Principal Buyer Arlene White could have ordered them from a range of major manufacturers. Instead, the $150,000 order went to Zenex Precision Products, a small, family-owned machine shop in Paterson, N.J. The company's price was competitive and the quality of the product was excellent. For White, equally important was the fact that the company has only a dozen or so employees and is located in an economically depressed community. "We've bypassed major large companies to buy from them," White said.

299

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory  

E-Print Network [OSTI]

.J. Kramer, E. Johnson, W. Solomon, and R. Nazikian October 2005 PRINCETON PLASMA PHYSICS LABORATORY PPPL PPPL-4113 PPPL-4113 #12;Princeton Plasma Physics Laboratory Report Disclaimers Full Legal Disclaimer or any agency thereof or its contractors or subcontractors. PPPL Report Availability Princeton Plasma

300

Prepared for the U.S. Department of Energy under Contract DE-AC02-09CH11466. Princeton Plasma Physics Laboratory  

E-Print Network [OSTI]

Prepared for the U.S. Department of Energy under Contract DE-AC02-09CH11466. Princeton Plasma Ernesto Mazzucato #12;Princeton Plasma Physics Laboratory Report Disclaimers Full Legal Disclaimer or any agency thereof or its contractors or subcontractors. PPPL Report Availability Princeton Plasma

Mazzucato, Ernesto

Note: This page contains sample records for the topic "mt princeton hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Dynamic Power Consumption in VirtexTM-II FPGA Family Princeton University  

E-Print Network [OSTI]

Dynamic Power Consumption in VirtexTM-II FPGA Family Li Shang Princeton University EE Dept.bathala@xilinx.com ABSTRACT This paper analyzes the dynamic power consumption in the fabric of Field Programmable Gate Arrays share of power consumption. According to our results, the power dissipation share of routing, logic

Shang, Li

302

Analysis of a Third-Generation Princeton Tri-leaflet Mechanical Heart Valve  

E-Print Network [OSTI]

Analysis of a Third-Generation Princeton Tri-leaflet Mechanical Heart Valve Michael Hsu Advisor heart valve · Static analysis of leaflet under uniform pressure of 10 MPa Summer Objectives · Find Heart valve disease · Over 5 million affected · Over 225,000 valve- replacement surgeries performed

Petta, Jason

303

PRINCETON UNIVERSITY Office of the General Counsel New South, Fourth Floor  

E-Print Network [OSTI]

PRINCETON UNIVERSITY Office of the General Counsel New South, Fourth Floor (609) 258-2500 To as interpreted by the U.S. Department of Education's Office for Civil Rights (OCR). In the event you believe with the authority to interpret and enforce Title IX. In this capacity, OCR is given substantial deference by courts

Singh, Jaswinder Pal

304

Paying the Piper: The High Cost of Funerals in South Africa1 Princeton University  

E-Print Network [OSTI]

1 Paying the Piper: The High Cost of Funerals in South Africa1 Anne Case Princeton University Anu University of Chicago Analia Olgiati Harvard University Running Title: High Cost of Funerals in South Africa-aged adults. In one site in South Africa that has been under demographic surveillance since the early 1990s

Rowley, Clarence W.

305

Toroidal Plasma Rotation in the Princeton Large Torus Induced by Neutral-Beam Injection  

Science Journals Connector (OSTI)

Toroidal plasma rotation, generated by toroidally unbalanced neutral-beam injection into the Princeton Large Torus, has been measured by Doppler shifts of several atomic spectral lines. These measurements produce the time evolution and spatial distribution of the rotation from which a momentum confinement time, comparable to the ion energy confinement time, is deduced.

S. Suckewer; H. P. Eubank; R. J. Goldston; E. Hinnov; N. R. Sauthoff

1979-07-16T23:59:59.000Z

306

Mt. Wachusett Community College Makes Huge Investment in Wind Power |  

Broader source: Energy.gov (indexed) [DOE]

Mt. Wachusett Community College Makes Huge Investment in Wind Power Mt. Wachusett Community College Makes Huge Investment in Wind Power Mt. Wachusett Community College Makes Huge Investment in Wind Power March 14, 2011 - 1:14pm Addthis Mount Wachusett Community College staff Bill Swift, Bob LaBonte, Norm Boudreau, George Couillard and Vestas trainer Bill Fulkerson about to ascend the MWCC north wind turbine | Photo courtesy of GreenOnGreenStreet Mount Wachusett Community College staff Bill Swift, Bob LaBonte, Norm Boudreau, George Couillard and Vestas trainer Bill Fulkerson about to ascend the MWCC north wind turbine | Photo courtesy of GreenOnGreenStreet Mark Higgins Operations Supervisor, Wind & Water Power Technologies Office What will this project do? The turbines are expected to provide an annual savings of approximately $700,000 based on the area's current utility rates.

307

Mt St Helens Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mt St Helens Geothermal Area Mt St Helens Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt St Helens Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Washington Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

308

Cornell University Hot Water Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hot Water System Hot Water System The production and delivery of hot water in the CUSD home is technologically advanced, economical, and simple. Hot water is produced primarily by the evacuated solar thermal tube collectors on the roof of the house. The solar thermal tube array was sized to take care of the majority of our heating and hot water needs throughout the course of the year in the Washington, DC climate. The solar thermal tube array also provides heating to the radiant floor. The hot water and radiant floor systems are tied independently to the solar thermal tube array, preventing the radiant floor from robbing the water heater of much needed thermal energy. In case the solar thermal tubes are not able to provide hot water to our system, the hot water tank contains an electric heating

309

Time-resolved spectra in the 80340- wavelength region from Princeton Large Torus tokamak plasmas  

Science Journals Connector (OSTI)

High-resolution spectra from the Princeton Large Torus plasma have been recorded by a 2-m SchwobFraenkel soft-x-ray multichannel spectrometer. Spectra covering a wavelength range of...

Wouters, A; Dav, J H; Feldman, U; Seely, J F; Suckewer, S; Hinnov, E; Schwob, J L

1987-01-01T23:59:59.000Z

310

Emission in the 5080- region from highly ionized silver in Princeton Large Torus tokamak plasmas  

Science Journals Connector (OSTI)

The spectrum of silver emitted by Princeton Large Torus tokamak plasmas has been recorded in the 25150- region by a multichannel time-resolving grazing-incidence spectrometer. Silver...

Schwob, J L; Finkenthal, M; Wouters, A; Suckewer, S; Cohen, S A

1986-01-01T23:59:59.000Z

311

Strategic Planning Notes MT AHEC/MORH Advisory Board  

E-Print Network [OSTI]

big, complex issues ­ Montana Healthcare Workforce Advisory Committee, HC Workforce Strategic PlanStrategic Planning Notes MT AHEC/MORH Advisory Board February 7, 2014 Strategic Priorities 1. Healthcare Workforce Training and educating the workforce Montana needs o Educational infrastructure o

Dyer, Bill

312

Hot Springs | Open Energy Information  

Open Energy Info (EERE)

Springs Springs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hot Springs Dictionary.png Hot Springs: A naturally occurring spring of hot water, heated by geothermal processes in the subsurface, and typically having a temperature greater than 37°C. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Mammoth Hot Springs at Yellowstone National Park (reference: http://www.hsd3.org/HighSchool/Teachers/MATTIXS/Mattix%20homepage/studentwork/Laura%20Cornelisse%27s%20Web%20Page/Yellowstone%20National%20Park.htm) Hot springs occur where geothermally heated waters naturally flow out of the surface of the Earth. Hot springs may deposit minerals and spectacular

313

"Progress in U.S. ITER Magnet Systems", Wayne Reiersen, Princeton  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

November 28, 2012, 4:15pm November 28, 2012, 4:15pm MBG Auditorium "Progress in U.S. ITER Magnet Systems", Wayne Reiersen, Princeton University Mr. Wayne Reiersen Princeton University U.S. ITER is responsible for providing the ITER Central Solenoid (CS), nine lengths of Toroidal Field (TF) Coil conductor, and Insert Coils for assessing CS and TF conductor performance. The status of the ongoing design and fabrication efforts will be reviewed. The interesting hurdles that had to be negotiated, the lingering problems, and the lessons learned will be discussed. (At the presenter's request, no video or presentation materials are available for this lecture.) Contact Information Coordinator(s): Carol Ann Austin caustin@pppl.gov Host(s): Phil Heitzenroeder pheitzen@pppl.gov PPPL Entrance Procedures

314

Final Report: High Energy Physics Program (HEP), Physics Department, Princeton University  

SciTech Connect (OSTI)

The activities of the Princeton Elementary particles group funded through Department of Energy Grant# DEFG02-91 ER40671 during the period October 1, 1991 through January 31, 2013 are summarized. These activities include experiments performed at Brookhaven National Lab; the CERN Lab in Geneva, Switzerland; Fermilab; KEK in Tsukuba City, Japan; the Stanford Linear Accelerator Center; as well as extensive experimental and the- oretical studies conducted on the campus of Princeton University. Funded senior personnel include: Curtis Callan, Stephen Gubser, Valerie Halyo, Daniel Marlow, Kirk McDonald, Pe- ter Meyers, James Olsen, Pierre Pirou#19;e, Eric Prebys, A.J. Stewart Smith, Frank Shoemaker (deceased), Paul Steinhardt, David Stickland, Christopher Tully, and Liantao Wang.

Callan, Curtis G. [Princeton University; Gubser, Steven S. [Princeton University; Marlow, Daniel R. [Princeton University; McDonald, Kirk T. [Princeton University; Meyers, Peter D. [Princeton University; Olsen, James D. [Princeton University; Smith, Arthur J.S. [Princeton University; Steinhardt, Paul J. [Princeton University; Tully, Christopher G. [Princeton University; Stickland, David P. [Princeton University

2013-04-30T23:59:59.000Z

315

Plasma Containment in the Princeton Spherator using a Supported Superconducting Ring  

Science Journals Connector (OSTI)

Investigation of plasma confinement in the Princeton spherator by use of a supported superconducting ring shows that about 90% of the total particles are lost to the supports, and thus the particle loss across the magnetic field is reduced to about 10% of the total loss under the best operating conditions. An hypothesis-in terms of convective cells, which are established by the presence of supports-is proposed to explain the observed plasma loss.

R. Freeman; M. Okabayashi; H. Pacher; G. Pacher; S. Yoshikawa

1969-10-06T23:59:59.000Z

316

Going-to-the-Sun Road, Glacier National Park, MT, USA  

E-Print Network [OSTI]

Going-to-the-Sun Road, Glacier National Park, MT, USA Avalanche Path Atlas Erich H. Peitzsch Daniel..................................................................................................................................... 2 Overview of Red Rock Group avalanche paths, Going-to-the-Sun Road, Glacier National Park, MT................................................................................................................................................... 3 Overview of Lower GTSR group avalanche paths, Going-to-the-Sun Road, Glacier National Park, MT

317

The Birmingham-CfA cluster scaling project - I: gas fraction and the M-T relation  

E-Print Network [OSTI]

We have assembled a large sample of virialized systems, comprising 66 galaxy clusters, groups and elliptical galaxies with high quality X-ray data. To each system we have fitted analytical profiles describing the gas density and temperature variation with radius, corrected for the effects of central gas cooling. We present an analysis of the scaling properties of these systems and focus in this paper on the gas distribution and M-T relation. In addition to clusters and groups, our sample includes two early-type galaxies, carefully selected to avoid contamination from group or cluster X-ray emission. We compare the properties of these objects with those of more massive systems and find evidence for a systematic difference between galaxy-sized haloes and groups of a similar temperature. We derive a mean logarithmic slope of the M-T relation within R_200 of 1.84+/-0.06, although there is some evidence of a gradual steepening in the M-T relation, with decreasing mass. We recover a similar slope using two additional methods of calculating the mean temperature. Repeating the analysis with the assumption of isothermality, we find the slope changes only slightly, to 1.89+/-0.04, but the normalization is increased by 30%. Correspondingly, the mean gas fraction within R_200 changes from (0.13+/-0.01)h70^-1.5 to (0.11+/-0.01)h70^-1.5, for the isothermal case, with the smaller fractional change reflecting different behaviour between hot and cool systems. There is a strong correlation between the gas fraction within 0.3*R_200 and temperature. This reflects the strong (5.8 sigma) trend between the gas density slope parameter, beta, and temperature, which has been found in previous work. (abridged)

A. J. R. Sanderson; T. J. Ponman; A. Finoguenov; E. J. Lloyd-Davies; M. Markevitch

2003-01-03T23:59:59.000Z

318

Hot Springs, Virginia  

SciTech Connect (OSTI)

Three major springs are located in the Warm Springs Valley of the Allegheny Mountains in western Virginia along US route 220--the Warm, Hot and Healing--all now owned by Virginia Hot Springs, Inc. The Homestead, a large and historic luxurious resort, is located at Hot Springs. The odorless mineral water used at The Homestead spa flows from several springs at temperatures ranging from 39{degrees}C to 41{degrees}C (102{degrees} to 106{degrees}F) (Loam and Gersh, 1992). It is piped to individual, one-person bathtubs in separate men`s and women`s bathhouses, where is is mixed to provide an ideal temperature of 40{degrees}C (104{degrees}F). Tubs are drained and refilled after each use so that no chemical treatment is necessary. Mineral water from the same springs is used in an indoor swimming pool maintained at 29{degrees}C (84{degrees}F), and an outdoor swimming pool maintained at 22{degrees}C (72{degrees}F). Eight kilometers (5 miles) away to the northeast, but still within the 6,000-ha (15,000-acre) Homestead property, are the Warm Springs, which flow at 36{degrees}C (96{degrees}F). The rate of discharge is so great, 63 L/s (1000 gpm) (Muffler, 1979) that the two large Warm Springs pools, in separate men`s and women`s buildings, maintain the temperature on a flow-through basis requiring no chemical treatment. The men`s pool was designed by Thomas Jefferson and opened in 1761; the ladies` pool was opened in 1836. The adjacent {open_quotes}drinking spring{close_quotes} and the two covered pools have been preserved in their original condition.

