National Library of Energy BETA

Sample records for mt ni pd

  1. Ni/Pd core/shell nanoparticles supported on graphene as a highly...

    Office of Scientific and Technical Information (OSTI)

    NiPd coreshell nanoparticles supported on graphene as a highly active and reusable ... Citation Details In-Document Search Title: NiPd coreshell nanoparticles supported on ...

  2. Electronic and structural influence of Ni by Pd substitution on the hydrogenation properties of TiNi

    SciTech Connect (OSTI)

    Emami, Hoda; Souques, Raphaeel; Crivello, Jean-Claude; Cuevas, Fermin

    2013-02-15

    In Ti (Ni,Pd) compounds, the hydrogen capacity and the stability of their hydrides decreases when Ni is partially substituted by larger in size Pd atoms. To understand this peculiar behaviour, the crystal structure of TiNi{sub 1-x}Pd{sub x}D{sub y} (x=0.1, 0.3 and 0.5) deuterides and the stability of TiNi{sub 1-x}Pd{sub x} (0{<=}x{<=}0.5) intermetallics and their hydrides have been investigated by both neutron diffraction experiments and Density Functional Theory (DFT) calculations. Neutron diffraction shows that at x=0.1 and 0.3, deuterium absorption induces tetragonal distortion in intermetallics sublattice whereas at x=0.5 the cubic symmetry is preserved. The structural properties and the heat of formation of TiNi{sub 1-x}Pd{sub x} (0{<=}x{<=}0.5) intermetallics and their hydrides have been determined by DFT. These results show that Pd substitution increases the stability of the intermetallics and decreases the stability of the hydrides, which confirms the rule of reverse stability. - Graphical abstract: Crystal structure of Ti(Ni,Pd)Hy hydrides in the I4/mmm space group. Highlights: Black-Right-Pointing-Pointer Neutron Diffraction and DFT calculations have been done on TiNi{sub 1-x}Pd{sub x}H{sub y} compounds. Black-Right-Pointing-Pointer Electronic effect of Pd substitution governs the hydrogenation properties in TiNi. Black-Right-Pointing-Pointer The rule of reverse stability in intermetallics/hydrides is observed with Pd substitution. Black-Right-Pointing-Pointer The hydrogen atoms in the I4/mmm structure prefer to occupy the 16n site.

  3. Effects of aging on the characteristics of TiNiPd shape memory alloy thin films

    SciTech Connect (OSTI)

    Zhang Congchun

    2008-07-15

    TiNiPd thin films have been deposited on glass substrate using R.F. magnetron sputtering. Effects of annealing and aging on the microstructure, phase transformation behaviors and shape memory effects of these thin films have been studied by X-ray diffractometry, differential scanning calorimeter, tensile tests and internal friction characteristics. The TiNiPd thin films annealed at 750 deg. C exhibit uniform martensite/austenite transformations and shape memory effect. Aging at 450 deg. C for 1 h improved the uniformity of transformations and shape memory effect. Long time aging decreased transformation temperatures and increased the brittleness of TiNiPd thin films.

  4. Characterizations Of Precipitate Phases In a Ti-Ni-Pd Alloy

    SciTech Connect (OSTI)

    Yang, Fan; Kovarik, Libor; Phillips, Patrick J.; Noebe, Ronald D.; Mills, M. J.

    2012-06-01

    Precipitates in the Ti46Ni37.5Pd16.5 alloy were investigated by electron diffraction and high-resolution scanning transmission electron microscopy. The phase content and stability were determined at several different temperatures and times. Aging at 400 C for an hour results in a new phase, which is consumed by P-phase at longer aging time. At 450 C, the new phase appears first, and then coexists with P-phase. At 500 C, the entire alloy transformed into the new phase. At 550 C, Ti3(Ni,Pd)4 phase begins to form.

  5. Bulk amorphous Pd{endash}Ni{endash}Fe{endash}P alloys: Preparation and characterization

    SciTech Connect (OSTI)

    Shen, T.D.; He, Y.; Schwarz, R.B. [Materials Science and Technology Division, MS K765, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1999-05-01

    Bulk amorphous alloys of Pd{sub x}Ni{sub y}Fe{sub 80{minus}x{minus}y}P{sub 20} (25{le}x{le}60, 20{le}y{le}55, x+y{ge}60) were prepared by a flux-melting and water-quenching method. Seven-mm diameter glassy rods of Pd{sub 40}Ni{sub 40{minus}x}Fe{sub x}P{sub 20} (0{le}x{le}20) were studied in greater detail. For these alloys, the difference between the crystallization and glass transition temperatures ranges from 102 K for x=0 to 53 K for x=20. In this composition range, the reduced glass transition temperature, T{sub rg}, ranges from 0.66 to 0.57. The change in density upon crystallization ranges from 0.24{plus_minus}0.04{percent} for x=0 to 1.33{plus_minus}0.24{percent} for x=10. The partial molar volume of Fe in amorphous Pd{sub 40}Ni{sub 40{minus}x}Fe{sub x}P{sub 20} alloys is significantly larger than the molar volume of (metastable) fcc Fe. This, as well as a comparison with the molar volumes of crystalline compounds, suggests chemically selective Fe{endash}Pd bonding in these glasses. {copyright} {ital 1999 Materials Research Society.}

  6. Bulk glass formation in the Pd{endash}Ni{endash}P system

    SciTech Connect (OSTI)

    He, Y.; Schwarz, R.B.; Archuleta, J.I. [Center for Materials Science, MS K-765, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Center for Materials Science, MS K-765, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1996-09-01

    Bulk amorphous Pd{endash}Ni{endash}P rods with diameters ranging from 10 to 25 mm were prepared by a fluxing technique over a wide composition range. For most bulk glassy alloys studied, the difference between the glass transition temperature and the crystallization temperature, {ital T}{sub {ital x}}{minus}{ital T}{sub {ital g}}, is larger than 90 K. Of all the alloy compositions examined, Pd{sub 40}Ni{sub 40}P{sub 20} has the highest glass formability, and 300-g bulk amorphous cylinders, 25 mm in diameter and 50 mm in length, were easily and repeatedly formed. This size, however, is not an upper limit. The elastic properties of these bulk amorphous alloys were determined by a resonant ultrasound spectroscopy technique.

  7. Synthesis and characterization of NiFe{sub 2}O{sub 4}Pd magnetically recyclable catalyst for hydrogenation reaction

    SciTech Connect (OSTI)

    Karao?lu, E.; zel, U.; Caner, C.; Baykal, A.; Summak, M.M.; Szeri, H.

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ? Novel superparamagnetic NiFe{sub 2}O{sub 4}Pd magnetically recyclable catalyst was fabricated through co-precipitation. ? It could be reused several times without significant loss in catalytic activity for hydrogenation reaction. ? No further modification of the NiFe{sub 2}O{sub 4}Pd magnetically recyclable catalyst is necessary for utilization as catalyst. -- Abstract: Herein we report the fabrication and characterization magnetically recyclable catalysts of NiFe{sub 2}O{sub 4}Pd nanocomposite as highly effective catalysts for reduction reactions in liquid phase. The reduction Pd{sup 2+} was accomplished with polyethylene glycol 400 (PEG-400) instead of sodium borohydride (NaBH{sub 4}) and NiFe{sub 2}O{sub 4} nanoparticles was prepared by sonochemically using FeCI{sub 3}6H{sub 2}O and NiCl{sub 2}. The chemical characterization of the product was done with X-ray diffractometry, Infrared spectroscopy, transmission electron microscopy, UVVis spectroscopy, thermal gravimetry and inductively coupled plasma. Thus formed NiFe{sub 2}O{sub 4}Pd MRCs showed a very high activity in reduction reactions of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase. It was found out that the catalytic activity of NiFe{sub 2}O{sub 4}Pd MRCs on the reduction of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase are between 9993% and 9893%, respectively. Magnetic character of this system allowed recovery and multiple use without significant loss of its catalytic activity. It is found that NiFe{sub 2}O{sub 4}Pd MRCs showed very efficient catalytic activity and multiple usability.

  8. Effect of electronic structures on catalytic properties of CuNi alloy and Pd in MeOH-related reactions

    SciTech Connect (OSTI)

    Tsai, An-Pang; Kimura, Tomofumi; Suzuki, Yukinori; Kameoka, Satoshi; Shimoda, Masahiko; Ishii, Yasushi

    2013-04-14

    We investigated the catalytic properties of a CuNi solid solution and Pd for methanol-related reactions and associated valence electronic structures. Calculations and X-ray photoelectron spectroscopy measurements revealed that the CuNi alloy has a similar valence electronic structure to Pd and hence they exhibited similar CO selectivities in steam reforming of methanol and decomposition of methanol. Samples prepared by various processes were found to have similar CO selectivities. We conjecture that alloying of Cu and Ni dramatically alters the valence electronic structures, making it similar to that of Pd so that the alloy exhibits similar catalytic properties to Pd. First-principles slab calculations of surface electronic structures support this conjecture.

  9. Quantum valley Hall states and topological transitions in Pt(Ni, Pd)-decorated silicene: A first-principles study

    SciTech Connect (OSTI)

    Zhao, Bao; Zhang, Jiayong; Wang, Yicheng; Yang, Zhongqin

    2014-12-28

    The electronic states and topological behaviors of Pt(Ni, Pd)-decorated silicene are investigated by using an ab-initio method. All the three kinds of the adatoms prefer hollow sites of the silicene, guaranteeing the Dirac cones unbroken. The Pt(Ni, Pd)-decorated silicene systems all present quantum valley Hall (QVH) states with the gap opened exactly at the Fermi level. The gaps of the QVH states can be increased substantially by applying a positive electric field. Very fascinating phase transitions from QVH to quantum spin Hall (QSH) and then to QVH again are achieved in the Pt/Ni-decorated silicene when a negative electric field is applied. The QSH state in the Pd case with a negative electric field is, however, quenched because of relatively larger Rashba spin-orbit coupling (SOC) than the intrinsic SOC in the system. Our findings may be useful for the applications of silicene-based devices in valleytronics and spintronics.

  10. Thermally enhanced perpendicular magnetic anisotropy behaviors of ultrathin [Co/Pd]{sub n} multilayers via NiO{sub x} capping layer

    SciTech Connect (OSTI)

    Chung, Woo Seong; Lee, Ja Bin; An, Gwang Guk; Yang, Seung Mo; Kim, Jae Hong; Hong, Jin Pyo

    2015-06-01

    We report the enhanced perpendicular magnetic anisotropy (PMA) features of ultrathin [Co/Pd]{sub 3} multilayers (MLs) employing a NiO{sub x} insertion layer at high annealing temperatures. Thermally enhanced PMA in [Co/Pd]{sub 3}/NiO{sub x} (capping layer) MLs were achieved at a specific capping layer thickness, while no PMA responses were observed for a NiO{sub x} (buffer layer)/[Co/Pd]{sub 3} ML, regardless of NiO{sub x} thickness. X-ray diffraction observations, including rocking curves, identified the relatively different crystalline characteristics of the NiO{sub x} capping and buffer layers. Origin of the enhanced PMAs of [Co/Pd]{sub 3} MLs containing a NiO{sub x} capping layer is described based on the NiO{sub x} capping effect possibly providing additional Co/Oxide i-PMA under high-temperature annealing.

  11. Diversity of Functionalized Germanium Zintl Clusters: Syntheses and Theoretical Studies of [Ge9PdPPh3]3- and [Ni@(Ge9PdPPh3)]2-

    SciTech Connect (OSTI)

    Sun, Zhong-Ming; Zhao, Ya-Fan; Li, Jun; Wang, Lai S.

    2009-09-10

    A new Zintl cluster [Ge9PdPPh3]3- has been isolated as (2,2,2-crypt)K+ salt through the reaction of K4Ge9 and Pd[PPh3]4 in ethylenediamine solutions and characterized via single-crystal X-ray crystallography. The as-prepared bimetallic [Ge9PdPPh3]3- cluster could successfully trap a nickel atom to form a trimetallic cluster [Ni@(Ge9PdPPh3)]2-. The coordination of Ge94- by PdPPh3 induces a one-electron oxidation and encapsulation of the Ni atom into the Ge93- cage leads to a further one-electron oxidation and a geometry transformation from C4v (nido) to C3v (closo).

  12. Effective core potential investigation of Ni, Pd, and Pt and their monohydrides

    SciTech Connect (OSTI)

    Rohlfing, C.M.; Hay, P.J.; Martin, R.L.

    1986-08-01

    The nickel, palladium, and platinum atoms and their monohydrides are investigated using effective core potentials (ECP's) recently introduced by Hay and Wadt (J. Chem. Phys. 82, 270, 299 (1985)). The palladium and platinum ECP's include relativistic effects. Two types of ECP's, which differ in their definition of the core region, are used in conjunction with large valence basis sets including f-italic functions. Electron correlation is incorporated by Mo-dash-barller--Plesset perturbation theory through fourth order. The results demonstrate the success of the ECP approximation: they are similar in quality to those of all-electron studies and at the same time are achieved at a reduced computational cost. Total correlation energies obtained with both types of ECP's are compared, and are found to be very sensitive to details of the basis set. Correlation effects are treated more consistently by the ECP's which include the outermost core orbitals in the valence region. The relative ordering of molecular states is calculated to be /sup 2/..delta..NiH, /sup 2/..sigma../sup +/ < /sup 2/..delta.. < /sup 2/Pi for PdH, and /sup 2/..delta..roughly-equal/sup 2/..sigma../sup +/

  13. Phase stabilities of pyrite-related MTCh compounds (M=Ni, Pd, Pt; T=Si, Ge, Sn, Pb; Ch=S, Se, Te): A systematic DFT study

    SciTech Connect (OSTI)

    Bachhuber, Frederik; Krach, Alexander; Furtner, Andrea; Söhnel, Tilo; Peter, Philipp; Rothballer, Jan; Weihrich, Richard

    2015-03-15

    Pyrite-type and related systems appear for a wide range of binary and ternary combinations of transition metals and main group elements that form Zintl type dumbbell anion units. Those representatives with 20 valence electrons exhibit an extraordinary structural flexibility and interesting properties as low-gap semiconductors or thermoelectric and electrode materials. This work is devoted to the systematic exploration of novel compounds within the class of MTCh compounds (M=Ni, Pd, Pt; T=Si, Ge, Sn, Pb; Ch=S, Se, Te) by means of density functional calculations. Their preferred structures are predicted from an extended scheme of colored pyrites and marcasites. To determine their stabilities, competing binary MT{sub 2} and MCh{sub 2} boundary phases are taken into account as well as ternary M{sub 3}T{sub 2}Ch{sub 2} and M{sub 2}T{sub 3}Ch{sub 3} systems. Recently established stability diagrams are presented to account for MTCh ordering phenomena with a focus on a not-yet-reported ordering variant of the NiAs{sub 2} type. Due to the good agreement with experimental data available for several PtTCh systems, the predictions for the residual systems are considered sufficiently accurate. - Graphical abstract: Compositional and structural stability of MTCh compounds is investigated from first principle calculations. A conceptional approach is presented to study and predict novel stable and metastable compounds and structures of low gap semiconductors with TCh dumbbell units that are isoelectronic and structurally related to pyrite (FeS{sub 2}). - Highlights: • Study of compositional stability of MTCh vs. M{sub 3}T{sub 2}Ch{sub 2} and M{sub 2}T{sub 3}Ch{sub 3} compounds. • Study of structural stability of known and novel MTCh compounds. • Prediction of novel stable and metastable structures and compounds isoelectronic to pyrite, FeS{sub 2}.

  14. Crystal structure and hydrogenation properties of pseudo-binary Mg{sub 6}Pd{sub 0.5}Ni{sub 0.5} complex metallic alloy

    SciTech Connect (OSTI)

    Cuevas, F.; Latroche, M.

    2009-10-15

    The crystal structure of the Ni-substituted Mg{sub 6.10(2)}Pd{sub 0.52(2)}Ni{sub 0.41(2)} complex metallic alloy has been determined by X-ray and neutron powder diffraction. The reaction of this compound at 573 K towards deuterium absorption for pressures up to 23 bar has also been studied. The crystal structure of Mg{sub 6.10(2)}Pd{sub 0.52(2)}Ni{sub 0.41(2)} compound was determined in the light of Samson's [Acta Crystallogr. B 28 (1972) 936) and Makongo's (Philos. Mag. 86 (2006) 427] models for the binary Mg{sub 6}Pd compound. It crystallizes in F4-bar3m space group with lattice parameter 20.13331(7) A. The refined unit-cell composition is Mg{sub 342(1)}Pd{sub 29(1)}Ni{sub 23(1)} with Z=56. Nickel by palladium substitution is not fully random. Nickel atoms preferentially locate on Pd sites with low coordination number due to steric effects. Deuterium uptake is 9.6 D/f.u. under the given conditions of pressure and temperature. Upon absorption, the intermetallic compound disproportionates into MgD{sub 2}, Mg{sub 5}Pd{sub 2} and Mg{sub 2}NiD{sub 4} phases. The Mg{sub 2}NiD{sub 4} phase is observed to crystallize in the orthorhombic LT2 modification for which an averaged crystal structure in the Pcc2 space group is proposed. - Graphical abstract: Coordination polyhedron around site Mg14 in pseudobinary Mg{sub 6}(Pd,Ni) compounds.

  15. Absolute timing measurements of the Ni-like Pd and Sn soft-x-ray lasers

    SciTech Connect (OSTI)

    Staub, F.; Braud, M.; Balmer, J.E.; Nilsen, J.

    2005-10-15

    The absolute time of emission of the x-ray laser output with respect to the arrival of a 100-ps pump pulse has been measured with the aid of a calibrated timing fiducial. The results show the x-ray laser to appear up to 60 ps (80 ps) before the peak of the pump pulse in the case of the Sn (Pd) x-ray laser, which is in good agreement with simulations obtained from the LASNEX and CRETIN codes. The pulse duration was found to be {approx}45 ps for both the Sn and the Pd x-ray lasers.

  16. Paramagnetism, superparamagnetism, and spin-glass behavior in bulk amorphous Pd{endash}Ni{endash}Fe{endash}P alloys

    SciTech Connect (OSTI)

    Shen, T.D.; Schwarz, R.B.; Thompson, J.D. [Materials Science and Technology Division, Mail Stop G755, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Materials Science and Technology Division, Mail Stop G755, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1999-04-01

    We have investigated the magnetic properties of bulk amorphous Pd{sub 40}Ni{sub 40{minus}x}Fe{sub x}P{sub 20} (x=0{endash}17.5) alloys. For Pd{sub 40}Ni{sub 40}P{sub 20} (x=0), the magnetic susceptibility consists of temperature-independent and Curie{endash}Weiss-type terms. Alloys with x{ge}5 are paramagnetic at high temperatures. With decreasing temperature, the amorphous alloys become superparamagnetic. At even lower temperatures, and under a weak applied magnetic field, these alloys are spin glasses, as evidenced by static and dynamic magnetic measurements. The spin-freezing temperature increases with increasing iron content and this is attributed to the role of the Ruderman{endash}Kittel{endash}Kasuya{endash}Yosida interaction in creating the spin-glass state. The occurrence of a reentrant spin-glass behavior on cooling (superparamagnetism-to-ferromagnetism-to-spin-glass transition) is also observed for x=17.5 at a field {ge}50 Oe. An unexpected result is that the ferromagnetic state in the present bulk metallic glasses is {ital field induced}. Evidence for the field-induced ferromagnetic-like order is obtained from (a) straight regions in the susceptibility versus temperature curves measured at various fields, (b) an Arrott plot, and (c) time-independent magnetization. With increasing applied field, the spin-freezing temperature decreases and the Curie temperature increases, broadening the temperature range of the field-induced ferromagnetic-like state. The temporal decay of the thermoremanent magnetization in the amorphous alloy with x=17.5 is slower than that in typical crystalline spin glasses. The spin-freezing temperature of the amorphous alloy with x=17.5 decreases approximately logarithmically with applied field, which differs from the prediction of N{acute e}el{close_quote}s model for spin glasses. {copyright} {ital 1999 American Institute of Physics.}

  17. Suppression of the spin pumping in Pd/Ni{sub 81}Fe{sub 19} bilayers with nano-oxide layer

    SciTech Connect (OSTI)

    Kim, Duck-Ho; Kim, Hong-Hyoun; You, Chun-Yeol

    2011-08-15

    We demonstrate that the spin pumping effect can be effectively suppressed with a nano-oxide layer. Spin pumping effect manifests itself by an enhancement of the Gilbert damping parameter in normal metal/ferromagnetic hetero-structures, while many spintronics devices prefer smaller damping parameter. Since the spin pumping effect is directly related with the spin dependent interface conductance, we can modify the spin pumping by altering the interface conductance with the nano-oxide layer. We prepared series of Pd/Ni{sub 81}Fe{sub 19} bilayers with different pausing time between Pd and Ni{sub 81}Fe{sub 19} depositions in order to control the interface conductance. The Gilbert damping parameters are determined from the line-width measurements in the ferromagnetic resonance spectra for each pausing time sample. They are 0.0490, 0.0296, 0.0278, and 0.0251 for 0, 6, 30, and 60 s pausing time, respectively. We find that the damping parameter of Pd/Ni{sub 81}Fe{sub 19} is almost recovered to one of the Cu/Ni{sub 81}Fe{sub 19} bilayer with 60 s pausing time, while the static magnetic properties are not noticeably changed.

  18. Microstructure and transformation behavior of Ni{sub 24.7}Ti{sub 50.3}Pd{sub 25} high temperature shape-memory alloy with Sc micro-addition

    SciTech Connect (OSTI)

    Ramaiah, K.V.; Saikrishna, C.N.; Gouthama; Bhaumik, S.K.

    2015-08-15

    NiTiPd shape-memory alloys (SMAs) are potential functional materials for use as solid-state actuators in the temperature range 100–250 °C. The present study investigates the effect of 1.0 at.% Sc micro-addition to Ni{sub 24.7}Ti{sub 50.3}Pd{sub 25} alloy, Sc replacing either Ti or Ni. Results show that all the three alloys studied have stable transformation behavior on stress-free thermal cycling and hence, are suitable for cyclic actuation applications. However, the addition of Sc to NiTiPd alloy leads to decrease of transformation temperatures, the magnitude of decrease being greater for the alloy with Sc replacing Ni. The martensite finish (M{sub f}) temperature of 181 °C for the NiTiPd alloy decreased to 139 °C for Sc replacing Ti and 83 °C for Sc replacing Ni. Also, the indentation modulus of NiTiPdSc (Sc replacing Ni) alloy is found to be significantly low compared to the other alloys. Analysis indicates that the observed differences in the alloy properties are related to the solubility of Sc in the NiTiPd matrix. While the quaternary NiTiPdSc alloy, Sc replacing Ti, has a single phase microstructure, the alloy with Sc replacing Ni shows the presence of Sc-rich and TiPd-type second phases in the microstructure. TEM examination revealed that the TiPd-type phase has a distinct rod-like morphology (30–50 nm) arranged in a grid-like structure. The transformation and indentation behavior of the alloys is elucidated using thermodynamic calculations of frictional energy and an electronic structure based analysis. - Highlights: • TEM of Ni{sub 23.7}Ti{sub 50.3}Pd{sub 25}Sc{sub 1} showed distinct grid of TiPd-type phase nanorods < 50 nm. • Stress-free thermal cycling of all the three alloys showed stable transformation behavior. • Ni{sub 24.7}Ti{sub 49.3}Pd{sub 25}Sc{sub 1} and Ni{sub 23.7}Ti{sub 50.3}Pd{sub 25}Sc{sub 1} showed single and multiphase structures. • Sc micro-addition (1 at.%) to Ni{sub 24.7}Ti{sub 50.3}Pd{sub 25} alloy decreased TTs

  19. Systematics of the temperature-dependent interplane resistivity in Ba(Fe1-xMx)₂As₂ (M=Co, Rh, Ni, and Pd)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tanatar, M. A.; Ni, N.; Thaler, A.; Bud’ko, S. L.; Canfield, P. C.; Prozorov, R.

    2011-07-27

    Temperature-dependent interplane resistivity ρc(T) was measured systematically as a function of transition-metal substitution in the iron-arsenide superconductors Ba(Fe1-xMx)₂As₂, M=Ni, Pd, Rh. The data are compared with the behavior found in Ba(Fe1-xCox)₂As₂, revealing resistive signatures of pseudogap. In all compounds we find resistivity crossover at a characteristic pseudogap temperature T* from nonmetallic to metallic temperature dependence on cooling. Suppression of T* proceeds very similarly in cases of Ni and Pd doping and much faster than in similar cases of Co and Rh doping. In cases of Co and Rh doping an additional minimum in the temperature-dependent ρc emerges for high dopings,more » when superconductivity is completely suppressed. These features are consistent with the existence of a charge gap covering part of the Fermi surface. The part of the Fermi surface affected by this gap is notably larger for Ni- and Pd-doped compositions than in Co- and Rh-doped compounds.« less

  20. Weak hybridization and isolated localized magnetic moments in the compounds CeT2Cd20 (T = Ni, Pd)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    White, B. D.; Yazici, D.; Ho, P. -C.; Kanchanavatee, N.; Pouse, N.; Fang, Y.; Breindel, A. J.; Friedman, A. J.; Maple, M. B.

    2015-07-20

    Here, we report the physical properties of single crystals of the compounds CeT2Cd20 (T = Ni, Pd) that were grown in a molten Cd flux. Large separations of ~6.7- 6.8 Å between Ce ions favor the localized magnetic moments that are observed in measurements of the magnetization. The strength of the Ruderman-Kittel-Kasuya- Yosida magnetic exchange interaction between the localized moments is severely limited by the large Ce-Ce separations and by weak hybridization between localized Ce 4f and itinerant electron states. Measurements of electrical resistivity performed down to 0.138 K were unable to observe evidence for the emergence of magnetic order;more » however, magnetically-ordered ground states with very low transition temperatures are still expected in these compounds despite the isolated nature of the localized magnetic moments. Such a fragile magnetic order could be highly susceptible to tuning via applied pressure, but evidence for the emergence of magnetic order has not been observed so far in our measurements up to 2.5 GPa.« less

  1. K[sub 10]In[sub 10]Z (Z = Ni, Pd, or Pt): Zintl phases containing isolated decaindium clusters centered by transition elements

    SciTech Connect (OSTI)

    Sevov, S.C.; Corbett, J.D. )

    1993-10-06

    The isostructural title compounds are obtained by high yield by slowly cooling the appropriate fused mixture in welded Ta. They occur in the orthorhombic space group Pnma, Z = 12, with a = 15.948(6), 16.043(6), 16.056(3) Angstroms, b = 32.565(6), 32.73(1) Angstroms, and c = 18.822(3), 18.895(5), 18.896(3) Angstroms for the Ni, Pd, and Pt derivatives, respectively. The structure of the Ni phase was refined by single crystal means (R, R[sub w] = 2.9, 3.3%) and shown to be constructed from the close-packed layers of Ni-centered In[sub 10] clusters that are separated by potassium ions both within and between the cluster layers. The compounds have large resistivities at room temperature by two-probe methods and are diamagnetic, with no moments on the transition metals. The geometry of the clusters can be derived from an ideal tetracapped trigonal prism (C[sub 3v]) of In centered by Z through axial compression along the 3-fold axis and opening of the capped triangular face so as to yield substantially equal Ni-In distances. The clusters are also related to Sb[sub 7][sup 3[minus

  2. EuTZn (T=Pd, Pt, Au) with TiNiSi-type structure-Magnetic properties and {sup 151}Eu Moessbauer spectroscopy

    SciTech Connect (OSTI)

    Mishra, Trinath; Hermes, Wilfried; Harmening, Thomas; Eul, Matthias; Poettgen, Rainer

    2009-09-15

    The europium compounds EuTZn (T=Pd, Pt, Au) were synthesized from the elements in sealed tantalum tubes in an induction furnace. These intermetallics crystallize with the orthorhombic TiNiSi-type structure, space group Pnma. The structures were investigated by X-ray diffraction on powders and single crystals: a=732.3(2), b=448.5(2), c=787.7(2) pm, R{sub 1}/wR{sub 2}=0.0400/0.0594, 565 F{sup 2} values for EuPdZn, a=727.8(3), b=443.7(1), c=781.7(3) pm, R{sub 1}/wR{sub 2}=0.0605/0.0866, 573 F{sup 2} values for EuPtZn, and a=747.4(2), b=465.8(2), c=789.1(4) pm, R{sub 1}/wR{sub 2}=0.0351/0.0590, 658 F{sup 2} values for EuAuZn, with 20 variables per refinement. Together the T and zinc atoms build up three-dimensional [TZn] networks with short T-Zn distances. The EuTZn compounds show Curie-Weiss behavior in the temperature range from 75 to 300 K with mu{sub eff}=7.97(1), 7.70(1), and 7.94(1) mu{sub B}/Eu atom and theta{sub P}=18.6(1), 34.9(1), and 55.5(1) K for T=Pd, Pt, and Au, respectively, indicating divalent europium. Antiferromagntic ordering was detected at 15.1(3) K for EuPdZn and canted ferromagnetic ordering at 21.2(3) and 51.1(3) K for EuPtZn and EuAuZn. {sup 151}Eu Moessbauer spectroscopic measurements confirm the divalent nature of the europium atoms by isomer shift values ranging from -8.22(8) (EuPtZn) to -9.23(2) mm/s (EuAuZn). At 4.2 K full magnetic hyperfine field splitting is observed in all three compounds due to magnetic ordering of the europium magnetic moments. - Graphical abstract: Europium coordination in EuPdZn, EuPtZn, and EuAuZn.

  3. Weak hybridization and isolated localized magnetic moments in the compounds CeT2Cd20 (T = Ni, Pd)

    SciTech Connect (OSTI)

    White, B. D.; Yazici, D.; Ho, P. -C.; Kanchanavatee, N.; Pouse, N.; Fang, Y.; Breindel, A. J.; Friedman, A. J.; Maple, M. B.

    2015-07-20

    Here, we report the physical properties of single crystals of the compounds CeT2Cd20 (T = Ni, Pd) that were grown in a molten Cd flux. Large separations of ~6.7- 6.8 Å between Ce ions favor the localized magnetic moments that are observed in measurements of the magnetization. The strength of the Ruderman-Kittel-Kasuya- Yosida magnetic exchange interaction between the localized moments is severely limited by the large Ce-Ce separations and by weak hybridization between localized Ce 4f and itinerant electron states. Measurements of electrical resistivity performed down to 0.138 K were unable to observe evidence for the emergence of magnetic order; however, magnetically-ordered ground states with very low transition temperatures are still expected in these compounds despite the isolated nature of the localized magnetic moments. Such a fragile magnetic order could be highly susceptible to tuning via applied pressure, but evidence for the emergence of magnetic order has not been observed so far in our measurements up to 2.5 GPa.

  4. Quantum Critical Behavior in the Heavy Fermion Single Crystal Ce(Ni0.935Pd0.065)2Ge2

    SciTech Connect (OSTI)

    Wang, Cuihuan [ORNL; Lawrence, J M [University of California, Irvine; Christianson, Andrew D [ORNL; Chang, S [NIST Center for Neutron Research (NCRN), Gaithersburg, MD; Bauer, E D [Los Alamos National Laboratory (LANL); Gofryk, K [Los Alamos National Laboratory (LANL); Ronning, F [Los Alamos National Laboratory (LANL); Thompson, J D [Los Alamos National Laboratory (LANL); McClellan, K J [Los Alamos National Laboratory (LANL); Rodriguez-Rivera, J A [NCNR and University of Maryland; Lynn, J W [NIST Center for Neutron Research (NCRN), Gaithersburg, MD

    2011-01-01

    We have performed magnetic susceptibility, specific heat, resistivity, and inelastic neutron scattering measurements on a single crystal of the heavy Fermion compound Ce(Ni{sub 0.935}Pd{sup 0.065}){sub 2}Ge{sub 2}, which is believed to be close to a quantum critical point (QCP) at T = 0. At lowest temperature (1.8--3.5 K), the magnetic susceptibility behaves as {chi}(T)-{chi} (0) {proportional_to} T{sup -1/6} with {chi} (0) = 0.032 x 10{sup -6} m{sup 3}/mole (0.0025 emu/mole). For T < 1 K, the specific heat can be fit to the formula {Delta} C/T = {gamma}{sub 0} - T{sup 1/2} with {gamma}{sub 0} of order 700 mJ/mole-K{sup 2}. The resistivity behaves as {rho} = {rho}{sub 0} + AT{sup 3/2} for temperatures below 2 K. This low temperature behavior for {gamma} (T) and {rho} (T) is in accord with the SCR theory of Moriya and Takimoto. The inelastic neutron scattering spectra show a broad peak near 1.5 meV that appears to be independent of Q; we interpret this as Kondo scattering with T{sub K} = 17 K. In addition, the scattering is enhanced near Q=(1/2, 1/2, 0) with maximum scattering at {Delta} E = 0.45 meV{sup -}; we interpret this as scattering from antiferromagnetic fluctuations near the antiferromagnetic QCP.

  5. Transport properties of Ce{sub 2}Ni{sub 2}Sn and Ce{sub 2}Pd{sub 2.05}Sn{sub 0.95} Kondo lattice systems

    SciTech Connect (OSTI)

    Pinto, R.P.; Amado, M.M.; Braga, M.E.; de Azevedo, M.M.; Sousa, J.B.; Chevalier, B.; Etourneau, J.

    1997-04-01

    We report experimental data on thermoelectric power S, electrical resistivity {rho}, and the magnetoresistivity of the antiferromagnet Kondo stannides Ce{sub 2}Ni{sub 2}Sn (T{sub N}=4.7 K) and Ce{sub 2}Pd{sub 2.05}Sn{sub 0.95} (T{sub N}=4.7 K). The essential features of the S(T) curves resemble those of heavy fermion systems such as CeCu{sub 2}Si{sub 2}: a broad and positive maximum at intermediate temperatures, followed by a sharper negative minimum at lower temperatures. S values are is considerably smaller in Ce{sub 2}Pd{sub 2.05}Sn{sub 0.95} than in Ce{sub 2}Ni{sub 2}Sn. The positive peak originates from the incoherent Kondo scattering by the excited crystal field levels of the Ce ion ground state. The negative peak might be related to the shape of the density of states associated with the Abrikosov{endash}Suhl resonance. The change of sign in S(T) between its minimum and maximum at T{sup {asterisk}} can be assigned to the fact that the Fermi level sinks below the upper band at T{gt}T{sup {asterisk}}. This behavior and the maximum observed in the {rho}(T) curve at this temperature can be discussed in terms of the electron polaron model, although one must also take into account the crystal field effect. The role played by the crystal field effect, which is more important in Ce{sub 2}Pd{sub 2.05}Sn{sub 0.95}, is analyzed for this compound, providing the magnitude of the crystal field splitting. Magnetoresistivity was also measured in both compounds. The results are consistent with the important role of the Kondo effect at low temperatures and suggest the splitting of the double degenerate bands at T{gt}T{sup {asterisk}}. {copyright} {ital 1997 American Institute of Physics.}

  6. Quantum critical fluctuations in the heavy fermion compound Ce(Ni0.935 Pd0.065)2Ge2

    SciTech Connect (OSTI)

    Wang, C. H.; Poudel, L.; Taylor, A. E.; Lawrence, J. M.; Christianson, A. D.; Chang, S.; Rodriguez-Rivera, J. A.; Lynn, J. W.; Podlesnyak, A. A.; Ehlers, G.; Baumbach, R. E.; Bauer, E. D.; Gofryk, K.; Ronning, F.; McClellan, K. J.; Thompson, J. D.

    2015-01-14

    Electric resistivity, specific heat, magnetic susceptibility, and inelastic neutron scattering experi- ments were performed on a single crystal of the heavy fermion compound Ce(Ni0.935 Pd0.065)2Ge2 in order to study the spin fluctuations near an antiferromagnetic (AF) quantum critical point (QCP). The resistivity and the specific heat coefficient for T ≤ 1 K exhibit the power law behavior expected for a 3D itinerant AF QCP (ρ(T) ~ T3/2 and γ(T) ~ γ0 - bT1/2). However, for 2 ≤ T ≤ 10 K, the susceptibility and specific heat vary as log T and the resistivity varies linearly with temperature. Furthermore, despite the fact that the resistivity and specific heat exhibit the non-Fermi liquid behavior expected at a QCP, the correlation length, correlation time, and staggered susceptibility of the spin fluctuations remain finite at low temperature. We suggest that these deviations from the divergent behavior expected for a QCP may result from alloy disorder.

  7. Mt. Baker Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Mt. Baker Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Mt. Baker Geothermal Project Project Location Information Coordinates...

  8. Mt Poso Cogeneration | Open Energy Information

    Open Energy Info (EERE)

    Poso Cogeneration Jump to: navigation, search Name: Mt Poso Cogeneration Place: Bakersfield, California Zip: 93308 Product: California-based project developer for the Mt Poso...

  9. Category:Billings, MT | Open Energy Information

    Open Energy Info (EERE)

    Billings, MT Jump to: navigation, search Go Back to PV Economics By Location Media in category "Billings, MT" The following 16 files are in this category, out of 16 total....

  10. Synthesis and characterization of Pd(0), PdS, and Pd-PdO core-shell nanoparticles by solventless thermolysis of a Pd-thiolate cluster

    SciTech Connect (OSTI)

    Jose, Deepa; Jagirdar, Balaji R.

    2010-09-15

    Colloids of palladium nanoparticles have been prepared by the solvated metal atom dispersion (SMAD) method. The as-prepared Pd colloid consists of particles with an average diameter of 2.8{+-}0.1 nm. Digestive ripening of the as-prepared Pd colloid, a process involving refluxing the as-prepared colloid at or near the boiling point of the solvent in the presence of a passivating agent, dodecanethiol resulted in a previously reported Pd-thiolate cluster, [Pd(SC{sub 12}H{sub 25}){sub 2}]{sub 6} but did not render the expected narrowing down of the particle size distribution. Solventless thermolysis of the Pd-thiolate complex resulted in various Pd systems such as Pd(0), PdS, and Pd-PdO core-shell nanoparticles thus demonstrating its versatility. These Pd nanostructures have been characterized using high-resolution electron microscopy and powder X-ray diffraction methods. - Graphical abstract: Solventless thermolysis of a single palladium-thiolate cluster affords various Pd systems such as Pd(0), Pd-PdO core-shell, and PdS nanoparticles demonstrating the versatility of the precursor and the methodology.

  11. Ni Ni: University of California - Los Angeles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ni Ni: University of California - Los Angeles Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Ni Ni: University of California - Los Angeles Condensed matter January 1, 2015 Ni Ni Ni Ni Contact Linda Anderman Email Ni Ni Ni Ni now at the University of California-Los Angeles After finishing her work at Princeton, Ni Ni began at the Lab as a postdoc in 2012 with the Condensed Matter and Magnetic Science Group. Ni was

  12. Controlled Source Audio MT At Roosevelt Hot Springs Area (Combs...

    Open Energy Info (EERE)

    Audio MT At Roosevelt Hot Springs Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Controlled Source Audio MT At Roosevelt Hot...

  13. Water Sampling At Mt Ranier Area (Frank, 1995) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt Ranier Area (Frank, 1995) Exploration Activity Details Location Mt...

  14. Geothermal Literature Review At Mt Ranier Area (Frank, 1995)...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Mt Ranier Area (Frank, 1995) Exploration Activity Details Location Mt...

  15. Isotopic Analysis At Mt St Helens Area (Shevenell & Goff, 2000...

    Open Energy Info (EERE)

    Home Exploration Activity: Isotopic Analysis At Mt St Helens Area (Shevenell & Goff, 2000) Exploration Activity Details Location Mt St Helens Area Exploration Technique...

  16. Compound and Elemental Analysis At Mt St Helens Area (Shevenell...

    Open Energy Info (EERE)

    Exploration Activity: Compound and Elemental Analysis At Mt St Helens Area (Shevenell & Goff, 2000) Exploration Activity Details Location Mt St Helens Area Exploration Technique...

  17. Isotopic Analysis At Mt St Helens Area (Shevenell & Goff, 1995...

    Open Energy Info (EERE)

    Home Exploration Activity: Isotopic Analysis At Mt St Helens Area (Shevenell & Goff, 1995) Exploration Activity Details Location Mt St Helens Area Exploration Technique...

  18. Compound and Elemental Analysis At Mt St Helens Area (Shevenell...

    Open Energy Info (EERE)

    Exploration Activity: Compound and Elemental Analysis At Mt St Helens Area (Shevenell & Goff, 1995) Exploration Activity Details Location Mt St Helens Area Exploration Technique...

  19. Mt Wheeler Power, Inc | Open Energy Information

    Open Energy Info (EERE)

    Power, Inc Jump to: navigation, search Name: Mt Wheeler Power, Inc Place: Nevada Phone Number: 1-775-289-8981 Website: mwpower.net Facebook: https:www.facebook.com...

  20. Durable pd-based alloy and hydrogen generation membrane thereof

    DOE Patents [OSTI]

    Benn, Raymond C.; Opalka, Susanne M.; Vanderspurt, Thomas Henry

    2010-02-02

    A durable Pd-based alloy is used for a H.sub.2-selective membrane in a hydrogen generator, as in the fuel processor of a fuel cell plant. The Pd-based alloy includes Cu as a binary element, and further includes "X", where "X" comprises at least one metal from group "M" that is BCC and acts to stabilize the .beta. BCC phase for stability during operating temperatures. The metal from group "M" is selected from the group consisting of Fe, Cr, Nb, Ta, V, Mo, and W, with Nb and Ta being most preferred. "X" may further comprise at least one metal from a group "N" that is non-BCC, preferably FCC, that enhances other properties of the membrane, such as ductility. The metal from group "N" is selected from the group consisting of Ag, Au, Re, Ru, Rh, Y, Ce, Ni, Ir, Pt, Co, La and In. The at. % of Pd in the binary Pd--Cu alloy ranges from about 35 at. % to about 55 at. %, and the at. % of "X" in the higher order alloy, based on said binary alloy, is in the range of about 1 at. % to about 15 at. %. The metals are selected according to a novel process.

  1. Elastic properties of Pd-hydrogen, Pd-deuterium, and Pd-tritium single crystals

    SciTech Connect (OSTI)

    Schwarz, R.B. . E-mail: rxzs@lanl.gov; Bach, H.T.; Harms, U.; Tuggle, D.

    2005-02-01

    We used a resonant-ultrasound-spectroscopy technique to measure the three independent elastic constants of PdH{sub x}, PdD{sub x}, and PdT{sub x} single crystals at 300 K. For 0.1x0.62 our PdH{sub x} crystals are two-phase mixtures of coherent {alpha} and {beta} hydride phases. For increasing x in this range, C{sub 44} decreases monotonically whereas C'=12(C11-C12) has a concave parabolic dependence. This difference is because C' is softened by an anelastic relaxation resulting from acoustic-stress-induced changes in the shape of the coherent lenticular-shape precipitates ({beta}-hydride precipitates in {alpha}-hydride matrix and {alpha}-hydride precipitates in {beta}-hydride matrix). In the {beta}-phase C' and C{sub 44} decrease with increasing hydrogen (or deuterium or tritium) content. Furthermore, C' exhibits a strong isotope effect whereas C{sub 44} does not. This effect is attributed to differences in the excitation of optical phonons in Pd-H, Pd-D and Pd-T.

  2. Pd/Ni-WO3 anodic double layer gasochromic device

    DOE Patents [OSTI]

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland; Liu, Ping

    2004-04-20

    An anodic double layer gasochromic sensor structure for optical detection of hydrogen in improved response time and with improved optical absorption real time constants, comprising: a glass substrate; a tungsten-doped nickel oxide layer coated on the glass substrate; and a palladium layer coated on the tungsten-doped nickel oxide layer.

  3. ALTERNATIVE MATERIALS TO PD MEMBRANES FOR HYDROGEN PURIFICATION

    SciTech Connect (OSTI)

    Adams, T; Paul Korinko, P

    2007-11-13

    Development of advanced hydrogen separation membranes in support of hydrogen production processes such as coal gasification and as front end gas purifiers for fuel cell based system is paramount to the successful implementation of a national hydrogen economy. Current generation metallic hydrogen separation membranes are based on Pd-alloys. Although the technology has proven successful, at issue is the high cost of palladium. Evaluation of non-noble metal based dense metallic separation membranes is currently receiving national and international attention. The focal point of the reported work was to evaluate two different classes of materials for potential replacement of conventional Pd-alloy purification/diffuser membranes. Crystalline V-Ni-Ti and Amorphous Fe- and Co-based metallic glass alloys have been evaluated using both electrochemical and gaseous hydrogen permeation testing techniques..

  4. ALTERNATIVE MATERIALS TO PD MEMBRANES FOR HYDROGEN PURIFICATION

    SciTech Connect (OSTI)

    Korinko, P; T. Adams

    2008-09-12

    Development of advanced hydrogen separation membranes in support of hydrogen production processes such as coal gasification and as front end gas purifiers for fuel cell based system is paramount to the successful implementation of a national hydrogen economy. Current generation metallic hydrogen separation membranes are based on Pd-alloys. Although the technology has proven successful, at issue is the high cost of palladium. Evaluation of non-noble metal based dense metallic separation membranes is currently receiving national and international attention. The focal point of the reported work was to evaluate two different classes of materials for potential replacement of conventional Pd-alloy purification/diffuser membranes. Crystalline V-Ni-Ti and Amorphous Fe- and Co-based metallic glass alloys have been evaluated using gaseous hydrogen permeation testing techniques.

  5. Mt Wheeler Power, Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    Mt Wheeler Power, Inc (Utah) Jump to: navigation, search Name: Mt Wheeler Power, Inc Place: Utah Phone Number: 1 775-289-8981 Website: mwpower.net Facebook: https:...

  6. Asymmetric magnetic proximity effect in a Pd/Co/Pd trilayer system (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Asymmetric magnetic proximity effect in a Pd/Co/Pd trilayer system Citation Details In-Document Search Title: Asymmetric magnetic proximity effect in a Pd/Co/Pd trilayer system In spintronic devices consisting of ferromagnetic/nonmagnetic systems, the ferromagnet-induced magnetic moment in the adjacent nonmagnetic material significantly influences the spin transport properties. In this study, such magnetic proximity effect in a Pd/Co/Pd trilayer system is

  7. High Tc YBCO superconductor deposited on biaxially textured Ni substrate

    DOE Patents [OSTI]

    Budai, John D.; Christen, David K.; Goyal, Amit; He, Qing; Kroeger, Donald M.; Lee, Dominic F.; List, III, Frederick A.; Norton, David P.; Paranthaman, Mariappan; Sales, Brian C.; Specht, Eliot D.

    1999-01-01

    A superconducting article includes a biaxially-textured Ni substrate, and epitaxial buffer layers of Pd (optional), CeO.sub.2 and YSZ, and a top layer of in-plane aligned, c-axis oriented YBCO having a critical current density (J.sub.c) in the range of at least 100,000 A/cm.sup.2 at 77 K.

  8. Room temperature synthesis of Ni-based alloy nanoparticles by radiolysis.

    SciTech Connect (OSTI)

    Nenoff, Tina Maria; Berry, Donald T.; Lu, Ping; Leung, Kevin; Provencio, Paula Polyak; Stumpf, Roland Rudolph; Huang, Jian Yu; Zhang, Zhenyuan

    2009-09-01

    Room temperature radiolysis, density functional theory, and various nanoscale characterization methods were used to synthesize and fully describe Ni-based alloy nanoparticles (NPs) that were synthesized at room temperature. These complementary methods provide a strong basis in understanding and describing metastable phase regimes of alloy NPs whose reaction formation is determined by kinetic rather than thermodynamic reaction processes. Four series of NPs, (Ag-Ni, Pd-Ni, Co-Ni, and W-Ni) were analyzed and characterized by a variety of methods, including UV-vis, TEM/HRTEM, HAADF-STEM and EFTEM mapping. In the first focus of research, AgNi and PdNi were studied. Different ratios of Ag{sub x}- Ni{sub 1-x} alloy NPs and Pd{sub 0.5}- Ni{sub 0.5} alloy NP were prepared using a high dose rate from gamma irradiation. Images from high-angle annular dark-field (HAADF) show that the Ag-Ni NPs are not core-shell structure but are homogeneous alloys in composition. Energy filtered transmission electron microscopy (EFTEM) maps show the homogeneity of the metals in each alloy NP. Of particular interest are the normally immiscible Ag-Ni NPs. All evidence confirmed that homogeneous Ag-Ni and Pd-Ni alloy NPs presented here were successfully synthesized by high dose rate radiolytic methodology. A mechanism is provided to explain the homogeneous formation of the alloy NPs. Furthermore, studies of Pd-Ni NPs by in situ TEM (with heated stage) shows the ability to sinter these NPs at temperatures below 800 C. In the second set of work, CoNi and WNi superalloy NPs were attempted at 50/50 concentration ratios using high dose rates from gamma irradiation. Preliminary results on synthesis and characterization have been completed and are presented. As with the earlier alloy NPs, no evidence of core-shell NP formation occurs. Microscopy results seem to indicate alloying occurred with the CoNi alloys. However, there appears to be incomplete reduction of the Na{sub 2}WO{sub 4} to form the W

  9. RAPID/Roadmap/18-MT-a | Open Energy Information

    Open Energy Info (EERE)

    Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Underground Storage Tank Permit (18-MT-a) A developer must obtain an Underground Storage Tank...

  10. RAPID/Roadmap/20-MT-a | Open Energy Information

    Open Energy Info (EERE)

    Us Well Abandonment Process (20-MT-a) Montana requires the employment of particular engineering standards when abandoning wells. Developers may elect to abandon wells or...

  11. Vertical Electrical Sounding Configurations At Mt Princeton Hot...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Vertical Electrical Sounding Configurations At Mt Princeton Hot Springs Geothermal Area (Zohdy, Et Al.,...

  12. RAPID/Roadmap/12-MT-a | Open Energy Information

    Open Energy Info (EERE)

    not in range. Flowchart Narrative 12-MT-a.1 - Consult Regarding Potential Impacts on Fish and Wildlife Building with Wildlife, a guide developed by private landowners,...

  13. RAPID/Roadmap/3-MT-c | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us State Encroachment Process (3-MT-c) There are several...

  14. RAPID/Roadmap/11-MT-a | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us State Cultural Considerations Overview (11-MT-a)...

  15. RAPID/Roadmap/6-MT-d | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Other State Construction Permits (6-MT-d)...

  16. RAPID/Roadmap/4-MT-a | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us State Exploration Process (4-MT-a) 04MTAStateExploration...

  17. RAPID/Roadmap/11-MT-b | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Human Remains Process (11-MT-b) 11MTBHumanRemainsProcess...

  18. RAPID/Roadmap/14-MT-d | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us 401 Water Quality Certification (14-MT-d) A person may...

  19. 3D Mt Resistivity Imaging For Geothermal Resource Assessment...

    Open Energy Info (EERE)

    Mt Resistivity Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Jump to: navigation, search OpenEI Reference...

  20. RAPID/Roadmap/18-MT-b | Open Energy Information

    Open Energy Info (EERE)

    Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Hazardous Waste Facility Permit (18-MT-b) The Montana Department of Environmental Quality (DEQ)...

  1. Refraction Survey At Mt Princeton Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    Location Mt Princeton Hot Springs Geothermal Area Exploration Technique Refraction Survey Activity Date 2012 - 2012 Usefulness useful DOE-funding Unknown Exploration Basis...

  2. RAPID/Roadmap/15-MT-a | Open Energy Information

    Open Energy Info (EERE)

    BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Air Quality Permit (15-MT-a) The Montana Department of Environmental Quality (DEQ)...

  3. Controlled Source Audio MT At Cove Fort Area - Liquid (Combs...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Controlled Source Audio MT At Cove Fort Area - Liquid (Combs 2006) Exploration Activity Details Location Cove...

  4. Controlled Source Audio MT At Mccoy Geothermal Area (DOE GTP...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Controlled Source Audio MT At Mccoy Geothermal Area (DOE GTP) Exploration Activity Details Location Mccoy...

  5. Aeromagnetic Survey At Mt Princeton Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    Princeton Hot Springs Geothermal Area (Case, Et Al., 1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Mt Princeton...

  6. RAPID/Roadmap/1-MT-a | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap1-MT-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  7. RAPID/Roadmap/11-MT-c | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap11-MT-c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  8. RAPID/Roadmap/14-MT-e | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Hydropower Solar Tools Contribute Contact Us Groundwater Pollution Control System (14-MT-e) The Montana Department of Environmental Quality (DEQ) regulates the...

  9. RAPID/Roadmap/14-MT-c | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Hydropower Solar Tools Contribute Contact Us Underground Injection Control Permit (14-MT-c) The United States Environmental Protection Agency (EPA) has not...

  10. City of Mt Pleasant, Iowa (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Number: (319) 385-2121 Website: mountpleasantiowa.orgalliance Twitter: @MtPleasantIOWA Facebook: https:www.facebook.commountpleasantia Outage Hotline: (319) 385-2121...

  11. Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson & Dellechaie, 1976)...

  12. Water Sampling At Mt St Helens Area (Shevenell & Goff, 1995)...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt St Helens Area (Shevenell & Goff, 1995) Exploration Activity Details...

  13. Analysis of borehole temperature data from the Mt. Princeton...

    Open Energy Info (EERE)

    borehole temperature data from the Mt. Princeton Hot Springs area, Chaffee County, Colorado (abstract only) Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  14. Targeting Mycobacterium tuberculosis Biotin Protein Ligase (MtBPL...

    Office of Scientific and Technical Information (OSTI)

    tuberculosis Biotin Protein Ligase (MtBPL) with Nucleoside-Based Bisubstrate Adenylation Inhibitors Citation Details In-Document Search Title: Targeting Mycobacterium tuberculosis ...

  15. Magnetotelluric Techniques At Mt Princeton Hot Springs Geothermal...

    Open Energy Info (EERE)

    Techniques At Mt Princeton Hot Springs Geothermal Area (Held & Henderson, 2012) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotelluric...

  16. RAPID/Roadmap/5-MT-a | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Hydropower Solar Tools Contribute Contact Us Drilling and Well Development (5-MT-a) - 05MTADrillingAndWellDevelopment (1).pdf Error creating thumbnail: Page number...

  17. Mt Princeton Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    in the area. Since 2007 Mt. Princeton Geothermal, LLC has been assessing the area for its geothermal energy production potential. The company has conducted several preliminary...

  18. Thermal Gradient Holes At Mt Princeton Hot Springs Geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Mt Princeton Hot Springs Geothermal Area (Held & Henderson, 2012)...

  19. Geothermometry At Mt St Helens Area (Shevenell & Goff, 1995)...

    Open Energy Info (EERE)

    St Helens Area (Shevenell & Goff, 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Mt St Helens Area (Shevenell & Goff,...

  20. American Flyers N-I Wine Makers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flyers N-I Wine Makers WSI leads charge in local bike events. NSTec recognizes top performers in NNSS mission. Navarro employees enjoy wine making hobby. See page 8. See page 7. Do You Know Where To Find Latest NNSS Info? In late August, a rainstorm in Las Vegas caused flooding near Mt. Charleston that washed the remnants of this summer's Carpenter Fire across U.S. 95, blocking the roadway. It was 11 p.m. on a Sunday night, and the road closure threatened Nevada National Security Site (NNSS)

  1. WPA Omnibus Award MT Wind Power Outreach

    SciTech Connect (OSTI)

    Brian Spangler, Manager Energy Planning and Renewables

    2012-01-30

    The objective of this grant was to further the development of Montana’s vast wind resources for small, medium, and large scale benefits to Montana and the nation. This was accomplished through collaborative work with wind industry representatives, state and local governments, the agricultural community, and interested citizens. Through these efforts MT Dept Environmental Quality (DEQ) was able to identify development barriers, educate and inform citizens, as well as to participate in regional and national dialogue that will spur the development of wind resources. The scope of DEQ’s wind outreach effort evolved over the course of this agreement from the development of the Montana Wind Working Group and traditional outreach efforts, to the current focus on working with the state’s university system to deliver a workforce trained to enter the wind industry.

  2. Preparation and Characterization of PdFe Nanoleaves as Electrocatalyst...

    Office of Scientific and Technical Information (OSTI)

    The side surfaces of Pd-NWs observed by HR-TEM are predominantly Pd (111) facets, while ... acid, the Pd-rich NWs are exposed on the surfaces of the nanoleaves, and they demonstrate ...

  3. RAPID/Roadmap/17-MT-b | Open Energy Information

    Open Energy Info (EERE)

    Stream Protection Act (SPA 124 Permit) (17-MT-b) Montana has a policy to preserve fish and wildlife habitat as well as maintain Montana's streams and rivers in their natural...

  4. HERO Ski Trip to Mt. Hood Meadows February

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    If there is enough interest, we may be able to charter a bus to drive us up and back. Stay at the Best Western Plus Hood River Inn which is just 30 miles from Mt. Hood's largest...

  5. MT Energie GmbH Co KG | Open Energy Information

    Open Energy Info (EERE)

    Saxony, Germany Zip: 27404 Sector: Services Product: MT-Energie provides both turn-key biogas plants and related components and services. Coordinates: 53.295765, 9.27964 Show...

  6. RAPID/Roadmap/3-MT-a | Open Energy Information

    Open Energy Info (EERE)

    Resources & Conservation. The application requires an adequate description of the lands. The application fee is 10. 3-MT-a.2 - Does the Director Decide to Announce the Sale...

  7. RAPID/Roadmap/13-MT-a | Open Energy Information

    Open Energy Info (EERE)

    Contribute Contact Us State Land Use Assessment (13-MT-a) 13MTALandUseAssessment.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  8. RAPID/Roadmap/3-MT-b | Open Energy Information

    Open Energy Info (EERE)

    Tools Contribute Contact Us State Land Lease (3-MT-b) 03MTBStateLandAccess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  9. RAPID/Roadmap/6-MT-c | Open Energy Information

    Open Energy Info (EERE)

    Contact Us Drinking Water Permit (6-MT-c) Add Text 06MTCDrinkingWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  10. Ground Gravity Survey At Mt Princeton Hot Springs Geothermal...

    Open Energy Info (EERE)

    lithologic distrubtions Notes Gravity low associated with Mt. Princeton Batholith; density contrast of -0.5 gcm3 of valley-fill sediments relative to batholith References J.E....

  11. 2007-mt-elbert | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    showing Donyon Rig Photo courtesy Doyon Drilling Inc Project Background Maps of Research ... The drilling of the "Mt. Elbert prospect" within the Milne Point Unit (MPU) on the Alaskan ...

  12. Palladium site ordering and the occurrence of superconductivity in Bi{sub 2}Pd{sub 3}Se{sub 2-x}S{sub x}

    SciTech Connect (OSTI)

    Weihrich, R.; Matar, S.F.; Anusca, I.; Pielnhofer, F.; Peter, P.; Bachhuber, F.; Eyert, V.

    2011-04-15

    The crystallographic and electronic structures of compounds related to parkerite (Bi{sub 2}Ni{sub 3}S{sub 2}) are investigated with respect to the recently reported occurrence (Bi{sub 2}Pd{sub 3}Se{sub 2}) and absence (Bi{sub 2}Pd{sub 3}S{sub 2}) of superconductivity. Similarities and differences of the crystal structures are discussed within the series of solid solutions Bi{sub 2}Pd{sub 3}S{sub 2-x}Se{sub x} from powder and single crystal diffraction data. From crystal structure refinements, the question of different structures and settings of parkerite is discussed. Similar and different 2D and 3D partial Pd-Ch (Ch=S, Se) structures are related to half antiperovskite ordering schemes. To investigate the relation of low dimensional structures and the occurrence of superconductivity, electronic structures are analyzed by scalar-relativistic DFT calculations, including site projected DOS, ECOV and Fermi surfaces. -- Graphical abstract: Structure relations for perovskite type BiPd{sub 3}C, BiPd{sub 3/2}Se and BiPd{sub 3/2}S. Display Omitted Research highlights: {yields} Merging crystallographic and electronic structures studies to understand chalcogenides related to parkerite (Bi{sub 2}Ni{sub 3}S{sub 2}). {yields} Investigation in view of recently reported occurrence (Bi{sub 2}Pd{sub 3}Se{sub 2}) and absence (Bi{sub 2}Pd{sub 3}S{sub 2}) of superconductivity. {yields} Relationship of half perovskites with perovskites.

  13. Formation of Pd/Au Nanostructures from Pd Nanowires via Galvanic Replacement Reaction

    SciTech Connect (OSTI)

    Teng,X.; Wang, Q.; Liu, P.; Han, W.; Frenkel, A.; Wen, W.; Marinkovic, N.; Hanson, J.; Rodriguez, J.

    2008-01-01

    Bimetallic nanostructures with non-random metal atoms distribution are very important for various applications. To synthesize such structures via benign wet chemistry approach remains challenging. This paper reports a synthesis of a Au/Pd alloy nanostructure through the galvanic replacement reaction between Pd ultrathin nanowires (2.4 {+-} 0.2 nm in width, over 30 nm in length) and AuCl3 in toluene. Both morphological and structural changes were monitored during the reaction up to 10 h. Continuous changes of chemical composition and crystalline structure from Pd nanowires to Pd68Au32 and Pd45Au55 alloys, and to Au nanoparticles were observed. More interestingly, by using combined techniques such as high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDS), UV-vis absorption, and extended X-ray absorption fine structure (EXAFS) spectroscopy, we found the formation of Pd68Au32 non-random alloy with Au-rich core and Pd-rich shell, and random Pd45Au55 alloy with uniformly mixed Pd and Au atom inside the nanoparticles, respectively. Density functional theory (DFT) calculations indicated that alkylamine will strongly stabilize Pd to the surface, resulting in diffusion of Au atoms into the core region to form a non-random alloy. We believe such benign synthetic techniques can also enable the large scale preparation of various types of non-random alloys for several technically important catalysis applications.

  14. Alternation of the Pd Lattice in Nano-Sized-Pd/ZrO2 Composite during Hydrogen Absorption

    SciTech Connect (OSTI)

    Arachi, Yoshinori; Asai, Takeshi; Emura, Shuichi; Omura, Akira; Nunogaki, Masanobu; Yamaura, Shunichi; Inoue, Akihisa; Arata, Yoshiaki

    2007-02-02

    Structural analysis of high Deuterium absorbed 5 nm Pd particles in dispersed ZrO2 has been carried out using XAFS techniques. X-ray absorption spectra around the Pd K-absorption edge were observed and analyzed. The Pd-Pd bonding distance in the fcc Pd lattice was enlarged by 0.08 {approx} 0.09 A during absorption of deuterium, and it completely reverted to its original state with the release of deuterium while maintaining the crystal lattice symmetry. These changes provide evidence that deuterium locates not on the surface of the Pd particle, but rather within the Pd crystal lattice. XANES spectra clearly indicate that any change in the oxidation state of Pd are not observed, resulting in no reaction of the absorbed Deuterium atoms with Pd atoms. This paper reports the alternation of Pd lattice in nano-sized composite during hydrogen absorption. The possible models of deuterium position in the Pd lattice are also discussed.

  15. CampanileMtTamalpiasSunset_caption.jpg | OSTI, US Dept of Energy Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information CampanileMtTamalpiasSunset_caption

  16. Influence of valence electron concentration on Laves phases: Structures and phase stability of pseudo-binary MgZn2-xPdx

    SciTech Connect (OSTI)

    Thimmaiah, Srinivasa; Miller, Gordon J.

    2015-06-03

    A series of pseudo-binary compounds MgZn2-xPdx (0.15 ? x ? 1.0) were synthesized and structurally characterized to understand the role of valence electron concentration (vec) on the prototype Laves phase MgZn2 with Pd-substitution. Three distinctive phase regions were observed with respect to Pd content, all exhibiting fundamental Laves phase structures: 0.1 ? x ? 0.3 (MgNi2-type, hP24; MgZn1.80Pd0.20(2)), 0.4 ? x ? 0.6 (MgCu2-type, cF24; MgZn1.59Pd0.41(2)), and 0.62 ? x ? 0.8 (MgZn2-type, hP12: MgZn1.37Pd0.63(2)). Refinements from single-crystal X-ray diffraction indicated nearly statistical distributions of Pd and Zn atoms among the majority atom sites in these structures. Interestingly, the MgZn2-type structure re-emerges in MgZn2xPdx at x ? 0.7 with the refined composition MgZn1.37(2)Pd0.63 and a c/a ratio of 1.59 compared to 1.64 for binary MgZn2. Electronic structure calculations on a model MgZn1.25Pd0.75 yielded a density of states (DOS) curve showing enhancement of a pseudogap at the Fermi level as a result of electronic stabilization due to the Pd addition. Moreover, integrated crystal orbital Hamilton population values show significant increases of orbital interactions for (Zn,Pd)(Zn,Pd) atom pairs within the majority atom substructure, i.e., within the Kagom nets as well as between a Kagom net and an apical site, from binary MgZn2 to the ternary MgZn1.25Pd0.75. Multi-centered bonding is evident from electron localization function plots for MgZn1.25Pd0.75, an outcome which is in accordance with analysis of other Laves phases.

  17. EXAMINATION OF 80 DEGREES C DESORPTION ISOTHERMS OFTRITIUM AGED PD/K AND LANA.75

    SciTech Connect (OSTI)

    Staack, G; Kirk Shanahan, K; Tom Walters, T; Roger Pilgrim, R

    2007-08-28

    Metal hydrides, specifically Pd deposited on kieselguhr (Pd/k) and LaNi{sub 4.25}Al{sub 0.75} (LANA.75), have been used at the Savannah River Site for almost twenty years for hydrogen isotope separation and storage. Radiolytic decay of tritium to helium-3 in the metal matrix causes three classic changes in the performance of the hydride: the plateau pressure decreases, the plateau slope increases, and a heel forms, reducing the reversible capacity of the hydride. Deuterium and tritium isotherms were collected on the virgin materials, only tritium isotherms were collected at approximately 2 years, and both deuterium and tritium isotherms were collected at approximately 3.5 years of quiescent aging. Points of interest include those mentioned above as well as the effects of cycling the materials. The methods and results are presented.

  18. The hydrogen permeability of Pd{sub 4}S

    SciTech Connect (OSTI)

    O'Brien, Casey; Miller, James; Gellman, Andrew; Morreale, Bryan

    2011-04-01

    Hydrogen permeates rapidly through pure Pd membranes, but H{sub 2}S, a common minor component in hydrogen-containing streams, produces a Pd{sub 4}S film on the Pd surface that severely retards hydrogen permeation. Hydrogen still permeates through the bi-layered Pd{sub 4}S/Pd structure, indicating that the Pd{sub 4}S surface is active for H{sub 2} dissociation; the low hydrogen permeability of the Pd4S film is responsible for the decreased rate of hydrogen transport. In this work, the hydrogen permeability of Pd{sub 4}S was determined experimentally in the 623-773 K temperature range. Bi-layered Pd{sub 4}S/Pd foils were produced by exposing pure Pd foils to H{sub 2}S. H{sub 2} fluxes through the bi-layered Pd{sub 4}S/Pd foils were measured during exposure to both pure H{sub 2} and a 1000 ppm H{sub 2}S in H{sub 2} gas mixture. Our results show that H{sub 2}S slows hydrogen permeation through Pd mainly by producing a Pd{sub 4}S film on the Pd surface that is roughly an order-of-magnitude less permeable to hydrogen (k{sub Pd{sub 4}S} = 10{sup ?7.5} exp(?0.22 eV/k{sub B}T) molH{sub 2}/m/s/Pa{sup 1/2}) than pure Pd. The presence of H{sub 2}S in the gas stream results in greater inhibition of hydrogen transport than can be explained by the very low permeability of Pd{sub 4}S. H{sub 2}S may block H2 dissociation sites at the Pd{sub 4}S surface.

  19. Enhanced hydrogenation and reduced lattice distortion in size selected Pd-Ag and Pd-Cu alloy nanoparticles

    SciTech Connect (OSTI)

    Sengar, Saurabh K.; Mehta, B. R.; Kulriya, P. K.; Khan, S. A.

    2013-10-21

    Important correlation between valence band spectra and hydrogenation properties in Pd alloy nanoparticles is established by studying the properties of size selected and monocrystalline Pd, Ag, Cu, Pd-Ag, and Pd-Cu nanoparticles. The X-ray photoelectron spectroscopy and elastic recoil detection analysis show that size induced Pd4d centroid shift is related to enhanced hydrogenation with H/Pd ratio of 0.57 and 0.49 in Pd-Ag and Pd-Cu nanoparticles in comparison to reported bulk values of 0.2 and 0.1, respectively. Pd-alloy nanoparticles show lower hydrogen induced lattice distortion. The reduced distortion and higher hydrogen reactivity of Pd-alloy nanoparticles is important for numerous hydrogen related applications.

  20. Parity nonconservation in {sup 106}Pd and {sup 108}Pd neutron resonances

    SciTech Connect (OSTI)

    Crawford, B.E.; Roberson, N.R. [Duke University, Durham, North Carolina 27708 and Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708-0308 (United States)] [Duke University, Durham, North Carolina 27708 and Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708-0308 (United States); Bowman, J.D.; Knudson, J.N.; Penttilae, S.I.; Seestrom, S.J.; Yuan, V.W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Delheij, P.P. [TRIUMF, Vancouver, British Columbia, V6T 2A3 (CANADA)] [TRIUMF, Vancouver, British Columbia, V6T 2A3 (CANADA); Haseyama, T.; Masaike, A.; Matsuda, Y. [Physics Department, Kyoto University, Kyoto 606-01 (Japan)] [Physics Department, Kyoto University, Kyoto 606-01 (Japan); Lowie, L.Y.; Mitchell, G.E.; Stephenson, S.L. [North Carolina State University, Raleigh, North Carolina 27695-8202 and Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708-0308 (United States)] [North Carolina State University, Raleigh, North Carolina 27695-8202 and Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708-0308 (United States); Postma, H. [Delft University of Technology, Delft, 2629 JB (The Netherlands)] [Delft University of Technology, Delft, 2629 JB (The Netherlands); Sharapov, E.I. [Joint Institute for Nuclear Research, 141980 Dubna (Russia)] [Joint Institute for Nuclear Research, 141980 Dubna (Russia)

    1999-11-01

    Parity nonconservation (PNC) has been studied in the neutron {ital p}-wave resonances of {sup 106}Pd and {sup 108}Pd in the energy range of 20 to 2000 eV. Longitudinal asymmetries in {ital p}-wave capture cross sections are measured using longitudinally polarized neutrons incident on {approximately}20-g metal-powder targets at LANSCE. A CsI {gamma}-ray detector array measures capture cross section asymmetries as a function of neutron energy which is determined by the neutron time-of-flight method. A total of 21 {ital p}-wave resonances in {sup 106}Pd and 21 {ital p}-wave resonances in {sup 108}Pd were studied. One statistically significant PNC effect was observed in {sup 106}Pd, and no effects were observed in {sup 108}Pd. For {sup 106}Pd a weak spreading width of {Gamma}{sub w}=34{sub {minus}28}{sup +47}{times}10{sup {minus}7} eV was obtained. For {sup 108}Pd an upper limit on the weak spreading width of {Gamma}{sub w}{lt}12{times}10{sup {minus}7} eV was determined at the 68{percent} confidence level. {copyright} {ital 1999} {ital The American Physical Society}

  1. ARM - Field Campaign - Black Carbon at the Mt. Bachelor Observatory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsBlack Carbon at the Mt. Bachelor Observatory Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Black Carbon at the Mt. Bachelor Observatory 2016.06.15 - 2016.10.01 Lead Scientist : Daniel Jaffe Abstract Black carbon (BC) is a key component in the earth system and a significant climate forcing agent. Observations at remote sites and in free-tropospheric air are extremely sparse. We propose to utilize one of the ARM SP2 (Single

  2. HERO PRESENTS A DAY HIKE AT MT. ST. HELENS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HERO PRESENTS A DAY HIKE AT MT. ST. HELENS Saturday, September 10, 2016 Mt. St. Helens lost its top on May 18, 1980 (see the 'before' and 'after' pictures above). The environment has been left to respond naturally to the disturbance - and we'll see how it is doing 36 years into recovery. We'll head to Windy Ridge and walk the "sand ladder," hike towards Norway Pass, take the Meta Lake trail, and see the miner's car in person (pictured below); lots of photo opportunities!! This is a

  3. Babb, MT Liquefied Natural Gas Exports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Babb, MT Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  4. THE EFFECT OF CO ON HYDROGEN PERMEATION THROUGH PD AND INTERNALLY OXIDIZED AND UN-OXIDIZED PD ALLOY MEMBRANES

    SciTech Connect (OSTI)

    Shanahan, K.; Flanagan, T.; Wang, D.

    2010-10-20

    The H permeation of internally oxidized Pd alloy membranes such as Pd-Al and Pd-Fe, but not Pd-Y alloys, is shown to be more resistant to inhibition by CO(g) as compared to Pd or un-oxidized Pd alloy membranes. The increased resistance to CO is found to be greater at 423 K than at 473 K or 523 K. In these experiments CO was pre-adsorbed onto the membranes and then CO-free H{sub 2} was introduced to initiate the H permeation.

  5. An amorphous phase formation at palladium / silicon oxide (Pd...

    Office of Scientific and Technical Information (OSTI)

    An amorphous phase formation at palladium silicon oxide (PdSiOsub x) interface ... Title: An amorphous phase formation at palladium silicon oxide (PdSiOsub x) interface ...

  6. Synergistic Catalysis between Pd and Fe in Gas Phase Hydrodeoxygenatio...

    Office of Scientific and Technical Information (OSTI)

    Synergistic Catalysis between Pd and Fe in Gas Phase Hydrodeoxygenation of m-Cresol Citation Details In-Document Search Title: Synergistic Catalysis between Pd and Fe in Gas Phase ...

  7. Www.deq.mt.gov/MFS/LawRules/Circular2 | Open Energy Information

    Open Energy Info (EERE)

    Www.deq.mt.govMFSLawRulesCircular2 Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: Www.deq.mt.govMFSLawRulesCircular2 Published Publisher Not...

  8. Price of Babb, MT Liquefied Natural Gas Exports to Canada (Dollars...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Babb, MT Liquefied Natural Gas Exports to Canada (Dollars per Thousand Cubic Feet) Price of Babb, MT Liquefied Natural Gas Exports to Canada (Dollars per Thousand Cubic Feet) Year...

  9. 3-D Density Model Of Mt Etna Volcano (Southern Italy) | Open...

    Open Energy Info (EERE)

    Density Model Of Mt Etna Volcano (Southern Italy) Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: 3-D Density Model Of Mt Etna Volcano (Southern...

  10. Examination of 80 deg. C desorption isotherms of tritium aged Pd/k and LANA.75

    SciTech Connect (OSTI)

    Staack, G. C.; Shanahan, K. L.; Walters, R. T.; Pilgrim, R. D.

    2008-07-15

    Metal hydrides, specifically Pd deposited on kieselguhr (Pd/k) and LaNi{sub 4.25}Al{sub 0.75} (LANA.75), have been used at the Savannah River Site for almost twenty years for hydrogen isotope separation and storage. Radiolytic decay of tritium to helium-3 in the metal matrix causes three classic changes in the performance of the hydride: the plateau pressure decreases, the plateau slope increases, and a heel forms, reducing the reversible capacity of the hydride. Deuterium and tritium isotherms were collected on the virgin materials, only tritium isotherms were collected at approximately 2 years, and both deuterium and tritium isotherms were collected at approximately 3.5 years of quiescent aging at 26 deg. C. Each sample was loaded to 0.5-0.6 T/M prior to each aging period. Points of interest include comparisons of each sample at different aging periods and isotope effects on aged hydride isotherms. Partial restoration of thermodynamic properties by sample cycling has been observed in LANA. 75, though not previously reported in Pd. The methods and results are presented. (authors)

  11. Development of membranes for hydrogen separation: Pd-coated V-10Pd

    SciTech Connect (OSTI)

    Paglieri, Stephen N; Wermer, Joseph R; Buxbaum, Robert E; Ciocco, Michael V; Howard, Bret H; Morreale, Bryan D

    2009-01-01

    Numerous Group IVB and VB alloys were prepared and tested as potential membrane materials but most of these materials were brittle or exhibited cracking during hydrogen exposure. One of the more ductile alloys, V-10Pd (at. %), was fabricated into a thin (107-{micro}m thick) composite membrane coated with 100 nm of Pd on each side. The material was tested for hydrogen permeability, resistance to hydrogen embrittlement, and long term hydrogen flux stability. The hydrogen permeability, {phi}, of the V-10Pd membrane was 3.86 x 10{sup -8} mol H{sub 2} m{sup -1} s{sup -1} Pa{sup -0.5} (avg. of three different samples) at 400 C, which is slightly higher than the permeability of Pd-23Ag at that temperature. A 1400 h hydrogen flux test at 400 C demonstrated that the rate of metallic interdiffusion was slow between the V-10Pd foil and the 100-nm-thick Pd coating on the surface. However, at the end of testing the membrane cracked at 118 C because of hydrogen embrittlement.

  12. Ca{sub 2}Pd{sub 3}Ge, a new fully ordered ternary Laves phase structure

    SciTech Connect (OSTI)

    Doverbratt, Isa; Ponou, Simeon; Lidin, Sven

    2013-01-15

    The title compound, Ca{sub 2}Pd{sub 3}Ge, was prepared as a part of a systematic investigation of the Ca-Pd-Ge ternary phase diagram. The structure was determined and refined from single-crystal X-ray diffraction data. It is a new fully ordered ternary Laves phase with the space group R-3m, Z=3, a=5.6191 (5) A, c=12.1674 (7) A, wR{sub 2}=0.054 (all data) and is isostructural to Mg{sub 2}Ni{sub 3}Si (Noreus et al., 1985 [17]) but due to the larger size of all elements in Ca{sub 2}Pd{sub 3}Ge, the cell axes are approximately 10% longer. The compound may formally be considered as a Zintl compound, with [Pd{sub 3}Ge]{sup 4-} forming a poly-anionic network and divalent Ca cations located in truncated tetrahedral interstices. The electronic structure and chemical bonding of Ca{sub 2}Pd{sub 3}Ge is discussed in terms of LMTO band structure calculations and compared with CaPd{sub 2} (MgCu{sub 2}-type). - Graphical abstract: The title compound, Ca{sub 2}Pd{sub 3}Ge is a new fully ordered ternary Laves phase which may formally be considered as a Zintl compound, with [Pd{sub 3}Ge]{sup 4-} forming a poly-anionic network and divalent Ca cations located in truncated tetrahedral interstices. The structure is composed of Kagome net layers, consisting of Pd atoms only, which are stacked in an ABC sequence. Band structure calculations show that the Fermi level is located at a local minimum of the DOS (pseudo-gap) indicating that the charge is roughly optimized in the structure. Highlights: Black-Right-Pointing-Pointer Site specific segregation in a Laves phase that is also a Zintl phase. Black-Right-Pointing-Pointer Pseudo-gap at the Fermi level in a Laves phase. Black-Right-Pointing-Pointer Distorted Frank-Kasper polyhedron.