Lund, J.W.

1996-05-01T23:59:59.000Z

319

Cool Science on a Hot Day as 3,000 Flock to PPPL's June 1 Open House |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cool Science on a Hot Day as 3,000 Flock to PPPL's June 1 Open House Cool Science on a Hot Day as 3,000 Flock to PPPL's June 1 Open House By Jeanne Jackson DeVoe June 5, 2013 Tweet Widget Facebook Like Google Plus One PPPL Science Writer John Greenwald, right, shows off a plasma demonstration machine at PPPL's Open House, as David and Sophia Lu, of West Windsor, and their son Daniel, 6, look on. (Photo by Photo by Elle Starkman, PPPL Office of Communications) PPPL Science Writer John Greenwald, right, shows off a plasma demonstration machine at PPPL's Open House, as David and Sophia Lu, of West Windsor, and their son Daniel, 6, look on. Gallery: Albert Einstein (aka physicist Arturo Dominguez) made an appearance at the Princeton Plasma Physics Laboratory's Open House on June 1. Here, he enjoys a moment with Riley Mastromarino, 5, left, and his brother, Elliott, 8, of Hamilton Township.

320

Micro-Earthquake At Marysville Mt Area (Blackwell) | Open Energy  

Open Energy Info (EERE)

Area (Blackwell) Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Micro-Earthquake Activity Date Usefulness not indicated DOE-funding Unknown Notes A seismic ground noise was carried out but the ground noise in the anomaly area (and the surrounding region) was extremely low, approximately 4 orders of magnitude below that observed in the geothermal areas in the Salton Sea between 1-10 Hz (in units of power density). Because of this very low background noise the micro-earthquake survey was possible with instrument gains well in excess of a million. Regional micro-earthquake activity was located within about 15 km of the geothermal area but no micro-earthquakes

Note: This page contains sample records for the topic "mt princeton hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Mt. Edgecumbe High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Edgecumbe High School Wind Project Edgecumbe High School Wind Project Jump to: navigation, search Name Mt. Edgecumbe High School Wind Project Facility Mt. Edgecumbe High School Sector Wind energy Facility Type Community Wind Location AK Coordinates 57.053928°, -135.356903° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.053928,"lon":-135.356903,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

322

File:INL-geothermal-mt.pdf | Open Energy Information  

Open Energy Info (EERE)

mt.pdf mt.pdf Jump to: navigation, search File File history File usage Montana Geothermal Resources Size of this preview: 728 × 600 pixels. Full resolution ‎(5,100 × 4,200 pixels, file size: 1.99 MB, MIME type: application/pdf) Description Montana Geothermal Resources Sources Idaho National Laboratory Authors Patrick Laney; Julie Brizzee Related Technologies Geothermal Creation Date 2003-11-01 Extent State Countries United States UN Region Northern America States Montana File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:41, 16 December 2010 Thumbnail for version as of 12:41, 16 December 2010 5,100 × 4,200 (1.99 MB) MapBot (Talk | contribs) Automated upload from NREL's "mapsearch" data

323

Geothermal energy resource investigations at Mt. Spurr, Alaska  

SciTech Connect (OSTI)

Spurr volcano is a composite Quaternary cone of largely andesitic composition located on the west side of Cook Inlet about 80 miles west of Anchorage and about 40 miles from the Beluga electrical transmission line. Geologic mapping (Plate 1-1) shows that the present summit depression was produced by a Mt. St. Helens-type sector collapse, rather than by a caldera collapse. Geochronologic and previous tephrachronologic studies show that there has been an active magmatic system at Spurr volcano during the late Pleistocene-to-Holocene time interval that is of critical interest for geothermal energy resource assessment. Major effort was devoted to geochemical and geophysical surveys of the accessible area south of Mt. Spurr, in addition to geologic mapping and geochronologic studies. Many coincident mercury and helium anomalies were found, suggesting the presence of geothermal systems at depth. Extremely large electrical self-potential anomalies were also found, together with extensive zones of low resistivity discovered by our controlled-source audiomagnetotelluric survey. The juxtaposition of all of these different types of anomalies at certain areas on the south slope of Crater Peak indicates the presence of a geothermal system which should be accessible by drilling to about 2000 ft depth. It is also evident that there is a strong volcanic hazard to be evaluated in considering any development on the south side of Mt. Spurr. This hazardous situation may require angle drilling of production wells from safer areas and placement of power generation facilities at a considerable distance from hazardous areas.

Turner, D.L.; Wescott, E.M. (eds.)

1986-12-01T23:59:59.000Z

324

Coping with Hot Work Environments  

E-Print Network [OSTI]

E-340 04/05 Many Texans work under hot, humid conditions. Summer heat is a particular hazard to agricultural pro- ducers who work long hours under the sun. However, other people working in hot yards, gardens, kitchens or industry jobs are also... evaporation. Wiping sweat from the skin with a cloth also prevents cooling from evaporation. In hot, humid conditions, hard work becomes harder. The sweat glands release moisture and essential David W. Smith, Extension Safety Program The Texas A&M...

Smith, David

2005-04-28T23:59:59.000Z

325

Thermal And-Or Near Infrared At Marysville Mt Area (Blackwell) | Open  

Open Energy Info (EERE)

Marysville Mt Area (Blackwell) Marysville Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness not indicated DOE-funding Unknown Notes No further mention of infrared photography. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Retrieved from "http://en.openei.org/w/index.php?title=Thermal_And-Or_Near_Infrared_At_Marysville_Mt_Area_(Blackwell)&oldid=386636" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties

326

Energy savings through hot pressing  

SciTech Connect (OSTI)

Theoretical considerations indicate that the hot-pressing process can provide energy savings. Several selected results demonstrate that, under favorable conditions, practical results exceed theoretical predictions.

Cutshall, K.

1988-04-01T23:59:59.000Z

327

Hot hollow cathode gun assembly  

DOE Patents [OSTI]

A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

Zeren, J.D.

1983-11-22T23:59:59.000Z

328

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory  

E-Print Network [OSTI]

PLASMA PHYSICS LABORATORY PPPL PPPL-4114 PPPL-4114 #12;Princeton Plasma Physics Laboratory Report or subcontractors. PPPL Report Availability Princeton Plasma Physics Laboratory This report is posted on the U 2006. The home page for PPPL Reports and Publications is: http://www.pppl.gov/pub_report/ Office

329

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory  

E-Print Network [OSTI]

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory Calculation of the Vacuum Green's Function Valid even for High Toroidal Mode Number Laboratory This report is posted on the U.S. Department of Energy's Princeton Plasma Physics Laboratory

330

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory  

E-Print Network [OSTI]

Physics Laboratory Solenoid-free Plasma Startup in NSTX using Coaxial Helicity Injection Roger Raman, Masayoshi Nagata, and Ted Biewer January 2005 PRINCETON PLASMA PHYSICS LABORATORY PPPL PPPL-4042 PPPL-4042 on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports web site

331

1. From the Mail Services website, (www.princeton.edu/mail) click on Metered Mail to access the Meter Request Form.  

E-Print Network [OSTI]

1. From the Mail Services website, (www.princeton.edu/mail) click on Metered Mail to access the Meter Request Form. 2. Log in using your Princeton NetID and password. The system will pre the drop-down menu. To enter a new chartstring, click "Create New." Online Meter Request Form A step

Singh, Jaswinder Pal

332

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory  

E-Print Network [OSTI]

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Availability Princeton Plasma Physics Laboratory This report is posted on the U.S. Department of Energy to U.S. Department of Energy and its contractors, in paper from: U.S. Department of Energy Office

333

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory  

E-Print Network [OSTI]

, and K. Indireshkumar September 2005 PRINCETON PLASMA PHYSICS LABORATORY PPPL PPPL-4101 PPPL-4101 #12.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports web site in Fiscal Year the potential to provide very long pulses and significant neutron fluence if the physics regime can be produced

334

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory  

E-Print Network [OSTI]

Physics Laboratory Ignition Regime for Fusion in a Degenerate Plasma S. Son and N.J. Fisch December 2005 PPPL-4138 PPPL-4138 #12;Princeton Plasma Physics Laboratory Report Disclaimers Full Legal Disclaimer Physics Laboratory This report is posted on the U.S. Department of Energy's Princeton Plasma Physics

335

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory  

E-Print Network [OSTI]

, California 92186 3 Columbia University, New York, New York 10027 Abstract Plasma shape control using realPrepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma is posted on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports

336

J. A. Snipes, ITPA Confinement Database Meeting, Princeton, NJ USA 11 14 March 2002 Latest H-mode Threshold Results and  

E-Print Network [OSTI]

J. A. Snipes, ITPA Confinement Database Meeting, Princeton, NJ USA 11 ­ 14 March 2002 Latest H. Hubbard and C. S. Pitcher MIT Plasma Science and Fusion Center, Cambridge, MA USA #12;J. A. Snipes, ITPA Confinement Database Meeting, Princeton, NJ USA 11 ­ 14 March 2002 Introduction Inner gap scan from 3 cm

Snipes, Joseph A.

337

Princeton's Office of Gift Planning can help you explore ways to make a bequest that will assure your own legacy on campus. Making a gift from your estate begins with the  

E-Print Network [OSTI]

Princeton's Office of Gift Planning can help you explore ways to make a bequest that will assure and estate-related expenses are paid, to Princeton. · A testamentary trust can be helpful for you and your at Princeton. Gift Planning staff members, working with the Office of General Counsel, will help ensure

338

A survey of the acoustical quality of seventeen libraries at Princeton University  

Science Journals Connector (OSTI)

The purpose of this study was to identify objective acoustic measures that correlate with the subjective responses of students and administrators to libraries at Princeton University. The motivation for this study was to determine what is necessary in order to provide a comfortable acoustic environment for users of a new science library to be built on campus. On 31 March 2003 Acentech Incorporated evaluated 17 library spaces and interviewed a number of students and librarians at Princeton. Based on the results of the survey the author proposes that a comfortable acoustic environment in a library is an environment that provides freedom from distraction; in other words casual conversation and other noises in the library will not distract users reading or studying in the library. In order to provide such an environment a library must have (1) appropriate levels of background sound (2) a physical barrier between noise?producing and noise?sensitive sections and (3) sufficient sound absorbing material in the space. Measured quantitative metrics support these conclusions.

2003-01-01T23:59:59.000Z

339

LNG trningsmanual fr M/T Bit Viking; LNG training manual.  

E-Print Network [OSTI]

?? Denna uppsats r gjord p uppdrag av Tarbit Shipping som r 2011 konverterade sin tankbt M/T Bit Viking frn konventionell drift p tjockolja till (more)

Albertsson, Robin

2013-01-01T23:59:59.000Z

340

NREL: Learning - Solar Hot Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hot Water Hot Water Photo of solar collectors on a roof for a solar hot water system. For solar hot water systems, flat-plate solar collectors are typically installed facing south on a rooftop. The shallow water of a lake is usually warmer than the deep water. That's because the sunlight can heat the lake bottom in the shallow areas, which in turn, heats the water. It's nature's way of solar water heating. The sun can be used in basically the same way to heat water used in buildings and swimming pools. Most solar water heating systems for buildings have two main parts: a solar collector and a storage tank. The most common collector is called a flat-plate collector. Mounted on the roof, it consists of a thin, flat, rectangular box with a transparent cover that faces the sun. Small tubes

Note: This page contains sample records for the topic "mt princeton hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hot carrier diffusion in graphene  

E-Print Network [OSTI]

We report an optical study of charge transport in graphene. Diffusion of hot carriers in epitaxial graphene and reduced graphene oxide samples are studied using an ultrafast pump-probe technique with a high spatial resolution. Spatiotemporal...

Ruzicka, Brian Andrew; Wang, Shuai; Werake, Lalani Kumari; Weintrub, Ben; Loh, Kian Ping; Zhao, Hui

2010-11-01T23:59:59.000Z

342

Hot Spot | Open Energy Information  

Open Energy Info (EERE)

Spot Dictionary.png Hot Spot: Anomalous volcanic regions that can occur within a tectonic plate and are thought to be caused by mantle plumes Other definitions:Wikipedia Reegle...

343

Fast-Wave Heating of Two-Ion Plasmas in the Princeton Large Torus through Minority-Cyclotron-Resonance Damping  

Science Journals Connector (OSTI)

Strong minority proton heating is produced in the Princeton Large Torus through ioncyclotron resonance damping of fast waves at moderate rf power levels. In addition to demonstrating good proton confinement, the proton energy distribution is consistent with Fokker-Planck theory which provides the prescription for extrapolation of this heating regime to higher rf power levels and other minority species.

J. Hosea; S. Bernabei; P. Colestock; S. L. Davis; P. Efthimion; R. J. Goldston; D. Hwang; S. S. Medley; D. Mueller; J. Strachan; H. Thompson

1979-12-10T23:59:59.000Z

344

What to Expect in Russia Princeton Professor Mark Beissinger and American Journalist in Moscow James Brooke Discuss The  

E-Print Network [OSTI]

What to Expect in Russia Princeton Professor Mark Beissinger and American Journalist in Moscow James Brooke Discuss The Future of Russia's Democracy Movement and the Return of Vladimir Putin Monday, NYC Come hear a lively discussion of trends changing Russia. After Vladimir Putin returns

Rowley, Clarence W.

345

Best College for UndergradUate edUCation The Princeton Review's "The Best 376 Colleges: 2012 Edition" will  

E-Print Network [OSTI]

. The rankings rate American colleges and universities according to their environmental practices, greenBest College for UndergradUate edUCation The Princeton Review's "The Best 376 Colleges: 2012 Edition" will include Portland State University as one of the nation's best insti- tutions

Bertini, Robert L.

346

Hot Pot Detail - Evidence of Quaternary Faulting  

SciTech Connect (OSTI)

Compilation of published data, field observations and photo interpretation relevant to Quaternary faulting at Hot Pot.

Lane, Michael

2013-06-27T23:59:59.000Z

347

Hot Pot Detail - Evidence of Quaternary Faulting  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Compilation of published data, field observations and photo interpretation relevant to Quaternary faulting at Hot Pot.

Lane, Michael

348

Mt Wheeler Power, Inc (Utah) | Open Energy Information  

Open Energy Info (EERE)

Utah Utah Utility Id 13073 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0786/kWh Commercial: $0.0810/kWh Industrial: $0.0610/kWh The following table contains monthly sales and revenue data for Mt Wheeler Power, Inc (Utah). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 11.289 138.131 203 9.256 101.356 114 1.61 12.38 14 22.155 251.867 331

349

Village of Mt Horeb, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Horeb, Wisconsin (Utility Company) Horeb, Wisconsin (Utility Company) Jump to: navigation, search Name Mt Horeb Village of Place Wisconsin Utility Id 13036 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership

350

Mt Carmel Public Utility Co | Open Energy Information  

Open Energy Info (EERE)

Public Utility Co Public Utility Co Jump to: navigation, search Name Mt Carmel Public Utility Co Place Illinois Utility Id 13032 Utility Location Yes Ownership I NERC Location SERC NERC SERC Yes ISO MISO Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Service Commercial Commercial Electric Space Heating Service Commercial Large Light and Power Electric Service - Less Than 10 MW Industrial Large Light and Power Electric Service - equal or greater than 10 MW

351

E-Print Network 3.0 - at10 microtelsa-300 mt Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HTC PurEnergy EOR Hydrogen Energy Kern County, CA 308 390 MW 2 MtCO2yr IGCC... CoalPetCoke EOR AEP New Haven, WV 334 235 MW 1.5 Mt CO2yr PCC Chilled NH3 Saline ... Source:...

352

Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) | Open  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A dipole-dipole resistivity survey of the area was carried out with estimated penetration up to 700 meters and no indication of low values of resistivity were found associated with the thermal anomaly. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Marysville_Mt_Area_(Blackwell)&oldid=510539

353

GRR/Section 7-MT-a - Energy Facility Siting | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 7-MT-a - Energy Facility Siting GRR/Section 7-MT-a - Energy Facility Siting < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-MT-a - Energy Facility Siting 07MTAEnergyFacilitySiting (6).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Major Facility Siting Act ARM Title 17 Triggers None specified Click "Edit With Form" above to add content 07MTAEnergyFacilitySiting (6).pdf 07MTAEnergyFacilitySiting (6).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Montana Major Facility Siting Act governs the siting of energy facilities in Montana. 7-MT-a.1 to 7-MT-a.2 - Does the Power Plant Have a Production Capacity of

354

Princeton Plasma Physics Lab | A Collaborative National Center for Fusion &  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News Events Research Education Organization Contact Us Spotlight PPPL staffers monitor a closed-circuit screen during the historic 1993 experiment. Celebrating the 20th anniversary of the tritium shot heard around the world PPPL's historic experiment made global headlines and marked a milestone in the development of fusion energy PPPL scientists present cutting-edge results at major physics meeting More than 1,500 researchers, including scientists from the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL), have gathered in Denver, Colorado, for the 55th Annual Meeting of the American Physical Society's (APS) Division of Plasma Physics (DPP). PPPL engineer Chris Brunkhorst displays an egg while a computer image simulates the levels of RF power that different parts of an egg absorbed during an experiment.

355

PPPL engineer named winner of the 2013 Fusion Technology Award | Princeton  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PPPL engineer named winner of the 2013 Fusion Technology Award PPPL engineer named winner of the 2013 Fusion Technology Award By John Greenwald May 1, 2013 Tweet Widget Facebook Like Google Plus One Philip Heitzenroeder, who leads the Mechanical Engineering Division at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) and whose advice is sought by engineers around the world, has won the 2013 Fusion Technology Award. The high honor from the Nuclear and Plasma Sciences Society of the Institute of Electrical and Electronics Engineers (IEEE) recognizes outstanding contributions to research and development in the field of fusion technology. (To read story and access photo online: http://www.pppl.gov/news/2013/04/phil-heitzenroeder-named-winner-2013-fusion-technology-award-0) Heitzenroeder has contributed to the design and construction of many of the

356

COLLOQUIUM: The Lithium Tokamak eXperiment (LTX) | Princeton Plasma Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

December 18, 2013, 4:15pm to 6:30pm December 18, 2013, 4:15pm to 6:30pm Colloquia MBG Auditorium COLLOQUIUM: The Lithium Tokamak eXperiment (LTX) Dr. Richard Majeski Princeton University Presentation: Presentation The Lithium Tokamak eXperiment (LTX) will be discussed in the context of a more general program goal - to develop a compact realization of a tokamak fusion reactor. The general requirements for more compact tokamak reactors will be briefly discussed. The LTX project can investigate some, but not all, of these requirements, on a small scale. Recent results from LTX will be presented. Finally, the development of a toroidal system to test flowing liquid lithium walls, aimed at eventual implementation in a compact D-T tokamak, will be discussed. The Lithium Tokamak eXperiment video platform video management video solutionsvideo player

357

Overview of the program on soft x-ray lasers and their applications at Princeton  

SciTech Connect (OSTI)

In the last several years, rapid progress in the development of soft x-ray lasers (SXL) has been observed at a number of laboratories worldwide. Although SXLs are very young'' devices they have already been used for microscopy and holography, and new ideas emerging for broader application of SXLs to microscopy, holography and lithography. This paper describes the work at Princeton University on the development of a soft x-ray imaging transmission microscopy using a SXL as a radiation source and work on the development of a novel soft x-ray reflection microscope and its application to biological cell studies and lithography. Progress in the development of a photopumped VUV laser (60 nm), and programs for the development of a small scale SXL and for the application of a powerful subpicosecond KrF laser system are also discussed. 35 refs., 9 figs., 1 tab.

Suckewer, S.; Ilcisin, K. (Princeton Univ., NJ (USA). Plasma Physics Lab. Princeton Univ., NJ (USA). Dept. of Mechanical and Aerospace Engineering)

1991-05-01T23:59:59.000Z

358

Two?dimensional simulation of the formation of the Princeton spheromak  

Science Journals Connector (OSTI)

Various schemes proposed for the creation of the spheromak in the Princeton S1 experiment are simulated by our two?dimensional time?dependent compressible resistive hydromagnetic code. In these schemes the toroidal fields and poloidal currents in the plasma are induced by a solenoidal discharge in a core while a toroidal coil inside the core produces the major part of the initial poloidal fields as well as the main plasma toroidal current. Poloidal fields are reversed by programming current reversal in the toroidal coil. Poloidal field reconnection toroidal field compression and plasma accumulation into a spheromak geometry are achieved in the various schemes with or without the aid of pinching coils. For several schemes using proper programming of currents realistic parameter values give effective spheromak formation.

H. C. Lui; C. K. Chu; A. Aydemir

1981-01-01T23:59:59.000Z

359

Princeton Plasma Physics Laboratory annual report, October 1, 1991--September 30, 1992  

SciTech Connect (OSTI)

This report discusses the following topics: Principal parameters achieved in experimental devices for fiscal year 1992; tokamak fusion test reactor; princeton beta experiment-modification; current drive experiment-upgrade; tokamak physics experiment/steady-state advanced tokamak; international thermonuclear experimental reactor; international collaboration; x-ray laser studies; plasma processing: Deposition and etching of thin films; pure electron plasma experiments; theoretical studies; tokamak modeling; high-field magnet project; engineering department; environment, safety, and health and quality assurance; technology transfer; office of human resources and administration; PPPL invention disclosures for fiscal year 1992; office of resource management; graduate education: plasma physics; graduate education: program in plasma science and technology; and science education program.

Not Available

1992-12-31T23:59:59.000Z

360

Prometheus Hot Leg Piping Concept  

SciTech Connect (OSTI)

The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

Gribik, Anastasia M. [Bechtel Bettis, Inc., Bettis Atomic Power Laboratory, West Mifflin, PA 15122 (United States); DiLorenzo, Peter A. [KAPL, Inc., Knolls Atomic Power Laboratory, Schenectady, NY 12301 (United States)

2007-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "mt princeton hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Hot carrier diffusion in graphene  

Science Journals Connector (OSTI)

We report an optical study of charge transport in graphene. Diffusion of hot carriers in epitaxial graphene and reduced graphene-oxide samples are studied using an ultrafast pump-probe technique with a high spatial resolution. Spatiotemporal dynamics of hot carriers after a pointlike excitation are monitored. Carrier-diffusion coefficients of 11?000 and 5500?cm2?s?1 are measured in epitaxial graphene and reduced graphene-oxide samples, respectively, with a carrier temperature on the order of 3600 K. The demonstrated optical techniques can be used for noncontact and noninvasive in situ detection of transport properties of graphene.

Brian A. Ruzicka; Shuai Wang; Lalani K. Werake; Ben Weintrub; Kian Ping Loh; Hui Zhao

2010-11-08T23:59:59.000Z

362

Solar Hot Water Market Development in Knoxville, TN | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Resources Solar Hot Water Market Development in Knoxville, TN Solar Hot Water Market Development in Knoxville, TN Assessment of local solar hot water markets, market...

363

SciTech Connect: Hot electron dynamics in graphene  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ThesisDissertation: Hot electron dynamics in graphene Citation Details In-Document Search Title: Hot electron dynamics in graphene Hot electron dynamics in graphene Graphene, a...

364

MT3D: a 3 dimensional magnetotelluric modeling program (user's guide and documentation for Rev. 1)  

SciTech Connect (OSTI)

MT3D.REV1 is a non-interactive computer program written in FORTRAN to do 3-dimensional magnetotelluric modeling. A 3-D volume integral equation has been adapted to simulate the MT response of a 3D body in the earth. An integro-difference scheme has been incorporated to increase the accuracy. This is a user's guide for MT3D.REV1 on the University of Utah Research Institute's (UURI) PRIME 400 computer operating under PRIMOS IV, Rev. 17.

Nutter, C.; Wannamaker, P.E.

1980-11-01T23:59:59.000Z

365

Commercial Solar Hot Water Financing Program  

Broader source: Energy.gov [DOE]

The Massachusetts Clean Energy Center (MassCEC) and Paradigm Partners are offering a solar hot water financing program in order to meet MassCEC's objective of growing the commercial solar hot water...

366

Solar Works in Seattle: Domestic Hot Water  

Broader source: Energy.gov [DOE]

Seattle's residential solar hot water workshop. Content also covers general solar resource assessment, siting, and financial incentives.

367

3-D Density Model Of Mt Etna Volcano (Southern Italy) | Open Energy  

Open Energy Info (EERE)

3-D Density Model Of Mt Etna Volcano (Southern Italy) 3-D Density Model Of Mt Etna Volcano (Southern Italy) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 3-D Density Model Of Mt Etna Volcano (Southern Italy) Details Activities (0) Areas (0) Regions (0) Abstract: A detailed density model of Mt. Etna and its surrounding areas has been evaluated using a 3-D inversion of the gravimetric data acquired in the 1980's. Several high-density and low-density bodies are found, penetrating from shallow depths as far down as 12 km bsl. A positive correlation (in terms of location, extent, density, and velocity) is established between several anomalies of the density model and features identified in previously published seismic tomographies. A prominent high-density body extending down to 7 km bsl is recognized in the southern

368

Thermal And-Or Near Infrared At Mt Ranier Area (Frank, 1995) | Open Energy  

Open Energy Info (EERE)

Thermal And-Or Near Infrared At Mt Ranier Area Thermal And-Or Near Infrared At Mt Ranier Area (Frank, 1995) Exploration Activity Details Location Mt Ranier Area Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness useful DOE-funding Unknown Notes Infrared images acquired through joint US. Department of Energy and U.S. Geological Survey efforts (Kieffer et al., 1982) show a representative pattern of heat emission from the summit area (Fig. 5). References David Frank (1995) Surficial Extent And Conceptual Model Of Hydrothermal System At Mount Rainier, Washington Retrieved from "http://en.openei.org/w/index.php?title=Thermal_And-Or_Near_Infrared_At_Mt_Ranier_Area_(Frank,_1995)&oldid=386481" Categories: Exploration Activities DOE Funded Activities What links here Related changes

369

GRR/Section 6-MT-e - Floodplain Development Permit | Open Energy  

Open Energy Info (EERE)

6-MT-e - Floodplain Development Permit 6-MT-e - Floodplain Development Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-MT-e - Floodplain Development Permit 06MTEFloodplainDevelopmentPermit (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Federal Emergency Management Agency Triggers None specified Click "Edit With Form" above to add content 06MTEFloodplainDevelopmentPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Anyone planning new development within a designated Special Flood Hazard Areas (SFHA). Check with local floodplain [www.mtfloodplain.mt.gov

370

Integrated dense array and transect MT surveying at dixie valley geothermal  

Open Energy Info (EERE)

dense array and transect MT surveying at dixie valley geothermal dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal alteration and deep fluid sources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Integrated dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal alteration and deep fluid sources Authors Philip E. Wannamaker, William M. Doerner and Derrick P. Hasterok Conference proceedings, 32th workshop on geothermal reservoir Engineering, Stanford University; Stanford University; 2007 Published Publisher Not Provided, 2007 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Integrated dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal

371

A Portable Elf-Mt System For Shallow Resistivity Sounding | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » A Portable Elf-Mt System For Shallow Resistivity Sounding Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Portable Elf-Mt System For Shallow Resistivity Sounding Details Activities (0) Areas (0) Regions (0) Abstract: In view of recent extensive investigation of shallow resistivity structure for active fault studies and geothermal exploration, we developed a portable magnetotelluric (MT) system for the extremely low frequency (ELF) range. The system aims primarily at making real-time analyses of MT data at the so-called Schumann resonance frequencies of ~ 8, 14 and 20 Hz.