  13. Sweetgrass, MT Liquefied Natural Gas Exports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Sweetgrass, MT Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 7 5 2014 8 11 10 8 8 5 6 6 6 6 6 7 2015 5 4 5 5 5 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  14. Fabrication of Pd/Pd-Alloy Films by Surfactant Induced Electroless Plating for Hydrogen Separation from Advanced Coal Gasification Processes

    SciTech Connect (OSTI)

    Ilias, Shamsuddin; Kumar, Dhananjay

    2012-07-31

    Dense Pd, Pd-Cu and Pd-Ag composite membranes on microporous stainless steel substrate (MPSS) were fabricated by a novel electroless plating (EP) process. In the conventional Pd-EP process, the oxidation-reduction reactions between Pd-complex and hydrazine result in an evolution of NH{sub 3} and N{sub 2} gas bubbles. When adhered to the substrate surface and in the pores, these gas bubbles hinder uniform Pd-film deposition which results in dendrite growth leading to poor film formation. This problem was addressed by introducing cationic surfactant in the electroless plating process known as surfactant induced electroless plating (SIEP). The unique features of this innovation provide control of Pd-deposition rate, and Pd-grain size distribution. The surfactant molecules play an important role in the EP process by tailoring grain size and the process of agglomeration by removing tiny gas bubbles through adsorption at the gas-liquid interface. As a result surfactant can tailor a nanocrystalline Pd, Cu and Ag deposition in the film resulting in reduced membrane film thickness. Also, it produces a uniform, agglomerated film structure. The Pd-Cu and Pd-Ag membranes on MPSS support were fabricated by sequential deposition using SIEP method. The pre- and post-annealing characterizations of these membranes (Pd, Pd-Cu and Pd-Ag on MPSS substrate) were carried out by SEM, EDX, XRD, and AFM studies. The SEM images show significant improvement of the membrane surface morphology, in terms of metal grain structures and grain agglomeration compared to the membranes fabricated by conventional EP process. The SEM images and helium gas-tightness studies indicate that dense and thinner films of Pd, Pd-Cu and Pd-Ag membranes can be produced with shorter deposition time using surfactant. H{sub 2} Flux through the membranes fabricated by SIEP shows large improvement compared to those by CEP with comparable permselectivity. Pd-MPSS composite membrane was subjected to test for long term

  15. Kinetics of monolayer graphene growth by segregation on Pd(111)

    SciTech Connect (OSTI)

    Mok, H. S.; Murata, Y.; Kodambaka, S., E-mail: kodambaka@ucla.edu [Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095 (United States); Ebnonnasir, A.; Ciobanu, C. V. [Department of Mechanical Engineering and Materials Science Program, Colorado School of Mines, Golden, Colorado 80401 (United States); Nie, S.; McCarty, K. F. [Sandia National Laboratories, Livermore, California 94550 (United States)

    2014-03-10

    Using in situ low-energy electron microscopy and density functional theory calculations, we follow the growth of monolayer graphene on Pd(111) via surface segregation of bulk-dissolved carbon. Upon lowering the substrate temperature, nucleation of graphene begins on graphene-free Pd surface and continues to occur during graphene growth. Measurements of graphene growth rates and Pd surface work functions establish that this continued nucleation is due to increasing C adatom concentration on the Pd surface with time. We attribute this anomalous phenomenon to a large barrier for attachment of C adatoms to graphene coupled with a strong binding of the non-graphitic C to the Pd surface.

  16. 102Pd(n, {gamma}) Cross Section Measurement Using DANCE

    SciTech Connect (OSTI)

    Hatarik, R.; Alpizar-Vicente, A. M. [Colorado School of Mines, Golden, CO 80401 (United States); Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bredeweg, T. A.; Esch, E.-I.; Haight, R. C.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Greife, U. [Colorado School of Mines, Golden, CO 80401 (United States)

    2006-03-13

    The neutron capture cross section of the proton rich nucleus 102Pd was measured with the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center. The target was a 2 mg Pd foil with 78% enriched 102Pd. It was held by a 0.9 {mu}m thick Mylar bag which was selected after comparing different thicknesses of Kapton and Mylar for their scattering background. To identify the contribution of the other Pd isotopes the data of a natural Pd sample was compared to the data of the 102Pd enriched sample. A 12C sample was used to determine the scattering background. The 102Pd(n, {gamma}) rate is of importance for the p-process nucleosynthesis.

  17. Seed influence on the ferromagnetic resonance response of Co/Ni multilayers

    SciTech Connect (OSTI)

    Sabino, Maria Patricia Rouelli, E-mail: maria-sabino@dsi.a-star.edu.sg; Tran, Michael; Hin Sim, Cheow; Ji Feng, Ying; Eason, Kwaku [Data Storage Institute, Agency for Science, Technology and Research, 5 Engineering Drive 1, Singapore 117608 (Singapore)

    2014-05-07

    The effect of Pd and Ru seed layers on the magnetic properties of [Co/Ni]{sub N} multilayers with varying number of bilayer repeats N is investigated using vector network analyzer ferromagnetic resonance. The effective anisotropy field H{sub Keff} is found to increase with N for Ru seed, but decreases for Pd until N?=?15. As N is increased beyond 15, H{sub Keff} decreases for both seeds. In contrast, the damping parameter ? decreases with N regardless of the seed, showing a 1/N dependence. Taking spin pumping into account, the intrinsic damping ?{sub 0} for both Pd and Ru seeds reduce to ?{sub 0} ? 0.01. These results demonstrate that there can be a strong influence of the seed/Co interface on anisotropy, especially for sufficiently low N, but not necessarily on ?{sub 0}.

  18. Temperature dependence of the Pd [ital K]-edge extended x-ray-absorption fine structure of PdC[sub [ital x

    SciTech Connect (OSTI)

    McCaulley, J.A. (Hoechst Celanese Research Division, Robert L. Mitchell Technical Center, 86 Morris Avenue, Summit, New Jersey 07901 (United States))

    1993-03-01

    Pd [ital K]-edge extended x-ray-absorption fine-structure (EXAFS) and x-ray-absorption near-edge-structure (XANES) measurements were performed on a Pd carbide phase, PdC[sub [ital x

  19. Papua New Guinea MT: Looking where seismic is blind

    SciTech Connect (OSTI)

    Hoversten, G.M.

    1996-11-01

    Hydrocarbon exploration in the Papuan fold belt is made extremely difficult by mountainous terrain, equatorial jungle and thick karstified Miocene limestones at the surface. The high-velocity karstified limestones at or near the surface often render the seismic technique useless for imaging the subsurface. In such areas magnetotellurics (MT) provides a valuable capability for mapping subsurface structure. Numerical and field data examples are presented which demonstrate the severity of the 1D errors and the improvements in accuracy which can be achieved using a 2D inverse solution. Two MT lines over adjacent anticlines, both with well control and seismic data, are used to demonstrate the application of 1D and 2D inversions for structural models. The example over the Hides anticline illustrates a situation where 1D inversion of either TE or TM mode provides essentially the same depth to base of Darai as 2D inversion of both TE and TM. The example over the Angore anticline illustrates the inadequacy of 1D inversion in structurally complex geology complicated by electrical statics. Four MT lines along the Angore anticline have been interpreted using 2D inversion. Three-dimensional modelling has been used to simulate 3D statics in an otherwise 2D earth. These data were used to test the Groom-Bailey (GB) decomposition for possible benefits in reducing static effects and estimating geoelectric strike in the Papua New Guinea (PNG) field data. It has been found that the GB decomposition can provide improved regional 2D strike estimates in 3D contaminated data. However, in situations such as PNG, where the regional 2D strike is well established and hence can be fixed, the GB decomposition provides apparent resistivities identical to those simply rotated to strike.

  20. Sweetgrass, MT Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Sweetgrass, MT Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 7 5 2014 8 11 10 8 8 5 6 6 6 6 6 7 2015 5 4 5 5 5 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Cubic Feet)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's

  1. Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Pipeline Exports to Canada (Million Cubic Feet) Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 2 2013 3 5 4 6 9 8 5 8 7 5 7 5 2014 8 11 10 8 8 5 6 6 6 6 6 7 2015 5 4 5 5 5 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied

  2. Effect of Sodium Sulfide on Ni-Containing Carbon Monoxide Dehydrogenases

    SciTech Connect (OSTI)

    Jian Feng; Paul A. Lindahl

    2004-07-28

    OAK-B135 The structure of the active-site C-cluster in CO dehydrogenase from Carboxythermus hydrogenoformans includes a {mu}{sup 2}-sulfide ion bridged to the Ni and unique Fe, while the same cluster in enzymes from Rhodospirillum rubrum (CODH{sub Rr}) and Moorella thermoacetica (CODH{sub Mt}) lack this ion. This difference was investigated by exploring the effects of sodium sulfide on activity and spectral properties. Sulfide partially inhibited the CO oxidation activity of CODH{sub Rr} and generated a lag prior to steady-state. CODH{sub Mt} was inhibited similarly but without a lag. Adding sulfide to CODH{sub Mt} in the C{sub red1} state caused the g{sub av} = 1.82 EPR signal to decline and new features to appear, including one with g = 1.95, 1.85 and (1.70 or 1.62). Removing sulfide caused the g{sub av} = 1.82 signal to reappear and activity to recover. Sulfide did not affect the g{sub av} = 1.86 signal from the C{sub red2} state. A model was developed in which sulfide binds reversibly to C{sub red1}, inhibiting catalysis. Reducing this adduct causes sulfide to dissociate, C{sub red2} to develop, and activity to recover. Using this model, apparent K{sub I} values are 40 {+-} 10 nM for CODH{sub Rr} and 60 {+-} 30 {micro}M for CODH{sub Mt}. Effects of sulfide are analogous to those of other anions, including the substrate hydroxyl group, suggesting that these ions also bridge the Ni and unique Fe. This proposed arrangement raises the possibility that CO binding labilizes the bridging hydroxyl and increases its nucleophilic tendency towards attacking Ni-bound carbonyl.

  3. Overcoming Hydrocarbon Inhibition on Pd-based Diesel Oxidation Catalysts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Rational Catalyst Design Approach | Department of Energy Overcoming Hydrocarbon Inhibition on Pd-based Diesel Oxidation Catalysts with Rational Catalyst Design Approach Overcoming Hydrocarbon Inhibition on Pd-based Diesel Oxidation Catalysts with Rational Catalyst Design Approach Discusses results of a project focused on overcoming hydrocarbon inhibition on Pd-based diesel oxidation catalysts by using a rational catalyst design approach. deer11_kapur.pdf (745.87 KB) More Documents &

  4. Monitoring Galvanic Replacement of Ag Nanoparticles by Pd using...

    Office of Scientific and Technical Information (OSTI)

    Conference: Monitoring Galvanic Replacement of Ag Nanoparticles by Pd using Low Dose In Situ Liquid STEM. Citation Details In-Document Search Title: Monitoring Galvanic ...

  5. Chemical and Morphological Evolution of Nanoporous Pd/Rh Alloy...

    Office of Scientific and Technical Information (OSTI)

    Conference: Chemical and Morphological Evolution of Nanoporous PdRh Alloy Particles for ... Country of Publication: United States Language: English Word Cloud More Like This Full ...

  6. Biography U. Dsterloh Degree: PD Dr.- Ing. habil. Institution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U. Dsterloh Degree: PD Dr.- Ing. habil. Institution: Clausthal University of Technology. Chair: chair for waste disposal technologies and geomechanics. 1982- 1988 field of study:...

  7. Supported bimetallic PdAu nanoparticles with superior electrocatalytic...

    Office of Scientific and Technical Information (OSTI)

    nanoparticles with superior electrocatalytic activity towards methanol oxidation Citation Details In-Document Search Title: Supported bimetallic PdAu nanoparticles with superior ...

  8. Neutron resonance spectroscopy of {sup 106}Pd and {sup 108}Pd from 20 to 2000 eV

    SciTech Connect (OSTI)

    Crawford, B.E.; Roberson, N.R. [Duke University, Durham, North Carolina 27708 and Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708-0308 (United States)] [Duke University, Durham, North Carolina 27708 and Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708-0308 (United States); Bowman, J.D.; Knudson, J.N.; Penttilae, S.I.; Seestrom, S.J.; Yuan, V.W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Delheij, P.P. [TRIUMF, Vancouver, British Columbia, V6T 2A3 (CANADA)] [TRIUMF, Vancouver, British Columbia, V6T 2A3 (CANADA); Haseyama, T.; Masaike, A.; Matsuda, Y. [Physics Department, Kyoto University, Kyoto 606-01 (Japan)] [Physics Department, Kyoto University, Kyoto 606-01 (Japan); Lowie, L.Y.; Mitchell, G.E.; Stephenson, S.L. [North Carolina State University, Raleigh, North Carolina 27695-8202 and Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708-0308 (United States)] [North Carolina State University, Raleigh, North Carolina 27695-8202 and Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708-0308 (United States); Postma, H. [University of Technology, Delft, 2600 GA (The Netherlands)] [University of Technology, Delft, 2600 GA (The Netherlands); Sharapov, E.I. [Joint Institute for Nuclear Research, 141980 Dubna (Russia)] [Joint Institute for Nuclear Research, 141980 Dubna (Russia)

    1998-08-01

    Parity nonconserving asymmetries have been measured in p-wave resonances of {sup 106}Pd and {sup 108}Pd. The data analysis requires knowledge of the neutron resonance parameters. Transmission and capture {gamma}-ray yields were measured for E{sub n}=20{endash}2000 eV with the time-of-flight method at the Los Alamos Neutron Science Center (LANSCE). A total of 28 resonances in {sup 106}Pd and 32 resonances in {sup 108}Pd were studied. The resonance parameters for {sup 106}Pd are new for all except one resonance. In {sup 108}Pd six new resonances were observed and the precision improved for many of the resonance parameters. A Bayesian analysis was used to assign orbital angular momentum for the resonances studied. {copyright} {ital 1998} {ital The American Physical Society}

  9. Size and alloying induced shift in core and valence bands of Pd-Ag and Pd-Cu nanoparticles

    SciTech Connect (OSTI)

    Sengar, Saurabh K.; Mehta, B. R.; Govind

    2014-03-28

    In this report, X-ray photoelectron spectroscopy studies have been carried out on Pd, Ag, Cu, Pd-Ag, and Pd-Cu nanoparticles having identical sizes corresponding to mobility equivalent diameters of 60, 40, and 20 nm. The nanoparticles were prepared by the gas phase synthesis method. The effect of size on valence and core levels in metal and alloy nanoparticles has been studied by comparing the values to those with the 60 nm nanoparticles. The effect of alloying has been investigated by comparing the valence and core level binding energies of Pd-Cu and Pd-Ag alloy nanoparticles with the corresponding values for Pd, Ag, and Cu nanoparticles of identical sizes. These effects have been explained in terms of size induced lattice contractions, alloying induced charge transfer, and hybridization effects. The observation of alloying and size induced binding energy shifts in bimetallic nanoparticles is important from the point of view of hydrogen reactivity.

  10. Rock Sampling At Mt Ranier Area (Frank, 1995) | Open Energy Informatio...

    Open Energy Info (EERE)

    Exploration Activity Details Location Mt Ranier Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes This paper relies...

  11. Controlled Source Audio MT At Pilgrim Hot Springs Area (DOE GTP...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Controlled Source Audio MT At Pilgrim Hot Springs Area (DOE GTP) Exploration Activity Details Location Pilgrim...

  12. Characterization of Na+- beta-Zeolite Supported Pd and Pd Ag Bimetallic Catalysts using EXAFS, TEM and Flow Reactor

    SciTech Connect (OSTI)

    Huang,W.; Lobo, R.; Chen, J.

    2008-01-01

    Flow reactor studies of the selective hydrogenation of acetylene in the presence of ethylene have been performed on Na+ exchanged {beta}-zeolite supported Pd, Ag and PdAg catalysts, as an extension of our previous batch reactor studies [W. Huang, J.R. McCormick, R.F. Lobo, J.G. Chen, J. Catal. 246 (2007) 40-51]. Results from flow reactor studies show that the PdAg/Na+-{beta}-zeolite bimetallic catalyst has lower activity than Pd/Na+-{beta}-zeolite monometallic catalyst, while Ag/Na+-{beta}-zeolite does not show any activity for acetylene hydrogenation. However, the selectivity for the PdAg bimetallic catalyst is much higher than that for either the Pd catalyst or Ag catalyst. The selectivity to byproduct (ethane) is greatly inhibited on the PdAg bimetallic catalyst as well. The results from the current flow reactor studies confirmed the pervious results from batch reactor studies [W. Huang, J.R. McCormick, R.F. Lobo, J.G. Chen, J. Catal. 246 (2007) 40-51]. In addition, we used transmission electron microscope (TEM), extended X-ray absorption fine structure (EXAFS), and FTIR of CO adsorption to confirm the formation of Pd-Ag bimetallic alloy in the PdAg/Na+-{beta}-zeolite catalyst.

  13. Atomic and electronic structure of Pd{sub 40}Ni{sub 40}P{sub...

    Office of Scientific and Technical Information (OSTI)

    (M) atoms and form a polar covalently bonded random network of P-M-P favoring certain angles. The remaining M atoms act as metallic glue with a tendency of nanoscale clustering of...

  14. Materials Data on NiGePd (SG:129) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on Ni(TePd)2 (SG:72) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. A photoemission study of Pd ultrathin films on Pt(111) (Journal...

    Office of Scientific and Technical Information (OSTI)

    At sub-monolayer coverage of Pd thin films, the splitting of Pd 3d core level peaks ... on the Pd 3d vanishes and only the initial-state effect, a negative SCLS, is present. ...

  17. Atomic force microscopy and x-ray photoelectron spectroscopy investigations of the morphology and chemistry of a PdCl{sub 2}/SnCl{sub 2} electroless plating catalysis system adsorbed onto shape memory alloy particles

    SciTech Connect (OSTI)

    Silvain, J.F.; Fouassier, O.; Lescaux, S.

    2004-11-01

    A study of the different stages of the electroless deposition of copper on micronic NiTi shape memory alloy particles activated by one-step and two-step methods has been conducted from both a chemical and a morphological point of view. The combination of x-ray photoelectron spectroscopy (XPS) measurements and atomic force microscopy (AFM) imaging has allowed detection of the distribution of the formed compounds and depth quantification and estimation of the surface topographic parameters. For the two-step method, at the sensitization of the early stages, it is observed by AFM that Sn is absorbed in form of clusters that tend to completely cover the surface and form a continuous film. XPS analysis have shown that Sn and Pd are first absorbed in form of oxide (SnO{sub 2} and PdO) and hydroxide [Sn(OH){sub 4}]. After the entire sensitization step, the NiTi substrate is covered with Sn-based compounds. After the sensitization and the activation steps the powder roughness increases. Behavior of the Sn and Pd growth for the one-step method does not follow the behavior found for the two-step method. Indeed, XPS analysis shows a three-dimensional (3D) growth of Pd clusters on top of a mixture of metallic tin, oxide (SnO) and hydroxide [Sn(OH){sub 2}]. These Pd clusters are covered with a thin layer of Pd-oxide contamination induced by the electroless process. The mean roughness for the one-step and two-step processes are equivalent. After copper deposition, the decrease of mean roughness is attributed to a filling of surface valleys, observed after the Sn-Pd coating step.

  18. Pd conductor for thick film hydrogen sensor

    SciTech Connect (OSTI)

    Felten, J.J.; Hoffheins, B.S.; Lauf, R.J.

    1996-12-31

    Cooperation between a materials developer and sensor designers has resulted in a palladium conductor used ro design and build a new hydrogen sensor that has superior performance characteristics and is also inexpensive to manufacture. Material characteristics give it faster response time and greater thermal/mechanical stability. The thick film palladium conductor paste, which can be fired at 850{degrees}C-950{degrees}C, has provided device designers a practical conductor paste with which to produce the improved sensor. The conductor uses a high surface area Pd powder combined with a binder glass that is chemically very inert, which combination produces a porous conductor that has good adhesion and chemical resistance. The current sensor design consists of three or four thick film Layers. Because of the flexibility of thick film techniques, the sensor element can be configured to any desired size and shape for specific instrument needs.

  19. Hydrogen catalysis and scavenging action of Pd-POSS nanoparticles

    SciTech Connect (OSTI)

    Maiti, A; Gee, R H; Maxwell, R; Saab, A

    2007-02-01

    Prompted by the need for a self-supported, chemically stable, and functionally flexible catalytic nanoparticle system, we explore a system involving Pd clusters coated with a monolayer of polyhedral oligomeric silsesquioxane (POSS) cages. With an initial theoretical focus on hydrogen catalysis and sequestration in the Pd-POSS system, we report Density Functional Theory (DFT) results on POSS binding energies to the Pd(110) surface, hydrogen storing ability of POSS, and possible pathways of hydrogen radicals from the catalyst surface to unsaturated bonds away from the surface.

  20. Electrical current suppression in Pd-doped vanadium pentoxide nanowires caused by reduction in PdO due to hydrogen exposure

    SciTech Connect (OSTI)

    Kim, Byung Hoon; Oh, Soon-Young; Yu, Han Young; Yun, Yong Ju; Kim, Yark Yeon; Hong, Won G.; Jeong, Hu Young; Lee, Jeong Yong; Kim, Hae Jin

    2010-04-19

    Pd nanoparticle-doped vanadium pentoxide nanowires (Pd-VONs) were synthesized. Electrical current suppression was observed when the Pd-VON was exposed to hydrogen gas, which cannot be explained by the work function changes mentioned in previous report such as Pd-doped carbon nanotubes and SnO{sub 2} nanowires. Using the x-ray photoelectron spectroscopy, we found that the reduction in PdO due to hydrogen exposure plays an important role in the current suppression of the Pd-VON.

  1. Kinetic effect of Pd additions on the hydrogen uptake of chemically activated, ultramicroporous carbon

    SciTech Connect (OSTI)

    Bhat, Vinay V; Contescu, Cristian I; Gallego, Nidia C

    2010-01-01

    The effect of mixing chemically-activated ultramicroporous carbon (UMC) with Pd nanopowder is investigated. Results show that Pd addition doubles the rate of hydrogen uptake, but does not enhance the hydrogen capacity or improve desorption kinetics. The effect of Pd on the rate of hydrogen adsorption supports the occurrence of the hydrogen spillover mechanism in the Pd - UMC system.

  2. Anomalous magnetic configuration of Mn{sub 2}NiAl ribbon and the role of hybridization in the martensitic transformation of Mn{sub 50}Ni{sub 50−x}Al{sub x} ribbons

    SciTech Connect (OSTI)

    Zhao, R. B.; Zhao, D. W.; Li, G. K.; Ma, L. E-mail: houdenglu@mail.hebtu.edu.cn; Zhen, C. M.; Hou, D. L. E-mail: houdenglu@mail.hebtu.edu.cn; Wang, W. H.; Liu, E. K.; Chen, J. L.; Wu, G. H.

    2014-12-08

    The magnetic configuration of Mn{sub 2}NiAl ribbon has been investigated. In contrast to Ni{sub 2}MnAl, the compound Mn{sub 2}NiAl with considerable disorder does exhibit ferromagnetism and, due to exchange interaction competition, both ferromagnetic and antiferromagnetic moment orientations can coexist between nearest neighbor Mn atoms. This is unexpected in Heusler alloys. Regarding the mechanism of the martensitic transformation in Mn{sub 50}Ni{sub 50−x}Al{sub x}, it is found that increasing the Al content results in an unusual change in the lattice constant, a decrease of the transformation entropy change, and enhancement of the calculated electron localization. These results indicate that the p-d covalent hybridization between Mn (or Ni) and Al atoms gradually increases at the expense of the d-d hybridization between Ni and Mn atoms. This leads to an increased stability of the austenite phase and a decrease of the martensitic transformation temperature. For 11 ≤ x ≤ 14, Mn{sub 50}Ni{sub 50−x}Al{sub x} ferromagnetic shape memory alloys are obtained.

  3. Overcoming Hydrocarbon Inhibition on Pd-based Diesel Oxidation...

    Broader source: Energy.gov (indexed) [DOE]

    Discusses results of a project focused on overcoming hydrocarbon inhibition on Pd-based diesel oxidation catalysts by using a rational catalyst design approach. deer11kapur.pdf ...

  4. Composite Pd and Pd Alloy Porous Stainless Steel Membranes for Hydrogen Production and Process Intensification

    SciTech Connect (OSTI)

    Yi Hua Ma; Nikolaos Kazantzis; Ivan Mardilovich; Federico Guazzone; Alexander Augustine; Reyyan Koc

    2011-11-06

    The synthesis of composite Pd membranes has been modified by the addition of a Al(OH){sub 3} graded layer and sequential annealing at high temperatures to obtain membranes with high permeance and outstanding selectivity stability for over 4000 hours at 450°C. Most of the membranes achieved in this work showed H{sub 2} flux well above 2010 DOE targets and in some case, also above 2015 DOE targets. Similar composite membranes were tested in water gas shift reaction atmospheres and showed to be stable with high CO conversion and high hydrogen recovery for over 1000 hours. The H{sub 2} permeance of composite Pd-Au membranes was studied as well as its resistance in H{sub 2}S containing atmospheres. H{sub 2}S poisoning of Pd-based membranes was reduced by the addition of Au and the loss undergone by membranes was found to be almost totally recoverable with 10-30 wt%Au. PSA technique was studied to test the possibility of H{sub 2}S and COS removal from feed stream with limited success since the removal of H{sub 2}S also led to the removal of a large fraction of the CO{sub 2}. The economics of a WGS bundle reactor, using the information of the membranes fabricated under this project and integrated into an IGCC plant were studied based on a 2D reactor modeling. The calculations showed that without a government incentive to impose a CO{sub 2} tax, application of WGS membrane reactors in IGCC would be not as economically attractive as regular pulverized coal plants.

  5. The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors

    SciTech Connect (OSTI)

    Lin, David Yin-wei; Tanaka, Yoshimasa; Iwasaki, Masashi; Gittis, Apostolos G.; Su, Hua-Poo; Mikami, Bunzo; Okazaki, Taku; Honjo, Tasuku; Minato, Nagahiro; Garboczi, David N. (NIH); (Kyoto)

    2008-07-29

    Signaling through the programmed death 1 (PD-1) inhibitory receptor upon binding its ligand, PD-L1, suppresses immune responses against autoantigens and tumors and plays an important role in the maintenance of peripheral immune tolerance. Release from PD-1 inhibitory signaling revives 'exhausted' virus-specific T cells in chronic viral infections. Here we present the crystal structure of murine PD-1 in complex with human PD-L1. PD-1 and PD-L1 interact through the conserved front and side of their Ig variable (IgV) domains, as do the IgV domains of antibodies and T cell receptors. This places the loops at the ends of the IgV domains on the same side of the PD-1/PD-L1 complex, forming a surface that is similar to the antigen-binding surface of antibodies and T cell receptors. Mapping conserved residues allowed the identification of residues that are important in forming the PD-1/PD-L1 interface. Based on the structure, we show that some reported loss-of-binding mutations involve the PD-1/PD-L1 interaction but that others compromise protein folding. The PD-1/PD-L1 interaction described here may be blocked by antibodies or by designed small-molecule drugs to lower inhibitory signaling that results in a stronger immune response. The immune receptor-like loops offer a new surface for further study and potentially the design of molecules that would affect PD-1/PD-L1 complex formation and thereby modulate the immune response.

  6. Cu--Pd--M hydrogen separation membranes

    DOE Patents [OSTI]

    Do{hacek over }an, Omer N; Gao, Michael C; Young, Rongxiang Hu; Tafen, De Nyago

    2013-12-17

    The disclosure provides an H2 separation membrane comprised of an allow having the composition Cu.Sub.(100-x-y)Pd.sub.xM.sub.y, where x is from about 35 to about 50 atomic percent and where y is from greater than 0 to about 20 atomic percent, and where M consists of magnesium, yttrium, aluminum, titanium, lanthanum, or combinations thereof. The M elements act as strong stabilizers for the B2 phase of the allow, and extend the critical temperature of the alloy for a given hydrogen concentration and pressure. Due to the phase stabilization and the greater temperature range over which a B2 phase can be maintained, the allow is well suited for service as a H2 separation membrane, particularly when applicable conditions are established or cycled above about 600.degree. C. over the course of expected operations. In certain embodiments, the B2 phase comprises at least 60 estimated volume percent of the allow at a steady-state temperature of 400.degree. C. The B2 phase stability is experimentally validated through HT-XRD.

  7. A pathway for the growth of core-shell Pt-Pd nanoparticles

    SciTech Connect (OSTI)

    Narula, Chaitanya Kumar; Yang, Xiaofan; Li, Chen; Pennycook, Stephen J; Lupini, Andrew R

    2015-10-12

    In this study, the aging of both Pt-Pd nanoparticles and core-shell Pt-Pd nanoparticles has been reported to result in alloying of Pt with Pd. In comparison to monometallic Pt catalysts, the growth of Pd-Pt bimetallics is slower; however, the mechanism of growth of particles and the mechanism by which Pd improves the hydrothermal durability of bimetallic Pd-Pt particles remains uncertain. In our work on hydrothermal aging of core-shell Pt-Pd nanoparticles, synthesized by solution methods, with varying Pd:Pt ratio of 1:4, 1:1, and 4:1, we compare the growth of core-shell Pt-Pd nanoparticles and find that particles grow by migrating and joining together. The unique feature of the observed growth is that Pd shells from both particles open up and join, allowing the cores to merge. At high temperatures, alloying occurs in good agreement with reports by other workers.

  8. Local structure order in Pd??Cu?Si?? liquid

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yue, G. Q.; Iowa State Univ., Ames, IA; Zhang, Y.; Sun, Y.; Shen, B.; Dong, F.; Wang, Z. Y.; Zhang, R. J.; Zheng, Y. X.; Kramer, M. J.; et al

    2015-02-05

    The short-range order (SRO) in Pd??Cu?Si?? liquid was studied by high energy x-ray diffraction and ab initio molecular dynamics (MD) simulations. The calculated pair correlation functions at different temperatures agree well with the experimental results. The partial pair correlation functions from ab intio MD simulations indicate that Si atoms prefer to be uniformly distributed while Cu atoms tend to aggregate. By performing structure analysis using Honeycutt-Andersen index, Voronoi tessellation, and atomic cluster alignment method, we show that the icosahedron and face-centered cubic SRO increase upon cooling. The dominant SRO is the Pd-centered Pd?Si? motif, namely the structure of which motifmoreis similar to the structure of Pd-centered clusters in the Pd?Si? crystal. The study further confirms the existence of trigonal prism capped with three half-octahedra that is reported as a structural unit in Pd-based amorphous alloys. The majority of Cu-centered clusters are icosahedra, suggesting that the presence of Cu is benefit to promote the glass forming ability.less

  9. The Pd/Fe Interface in the Epitaxial System Pd/Fe/GaAs(001)- 4 x 6

    SciTech Connect (OSTI)

    Budnik, P.S.; Gordon, R.A.; Crozier, E.D.

    2007-01-18

    Magnetic properties of thin magnetic films are strongly affected by the nature of the interface between magnetic and non-magnetic layers. In spintronic devices the extent to which spins are scattered at an interface depends upon interfacial roughness, alloying, and impurities. We present a polarization-dependent XAFS study of a 1Pd/9Fe/GaAs(001)-(4 x 6) structure grown in situ in the MBE facility at the PNC/XOR, APS. To increase the interfacial roughness, the 1ML Pd was grown on the 9 ML Fe without first sputtering and annealing the Fe. An estimate of interfacial roughness, evidence for formation of Pd islands, their height, and the amount of As floating to the Pd surface from the GaAs are given.

  10. Airtricity Developments NI Ltd | Open Energy Information

    Open Energy Info (EERE)

    Airtricity Developments NI Ltd Jump to: navigation, search Name: Airtricity Developments NI Ltd Place: Belfast, Northern Ireland, United Kingdom Zip: BT2 7AF Sector: Wind energy...

  11. SF 6432-NI (04-95)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrieve latest version electronically. SF 6432-NI (061411) SECTION II STANDARD TERMS ... Control : SF 6432-NI Title: Standard Terms & Conditions for Fixed Price Contracts With ...

  12. A Large Self-Potential Anomaly And Its Changes On The Quiet Mt...

    Open Energy Info (EERE)

    Large Self-Potential Anomaly And Its Changes On The Quiet Mt Fuji, Japan Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Large Self-Potential...

  13. Electron phonon coupling in Ni-based binary alloys with application to displacement cascade modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Samolyuk, German D.; Stocks, George Malcolm; Stoller, Roger E.

    2016-04-01

    Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni0.5Fe0.5, Ni0.5Co0.5 and Ni0.5Pd0.5 are ordered ferromagnetically, whereas Ni0.5Cr0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied by a decrease of electronic density of states atmore » the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration.« less

  14. Magnetic properties of double perovskite La2BMnO6 (B = Ni or Co) nanoparticles

    SciTech Connect (OSTI)

    Mao, Yuanbing; Parsons, Jason; McCloy, John S.

    2013-03-31

    Double perovskite La2BMnO6 (B = Ni and Co) nanoparticles with average particle size of ~50 nm were synthesized using a facile, environmentally friendly, scalable molten-salt reaction at 700 C in air. Their structural and morphological properties were characterized by x-ray diffraction and transmission electron microscopy. Magnetic properties were evaluated using dc magnetic M-T and M-H, and ac magnetic susceptibility versus frequency, temperature, and field. The magnetization curve shows a paramagnetic-ferromagnetic transition at TC ~275 and 220 K for La2NiMnO6 (LNMO) and La2CoMnO6 (LCMO) nanoparticles, respectively. ac susceptibility revealed that the LCMO had a single magnetic transition indicative of Co2+-O2--Mn4+ ordering, whereas the LNMO showed more complex magnetic behavior suggesting a re-entrant spin glass.

  15. Evidence for Low-Intensity D-D Reaction as a Result of Exothermic Deuterium Desorption from Au/Pd/PdO:D Heterostructure

    SciTech Connect (OSTI)

    Lipson, A.G.; Lyakhov, B.F.; Roussetski, A.S.; Akimoto, T.; Mizuno, T.; Asami, N.; Shimada, R.; Miyashita, S.; Takahashi, A.

    2000-09-15

    Low-intensity nuclear emissions (neutrons and charged particles) due to exothermic deuterium desorption from Au/Pd/PdO heterostructure loaded with deuterium by electrolysis have been studied by NE213 neutron detection as well as SSB and CR-39 charged-particle detectors in low-background conditions with large statistics. Similar measurements were performed with the Au/Pd/PdO:H heterostructure as a control. It has been established that in experiments with the Au/Pd/PdO:D system, the excessive 2.45-MeV neutrons and 3.0-MeV protons are better detected than with the Au/Pd/PdO:H system, where those detection rates for n and p did not exceed the cosmic background level. The levels of neutron and proton emissions for 40- to 60-{mu}m-thick samples are found to be close to one another and after subtracting background (Au/Pd/PdO:H count rate) consist of I{sub n} = (19 {+-} 2).10{sup -3} n/s and I{sub p} (4.0 {+-} 1.0).10{sup -3} p/s in a 4{pi} solid angle, respectively. These yields of D-D reaction products in Au/Pd/PdO heterostructure comply with the mean D-D reaction rate of {lambda}{sub dd} {approx} 10{sup -23}s{sup -1} per D-D pair.

  16. Antiferromagnetic Kondo lattice in the layered compound CePd1-xBi₂ and

    Office of Scientific and Technical Information (OSTI)

    comparison to the superconductor LaPd1-xBi₂ (Journal Article) | SciTech Connect Antiferromagnetic Kondo lattice in the layered compound CePd1-xBi₂ and comparison to the superconductor LaPd1-xBi₂ Citation Details In-Document Search Title: Antiferromagnetic Kondo lattice in the layered compound CePd1-xBi₂ and comparison to the superconductor LaPd1-xBi₂ The layered compound CePd1-xBi₂ with the tetragonal ZrCuSi₂-type structure was obtained from excess Bi flux. Magnetic

  17. Surfactant-induced postsynthetic modulation of Pd nanoparticle crystallinity.

    SciTech Connect (OSTI)

    Liu, Y.; Wang, C.; Wei, Y.; Zhu, L.; Li, D.; Jiang, J. S.; Markovic, N. M.; Stamenkovic, V. R.; Sun, S.

    2011-02-01

    Modulation of Pd nanoparticle (NP) crystallinity is achieved by switching the surfactants of different binding strengths. Pd NPs synthesized in the presence of weak binding surfactants such as oleylamine possess polyhedral shapes and a polycrystalline nature. When oleylamine is substituted by trioctylphosphine, a much stronger binding surfactant, the particles become spherical and their crystallinity decreases significantly. Moreover, the Pd NPs reconvert their polycrystalline structure when the surfactant is switched back to oleylamine. Through control experiments and molecular dynamics simulation, we propose that this unusual nanocrystallinity transition induced by surfactant exchange was resulted from a counterbalance between the surfactant binding energy and the nanocrystal adhesive energy. The findings represent a novel postsynthetic approach to tailoring the structure and corresponding functional performance of nanomaterials.

  18. Pd/Cu Site Interchange and Non-Fermi-Liquid Behavior in UCu{sub 4}Pd

    SciTech Connect (OSTI)

    Booth, C.H.; MacLaughlin, D.E.; Heffner, R.H.; Kwei, G.H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); MacLaughlin, D.E. [Department of Physics, University of California, Riverside, California 92521 (United States)] [Department of Physics, University of California, Riverside, California 92521 (United States); Chau, R.; Maple, M.B. [Department of Physics, University of California, San Diego, California 92093 (United States)] [Department of Physics, University of California, San Diego, California 92093 (United States)

    1998-11-01

    X-ray-absorption fine-structure measurements of the local structure in UCu{sub 4}Pd are described which indicate a probable lattice-disorder origin for non-Fermi-liquid behavior in this material. Short Pd-Cu distances are observed, consistent with (24{plus_minus}3){percent} of the Pd atoms occupying nominally Cu sites. A {open_quotes}Kondo disorder{close_quotes} model, based on the effect on the local Kondo temperature T{sub K} of this interchange and some additional bond-length disorder, agrees quantitatively with previous experimental susceptibility data, and therefore also with specific heat and magnetic resonance experiments. {copyright} {ital 1998} {ital The American Physical Society }

  19. Aqueous phase hydrodeoxygenation of polyols over Pd/WO3-ZrO2...

    Office of Scientific and Technical Information (OSTI)

    Aqueous phase hydrodeoxygenation of polyols over PdWO3-ZrO2: Role of Pd-WO3 interaction and hydrodeoxygenation pathway Citation Details In-Document Search This content will become ...

  20. Carbon-Supported bimetallic Pd-Fe catalysts for vapor-phasehydrodeoxy...

    Office of Scientific and Technical Information (OSTI)

    Carbon-Supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol Citation Details In-Document Search Title: Carbon-Supported bimetallic Pd-Fe catalysts ...

  1. {ital In situ} neutron-reflectometry measurements of hydrogen and deuterium absorption in a Pd/Nb/Pd layered film

    SciTech Connect (OSTI)

    Munter, A.E.; Heuser, B.J.; Ruckman, M.W.

    1997-06-01

    We present {ital in situ} neutron-reflectivity measurements of the hydrogen and deuterium absorption from the gas phase in a Pd/Nb/Pd thin film multilayer. Hydrogen and deuterium were both preferentially absorbed into the Nb layer at room temperature and at a pressure of 10 Torr. Genetic algorithm fits to the specular data indicate concentrations of approximately 0.71 [H]/[Nb] and 0.51 [D]/[Nb], placing the Nb well into the {beta} phase (or an {alpha}-like phase). {copyright} {ital 1997} {ital The American Physical Society}

  2. Selective Hydrogenation of Acetylene in the Presence of Ethylene on K+ -beta-Zeolite Supported Pd and PdAg Catalysts

    SciTech Connect (OSTI)

    Huang,W.; Pyrz, W.; Lobo, R.; Chen, J.

    2007-01-01

    The selective hydrogenation of acetylene in the presence of ethylene has been studied on K+ exchanged {beta}-zeolite supported Pd and PdAg catalysts. Results from batch reactor studies with Fourier transform infrared spectroscopy (FTIR) have shown that the K+-{beta}-zeolite support is more selective than the Al2O3 or Na+-{beta}-zeolite supports toward the hydrogenation of acetylene. The rate and equilibrium constants for Pd/K+-{beta}-zeolite and PdAg/K+-{beta}-zeolite were determined using a Langmuir-Hinshelwood model. The selectivity of the PdAg bimetallic catalyst is twice of that of the Pd catalyst. Results from flow reactor studies show that the PdAg/K+-{beta}-zeolite catalyst has higher selectivity but lower activity toward acetylene hydrogenation than the Pd/K+-{beta}-zeolite catalyst. The selectivity to the undesirable ethane by-product is inhibited on the bimetallic catalyst. Extended X-ray absorption fine structure (EXAFS) studies and transmission electron microscope (TEM) analysis confirm the formation of Pd-Ag bimetallic bonds in the PdAg/K+-{beta}-zeolite catalyst.

  3. Wall-catalyzed Water-Gas Shift Reaction in Multi-tubular, Pd and 80wt%Pd-20wt%Cu Membrane Reactors at 1173K

    SciTech Connect (OSTI)

    Osemwengie, I.; Enick, R.M.; Killmeyer, R.P.