372

Atmospheric Carbon Dioxide Record from In Situ Measurements at Mt. Cimone  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mt. Cimone Mt. Cimone Atmospheric Carbon Dioxide Record from In Situ Measurements at Mt. Cimone graphics Graphics data Data Investigators Tiziano Colombo and Riccardo Santaguida Italian Meteorological Service, Via delle Ville, 100-41029 Sestola (MO), Italy Period of Record 1979-1997 Methods Continuous atmospheric CO2 measurements have been carried out at Mt. Cimone since 1979. Since December 1988, air samples have also been collected approximately once per week in a pair of 2-L, electropolished, stainless steel cylindrical flasks. From 1979 until December 1988, a Hartmann and Braun URAS-2T NDIR gas analyzer was used for CO2 determinations. Currently, CO2 determinations are made through the use of a Siemens Ultramat-5E NDIR gas analyzer. Water vapor is eliminated by passing the air through a U-tube

373

Rock Sampling At Mt Ranier Area (Frank, 1995) | Open Energy Information  

Open Energy Info (EERE)

Mt Ranier Area (Frank, 1995) Mt Ranier Area (Frank, 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Mt Ranier Area (Frank, 1995) Exploration Activity Details Location Mt Ranier Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes This paper relies primarily on minerals, gases, and water found in surficial deposits to construct a conceptual model for Mount Rainier that considers the following factors: - Locations of hydrothermal leakage at the surface; - Structures that provide permeable paths of fluid egress to the surface; - Amount of excess heat discharge; - Composition of surficial thermal fluids; - Composition, guided by mineralogy, of subsurface thermal fluids. Analytical data used as a basis for the model are from samples

374

E-Print Network 3.0 - area mt evidence Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search results for: area mt evidence Page: << < 1 2 3 4 5 > >> 1 University of St Andrews School of Mathematics and Statistics Summary: ;1 HONOURS PROGRAMME IN MATHEMATICS AND...

375

E-Print Network 3.0 - accelerator microtron mt-22 Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sample search results for: accelerator microtron mt-22 Page: << < 1 2 3 4 5 > >> 1 Nuclear Instruments and Methods in PhysicsResearch A 331 (1993)ABS 21 North-Holland Summary:...

376

A Large Self-Potential Anomaly And Its Changes On The Quiet Mt Fuji, Japan  

Open Energy Info (EERE)

Self-Potential Anomaly And Its Changes On The Quiet Mt Fuji, Japan Self-Potential Anomaly And Its Changes On The Quiet Mt Fuji, Japan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Large Self-Potential Anomaly And Its Changes On The Quiet Mt Fuji, Japan Details Activities (0) Areas (0) Regions (0) Abstract: Self-potential (SP) surveys were carried out on Mt. Fuji volcano, Japan, and an intense positive anomaly (about 2000 mV) was found in the summit area. The positive SP anomaly was stable on 2001 and 2002, but increased 150 mV in amplitude on September 12, 2003, and suddenly decreased 300 mV two weeks later. This amplitude change coincides with the emergence of the fumaroles, which appeared for the first time in 40 years, on the east-northeast flank 6 km apart from the summit. The SP anomaly is thought

377

GRR/Section 1-MT-a - Land Use Considerations | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 1-MT-a - Land Use Considerations GRR/Section 1-MT-a - Land Use Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 1-MT-a - Land Use Considerations 01MTALandUseConsiderations.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 01MTALandUseConsiderations.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Add Text Print PDF Retrieved from "http://en.openei.org/w/index.php?title=GRR/Section_1-MT-a_-_Land_Use_Considerations&oldid=685537" Categories: Regulatory Roadmap State Sections Geothermal Regulatory Roadmap Sections

378

Hot and Dense QCD Matter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

QCD Matter QCD Matter A Community White Paper on the Future of Relativistic Heavy-Ion Physics in the US Unraveling the Mysteries of the Strongly Interacting Quark-Gluon-Plasma Executive Summary This document presents the response of the US relativistic heavy-ion community to the request for comments by the NSAC Subcommittee, chaired by Robert Tribble, that is tasked to recommend optimizations to the US Nuclear Science Program over the next five years. The study of the properties of hot and dense QCD matter is one of the four main areas of nuclear physics research described in the 2007 NSAC Long Range Plan. The US nuclear physics community plays a leading role in this research area and has been instrumental in its most important discovery made over the past decade, namely that hot and dense QCD matter acts as a strongly interacting system with unique and previously unexpected

379

dist_hot_water.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

District Hot Water Usage Form District Hot Water Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed questionnaire is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company. a. You may submit a single report for the entire building, or if it i s easier, a separate report for each of several accounts in the building. These will then be aggregated by the survey contractor. b. If you are concerned about your individual account information, you may c

380

Synthesis and characterization of NaMt biocomposites with corn cob xylan in aqueous media  

Science Journals Connector (OSTI)

In this study synthesis and characterization of biopolymer/clay biocomposites was aimed using naturally occurring polysaccharide (xylan) as biopolymer and montmorillonite type clay (NaMt). Xylan was extracted from corn cobs via alkaline oxidative treatment. Maximum solubility of xylan was determined as 1% (w/v) in water at room temperature. Thus synthesis was realized following two routes; first NaMt concentration was kept constant at 2.0נ10?2g/ml and xylan concentration was changed. Latter xylan concentration was kept constant at 1.0נ10?2g/ml and NaMt concentration was changed. Natural xylan, NaMt and biocomposites were examined in terms of their spectral, electrokinetic, rheologic, morphologic and thermal properties. Results showed that lower amounts of xylan interacted with NaMt on the surface, however, when the xylan amount was increased also intercalation of NaMt has occurred. Biocomposites showed better thermal and rheologic behaviors with respect to the starting materials.

Cneyt H. nl; Ebru Gnister; Oya At?c?

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mt princeton hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

HotSpot | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

HotSpot HotSpot HotSpot Current Central Registry Toolbox Version(s): 2.07.1 Code Owner: Department of Energy, Office of Emergency Operations and Lawrence Livermore National Laboratory (LLNL) Description: The HotSpot Health Physics Code is used for safety-analysis of DOE facilities handling nuclear material. Additionally, HotSpot provides emergency response personnel and emergency planners with a fast, field-portable set of software tools for evaluating incidents involving radioactive material. HotSpot provides a fast and usually conservative means for estimation of the radiation effects associated with atmospheric release of radioactive materials. The HotSpot atmospheric dispersion models are designed for near-surface releases, short-range (less than 10 km) dispersion, and short-term (less than 24 hours) release durations in

382

Observations of giant recombination edges on the Princeton Large Torus tokamak induced by particle transport  

Science Journals Connector (OSTI)

In this paper we report on the observation of characteristic "steps" in the continuum spectrum of high-temperature tokamak plasmas associated with recombination radiation from impurity ions. During special argon-seeded discharges on the Princeton Large Torus tokamak the x-ray spectrum exhibited large enhancements over the bremsstrahlung continuum beginning with energies of 4.1 keV. This corresponds to the radiative capture of free electrons by hydrogenlike argon into the ground state of heliumlike argon. The size of these edges increased to unexpectedly large values with minor radius (decreasing electron temperature), consistent with a departure of the hydrogenlike species from the predictions of corona equilibrium. Hence, the coronal equilibrium equations must be modified to account for the radial transport of argon. A simple particle diffusion model is proposed, with the Ar XVIII radial profiles evaluated from the size of the recombination edges. For the case of moderate density (?ne??31013 cm-3) and temperature (Te(0)?1.5 keV) discharges the outward radial transport velocity is found to be approximately 10 m/sec.

K. Brau; S. von Goeler; M. Bitter; R. D. Cowan; D. Eames; K. Hill; N. Sauthoff; E. Silver; W. Stodiek

1980-12-01T23:59:59.000Z

383

Hot Springs Metropolitan Planning Organization 2030 Long Range Transportation Plan  

E-Print Network [OSTI]

Hot Springs Area Metropolitan Planning Organization 100 Broadway Terrace Hot Springs, Arkansas 71901 Adopted November 3, 2005 HSA-MPO 2030 LRTPii Participating Agencies Garland County Hot... Spring County City of Hot Springs City of Mountain Pine Hot Springs Village The Greater Hot Springs Chamber of Commerce The Arkansas State Highway and Transportation Department In Cooperation With United States Department of Transportation...

Hot Springs Metropolitan Planning Organization

2005-11-03T23:59:59.000Z

384

Hot  

Office of Scientific and Technical Information (OSTI)

LLC. UMI Number: 1494695 ii DEDICATION I would like to dedicate this thesis to my advisor Joerg Schmailian, a great physicist and mentor. I've learned a lot from him, no...

385

Human Mitochondrial Transcription Factor B1 Interacts with the C-Terminal Activation Region of h-mtTFA and Stimulates Transcription Independently of Its RNA Methyltransferase Activity  

Science Journals Connector (OSTI)

...promoter locations and where h-mtTFB proteins bridge an interaction between the...h-mtTFB proteins act to bridge an interaction between h-mtRNA polymerase and a...promoter locations and where h-mtTFB proteins bridge an interaction between the...

Vicki McCulloch; Gerald S. Shadel

2003-08-01T23:59:59.000Z

386

Colorado's Hot Springs | Open Energy Information  

Open Energy Info (EERE)

http:crossref.org Citation D. Frazier. 2000. Colorado's Hot Springs. Boulder, Colorado: Pruett Publishing Company. 165p. Retrieved from "http:en.openei.orgw...

387

Covered Product Category: Hot Food Holding Cabinets  

Broader source: Energy.gov [DOE]

The Federal Energy Management Program (FEMP) provides acquisition guidance for hot food holding cabinets, which are covered by the ENERGY STAR program.

388

Solar Hot Water Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of solar hot water (SHW) technologies supplemented by specific information to apply SHW within the Federal sector.

389

Monitoring SERC Technologies Solar Hot Water  

Broader source: Energy.gov [DOE]

A webinar by National Renewable Energy Laboratory analyst Eliza Hotchkiss on Solar Hot Water systems and how to properly monitor their installation.

390

GRR/Section 4-MT-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 4-MT-a - State Exploration Process GRR/Section 4-MT-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-MT-a - State Exploration Process 04MTAStateExplorationProcess (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Montana Board of Oil and Gas Conservation Regulations & Policies ARM 17.20.202: Geothermal Exploration Plan ARM 17.20.203: Initial Field Report ARM 17.20.204: Periodic Field Report ARM 17.20.205: Final Field Report ARM 17.20.206: Geological Report MCA 82-1-103: Notice of Intent MCA 82-1-104: Bond MCA 82-1-105: Permit Issuance MCA 82-1-106: NOI Forwarded MCA 82-1-107: Notice to Surface Owner MCA 82-1-108: Record of Work Performed Triggers

391

GRR/Section 14-MT-b - MPDES Permitting Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 14-MT-b - MPDES Permitting Process GRR/Section 14-MT-b - MPDES Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-MT-b - MPDES Permitting Process 14MTBMPDESPermittingProcess.pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality United States Environmental Protection Agency Regulations & Policies MCA 75-5-402: Duties of MDEQ MCA 75-5-403: Denial, Modification, Review 75-5-611: Violation, Hearing Triggers None specified Click "Edit With Form" above to add content 14MTBMPDESPermittingProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

392

GRR/Section 14-MT-e - Groundwater Pollution Control System | Open Energy  

Open Energy Info (EERE)

MT-e - Groundwater Pollution Control System MT-e - Groundwater Pollution Control System < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-MT-e - Groundwater Pollution Control System 14MTEGroundwaterPollutionControlSystemPermit (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Water Quality Act (Montana Codes Annotated 75-5-101 et seq.) Administrative Rules of Montana 17.30.1001 et seq. Triggers None specified Click "Edit With Form" above to add content 14MTEGroundwaterPollutionControlSystemPermit (1).pdf 14MTEGroundwaterPollutionControlSystemPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

393

GRR/Section 20-MT-a - Well Abandonment Process | Open Energy Information  

Open Energy Info (EERE)

20-MT-a - Well Abandonment Process 20-MT-a - Well Abandonment Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 20-MT-a - Well Abandonment Process 20MTAWellAbandonmentProcess.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Regulations & Policies Rule 36.21.671 - Abandonment of Flowing Wells Rule 36.21.810 - Abandonment Rule Chapter 36.21 Board of Water Well Contractors Triggers None specified Click "Edit With Form" above to add content 20MTAWellAbandonmentProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Montana requires the employment of particular engineering standards when

394

Geothermal Literature Review At Mt Ranier Area (Frank, 1995) | Open Energy  

Open Energy Info (EERE)

Geothermal Literature Review At Mt Rainier Area Geothermal Literature Review At Mt Rainier Area (Frank, 1995) Exploration Activity Details Location Mt Rainier Area Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes This paper relies primarily on minerals, gases, and water found in surficial deposits to construct a conceptual model for Mount Rainier that considers the following factors: - Locations of hydrothermal leakage at the surface; - Structures that provide permeable paths of fluid egress to the surface; - Amount of excess heat discharge; - Composition of surficial thermal fluids; - Composition, guided by mineralogy, of subsurface thermal fluids. Analytical data used as a basis for the model are from samples collected during field investigations in 1982-1985 (Frank, 1985), whereas

395

GRR/Section 17-MT-b - Montana Stream Protection Act (SPA 124 Permit) | Open  

Open Energy Info (EERE)

GRR/Section 17-MT-b - Montana Stream Protection Act (SPA 124 Permit) GRR/Section 17-MT-b - Montana Stream Protection Act (SPA 124 Permit) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 17-MT-b - Montana Stream Protection Act (SPA 124 Permit) 17MTBMontanaStreamProtectionActSPA124Permit.pdf Click to View Fullscreen Contact Agencies Montana Fish, Wildlife & Parks Regulations & Policies MCA 87-5-501 et seq Montana Stream Protection Triggers None specified Click "Edit With Form" above to add content 17MTBMontanaStreamProtectionActSPA124Permit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Montana has a policy to preserve fish and wildlife habitat as well as

396

GRR/Section 18-MT-b - Hazardous Waste Facility Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-MT-b - Hazardous Waste Facility Permit GRR/Section 18-MT-b - Hazardous Waste Facility Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-MT-b - Hazardous Waste Facility Permit 18MTBHazardousWasteFacilityPermit.pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Code Annotated Title 75, Chapter 10, Part 4 Administrative Rules of Montana Title 17, Chapter 53 40 CFR 260 through 40 CFR 270 40 CFR 124 Triggers None specified Click "Edit With Form" above to add content 18MTBHazardousWasteFacilityPermit.pdf 18MTBHazardousWasteFacilityPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

397

GRR/Section 8-MT-a - Transmission Siting Process | Open Energy Information  

Open Energy Info (EERE)

8-MT-a - Transmission Siting Process 8-MT-a - Transmission Siting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-MT-a - Transmission Siting Process 08MTATransmission (3).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Code Annotated Title 75, Chapter 20 Montana Environmental Policy Act MCA 75-20-301 Findings Necessary for Certification ARM 17.20.1606 Electric Transmission Lines, Need Standard ARM 17.20.907 ARM 17.20.920 ARM 17.20.921 ARM 17.20.923 ARM 17.20.1902 Triggers None specified Click "Edit With Form" above to add content 08MTATransmission (3).pdf 08MTATransmission (3).pdf Error creating thumbnail: Page number not in range.