    2007-07-20

    The high-temperature, water-gas shift reaction was conducted in 100 wt%Pd and 80 wt%Pd–20 wt%Cu (Pd80 wt%Cu) shell-and-tube membrane reactors at 1173 K with a 241 kPa (35 psig) trans-membrane pressure differential in the absence of heterogeneous catalyst particles. The tube bundle consisted of four parallel 15.25 cm long, 3.175 mm OD Pd-based tubes with a wall thickness of 125 μm. The modest catalytic activity of the Pd-based membrane surface for the forward WGSR, the high rate of hydrogen extraction through the Pd-based membranes, and the long residence times (1–5 s) resulted in a dramatic shift in carbon monoxide conversions of 93% at 1173 K and a 1.5:1 steam-to-carbon monoxide feed ratio—a value well above the equilibrium value of 54% associated with a conventional (non-membrane) reactor. Carbon monoxide conversions decreased from 93% to 66% and hydrogen recovery from 90% to 85% at a residence time of 5 s when the Pd was replaced with Pd80 wt%Cu, due to the lower permeance of the Pd80 wt%Cu alloy. SEM-EDS analysis of the membrane tubes suggested that the water-gas shift environment caused pinhole formation in the retentate surfaces of the Pd and Pd80 wt%Cu after approximately 8 days of operation.

  4. Experiment operations plan for the MT-4 experiment in the NRU reactor. [PWR

    SciTech Connect (OSTI)

    Russcher, G.E.; Wilson, C.L.; Parchen, L.J.; Marshall, R.K.; Hesson, G.M.; Webb, B.J.; Freshley, M.D.

    1983-06-01

    A series of thermal-hydraulic and cladding materials deformation experiments were conducted using light-water reactor fuel bundles as part of the Pacific Northwest Laboratory Loss-of-Coolant Accident (LOCA) Simulation Program. This report is the formal operations plan for MT-4 - the fourth materials deformation experiment conducted in the National Research Universal (NRU) reactor, Chalk River, Ontario, Canada. A major objective of MT-4 was to simulate a pressurized water reactor LOCA that could induce fuel rod cladding deformation and rupture due to a short-term adiabatic transient and a peak fuel cladding temperature of 1200K (1700/sup 0/F).

  5. Hydrogen Absorption in Pd-based Nanostructures - Final Report

    SciTech Connect (OSTI)

    David Lederman

    2012-10-22

    Pd is known to absorb hydrogen. Molecules are normally chemisorbed at the surface in a process where the molecule breaks into two hydrogen atoms, and the protons are then absorbed into the bulk. This process consists of electron filling holes in the Pd 4d band near the Fermi energy, which due to the high density of states at the Fermi energy, is an energetically favorable process. Our aim with this project was to determine possible changes in magnetic properties with Pd nm-length-scale thick layers intercalated by magnetic materials. Before the start of this work, the literature indicated that there were several possible scenarios by which this could happen: i) the Pd will be magnetized due to a proximity effect with nearby magnetic layers, resulting in changes in the magnetization due to H2 absorption; ii) some H will be absorbed into the magnetic layers, causing a change in the magnetic exchange interactions; or iii) absorption of H2 will cause an expansion of the lattice, resulting in a magnetoelastic effect which changes the magnetic properties.

  6. Strain relief and Pd island shape evolution on the palladium and palladium hydride (100) surface

    SciTech Connect (OSTI)

    Kolesnikov, S. V.; Klavsyuk, A. L.; Saletsky, A. M. [Moscow State University (Russian Federation)

    2012-06-15

    The mesoscopic relaxation of small Pd islands on Pd(100) and PdH(100) surfaces is investigated on the atomic scale by performing molecular statics calculations. A strong strain and stress inhomogeneity in islands and topmost layers of the substrate is revealed. An unusual size dependence of the shape of islands is discovered.

  7. MT71x: Multi-Temperature Library Based on ENDF/B-VII.1

    SciTech Connect (OSTI)

    Conlin, Jeremy Lloyd; Parsons, Donald Kent; Gray, Mark Girard; Lee, Mary Beth; White, Morgan Curtis

    2015-12-16

    The Nuclear Data Team has released a multitemperature transport library, MT71x, based upon ENDF/B-VII.1 with a few modifications as well as additional evaluations for a total of 427 isotope tables. The library was processed using NJOY2012.39 into 23 temperatures. MT71x consists of two sub-libraries; MT71xMG for multigroup energy representation data and MT71xCE for continuous energy representation data. These sub-libraries are suitable for deterministic transport and Monte Carlo transport applications, respectively. The SZAs used are the same for the two sub-libraries; that is, the same SZA can be used for both libraries. This makes comparisons between the two libraries and between deterministic and Monte Carlo codes straightforward. Both the multigroup energy and continuous energy libraries were verified and validated with our checking codes checkmg and checkace (multigroup and continuous energy, respectively) Then an expanded suite of tests was used for additional verification and, finally, verified using an extensive suite of critical benchmark models. We feel that this library is suitable for all calculations and is particularly useful for calculations sensitive to temperature effects.

  8. Combination of emulsion chamber and air shower array at Mt. Chacaltaya

    SciTech Connect (OSTI)

    Kawasumi, N.; Tsushima, I.; Honda, K.; Hashimoto, K. ); Matano, T. ); Mori, K.; Inoue, N.; Ticona, R. ); Ohsawa, A. ); Tamada, M. ); Martinic, N.; Aliaga, Z.; Reguerin, A.; Aguirre, C. )

    1993-06-15

    Data of 34 familes with the accompanying air showers, observed by the combination of emulsion chamber and air shower array at Mt. Chacaltaya, are presented. Comparison with the simulation calculation concludes that a change is necessary in the characteristics of hadron interactions in [ital E][sub 0][ge]10[sup 15] eV.

  9. Sulfur Tolerant Pd/Cu and Pd/Au Alloy Membranes for H2 Separation with High Pressure CO2 for Sequestration

    SciTech Connect (OSTI)

    Yi Hua Ma; Natalie Pomerantz; Chao-Huang Chen

    2008-09-30

    The effect of H{sub 2}S poisoning on Pd, Pd/Cu, and Pd/Au alloy composite membranes prepared by the electroless deposition method on porous Inconel supports was investigated to provide a fundamental understanding of the durability and preparation of sulfur tolerant membranes. X-ray photoelectron spectroscopy (XPS) studies showed that the exposure of pure Pd to 50 ppm H{sub 2}S/H{sub 2} mixtures caused bulk sulfide formation at lower temperatures and surface sulfide formation at higher temperatures. Lower temperatures, longer exposure times, and higher H{sub 2}S concentrations resulted in a higher degree of sulfidation. In a Pd membrane, the bulk sulfide formation caused a drastic irrecoverable H{sub 2} permeance decline and an irreparable loss in selectivity. Pd/Cu and Pd/Au alloy membranes exhibited permeance declines due to surface sulfide formation upon exposure to 50 ppm H{sub 2}S/H{sub 2} gas mixtures. However in contrast to the pure Pd membrane, the permeances of the Pd/Cu and Pd/Au alloy membranes were mostly recovered in pure H{sub 2} and the selectivity of the Pd alloy layers remained essentially intact throughout the characterization in H{sub 2}, He and H{sub 2}S/H{sub 2} mixtures which lasted several thousand hours. The amount of irreversible sulfur poisoning decreased with increasing temperature due to the exothermicity of H{sub 2}S adsorption. Longer exposure times increased the amount of irreversible poisoning of the Pd/Cu membrane but not the Pd/Au membrane. Pd/Au coupon studies of the galvanic displacement method showed that higher Au{sup 3+} concentrations, lower pH values, higher bath temperatures and stirring the bath at a rate of 200 rpm yielded faster displacement rates, more uniform depositions, and a higher Au content within the layers. While 400 C was found to be sufficient to form a Pd/Au alloy on the surface, high temperature X-ray diffraction (HTXRD) studies showed that even after annealing between 500-600 C, the Pd/Cu alloys could have

  10. Pd-vacancy complex in Ge: TDPAC and ab initio study

    SciTech Connect (OSTI)

    Abiona, Adurafimihan A.; Kemp, Williams; Timmers, Heiko

    2014-02-21

    Low temperature metal-induced-crystallized germanium is a promising alternative for silicon in Complementary Metal-Oxide-Semiconductor (CMOS) technology. Palladium (Pd) is one of the metals suitable for inducing the low temperature crystallization. It is not certain, how residual Pd atoms are integrated into the Ge lattice. Therefore, time-different ?-? perturbed angular correlation (TDPAC) technique using the {sup 100}Pd(?{sup 100}Rh) nuclear probe has been applied to study the hyperfine interactions of this probe in single crystalline undoped Ge. A Pd-vacancy (Pd-V) complex with a unique interaction frequency of 8.4(2) Mrad/s has been identified. The Pd-V complex has been measured to have a maximum fraction after annealing at 350 C. Density functional theory calculations have confirmed that the Pd-V complex may have the split-vacancy configuration in Ge, in contrast to the full-vacancy configuration observed in Si.

  11. Electrodeposition of Pd Nanowires and Nanorods on Carbon Nanoparticles

    SciTech Connect (OSTI)

    Bliznakov, S.; Vukmirovic, M.; Sutter, E.; Adzic, R.

    2011-06-01

    We report on the method for synthesizing palladium nanowires and nanorods involving the electrodeposition on oxidized amorphous carbon nanoparticles from chloride containing solutions. The effect of the deposition overpotential and the concentration of palladium ions on the morphology of the Pd electrodeposits have been established. Palladium grows predominately in the shape of nanowires if electrodeposited at potentials in the H underpotential deposition potential (UPD) range, where chloride ions are adsorbed only at the edges of nucleated monolayer-thick clusters on the carbon surface. The effect of the concentration of palladium ions on deposits morphology is also discussed. The mechanism of electrodeposition of Pd nanowires and nanorods in the H UPD potential range has been proposed.

  12. Partial encapsulation of Pd particles by reduced ceria-zirconia

    SciTech Connect (OSTI)

    Sun, H P.; Pan, X Q.; Graham, George W.; Jen, H. W.; McCabe, Robert W.; Thevuthasan, Suntharampillai; Peden, Charles HF.

    2005-11-14

    The interaction between metal particles and their oxide support can be strong so as to affect the reactivity of a catalyst system by, for example, encapsulation of the particles by the oxide. Direct observation of metal-oxide interfaces with atomic resolution is a challenge and can only be achieved by cross sectional high-resolution transmission electron microscopy (HRTEM). With this approach, we found partial encapsulation of Pd particles by reduced ceria-zirconia in a model, single-crystal thin film auto catalyst, indicating a strong interaction between Pd and the oxide. Besides obtaining HRTEM images, the valence of cerium was determined by electron energy loss spectroscopy (EELS). The effect of reduction and oxidation conditions on this interaction provides a qualitative explanation for a previously observed reversible reactivation of oxygen storage in model powder auto catalysts. The technique of cross sectional HRTEM can be applied to the study of other metal-particle-on-oxide systems.

  13. Density Functional Studies of Methanol Decomposition on Subnanometer Pd Clusters

    SciTech Connect (OSTI)

    Mehmood, Faisal; Greeley, Jeffrey P.; Curtiss, Larry A.

    2009-12-31

    A density functional theory study of the decomposition of methanol on subnanometer palladium clusters (primarily Pd4) is presented. Methanol dehydrogenation through C-H bond breaking to form hydroxymethyl (CH2OH) as the initial step, followed by steps involving formation of hydroxymethylene (CHOH), formyl (CHO), and carbon monoxide (CO), is found to be the most favorable reaction pathway. A competing dehydrogenation pathway with O-H bond breaking as the first step, followed by formation of methoxy (CH3O) and formaldehyde (CH2O), is slightly less favorable. In contrast, pathways involving C-O bond cleavage are much less energetically favorable, and no feasible pathways involving C-O bond formation to yield dimethyl ether (CH3OCH3) are found. Comparisons of the results are made with methanol decomposition products adsorbed on more extended Pd surfaces; all reaction intermediates are found to bind slightly more strongly to the clusters than to the surfaces.

  14. Computer simulation of D atoms in a Pd lattice

    SciTech Connect (OSTI)

    Berrondo, M. )

    1991-05-10

    We calculate the equilibrium configurations of a system of deuterium atoms absorbed in palladium. The interaction potential energy is taken as a sum of pair functionals including non-additive effects, which are crucial for this case. We conclude from our calculations that the most probable configuration for the deuterium in the {beta}-phase of PdD involves at least a partial occupation of the tetrahedral sites of the fcc palladium unit cell.

  15. ternay-pd-alloys-pall | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Designing and Validating Ternay Pd Alloys for Optimum Sulfur/Carbon Resistance Project No.: DE-FE0001181 Gas Permeation Cell and Test Stand Pall Corporation is developing an economically-viable hydrogen/carbon dioxide (H2/CO2) separation membrane system that would allow efficient capture of CO2 at high temperature and pressure from gasified coal in the presence of typical contaminants. Goals for the project include creating an advanced palladium alloy for optimum hydrogen separation performance

  16. Deactivation Mechanisms of Pt/Pd-based Diesel Oxidation Catalysts

    SciTech Connect (OSTI)

    Wiebenga, Michelle H.; Kim, Chang H.; Schmieg, Steven J.; Oh, Se H.; Brown, David B.; Kim, Do Heui; Lee, Jong H.; Peden, Charles HF

    2012-04-30

    Currently precious metal-based diesel oxidation catalysts (DOC) containing platinum (Pt) and palladium (Pd) are most commonly used for the oxidation of hydrocarbon and NO in diesel exhaust hydrocarbon oxidation. The present work has been carried out to investigate the deactivation mechanisms of the DOC from its real-world vehicle operation by coupling its catalytic activity measurements with surface characterization including x-ray diffraction, transmission electron microscopy, and x-ray photoelectron spectroscopy. A production Pt-Pd DOC was obtained after being aged on a vehicle driven for 135,000 miles in order to study its deactivation behavior. The performance of the vehicle-aged part was correlated with that of the simulated hydrothermal lab aged sample assuming that Pt-Pd sintering plays a major role in irreversible catalyst deactivation. In addition to the hydrothermal sintering, the deterioration of hydrocarbon and NO oxidation performance was caused by surface poisoning. The role of the various aging factors in determining long-term performance in mobile applications will be discussed.

  17. Crystallographic evidence for chemical ordering in UCu{sub 5{minus}x}Pd{sub x}

    SciTech Connect (OSTI)

    Chau, R.; Maple, M.B. [Department of Physics and the Institute for Pure and Applied Physical Sciences, University of California, San Diego, California 92093 (United States)] [Department of Physics and the Institute for Pure and Applied Physical Sciences, University of California, San Diego, California 92093 (United States); Robinson, R.A. [Manuel Lujan Jr. Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Manuel Lujan Jr. Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1998-07-01

    We report elastic neutron-diffraction measurements on UCu{sub 5{minus}x}Pd{sub x} (x=0.65, 1.0, and 1.5) using the High-Intensity Powder Diffractometer instrument at the Los Alamos Neutron Science Center. Data from six detector banks were simultaneously refined using Rietveld analysis. From the refinements of the data, we find that for Pd concentrations x{lt}1, Pd atoms preferentially occupy the minority Cu/Pd 4c sites, and Cu atoms fully occupy the majority Cu/Pd 16e sites. For Pd concentrations x{gt}1, Pd atoms fully occupy the minority sites and a mixture of Cu and Pd atoms occupy the 16e sites. At the special concentration x=1, we find that the Pd and Cu atoms occupy separate crystallographic sites. This arrangement of atoms is indicative of chemical ordering, although no superlattice peaks were observed. The implications of chemical ordering in UCu{sub 5{minus}x}Pd{sub x} on disorder-driven models of non-Fermi-liquid behavior will be discussed. {copyright} {ital 1998} {ital The American Physical Society}

  18. A pathway for the growth of core-shell Pt-Pd nanoparticles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Narula, Chaitanya Kumar; Yang, Xiaofan; Li, Chen; Pennycook, Stephen J; Lupini, Andrew R

    2015-10-12

    In this study, the aging of both Pt-Pd nanoparticles and core-shell Pt-Pd nanoparticles has been reported to result in alloying of Pt with Pd. In comparison to monometallic Pt catalysts, the growth of Pd-Pt bimetallics is slower; however, the mechanism of growth of particles and the mechanism by which Pd improves the hydrothermal durability of bimetallic Pd-Pt particles remains uncertain. In our work on hydrothermal aging of core-shell Pt-Pd nanoparticles, synthesized by solution methods, with varying Pd:Pt ratio of 1:4, 1:1, and 4:1, we compare the growth of core-shell Pt-Pd nanoparticles and find that particles grow by migrating and joiningmore » together. The unique feature of the observed growth is that Pd shells from both particles open up and join, allowing the cores to merge. At high temperatures, alloying occurs in good agreement with reports by other workers.« less

  19. Thermally stable perpendicular magnetic anisotropy features of [Co/Pd]{sub m} multilayer matrix integrated with [CoO/Pd]{sub n} bottom layer

    SciTech Connect (OSTI)

    Lee, JaBin; An, GwangGuk; Yang, SeungMo; Hong, JinPyo; Chung, WooSeong

    2014-01-13

    We evaluated the perpendicular magnetic anisotropy (PMA) features of a hybrid [CoO/Pd]{sub 2}/[Co/Pd]{sub 7} multilayer (ML) matrix under annealing in which the [CoO/Pd]{sub 2} bottom layer was inserted. Annealing allowed for the diffusion of oxygen atoms existing in the inserted [CoO/Pd]{sub 2} layer, leading to an atomic structural reconfiguration event. The hybrid matrix was crucial to result in a higher effective anisotropy energy (3.40 Merg/cc) than an ordinary [Co/Pd]{sub 7} ML matrix (1.25 Merg/cc) under annealing at 450?C. X-ray photoelectron spectroscopy confirmed the presence of Co-O bonding states and annealing dependent oxygen atom diffusion. The possible nature of the enhanced PMA features is discussed.

  20. Hazard assessment in geothermal exploration: The case of Mt. Parker, Southern Philippines

    SciTech Connect (OSTI)

    Delfin, F.G. Jr.; Salonga, N.D.; Bayon, F.E.B.

    1996-12-31

    Hazard assessment of the Mt. Parker geothermal prospect, conducted in parallel with the surface exploration from 1992 to 1994, was undertaken to determine the long-term suitability of the prospect for development. By comparison with other acidic magmatic-hydrothermal systems in the Philippines, the geochemical data indicated minimal input of acidic magmatic fluids into Mt. Parker`s hydrothermal system. This system was regarded to be a neutral-pH and high-enthalpy chloride reservoir with temperature of at least 200-250{degrees}C. These favorable geochemical indications contrasted sharply with the C-14 and volcanological data indicating a shallow magmatic body with a potential for future eruption. This hazard led PNOC EDC to discontinue the survey and abandon the prospect by late 1994. On September 6, 1995, a flashflood of non-volcanic origin from the caldera lake killed nearly 100 people on the volcano`s northwestern flank.

  1. Babb, MT Liquefied Natural Gas Exports to Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquefied Natural Gas Exports to Canada (Million Cubic Feet) Babb, MT Liquefied Natural Gas Exports to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas

  2. Havre, MT Natural Gas Pipeline Imports From Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Havre, MT Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's 1,309 NA NA 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  3. On phase equilibria and crystal structures in the systems Ce-Pd-B and Yb-Pd-B. Physical properties of R{sub 2}Pd{sub 13.6}B{sub 5} (R=Yb, Lu)

    SciTech Connect (OSTI)

    Sologub, Oksana; Rogl, Peter; Salamakha, Leonid; Bauer, Ernst; Hilscher, Gerfried; Michor, Herwig; Giester, Gerald

    2010-05-15

    Phase equilibria and crystal structures of ternary compounds were determined in the systems Ce-Pd-B and Yb-Pd-B at 850 deg. C in the concentration ranges up to 45 and 33 at% of Ce and Yb, respectively, employing X-ray single crystal and powder diffraction. Phase relations in the Ce-Pd-B system at 850 deg. C are governed by formation of extended homogeneity fields, tau{sub 2}-CePd{sub 8}B{sub 2-x} (0.10Pd{sub 25-x}B{sub 8-y} (1.06Pd{sub 3}B{sub x} (0Pd{sub 3}. Crystallographic parameters for the new structure type tau{sub 2}-CePd{sub 8}B{sub 2-x} (space group C2/c, a=1.78104(4) nm, b=1.03723(3) nm, c=1.16314(3), beta=118.515(1){sup o} for x=0.46) were established from X-ray single crystal diffraction. The crystal structures of tau{sub 2}-CePd{sub 8}B{sub 2-x} and tau{sub 3}-Ce{sub 3}Pd{sub 25-x}B{sub 3-y} are connected in a crystallographic group-subgroup relationship. Due to the lack of suitable single crystals, the novel structure of tau{sub 1}-Ce{sub 6}Pd{sub 47-x}B{sub 6} (x=0.2, C2/m space group, a=1.03594(2) nm, b=1.80782(3) nm, c=1.01997(2) nm, beta=108.321(1){sup o}) was determined from Rietveld refinement of X-ray powder diffraction data applying the structural model obtained from single crystals of homologous La{sub 6}Pd{sub 47-x}B{sub 6} (x=0.19) (X-ray single crystal diffraction, new structure type, space group C2/m, a=1.03988(2) nm, b=1.81941(5) nm, c=1.02418(2) nm, beta=108.168(1){sup o}). The Yb-Pd-B system is characterized by one ternary compound, tau{sub 1}-Yb{sub 2}Pd{sub 14}B{sub 5}, forming equilibria with extended solution YbPd{sub 3}B{sub x}, YbB{sub 6}, Pd{sub 5}B{sub 2} and Pd{sub 3}B. The crystal structures of both Yb{sub 2}Pd{sub 14}B{sub 5} and isotypic Lu{sub 2}Pd{sub 14}B{sub 5} were determined from X-ray Rietveld refinements and found to be closely related to the Y{sub 2}Pd{sub 14}B{sub 5}-type (I4{sub 1}/amd). The crystal structure of

  4. Phase Stability for the Pd-Si System. First-Principles, Experiments, and Solution-Based Modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, S. H.; Huo, Y.; Napolitano, Ralph E.

    2015-11-05

    Relative stabilities of the compounds in the binary Pd-Si system were assessed using first-principles calculations and experimental methods. Calculations of lattice parameters and enthalpy of formation indicate that Pd5Si-μ, Pd9Si2-α, Pd3 Si-β, Pd2 Si-γ, and PdSi-δ are the stable phases at 0 K (-273 °C). X-ray diffraction analyses (XRD) and electron probe microanalysis (EPMA) of the as-solidified and heat-treated samples support the computational findings, except that the PdSi-δ phase was not observed at low temperature. Considering both experimental data and first-principles results, the compounds Pd 5 Si-μ, Pd9 Si2-α, Pd3Si-β, and Pd2Si-γ are treated as stable phases down to 0more » K (-273 °C), while the PdSi-δ is treated as being stable over a limited range, exhibiting a lower bound. Using these findings, a comprehensive solution-based thermodynamic model is formulated for the Pd-Si system, permitting phase diagram calculation. Moreover, the liquid phase is described using a three-species association model and other phases are treated as solid solutions, where a random substitutional model is adopted for Pd-fcc and Si-dia, and a two-sublattice model is employed for Pd5Si-μ, Pd9Si2-α, Pd3Si-β, Pd2Si-γ, and PdSi-δ. Model parameters are fitted using available experimental data and first-principles data, and the resulting phase diagram is reported over the full range of compositions.« less

  5. Synthesis and crystal structure of the palladium oxides NaPd{sub 3}O{sub 4}, Na{sub 2}PdO{sub 3} and K{sub 3}Pd{sub 2}O{sub 4}

    SciTech Connect (OSTI)

    Panin, Rodion V. Khasanova, Nellie R.; Abakumov, Artem M.; Antipov, Evgeny V.; Tendeloo, Gustaaf van; Schnelle, Walter

    2007-05-15

    NaPd{sub 3}O{sub 4}, Na{sub 2}PdO{sub 3} and K{sub 3}Pd{sub 2}O{sub 4} have been prepared by solid-state reaction of Na{sub 2}O{sub 2} or KO{sub 2} and PdO in sealed silica tubes. Crystal structures of the synthesized phases were refined by the Rietveld method from X-ray powder diffraction data. NaPd{sub 3}O{sub 4} (space group Pm3-barn, a=5.64979(6) A, Z=2) is isostructural to NaPt{sub 3}O{sub 4}. It consists of NaO{sub 8} cubes and PdO{sub 4} squares, corner linked into a three-dimensional framework where the planes of neighboring PdO{sub 4} squares are perpendicular to each other. Na{sub 2}PdO{sub 3} (space group C2/c, a=5.3857(1) A, b=9.3297(1) A, c=10.8136(2) A, {beta}=99.437(2){sup o}, Z=8) belongs to the Li{sub 2}RuO{sub 3}-structure type, being the layered variant of the NaCl structure, where the layers of octahedral interstices filled with Na{sup +} and Pd{sup 4+} cations alternate with Na{sub 3} layers along the c-axis. Na{sub 2}PdO{sub 3} exhibits a stacking disorder, detected by electron diffraction and Rietveld refinement. K{sub 3}Pd{sub 2}O{sub 4}, prepared for the first time, crystallizes in the orthorhombic space group Cmcm (a=6.1751(6) A, b=9.1772(12) A, c=11.3402(12) A, Z=4). Its structure is composed of planar PdO{sub 4} units connected via common edges to form parallel staggered PdO{sub 2} strips, where potassium atoms are located between them. Magnetic susceptibility measurements of K{sub 3}Pd{sub 2}O{sub 4} reveal a Curie-Weiss behavior in the temperature range above 80 K. - Graphical abstract: Na{sub 2}PdO{sub 3} (space group C2/c, a=5.3857(1) A, b=9.3297(1) A, c=10.8136(2) A, {beta}=99.437(2), Z=8) belongs to the Li{sub 2}RuO{sub 3}-structure type, being the layered variant of the NaCl structure, where the layers of octahedral interstices filled with Na{sup +} and Pd{sup 4+} cations (NaPd{sub 2}O{sub 6} slabs) alternate with Na{sub 3} layers along the c-axis.

  6. Oxygen-induced Y surface segregation in a CuPdY ternary alloy

    SciTech Connect (OSTI)

    Tafen, D. N.; Miller, J. B.; Dogan, O. N.; Baltrus, J. P.; Kondratyuk, P.

    2013-01-01

    We present a comprehensive theoretical and experimental study of the segregation behavior of the ternary alloy CuPdY in vacuum (i.e., the clean surface) and in the presence of oxygen. Theoretical prediction shows that for clean surface, yttrium will substitute first for Cu and then for Pd at the subsurface lattice site before segregating to the surface where it substitutes for Cu. XRD characterization of the surface of CuPdY indicates the presence of two major phases, B2 CuPd and Pd{sub 3}Y. In the presence of adsorbed oxygen, theory predicts that Y preferentially occupies surface sites due to its stronger oxygen affinity compared to Cu and Pd. XPS experiments confirm the computational results in the adsorbed oxygen case, showing that surface segregation of yttrium is induced by the formation of Y-oxides at the top-surface of the alloy.

  7. Improving the phase stability and oxidation resistance of B-NiAl

    SciTech Connect (OSTI)

    Brammer, Travis

    2011-08-15

    replacing Ni based superalloys. Modifications to NiAl were explored to increase the phase stability and oxidation resistance which would allow these alloys to be used at even higher temperatures yielding greater efficiencies. The extended Miedema model was an effective tool that screened all of the potential phase space for ternary substitutions to NiAl and found the few potential systems worth further investigation. After production of the alloys it was determined that Ir, Rh, and Pd were the top candidates for substitution on Ni site up to 12 at%. The melting temperature of NiAl could be increased as much as 150 C with 12 at% Ir and 130 C with 12 at% Rh substitution. Pall adium on the other hand decreased the melting temperature by 50 C at the 12 at% substitution level. The grain size was found to have a profound influence on the oxidation resistance. Both Ir and Rh substitutions resulted in finer grain sizes compared to Pd substitutions or base NiAl. The grain size increased drastically during high temperature annealing with the PGM substitutions hindering grain growth only slightly. However, the addition of 0.05 at% Hf limited the grain growth dramatically during high temperature annealing. NiAl inherently has respectable oxidation resistance up to 1100 C. It was found through experimental testing that both Ir and Rh substitutions improve the oxidation resistance of NiAl at ultra-high temperatures with Ir performing the best. Both PGM substitutions decreased the growth rate as well as forming a more adherent oxide scale. Pd substitutions appeared to have a negligible effect to the oxidation resistance of NiAl. Hafnium addition of 0.05 at% was found to decrease the oxidation rate as well as increase the scale adherence. The combination of both Ir substitution (6-9 at%) and Hf addition (0.05 at%) produced the alloy with the best oxidation resistance. Although improvements in phase stability and oxidation resistance have been made to the NiAl system, more development and

  8. Hydrogenation of Acetylene-Ethylene Mixtures over Pd and Pd-Ag Alloys: First-Principles Based Kinetic Monte Carlo Simulations

    SciTech Connect (OSTI)

    Mei, Donghai; Neurock, Matthew; Smith, C Michael

    2009-10-22

    The kinetics for the selective hydrogenation of acetylene-ethylene mixtures over model Pd(111) and bimetallic Pd-Ag alloy surfaces were examined using first principles based kinetic Monte Carlo (KMC) simulations to elucidate the effects of alloying as well as process conditions (temperature and hydrogen partial pressure). The mechanisms that control the selective and unselective routes which included hydrogenation, dehydrogenation and C-?C bond breaking pathways were analyzed using first-principle density functional theory (DFT) calculations. The results were used to construct an intrinsic kinetic database that was used in a variable time step kinetic Monte Carlo simulation to follow the kinetics and the molecular transformations in the selective hydrogenation of acetylene-ethylene feeds over Pd and Pd-Ag surfaces. The lateral interactions between coadsorbates that occur through-surface and through-space were estimated using DFT-parameterized bond order conservation and van der Waal interaction models respectively. The simulation results show that the rate of acetylene hydrogenation as well as the ethylene selectivity increase with temperature over both the Pd(111) and the Pd-Ag/Pd(111) alloy surfaces. The selective hydrogenation of acetylene to ethylene proceeds via the formation of a vinyl intermediate. The unselective formation of ethane is the result of the over-hydrogenation of ethylene as well as over-hydrogenation of vinyl to form ethylidene. Ethylidene further hydrogenates to form ethane and dehydrogenates to form ethylidyne. While ethylidyne is not reactive, it can block adsorption sites which limit the availability of hydrogen on the surface and thus act to enhance the selectivity. Alloying Ag into the Pd surface decreases the overall rated but increases the ethylene selectivity significantly by promoting the selective hydrogenation of vinyl to ethylene and concomitantly suppressing the unselective path involving the hydrogenation of vinyl to ethylidene

  9. Annealing, lattice disorder and non-Fermi liquid behavior in UCu4Pd

    SciTech Connect (OSTI)

    Booth, C.H.; Scheidt, E.-W.; Killer, U.; Weber, A.; Kehrein, S.

    2002-07-30

    The magnetic and electronic properties of non-Fermi liquid UCu{sub 4Pd} depend on annealing conditions. Local structural changes due to this annealing are reported from UL{sub III}- and Pd K-edge x-ray absorption fine-structure measurements. In particular, annealing decreases the fraction of Pd atoms on nominally Cu 16e sites and the U-Cu pair-distance distribution width. This study provides quantitative information on the amount of disorder in UCu{sub 4Pd} and allows an assessment of its possible importance to the observed non-Fermi liquid behavior.

  10. Microstructure and Corrosion Behavior of the Cu-Pd-X Ternary...

    Office of Scientific and Technical Information (OSTI)

    Microstructure and Corrosion Behavior of the Cu-Pd-X Ternary Alloys for Hydrogen Separation Membranes Citation Details In-Document Search Title: Microstructure and Corrosion...

  11. Quantitative EDS Analysis of Nanometer-Scale Core/Shell Pd/Rh...

    Office of Scientific and Technical Information (OSTI)

    of Nanometer-Scale CoreShell PdRh Structures. Authors: Sugar, Joshua Daniel ; Kotula, Paul Gabriel 1 ; Robinson, David ; Cappillino, Patrick + Show Author Affiliations (Sandia...

  12. Towards ALD thin film stabilized single-atom Pd 1 catalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Piernavieja-Hermida, Mar; Lu, Zheng; White, Anderson; Low, Ke-Bin; Wu, Tianpin; Elam, Jeffrey W.; Wu, Zili; Lei, Yu

    2016-07-27

    Supported precious metal single-atom catalysts have shown interesting activity and selectivity in recent studies. However, agglomeration of these highly mobile mononuclear surface species can eliminate their unique catalytic properties. In this paper, we study a strategy for synthesizing thin film stabilized single-atom Pd1 catalysts using atomic layer deposition (ALD). The thermal stability of the Pd1 catalysts is significantly enhanced by creating a nanocavity thin film structure. In situ infrared spectroscopy and Pd K-edge X-ray absorption spectroscopy (XAS) revealed that the Pd1 was anchored on the surface through chlorine sites. The thin film stabilized Pd1 catalysts were thermally stable under bothmore » oxidation and reduction conditions. The catalytic performance in the methanol decomposition reaction is found to depend on the thickness of protecting layers. While Pd1 catalysts showed promising activity at low temperature in a methanol decomposition reaction, 14 cycle TiO2 protected Pd1 was less active at high temperature. Pd L3 edge XAS indicated that the low reactivity compared with Pd nanoparticles is due to the strong adsorption of carbon monoxide even at 250 °C. Lastly, these results clearly show that the ALD nanocavities provide a basis for future design of single-atom catalysts that are highly efficient and stable.« less

  13. In-situ synchrotron energy-dispersive x-ray diffraction study of thin Pd foils with Pd:D and Pd:H concentrations up to 1:1

    SciTech Connect (OSTI)

    Knies, D. L.; Grabowski, K. S.; Dominguez, D. D.; Qadri, S. B.; Hubler, G. K.; Violante, V.; Hu, J. Z.; He, J. H.

    2012-10-15

    Time resolved, in-situ, energy dispersive x-ray diffraction was performed in an electrolysis cell during electrochemical loading of palladium foil cathodes with hydrogen and deuterium. Concentrations of H:Pd (D:Pd) up to 1:1 in 0.1 M LiOH (LiOD) in H{sub 2}O (D{sub 2}O) electrolyte were obtained, as determined by both the Pd lattice parameter and cathode resistivity. In addition, some indications on the kinetics of loading and deloading of hydrogen from the Pd surface were obtained. The alpha-beta phase transformations were clearly delineated but no new phases at high concentration were determined.

  14. Preparation and characterization of Pd{sub 2}Sn nanoparticles

    SciTech Connect (OSTI)

    Page, Katharine; Schade, Christina S.; Zhang, Jinping; Chupas, Peter J.; Chapman, Karena W.; Proffen, Thomas; Cheetham, Anthony K.; Seshadri, Ram

    2007-12-04

    We report a non-aqueous solution preparation of Pd{sub 2}Sn nanoparticles with sizes near 20 nm. The intermetallic compound with the Co{sub 2}Si structure has been characterized using transmission electron microscopy, Rietveld refinement of synchrotron X-ray and neutron powder diffraction, and real-space pair distribution function analysis of high-energy synchrotron X-ray scattering. We also present a description of the electronic structure of this covalent intermetallic using density functional calculations of the electronic structure.

  15. Significant Reduction in NiO Band Gap Upon Formation of LixNi1...

    Office of Scientific and Technical Information (OSTI)

    Significant Reduction in NiO Band Gap Upon Formation of LixNi1-xO alloys: Applications To Solar Energy Conversion Citation Details In-Document Search Title: Significant Reduction ...

  16. SF 6432-NI (02-22-10)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be controlling. All deliverables under this Contract shall use andor be in the English language. NI14 - PAYMENT Contractor agrees to provide invoices within 60 days of...

  17. SF 6432-NI (04-95)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be controlling. All deliverables under this Contract shall use andor be in the English language. NI15 - PAYMENT Contractor agrees to provide invoices within 60 days of...

  18. SF 6432-NI (04-95)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be controlling. All deliverables under this Contract shall use andor be in the English language. NI14 - PAYMENT Contractor agrees to provide invoices within 60 days of...

  19. SF 6432-NI (04-95)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    descending order of precedence: (1) Section I; (2) SF 6432-NI, Section II. The English language version of this Contract shall be controlling. All deliverables under this...

  20. Ni Clusterbank Replacement Project | Argonne Leadership Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ni Clusterbank Replacement Project Event Sponsor: Argonne Leadership Computing Facility Seminar Start Date: Oct 20 2015 - 12:00pm BuildingRoom: Building 241Room D173...

  1. Synthesis of Pd?Ru@Pt nanoparticles for oxygen reduction reaction in acidic electrolytes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Yu; Hsieh, Yu-Chi; Chang, Li-Chung; Wu, Pu-Wei; Lee, Jyh-Fu

    2014-11-22

    Nanoparticles of PdRu, Pd?Ru, and Pd?Ru are synthesized and impregnated on carbon black via a wet chemical reflux process. X-ray diffraction patterns of the as-synthesized samples, PdxRu/C (x=1/3/9), suggest succesful formation of alloy without presence of individual Pd and Ru nanoparticles. Images from transmission electron microscope confirm irregularly-shaped nanoparticles with average size below 3 nm. Analysis from extended X-ray absorption fine structure on both Pd and Ru K-edge absorption profiles indicate the Ru atoms are enriched on the surface of PdxRu/C. Among these samples, the Pd?Ru/C exhibits the strongest electrocatalytic activity for oxygen reduction reaction (ORR) in an oxygen-saturated 0.1moreM aqueous HClO? solution. Subsequently, the Pd?Ru/C undegoes Cu under potential deposition, followed by a galvanic displacement reaction to deposit a Pt monolayer on the Pd?Ru surface (Pd?Ru@Pt). The Pd?Ru@Pt reveals better ORR performance than that of Pt, reaching a mass activity of 0.38 mA ?g? Pt, as compared to that of commercially available Pt nanoparticles (0.107 mA ?g? Pt). The mechanisms responsible for the ORR enhancement are attributed to the combined effects of lattice strain and ligand interaction. In addition, this core-shell Pd?Ru@Pt electrocatalyst represents a substantial reduction in the amount of Pt consumption and raw material cost.less

  2. Deuterium phase behavior in thin-film Pd

    SciTech Connect (OSTI)

    Munter, A.E.; Heuser, B.J.

    1998-07-01

    The absorption of deuterium from the gas phase into two Pd thin films 668 {Angstrom} and 1207 {Angstrom} thick was measured at room temperature with {ital in situ} neutron reflectometry. Room-temperature solubility isothermal curves, out-of-plane film expansion, and deuterium depth profiles were determined from fits to the neutron reflectivity data. The measurements demonstrate that the deuterium solubility behavior, both in solid solution and within the two-phase region, is strongly perturbed by the thin-film geometry, consistent with previous solubility measurements in the published literature. The phase behavior investigated here was observed to depend on film thickness and on deuterium cycling through the two-phase region. The 668-{Angstrom} film exhibited the greatest initial phase perturbation and most significant changes upon cycling. Upon repeated cycling, both films approach nearly identical deuterium isothermal solubility and out-of-plane expansion behaviors. The observed equilibrium out-of-plane expansion behavior was consistent with the films expanding under an in-plane clamping constraint imposed by the substrate. The effect of this substrate constraining force is to amplify the out-of-plane expansion beyond that expected in bulk Pd. Taken together, these measurements implicate the film/substrate interfacial clamping interaction as the origin of the perturbed hydrogen phase behavior in thin-film geometry. {copyright} {ital 1998} {ital The American Physical Society}

  3. Density functional studies of methanol decomposition on subnanometer Pd clusters.

    SciTech Connect (OSTI)

    Mehmood, F.; Greeley, J.; Curtiss, L. A.

    2009-12-31

    A density functional theory study of the decomposition of methanol on subnanometer palladium clusters (primarily Pd{sub 4}) is presented. Methanol dehydrogenation through C-H bond breaking to form hydroxymethyl (CH{sub 2}OH) as the initial step, followed by steps involving formation of hydroxymethylene (CHOH), formyl (CHO), and carbon monoxide (CO), is found to be the most favorable reaction pathway. A competing dehydrogenation pathway with O-H bond breaking as the first step, followed by formation of methoxy (CH{sub 3}O) and formaldehyde (CH{sub 2}O), is slightly less favorable. In contrast, pathways involving C-O bond cleavage are much less energetically favorable, and no feasible pathways involving C-O bond formation to yield dimethyl ether (CH{sub 3}OCH{sub 3}) are found. Comparisons of the results are made with methanol decomposition products adsorbed on more extended Pd surfaces; all reaction intermediates are found to bind slightly more strongly to the clusters than to the surfaces.

  4. The role of destabilization of palladium hydride on the hydrogen uptake of Pd-containing activated carbons

    SciTech Connect (OSTI)

    Bhat, Vinay V; Contescu, Cristian I; Gallego, Nidia C

    2009-01-01

    This paper reports on differences in stability of Pd hydride phases in palladium particles with various degrees of contact with microporous carbon supports. A sample containing Pd embedded in activated carbon fiber (Pd-ACF; 2 wt% Pd) was compared with commercial Pd nanoparticles deposited on microporous activated carbon (Pd-catalyst, 3 wt% Pd) and with support-free nanocrystalline palladium (Pd-black). The morphology of materials was characterized by electron microscopy, and the phase transformations were analyzed over a large range of hydrogen partial pressures (0.003 - 10 bar) and at several temperatures using in-situ X-ray diffraction. The results were verified with volumetric hydrogen uptake measurements. Results indicate that higher degree of Pd-carbon contacts for Pd particles embedded in a microporous carbon matrix induce efficient pumping of hydrogen out of -PdHx. It was also found that thermal cleaning of carbon surface groups prior to exposure to hydrogen further enhances the hydrogen pumping power of the microporous carbon support. In brief, this study highlights that the stability of -PdHx phase supported on carbon depends on the degree of contact between Pd-carbon and the nature of the carbon surface.

  5. First-principles study of the Pd–Si system and Pd(001)/SiC(001) hetero-structure

    SciTech Connect (OSTI)

    Turchi, P.E.A.; Ivashchenko, V.I.

    2014-11-01

    First-principles molecular dynamics simulations of the Pd(001)/3C–SiC(001) nano-layered structure were carried out at different temperatures ranging from 300 to 2100 K. Various PdSi (Pnma, Fm3m, P6m2, Pm3m), Pd2Si (P6⁻2m, P63/mmc, P3m1, P3⁻1m) and Pd3Si (Pnma, P6322, Pm3m, I4/mmm) structures under pressure were studied to identify the structure of the Pd/Si and Pd/C interfaces in the Pd/SiC systems at high temperatures. It was found that a large atomic mixing at the Pd/Si interface occurred at 1500–1800 K, whereas the Pd/C interface remained sharp even at the highest temperature of 2100 K. At the Pd/C interface, voids and a graphite-like clustering were detected. Palladium and silicon atoms interact at the Pd/Si interface to mostly form C22-Pd2Si and D011-Pd3Si fragments, in agreement with experiment.

  6. Single Pd atoms in activated carbon fibers and their contribution to hydrogen storage

    SciTech Connect (OSTI)

    Contescu, Cristian I; van Benthem, Klaus; Li, Sa; Bonifacio, Cecile S; Pennycook, Stephen J; Jena, Puru; Gallego, Nidia C

    2011-01-01

    Palladium-modified activated carbon fibers (Pd-ACF) were synthesized by meltspinning, carbonization and activation of an isotropic pitch carbon precursor premixed with an organometallic Pd compound. The hydrogen uptake at 25 oC and 20 bar on Pd- ACF exceeded the expected capacity based solely on Pd hydride formation and hydrogen physisorption on the microporous carbon support. Aberration-corrected scanning transmission electron microscopy (STEM) with sub- ngstrom spatial resolution provided unambiguous identification of isolated Pd atoms occurring in the carbon matrix that coexist with larger Pd particles. First principles calculations revealed that each single Pd atom can form Kubas-type complexes by binding up to three H2 molecules in the pressure range of adsorption measurements. Based on Pd atom concentration determined from STEM images, the contribution of various mechanisms to the excess hydrogen uptake measured experimentally was evaluated. With consideration of Kubas binding as a viable mechanism (along with hydride formation and physisorption to carbon support) the role of hydrogen spillover in this system may be smaller than previously thought.

  7. Networks of ultrasmall Pd/Cr bilayer nanowires as high performance hydrogen sensors.

    SciTech Connect (OSTI)

    Zeng, X.-Q.; Wang, Y.-L.; Deng, H.; Latimer, M. L.; Xiao, Z.-L.; Pearson, J.; Xu, T.; Wang, H.-H.; Welp, U.; Crabtree, G. W.; Kwok, W.-K.

    2011-01-01

    The newly developed hydrogen sensor, based on a network of ultrasmall pure palladium nanowires sputter-deposited on a filtration membrane, takes advantage of single palladium nanowires' characteristics of high speed and sensitivity while eliminating their nanofabrication obstacles. However, this new type of sensor, like the single palladium nanowires, cannot distinguish hydrogen concentrations above 3%, thus limiting the potential applications of the sensor. This study reports hydrogen sensors based on a network of ultrasmall Cr-buffered Pd (Pd/Cr) nanowires on a filtration membrane. These sensors not only are able to outperform their pure Pd counterparts in speed and durability but also allow hydrogen detection at concentrations up to 100%. The new networks consist of a thin layer of palladium deposited on top of a Cr adhesion layer 1-3 nm thick. Although the Cr layer is insensitive to hydrogen, it enables the formation of a network of continuous Pd/Cr nanowires with thicknesses of the Pd layer as thin as 2 nm. The improved performance of the Pd/Cr sensors can be attributed to the increased surface area to volume ratio and to the confinement-induced suppression of the phase transition from Pd/H solid solution ({alpha}-phase) to Pd hydride ({beta}-phase).

  8. Effects of lattice disorder in the UCu(5-x)Pd(x) system

    SciTech Connect (OSTI)

    Bauer, E.D.; Booth, C.H.; Kwei, G.H.; Chau, R.; Maple, M.B.

    2002-02-19

    The UCu5-x Pdx system exhibits non-Fermi liquid (NFL) behavior in thermodynamic and transport properties at low temperatures for Pd concentrations 0.9 less than or approximately x less than or approximately 1.5. The local structure around the U, Cu, and Pd atoms has been measured for

  9. Development of an inter-atomic potential for the Pd-H binary system.

    SciTech Connect (OSTI)

    Zimmerman, Jonathan A.; Hoyt, Jeffrey John; Leonard, Francois Leonard; Griffin, Joshua D.; Zhou, Xiao Wang

    2007-09-01

    Ongoing research at Sandia National Laboratories has been in the area of developing models and simulation methods that can be used to uncover and illuminate the material defects created during He bubble growth in aging bulk metal tritides. Previous efforts have used molecular dynamics calculations to examine the physical mechanisms by which growing He bubbles in a Pd metal lattice create material defects. However, these efforts focused only on the growth of He bubbles in pure Pd and not on bubble growth in the material of interest, palladium tritide (PdT), or its non-radioactive isotope palladium hydride (PdH). The reason for this is that existing inter-atomic potentials do not adequately describe the thermodynamics of the Pd-H system, which includes a miscibility gap that leads to phase separation of the dilute (alpha) and concentrated (beta) alloys of H in Pd at room temperature. This document will report the results of research to either find or develop inter-atomic potentials for the Pd-H and Pd-T systems, including our efforts to use experimental data and density functional theory calculations to create an inter-atomic potential for this unique metal alloy system.

  10. Havre, MT Natural Gas Pipeline Imports From Canada (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dollars per Thousand Cubic Feet) Havre, MT Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's 3.66 NA NA -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Price of

  11. Vykson Formerly Turbine Developments NI Ltd | Open Energy Information

    Open Energy Info (EERE)

    Vykson Formerly Turbine Developments NI Ltd Jump to: navigation, search Name: Vykson (Formerly Turbine Developments (NI) Ltd) Place: Canterbury, England, United Kingdom Zip: BR6...

  12. The hydrogenation of Dy{sub 5}Pd{sub 2} followed by in situ methods

    SciTech Connect (OSTI)

    Kohlmann, H.; Talik, E.; Hansen, T.C.

    2012-03-15

    The hydrogenation behavior of the intermetallic compound Dy{sub 5}Pd{sub 2} was investigated by means of ex situ X-ray powder diffraction, in situ neutron powder diffraction and in situ differential scanning calorimetry. The structural model of Dy{sub 5}Pd{sub 2} with a palladium atom at the 32(e) position x, x, x (x Almost-Equal-To 0.22, 7/8 occupation) and a dysprosium atom at almost the same location (x Almost-Equal-To 0.18, 1/8 occupation) is confirmed. Upon heating the latter approaches x(Pd) and at T=399 K both positional parameters are indistinguishable. Dy{sub 5}Pd{sub 2} does not incorporate hydrogen (deuterium) into its crystal structure, however, starting at T=495 K reacts with hydrogen to non stoichiometric dysprosium dideuteride, DyD{sub 2+x}, following a parabolic rate law. In situ differential scanning calorimetry at various hydrogen pressures up to 2.5 MPa shows strongly exothermic signals, whose temperature onset depend on the gas pressure, corresponding to the formation of a mainly ionic hydride (DyH{sub 2+x}). - Graphical abstract: The hydrogenation of Dy5Pd2 is being followed by in situ neutron diffraction. Highlights: Black-Right-Pointing-Pointer Dy5Pd2 does not form a ternary hydride upon hydrogenation. Black-Right-Pointing-Pointer Dy5Pd2 decomposes to binary hydrides of dysprosium and palladium. Black-Right-Pointing-Pointer At T{>=}399 K Dy3 and Pd in the crystal structure of Dy5Pd2 share the same position. Black-Right-Pointing-Pointer The formation of DyD2+x at T=495 K and p(D2)=2.5 MPa follows a parabolic rate law.

  13. Preparation and Characterization of PdFe Nanoleaves as Electrocatalysts for Oxygen Reduction Reaction

    SciTech Connect (OSTI)

    More, Karren Leslie; Wu, Zili

    2011-01-01

    Novel PdFe-nanoleaves (NLs) have been prepared through a wet chemistry-based solution phase reduction synthesis route. High-resolution transmission electron microscopy (HR-TEM) and scanning transmission electron microscopy (S/TEM) coupled with high-spatial-resolution compositional analysis clearly show this newly-developed structure is assembled from Pd-rich nanowires (NWs) surrounded by Fe-rich sheets. The Pd-NWs have a diameter in the range of 1.8-2.3 nm and a large electrochemical surface area of >50 m2/g. Their length (30 - 100 nm) and morphology can be tuned by altering the nanostructure synthesis conditions and the Fe amount in the NLs. With increasing Fe content, thinner and longer sheet-enveloped nanowires can be prepared. The side surfaces of Pd-NWs observed by HR-TEM are predominantly Pd (111) facets, while the tips and ends are Pd (110) and Pd (100) facets. By etching away the enveloping Fe-rich sheets using an organic acid, the Pd-rich NWs are exposed on the surfaces of the nanoleaves, and they demonstrate high reactivity towards electrocatalytic reduction of oxygen in a 0.1 M NaOH electrolyte, i.e., 3.0 increase in the specific activity and 2.7 increase in the mass activity compared with a commercial Pt/C catalyst (at 0 V vs. Hg/HgO). The electrocatalytic activity enhancement can be attributed to the unique nanoleave structure that provides more Pd (111) facets, a large surface area, and more resistance to Pd oxide formation.

  14. Low-temperature aqueous-phase reforming of ethanol on bimetallic PdZn catalysts

    SciTech Connect (OSTI)

    Xiong, Haifeng; DelaRiva, Andrew; Wang, Yong; Dayte, Abhaya

    2015-01-01

    Bimetallic PdZn catalysts supported on carbon black (CB) and carbon nanotubes (CNTs) were found to be selective for CO-free H-2 production from ethanol at low temperature (250 degrees C). On Pd, the H-2 yield was low (similar to 0.3 mol H-2/mol ethanol reacted) and the CH4/CO2 ratio was high (similar to 1.7). Addition of Zn to Pd formed the intermetallic PdZn beta phase (atomic ratio of Zn to Pd is 1) with increased H-2 yield (similar to 1.9 mol H-2/mol ethanol reacted) and CH4/CO2 ratio of <1. The higher H-2 yield and low CH4 formation was related to the improved dehydrogenation activity of the L1(0) PdZn beta phase. The TOF increased with particle size and the CNTs provided the most active and selective catalysts, which may be ascribed to pore-confinement effects. Furthermore, no significant changes in either the supports or the PdZn beta particles was found after aqueous-phase reforming (APR) indicating that the metal nanoparticles and the carbon support are hydrothermally stable in the aqueous phase at elevated temperatures and pressures (>200 degrees C, 65 bar). No CO was detected for all the catalysts performed in aqueous-phase reaction, indicating that both monometallic Pd and bimetallic PdZn catalysts have high water-gas shift activity during APR. However, the yield of H-2 is considerably lower than the theoretical value of 6 H-2 per mole ethanol which is due to the presence of oxygenated products and methane on the PdZn catalysts.

  15. Inelastic magnetic neutron scattering in CePd{sub 3}.

    SciTech Connect (OSTI)

    Lawrence, J. M.; Fanelli, V. R.; Goremychkin, E. A.; Osborn, R.; Bauer, E. D.; McClellan, K. J.; Christianson, A. D.; Univ. of California at Irvine; LANL; ORNL

    2008-01-01

    We have performed time-of-flight neutron scattering measurements on a single crystal of the intermediate valence compound CePd{sub 3}. At 10 K, a Kondo-esque inelastic magnetic scattering peak occurs near {Delta}E = 60 meV with maximum intensity for momentum transfer Q near the (1/2, 1/2, 0) zone boundary. Spectral weight is transferred to lower energy as Q varies until at zone center the intensity at 60 meV is considerably weaker. These results are in qualitative accord with predictions of the Anderson lattice. The Q-dependence may resolve an older controversy concerning the low-temperature scattering. We discuss the relationship of these results to our recent results in YbAl{sub 3}.

  16. H2 production from simulated coal syngas containing H2S in multi-tubular Pd and 80 wt% Pd-20 wt% Cu membrane reactors

    SciTech Connect (OSTI)

    Iyoha, O.; Enick, R.M.; Killmeyer, R.P.; Howard, B.H.; Ciocco, M.V.; Morreale, B.

    2007-12-01

    99.7% conversion of CO in a simulated syngas feed containing 53% CO, 35% H2 and 12% CO2 was achieved via the water–gas shift (WGS) reaction in a counter-current Pd multi-tube membrane reactor (MR) at 1173 K and 2 s residence time. This conversion is significantly greater than the 32% equilibrium conversion associated with a conventional (non-membrane) reactor primarily due to the high rate of H2 extraction from the reaction zone through the Pd membranes at elevated temperatures. Furthermore, nearly complete H2 recovery was attained in the permeate, resulting in the simultaneous production of a high-pressure CO2 (>99%) retentate stream after condensation of the steam. When Pd80 wt%Cu tubes were used in the reactor, a significantly lower CO conversion of 68% was attained at comparable residence times, probably due to the lower H2 permeance of the alloy. When H2S was added to the syngas feed and the H2S-to-H2 ratio was maintained below the threshold required for thermodynamically stable sulfides to form, the Pd and Pd80 wt%Cu MRs retained their mechanical integrity and H2 selectivity, but a precipitous drop in CO conversion was observed due to deactivation of the catalytic surface. The Pd and Pd80 wt%Cu MRs were observed to fail within minutes after increasing the H2S-to-H2 ratio to levels above that expected for thermodynamically stable sulfides to form, as evidenced by rupturing of the membrane tubes. SEM–EDS analyses of the membranes suggested that at high H2S-to-H2 ratios, the H2S compromised the mechanical integrity of the MRs by preferentially attacking the grain boundary region.

  17. Deep oxidation of methane on particles derived from YSZ-supported Pd-Pt-(O) coatings synthesized by pulsed filtered cathodic arc

    SciTech Connect (OSTI)

    Horwat, D.; Endrino, J.L.; Boreave, A.; Karoum,R.; Pierson, J.F.; Weber, S.; Anders, A.; Vernoux, Ph.

    2008-12-12

    Methane conversion tests were performed on Pd, PdOy, Pd0.6Pt0.4Oy and Pd0.4Pt0.6Oy thin films deposited on yttria stabilized zirconia (YSZ) substrates. Pt containing films exhibited poor activity and high reducibility. As-deposited Pd and PdOy films showed good activity and transformed, during the cycling process, to particles dispersed on the YSZ substrates. The higher reaction rate of initially PdOy films was explained by a better dispersion of the catalyst. A drop of the reaction rate was observed when the temperature exceeded 735oC and 725oC for initially Pd and PdOy, respectively, which can be associated with the high-temperature reduction of PdO into Pd.

  18. Hydrogen-induced atomic rearrangement in MgPd{sub 3}

    SciTech Connect (OSTI)

    Kohlmann, H. . E-mail: h.kohlmann@mx.uni-saarland.de; Renaudin, G.; Yvon, K.; Wannek, C.; Harbrecht, B.

    2005-04-15

    The hydrogenation behavior of MgPd{sub 3} has been studied by in situ X-ray powder diffraction and by neutron powder diffraction. At room temperature and p {approx}500kPa hydrogen pressure its structure is capable of incorporating up to one hydrogen atom per formula unit ({alpha}-MgPd{sub 3}H{sub {approx}}{sub 1}), thereby retaining a tetragonal ZrAl{sub 3}-type metal atom arrangement. Upon heating to 750K in a hydrogen atmosphere of 610kPa it transforms into a cubic modification with AuCu{sub 3}-type metal atom arrangement ({beta}-MgPd{sub 3}H{sub {approx}}{sub 0.7}). Neutron diffraction on the deuteride reveals an anion deficient anti-perovskite-type structure ({beta}-MgPd{sub 3}D{sub 0.67}, a=398.200(7)pm) in which octahedral sites surrounded exclusively by palladium atoms are occupied by deuterium. Complete removal of hydrogen (480K, 1Pa) stabilizes a new binary modification ({beta}-MgPd{sub 3}, a=391.78(2)pm) crystallizing with a primitive cubic AuCu{sub 3}-type structure. Mechanical treatment (grinding) transforms both {alpha} and {beta} modifications of MgPd{sub 3} into a cubic face-centered solid solution Mg{sub 0.25}Pd{sub 0.75} showing a random distribution of magnesium and palladium atoms.

  19. Model for the Prediction of the Hydriding Thermodynamics of Pd-Rh-Co Ternary Alloys

    SciTech Connect (OSTI)

    Teter, D.F.; Thoma, D.J.

    1999-03-01

    A dilute solution model (with respect to the substitutional alloying elements) has been developed, which accurately predicts the hydride formation and decomposition thermodynamics and the storage capacities of dilute ternary Pd-Rh-Co alloys. The effect of varying the rhodium and cobalt compositions on the thermodynamics of hydride formation and decomposition and hydrogen capacity of several palladium-rhodium-cobalt ternary alloys has been investigated using pressure-composition (PC) isotherms. Alloying in the dilute regime (<10 at.%) causes the enthalpy for hydride formation to linearly decrease with increasing alloying content. Cobalt has a stronger effect on the reduction in enthalpy than rhodium for equivalent alloying amounts. Also, cobalt reduces the hydrogen storage capacity with increasing alloying content. The plateau thermodynamics are strongly linked to the lattice parameters of the alloys. A near-linear dependence of the enthalpy of hydride formation on the lattice parameter was observed for both the binary Pd-Rh and Pd-Co alloys, as well as for the ternary Pd-Rh-Co alloys. The Pd-5Rh-3Co (at. %) alloy was found to have similar plateau thermodynamics as a Pd-10Rh alloy, however, this ternary alloy had a diminished hydrogen storage capacity relative to Pd-10Rh.

  20. Modifying structure-sensitive reactions by addition of Zn to Pd

    SciTech Connect (OSTI)

    Childers, David J.; Schweitzer, Neil M.; Kamali Shahari, Seyed Mehdi; Rioux, Robert M.; Miller, Jeffrey T.; Meyer, Randall J.

    2014-10-01

    Silica-supported Pd and PdZn nanoparticles of a similar size were evaluated for neopentane hydrogenolysis/isomerization and propane hydrogenolysis/dehydrogenation. Monometallic Pd showed high neopentane hydrogenolysis selectivity. Addition of small amounts of Zn to Pd lead Pd–Zn scatters in the EXAFS spectrum and an increase in the linear bonded CO by IR. In addition, the neopentane turnover rate decreased by nearly 10 times with little change in the selectivity. Increasing amounts of Zn lead to greater Pd–Zn interactions, higher linear-to-bridging CO ratios by IR and complete loss of neopentane conversion. Pd NPs also had high selectivity for propane hydrogenolysis and thus were poorly selective for propylene. The PdZn bimetallic catalysts, however, were able to preferentially catalyze dehydrogenation, were not active for propane hydrogenolysis, and thus were highly selective for propylene formation. The decrease in hydrogenolysis selectivity was attributed to the isolation of active Pd atoms by inactive metallic Zn,demonstrating that hydrogenolysis requires a particular reactive ensemble whereas propane dehydrogenation does not.

  1. Hydrogen responses of ultrathin Pd films and nanowire networks with a Ti buffer layer.

    SciTech Connect (OSTI)

    Zeng, X. Q.; Wang, Y. L.; Xiao, Z. L.; Latimer, M. L.; Xu, T.; Kwok, W. K.

    2012-01-01

    We report on hydrogen responses of ultrathin films and nanowire networks of palladium on titanium buffered silicon substrates and filtration membranes, respectively. We found that in both systems signatures such as retarding responses and saturation of the resistance changes at high hydrogen concentrations associated with the transition from Pd/H solid solution to Pd hydride diminish with decreasing the thickness of the palladium layer from 7 to 2 nm. Our results not only reveal a new way to suppress the phase transition in Pd/H system but also provide an alternative approach to achieve fast and sensitive hydrogen sensors with a wide concentration detection range.

  2. PdAgAu alloy with high resistance to corrosion by H{sub 2}S

    SciTech Connect (OSTI)

    Braun, Fernando; Miller, James B.; Gellman, Andrew J.; Tarditi, Ana M.; Fleutot, Benoit; Petro, Kondratyuk, Cornaglia, Laura M

    2012-12-01

    PdAgAu alloy films were prepared on porous stainless steel supports by sequential electroless deposition. Two specific compositions, Pd{sub 83}Ag{sub 2}Au{sub 15} and Pd{sub 74}Ag{sub 14}Au{sub 12}, were studied for their sulfur tolerance. The alloys and a reference Pd foil were exposed to 1000 H{sub 2}S/H{sub 2} at 623 K for periods of 3 and 30 hours. The microstructure, morphology and bulk composition of both nonexposed and H{sub 2}S-exposed samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). XRD and SEM analysis revealed time-dependent growth of a bulk Pd{sub 4}S phase on the Pd foil during H{sub 2}S exposure. In contrast, the PdAgAu ternary alloys displayed the same FCC structure before and after H{sub 2}S exposure. In agreement with the XRD and SEM results, sulfur was not detected in the bulk of either ternary alloy samples by EDS, even after 30 hours of H{sub 2}S exposure. X-ray photoelectron spectroscopy (XPS) depth profiles were acquired for both PdAgAu alloys after 3 and 30 hours of exposure to characterize sulfur contamination near their surfaces. Very low S 2p and S 2s XPS signals were observed at the top-surfaces of the PdAgAu alloys, and those signals disappeared before the etch depth reached ~ 10 nm, even for samples exposed to H{sub 2}S for 30 hours. The depth profile analyses also revealed silver and gold segregation to the surface of the alloys; preferential location of Au on the alloys surface may be related to their resistance to bulk sulfide formation. In preliminary tests, a PdAgAu alloy membrane displayed higher initial H{sub 2} permeability than a similarly prepared pure Pd sample and, consistent with resistance to bulk sulfide formation, lower permeability loss in H{sub 2}S than pure Pd.

  3. CO adsorption and kinetics on well-characterized Pd films on Pt(111) in alkaline solutions

    SciTech Connect (OSTI)

    Arenz, M.; Stamenkovic, V.; Wandelt, K.; Ross, P.N.; Markovic, N.M.

    2002-01-01

    The electrochemistry of CO on a bare Pt(111) electrode as well as a Pt(111) electrode modified with pseudomorphic thin palladium films has been studied in alkaline solution by means of Fourier transform infrared (FTIR) spectroscopy. First Pd films were prepared and well characterized in UHV and subsequently transferred into the electrochemical cell for the registration of the voltammetric profiles. The charge corresponding to the formation of underpotentially deposited hydrogen (H{sub upd}) on these Pt(111)-xPd surfaces was established in sulfuric acid solution as a function of x (0 {le} x {le} 1 Pd monolayer (ML)). All subsequent measurements were then performed on electrochemically deposited palladium films using the above H{sub upd}-charge vs. Pd coverage relationship to evaluate the amount of electrochemically deposited palladium. FTIR spectra for CO adsorbed on one monolayer and a submonolayer coverage are compared to those of the unmodified Pt(111) surface, all surfaces having identical 2D lattice structures. Infrared absorption bands of CO bound on either Pt(111) or Pt(111)-1ML Pd are clearly distinguished. Spectra of CO adsorbed on Pd submonolayers show characteristic features of both CO bound to Pt and to Pd, indicating that on Pt(111)-xPd surfaces there is no coupling between Pt-CO{sub ad} and Pd-CO{sub ad} molecules. The kinetics of CO oxidation on these surfaces is determined either by rotating disk electrode (RDE) measurements or by FTIR spectroscopy, monitoring the CO{sub 3}{sup 2-} production. The oxidation of CO{sub ad} on Pt(111) and on Pd modified platinum surfaces starts at the same potential, ca. at 0.2 V. The oxidation rate is, however, considerably lower on the Pt(111)-xPd surfaces than on the Pt(111) surface. The kinetics of CO oxidation appears to be determined by the nature of adsorbed hydroxyl anions (OH{sub ad}), which are more strongly (less active) adsorbed on the highly oxophilic Pd atoms.

  4. Antiferromagnetic Kondo lattice in the layered compound CePd1–xBi₂ and comparison to the superconductor LaPd1–xBi₂

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Han, Fei; Wan, Xiangang; Phelan, Daniel; Stoumpos, Constantinos C.; Sturza, Mihai; Malliakas, Christos D.; Li, Qing'an; Han, Tian-Heng; Zhao, Qingbiao; Chung, Duck Young; et al

    2015-07-13

    The layered compound CePd1–xBi₂ with the tetragonal ZrCuSi₂-type structure was obtained from excess Bi flux. Magnetic susceptibility data of CePd1–xBi₂ show an antiferromagnetic ordering below 6 K and are anisotropic along the c axis and the ab plane. The anisotropy is attributed to crystal-electric-field (CEF) effects and a CEF model which is able to describe the susceptibility data is given. An enhanced Sommerfeld coefficient γ of 0.191 J mol Ce⁻¹ K⁻² obtained from specific-heat measurement suggests a moderate Kondo effect in CePd1–xBi₂. Other than the antiferromagnetic peak at 6 K, the resistivity curve shows a shoulderlike behavior around 75 Kmore » which could be attributed to the interplay between Kondo and CEF effects. Magnetoresistance and Hall-effect measurements suggest that the interplay reconstructs the Fermi-surface topology of CePd1–xBi₂ around 75 K. Electronic structure calculations reveal that the Pd vacancies are important to the magnetic structure and enhance the CEF effects which quench the orbital moment of Ce at low temperatures.« less

  5. Layering and temperature-dependent magnetization and anisotropy of naturally produced Ni/NiO multilayers

    SciTech Connect (OSTI)

    Pappas, S. D.; Trachylis, D.; Velgakis, M. J.; Kapaklis, V.; Joensson, P. E.; Papaioannou, E. Th.; Delimitis, A.; Poulopoulos, P.; Fumagalli, P.; Politis, C.

    2012-09-01

    Ni/NiO multilayers were grown by magnetron sputtering at room temperature, with the aid of the natural oxidation procedure. That is, at the end of the deposition of each single Ni layer, air is let to flow into the vacuum chamber through a leak valve. Then, a very thin NiO layer ({approx}1.2 nm) is formed. Simulated x-ray reflectivity patterns reveal that layering is excellent for individual Ni-layer thickness larger than 2.5 nm, which is attributed to the intercalation of amorphous NiO between the polycrystalline Ni layers. The magnetization of the films, measured at temperatures 5-300 K, has almost bulk-like value, whereas the films exhibit a trend to perpendicular magnetic anisotropy (PMA) with an unusual significant positive interface anisotropy contribution, which presents a weak temperature dependence. The power-law behavior of the multilayers indicates a non-negligible contribution of higher order anisotropies in the uniaxial anisotropy. Bloch-law fittings for the temperature dependence of the magnetization in the spin-wave regime show that the magnetization in the multilayers decreases faster as a function of temperature than the one of bulk Ni. Finally, when the individual Ni-layer thickness decreases below 2 nm, the multilayer stacking vanishes, resulting in a dramatic decrease of the interface magnetic anisotropy and consequently in a decrease of the perpendicular magnetic anisotropy.

  6. Ion irradiation induced defect evolution in Ni and Ni-based FCC equiatomic binary alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jin, Ke; Zhang, Yanwen; Bei, Hongbin

    2016-01-01

    In order to explore the chemical effects on radiation response of alloys with multi-principal elements, defect evolution under Au ion irradiation was investigated in the elemental Ni, equiatomic NiCo and NiFe alloys. Single crystals were successfully grown in an optical floating zone furnace and their (100) surfaces were irradiated with 3 MeV Au ions at fluences ranging from 1 × 1013 to 5 × 1015 ions cm–2 at room temperature. The irradiation-induced defect evolution was analyzed by using ion channeling technique. Experiment shows that NiFe is more irradiation-resistant than NiCo and pure Ni at low fluences. With continuously increasing themore » ion fluences, damage level is eventually saturated for all materials but at different dose levels. The saturation level in pure Ni appears at relatively lower irradiation fluence than the alloys, suggesting that damage accumulation slows down in the alloys. Here, under high-fluence irradiations, pure Ni has wider damage ranges than the alloys, indicating that defects in pure Ni have high mobility.« less

  7. Ion irradiation induced defect evolution in Ni and Ni-based FCC equiatomic binary alloys

    SciTech Connect (OSTI)

    Jin, Ke; Zhang, Yanwen; Bei, Hongbin

    2016-01-01

    In order to explore the chemical effects on radiation response of alloys with multi-principal elements, defect evolution under Au ion irradiation was investigated in the elemental Ni, equiatomic NiCo and NiFe alloys. Single crystals were successfully grown in an optical floating zone furnace and their (100) surfaces were irradiated with 3 MeV Au ions at fluences ranging from 1 × 1013 to 5 × 1015 ions cm–2 at room temperature. The irradiation-induced defect evolution was analyzed by using ion channeling technique. Experiment shows that NiFe is more irradiation-resistant than NiCo and pure Ni at low fluences. With continuously increasing the ion fluences, damage level is eventually saturated for all materials but at different dose levels. The saturation level in pure Ni appears at relatively lower irradiation fluence than the alloys, suggesting that damage accumulation slows down in the alloys. Here, under high-fluence irradiations, pure Ni has wider damage ranges than the alloys, indicating that defects in pure Ni have high mobility.

  8. Microsoft Word - NiR.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In bacteria, NO is produced by nitrite reductase (NiR), a copper-containing enzyme, which ... required to define the mode of binding of the ligands to the active site copper. ...

  9. Uranium hydrogeochemical and stream sediment reconnaissance of the Mt. Hayes NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Not Available

    1981-05-01

    Results of a hydrogeochemical and stream sediment reconnaissance of the Mt. Hayes quadrangle, Alaska, are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and Laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A to D describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment, lake sediment, stream water, lake water, and ground water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report.

  10. Basin Play State(s) Production Reserves Williston Bakken ND, MT, SD

    U.S. Energy Information Administration (EIA) Indexed Site

    tight oil plays: production and proved reserves, 2013-14 million barrels 2013 2013 Basin Play State(s) Production Reserves Williston Bakken ND, MT, SD 270 4,844 387 5,972 1,128 Western Gulf Eagle Ford TX 351 4,177 497 5,172 995 Permian Bone Spring, Wolfcamp NM, TX 21 335 53 722 387 Denver-Julesberg Niobrara CO, KS, NE, WY 2 17 42 512 495 Appalachian Marcellus* PA, WV 7 89 13 232 143 Fort Worth Barnett TX 9 58 9 47 -11 Sub-total 660 9,520 1,001 12,657 3,137 Other tight oil 41 523 56 708 185 U.S.

  11. Crustal models of the geothermal areas of Larderello and Mt. Amiata, Italy

    SciTech Connect (OSTI)

    Gianelli, G.; Manzella, A.; Puxeddu, M.

    1996-12-31

    The study of core samples and geophysical data from the Larderello and Mt. Amiata geothermal areas indicate the presence of granite intrusions and granitic dykes as old as 3.8-2.9 Ma and widespread contact aureoles. Reflection seismic surveys reveal the presence of a highly reflective horizon (named K) in a depth range of 3-12 km in the two geothermal areas; seismic tomography and teleseismic studies show at Larderello a low velocity body, 30-40 km wide below the K horizon. Magnetotelluric surveys indicate the presence of a conductive body in good correlation with the anomalous tomographic and teleseismic body. The occurrence of shallow intrusive bodies, still partially molten and associated with saline brines is here considered a reliable model.

  12. SF 6432-NI (04-95)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6432-NI (11-03-2010) SECTION II STANDARD TERMS AND CONDITIONS FOR FIXED PRICE CONTRACTS WITH THE NEWLY INDEPENDENT STATES OF THE FORMER SOVIET UNION INDEX OF CLAUSES. THE FOLLOWING CLAUSES APPLY TO REQUESTS FOR QUOTATION AND CONTRACTS AS INDICATED UNLESS SPECIFICALLY DELETED, OR EXCEPT TO THE EXTENT THEY ARE SPECIFICALLY SUPPLEMENTED OR AMENDED IN WRITING IN THE SIGNATURE PAGE OR SECTION I. NI01 - ACCEPTANCE OF TERMS AND CONDITIONS Contractor, by signing this Agreement, beginning performance,

  13. Phase Stability for the Pd-Si System. First-Principles, Experiments, and Solution-Based Modeling

    SciTech Connect (OSTI)

    Zhou, S. H.; Huo, Y.; Napolitano, Ralph E.

    2015-11-05

    Relative stabilities of the compounds in the binary Pd-Si system were assessed using first-principles calculations and experimental methods. Calculations of lattice parameters and enthalpy of formation indicate that Pd5Si-μ, Pd9Si2-α, Pd3 Si-β, Pd2 Si-γ, and PdSi-δ are the stable phases at 0 K (-273 °C). X-ray diffraction analyses (XRD) and electron probe microanalysis (EPMA) of the as-solidified and heat-treated samples support the computational findings, except that the PdSi-δ phase was not observed at low temperature. Considering both experimental data and first-principles results, the compounds Pd 5 Si-μ, Pd9 Si2-α, Pd3Si-β, and Pd2Si-γ are treated as stable phases down to 0 K (-273 °C), while the PdSi-δ is treated as being stable over a limited range, exhibiting a lower bound. Using these findings, a comprehensive solution-based thermodynamic model is formulated for the Pd-Si system, permitting phase diagram calculation. Moreover, the liquid phase is described using a three-species association model and other phases are treated as solid solutions, where a random substitutional model is adopted for Pd-fcc and Si-dia, and a two-sublattice model is employed for Pd5Si-μ, Pd9Si2-α, Pd3Si-β, Pd2Si-γ, and PdSi-δ. Model parameters are fitted using available experimental data and first-principles data, and the resulting phase diagram is reported over the full range of compositions.

  14. Anomalous behavior of the Pd/D system. Final report, June 1989-August 1993

    SciTech Connect (OSTI)

    Szpak, S.J.; Mosier-Boss, P.A.

    1995-09-01

    In a news conference on 23 March 1989, Martin Fleischmann and Stanley Pons announced that nuclear events could be initiated by the electrochemical compression of deuterium into a palladium lattice. When researchers around the world tried to reproduce the effects described by Pons and Fleischmann in their laboratories, the results were mixed. The nature of the announcement and the Irreproducibility of the effect divided the scientific community into believers and skeptics, indicating religious fervor rather than scientific reasoning. Shortly after the Fleischmann-Pons announcement, a program at NRaD investigated anomalous effects in the Pd/D system. The NRaD program investigated the Pd/D system using standard electrochemical techniques to determine conditions for achieving high Pd/D loadings. Metallurgical aspects of the Pd/D system and the effect of additives were also examined. Tritium content in the gas/liquid phases and radiation emissions were monitored during electrolysis. This report summarizes the investigation results.

  15. Development of Pd-Ag Compostie Membrane for Separation of Hydrogen at Elevated Temperature

    SciTech Connect (OSTI)

    Shamsuddin Ilias

    2009-02-28

    Pd-based membrane reactor offers the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. In this project to develop a defect-free and hermally-stable Pd-film on microporous stainless steel (MPSS) support for H2-separation and membrane reactor applications, the electroless plating process was revisited with an aim to improve the membrane morphology. Specifically, this study includes; (a) an improvement f activation step using Pulse Laser Deposition (PLD), (b) development of a novel surfactant induced electroless plating (SIEP) for depositing robust Pd-film on microporous support, and (c) application of Pd-membrane as membrane reactor in steam methanol reforming (SMR) reactions.

  16. Influence of Oxygen and pH on the Selective Oxidation of Ethanol on Pd Catalysts

    SciTech Connect (OSTI)

    Hibbitts, David D.; Neurock, Matthew

    2013-03-01

    The selective oxidation of ethanol on supported Pd is catalytically promoted by the presence of hydroxide species on the Pd surface as well as in solution. These hydroxide intermediates act as Brønsted bases which readily abstract protons from the hydroxyl groups of adsorbed or solution-phase alcohols. The C1AH bond of the resulting alkoxide is subsequently activated on the metal surface via hydride elimination to form acetaldehyde. Surface and solution-phase hydroxide intermediates can also readily react with the acetaldehyde via nucleophilic addition to form a germinal diol intermediate, which subsequently undergoes a second C1AH bond activation on Pd to form acetic acid. The role of O2 is to remove the electrons produced in the oxidation reaction via the oxygen reduction reaction over Pd. The reduction reaction also regenerates the hydroxide intermediates and removes adsorbed hydrogen that is produced during the oxidation.

  17. Enhanced Fe2O3 Reducibility via Surface Modification with Pd...

    Office of Scientific and Technical Information (OSTI)

    The synergistic catalysis in the hydrodeoxygenation of phenolic compounds over a PdFe bimetallic surface has been well established. However, the nature of this synergy is still in ...

  18. Method and Pd/V2 O5 device for H2 detection

    DOE Patents [OSTI]

    Liu, Ping; Tracy, C. Edwin; Pitts, J. Roland; Smith, II, R. Davis; Lee, Se-Hee

    2011-12-27

    Methods and Pd/V.sub.2O.sub.5 devices for hydrogen detection are disclosed. An exemplary method of preparing an improved sensor for chemochromic detection of hydrogen gas over a wide response range exhibits stability during repeated coloring/bleaching cycles upon exposure and removal of hydrogen gas. The method may include providing a substrate. The method may also include depositing a V.sub.20.sub.5 layer that functions as a H.sub.2 insertion host in a Pd/V.sub.20.sub.5 hydrogen sensor to be formed on said substrate. The method may also include depositing a Pd layer onto said V.sub.20.sub.5 layer; said Pd layer functioning as an optical modulator.

  19. Temperature, pressure, and size dependence of Pd-H interaction in size selected Pd-Ag and Pd-Cu alloy nanoparticles: In-situ X-ray diffraction studies

    SciTech Connect (OSTI)

    Sengar, Saurabh K.; Mehta, B. R.; Kulriya, P. K.