398

GRR/Section 15-MT-a - Air Quality Permit | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 15-MT-a - Air Quality Permit GRR/Section 15-MT-a - Air Quality Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15-MT-a - Air Quality Permit 15MTAAirQualityPermit (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Code Annotated 75-2 Administrative Rules of Montana 17.8 Triggers None specified Click "Edit With Form" above to add content 15MTAAirQualityPermit (1).pdf 15MTAAirQualityPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Montana Department of Environmental Quality (DEQ) requires a Montana Air Permit to construct and operate a new or modified source of air

399

GRR/Section 3-MT-a - State Geothermal Resource Lease | Open Energy  

Open Energy Info (EERE)

3-MT-a - State Geothermal Resource Lease 3-MT-a - State Geothermal Resource Lease < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-MT-a - State Geothermal Resource Lease 03MTAStateGeothermalResourceLease.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Regulations & Policies Rule 36.25.404 Triggers None specified Click "Edit With Form" above to add content 03MTAStateGeothermalResourceLease.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart is intended to document the process behind the geothermal resource lease in Montana. The procedure is outlined in Rule 36.25.404.

400

GRR/Section 5-MT-a - Drilling and Well Development | Open Energy  

Open Energy Info (EERE)

GRR/Section 5-MT-a - Drilling and Well Development GRR/Section 5-MT-a - Drilling and Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-MT-a - Drilling and Well Development 05MTADrillingAndWellDevelopment (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana Department of Environmental Quality Regulations & Policies MCA 37-43-104: Monitoring Wells MCA 37-43-302: License Requirements MCA 37-43-306: Bonding Requirements Triggers None specified Click "Edit With Form" above to add content 05MTADrillingAndWellDevelopment (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

Note: This page contains sample records for the topic "mt princeton hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

RECIPIENT:MT DEQ u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER  

Broader source: Energy.gov (indexed) [DOE]

MT DEQ MT DEQ u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlVIINATION PROJECT TITLE: Montana FormauJ SEP Page 1 of2 STATE: MT Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number em Number DE-FOA000643 NT43199 GF0-Q043199-OO1 Based on my review ofthe inrormation concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.IA), I have made the following determination: ex. EA, [IS APPENDIX AND NUMBER: Description: A9 Information gathering, analysis, and dissemination Information gathering (induding, but not limited to, literature surveys, inventories, site visits, and audits), data analysis (including, but not limited to, computer modeling), document preparation

402

GRR/Section 6-MT-b - Construction Storm Water Permit | Open Energy  

Open Energy Info (EERE)

MT-b - Construction Storm Water Permit MT-b - Construction Storm Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-MT-b - Construction Storm Water Permit 06MTBConstructionStormWaterPermit (7).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Code Annotated 75-5 [ARM 17.30.1101] Triggers None specified Click "Edit With Form" above to add content 06MTBConstructionStormWaterPermit (7).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Montana regulates water quality under Montana Code Annotated 75-5. The

403

GRR/Section 12-MT-a - Flora & Fauna Considerations | Open Energy  

Open Energy Info (EERE)

GRR/Section 12-MT-a - Flora & Fauna Considerations GRR/Section 12-MT-a - Flora & Fauna Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 12-MT-a - Flora & Fauna Considerations 12MTAFloraFaunaConsiderations (2).pdf Click to View Fullscreen Contact Agencies Montana Fish, Wildlife & Parks Regulations & Policies Commercial Use Administrative Rules Triggers None specified Click "Edit With Form" above to add content 12MTAFloraFaunaConsiderations (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart and the following content outlines the flora and fauna considerations that are specific to Montana and in addition to federal

404

GRR/Section 6-MT-a - Montana Overdimensional or Overweight Load Permit |  

Open Energy Info (EERE)

GRR/Section 6-MT-a - Montana Overdimensional or Overweight Load Permit GRR/Section 6-MT-a - Montana Overdimensional or Overweight Load Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-MT-a - Montana Overdimensional or Overweight Load Permit 06MTAMontanaOverdimensionalOrOverweightLoadPermit (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Transportation Regulations & Policies Montana Code Annotated 61-10-101 et seq. Administrative Rules of Monatana 18.8 Triggers None specified Click "Edit With Form" above to add content 06MTAMontanaOverdimensionalOrOverweightLoadPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

405

Controlled Source Audio MT At Cove Fort Area - Liquid (Combs 2006) | Open  

Open Energy Info (EERE)

Cove Fort Area - Liquid (Combs 2006) Cove Fort Area - Liquid (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Controlled Source Audio MT At Cove Fort Area (Combs 2006) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Controlled Source Audio MT Activity Date Usefulness not indicated DOE-funding Unknown Notes "SP, dipole-dipole resistivity, CSAMT; sufficient electrical data are available. Reservoir model?" References Jim Combs (1 January 2006) Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Controlled_Source_Audio_MT_At_Cove_Fort_Area_-_Liquid_(Combs_2006)&oldid=598122"

406

GRR/Section 3-MT-e - Encroachment Permit | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 3-MT-e - Encroachment Permit GRR/Section 3-MT-e - Encroachment Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-MT-e - Encroachment Permit 03MTEEncroachmentPermit.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana Department of Transportation Triggers None specified Click "Edit With Form" above to add content 03MTEEncroachmentPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart is intended to address the permitting requirements for encroachments on Montana Department of Transportation lands.

407

GRR/Section 18-MT-a - Underground Storage Tanks | Open Energy Information  

Open Energy Info (EERE)

MT-a - Underground Storage Tanks MT-a - Underground Storage Tanks < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-MT-a - Underground Storage Tanks 18MTAUndergroundStorageTanks (2).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Code Annotated 75-11-501 Administrative Rules of Montana 17-56 Triggers None specified Click "Edit With Form" above to add content 18MTAUndergroundStorageTanks (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A developer must obtain an Underground Storage Tank Installation Permit

408

GRR/Section 14-MT-a - Nonpoint Source Pollution | Open Energy Information  

Open Energy Info (EERE)

MT-a - Nonpoint Source Pollution MT-a - Nonpoint Source Pollution < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-MT-a - Nonpoint Source Pollution 14MTANonpointSourcePollution (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Montana Watershed Coordination Council United States Environmental Protection Agency Regulations & Policies Clean Water Act Triggers None specified Click "Edit With Form" above to add content 14MTANonpointSourcePollution (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Nonpoint source (NPS) pollution is the state's single largest source of

409

GRR/Section 14-MT-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-MT-d - Section 401 Water Quality Certification GRR/Section 14-MT-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-MT-d - Section 401 Water Quality Certification 14MTD401WaterQualityCertification (2).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Federal Clean Water Act (33 USC § 1251 et seq.) Montana Codes Annotated 75-5-401 Aministrative Rules of Montana Chapter 30 Administrative Rules of Montana 17.30.101 through 109 Triggers None specified Click "Edit With Form" above to add content 14MTD401WaterQualityCertification (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

410

Water Sampling At Mt St Helens Area (Shevenell & Goff, 1995) | Open Energy  

Open Energy Info (EERE)

Helens Area (Shevenell & Goff, 1995) Helens Area (Shevenell & Goff, 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt St Helens Area (Shevenell & Goff, 1995) Exploration Activity Details Location Mt St Helens Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown References Lisa Shevenell, Fraser Goff (1995) Evolution Of Hydrothermal Waters At Mount St Helens, Washington, Usa Retrieved from "http://en.openei.org/w/index.php?title=Water_Sampling_At_Mt_St_Helens_Area_(Shevenell_%26_Goff,_1995)&oldid=389549" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

411

Water Sampling At Mt Ranier Area (Frank, 1995) | Open Energy Information  

Open Energy Info (EERE)

Water Sampling At Mt Rainier Area (Frank, 1995) Water Sampling At Mt Rainier Area (Frank, 1995) Exploration Activity Details Location Mt Rainier Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes This paper relies primarily on minerals, gases, and water found in surficial deposits to construct a conceptual model for Mount Rainier that considers the following factors: - Locations of hydrothermal leakage at the surface; - Structures that provide permeable paths of fluid egress to the surface; - Amount of excess heat discharge; - Composition of surficial thermal fluids; - Composition, guided by mineralogy, of subsurface thermal fluids. Analytical data used as a basis for the model are from samples collected during field investigations in 1982-1985 (Frank, 1985), whereas

412

GRR/Section 6-MT-f - Short-term Water Quality Standard for Turbidity (318  

Open Energy Info (EERE)

GRR/Section 6-MT-f - Short-term Water Quality Standard for Turbidity (318 GRR/Section 6-MT-f - Short-term Water Quality Standard for Turbidity (318 Authorization) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-MT-f - Short-term Water Quality Standard for Turbidity (318 Authorization) 06MTFShortTermWaterQualityStandardForTurbidity318Authorization.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana Department of Environmental Quality Montana Fish, Wildlife & Parks Regulations & Policies MCA 75-5-318 Triggers None specified Click "Edit With Form" above to add content 06MTFShortTermWaterQualityStandardForTurbidity318Authorization.pdf Error creating thumbnail: Page number not in range.

413

GRR/Section 6-MT-d - Other Overview | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 6-MT-d - Other Overview GRR/Section 6-MT-d - Other Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-MT-d - Other Overview 06MTDOtherOverview.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana Department of Environmental Quality Montana Fish, Wildlife & Parks Triggers None specified Click "Edit With Form" above to add content 06MTDOtherOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This overview is intended to direct the developer to additional construction permits. For projects intended near waterways, Montana also provides a joint

414

GRR/Section 3-MT-f - Right-of-Way Easement for Utilities | Open Energy  

Open Energy Info (EERE)

3-MT-f - Right-of-Way Easement for Utilities 3-MT-f - Right-of-Way Easement for Utilities < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-MT-f - Right-of-Way Easement for Utilities 03MTFRightOfWayEasementForUtilitiesProcess.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana State Historic Preservation Office Triggers None specified Click "Edit With Form" above to add content 03MTFRightOfWayEasementForUtilitiesProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart is intended to describe the process for obtaining an

415

Relationship between Hot Spot Residues and Ligand Binding Hot Spots in Protein-Protein Interfaces  

E-Print Network [OSTI]

, while identification of a hot spot by alanine scanning establishes the potential to generate substantial, termed "hot spots", that comprise the subset of residues that contribute the bulk of the binding free proposed as prime targets for drug binding.1,4 The established approach to the identification of such hot

Vajda, Sandor

416

Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley Caldera  

E-Print Network [OSTI]

Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley springs located within the Long Valley Caldera, Little Hot Creek (LHC) 1, 3, and 4. All three springs were that springs associated with the Long Valley Caldera contain microbial populations that show some similarities

Ahmad, Sajjad

417

Ceramic hot-gas filter  

DOE Patents [OSTI]

A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

Connolly, Elizabeth Sokolinski (Wilmington, DE); Forsythe, George Daniel (Landenberg, PA); Domanski, Daniel Matthew (New Castle, DE); Chambers, Jeffrey Allen (Hockessin, DE); Rajendran, Govindasamy Paramasivam (Boothwyn, PA)

1999-01-01T23:59:59.000Z

418

Ceramic hot-gas filter  

DOE Patents [OSTI]

A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

1999-05-11T23:59:59.000Z

419

Experiment operations plan for the MT-4 experiment in the NRU reactor. [PWR  

SciTech Connect (OSTI)

A series of thermal-hydraulic and cladding materials deformation experiments were conducted using light-water reactor fuel bundles as part of the Pacific Northwest Laboratory Loss-of-Coolant Accident (LOCA) Simulation Program. This report is the formal operations plan for MT-4 - the fourth materials deformation experiment conducted in the National Research Universal (NRU) reactor, Chalk River, Ontario, Canada. A major objective of MT-4 was to simulate a pressurized water reactor LOCA that could induce fuel rod cladding deformation and rupture due to a short-term adiabatic transient and a peak fuel cladding temperature of 1200K (1700/sup 0/F).

Russcher, G.E.; Wilson, C.L.; Parchen, L.J.; Marshall, R.K.; Hesson, G.M.; Webb, B.J.; Freshley, M.D.