    2014-03-21

    In this study, in-situ X-ray diffraction has been carried out to investigate the effect of temperature and pressure on hydrogen induced lattice parameter variation in size selected Pd-Ag and Pd-Cu alloy nanoparticles. The nanoparticles of three different mobility equivalent diameters (20, 40, and 60 nm) having a narrow size distribution were prepared by gas phase synthesis method. In the present range of temperature (350 K to 250 K) and pressure (10{sup −4} to 100 millibars), no α (H/Pd ≤ 0.03) ↔ β (H/Pd ≥ 0.54) phase transition is observed. At temperature higher than 300 °C or pressure lower than 25 millibars, there is a large difference in the rate at which lattice constant varies as a function of pressure and temperature. Further, the lattice variation with temperature and pressure is also observed to depend upon the nanoparticle size. At lower temperature or higher pressure, size of the nanoparticle seems to be relatively less important. These results are explained on the basis of the relative dominance of physical absorption and diffusion of H in Pd alloy nanoparticles at different temperature and pressure. In the present study, absence of α ↔ β phase transition points towards the advantage of using Pd-alloy nanoparticles in applications requiring long term and repeated hydrogen cycling.

  20. Pt/Pd electrocatalyst electrons for fuel cells

    DOE Patents [OSTI]

    Stonehart, P.

    1981-11-03

    This invention relates to improved electrochemical cells and to novel electrodes for use therein. In particular, the present invention comprises a fuel cell used primarily for the consumption of impure hydrogen fuels containing carbon monoxide or carbonaceous fuels where the electrode in contact with the fuel is not substantially poisoned by carbon monoxide. The anode of the fuel cell comprises a Pd/Pt alloy supported on a graphitized or partially graphitized carbon material. Fuel cells which comprise as essential elements a fuel electrode, an oxidizing electrode, and an electrolyte between said electrodes are devices for the direct production of electricity through the electrochemical combustion of a fuel and oxidant. These devices are recognized for their high efficiency as energy conversion units, since unlike conventional combustion engines, they are not subject to the limitations of the Carnot heat cycle. It is the primary object of the present invention to provide an electrode having high electrochemical activity for an electrochemical cell. It is another object of the present invention to provide an electrode having an electro-catalyst which is highly resistant to the corrosive environment of an electrochemical cell.

  1. A comparison of the structure and localized magnetism in Ce{sub 2}PdGa{sub 12} with the heavy fermion CePdGa{sub 6}

    SciTech Connect (OSTI)

    Macaluso, Robin T. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Millican, Jasmine N. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Nakatsuji, Satoru [Department of Physics, Kyoto University, Kyoto, Japan 606-8502 (Japan); Lee, Han-Oh [Department of Physics, University of California, Davis, CA 95616 (United States); Carter, B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Moreno, Nelson O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Fisk, Zachary [Department of Physics, University of California, Davis, CA 95616 (United States); Chan, Julia Y. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States)]. E-mail: jchan@lsu.edu

    2005-11-15

    Single crystals of Ce{sub 2}PdGa{sub 12} have been synthesized in Ga flux and characterized by X-ray diffraction. This compound crystallizes in the tetragonal P4/nbm space group, Z=2 with lattice parameters of a=6.1040(2)A and c=15.5490(6)A. It shows strongly anisotropic magnetism and orders antiferromagnetically at T{sub N}{approx}11K. A field-induced metamagnetic transition to the ferromagnetic state is observed below T{sub N}. Structure-property relationships with the related heavy-fermion antiferromagnet CePdGa{sub 6} are discussed.

  2. Structural stability of 1100{degree}C heated Pd/k during absorption cycling in protium

    SciTech Connect (OSTI)

    Fisher, I.A.

    1993-03-12

    Pd/k is a hydride forming packing material which is used in the Thermal Cycling Absorption Process (TCAP). Palladium is supported on kieselguhr to create a packing material which will provide adequate void space to prevent excessive pressure drops and flow restrictions. The use of unsupported palladium would result in blockage of columns and clogging of filters due to the small particle size of unsupported palladium hydride powder. During pilot scale demonstrations, it was noted that the Pd/k packing material had degraded causing severe flow restrictions within the TCAP column. A solution to the problem involved the heating of Pd/k at 1,110{degree}C to strengthen the packing material, and render it more resistant to breakdown. The 1, 100{degree}C heated Pd/k has been shown to be more resistant to mechanical breakdown than the Pd/k prior to heat treatment. Two primary modes of Pd/k particle degradation have been identified: mechanical breakdown caused by particle fluidization and degradation caused by absorption/desorption cycling. Absorption/desorption cycling causes the palladium particles within the packing to expanded and contract upon formation and decomposition of the hydride, respectively. This expansion and contraction causes large localized stresses within the packing material, which if these stresses can not be accommodated within the packing will cause the material to crack and degrade. The purpose of this report is to document the results of the absorption/desorption cycling of 1,100{degree}C heated Pd/k and compare these results to the results obtained from the absorption/desorption cycling of Pd/k which had not been heated at 1, 100{degree}C.

  3. A Study of Groundwater Matrix Effects for the Destruction of Trichloroethylene Using Fe/Pd Nanoaggregates

    SciTech Connect (OSTI)

    meyer, D E; Hampson, Steve; ormsbee, Lindelle; Bhattacharyya, Dibakar

    2008-06-01

    Fe nanoaggregates have been prepared using the sodium borohydride reduction method and post-coated with Pd using aqueous phase electro-depostition. The Fe/Pd particles have been used to examine dechlorination of TCE with regard to matrix effects using materials representative of examine dechlorination of TCE with regard to matrix effects using materials representative of a potential zero-valent metal remediation site surrounding the Paducah Gaseous Diffusion Plant in Paducah, KY.

  4. EIS-0092: Conversion to Coal, Holyoke Water Power Company, Mt. Tom Generating Station Unit 1 Holyoke, Hampden County, Massachusetts

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration prepared this statement to assess the environmental impacts of prohibiting Unit 1 of the Mt. Tom Generation Station Unit 1 from using either natural gas or petroleum products as a primary energy source, which would result in the utility burning low-sulfur coal.

  5. Pd?Cd11? (0.21???0.51)a partly disordered ?-brass type phase and Pd?.???Cd?.??? -a ?-brass related incommensurate phase in the palladiumcadmium system

    SciTech Connect (OSTI)

    Jana, Partha Pratim; Lidin, Sven

    2013-05-01

    The Cd rich part of the CdPd phase diagram was reassessed by means of synthesis and single crystal and powder X-ray diffraction. The region contains two phases that have been reported to have substantial compositional widths, Cd??Pd? and Cd?Pd. The phase Cd??Pd? that has previously been reported to be a disordered ?-brass crystallizing is space group P4-bar 3m is here shown to crystallize in I4-bar 3m and the mechanism for compositional variation is explained. The phase Pd?Cd has previously been shown to constitute a phase field or a phase bundle of modulated structures and here we determine the structure of a compound Pd?.???Cd?.??? which crystallizes in the orthorhombic superspace group mm(?00)0s0 (F=[(, , 0, 0); (, 0, , 0 ); (0, , , 0 )] with the fundamental cell dimensions a=4.687(2) , b=10.000(1) , c=14.140(2) , q=0.6432(6)a?. - Graphical abstract: The crystal structures of the partly disordered ?-brass type Pd?Cd11? (0.21???0.51) and ?-brass related Pd?.???Cd?.??? in the palladiumcadmium binary system. Highlights: Partly disordered ?-brass type Pd?Cd11? (0.21???0.51) and ?-brass related Pd?.???Cd?.??? have been synthesized. The Pd?Cd11? structure have been described by cluster concept. Incommensurately modulated Pd?.???Cd?.??? have been described by (3+1) D space description. The structure of Pd?.???Cd?.??? has two different chains of atomic subunits, each with their own translational periodicities.

  6. Carbon-Supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol

    SciTech Connect (OSTI)

    Sun, Junming; Karim, Ayman M.; Zhang, He; Kovarik, Libor; Li, Xiaohong S.; Hensley, Alyssa; McEwen, Jean-Sabin; Wang, Yong

    2013-10-01

    Abstract Carbon supported metal catalysts (Cu/C, Fe/C, Pd/C, Pt/C, PdFe/C and Ru/C) have been prepared, characterized and tested for vapor-phase hydrodeoxygenation (HDO) of guaiacol (GUA) at atmospheric pressure. Phenol was the major intermediate on all catalysts. Over the noble metal catalysts saturation of the aromatic ring was the major pathway observed at low temperature (250 C), forming predominantly cyclohexanone and cyclohexanol. Substantial ring opening reaction was observed on Pt/C and Ru/C at higher reaction temperatures (e.g., 350 C). Base metal catalysts, especially Fe/C, were found to exhibit high HDO activity without ring-saturation or ring-opening with the main products being benzene, phenol along with small amounts of cresol, toluene and trimethylbenzene (TMB). A substantial enhancement in HDO activity was observed on the PdFe/C catalysts. Compared with Fe/C, the yield to oxygen-free aromatic products (i.e., benzene/toluene/TMB) on PdFe/C increased by a factor of four at 350 C, and by approximately a factor of two (83.2% versus 43.3%) at 450 C. The enhanced activity of PdFe/C is attributed to the formation of PdFe alloy as evidenced by STEM, EDS and TPR.

  7. Isothermal Solid-State Transformation Kinetics Applied to Pd/Cu Alloy Membrane Fabrication

    SciTech Connect (OSTI)

    Pomerantz, Natalie L; Payzant, E Andrew; Ma, Yi Hua

    2010-01-01

    In this work, time-resolved, in situ high-temperature X-ray diffraction (HT-XRD) was used to study the solid-state transformation kinetics of the formation of the fcc Pd/Cu alloy from Pd/Cu bi-layers for the purpose of fabricating sulfur tolerant Pd/Cu membranes for H2 separation. Thin layers of Pd and Cu (total ~15 wt% Cu) were deposited on porous stainless steel (PSS) with the electroless deposition method and annealed in H2 at 500, 550 and 600 C. The kinetics of the annealing process were successfully described by the Avrami nucleation and growth model showing that the annealing process was diffusion controlled and one dimensional. The activation energy for the solid-state transformation was 175 kJ/mol, which was similar to the activation energy of Pd-Cu bulk interdiffusion. Furthermore, the Avrami model was able to successfully describe the changes in permeance and activation energy observed in Pd/Cu alloy membranes during characterization as they were annealed at high temperatures.

  8. Local structure order in Pd78Cu6Si16 liquid

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yue, G. Q.; Zhang, Y.; Sun, Y.; Shen, B.; Dong, F.; Wang, Z. Y.; Zhang, R. J.; Zheng, Y. X.; Kramer, M. J.; Wang, S. Y.; et al

    2015-02-05

    The short-range order (SRO) in Pd78Cu6Si16 liquid was studied by high energy x-ray diffraction and ab initio molecular dynamics (MD) simulations. The calculated pair correlation functions at different temperatures agree well with the experimental results. The partial pair correlation functions from ab intio MD simulations indicate that Si atoms prefer to be uniformly distributed while Cu atoms tend to aggregate. By performing structure analysis using Honeycutt-Andersen index, Voronoi tessellation, and atomic cluster alignment method, we show that the icosahedron and face-centered cubic SRO increase upon cooling. The dominant SRO is the Pd-centered Pd9Si2 motif, namely the structure of which motifmore » is similar to the structure of Pd-centered clusters in the Pd9Si2 crystal. The study further confirms the existence of trigonal prism capped with three half-octahedra that is reported as a structural unit in Pd-based amorphous alloys. The majority of Cu-centered clusters are icosahedra, suggesting that the presence of Cu is benefit to promote the glass forming ability.« less

  9. Electronic circuits having NiAl and Ni.sub.3 Al substrates

    DOE Patents [OSTI]

    Deevi, Seetharama C.; Sikka, Vinod K.

    1999-01-01

    An electronic circuit component having improved mechanical properties and thermal conductivity comprises NiAl and/or Ni.sub.3 Al, upon which an alumina layer is formed prior to applying the conductive elements. Additional layers of copper-aluminum alloy or copper further improve mechanical strength and thermal conductivity.

  10. Photosensitivity of the Ni-A state of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F with visible light

    SciTech Connect (OSTI)

    Osuka, Hisao; Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma-shi, Nara 630-0192 ; Shomura, Yasuhito; Komori, Hirofumi; Shibata, Naoki; Nagao, Satoshi; Higuchi, Yoshiki; CREST, JST, Gobancho, Chiyoda-ku, Tokyo 102-0076 ; Hirota, Shun; CREST, JST, Gobancho, Chiyoda-ku, Tokyo 102-0076

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Ni-A state of [NiFe] hydrogenase showed light sensitivity. Black-Right-Pointing-Pointer New FT-IR bands were observed with light irradiation of the Ni-A state. Black-Right-Pointing-Pointer EPR g-values of the Ni-A state shifted upon light irradiation. Black-Right-Pointing-Pointer The light-induced state converted back to the Ni-A state under the dark condition. -- Abstract: [NiFe] hydrogenase catalyzes reversible oxidation of molecular hydrogen. Its active site is constructed of a hetero dinuclear Ni-Fe complex, and the oxidation state of the Ni ion changes according to the redox state of the enzyme. We found that the Ni-A state (an inactive unready, oxidized state) of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F (DvMF) is light sensitive and forms a new state (Ni-AL) with irradiation of visible light. The Fourier transform infrared (FT-IR) bands at 1956, 2084 and 2094 cm{sup -1} of the Ni-A state shifted to 1971, 2086 and 2098 cm{sup -1} in the Ni-AL state. The g-values of g{sub x} = 2.30, g{sub y} = 2.23 and g{sub z} = 2.01 for the signals in the electron paramagnetic resonance (EPR) spectrum of the Ni-A state at room temperature varied for -0.009, +0.012 and +0.010, respectively, upon light irradiation. The light-induced Ni-AL state converted back immediately to the Ni-A state under dark condition at room temperature. These results show that the coordination structure of the Fe site of the Ni-A state of [NiFe] hydrogenase is perturbed significantly by light irradiation with relatively small coordination change at the Ni site.

  11. Synthesis of Pd9Ru@Pt nanoparticles for oxygen reduction reaction in acidic electrolytes

    SciTech Connect (OSTI)

    Sun, Yu; Hsieh, Yu -Chi; Chang, Li -Chung; Wu, Pu -Wei; Lee, Jyh -Fu

    2014-11-22

    Nanoparticles of PdRu, Pd?Ru, and Pd?Ru are synthesized and impregnated on carbon black via a wet chemical reflux process. X-ray diffraction patterns of the as-synthesized samples, PdxRu/C (x=1/3/9), suggest succesful formation of alloy without presence of individual Pd and Ru nanoparticles. Images from transmission electron microscope confirm irregularly-shaped nanoparticles with average size below 3 nm. Analysis from extended X-ray absorption fine structure on both Pd and Ru K-edge absorption profiles indicate the Ru atoms are enriched on the surface of PdxRu/C. Among these samples, the Pd?Ru/C exhibits the strongest electrocatalytic activity for oxygen reduction reaction (ORR) in an oxygen-saturated 0.1 M aqueous HClO? solution. Subsequently, the Pd?Ru/C undegoes Cu under potential deposition, followed by a galvanic displacement reaction to deposit a Pt monolayer on the Pd?Ru surface (Pd?Ru@Pt). The Pd?Ru@Pt reveals better ORR performance than that of Pt, reaching a mass activity of 0.38 mA ?g? Pt, as compared to that of commercially available Pt nanoparticles (0.107 mA ?g? Pt). Thus, the mechanisms responsible for the ORR enhancement are attributed to the combined effects of lattice strain and ligand interaction. In addition, this core-shell Pd?Ru@Pt electrocatalyst represents a substantial reduction in the amount of Pt consumption and raw material cost.

  12. Consistent Data Assimilation of Isotopes: 242Pu and 105Pd

    SciTech Connect (OSTI)

    G. Palmiotti; H. Hiruta; M. Salvatores

    2012-09-01

    In this annual report we illustrate the methodology of the consistent data assimilation that allows to use the information coming from integral experiments for improving the basic nuclear parameters used in cross section evaluation. A series of integral experiments are analyzed using the EMPIRE evaluated files for 242Pu and 105Pd. In particular irradiation experiments (PROFIL-1 and -2, TRAPU-1, -2 and -3) provide information about capture cross sections, and a critical configuration, COSMO, where fission spectral indexes were measured, provides information about fission cross section. The observed discrepancies between calculated and experimental results are used in conjunction with the computed sensitivity coefficients and covariance matrix for nuclear parameters in a consistent data assimilation. The results obtained by the consistent data assimilation indicate that not so large modifications on some key identified nuclear parameters allow to obtain reasonable C/E. However, for some parameters such variations are outside the range of 1 s of their initial standard deviation. This can indicate a possible conflict between differential measurements (used to calculate the initial standard deviations) and the integral measurements used in the statistical data adjustment. Moreover, an inconsistency between the C/E of two sets of irradiation experiments (PROFIL and TRAPU) is observed for 242Pu. This is the end of this project funded by the Nuclear Physics Program of the DOE Office of Science. We can indicate that a proof of principle has been demonstrated for a few isotopes for this innovative methodology. However, we are still far from having explored all the possibilities and made this methodology to be considered proved and robust. In particular many issues are worth further investigation: • Non-linear effects • Flexibility of nuclear parameters in describing cross sections • Multi-isotope consistent assimilation • Consistency between differential and integral

  13. Blending Cr2O3 into a NiO-Ni electrocatalyst for sustained water splitting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gong, Ming; Zhou, Wu; Kenney, Michael James; Kapusta, Rich; Cowley, Sam; Wu, Yingpeng; Lu, Bingan; Lin, Meng -Chang; Wang, Di -Yan; Yang, Jiang; et al

    2015-08-24

    The rising H2 economy demands active and durable electrocatalysts based on low-cost, earth-abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over-coated by a Cr2O3-blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr2O3 triphase material exhibits superior activity and stability similar to Pt for the hydrogen-evolution reaction in basic solutions. The chemically stable Cr2O3 is crucial for preventing oxidation of the Ni core, maintaining abundant NiO/Ni interfaces as catalytically active sites in the heterostructure and thus imparting high stability to the hydrogen-evolution catalyst. The highly active and stable electrocatalyst enables an alkaline electrolyzer operating at 20more » mA cm–2 at a voltage lower than 1.5 V, lasting longer than 3 weeks without decay. Thus, the non-precious metal catalysts afford a high efficiency of about 15 % for light-driven water splitting using GaAs solar cells.« less

  14. Study of the I-V characteristics of nanostructured Pd films on a Si substrate after vacuum annealing

    SciTech Connect (OSTI)

    Tomilin, S. V., E-mail: tomilin_znu@mail.ru; Yanovsky, A. S.; Tomilina, O. A.; Mikaelyan, G. R. [Zaporozhye National University, Department of Semiconductor Physics (Ukraine)

    2013-06-15

    The I-V characteristics of nanostructured Pd films on a Si substrate are investigated. The nanostructures (nanoislands) are formed by the vacuum annealing of continuous ultrathin Pd films sputtered onto a substrate. The shape of the I-V characteristics of the investigated Si substrate-Pd film system is shown to be heavily dependent on the degree of film nanostructuring. The surface morphology of the films is studied using scanning electron microscopy.

  15. Excited states in {sup 115}Pd populated in the {beta}{sup -} decay of {sup 115}Rh

    SciTech Connect (OSTI)

    Kurpeta, J.; Plochocki, A. [Faculty of Physics, University of Warsaw, ul. Hoza 69, PL-00-681 Warsaw (Poland); Urban, W. [Faculty of Physics, University of Warsaw, ul. Hoza 69, PL-00-681 Warsaw (Poland); Institut Laue-Langevin, 6 rue J. Horowitz, F-38042 Grenoble (France); Rissanen, J.; Eronen, T.; Hakala, J.; Jokinen, A.; Kankainen, A.; Karvonen, P.; Moore, I. D.; Penttilae, H.; Saastamoinen, A.; Weber, C.; Aeystoe, J. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40351, Jyvaeskylae (Finland); Elomaa, V.-V. [Turku PET Centre, Accelerator Laboratory, Abo Akademi University, FIN-20500 Turku (Finland); Rahaman, S. [Physics Division, P-23, Mail Stop H803, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Sonoda, T. [Nishina Center for Accelerator Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Szerypo, J. [Fakultaet fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Am Coulombwall 1, D-85748 Garching (Germany)

    2010-08-15

    Excited states in {sup 115}Pd, populated following the {beta}{sup -} decay of {sup 115}Rh have been studied by means of {gamma} spectroscopy after the Penning-trap station at the IGISOL facility, University of Jyvaeskylae. The 1/2{sup +} spin and parity assignment of the ground state of {sup 115}Pd, confirmed in this work, may indicate a transition to an oblate shape in Pd isotopes at high neutron number.

  16. Four-year prospective study of the respiratory effects of volcanic ash from Mt. St. Helens

    SciTech Connect (OSTI)

    Buist, A.S.; Vollmer, W.M.; Johnson, L.R.; Bernstein, R.S.; McCamant, L.E.

    1986-04-01

    This report describes the 4-yr follow-up of 712 loggers exposed over an extended period to varying levels of fresh volcanic ash from the 1980 eruptions of Mt. St. Helens. Concerns related to the irritant effect the ash might have on the airways and also to its fibrogenic potential if exposures were intense and continued over many years. Our subjects were divided into 3 groups: high, low, and no exposure. Baseline testing was begun in June 1980, 1 month after the major eruption, and follow-up testing continued on an annual basis through 1984; 88% of the loggers have been tested at least 3 times. Analysis of lung function data showed that a significant, exposure-related decline in FEV1 occurred during the first year after the eruption. The decline was short-lived, however, and by 1984 the differences between exposure groups were no longer significant. Self-reported symptoms of cough, phlegm, and wheeze showed a similar pattern. No ash-related changes were seen in chest roentgenograms taken in 1980 and in 1984. Our findings are consistent with the hypothesis that the inhaled ash caused mucus hypersecretion and/or airway inflammation that reversed when the exposure levels decreased. The ash levels to which the loggers were exposed were low compared with permissible occupational levels for nuisance dusts, but generally higher than the total suspended particulate levels permissible in ambient air.

  17. CO2 flood tests on whole core samples of the Mt. Simon sandstone, Illinois Basin

    SciTech Connect (OSTI)

    O'Connor, William K.; Rush, Gilbert E.

    2005-09-01

    Geological sequestration of CO2, whether by enhanced oil recovery (EOR), coal-bed methane (CBM) recovery, or saline aquifer injection is a promising near-term sequestration methodology. While tremendous experience exists for EOR, and CBM recovery has been demonstrated in existing fields, saline aquifer injection studies have only recently been initiated. Studies evaluating the availability of saline aquifers suitable for CO2 injection show great potential, however, the long-term fate of the CO2 injected into these ancient aqueous systems is still uncertain. For the subject study, a series of laboratory-scale CO2 flood tests were conducted on whole core samples of the Mt. Simon sandstone from the Illinois Basin. By conducting these tests on whole core samples rather than crushed core, an evaluation of the impact of the CO2 flood on the rock mechanics properties as well as the geochemistry of the core and brine solution has been possible. This empirical data could provide a valuable resource for the validation of reservoir models under development for these engineered CO2 systems.

  18. Applications of stable isotopes in hydrological studies of Mt. Apo geothermal field, Philippines

    SciTech Connect (OSTI)

    Salonga, N.D.; Aragon, G.M.; Nogara, J.B.; Sambrano, B.G.

    1996-12-31

    The local precipitation in Mt. Apo is depleted of heavy isotopes owing to high elevation and landward location of the field. Rainwaters infiltrate the shallow grounds, circulate in short distances with almost no interaction with the host bed rocks, and effuse in the surface as cold springs. Lakes and rivers are affected by surface evaporation while the acid SO{sub 4} springs are affected by both evaporation and steam-heating. Only the neutral-pH Cl springs have the signature of the deep thermal fluids. The parent fluids of the deep thermal brine contain Cl of 4,800 to 5,000 mg/kg, {delta}{sup 18}O of -4.62 to -4.13 {per_thousand} and {delta}{sup 2}H of -60.0 to -57.8 {per_thousand}. Inside the Sandawa Collapse, boiling of the parent fluids resulted in a two-phase reservoir with lighter isotope contents. The thermal fluids laterally flow towards the west where they are affected by cooling and mixing of cold waters. Deep water recharge has {delta}{sup 18}O of -10.00 {per_thousand} and {delta}{sup 2}H = -61.20 {per_thousand} which come from the upper slopes of Sandawa Collapse (1580-1700 mASL).

  19. Dosimetric comparison of four new design {sup 103}Pd brachytherapy sources: Optimal design using silver and copper rod cores

    SciTech Connect (OSTI)

    Hosseini, S. Hamed; Sadeghi, Mahdi; Ataeinia, Vahideh

    2009-07-15

    Four new brachytherapy sources, IRA1-{sup 103}Pd, IRA2-{sup 103}Pd, IRA3-{sup 103}Pd, and IRA4-{sup 103}Pd, have been developed at Agricultural, Medical, and Industrial Research School and are designed for permanent implant application. With the goal of determining an optimal design for a {sup 103}Pd source, this article compares the dosimetric properties of these sources with reference to the authors' earlier IRA-{sup 103}Pd source. The four new sources differ in end cap configuration and thickness and in the core material, silver or copper, that carries the adsorbed {sup 103}Pd. Dosimetric data derived from the authors' Monte Carlo simulation results are reported in accordance with the updated AAPM Task Group No. 43 report (TG-43U1). For each source, the authors obtained detailed results for the dose rate constant {Lambda}, the radial dose function g(r), the anisotropy function F(r,{theta}), and the anisotropy factor {phi}{sub an}(r). In this study, the optimal source IRA3-{sup 103}Pd provides the most isotropic dose distribution in water with the dose rate constant of 0.678({+-}0.1%) cGy h{sup -1} U{sup -1}. The IRA3-{sup 103}Pd design has a silver rod core combined with thin-wall, concave end caps. Finally, the authors compared the results for their optimal source with published results for those of other source manufacturers.

  20. Aqueous Co-precipitation of Pd-doped Cerium Oxide Nanoparticles: Chemistry Structure and Particle Growth

    SciTech Connect (OSTI)

    Liang H.; Zhang L.; Raitano J.M.; He G.; Akey A.J.; Herman I.P.; Chan S.-W.

    2012-01-01

    Nanoparticles of palladium-doped cerium oxide (Pd-CeO{sub 2}) have been prepared by aqueous co-precipitation resulting in a single phase cubic structure after calcination according to X-ray diffraction (XRD). Inhomogeneous strain, calculated using the Williamson-Hall method, was found to increase with palladium content, and the lattice contracts slightly, relative to nano-cerium oxide, as palladium content is increased. Moreover, high resolution transmission electron microscopy reveals some instances of defective microstructure. These factors combined imply that palladium is in solid solution with CeO{sub 2} in these nanoparticles, but palladium (II) oxide (PdO) peaks in the Raman spectra indicate that solid solution formation is partial and that highly dispersed PdO is present as well as the solid solution. Nevertheless, the addition of palladium to the CeO{sub 2} lattice inhibits the growth of the 6% Pd-CeO{sub 2} particles compared to pure CeO{sub 2} between 600 and 850 C. Activation energies for grain growth of 54 {+-} 7 and 79 {+-} 8 kJ/mol were determined for 6% Pd-CeO{sub 2} and pure CeO{sub 2}, respectively, along with pre-exponential Arrhenius factors of 10 for the doped sample and 600 for pure cerium oxide.

  1. Pd menbrane having improved H.sub.2-permeance, and method of making

    DOE Patents [OSTI]

    Vanderspurt, Thomas Henry; She, Ying; Dardas, Zissis; Walker, Craig; MacLeod, James D.

    2011-12-06

    An H.sub.2-permeable membrane system (117) comprises an electroless-deposited plating (115) of Pd or Pd alloy on a porous support (110, 110'). The Pd plating comprises face-centered cubic crystals cumulatively having a morphology of hexagonal platelets. The permeability to H.sub.2 of the membrane plating (115) on the porous support is significantly enhanced, being at least greater than about 1.3.times.10.sup.-8 molm.sup.-1s.sup.-Pa.sup.-0.5 at 350.degree. C., and even greater than about 3.4.times.10.sup.-8 molm.sup.-1s.sup.-1Pa.sup.-0.5. The porous support (110, 110') may be stainless steel (1100 and include a thin ceramic interlayer (110') on which the Pd is plated. The method of providing the electroless-deposited plating includes preheating a Pd electroless plating solution to near a plating temperature substantially greater than room temperature, e.g. 60.degree. C., prior to plating.

  2. Preliminary study on mercury uptake by Rosmarinus officinalis L. (Rosemary) in a mining area (Mt. Amiata, Italy)

    SciTech Connect (OSTI)

    Barghigiani, C.; Ristori, T.

    1995-04-01

    Among the different plants analyzed to assess environmental mercury contamination of mining areas, lichens are those most studied, followed by brooms together with pine, which was also used in other areas, and spruce. Other species, both naturally occurring and cultivated, have also been studied. This work reports on the results of mercury uptake and accumulation in rosemary in relation to metal concentrations in both air and soil. R. officinalis is a widespread endemic Mediterranean evergreen shrub, which in Italy grows naturally and is also cultivated as a culinary herb. This research was carried out in Tuscany (Italy), in the Mt. Amiata area, which is characterized by the presence of cinnabar (HgS) deposits and has been used for mercury extraction and smelting from Etruscan times until 1980, and in the country near the town of Pisa, 140 km away from Mt. Amiata. 16 refs., 3 figs., 1 tab.

  3. EBSD study on crystallographic texture and microstructure development of cold-rolled FePd alloy

    SciTech Connect (OSTI)

    Lin, Hung-Pin; Ng, Tin-San; Kuo, Jui-Chao; Chen, Yen-Chun; Chen, Chun-Liang; Ding, Shi-Xuan

    2014-07-01

    The crystallographic texture and microstructure of FePd alloy after cold-rolling deformation were investigated using electron backscatter diffraction. The major orientations of twin copper and copper after 50% thickness reduction were observed in face-centered cubic-disordered FePd alloy, whereas the main orientation was obtained from brass type after 90% cold rolling. Increase in cold rolling resulted in the change of preferred orientation from copper to brass. Decrease in orientation intensity of copper also increased that of Goss and brass. - Highlights: • The evolution of texture and microstructure in FePd alloy was investigated after cold rolling using EBSD. • Increasing in reduction leads to the change of texture from Copper-type to Brass-type. • The reduction of Copper orientation results in increasing in Goss and Brass orientations.

  4. Uranium hydrogeochemical and stream-sediment reconnaissance of the Mt. Michelson NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.

    1982-04-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Mt. Michelson NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

  5. Dark Matter Particle Spectroscopy at the LHC: Generalizing M(T2) to Asymmetric Event Topologies

    SciTech Connect (OSTI)

    Konar, Partha; Kong, Kyoungchul; Matchev, Konstantin T.; Park, Myeonghun; /Florida U.

    2012-04-03

    We consider SUSY-like missing energy events at hadron colliders and critically examine the common assumption that the missing energy is the result of two identical missing particles. In order to experimentally test this hypothesis, we generalize the subsystem M{sub T2} variable to the case of asymmetric event topologies, where the two SUSY decay chains terminate in different 'children' particles. In this more general approach, the endpoint M{sub T2(max)} of the M{sub T2} distribution now gives the mass {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}) of the parent particles as a function of two input children masses {tilde M}{sub c}{sup (a)} and {tilde M}{sub c}{sup (b)}. We propose two methods for an independent determination of the individual children masses M{sub c}{sup (a)} and M{sub c}{sup (b)}. First, in the presence of upstream transverse momentum PUTM the corresponding function {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}, P{sub UTM}) is independent of P{sub UTM} at precisely the right values of the children masses. Second, the previously discussed MT2 'kink' is now generalized to a 'ridge' on the 2-dimensional surface {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}). As we show in several examples, quite often there is a special point along that ridge which marks the true values of the children masses. Our results allow collider experiments to probe a multi-component dark matter sector directly and without any theoretical prejudice.

  6. Influence of Ni on Martensitic Phase Transformations in NiTi Shape Memory Alloys

    SciTech Connect (OSTI)

    Frenzel, J.; George, Easo P; Dlouhy, A.; Somsen, Ch.; Wagner, M. F.-X; Eggeler, G.

    2010-01-01

    High-precision data on phase transformation temperatures in NiTi, including numerical expressions for the effect of Ni on M{sub S}, M{sub F}, A{sub S}, A{sub F} and T{sub 0}, are obtained, and the reasons for the large experimental scatter observed in previous studies are discussed. Clear experimental evidence is provided confirming the predictions of Tang et al. 1999 regarding deviations from a linear relation between the thermodynamic equilibrium temperature and Ni concentration. In addition to affecting the phase transition temperatures, increasing Ni contents are found to decrease the width of thermal hysteresis and the heat of transformation. These findings are rationalized on the basis of the crystallographic data of Prokoshkin et al. 2004 and the theory of Ball and James. The results show that it is important to document carefully the details of the arc-melting procedure used to make shape memory alloys and that, if the effects of processing are properly accounted for, precise values for the Ni concentration of the NiTi matrix can be obtained.

  7. Relating adatom emission to improved durability of Pt-Pd diesel oxidation catalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johns, Tyne Richele; Goeke, Ronald S.; Ashbacher, Valerie; Thune, Peter C.; Niemantsverdriet, J. W.; Kiefer, Boris; Kim, Chang H.; Balogh, Michael P.; Datye, Abhaya K.

    2015-06-05

    Sintering of nanoparticles is an important contributor to loss of activity in heterogeneous catalysts, such as those used for controlling harmful emissions from automobiles. But mechanistic details, such as the rates of atom emission or the nature of the mobile species, remain poorly understood. Herein we report a novel approach that allows direct measurement of atom emission from nanoparticles. We use model catalyst samples and a novel reactor that allows the same region of the sample to be observed after short-term heat treatments (seconds) under conditions relevant to diesel oxidation catalysts (DOCs). Monometallic Pd is very stable and does notmore » sinter when heated in air (T ≤ 800 °C). Pt sinters readily in air, and at high temperatures (≥800 °C) mobile Pt species emitted to the vapor phase cause the formation of large, faceted particles. In Pt–Pd nanoparticles, Pd slows the rate of emission of atoms to the vapor phase due to the formation of an alloy. However, the role of Pd in Pt DOCs in air is quite complex: at low temperatures, Pt enhances the rate of Pd sintering (which otherwise would be stable as an oxide), while at higher temperature Pd helps to slow the rate of Pt sintering. DFT calculations show that the barrier for atom emission to the vapor phase is much greater than the barrier for emitting atoms to the support. Thus, vapor-phase transport becomes significant only at high temperatures while diffusion of adatoms on the support dominates at lower temperatures.« less

  8. Relating adatom emission to improved durability of Pt-Pd diesel oxidation catalysts

    SciTech Connect (OSTI)

    Johns, Tyne Richele; Goeke, Ronald S.; Ashbacher, Valerie; Thune, Peter C.; Niemantsverdriet, J. W.; Kiefer, Boris; Kim, Chang H.; Balogh, Michael P.; Datye, Abhaya K.

    2015-06-05

    Sintering of nanoparticles is an important contributor to loss of activity in heterogeneous catalysts, such as those used for controlling harmful emissions from automobiles. But mechanistic details, such as the rates of atom emission or the nature of the mobile species, remain poorly understood. Herein we report a novel approach that allows direct measurement of atom emission from nanoparticles. We use model catalyst samples and a novel reactor that allows the same region of the sample to be observed after short-term heat treatments (seconds) under conditions relevant to diesel oxidation catalysts (DOCs). Monometallic Pd is very stable and does not sinter when heated in air (T ≤ 800 °C). Pt sinters readily in air, and at high temperatures (≥800 °C) mobile Pt species emitted to the vapor phase cause the formation of large, faceted particles. In Pt–Pd nanoparticles, Pd slows the rate of emission of atoms to the vapor phase due to the formation of an alloy. However, the role of Pd in Pt DOCs in air is quite complex: at low temperatures, Pt enhances the rate of Pd sintering (which otherwise would be stable as an oxide), while at higher temperature Pd helps to slow the rate of Pt sintering. DFT calculations show that the barrier for atom emission to the vapor phase is much greater than the barrier for emitting atoms to the support. Thus, vapor-phase transport becomes significant only at high temperatures while diffusion of adatoms on the support dominates at lower temperatures.

  9. Multiband semimetallic electronic structure of superconducting Ta2PdSe5

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Singh, David Joseph

    2015-04-24

    We report the electronic structure and related properties of the superconductor Ta2PdSe5 as determined from density functional calculations. The Fermi surface has two disconnected sheets, both derived from bands of primarily chalcogenide p states. These are a corrugated hole cylinder and a heavier complex shaped electron sheet. The sheets contain 0.048 holes and a compensating number of electrons per formula unit, making the material a semimetallic superconductor. The results support the presence of two band superconductivity, although a discrepancy in the specific heat is noted. This discrepancy is discussed as a possible consequence of Pd deficiency in samples.

  10. Tuning electron-electron correlation in noncentrosymmetric superconductor BiPd

    SciTech Connect (OSTI)

    Joshi, Bhanu Thamizhavel, A. Ramakrishnan, S.

    2014-04-24

    In this work, we have successfully tuned the electron-electron correlation in new noncentrosymmertic superconductor (NCS) BiPd via Pb substitution on one of the inequivalent Bi sites present in BiPd and simultaneously keeping the parent noncentrosymmetric crystal structure intact. Heat capacity data is suggesting a fourfold increase in density of states at Fermi level via Pb substitution while superconducting transition temperature has been suppressed. This work will clearly open up a rare chance to study the effect of electron–electron correlation via selective tuning of DOS at Fermi level in NCS.

  11. Temperature-dependent H{sub 2} gas-sensing properties of fabricated Pd nanowires using highly oriented pyrolytic graphite

    SciTech Connect (OSTI)

    Sennik, Erdem; Kilinc, Necmettin; Oeztuerk, Zafer Ziya

    2010-09-15

    Horizontal palladium (Pd) nanowires and Pd nanoparticles were successfully fabricated directly on highly oriented pyrolytic graphite depending on the electrodeposition time using palladium nitrate [Pd(NO{sub 2}){sub 3}] solution at room temperature, and the temperature-dependent hydrogen (H{sub 2}) sensing properties of these structures were investigated in the concentration range of 50-5000 ppm. Pd nanowires and Pd nanoparticles were fabricated on a graphite surface by applying triple-pulsed potential with varying the electrodeposition time from 400 to 600 s. The fabricated Pd nanowires were characterized by scanning electron microscopy and energy-dispersive x-ray spectroscopy. It was found that the nanowire arrays were continuous, parallel to each other and ordered after an electrodeposition time of 600 s. The diameters of the Pd nanowires and Pd nanoparticles are observed in the range of 70-180 nm. The H{sub 2} sensing properties of these structures were determined with variation in resistance measurements. It was observed that the limit of detection is lower than 50 ppm H{sub 2}, the sensor response was approximately 2% for 1000 ppm H{sub 2} at room temperature, and the sensor response was decreased with increasing temperature.

  12. First principles investigation of the initial stage of H-induced missing-row reconstruction of Pd(110) surface

    SciTech Connect (OSTI)

    Padama, Allan Abraham B. [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Kasai, Hideaki, E-mail: kasai@dyn.ap.eng.osaka-u.ac.jp [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Center for Atomic and Molecular Technologies, Osaka University, Suita, Osaka 565-0871 (Japan)

    2014-06-28

    The pathway of H diffusion that will induce the migration of Pd atom is investigated by employing first principles calculations based on density functional theory to explain the origin of missing-row reconstruction of Pd(110).The calculated activation barrier and the H-induced reconstruction energy reveal that the long bridge-to-tetrahedral configuration is the energetically favored process for the initial stage of reconstruction phenomenon. While the H diffusion triggers the migration of Pd atom, it is the latter process that significantly contributes to the activated missing-row reconstruction of Pd(110). Nonetheless, the strong interaction between the diffusing H and the Pd atoms dictates the occurrence of reconstructed surface.

  13. The spin Hall angle and spin diffusion length of Pd measured by spin pumping and microwave photoresistance

    SciTech Connect (OSTI)

    Tao, X. D.; Feng, Z.; Miao, B. F.; Sun, L.; You, B.; Wu, D.; Du, J.; Zhang, W.; Ding, H. F., E-mail: hfding@nju.edu.cn [Department of Physics, National Laboratory of Solid State Microstructures, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)

    2014-05-07

    We present the experimental study of the spin Hall angle (SHA) and spin diffusion length of Pd with the spin pumping and microwave photoresistance effects. The Py/Pd bilayer stripes are excited with an out-of-plane microwave magnetic field. The pure spin current is thus pumped and transforms into charge current via the inverse spin Hall effect (ISHE) in Pd layer, yielding an ISHE voltage. The ISHE voltage can be distinguished from the unwanted signal caused by the anisotropic magnetoresistance according to their different symmetries. Together with Pd thickness dependent measurements of in and out-of-plane precessing angles and effective spin mixing conductance, the SHA and spin-diffusion length of Pd are quantified as 0.0056??0.0007 and 7.3??0.7?nm, respectively.

  14. Impact of Materials Processing on Microstructural Evolution and Hydrogen Isotope Storage Properties of Pd-Rh Alloy Powders.

    SciTech Connect (OSTI)

    Yee, Joshua K

    2015-02-01

    Cryomilled Pd - 10Rh was investiga ted as potential solid - state storage material of hydrogen. Pd - 10Rh was first atomized, and then subsequently cryomilled. The cryomilled Pd - 10Rh was then examined using microstructural characterization techniques including op tical microscopy, electron microscopy, and X - ray diffraction. Pd - 10Rh particles were significantly flattened, increasing the apparent surface area. Microstructural refinement was observed in the cryomilled Pd - 10Rh, generating grains at the nanom etric scale through dislocation - based activity. Hydrogen sorption properties were also characterized, generating both capacity as well as kinetics measurements. It was found that the microstructural refinement due to cryomilling did not play a significant role on hyd rogen sorption properties until the smallest grain size (on the order of %7E25 nm) was achieved. Additionally, the increased surface area and other changes in particle morphology were associated with cryomilling changed the kinetics of hydrogen absorption.

  15. Ab initio molecular dynamics investigations of low-energy recoil events in Ni and NiCo

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Bin; Yuan, Fenglin; Jin, Ke; Zhang, Yanwen; Weber, William J.

    2015-10-06

    Low-energy recoil events in pure Ni and the equiatomic NiCo alloy are studied using ab initio molecular dynamics simulations. We found that the threshold displacement energies are strongly dependent on orientation and weakly dependent on composition. The minimum threshold displacement energies are along the [1 1 0] direction in both pure Ni and the NiCo alloy. Compared to pure Ni, the threshold displacement energies increase slightly in the NiCo alloy due to stronger bonds in the alloy, irrespective of the element type of the PKA. A single Ni interstitial occupying the center of a tetrahedron formed by four Ni atomsmore » and a <1 0 0> split interstitial is produced in pure Ni by the recoils, while only the <1 0 0> split interstitial is formed in the NiCo alloy. Compared to the replacement sequences in pure Ni, anti-site defect sequences are observed in the alloy, which have high efficiency for both producing defects and transporting energy outside of the cascade core. These results provide insights into energy transfer processes occurring in equiatomic alloys under irradiation.« less

  16. Ni{sub 3}Al technology transfer

    SciTech Connect (OSTI)

    Sikka, V.K.; Viswanathan, S.; Santella, M.L.

    1997-04-01

    Ductile Ni{sub 3}Al and Ni{sub 3}Al-based alloys have been identified for a range of applications. These applications require the use of material in a variety of product forms such as sheet, plate, bar, wire, tubing, piping, and castings. Although significant progress has been made in the melting, casting, and near-net-shape forming of nickel aluminides, some issues still remain. These include the need for: (1) high-strength castable composition for many applications that have been identified; (2) castability (mold type, fluidity, hot-shortness, porosity, etc.); (3) weld reparability of castings; and (4) workability of cast or powder metallurgy product to sheet, bar, and wire. The four issues listed above can be {open_quotes}show stoppers{close_quotes} for the commercial application of nickel aluminides. This report describes the work completed to address some of these issues during FY 1996.

  17. Kinetics of hydrogen isotope exchange in β-phase Pd-H-D

    SciTech Connect (OSTI)

    Luo, Weifang; Cowgill, Donald F.

    2015-07-22

    Hydrogen isotope gas exchange within palladium powders is examined using a batch-type reactor coupled to a residual gas analyzer (RGA). Furthermore, the exchange rates in both directions (H2 + PdD and D2 + PdH) are measured in the temperature range 178–323 K for the samples with different particle sizes. The results show this batch-type exchange is closely approximated as a first-order kinetic process with a rate directly proportional to the surface area of the powder particles. An exchange rate constant of 1.40 ± 0.24 μmol H2/atm cm2 s is found for H2 + PdD at 298 K, 1.4 times higher than that for D2 + PdH, with an activation energy of 25.0 ± 3.2 kJ/mol H for both exchange directions. Finally, a comparison of exchange measurement techniques shows these coefficients, and the fundamental exchange probabilities are in good agreement with those obtained by NMR and flow techniques.

  18. Kinetics of hydrogen isotope exchange in β-phase Pd-H-D

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Luo, Weifang; Cowgill, Donald F.

    2015-07-22

    Hydrogen isotope gas exchange within palladium powders is examined using a batch-type reactor coupled to a residual gas analyzer (RGA). Furthermore, the exchange rates in both directions (H2 + PdD and D2 + PdH) are measured in the temperature range 178–323 K for the samples with different particle sizes. The results show this batch-type exchange is closely approximated as a first-order kinetic process with a rate directly proportional to the surface area of the powder particles. An exchange rate constant of 1.40 ± 0.24 μmol H2/atm cm2 s is found for H2 + PdD at 298 K, 1.4 times highermore » than that for D2 + PdH, with an activation energy of 25.0 ± 3.2 kJ/mol H for both exchange directions. Finally, a comparison of exchange measurement techniques shows these coefficients, and the fundamental exchange probabilities are in good agreement with those obtained by NMR and flow techniques.« less

  19. Tables for Trials and Failures with PD for Designated Confidence Level

    SciTech Connect (OSTI)

    Leach, Janice

    2014-02-01

    Two attachments are provided for performance testing of sensors and other Physical Protection System (PPS) components.#2; The first attachment is a table of Trials and Failures, giving Probability of Detection (PD) for a designated confidence level and sorted by trials.#2; The second attachment contains the same data, sorted by failures.

  20. Kinetics of Hydrogen Isotope Exchange in ?-phase Pd-H-D

    SciTech Connect (OSTI)

    Luo, Weifang; Cowgill, Donald F.

    2015-07-22

    Hydrogen isotope gas exchange within palladium powders is examined using a batch-type reactor coupled to a residual gas analyzer (RGA). Furthermore, the exchange rates in both directions (H2 + PdD and D2 + PdH) are measured in the temperature range 178323 K for the samples with different particle sizes. The results show this batch-type exchange is closely approximated as a first-order kinetic process with a rate directly proportional to the surface area of the powder particles. An exchange rate constant of 1.40 0.24 ?mol H2/atm cm2 s is found for H2 + PdD at 298 K, 1.4 times higher than that for D2 + PdH, with an activation energy of 25.0 3.2 kJ/mol H for both exchange directions. Finally, a comparison of exchange measurement techniques shows these coefficients, and the fundamental exchange probabilities are in good agreement with those obtained by NMR and flow techniques.

  1. SF 6432-NI (02-22-10)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-08-10) SECTION II STANDARD TERMS AND CONDITIONS FOR FIXED PRICE CONTRACTS WITH THE NEWLY INDEPENDENT STATES OF THE FORMER SOVIET UNION INDEX OF CLAUSES THE FOLLOWING CLAUSES APPLY TO REQUESTS FOR QUOTATION AND CONTRACTS AS INDICATED UNLESS SPECIFICALLY DELETED, OR EXCEPT TO THE EXTENT THEY ARE SPECIFICALLY SUPPLEMENTED OR AMENDED IN WRITING IN SECTION I. NI01 - ACCEPTANCE OF TERMS AND CONDITIONS Contractor, by signing this Agreement, beginning performance, and/or delivering Items or services

  2. SF 6432-NI (04-95)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-08) SECTION II STANDARD TERMS AND CONDITIONS FOR FIXED PRICE CONTRACTS WITH NEW INDEPENDET STATES OF THE FORMER SOVIET UNION INDEX OF CLAUSES THE FOLLOWING CLAUSES APPLY TO REQUESTS FOR QUOTATION AND CONTRACTS AS INDICATED UNLESS SPECIFICALLY DELETED, OR EXCEPT TO THE EXTENT THEY AERE SPECIFICALLY SUPPLEMENTED OR AMENDED IN WRITING IN THE SIGNATURE PAGE OR SECTION I. NI01 - ACCEPTANCE OF TERMS AND CONDITIONS Contractor, by signing this Agreement, beginning performance, and/or delivering Items

  3. The anti-perovskite type hydride InPd{sub 3}H{sub 0.89}

    SciTech Connect (OSTI)

    Kohlmann, H.; Skripov, A.V.; Soloninin, A.V.; Udovic, T.J.

    2010-10-15

    Hydrogenation of tetragonal InPd{sub 3} in the ZrAl{sub 3} type structure (four-fold ccp superstructure) yields a hydride with a cubic AuCu{sub 3} type structure (one-fold ccp superstructure). Deuterium can be located by neutron powder diffraction in octahedral voids surrounded exclusively by palladium, [Pd{sub 6}], which are 88.5(6)% occupied in a statistical manner. The resulting deuteride InPd{sub 3}D{sub 0.89} thus crystallizes in a cubic anti-perovskite type structure (space group Pm3-bar m (no. 221), a=402.25(1) pm at 299(2) K). The Pd-D distance of 201.13(1) pm is typical for interstitial hydrides with palladium. Inelastic neutron scattering on the hydride InPd{sub 3}H{sub 0.89}, which shows a spectrum similar to that of binary palladium hydride, confirms the cubic site symmetry of hydrogen in [Pd{sub 6}] interstices. This is also confirmed by the absence of any quadrupole splitting in the {sup 2}D-NMR signal of the deuteride. {sup 1}H NMR spectra of InPd{sub 3}H{sub 0.89} do not show any motional narrowing. Values found for the H jump rate {tau}{sup -1} in InPd{sub 3}H{sub 0.89} remain below 10{sup 6} s{sup -1} in the studied temperature range 28-360 K, indicating a small hydrogen mobility in InPd{sub 3}H{sub 0.8} as compared with binary palladium hydride, PdH{sub {<=}1}. This can be attributed to the large spatial separation of the [Pd{sub 6}] sites. - Graphical abstract: Hydrogen induces a rearrangement in InPd{sub 3} from a ZrAl{sub 3} type structure to a cubic AuCu{sub 3} type structure, thus forming an anti-perovskite type hydride InPd{sub 3}H{sub 0.89}.

  4. Novel insight into the hydrogen absorption mechanism at the Pd(110) surface

    SciTech Connect (OSTI)

    Ohno, Satoshi E-mail: wilde@iis.u-tokyo.ac.jp; Wilde, Markus E-mail: wilde@iis.u-tokyo.ac.jp; Fukutani, Katsuyuki

    2014-04-07

    The microscopic mechanism of low-temperature (80 K < T < 160 K) hydrogen (H) ingress into the H{sub 2} (<2.66 10{sup ?3} Pa) exposed Pd(110) surface is explored by H depth profiling with {sup 15}N nuclear reaction analysis (NRA) and thermal desorption spectroscopy (TDS) with isotope (H, D) labeled surface hydrogen. NRA and TDS reveal two types of absorbed hydrogen states of distinctly different depth distributions. Between 80 K and ?145 K a near-surface hydride phase evolving as the TDS ?{sub 1} feature at 160 K forms, which initially extends only several nanometers into depth. On the other hand, a bulk-absorbed hydrogen state develops between 80 K and ?160 K which gives rise to a characteristic ?{sub 3} TDS feature above 190 K. These two absorbed states are populated at spatially separated surface entrance channels. The near-surface hydride is populated through rapid penetration at minority sites (presumably defects) while the bulk-absorbed state forms at regular terraces with much lower probability per site. In both cases, absorption of gas phase hydrogen transfers pre-adsorbed hydrogen atoms below the surface and replaces them at the chemisorption sites by post-dosed hydrogen in a process that requires much less activation energy (<100 meV) than monatomic diffusion of chemisorbed H atoms into subsurface sites. This small energy barrier suggests that the rate-determining step of the absorption process is either H{sub 2} dissociation on the H-saturated Pd surface or a concerted penetration mechanism, where excess H atoms weakly bound to energetically less favorable adsorption sites stabilize themselves in the chemisorption wells while pre-chemisorbed H atoms simultaneously transit into the subsurface. The peculiarity of absorption at regular Pd(110) terraces in comparison to Pd(111) and Pd(100) is discussed.

  5. Local structure study of Fe dopants in Ni-deficit Ni3Al alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    V. N. Ivanovski; Umicevic, A.; Belosevic-Cavor, J.; Lei, Hechang; Li, Lijun; Cekic, B.; Koteski, V.; Petrovic, C.

    2015-08-24

    We found that the local electronic and magnetic structure, hyperfine interactions, and phase composition of polycrystalline Ni–deficient Ni 3-x FexAl (x = 0.18 and 0.36) were investigated by means of 57 Fe Mössbauer spectroscopy. The samples were characterized by X–ray diffraction and magnetization measurements. The ab initio calculations performed with the projector augmented wave method and the calculations of the energies of iron point defects were done to elucidate the electronic structure and site preference of Fe doped Ni 3 Al. Moreover, the value of calculated electric field gradient tensor Vzz=1.6 1021Vm-2 matches well with the results of Mössbauer spectroscopymore » and indicates that the Fe atoms occupy Ni sites.« less

  6. NiW and NiRu Bimetallic Catalysts for Ethylene Steam Reforming: Alternative Mechanisms for Sulfur Resistance

    SciTech Connect (OSTI)

    Rangan, M.; Yung, M. M.; Medlin, J. W.

    2012-06-01

    Previous investigations of Ni-based catalysts for the steam reforming of hydrocarbons have indicated that the addition of a second metal can reduce the effects of sulfur poisoning. Two systems that have previously shown promise for such applications, NiW and NiRu, are considered here for the steam reforming of ethylene, a key component of biomass derived tars. Monometallic and bimetallic Al{sub 2}O{sub 3}-supported Ni and W catalysts were employed for ethylene steam reforming in the presence and absence of sulfur. The NiW catalysts were less active than Ni in the absence of sulfur, but were more active in the presence of 50 ppm H{sub 2}S. The mechanism for the W-induced improvements in sulfur resistance appears to be different from that for Ru in NiRu. To probe reasons for the sulfur resistance of NiRu, the adsorption of S and C{sub 2}H{sub 4} on several bimetallic NiRu alloy surfaces ranging from 11 to 33 % Ru was studied using density functional theory (DFT). The DFT studies reveal that sulfur adsorption is generally favored on hollow sites containing Ru. Ethylene preferentially adsorbs atop the Ru atom in all the NiRu (111) alloys investigated. By comparing trends across the various bimetallic models considered, sulfur adsorption was observed to be correlated with the density of occupied states near the Fermi level while C{sub 2}H{sub 4} adsorption was correlated with the number of unoccupied states in the d-band. The diverging mechanisms for S and C{sub 2}H{sub 4} adsorption allow for bimetallic surfaces such as NiRu that enhance ethylene binding without accompanying increases in sulfur binding energy. In contrast, bimetallics such as NiSn and NiW appear to decrease the affinity of the surface for both the reagent and the poison.

  7. Correlation between Pd metal thickness and thermally stable perpendicular magnetic anisotropy features in [Co/Pd]{sub n} multilayers at annealing temperatures up to 500 °C

    SciTech Connect (OSTI)

    An, Gwang Guk; Lee, Ja Bin; Yang, Seung Mo; Yoon, Kap Soo; Kim, Jae Hong; Chung, Woo Seong; Hong, Jin Pyo

    2015-02-15

    We examine highly stable perpendicular magnetic anisotropy (PMA) features of [Co/Pd]{sub 10} multilayers (MLs) versus Pd thickness at various ex-situ annealing temperatures. Thermally stable PMA characteristics were observed up to 500 °C, confirming the suitability of these systems for industrial applications at this temperature. Experimental observations suggest that the choice of equivalent Co and Pd layer thicknesses in a ML configuration ensures thermally stable PMA features, even at higher annealing temperatures. X-ray diffraction patterns and cross-sectional transmission electron microscopy images were obtained to determine thickness, post-annealing PMA behavior, and to explore the structural features that govern these findings.

  8. Cross sections for proton-induced reactions on Pd isotopes at energies relevant for the {gamma} process

    SciTech Connect (OSTI)

    Dillmann, I.; Coquard, L.; Domingo-Pardo, C.; Kaeppeler, F.; Marganiec, J.; Uberseder, E.; Giesen, U.; Heiske, A.; Feinberg, G.; Hentschel, D.; Hilpp, S.; Leiste, H.; Rauscher, T.; Thielemann, F.-K.

    2011-07-15

    Proton-activation reactions on natural and enriched palladium samples were investigated via the activation technique in the energy range of E{sub p}=2.75-9 MeV, close to the upper end of the respective Gamow window of the {gamma} process. We have determined cross sections for {sup 102}Pd(p, {gamma}){sup 103}Ag, {sup 104}Pd(p, {gamma}){sup 105}Ag, and {sup 105}Pd(p, n){sup 105}Ag, as well as partial cross sections of {sup 104}Pd(p, n){sup 104}Ag{sup g}, {sup 105}Pd(p, {gamma}){sup 106}Ag{sup m}, {sup 106}Pd(p, n){sup 106}Ag{sup m}, and {sup 110}Pd(p, n){sup 110}Ag{sup m} with uncertainties between 3% and 15% for constraining theoretical Hauser-Feshbach rates and for direct use in {gamma}-process calculations.

  9. Synthesis of Pt–Pd Core–Shell Nanostructures by Atomic Layer Deposition: Application in Propane Oxidative Dehydrogenation to Propylene

    SciTech Connect (OSTI)

    Lei, Yu; Liu, Bin; Lu, Junling; Lobo-Lapidus, Rodrigo J.; Wu, Tianpin; Feng, Hao; Xia, Xiaoxing; Mane, Anil U.; Libera, Joseph A.; Greeley, Jeffrey P.; Miller, Jeffrey T.; Elam, Jeffrey W.

    2012-08-20

    Atomic layer deposition (ALD) was employed to synthesize supported Pt–Pd bimetallic particles in the 1 to 2 nm range. The metal loading and composition of the supported Pt–Pd nanoparticles were controlled by varying the deposition temperature and by applying ALD metal oxide coatings to modify the support surface chemistry. High-resolution scanning transmission electron microscopy images showed monodispersed Pt–Pd nanoparticles on ALD Al2O3- and TiO2-modified SiO2 gel. X-ray absorption spectroscopy revealed that the bimetallic nanoparticles have a stable Pt-core, Pd-shell nanostructure. Density functional theory calculations revealed that the most stable surface configuration for the Pt–Pd alloys in an H2 environment has a Pt-core, Pd-shell nanostructure. Finally, in comparison to their monometallic counterparts, the small Pt–Pd bimetallic core–shell nanoparticles exhibited higher activity in propane oxidative dehydrogenation as compared to their physical mixture.

  10. Geometric and Electronic Structures of the Ni(I) and Methyl-Ni(III)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intermediates of Methyl-Coenzyme M Reductase 9 Geometric and Electronic Structures of the Ni(I) and Methyl-Ni(III) Intermediates of Methyl-Coenzyme M Reductase Methyl-coenzyme M reductase (MCR) from methanogenic archaea catalyzes the terminal step in biological methane synthesis. Using coenzyme B (CoBSH) as the two-electron donor, MCR reduces methyl-coenzyme M (methyl-SCoM) to form methane and the heterodisulfide product, CoBS-SCoM. MCR contains an essential redox active nickel tetrapyrrolic

  11. Transmutation-induced embrittlement of V-Ti-Ni and V-Ni alloys in HFIR

    SciTech Connect (OSTI)

    Ohnuki, S.; Takahashi, H.; Garner, F.A.; Pawel, J.E.

    1996-04-01

    Vanadium, V-1Ni, V-10Ti and V-10Ti-1Ni (at %) were irradiated in HFIR to doses ranging from 18 to 30 dpa and temperatures between 300 and 600C. Since the irradiation was conducted in a highly thermalized neutron spectrum without shielding against thermal neutrons, significant levels of chromium (15-22%) were formed by transmutation. The addition of such large chromium levels strongly elevated the ductile to brittle transition temperature. At higher irradiation temperatures radiation-induced segregation of transmutant Cr and solute Ti at specimen surfaces leads to strong increases in the density of the alloy.

  12. XRD micro-XANES EMPA and SIMS investigation on phlogopite single crystals from Mt. Vulture (Italy)

    SciTech Connect (OSTI)

    F Scordari; M Dyar; E Schingaro; M Lacalamita; L Ottolini

    2011-12-31

    Selected phlogopite flakes from Mt. Vulture in southern Italy were studied using a combination of single-crystal techniques: electron microprobe analysis (EMPA), secondary ion mass spectrometry (SIMS), single-crystal X-ray diffraction (SCXRD), and micro-X-ray absorption near-edge spectroscopy (XANES). The latter technique was employed to analyze the structure of the Fe-K absorption edge over the region from 7080-8100 eV and to determine Fe{sup 3+}/{Sigma}Fe at a micrometer scale, albeit with large error bars due to known effects of orientation on pre-edge energy. The annite component, Fe/(Mg+Fe), of the samples studied ranged from 0.16 to 0.31, the Ti content from 0.11 to 0.27 atoms per formula unit (apfu) and the Ba content from 0.03 to 0.09 apfu. SIMS analysis showed H{sub 2}O (wt%) = 1.81-3.30, F (wt%) = 0.44-1.29, and Li{sub 2}O (wt%) = 0.001-0.027. The intra single-crystal chemical variability for major/minor elements (Mg, Fe, Al, Ba, Ti, and K) was found particularly significant for samples VUT191{_}11 and PG5{_}1, less significant for the other samples of the set. SIMS data relative to crystals VUT187{_}24, VUT191{_}10, VUT191{_}11, and VUT187{_}28 showed a noteworthy variation in the concentrations of some light elements (H, Li, and F) with coefficient of variation CV (as 1{sigma}%) up to {approx}18% for H{sub 2}O. The analyzed micas belong to the 1M polytype. Structure refinements using anisotropic displacement parameters were performed in space group C2/m and converged at 3.08 {<=} R {<=} 3.63, 3.32 {<=} R{sub w} {<=} 3.98%. Micro-XANES results yielded Fe{sup 3+}/{Sigma}Fe from 51-93%. Previous Moessbauer data from powdered samples suggested Fe{sup 3+}/{Sigma}Fe values ranging from 49-87%. However, the Fe{sup 3+} content determined by both techniques is sometimes remarkably different, in part because of the large errors ({+-}10-15%) presently associated with the micro-XANES technique and in part because the Fe{sup 3+} content of a single crystal may

  13. Controlled synthesis of concave tetrahedral palladium nanocrystals by reducing Pd(acac){sub 2} with carbon monoxide

    SciTech Connect (OSTI)

    Zhu, Hai; Chi, Quan; Zhao, Yanxi; Li, Chunya; Tang, Heqing; Li, Jinlin; Huang, Tao; Liu, Hanfan; Institute of Chemistry, Chinese Academy of Science, Beijing 100080

    2012-11-15

    Graphical abstract: By using CO as a reducing agent, uniform and well-defined concave tetrahedral Pd nanocrystals were successfully synthesized. CO flow rate was the most essential for the formation of the concave tetrahedral nanostructures. The morphologies and sizes of the final products can be well controlled by adjusting the flow rate of CO. Highlights: ? By using CO as a reducing agent, concave tetrahedral Pd nanocrystals were obtained. ? CO flow rate is critical to the formation of concave tetrahedral Pd nanocrystals. ? The selective adsorption of CO on (1 1 0) facets is essential to concave Pd tetrahedra. -- Abstract: CO reducing strategy to control the morphologies of palladium nanocrystals was investigated. By using CO as a reducing agent, uniform and well-defined concave tetrahedral Pd nanocrystals with a mean size of about 55 2 nm were readily synthesized with Pd(acac){sub 2} as a precursor and PVP as a stabilizer. The structures of the as-prepared Pd nanocrystals were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), ultravioletvisible (UVvis) absorption spectroscopy and electrochemical measurements. The results demonstrated that CO was the most essential for the formation of the concave tetrahedral Pd nanostructures. The morphologies and sizes of the final products can be well controlled by adjusting the flow rate of CO. The most appropriate CO flow rate, temperature and time for the formation of the ideal concave tetrahedral Pd nanocrystals was 0.033 mL s{sup ?1}, 100 C and 3 h, respectively.

  14. Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} nanoparticles dispersed in a SiO{sub 2} matrix synthesized by sol-gel processing

    SciTech Connect (OSTI)

    Pozo Lopez, G.; Condo, A.M.; Instituto Balseiro, Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400, San Carlos de Bariloche; Consejo Nacional de Investigaciones Cientificas y Tecnicas ; Urreta, S.E.; Silvetti, S.P.; Aguirre, M. del C.; Instituto de Fisica Enrique Gaviola - CONICET

    2012-12-15

    (Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4})x/(SiO{sub 2})(100 - x) (x = 5, 20 and 50 wt.%) nanocomposites are synthesized by a sol-gel method using tetraethylorthosilicate (TEOS) and metallic nitrates as precursors, and by further annealing the powders for 1 h at 1273 K. X-ray diffraction (XRD), transmission electron microscopy (TEM), room temperature vibrating sample magnetometry (VSM) and SQUID measurements are employed for structural, morphological and magnetic sample characterization. For all the concentrations analyzed, the powder nanocomposites actually consist of spinel NiZn ferrite nanoparticles, dispersed in an amorphous silica matrix. TEM studies reveal different particle size distributions and particle morphologies for the three ferrite contents. The 20 wt.%-NiZn ferrite samples consist of nearly spherical nanoparticles, of about 8 nm, mainly superparamagnetic, well-dispersed in the amorphous silica matrix, while the 5 wt.%-NiZn ferrite samples exhibit a bimodal particle size distribution (5 and 30 nm) of single-domain nanoparticles embedded in the silica. In the 50 wt.%-NiZn ferrite samples, two particle families are observed: small round superparamagnetic nanoparticles of about 8 nm embedded in the amorphous silica matrix and large, non-spherical, ferrimagnetic ones, forming agglomerates outside the matrix. In all the synthesized samples, thickness fringes are observed inside some of the ferrite nanoparticles in dark field images. This contrast is explained using the theory of electron diffraction in a weak beam dark field (WBDF) condition and considering spherical ferrite nanoparticles. A large range of tailored magnetic properties varying the fraction, dispersion and mean size of the ferrimagnetic NiZn ferrite particles is obtained. Room temperature saturation magnetization values are found in the range 3.0-30.4 Am{sup 2}/kg for the different concentration samples. Coercivity values, between 1.9 and 7.6 mT, are more than 50% higher than those measured

  15. Microstructures in rapidly solidified Ni-Mo alloys

    SciTech Connect (OSTI)

    Jayaraman, N.; Tewari, S.N.; Hemker, K.J.; Glasgow, T.K.

    1985-01-01

    Ni-Mo alloys of compositions ranging from pure Ni to Ni-40 at % Mo were rapidly solidified by chill block melt spinning in vacuum and were examined by optical metallography, x-ray diffraction and transmission electron microscopy. Rapid solidification resulted in an extension of molybdenum solubility in nickel from 28 to 37.5 at %. A number of different phases and microstructures were seen at different depths (solidification conditions) from the quenched surface of the melt spun ribbons.

  16. Sources of stress gradients in electrodeposited Ni MEMS. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Title: Sources of stress gradients in electrodeposited Ni MEMS. The ability of future integrated metal-semiconductor micro-systems such as RF MEMS to perform highly complex ...

  17. Numerical Simulation of Ni Grain Growth in a Thermal Gradient

    Office of Scientific and Technical Information (OSTI)

    665C Numerical Simulation of Ni Grain Growth in a Thermal Gradient Sandia National Laboratories John A. Mitchell and Veena Tikare Sandia National Laboratories, Albuquerque New ...

  18. Competition between Order and Phase Separation in Au-Ni

    SciTech Connect (OSTI)

    Reichert, H.; Schoeps, A.; Ramsteiner, I.B.; Bugaev, V.N.; Shchyglo, O.; Udyansky, A.; Dosch, H.; Asta, M.; Drautz, R.; Honkimaeki, V.

    2005-12-02

    We have measured and theoretically analyzed the diffuse scattering in the binary alloy system Au-Ni, which has been proposed as a testing ground for theories of alloy phase stability. We found strong evidence that in the alloys Au{sub 3}Ni and Au{sub 3}Ni{sub 2}, fluctuations of both ordering- and clustering-type are competing with each other. Our results resolve a long-standing controversy on the balance of relaxation and mixing energies in this alloy system and explain recent findings of ordering in thin Au-Ni films.

  19. Controlled Pd(0)/t Bu3P Catalyzed Suzuki Cross-Coupling Polymerization of AB-Type Monomers with ArPd(t Bu3P)X or Pd2(dba)3/t Bu3P/ArX as the Initiator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Honghai; Xing, Chun-Hui; Hu, Qiao-Sheng; Hong, Kunlun

    2015-02-05

    The synthesis of well-defined and functionalized conjugated polymers, which are essential in the development of efficient organic electronics, through Suzuki cross-coupling polymerizations has been a challenging task. We developed controlled Pd(0)/t-Bu3P-catalyzed Suzuki cross-coupling polymerizations of AB-type monomers via the chain-growth mechanism with a series of in situ generated ArPd(t-Bu3P)X (X = I, Br, Cl) complexes as initiators. Among them, the combinations of Pd2(dba)3/t-Bu3P/p-BrC6H4I, Pd2(dba)3/t-Bu3P/p-BrC6H4CH2OH and Pd2(dba)3/t-Bu3P/p-PhCOC6H4Br were identified as highly robust initiator systems, resulting in polymers with predictable molecular weight and narrow polydispersity (PDI~1.13-1.20). In addition, Pd2(dba)3/t-Bu3P/p-BrC6H4CH2OH and Pd2(dba)3/t-Bu3P/p-PhCOC6H4Br initiator systems afforded functional polymers with >95% fidelity. Our results pavedmore » the road to access well-defined conjugated polymers, including conjugated polymers with complex polymer architectures such as block copolymers and branch copolymers.« less

  20. Searches for supersymmetry using the MT2 variable in hadronic events produced in pp collisions at 8 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, V.

    2015-05-15

    Searches for supersymmetry (SUSY) are performed using a sample of hadronic events produced in 8 TeV pp collisions at the CERN LHC. The searches are based on the MT2 variable, which is a measure of the transverse momentum imbalance in an event. The data were collected with the CMS detector and correspond to an integrated luminosity of 19.5 fb?. Two related searches are performed. The first is an inclusive search based on signal regions defined by the value of the MT2 variable, the hadronic energy in the event, the jet multiplicity, and the number of jets identified as originating frommorebottom quarks. The second is a search for a mass peak corresponding to a Higgs boson decaying to a bottom quark-antiquark pair, where the Higgs boson is produced as a decay product of a SUSY particle. For both searches, the principal backgrounds are evaluated with data control samples. No significant excess over the expected number of background events is observed, and exclusion limits on various SUSY models are derived.less

  1. LOCA simulation in the national research universal reactor program: postirradiation examination results for the third materials experiment (MT-3)

    SciTech Connect (OSTI)

    Rausch, W.N.

    1984-04-01

    A series of in-reactor experiments were conducted using full-length 32-rod pressurized water reactor (PWR) fuel bundles as part of the Loss-of-Coolant Accident (LOCA) Simulation Program. The third materials experiment (MT-3) was the sixth in the series of thermal-hydraulic and materials deformation/rutpure experiments conducted in the National Research Universal (NRU) reactor, Chalk River, Ontario, Canada. The main objective of the experiment was to evaluate ballooning and rupture during active two-phase cooling in the temperature range from 1400 to 1500/sup 0/F (1030 to 1090 K). The 12 test rods in the center of the 32-rod bundle were initially pressurized to 550 psi (3.8 MPa) to insure rupture in the correct temperature range. All 12 of the rods ruptured, with an average peak bundle strain of approx. 55%. The UKAEA also funded destructive postirradiation examination (PIE) of several of the ruptured rods from the MT-3 experiment. This report describes the work performed and presents the PIE results. Information obtained during the PIE included cladding thickness measurements metallography, and particle size analysis of the cracked and broken fuel pellets.

  2. Enhanced electrocatalytic activity and stability of Pd3V/C nanoparticles with a trace amount of Pt decoration for the oxygen reduction reaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Sufen; Han, Lili; Zhu, Jing; Xiao, Weiping; Wang, Jie; Liu, Hongfang; Xin, Huolin; Wang, Deli

    2015-09-14

    In this study, carbon supported Pd3V bimetallic alloy nanoparticles (Pd3V/C) have been successfully synthesized via a simple impregnation–reduction method, followed by high temperature treatment under a H2 atmosphere. Electrochemical tests reveal that the half-wave potential of Pd3V/C-500 shifts positively 40 mV compared with Pd/C. However, the catalytic activity of Pd3V/C-500 suffers from serious degradation after 1k cycles. By a spontaneous displacement reaction or co-reduction method, a trace amount of Pt was decorated on the surface or inside of the Pd3V/C nanoparticles. The catalytic activity and stability of the Pd3V@Pt/C and Pt-Pd3V/C catalysts for the oxygen reduction reaction (ORR) are enhancedmore » significantly, and are comparable to commercial Pt/C. In addition, the Pt mass activity of Pd3V@Pt/C and Pt-Pd3V/C improves by factors of 10.9 and 6.5 at 0.80 V relative to Pt/C. Moreover, Pt-decorated Pd3V/C nanoparticles show almost no obvious morphology change after durability tests, because the Pt-rich shell plays an important role in preventing degradation.« less

  3. Enhanced photocatalytic efficiency in zirconia buffered n-NiO/p-NiO single crystalline heterostructures by nanosecond laser treatment

    SciTech Connect (OSTI)

    Molaei, R.; Bayati, M. R.; Alipour, H. M.; Nori, S.; Narayan, J.

    2013-06-21

    We report the formation of NiO based single crystalline p-n junctions with enhanced photocatalytic activity induced by pulsed laser irradiation. The NiO epilayers were grown on Si(001) substrates buffered with cubic yttria-stabilized zirconia (c-YSZ) by using pulsed laser deposition. The NiO/c-YSZ/Si heterostructures were subsequently laser treated by 5 pulses of KrF excimer laser (pulse duration = 25 Multiplication-Sign 10{sup -9} s) at lower energies. Microstructural studies, conducted by X-ray diffraction ({theta}-2{theta} and {phi} techniques) and high resolution transmission electron microscope, showed a cube-on-cube epitaxial relationship at the c-YSZ/Si interface; the epitaxial relationship across the NiO/c-YSZ interface was established as NiO<111 > Double-Vertical-Line Double-Vertical-Line c-YSZ<001> and in-plane NiO<110> Double-Vertical-Line Double-Vertical-Line c-YSZ<100>. Electron microscopy studies showed that the interface between the laser annealed and the pristine region as well as the NiO/c-YSZ interface was atomically sharp and crystallographically continuous. The formation of point defects, namely oxygen vacancies and NiO, due to the coupling of the laser photons with the NiO epilayers was confirmed by XPS. The p-type electrical characteristics of the pristine NiO epilayers turned to an n-type behavior and the electrical conductivity was increased by one order of magnitude after laser treatment. Photocatalytic activity of the pristine (p-NiO/c-YSZ/Si) and the laser-annealed (n-NiO/p-NiO/c-YSZ/Si) heterostructures were assessed by measuring the decomposition rate of 4-chlorophenol under UV light. The photocatalytic reaction rate constants were determined to be 0.0059 and 0.0092 min{sup -1} for the as-deposited and the laser-treated samples, respectively. The enhanced photocatalytic efficiency was attributed to the suppressed charge carrier recombination in the NiO based p-n junctions and higher electrical conductivity. Besides, the oxygen vacancies

  4. Energies of Electronic States of Ni (II) Ion in NiO-Al2O3 Catalyst Prepared by Impregnation

    SciTech Connect (OSTI)

    Obadovic, D. Z.; Kiurski, J.; Marinkovic-Neducin, R. P.

    2007-04-23

    The behavior of NiO-Al2O3 catalysts is strongly dependent on the preparation method, as well as on pretreatment conditions. In the present work we investigated the influences of Ni(II) ion on NiO-Al2O3 catalysts properties due to the preparation by impregnation method. Based on experimental diffuse reflectance spectroscopy (DRS) data of electronic d-d transitions of Ni (II) promoter ion the energies of electronic states in spinel-like structure were calculated, and the most probable scheme of molecular orbital have been proposed.

  5. Tunability of exchange bias in Ni@NiO core-shell nanoparticles obtained by sequential layer deposition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    D'Addato, Sergio; Spadaro, Maria Chiara; Luches, Paola; Valeri, Sergio; Grillo, Vincenzo; Rotunno, Enzo; Roldan Gutierrez, Manuel A.; Pennycook, Stephen J.; Ferretti, Anna Maria; Capetti, Elena; et al

    2015-01-01

    Films of magnetic Ni@NiO core–shell nanoparticles (NPs, core diameter d ≅ 12 nm, nominal shell thickness variable between 0 and 6.5 nm) obtained with sequential layer deposition were investigated, to gain insight into the relationships between shell thickness/morphology, core-shell interface, and magnetic properties. Different values of NiO shell thickness ts could be obtained while keeping the Ni core size fixed, at variance with conventional oxidation procedures where the oxide shell is grown at the expense of the core. Chemical composition, morphology of the as-produced samples and structural features of the Ni/NiO interface were investigated with x-ray photoelectron spectroscopy and microscopymore » (scanning electron microscopy, transmission electron microscopy) techniques, and related with results from magnetic measurements obtained with a superconducting quantum interference device. The effect of the shell thickness on the magnetic properties could be studied. The exchange bias (EB) field Hbias is small and almost constant for ts up to 1.6 nm; then it rapidly grows, with no sign of saturation. This behavior is clearly related to the morphology of the top NiO layer, and is mostly due to the thickness dependence of the NiO anisotropy constant. The ability to tune the EB effect by varying the thickness of the last NiO layer represents a step towards the rational design and synthesis of core–shell NPs with desired magnetic properties.« less

  6. The adsorption and reaction of vinyl acetate on Au/Pd(100) alloy surfaces

    SciTech Connect (OSTI)

    Li, Zhenjun [Pacific Northwest National Laboratory (PNNL); Calaza, Florencia C [ORNL; Tysoe, Wilfred [University of Wisconsin, Milwaukee

    2012-01-01

    The surface chemistry of vinyl acetate monomer (VAM) is studied on Au/Pd(100) alloys as a function of alloy composition using temperature-programmed desorption and reflection adsorption infrared spectroscopy. VAM adsorbs weakly on isolated palladium sites on the alloy with a heat of adsorption of ~55 kJ/mol, with the plane of the VAM adsorbed close to parallel to the surface. The majority of the VAM adsorbed on isolated sites desorbs molecularly with only a small portion decomposing. At lower gold coverages (below ~0.5 ML of gold), where palladium palladium bridge sites are present, VAM binds to the surface in a distorted geometry via a rehybridized vinyl group. A larger proportion of this VAM decomposes and this reaction is initiated by C\\O bond scission in the VAM to form adsorbed acetate and vinyl species. The implication of this surface chemistry for VAM synthesis on Au/Pd(100) alloys is discussed.

  7. Multiband Te p Based Superconductivity of Ta4Pd3Te16

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Singh, David J.