1983-06-01T23:59:59.000Z

420

Disaggregating residential hot water use. Part 2  

SciTech Connect (OSTI)

A major obstacle to gathering detailed data on end-use hot water consumption within residences and commercial buildings is the cost and complexity of the field tests. An earlier study by the authors presented a methodology that could accurately disaggregate hot water consumption into individual end-uses using only information on the flow of hot water from the water heater. The earlier methodology can be extended to a much larger population of buildings, without greatly increasing the cost and complexity of the data collection and analysis, by monitoring the temperature of the hot water lines that go to different parts of the building. For the three residences studied here, thermocouples /monitored the temperatures of four hot water lines at each site. The thermocouple readings provide a positive indication of when hot water starts to flow in a line. Since the end-uses served by each hot water line are known, the uncertainty in assigning a draw to a particular end-use is greatly reduced. Benefits and limitations for the methodology are discussed in the paper. Using the revised methodology, hot water usage in three residences is disaggregated into the following end-uses: showers, baths, clothes washing, dishwashing, kitchen sink, and bathroom sink. For two residences, the earlier methodology--which does not use the thermocouple data--is also used to disaggregate the same draw data.

Lowenstein, A. [AIL Research, Inc., Princeton, NJ (United States); Hiller, C.C. [Electric Power Research Inst., Palo Alto, CA (United States)

1998-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "mt princeton hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The private city through the hot images  

Science Journals Connector (OSTI)

Hot Images is an artistic mixed reality application that deals with the relation between human beings and city environments, thus proposing a novel cartography and navigation tool for the city. Within the virtual recreated environment of the Hot Images, ... Keywords: color navigation, human space, location based services, mixed reality, urban environments

Cristina Portals

2007-06-01T23:59:59.000Z

422

Are we putting in hot water?  

E-Print Network [OSTI]

, and habitat loss will increase. And while slightly warmer water may not sound so bad to many of us, its effectAre we putting our fish in hot water? Global warming and the world's fisheries · Hot, hungry, and gasping for air · Shrinking fish and fewer babies? · Global warming puts fish on the run · Warm water

Combes, Stacey A.

423

Building Energy Software Tools Directory: HOT2000  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HOT2000 HOT2000 HOT2000 logo. Easy-to-use energy analysis and design software for low-rise residential buildings. Utilizing current heat loss/gain and system performance models, the program aids in the simulation and design of buildings for thermal effectiveness, passive solar heating and the operation and performance of heating and cooling systems. Keywords energy performance, design, residential buildings, energy simulation, passive solar Validation/Testing N/A Expertise Required Basic understanding of the construction and operation of residential buildings. Users Over 1400 worldwide. HOT2000 is used mainly in Canada and the United States with a few users in Japan and Europe. Audience Builders, design evaluators, engineers, architects, building and energy code writers, Policy writers. HOT2000 is also used as the compliance

424

Emission of Visible Light by Hot Dense Metals  

E-Print Network [OSTI]

HIFAN 1761 EMISSION OF VISIBLE LIGHT BY HOT DENSE METALS ByDE-AC52-07NA27344. HI FAN Emission of Visible Light by HotABSTRACT We consider the emission of visible light by hot

More, R.M.

2010-01-01T23:59:59.000Z

425

Conflicting patterns of nucleotide diversity between mtDNA and nDNA in the Moorish gecko, Tarentola mauritanica  

E-Print Network [OSTI]

RNA) for 154 specimens, and a total of 1876 bp from three nuclear genes (ACM4, MC1R and Rag2) for 51 specimens- pean clade presents a higher nucleotide diversity for the nuclear genes when compared to the combined mtDNA dataset. These analyses suggest that the low mtDNA variability that characterises the European

Carranza, Salvador

426

Sequence and annotation of the 314-kb MT325 and the 321-kb FR483 viruses that infect Chlorella Pbi  

E-Print Network [OSTI]

Sequence and annotation of the 314-kb MT325 and the 321-kb FR483 viruses that infect Chlorella Pbi of the family Phycodnaviridae, genus Chlorovirus, infect the fresh water, unicellular, eukaryotic, chlorella-like green alga, Chlorella Pbi. The 314,335-bp genome of MT325 and the 321,240-bp genome of FR483

Graves, Michael V.

427

M.-T. DO, P. MARSAC, Y. DELANNE Prediction of Tire/Wet Road Friction from  

E-Print Network [OSTI]

M.-T. DO, P. MARSAC, Y. DELANNE 1 Prediction of Tire/Wet Road Friction from Road Surface, validation of a contact model for the prediction of low-speed friction from road surface microtexture the friction ­ speed curve from road- and tire measurable parameters. The model development is briefly

Paris-Sud XI, Université de

428

Going Beyond AER: An Extensive Analysis of Word Alignments and Their Impact on MT  

E-Print Network [OSTI]

Going Beyond AER: An Extensive Analysis of Word Alignments and Their Impact on MT Necip Fazil Ayan (AER)--attempts to balance the precision and recall scores at the level of alignment links (Och and Ney et al., 2002) or METEOR (Banerjee and Lavie, 2005)). However, these studies showed that AER and BLEU

Ayan, Necip Fazil

429

Development and recent evaluation of the MT_CKD model of continuum absorption  

Science Journals Connector (OSTI)

...20] Figure 2. For the US standard atmosphere...U.S. Department of Energy, Office of Science...windows. J. Direct. Energy 2, 151-161. 42 Fulghum...radiative cooling and energy balance. Here, we describe the development and status of the MT_CKD (MlawerTobinCloughKneizysDavies...

2012-01-01T23:59:59.000Z

430

Abrupt contraction flow of magnetorheological fluids , M.T. Lpez-Lpez1,2  

E-Print Network [OSTI]

engineering interest, the MR fluids are very attractive from a purely scientific point of view. The coupling1 Abrupt contraction flow of magnetorheological fluids P. Kuzhir1 , M.T. López-López1,2 and G Granada, 18071 Granada, Spain Abstract Contraction and expansion flows of magnetorheological fluids occur

Boyer, Edmond

431

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory  

E-Print Network [OSTI]

2002 and 2003 Prepared by: Virgina L. Finley December 2004 PRINCETON PLASMA PHYSICS LABORATORY PPPL PPPL-4039 PPPL-4039 #12;PPPL Report Disclaimers Full Legal Disclaimer This report was prepared agency thereof or its contractors or subcontractors. PPPL Report Availability This report is posted

Princeton Plasma Physics Laboratory

432

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073. Princeton Plasma Physics Laboratory  

E-Print Network [OSTI]

Physics Laboratory PPPL- 4396PPPL-4396 Annual Site Environmental Report for Calendar Year 2004 March, 2009 or any agency thereof or its contractors or subcontractors. PPPL Report Availability Princeton Plasma Physics Laboratory: http://www.pppl.gov/techreports.cfm Office of Scientific and Technical Information

Princeton Plasma Physics Laboratory

433

Train directions from Newark Airport to Nassau Inn or Palmer House Hotel Train is the most convenient way to get to Princeton from EWR. From the terminals at  

E-Print Network [OSTI]

Train directions from Newark Airport to Nassau Inn or Palmer House Hotel Train is the most), and proceed to track 5. You need the NorthEast Corridor (NEC) train to Trenton (not Long Branch). They go is valid for any train on this route. The ride takes 40-45 minutes, and you exit at Princeton Junction

434

Schedules for Trains into New York City and Philadelphia Princeton offers easy access by train to New York City (via NEW JERSEY TRANSIT) and to  

E-Print Network [OSTI]

Schedules for Trains into New York City and Philadelphia Princeton offers easy access by train). Because there are so many trains, and the fares and schedules vary depending on whether you plan to travel on Friday evening, Saturday or Sunday, we suggest you check the train schedules on the web. TO NEW YORK CITY

435

2004 Conference on Information Sciences and Systems, Princeton University, March 1719, 2004 Load Scheduling for Measurement and Data Reporting in Wireless  

E-Print Network [OSTI]

for measurement and data report- ing in wireless sensor networks. Using divisible load theory as a starting point-4]. A partitionable data parallel load is one that can be arbitrarily distributed among the processors and links2004 Conference on Information Sciences and Systems, Princeton University, March 17­19, 2004 Load

Robertazzi, Thomas G.

436

2nd Int. Symp. on Lithium Applications for Fusion Devices, April 27-29, 2011, Princeton, NJ Program for the 2nd International Symposium  

E-Print Network [OSTI]

2nd Int. Symp. on Lithium Applications for Fusion Devices, April 27-29, 2011, Princeton, NJ Program for the 2nd International Symposium on Lithium Applications for Fusion Devices April 27-29, 2011:40 Welcome, S. Prager, Director, PPPL 8:45 Announcement: Local organizer Session I-A. Lithium in Magnetic

Princeton Plasma Physics Laboratory

437

Princeton -Weekly Bulletin 2/10/03 -Abraham: U.S. participation in international fusion effort builds on success at PPPL  

E-Print Network [OSTI]

international fusion energy initiative called ITER. Praising the achievements of the fusion energy research into heavier elements such as helium and release enormous amounts of energy. Efforts to control and harnessPrinceton - Weekly Bulletin 2/10/03 - Abraham: U.S. participation in international fusion effort

438

The Atom and the Apple, Princeton University Press, "The Atom and the Apple is a delightful ramble through many areas of science as well as  

E-Print Network [OSTI]

The Atom and the Apple, Princeton University Press, Reviews: "The Atom and the Apple and stimulating, and it frequently challenges political correctness. . . . The Atom and the Apple provides." --Publishers Weekly (Starred Review) #12;Science Teacher Association recommends : The Atom and the Apple

Balibar, Sébastien

439

2009-10 Princeton Global Scholar Takao Someya. Professor Someya of the University of Tokyo is one of the world's leading  

E-Print Network [OSTI]

of awards, most recently a Japan Society for the Promotion of Science Prize (awarded in the presence of his current research activities with partners at the Princeton Institute for the Science activities for children in a class for high school students at the National Museum of Emerging Science. His

440

Hafnium nitride for hot carrier solar cells  

Science Journals Connector (OSTI)

Abstract Hot carrier solar cells is an attractive technology with the potential of reaching high energy conversion efficiencies approaching the thermodynamic limit of infinitely stacked multi-junction solar cells: 65% under one sun and 86% under maximally concentrated. The hot carrier solar cell is conceptually simple consisting of two key components: absorber and energy selective contacts. High efficiencies are achieved by minimising the energy lost to thermalisaton of hot photo-generated carriers while absorbing majority of the solar spectrum. For this to be achieved, energy selective contacts are required to allow the extraction of carriers fast enough at an energy level above the electronic band edge. It is critical for the absorber to be able to maintain a hot carrier population for a sufficiently long time period for the extraction of carriers while they are hot. Bulk materials with a large gap between acoustic and optical branches in the phonon dispersion are predicted to exhibit slow hot carrier thermalisation rates. Hafnium nitride is such a material with a large gap in its phonon dispersion and is identified as a potential material to be used as a hot carrier absorber. Hafnium nitride has been deposited using reactive sputtering and characterised to investigate material properties and carrier cooling rates.

Simon Chung; Santosh Shrestha; Xiaoming Wen; Yu Feng; Neeti Gupta; Hongze Xia; Pyng Yu; Jau Tang; Gavin Conibeer

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mt princeton hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Seismic baseline and induction studies- Roosevelt Hot Springs...  

Open Energy Info (EERE)

studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Abstract Local seismic networks were established at the Roosevelt Hot Springs geothermal area, utah and at Raft...

442

EIS-0502: Hot Springs to Anaconda Transmission Line Rebuild Project...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hot Springs to Anaconda Transmission Line Rebuild Project, Montana EIS-0502: Hot Springs to Anaconda Transmission Line Rebuild Project, Montana SUMMARY DOE's Bonneville Power...

443

Model Simulating Real Domestic Hot Water Use - Building America...  

Energy Savers [EERE]

Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Image of a pipe...

444

Webinar: ENERGY STAR Hot Water Systems for High Performance Homes...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Webinar: ENERGY STAR Hot Water Systems for High Performance Homes Webinar: ENERGY STAR Hot Water Systems for High Performance Homes This presentation is from the Building America...

445

Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility...

446

Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal...  

Open Energy Info (EERE)

Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal...

447

Chena Hot Springs Resort - Electric Power Generation Using Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

448

Aeromagnetic Survey At Roosevelt Hot Springs Geothermal Area...  

Open Energy Info (EERE)

literature review of the Roosevelt Hot Springs Geothermal Area. Notes Aeromagnetic intensity residual map compiled for Roosevelt Hot Springs Geothermal Area, providing...

449

Resistivity Tomography At Crump's Hot Springs Area (DOE GTP)...  

Open Energy Info (EERE)

Tomography At Crump's Hot Springs Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Resistivity Tomography At Crump's Hot Springs...

450

Fragmentation of hot classical drops  

Science Journals Connector (OSTI)

Time evolution of hot drops of matter containing ?230 or ?130 particles is studied by classical molecular dynamics. Initially, the drops have uniform density and a sharp surface. The chosen initial conditions include three values of density and a range of temperatures wide enough to study the phenomena of evaporation, fragmentation, and total vaporization in a unified fashion. The average density and temperature of central matter is measured periodically to obtain trajectories of the evolution in the ?,T plane. These trajectories indicate that the matter expands almost adiabatically until it reaches the region of adiabatic instabilities. Density inhomogeneities develop in this region, but the matter fragments only if the expansion continues to average densities of less than one-fourth the liquid density, otherwise it recondenses into a single blob. The recondensed matter and fragments have very crooked surfaces. If the temperature is high enough, the expanding matter does not enter the region of adiabatic instabilities and totally vaporizes. For initial densities of the order of equilibrium density, matter does not fragment or develop large inhomogeneities in the region enclosed by the isothermal and adiabatic spinodals. Thus it appears unlikely that fragmentation of small drops (nuclei) can be used to study the isothermal critical region of gas-liquid phase transition. A detailed tabulation of the energies and number of monomers, dimers, light, and heavy fragments emitted in each event is presented.

A. Vicentini; G. Jacucci; V. R. Pandharipande

1985-05-01T23:59:59.000Z

451

Hot Leg Piping Materials Issues  

SciTech Connect (OSTI)

With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP).

V. Munne

2006-07-19T23:59:59.000Z

452

Volume reduction of hot cell plastic wastes  

SciTech Connect (OSTI)

The disposal of radioactively-contaminated solid wastes has become a national crisis. In such circumstances, it is imperative that this waste be reduced to minimum volume and be packaged to prevent pollution of the environment. The majority of the solid waste generated at the hot cell under consideration is plastic lab ware. Cutting this waste into small pieces with a hot wire technique reduced the volume 66%. Melting the waste, although more time consuming, reduced the volume 90%. The hot wire technique can also be used to cut up damaged master slave manipulator boots, greatly reducing their disposal volume.

Dykes, F W; Henscheid, J P; Lewis, L C; Lundholm, C W; Nicklas, J H

1989-09-19T23:59:59.000Z

453

Graphene-Base Hot-Electron Transistor  

E-Print Network [OSTI]

B. H. ; Wang, K. L. "Vertical Graphene-Base Hot-Electronoperation in single-layer graphene ferroelectric memory",of Dirac Point Energy at the Graphene/Oxide Interface", Nano

Zeng, Caifu

2014-01-01T23:59:59.000Z

454

Extracting hot carriers from photoexcited semiconductor nanocrystals  

SciTech Connect (OSTI)

During this funding period, we made a significant breakthrough and established for the first time that hot electron transfer from photoexcited NCs to an electron acceptor was indeed possible.

Zhu, Xiaoyang [Columbia University Department of Chemistry

2013-09-12T23:59:59.000Z

455

Arnold Schwarzenegger WATER HEATERS AND HOT WATER  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor WATER HEATERS AND HOT WATER DISTRIBUTION SYSTEMS;#12;Appendices Appendix A. Multifamily Water Heating Construction Practices, Pricing and Availability Survey Report Appendix B. Multifamily Water Heating Controls Performance Field Report Appendix C. Pipe

456

Wall Drying in Hot and Humid Climates  

E-Print Network [OSTI]

Moisture and subsequent mold problems in buildings are a serious and increasing concern for the building industry. Moisture intrusion in buildings is especially pertinent in hot and humid climates because the climate conditions provide only limited...

Boone, K.; Weston, T.; Pascual, X.

2004-01-01T23:59:59.000Z

457

Plasmonic Energy Collection through Hot Carrier Extraction  

Science Journals Connector (OSTI)

(9) This fundamental hot-carrier mechanism has been used extensively to determine Schottky barrier heights, yet has not been considered for energy conversion due to low efficiencies. ... After hot carriers reach the interface, they either tunnel through or traverse over the barrier, ?b, to be collected by the other electrode depending on their energies relative to the barrier height. ... Nanoantennas are key optical components for light harvesting; photodiodes convert light into a current of electrons for photodetection. ...

Fuming Wang; Nicholas A. Melosh

2011-10-24T23:59:59.000Z

458

Comparison of the IOFFE neutral particle analyser with the Princeton analyser on the Mega Amp Spherical Tokamak  

Science Journals Connector (OSTI)

Charge exchange-neutral particle analysis (CX-NPA) will be applied for determining the ion temperature in the stellarator Wendelstein 7-X (W7-X), which is under construction, now, at the Max-Planck-Institute of Plasma Physics, Greifswald, Germany. Three ACORD-type analyser and one compact analyser (CNPA) are foreseen for the active NPA diagnostics at W7-X, i.e. NPA in combination with a 60keV neutral beam injector, thus enabling locally resolved CX-NPA measurements. For an intermediate period the CNPA is now installed on the Mega Amp Spherical Tokamak (MAST) in Culham Science Centre, UK. The arrangement of the CNPA on MAST and results of energy spectra of plasma ions in MAST are presented. They are in a good agreement with measurements by the Princeton particle analyser.

W. Schneider; M.R. Turnyanskiy; F.V. Chernyshev; V.I. Afanasyev; M. Kick; T. Richert

2008-01-01T23:59:59.000Z

459

Experimental evidence of charge-exchange recombination of highly ionized iron and titanium in Princeton large torus  

Science Journals Connector (OSTI)

The observed behavior of the emissivitives of boronlike Fe xxii, lithiumlike Fe xxiv and Ti xx, and the heliumlike Fe xxv ions in the Princeton large torus tokamak during high-power neutral (H0 or D0) beam heating is described. A substantial lowering of the dominant ionization state in the center of the discharge, while the electron temperature is rising, is attributed primarily to increased recombination rate of the ions through charge exchange with neutral hydrogen. This interpretation is supported by the different space and time behavior or the lithiumlike and boronlike ions of comparable ionization potentials, and by comparisons of neutral beam heating of the plasma with ion cyclotron resonance heating, which does not appreciably change the neutral hydrogen concentration. The observations are compared with approximate zero-dimensional model calculations, using experimental plasma conditions and estimated charge-exchange rates.

S. Suckewer; E. Hinnov; M. Bitter; R. Hulse; D. Post

1980-08-01T23:59:59.000Z

460

Canopy hot-spot as crop identifier  

SciTech Connect (OSTI)

Illuminating any reflective rough or structured surface by a directional light source results in an angular reflectance distribution that shows a narrow peak in the direction of retro-reflection. This is called the Heiligenschein or hot-spot of vegetation canopies and is caused by mutual shading of leaves. The angular intensity distribution of the hot-spot, its brightness and slope, are therefore indicators of the plant's geometry. We propose the use of hot-spot characteristics as crop identifiers in satellite remote sensing because the canopy hot-spot carries information about plant stand architecture that is more distinctive for different plant species than, for instance, their spectral reflectance characteristics. A simple three-dimensional Monte Carlo/ray tracing model and an analytic two-dimensional model are developed to estimate the angular distribution of the hot-spot as a function of the size of the plant leaves. The results show that the brightness-distribution and slope of the hot-spot change distinctively for different leaf sizes indicating a much more peaked maximum for the smaller leaves.

Gerstl, S.A.W.; Simmer, C.; Powers, B.J.

1986-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "mt princeton hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes  

SciTech Connect (OSTI)

While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

Henderson, H.; Wade, J.

2014-04-01T23:59:59.000Z

462

Deterministic Many-to-Many Hot Potato Routing Allan Borodin  

E-Print Network [OSTI]

Deterministic Many-to-Many Hot Potato Routing Allan Borodin Yuval Rabani Baruch Schieber Abstract We consider algorithms for many-to-many hot potato routing. In hot potato (deflection) routing in each time step. We consider a form of routing known as hot potato routing or deflection routing [1, 5

Borodin, Allan

463

ADVANCED HOT GAS FILTER DEVELOPMENT  

SciTech Connect (OSTI)

This report describes the fabrication and testing of continuous fiber ceramic composite (CFCC) based hot gas filters. The fabrication approach utilized a modified filament winding method that combined both continuous and chopped fibers into a novel microstructure. The work was divided into five primary tasks. In the first task, a preliminary set of compositions was fabricated in the form of open end tubes and characterized. The results of this task were used to identify the most promising compositions for sub-scale filter element fabrication and testing. In addition to laboratory measurements of permeability and strength, exposure testing in a coal combustion environment was performed to asses the thermo-chemical stability of the CFCC materials. Four candidate compositions were fabricated into sub-scale filter elements with integral flange and a closed end. Following the 250 hour exposure test in a circulating fluid bed combustor, the retained strength ranged from 70 t 145 percent of the as-fabricated strength. The post-test samples exhibited non-catastrophic failure behavior in contrast to the brittle failure exhibited by monolithic materials. Filter fabrication development continued in a filter improvement and cost reduction task that resulted in an improved fiber architecture, the production of a net shape flange, and an improved low cost bond. These modifications were incorporated into the process and used to fabricate 50 full-sized filter elements for testing in demonstration facilities in Karhula, Finland and at the Power Systems Development Facility (PSDF) in Wilsonville, AL. After 581 hours of testing in the Karhula facility, the elements retained approximately 87 percent of their as-fabricated strength. In addition, mechanical response testing at Virginia Tech provided a further demonstration of the high level of strain tolerance of the vacuum wound filter elements. Additional testing in the M. W. Kellogg unit at the PSDF has accumulated over 1800 hours of coal firing at temperatures of 760 C including a severe thermal upset that resulted in the failure of several monolithic oxide elements. No failures of any kind have been reported for the MTI CFCC elements in either of these test campaigns. Additional testing is planned at the M. W. Kellogg unit and Foster Wheeler unit at the PSDF over the next year in order to qualify for consideration for the Lakeland PCFB. Process scale-up issues have been identified and manufacturing plans are being evaluated to meet the needs of future demand.

RICHARD A. WAGNER

1998-09-04T23:59:59.000Z

464

GRR/Section 3-MT-b - State Land Access | Open Energy Information  

Open Energy Info (EERE)

b - State Land Access b - State Land Access < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-MT-b - State Land Access 03MTBStateLandAccess (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana State Land Board Regulations & Policies Montana Code 77-4-101 et seq Geothermal Resources Natural Resources and Conservation Rules Triggers None specified Click "Edit With Form" above to add content 03MTBStateLandAccess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative 3-MT-b.1 - Application for Lease, Right-of-Way, or Easement

465

GRR/Section 14-MT-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 14-MT-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-MT-c - Underground Injection Control Permit 14MTCUndergroundInjectionControlPermit.pdf Click to View Fullscreen Contact Agencies United States Environmental Protection Agency Triggers None specified Click "Edit With Form" above to add content 14MTCUndergroundInjectionControlPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

466

GRR/Section 11-MT-a - State Cultural Considerations | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 11-MT-a - State Cultural Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-MT-a - State Cultural Considerations 11MTAStateCulturalConsiderations (1).pdf Click to View Fullscreen Contact Agencies Montana State Historic Preservation Office Regulations & Policies MCA 22-3-421: Report of Discovery on State Land MCA 22-3-800: Human Skeletal Remains and Burial Site Protection Act Triggers None specified Click "Edit With Form" above to add content

467

GRR/Section 3-MT-c - Encroachment Overview | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 3-MT-c - Encroachment Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-MT-c - Encroachment Overview 03MTCEncroachmentOverview.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Triggers None specified Click "Edit With Form" above to add content 03MTCEncroachmentOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative There are several individual right of way or encroachment procedures in Montana. This overview is intended to lead the developer to the appropriate

468

GRR/Section 9-MT-a - Montana Environmental Policy Act | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 9-MT-a - Montana Environmental Policy Act < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 9-MT-a - Montana Environmental Policy Act 09MTAMontanaEnvironmentalPolicyAct.pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Montana Environmental Quality Council Regulations & Policies Montana Environmental Policy Act National Environmental Policy Act ARM 36-2-521 et seq ARM 17-4-607 General Requirements for MFWP Triggers None specified Click "Edit With Form" above to add content 09MTAMontanaEnvironmentalPolicyAct.pdf Error creating thumbnail: Page number not in range.

469

Aeromagnetic Survey At Mt St Helens Area (Towle, 1983) | Open Energy  

Open Energy Info (EERE)

Towle, 1983) Towle, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Mt St Helens Area (Towle, 1983) Exploration Activity Details Location Mt St Helens Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes The VLF method has proved useful in mapping the crater and central dome of Mount St. Helens. More detailed and extensive VLF investigations as well as other electrical and electromagnetic studies will be useful in determining the electrical structure of Mount St. Helens in more detail. Electrical and electromagnetic methods would be especially useful in determining the actual electrical conductivity of partial melt beneath the dome. The ability of these methods to determine the correlation of surface features

470

GRR/Section 11-MT-b - Human Remains Process | Open Energy Information  

Open Energy Info (EERE)

b - Human Remains Process b - Human Remains Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-MT-b - Human Remains Process 11MTBHumanRemainsProcess (1).pdf Click to View Fullscreen Contact Agencies Montana State Historic Preservation Office Regulations & Policies MCA 22-3-805: Discovery of Human Remains or Burial Material Triggers None specified Click "Edit With Form" above to add content 11MTBHumanRemainsProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative _ 11-MT-b.1 - Cease Operations and Contact County Coroner MCA 22-3-805: (1) A [developer] who by...construction, or other ground-disturbing

471

GRR/Section 17-MT-a - Aesthetic Resource Assessment | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 17-MT-a - Aesthetic Resource Assessment < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 17-MT-a - Aesthetic Resource Assessment 17MTAAestheticResourceAssessment.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana Department of Environmental Quality Montana Fish, Wildlife & Parks Regulations & Policies MCA 75-7-101 et seq The Natural Streambed and Land Preservation Act of 1975 MCA 87-5-501 et seq Montana Stream Protection

472

Sykes, M.T., I.C. Prentice, and W. Cramer. 1996. A bioclimatic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sykes, M.T., I.C. Prentice, and W. Cramer. 1996. A bioclimatic Sykes, M.T., I.C. Prentice, and W. Cramer. 1996. A bioclimatic model for the potential distributions of north European tree species under present and future climates. Journal of Biogeography 23(2):203- 233. A bioclimatic model based on physiological constraints to plant growth and regeneration is used here in an empirical way to describe the present natural distributions of northern Europe's major trees. Bioclimatic variables were computed from monthly means of temperature, precipitation and sunshine (%) interpolated to a 10' grid taking into account elevation. Minimum values of mean coldest-month temperature (T-c) and 'effective' growing degree days (GDD*) were fitted to species' range limits. GDD* is total annual growing degree days (GDD) minus GDD to budburst (GDD(o)). Each species was assigned to one of the

473

Hydrochemical features of a geothermal test well iin a volcanic caldera, MT. Pinatubo, Phillipines  

SciTech Connect (OSTI)

Mt. Pinatubo is one of several recent-age volcanoes along the west Luzon volcanic arc. A fumarole near the suminit emits gases with magmatic characteristics. Several thermal springs on the east and west flanks yield various fluid typos, including neutral chloride and bicarbonate. Three wellbores probed the Mt. Pinatubo caldera from elevations of +1230 through -1600 mRSL. Trajectories may be described as: central, crossing a boundary wall from the inside, and skirting a wall [probably] on the inside. Brine discharges indicate severe evapo-concentration effects accompanied by other phenomena. Severity of evapo-concentration indicates low fluid mobility near the wellbores. Large variations for ratios of component concentrations were observed, indicating negligible natural circulation (mixing). Implications about fluid movements and heat transfer processes are explored. Three components of steam can be quantified and all are significant: separate entry, adiabatic boiling, and boiling by rock heat.

Michels, D.E.; Clemente, V.C.; Ramos, M.N.

1991-01-01T23:59:59.000Z

474

Experiments with the hot list strategy  

SciTech Connect (OSTI)

Experimentation strongly suggests that, for attacking deep questions and hard problems with the assistance of an automated reasoning program, the more effective paradigms rely on the retention of deduced information. A significant obstacle ordinarily presented by such a paradigm is the deduction and retention of one or more needed conclusions whose complexity sharply delays their consideration. To mitigate the severity of the cited obstacle, the author formulates and features in this report the hot list strategy. The hot list strategy asks the researcher to choose, usually from among the input statements, one or more clauses that are conjectured to play a key role for assignment completion. The chosen clauses - conjectured to merit revisiting, again and again - are placed in an input list of clauses, called the hot list. When an automated reasoning program has decided to retain a new conclusion C - before any other clause is chosen to initiate conclusion drawing - the presence of a nonempty hot list (with an appropriate assignment of the input parameter known as heat) causes each inference rule in use to be applied to C together with the appropriate number of members of the hot list. Members of the hot list are used to complete applications of inference rules and not to initiate applications. The use of the hot list strategy thus enables an automated reasoning program to briefly consider a newly retained conclusion whose complexity would otherwise prevent its use for perhaps many CPU-hours. To give evidence of the value of the strategy, the author focuses on four contexts: (1) dramatically reducing the CPU time required to reach a desired goal; (2) finding a proof of a theorem that had previously resisted all but the more inventive automated attempts; (3) discovering a proof that is more elegant than previously known; and (4) answering a question that had steadfastly eluded researchers relying on an automated reasoning program.

Wos, L.

1997-10-01T23:59:59.000Z

475

GRR/Section 19-MT-a - Water Access & Water Rights Issues | Open Energy  

Open Energy Info (EERE)

GRR/Section 19-MT-a - Water Access & Water Rights Issues GRR/Section 19-MT-a - Water Access & Water Rights Issues < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-MT-a - Water Access & Water Rights Issues 19MTAWaterAccessWaterRightsIssues (2).pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Regulations & Policies MCA Title 85 Water Use MCA 77-4-108 Water Rights in Connection with Geothermal Development MCA 85-2-307 MCA 85-2-308 MCA 85-2-309 MCA 85-2-310 MCA 85-2-311 MCA 85-2-313 MCA 85-2-315 Triggers None specified Click "Edit With Form" above to add content 19MTAWaterAccessWaterRightsIssues (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

476

Decontamination of Hot Cells and Hot Pipe Tunnel at NASA's Plum Brook Reactor Facility  

SciTech Connect (OSTI)

The large scale decontamination of the concrete Hot Cells and Hot Pipe Tunnel at NASA's Plum Brook Reactor Facility demonstrates that novel management and innovative methods are crucial to ensuring that the successful remediation of the most contaminated facilities can be achieved with minimal risk to the project stakeholders. (authors)

Anderson, M.G.; Halishak, W.F. [MOTA Corporation, West Columbia, SC (United States)

2008-07-01T23:59:59.000Z

477

Hot Water DJ: Saving Energy by Pre-mixing Hot Water Md Anindya Prodhan  

E-Print Network [OSTI]

Hot Water DJ: Saving Energy by Pre-mixing Hot Water Md Anindya Prodhan Department of Computer University of Virginia whitehouse@virginia.edu Abstract After space heating and cooling, water heating consumption. Current water heating systems waste up to 20% of their energy due to poor insulation in pipes

Whitehouse, Kamin

478

Extracting hot carriers from photoexcited semiconductor nanocrystals  

SciTech Connect (OSTI)

This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called Shockley-Queisser limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates hot charge carriers that quickly cool to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a phonon bottleneck wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

Zhu, Xiaoyang

2014-12-10T23:59:59.000Z

479

Sequence Stratigraphy and Detrital Zircon Geochronology of Middle-Late Ordovician Mt. Wilson Quartzite, British Columbia, Canada  

E-Print Network [OSTI]

................................................................................................... viii LIST OF TABLES .................................................................................................... ix 1. INTRODUCTION ............................................................................................... 1 1.1... ............................................................................................................ 9 3.1 Mt. Wilson Measured Sections ............................................................ 9 3.1.1 Wilcox Pass Measured Section ................................................... 9 3.1.2 Morberley Mountain Measured Section...

Hutto, Andrew Paul

2012-07-16T23:59:59.000Z

480

RECIPIENT:Princeton Power Systems STATE: NJ PROJECT Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

Princeton Power Systems Princeton Power Systems STATE: NJ PROJECT Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage TITLE: Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number cm Number DE-FOA-0000293 DE-EE0003640 GFO-000364~001 GOO Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the foUowing determination: CX, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited to, ~terature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

Note: This page contains sample records for the topic "mt princeton hot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Hot Pot Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Pot Geothermal Area Hot Pot Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Pot Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.922,"lon":-117.108,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

482

Hot Pot Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Hot Pot Geothermal Project Hot Pot Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Hot Pot Geothermal Project Project Location Information Coordinates 40.996944444444°, -117.24805555556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.996944444444,"lon":-117.24805555556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

483

University of Colorado Hot Water Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hot water system Brief Contest Report Hot water system Brief Contest Report Recognizing that the sun is an abundant source of clean energy that reaches the earth at an intensity of up to 1000 Watts/m 2 , the University of Colorado will be showcasing top-of-the-line technology in which solar radiation is converted into heat for the purposes of heating the home and providing domestic hot water. Solar Thermal System - Basics Colorado's 2005 Solar Decathlon team has chosen to harness the sun's thermal energy with 4 arrays of 20 Mazdon evacuated tube collectors manufactured by Thermomax, as shown in Figure 1 below. These collectors have incredibly high efficiencies - about 60% over the course of an entire day. In addition, the evacuated tube collectors resist internal condensation and corrosion more effectively than their counterparts

484

Just Hot Resources Consulting | Open Energy Information  

Open Energy Info (EERE)

Hot Resources Consulting Hot Resources Consulting Jump to: navigation, search Name Just Hot Resources Consulting Place Windsor, California Zip 95492 Sector Geothermal energy Product A California-based consulting firm specializing in geothermal drilling project management. Coordinates 43.21638°, -89.340849° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.21638,"lon":-89.340849,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

485

Hot gas filter and system assembly  

DOE Patents [OSTI]

A filter element for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system.

Lippert, Thomas Edwin (Murrysville, PA); Palmer, Kathryn Miles (Monroeville, PA); Bruck, Gerald Joseph (Murrysville, PA); Alvin, Mary Anne (Pittsburgh, PA); Smeltzer, Eugene E. (Export, PA); Bachovchin, Dennis Michael (Murrysville, PA)

1999-01-01T23:59:59.000Z

486

Cooling of hot electrons in amorphous silicon  

SciTech Connect (OSTI)

Measurements of the cooling rate of hot carriers in amorphous silicon are made with a two-pump, one-probe technique. The experiment is simulated with a rate-equation model describing the energy transfer between a population of hot carriers and the lattice. An energy transfer rate proportional to the temperature difference is found to be consistent with the experimental data while an energy transfer independent of the temperature difference is not. This contrasts with the situation in crystalline silicon. The measured cooling rates are sufficient to explain the difficulty in observing avalanche effects in amorphous silicon.

Vanderhaghen, R.; Hulin, D.; Cuzeau, S.; White, J.O.

1997-07-01T23:59:59.000Z

487

PRINCETON PLASMA PHYSICS LABORATORY PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY  

E-Print Network [OSTI]

silicon prototype window, coated with 500 nm thin- #12;Ms-270102 3 film silicon nitride (Si3N4), has been Development of a Silicon Based Electron Beam Transmission Window for Use in a KrF Excimer Laser System by C transmission window for use in a KrF excimer laser system C. A. Gentilea) , H. M. Fana) , J. W. Hartfielda) , R

488

Magnetotellurics At Roosevelt Hot Springs Geothermal Area (Ward...  

Open Energy Info (EERE)

MT data. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

489

Hot Pot Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Pot Geothermal Area Hot Pot Geothermal Area (Redirected from Hot Pot Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Pot Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.922,"lon":-117.108,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

490

Six Hot Topics in Planetary Astronomy  

E-Print Network [OSTI]

Six hot topics in modern planetary astronomy are described: 1) lightcurves and densities of small bodies 2) colors of Kuiper belt objects and the distribution of the ultrared matter 3) spectroscopy and the crystallinity of ice in the outer Solar system 4) irregular satellites of the giant planets 5) the Main Belt Comets and 6) comets and meteor stream parents.

David Jewitt

2008-11-14T23:59:59.000Z

491

Storage capacity in hot dry rock reservoirs  

DOE Patents [OSTI]

A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

Brown, Donald W. (Los Alamos, NM)

1997-01-01T23:59:59.000Z

492

How hot is radiation? Christopher Essexa)  

E-Print Network [OSTI]

. Thus radiation is a natural context in which to introduce nonequilibrium temperature. A properly as they exchange a heat flux JQ(12). Subsystem temperatures occur naturally in expres- sions for entropy productionHow hot is radiation? Christopher Essexa) Department of Applied Mathematics, University of Western

Berry, R. Stephen

493

Planetary science: Venusian hot flow anomalies  

Science Journals Connector (OSTI)

... on 22 March 2008, a space-weather event known as a hot flow anomaly (HFA). Such events occur when electric fields associated with the Sun's solar wind create ... the planet lacks a magnetic field, meaning that the bow shock, and so the HFA, would be much closer in. ...

2012-03-14T23:59:59.000Z

494

Record geothermal well drilled in hot granite  

Science Journals Connector (OSTI)

Record geothermal well drilled in hot granite ... Researchers there have completed the second of two of the deepest and hottest geothermal wells ever drilled. ... It may become the energy source for a small electrical generating power station serving nearby communities in New Mexico. ...

1981-09-07T23:59:59.000Z

495

Hot-dry-rock geothermal resource 1980  

SciTech Connect (OSTI)

The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

Heiken, G.; Goff, F.; Cremer, G. (ed.)

1982-04-01T23:59:59.000Z

496

Determination of Fe charge-state distributions in the Princeton large torus by Bragg crystal x-ray spectroscopy  

Science Journals Connector (OSTI)

A curved-crystal Bragg x-ray spectrometer has been used to measure K? or 1s-2p radiation from highly stripped Fexviii-Fexxv impurity ions in the Princeton large torus tokamak. The spectrometer has sufficient energy resolution (?4 eV at 6400 eV) to distinguish between the different ionization states of iron by measuring the energy shift of the K? x rays. The measured wavelengths agree well with theory and with spectra from solar flares and from laser-produced plasmas. The distribution of Fe charge states in the center of the discharge has been inferred from a comparison of the measured x-ray spectrum with theory. The shape of the spectrum depends strongly on electron temperature (Te) in the range Te=800-1500 eV. Within the factor of 2 uncertainty in L-shell ionization cross sections, measured intensities agree with theory, which is based on coronal equilibrium, indicating that the ion lifetime in the center of the plasma is approximately equal to or greater than the equilibration time.

K. W. Hill; S. von Goeler; M. Bitter; L. Campbell; R. D. Cowan; B. Fraenkel; A. Greenberger; R. Horton; J. Hovey; W. Roney; N. R. Sauthoff; W. Stodiek

1979-04-01T23:59:59.000Z

497

Federal Energy Management Program: Solar Hot Water Resources and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Hot Water Solar Hot Water Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Solar Hot Water Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Solar Hot Water Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Solar Hot Water Resources and Technologies on Google Bookmark Federal Energy Management Program: Solar Hot Water Resources and Technologies on Delicious Rank Federal Energy Management Program: Solar Hot Water Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Solar Hot Water Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

498

Federal Energy Management Program: Covered Product Category: Hot Food  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hot Food Holding Cabinets to someone by E-mail Hot Food Holding Cabinets to someone by E-mail Share Federal Energy Management Program: Covered Product Category: Hot Food Holding Cabinets on Facebook Tweet about Federal Energy Management Program: Covered Product Category: Hot Food Holding Cabinets on Twitter Bookmark Federal Energy Management Program: Covered Product Category: Hot Food Holding Cabinets on Google Bookmark Federal Energy Management Program: Covered Product Category: Hot Food Holding Cabinets on Delicious Rank Federal Energy Management Program: Covered Product Category: Hot Food Holding Cabinets on Digg Find More places to share Federal Energy Management Program: Covered Product Category: Hot Food Holding Cabinets on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories

499

Microwave vs. Electric Kettle: Which Appliance Is in Hot Water...  

Energy Savers [EERE]

Microwave vs. Electric Kettle: Which Appliance Is in Hot Water in EnergyFaceoff Round 4? Microwave vs. Electric Kettle: Which Appliance Is in Hot Water in EnergyFaceoff Round 4?...

500

DOE ZERH Webinar: Efficient Hot Water Distribution II: How to...  

Energy Savers [EERE]

DOE ZERH Webinar: Efficient Hot Water Distribution II: How to Get it Right DOE ZERH Webinar: Efficient Hot Water Distribution II: How to Get it Right Watch the video or view the...