    2014-10-06

    We recently discovered that Ta4Pd3Te16 is a superconductor that has been suggested to be an unconventional superconductor near magnetism. Here, we report electronic structure calculations showing that despite the layered crystal structure the material is an anisotropic three-dimensional (3D) metal. The Fermi surface contains prominent one-dimensional (1D) and two-dimensional (2D) features, including nested 1D sheets, a 2D cylindrical section, and a 3D sheet. Moreover, the electronic states that make up the Fermi surface are mostly derived from Te p states with small Ta d and Pd d contributions. This places the compound far from magnetic instabilities. The results are discussedmore » in terms of multiband superconductivity.« less

  8. Modulated ferromagnetic ordering and the magnetocaloric response of Eu{sub 4}PdMg

    SciTech Connect (OSTI)

    Ryan, D. H. Legros, Anaëlle; Niehaus, Oliver; Pöttgen, Rainer; Cadogan, J. M.; Flacau, R.

    2015-05-07

    Neutron powder diffraction confirms that the primary ordering mode in Eu{sub 4}PdMg is ferromagnetic with a europium moment of 6.5(2) μ{sub B}. {sup 151}Eu Mössbauer spectroscopy shows that the unusual linear temperature dependence of the magnetisation reported for this system is an intrinsic property and not an artefact of the applied field. The form and temperature evolution of the {sup 151}Eu Mössbauer spectra strongly suggest that there is an incommensurate modulation to the magnetic structure that modifies the basic ferromagnetic order. This modulated structure may be the origin of the broad magnetocaloric response previously observed in Eu{sub 4}PdMg.

  9. Synthesis and Characterization of Platinum Monolayer Oxygen-Reduction Electrocatalysts with Co-Pd Core-Shell Nanoparticle Support

    SciTech Connect (OSTI)

    Shao,M.; Sasaki, K.; Marinkovic, N.; Zhang, L.; Adzic, R.

    2007-01-01

    We synthesized Pt monolayer electrocatalysts for oxygen-reduction using a new method to obtain the supporting core-shell nanoparticles. They consist of a Pt monolayer deposited on carbon-supported Co-Pd core-shell nanoparticles with the diameter of 3-4 nm. The nanoparticles were made using a redox-transmetalation (electroless deposition) method involving the oxidation of Co by Pd cations, yielding a Pd shell around the Co core. The quality of the thus-formed core-shell structure was verified using transmission electron microscopy and X-ray absorption spectroscopy, while cyclic voltammetry was employed to confirm the lack of Co oxidation (dissolution). A Pt monolayer was deposited on the Co-Pd core-shell nanoparticles by the galvanic displacement of a Cu monolayer obtained by underpotential deposition. The total noble metal mass-specific activity of this Pt monolayer electrocatalyst was ca. 3-fold higher than that of commercial Pt/C electrocatalysts.

  10. FY14 Annual Report for NA-22 Project LA14-FY14-027-PD2Jb "Developing...

    Office of Scientific and Technical Information (OSTI)

    Title: FY14 Annual Report for NA-22 Project LA14-FY14-027-PD2Jb "Developing Accurate Simulations of Correlated Data in Fission Events" Authors: Talou, Patrick 1 ; Vogt, Ramona ...

  11. FY14 Annual Report for NA-22 Project LA14-FY14-027-PD2Jb "Developing...

    Office of Scientific and Technical Information (OSTI)

    FY14 Annual Report for NA-22 Project LA14-FY14-027-PD2Jb "Developing Accurate Simulations ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  12. Possible Explanation of {sup 4}He Production in a Pd/D{sub 2} System by the TNCF Model

    SciTech Connect (OSTI)

    Kozima, Hideo; Ohta, Masayuki; Fujii, Mitsutaka; Arai, Kunihito; Kudoh, Hitoshi

    2001-07-15

    Experimental data showing generation of {sup 4}He from a Pd sheet-D{sub 2} gas system observed by E. Botta et al. are analyzed by the trapped neutron catalyzed fusion (TNCF) model. The proposed mechanism of {sup 4}He generation is not the direct d-d reaction but the reactions between the trapped neutron and a Pd isotope, n-{sub 46}{sup A}Pd reactions, with a supplemental assumption, decrease of threshold energies for (n,{alpha}) reactions of {sub 46}{sup A}Pd in solids. The arbitrary parameter n{sub n}, the density of the trapped neutron, of the model is determined to be {approx}10{sup 12} cm{sup -3}, which is consistent with values determined in analyses of data in various events in the cold fusion phenomenon.

  13. Biography U. Düsterloh Degree: PD Dr.- Ing. habil. Institution: Clausthal University of Technology.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U. Düsterloh Degree: PD Dr.- Ing. habil. Institution: Clausthal University of Technology. Chair: chair for waste disposal technologies and geomechanics. 1982- 1988 field of study: mining engineer 1989- 1993 PhD work - geomechanical investigations on the stability of salt caverns for waste disposal. 2009 Habilitation - proof of stability and integrity of underground excavations in saliniferous formations with special regard to lab tests. 1989 - 2012 chief engineer at Clausthal University of

  14. Electrochemical Synthesis of Pd Nanorods and Nanowires on High Surface Area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C Supports - Energy Innovation Portal Startup America Startup America Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Electrochemical Synthesis of Pd Nanorods and Nanowires on High Surface Area C Supports Brookhaven National Laboratory Contact BNL About This Technology Technology Marketing Summary Anisotropic growth of palladium nanoparticles on high surface area carbon supports is encouraged by the choice of surface preparation and electrochemical

  15. COMMENTS ON ANOMALOUS EFFECTS IN CHARGING OF PD POWDERS WITH HIGH DENSITY HYDROGEN ISOTOPES

    SciTech Connect (OSTI)

    Shanahan, K.

    2009-10-01

    In Kitamura, et al, Pd-containing materials are exposed to isotopes of hydrogen and anomalous results obtained. These are claimed to be a replication of another experiment conducted by Arata and Zhang. Erroneous basic assumptions are pointed out herein that alter the derived conclusions significantly. The final conclusion is that the reported results are likely normal chemistry combined with noise. Thus the claim to have proven that cold fusion is occurring in these systems is both premature and unlikely.

  16. Synthesis of methanol and dimethyl ether from syngas over Pd/ZnO/Al2O3 catalysts

    SciTech Connect (OSTI)

    Lebarbier, Vanessa M.; Dagle, Robert A.; Kovarik, Libor; Lizarazo-Adarme, Jair A.; King, David L.; Palo, Daniel R.

    2012-01-01

    A Pd/ZnO/Al2O3 catalyst was developed for the synthesis of methanol and dimethyl ether (DME) from syngas. Studied were temperatures of operation ranging from 250C to 380C. High temperatures (e.g. 380C) are necessary when combining methanol and DME synthesis with a methanol to gasoline (MTG) process in a single reactor bed. A commercial Cu/ZnO/Al2O3 catalyst, utilized industrially for the synthesis of methanol at 220-280C, suffers from a rapid deactivation when the reaction is conducted at high temperature (>320C). On the contrary, a Pd/ZnO/Al2O3 catalyst was found to be highly stable for methanol and DME synthesis at 380C. The Pd/ZnO/Al2O3 catalyst was thus further investigated for methanol and DME synthesis at P=34-69 bars, T= 250-380C, GHSV= 5 000-18 000 h-1, and molar feeds H2/CO= 1, 2, and 3. Selectivity to DME increased with decreasing operating temperature, and increasing operating pressure. Increased GHSVs and H2/CO syngas feed ratios also enhanced DME selectivity. Undesirable CH4 formation was observed, however, can be minimized through choice of process conditions and by catalyst design. By studying the effect of the Pd loading and the Pd:Zn molar ratio the formulation of the Pd/ZnO/Al2O3 catalyst was optimized. A catalyst with 5% Pd and a Pd:Zn molar ratio of 0.25:1 has been identified as the preferred catalyst. Results indicate that PdZn particles are more active than Pd particles for the synthesis of methanol and less active for CH4 formation. A correlation between DME selectivity and the concentration of acid sites of the catalysts has been established. Hence, two types of sites are required for the direct conversion of syngas to DME: 1) PdZn particles are active for the synthesis of methanol from syngas, and 2) acid sites which are active for the conversion of methanol to DME. Additionally, CO2 formation was problematic as PdZn was found to be active for the water-gas-shift (WGS) reaction, under all the conditions evaluated.

  17. Structural stability of 1100[degree]C heated Pd/k during absorption cycling in protium. [Palladium supported on kieselguhr

    SciTech Connect (OSTI)

    Fisher, I.A.

    1993-03-12

    Pd/k is a hydride forming packing material which is used in the Thermal Cycling Absorption Process (TCAP). Palladium is supported on kieselguhr to create a packing material which will provide adequate void space to prevent excessive pressure drops and flow restrictions. The use of unsupported palladium would result in blockage of columns and clogging of filters due to the small particle size of unsupported palladium hydride powder. During pilot scale demonstrations, it was noted that the Pd/k packing material had degraded causing severe flow restrictions within the TCAP column. A solution to the problem involved the heating of Pd/k at 1,110[degree]C to strengthen the packing material, and render it more resistant to breakdown. The 1, 100[degree]C heated Pd/k has been shown to be more resistant to mechanical breakdown than the Pd/k prior to heat treatment. Two primary modes of Pd/k particle degradation have been identified: mechanical breakdown caused by particle fluidization and degradation caused by absorption/desorption cycling. Absorption/desorption cycling causes the palladium particles within the packing to expanded and contract upon formation and decomposition of the hydride, respectively. This expansion and contraction causes large localized stresses within the packing material, which if these stresses can not be accommodated within the packing will cause the material to crack and degrade. The purpose of this report is to document the results of the absorption/desorption cycling of 1,100[degree]C heated Pd/k and compare these results to the results obtained from the absorption/desorption cycling of Pd/k which had not been heated at 1, 100[degree]C.

  18. Effect of dislocation trapping on deuterium diffusion in deformed, single-crystal Pd

    SciTech Connect (OSTI)

    Heuser, B.J.; King, J.S.

    1998-06-01

    Small-angle neutron scattering (SANS) has been used to characterize deuterium trapping at dislocations in deformed, single-crystal Pd during in situ gas evolution experiments. Two methods of deformation were employed--cold rolling and hydride cycling--which create different dislocation arrangements or substructures in Pd. The reduction of the trapped deuterium concentration at dislocations during evolution was directly monitored with SANS. Exponential decay rates of the trapped concentration were observed for both sample types, as is expected in a bulk diffusion process modified by the dislocation trapping interaction. The deuterium concentration reduction proceeded 1.2 to 1.4 times faster in the cold-rolled sample material than in the cycled material. This is attributed to the presence of a smaller number of dislocation trapping sites in the cold-rolled material. The binding energy of deuterium at dislocations was determined by applying a diffusion-based model. A binding energy of 0.20 eV was found to characterize the trapping interaction in both cold-rolled and hydride-cycled Pd.

  19. Hydrogen Sensor Based on Pd/GeO{sub 2} Using a Low Cost Electrochemical Deposition

    SciTech Connect (OSTI)

    Jawad, M. J.; Hashim, M. R.; Ali, N. K.

    2011-05-25

    This work reports on a synthesis of sub micron germanium dioxide (GeO{sub 2}) on porous silicon (PS) by electrochemical deposition. n-type Si (100) wafer was used to fabricate (PS) using conventional method of electrochemical etching in HF based solution. A GeCl{sub 4} was directly hydrolyzed by hydrogen peroxide to produce pure GeO{sub 2}, and then electrochemically deposited on PS. Followed by palladium (Pd) contact on GeO{sub 2} /PS was achieved by using RF sputtering technique. The grown GeO{sub 2} crystals were characterized using SEM and EDX. I-V characteristics of Pd/ GeO{sub 2} were recorded before and after hydrogen gas exposure as well as with different H{sub 2} concentrations and different applied temperatures. The sensitivity of Pd/ GeO{sub 2} also has been investigated it could be seen to increase significantly with increased hydrogen concentration while it decreased with increase temperature.

  20. Hydrogen sorption characteristics of nanostructured Pd10Rh processed by cryomilling

    SciTech Connect (OSTI)

    Yang, Nancy; Yee, Joshua K.; Zhang, Zhihui; Kurmanaeva, Lilia; Cappillino, Patrick; Stavila, Vitalie; Lavernia, Enrique J.; San Marchi, Chris

    2014-10-03

    Palladium and its alloys are model systems for studying solid-state storage of hydrogen. Mechanical milling is commonly used to process complex powder systems for solid-state hydrogen storage; however, milling can also be used to evolve nanostructured powder to modify hydrogen sorption characteristics. In the present study, cryomilling (mechanical attrition milling in a cryogenic liquid) is used to produce nanostructured palladium-rhodium alloy powder. Characterization of the cryomilled Pd-10Rh using electron microscopy, X-ray diffraction, and surface area analysis reveals that (i) particle morphology evolves from spherical to flattened disk-like particles; while the (ii) crystallite size decreases from several microns to less than 100 nm and (iii) dislocation density increases with increased cryomilling time. Hydrogen absorption and desorption isotherms as well as the time scales for absorption were measured for cryomilled Pd-10Rh, and correlated with observed microstructural changes induced by the cryomilling process. In short, as the microstructure of the Pd-10Rh alloy is refined by cryomilling: (i) the maximum hydrogen concentration in the ?-phase increases, (ii) the pressure plateau becomes flatter, and (iii) the equilibrium hydrogen capacity at 760 Torr increases. In addition, the rate of hydrogen absorption was reduced by an order of magnitude compared to non-cryomilled (atomized) powder.

  1. Recoil Distance Method Lifetime Measurements in 107Cd and 103Pd

    SciTech Connect (OSTI)

    Andgren, K.; Ashley, S. F.; Regan, P. H.; McCutchan, E. A.; Zamfir, N. V.; Casten, R. F.; Meyer, D. A.; Plettner, C.; Vinson, J.; Werner, V.; Williams, E.; Amon, L.; Cakirli, R. B.; Erduran, M. N.; Clark, R. M.; Guerdal, G.; Keyes, K. L.; Papenberg, A.; Pietralla, N.; Rainovski, G.

    2006-04-26

    Preliminary lifetime values have been measured for a number of near-yrast states in the odd-A transitional nuclei 107Cd and 103Pd. The reaction used to populate the nuclei of interest was 98Mo(12C,3nx{alpha})107Cd, 103Pd, with the beam delivered by the tandem accelerator of the Wright Nuclear Structure Laboratory at an incident beam energy of 60 MeV. Our experiment was aimed at the investigation of collective excitations built on the unnatural parity, {nu} h11/2 orbital, specifically by measuring the B(E2) values of decays from the excited levels built on this intrinsic structure, using the Doppler Recoil Distance Method. We report lifetimes and associated transition probabilities for decays from the 15/2- and the 19/2- states in 107Cd and the first measurement of the 15/2- state in 103Pd. These results suggest that neither a simple rotational or vibrational interpretation is sufficient to explain the observed structures.

  2. Direct evidence of anomalous interfacial magnetization in metamagnetic Pd doped FeRh thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bennett, S. P.; Ambaye, H.; Lee, H.; LeClair, P.; Mankey, G. J.; Lauter, V.

    2015-03-16

    Palladium doped iron rhodium is a magnetic material of significant interest for it’s close to room temperature magnetostructural phase transition from antiferromagnetic (AF) to ferromagnetic (FM) ordering. Here we report on the peculiarities of the magnetization distribution in thin films of FeRh(Pd) probed by Polarized Neutron Reflectometry. Remarkably, we’ve found thin interfacial regions with strong magnetization that have unique thermomagnetic properties as compared to the rest of the system. These regions exist at the top and bottom interfaces of the films while the central regions behave similarly to the bulk with a clear AF-FM order transition. Further we explore themore » impact of an additional Pt interlayer introduced in the middle of the FeRh(Pd) film and reveal that it serves to replicate the strong interfacial magnetization found at the top and bottom interfaces. In conclusion, these results are of great value both in understanding the fundamental physics of such an order transition, and in considering FeRh(Pd) for magnetic media and spintronics applications.« less

  3. Colloidal synthesis and characterization of carbon-supported Pd-Cu nanoparticle oxygen reduction electrocatalysts.

    SciTech Connect (OSTI)

    Kariuki, N. N.; Wang, X.; Mawdsley, J. R.; Ferrandon, M. S.; Niyogi, S. G.; Vaughey, J. T.; Myers, D. J.; Chemical Sciences and Engineering Division

    2010-07-27

    The ability to control the size and composition of metal or alloys nanoparticles is important in preparing catalysts. This paper reports a colloidal synthesis methodology for the preparation of monodisperse palladium-copper (Pd-Cu) alloy nanoparticles with an average diameter of 3 nm for the as-prepared particles and 5-10 nm upon removal of the capping agents. Our approach involves the use of metal precursors, capping agents, and reducing agents in controlled ratios for nanoparticle formation in a single organic phase, followed by deposition of the capped nanoparticles on high surface area carbon and removal of the capping agents via heat treatment in either oxidizing or reducing atmosphere. The results of characterizations using transmission electron microscopy-energy dispersive X-ray analysis (TEM-EDX), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), temperature programmed oxidation and reduction combined with mass spectrometry (TPO/TPR-MS), powder X-ray diffraction (XRD), and cyclic voltammetry (CV) are discussed. The resulting high-surface-area-carbon-supported Pd-Cu catalysts (PdCu/C) showed high activity for the oxygen reduction reaction (ORR) in acidic electrolyte. Our study revealed composition and heat-treatment dependent ORR activity.

  4. New lifetime measurements in Pd109 and the onset of deformation at N=60

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bucher, B.; Mach, H.; Aprahamian, A.; Simpson, G. S.; Rissanen, J.; Ghiţă, D. G.; Olaizola, B.; Kurcewicz, W.; Äystö, J.; Bentley, I.; et al

    2015-12-14

    We measured several new subnanosecond lifetimes in 109Pd using the fast-timing βγ γ (t ) method. Fission fragments of the A = 109 mass chain were produced by bombarding natural uranium with 30 MeV protons at the Jyväskylä Ion Guide Isotope Separator On-Line (IGISOL) facility. We obtained lifetimes for excited states in 109Pd populated following β decay of 109Rh. The new lifetimes provide some insight into the evolution of nuclear structure in this mass region. In particular, the distinct structure of the two low-lying 7/2+ states occurring systematically across the Pd isotopic chain is supported by the new lifetime measurements.more » Finally, the available nuclear data indicate a sudden increase in deformation at N = 60 which is related to the strong p-n interaction between πg9/2 and νg7/2 valence nucleons expected in this region.« less

  5. Lanthanide Al-Ni base Ericsson cycle magnetic refrigerants

    DOE Patents [OSTI]

    Gschneidner, Jr., Karl A.; Takeya, Hiroyuki

    1995-10-31

    A magnetic refrigerant for a magnetic refrigerator using the Ericsson thermodynamic cycle comprises DyAlNi and (Gd.sub.0.54 Er.sub.0.46)AlNi alloys having a relatively constant .DELTA.Tmc over a wide temperature range.

  6. Lanthanide Al-Ni base Ericsson cycle magnetic refrigerants

    DOE Patents [OSTI]

    Gschneidner, K.A. Jr.; Takeya, Hiroyuki

    1995-10-31

    A magnetic refrigerant for a magnetic refrigerator using the Ericsson thermodynamic cycle comprises DyAlNi and (Gd{sub 0.54}Er{sub 0.46})AlNi alloys having a relatively constant {Delta}Tmc over a wide temperature range. 16 figs.

  7. Synthesis and electrochemical properties of NiO nanospindles

    SciTech Connect (OSTI)

    Zhou, Hai; Lv, Baoliang; Xu, Yao; Wu, Dong

    2014-02-01

    Graphical abstract: NiO nanospindles with a different electrochemical activity as compared to those previous reports were synthesized via an agglomeration–dissolution–recrystallization growth process without the addition of any surfactant. - Highlights: • NiO nanospindles were synthesized without the addition of any surfactant. • The agglomeration–dissolution–recrystallization growth process was used to explain the precursors’ formation process of the spindle-like NiO. • As-obtained spindle-like NiO showed a different electrochemical activity as compared to those previous reports. - Abstract: NiO nanospindles were successfully synthesized via a hydrothermal and post-treatment method. The as-synthesized nanospindles were about several hundred nanometers in width and about one micrometer in length. X-ray diffraction (XRD) analysis revealed that the spindle-like structure was cubic NiO phase crystalline. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) analysis indicated that these NiO nanospindles were of single crystal nature. On the basis of time-dependent experiments, a possible agglomeration–dissolution–recrystallization growth process was proposed to explain the formation process of the spindle-like precursors. The cyclic voltammetry (CV) measurement showed that the as-prepared spindle-like NiO exhibited a pseudo-capacitance behavior.

  8. Atomic-scale imaging and electronic structure determination of catalytic sites on Pd/Cu near surface alloys

    SciTech Connect (OSTI)

    Tierney, H.L.; Baber, A.E.; Sykes, E.C.H.

    2009-04-15

    Water-gas shift chemistry provides a useful method for producing hydrogen from coal; however, fuel cell applications demand that this hydrogen be free of impurities. Due to their unique properties, Pd/Cu alloys represent an import class of materials used for H purification membranes and also serve as the active metals in many heterogeneous catalysts. Little is known about how Pd and Cu interact electronically in these mixed systems and there is debate in the literature over the direction of charge transfer between the two species. This study used the differential conductance (dI/dV) spectroscopy capabilities of a low-temperature scanning tunneling microscope (STM) to investigate the atomic-scale electronic structure of Pd/Cu surface alloys. dI/dV spectroscopy gives a direct measure of the local density of states of surface sites with subnanometer precision. Results from this work demonstrate that individual, isolated Pd atoms in a Cu lattice are almost electronically identical to their host atoms. Over an energy range that spans 1 eV on either side of the Fermi level, the only significant electronic difference between isolated Pd and their host Cu atoms is that Pd atoms have a very slightly depleted electron density in the region of the Cu surface state maximum.

  9. Photocatalytic reduction of aqueous mercury(II) using multi-walled carbon nanotubes/Pd-ZnO nanocomposite

    SciTech Connect (OSTI)

    Mohamed, R.M.; Abdel Salam, Mohamed

    2014-02-01

    Highlights: MWCNT/Pd-ZnO were used for photocatalytic reduction of Hg{sup 2+}. Photocatalytic reduction of Hg{sup 2+} was dependent on wt% of MWCNT, reaction time, and weight of catalyst. Catalyst re-use revealed the present photocatalyst remain effective and active after five, cycles. - Abstract: Pd-ZnO nanocatalyst supported on multi-walled carbon nanotubes was successfully synthesized via a modified solgel method, and the prepared photocatalyst was used for the environmental remediation of aqueous Hg(II) via photocatalytic reduction under visible light. The prepared MWCNTs/Pd/ZnO nanocomposite photocatalyst was characterized using X-ray diffraction, BrunauerEmmettTeller (BET), transmission electron microscopy, and UVvis spectra (UVvis). The results showed that both Pd and ZnO nanoparticles were well dispersed over the MWCNTs, and a uniform nanocomposite was formed. The results also illustrated that Pd doping can eliminate the recombination of electron-hole pairs in the catalyst, and the presence of MWCNTs in ZnO composite can change surface properties to achieve sensitivity to visible light. The results demonstrated that optimum mass ratio of CNT:ZnO:Pd were 0.04:1.0:0.08, which resulted in the exceptional performance of the photocatalyst to reduce about 100% of Hg(II) in a 100 mg L solution within 30 min.

  10. Isotopic fractionation associated with [NiFe]- and [FeFe]-hydrogenases...

    Office of Scientific and Technical Information (OSTI)

    Isotopic fractionation associated with NiFe- and FeFe-hydrogenases Citation Details In-Document Search Title: Isotopic fractionation associated with NiFe- and ...

  11. SF6432-NI (02-01-12) Fixed Price Former Soviet Union

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrieve latest version electronically. SF 6432-NI (020112) SECTION II STANDARD TERMS ... 150,000 Control : SF 6432-NI Title: Standard Terms & Conditions for Fixed Price ...

  12. Magnetic interactions in NiO at ultrahigh pressure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Potapkin, Vasily; Dubrovinsky, Leonid; Sergueev, I.; Ekholm, M.; Kantor, Innokenty; Bessas, D.; Bykova, E.; Prakapenka, V.; Hermann, Raphael P.; Rueffer, Rudolf; et al

    2016-05-24

    Here, magnetic properties of NiO have been studied in the multimegabar pressure range by nuclear forward scattering of synchrotron radiation using the 67.4 keV M ssbauer transition of 61Ni. The observed magnetic hyperfine splitting confirms the antiferromagnetic state of NiO up to 280 GPa, the highest pressure where magnetism has been observed so far, in any material. Remarkably, the hyperfine field increases from 8.47 T at ambient pressure to ~24 T at the highest pressure, ruling out the possibility of a magnetic collapse. A joint x-ray diffraction and extended x-ray-absorption fine structure investigation reveals that NiO remains in a distortedmore » sodium chloride structure in the entire studied pressure range. Ab initio calculations support the experimental observations, and further indicate a complete absence of Mott transition in NiO up to at least 280 GPa.« less

  13. Photosensitivity of the Ni-n-GaAs Schottky barriers

    SciTech Connect (OSTI)

    Melebaev, D.; Melebaeva, G. D.; Rud', V. Yu. Rud', Yu. V.

    2009-01-15

    The method of chemical deposition is used to form the structures with the Ni-n-GaAs Schottky barrier. The thickness of the Ni layers with a specular outer surface was varied within the range of 150-220 A. It was experimentally observed for the first time that photosensitivity of the obtained barriers with the semitransparent Ni layers illuminated is practically absent in the Fowler region of the spectrum at hv = 0.9-1.5 eV. This circumstance is related mainly to the fact that, in this case, the Ni layer side of the structure was illuminated, and radiation with the photon energy hv < 1.3 eV was effectively reflected from the nickel surface. It is established that the developed Ni-n-GaAs structures can be used as high-efficiency wide-band photoconverters of both visible and ultraviolet radiation.

  14. Effects of Cr and Ni on Interdiffusion and Reaction between U and Fe-Cr-Ni Alloys

    SciTech Connect (OSTI)

    K. Huang; Y. Park; L. Zhou; K.R. Coffey; Y.H. Sohn; B.H. Sencer; J. R. Kennedy

    2014-08-01

    Metallic U-alloy fuel cladded in steel has been examined for high temperature fast reactor technology wherein the fuel cladding chemical interaction is a challenge that requires a fundamental and quantitative understanding. In order to study the fundamental diffusional interactions between U with Fe and the alloying effect of Cr and Ni, solid-to-solid diffusion couples were assembled between pure U and Fe, Fe–15 wt.%Cr or Fe–15 wt.%Cr–15 wt.%Ni alloy, and annealed at high temperature ranging from 580 to 700 °C. The microstructures and concentration profiles that developed from the diffusion anneal were examined by scanning electron microscopy, and X-ray energy dispersive spectroscopy (XEDS), respectively. Thick U6Fe and thin UFe2 phases were observed to develop with solubilities: up to 2.5 at.% Ni in U6(Fe,Ni), up to 20 at.%Cr in U(Fe, Cr)2, and up to 7 at.%Cr and 14 at.% Ni in U(Fe, Cr, Ni)2. The interdiffusion and reactions in the U vs. Fe and U vs. Fe–Cr–Ni exhibited a similar temperature dependence, while the U vs. Fe–Cr diffusion couples, without the presence of Ni, yielded greater activation energy for the growth of intermetallic phases – lower growth rate at lower temperature but higher growth rate at higher temperature.

  15. Enhanced Dry Reforming of Methane on Ni and Ni-Pt Catalysts Synthesized by Atomic Layer Deposition

    SciTech Connect (OSTI)

    Gould, Troy D.; Montemore, Matthew M.; Lubers, Alia M.; Ellis, Lucas D.; Weimer, Alan; Falconer, John L.; Medlin, James W.

    2015-02-25

    Atomic layer deposition (ALD) was used to deposit Ni and Pt on alumina supports to form monometallic and bimetallic catalysts with initial particle sizes of 12.4 nm. The ALD catalysts were more active (per mass of metal) than catalysts prepared by incipient wetness (IW) for dry reforming of methane (DRM), and they did not form carbon whiskers during reaction due to their sufficiently small size. Catalysts modified by Pt ALD had higher rates of reaction per mass of metal and inhibited coking, whereas NiPt catalysts synthesized by IW still formed carbon whiskers. Temperature-programmed reduction of Ni catalysts modified by Pt ALD indicated the presence of bimetallic interaction. Density functional theory calculations suggested that under reaction conditions, the NiPt surfaces form Ni-terminated surfaces that are associated with higher DRM rates (due to their C and O adsorption energies, as well as the CO formation and CH4 dissociation energies).

  16. The first principle study of Ni{sub 2}ScGa and Ni{sub 2}TiGa

    SciTech Connect (OSTI)

    zduran, Mustafa; Turgut, Kemal; Arikan, Nihat; ?yigr, Ahmet; Candan, Abdullah

    2014-10-06

    We computed the electronic structure, elastic moduli, vibrational properties, and Ni{sub 2}TiGa and Ni{sub 2}ScGa alloys in the cubic L2{sub 1} structure. The obtained equilibrium lattice constants of these alloys are in good agreement with available data. In cubic systems, there are three independent elastic constants, namely C{sub 11}, C{sub 12} and C{sub 44}. We calculated elastic constants in L2{sub 1} structure for Ni{sub 2}TiGa and Ni{sub 2}ScGa using the energy-strain method. The electronic band structure, total and partial density of states for these alloys were investigated within density functional theory using the plane-wave pseudopotential method implemented in Quantum-Espresso program package. From band structure, total and projected density of states, we observed metallic characters of these compounds. The electronic calculation indicate that the predominant contributions of the density of states at Fermi level come from the Ni 3d states and Sc 3d states for Ni{sub 2}TiGa, Ni 3d states and Sc 3d states for Ni{sub 2}ScGa. The computed density of states at Fermi energy are 2.22 states/eV Cell for Ni{sub 2}TiGa, 0.76 states/eV Cell for Ni{sub 2}ScGa. The vibrational properties were obtained using a linear response in the framework at the density functional perturbation theory. For the alloys, the results show that the L2{sub 1} phase is unstable since the phonon calculations have imagine modes.

  17. Can Ni phosphides become viable hydroprocessing catalysts?

    SciTech Connect (OSTI)

    Soled, S.; Miseo, S.; Baumgartner, J.; Guzman, J.; Bolin, T.; Meyer, R.

    2015-05-15

    We prepared higher surface area nickel phosphides than are normally found by reducing nickel phosphate. To do this, we hydrothermally synthesized Ni hydroxy phosphite precursors with low levels of molybdenum substitution. The molybdenum substitution increases the surface area of these precursors. During pretreatment in a sulfiding atmosphere (such as H2S/H2) dispersed islands of MoS2 segregate from the precursor and provide a pathway for H2 dissociation that allows reduction of the phosphite precursor to nickel phosphide at substantially lower temperatures than in the absence of MoS2. The results reported here show that to create nickel phosphides with comparable activity to conventional supported sulfide catalysts, one would have to synthesize the phosphide with surface areas exceeding 400 m2/g (i.e. with nanoparticles less than 30 Å in lateral dimension).

  18. Ni/metal hydride secondary element

    DOE Patents [OSTI]

    Bauerlein, Peter

    2005-04-19

    A Ni/metal hydride secondary element having a positive nickel hydroxide electrode, a negative electrode having a hydrogen storage alloy, and an alkaline electrolyte, the positive electrode, provided with a three-dimensional metallic conductive structure, also contains an aluminum compound which is soluble in the electrolyte, in addition to nickel hydroxide and cobalt oxide. The aluminum compound is aluminum hydroxide and/or aluminum oxide, and the mass of the aluminum compound which is present in the positive bulk material mixture is 0.1 to 2% by weight relative to the mass of the nickel hydroxide which is present. In combination with aluminum hydroxide or aluminum oxide, the positive electrode further contains lanthanoid oxidic compounds Y.sub.2 O.sub.3, La.sub.2 O.sub.3 and Ca(OH).sub.2, as well as mixtures of these compounds.

  19. Phase equilibria, formation, crystal and electronic structure of ternary compounds in Ti-Ni-Sn and Ti-Ni-Sb ternary systems

    SciTech Connect (OSTI)

    Romaka, V.V.; Rogl, P.; Romaka, L.; Stadnyk, Yu.; Melnychenko, N.; Grytsiv, A.; Falmbigl, M.; Skryabina, N.

    2013-01-15

    The phase equilibria of the Ti-Ni-Sn and Ti-Ni-Sb ternary systems have been studied in the whole concentration range by means of X-ray and EPM analyses at 1073 K and 873 K, respectively. Four ternary intermetallic compounds TiNiSn (MgAgAs-type), TiNi{sub 2-x}Sn (MnCu{sub 2}Al-type), Ti{sub 2}Ni{sub 2}Sn (U{sub 2}Pt{sub 2}Sn-type), and Ti{sub 5}NiSn{sub 3} (Hf{sub 5}CuSn{sub 3}-type) are formed in Ti-Ni-Sn system at 1073 K. The TiNi{sub 2}Sn stannide is characterized by homogeneity in the range of 50-47 at% of Ni. The Ti-Ni-Sb ternary system at 873 K is characterized by formation of three ternary intermetallic compounds, Ti{sub 0.8}NiSb (MgAgAs-type), Ti{sub 5}Ni{sub 0.45}Sb{sub 2.55} (W{sub 5}Si{sub 3}-type), and Ti{sub 5}NiSb{sub 3} (Hf{sub 5}CuSn{sub 3}-type). The solubility of Ni in Ti{sub 0.8}NiSb decreases number of vacancies in Ti site up to Ti{sub 0.91}Ni{sub 1.1}Sb composition. - Graphical abstract: Isothermal section of the Ti-Ni-Sn phase diagram and DOS distribution in hypothetical TiNi{sub 1+x}Sn solid solution. Highlights: Black-Right-Pointing-Pointer Ti-Ni-Sn phase diagram was constructed at 1073 K. Black-Right-Pointing-Pointer Four ternary compounds are formed: TiNiSn, TiNi{sub 2-x}Sn, Ti{sub 2}Ni{sub 2}Sn, and Ti{sub 5}NiSn{sub 3}. Black-Right-Pointing-Pointer Three ternary compounds exist in Ti-Ni-Sb system at 873 K. Black-Right-Pointing-Pointer The TiNi{sub 2}Sb compound is absent.

  20. The fabrication of foam-like 3D mesoporous NiO-Ni as anode for high performance Li-ion batteries

    SciTech Connect (OSTI)

    Huang, Peng; Zhang, Xin; Wei, Jumeng; Pan, Jiaqi; Sheng, Yingzhou; Feng, Boxue

    2015-03-15

    Graphical abstract: Foam-like 3 dimensional (3D) mesoporous NiO on 3D micro-porous Ni was fabricated. - Highlights: We prepare NiO-Ni foam composite via hydrothermal etching and subsequent annealing. The NiO exhibits novel foam-like 3D mesoporous architecture. The NiO-Ni anode shows good cycle stability. - Abstract: Foam-like three dimensional mesoporous NiO on Ni foam was fabricated via facile hydrothermal etching and subsequent annealing treatment. The porous NiO consists of a large number of nanosheets with mean thickness about 50 nm, among which a large number of mesoscopic pores with size ranges from 100 nm to 1 ?m distribute. The electrochemical performance of the as-prepared NiO-Ni as anode for lithium ion battery was studied by conventional charge/discharge test, which shows excellent cycle stability and rate capability. It exhibits initial discharge and charge capacities of 979 and 707 mA h g{sup ?1} at a charge/discharge rate of 0.7 C, which maintain of 747 and 738 mA h g{sup ?1} after 100 cycles. Even after 60 cycles at various rates from 0.06 to 14 C, the 10th discharge and charge capacities of the NiO-Ni electrode can revert to 699 and 683 mA h g{sup ?1} when lowering the charge/discharge rate to 0.06 C.

  1. The mitochondrial fatty acid synthesis (mtFASII) pathway is capable of mediating nuclear-mitochondrial cross talk through the PPAR system of transcriptional activation

    SciTech Connect (OSTI)

    Parl, Angelika; Mitchell, Sabrina L.; Clay, Hayley B.; Reiss, Sara; Li, Zhen; Murdock, Deborah G.

    2013-11-15

    Highlights: The function of the mitochondria fatty acid synthesis pathway is partially unknown. Overexpression of the pathway causes transcriptional activation through PPARs. Knock down of the pathway attenuates that activation. The last enzyme in the pathway regulates its own transcription. Products of the mtFASII pathway are able to drive nuclear transcription. -- Abstract: Mammalian cells contain two fatty acid synthesis pathways, the cytosolic FASI pathway, and the mitochondrial FASII pathway. The selection behind the conservation of the mitochondrial pathway is not completely understood, given the presence of the cytosolic FAS pathway. In this study, we show through heterologous gene reporter systems and PCR-based arrays that overexpression of MECR, the last step in the mtFASII pathway, causes modulation of gene expression through the PPAR pathway. Electromobility shift assays (EMSAs) demonstrate that overexpression of MECR causes increased binding of PPARs to DNA, while cell fractionation and imaging studies show that MECR remains localized to the mitochondria. Interestingly, knock down of the mtFASII pathway lessens the effect of MECR on this transcriptional modulation. Our data are most consistent with MECR-mediated transcriptional activation through products of the mtFASII pathway, although we cannot rule out MECR acting as a coactivator. Further investigation into the physiological relevance of this communication will be necessary to better understand some of the phenotypic consequences of deficits in this pathway observed in animal models and human disease.

  2. Impact of solvent for individual steps of phenol hydrodeoxygenation with Pd/C and HZSM-5 as catalysts

    SciTech Connect (OSTI)

    He, Jiayue; Zhao, Chen; Lercher, Johannes A.

    2014-01-01

    Impacts of water, methanol, and hexadecane solvents on the individual steps of phenol hydrodeoxygenation are investigated over Pd/C and HZSM-5 catalyst components at 473 Kin presence of H-2. Hydrodeoxygenation of phenol to cyclohexane includes four individual steps of phenol hydrogenation to cyclohexanone on Pd/C, cyclohexanone hydrogenation to cyclohexanol on Pd/C, cyclohexanol dehydration to cyclohexene on HZSM-5, and cyclohexene hydrogenation to cyclohexane on Pd/C. Individual phenol and cyclohexanone hydrogenation rates are much lower in methanol and hexadecane than in water, while rates of cyclohexanol dehydration and cyclohexene hydrogenation are similar in three solvents. The slow rate in methanol is due to the strong solvation of reactants and the adsorption of methanol on Pd, as well as to the reaction between methanol and the cyclohexanone intermediate. The low solubility of phenol and strong interaction of hexadecane with Pd lead to the slow rate in hexadecane. The apparent activation energies for hydrogenation follow the order E-a phenol > E-a cyclonexanone > E-a cyclohexene, and the sequences of individual reaction rates are reverse in three solvents. The dehydration rates (1.1-1.8 x 10(3) mol mol(BAS)(-1) h(-1))and apparent activation energies (115-124 kJ mol(-1)) are comparable in three solvents. In situ liquid-phase IR spectroscopy shows the rates consistent with kinetics derived from chromatographic evidence in the aqueous phase and verifies that hydrogenation of phenol and cyclohexanone follows reaction orders of 1.0 and 0.55 over Pd/C, respectively. Conversion of cyclohexanol with HZSM-5 shows first-order dependence in approaching the dehydration-hydration equilibrium in the aqueous phase.

  3. Multi-functional ultrathin PdxCu1-x and Pt~PdxCu1-x one-dimensional nanowire motifs for various small molecule oxidation reactions

    SciTech Connect (OSTI)

    Liu, Haiqing; Wong, Stanislaus S.; Adzic, Radoslav R.

    2015-11-18

    Developing novel electrocatalysts for small molecule oxidation processes, including formic acid oxidation (FAOR), methanol oxidation reaction (MOR), and ethanol oxidation reaction (EOR), denoting the key anodic reactions for their respective fuel cell configurations, is a significant and relevant theme of recent efforts in the field. Herein, in this report, we demonstrated a concerted effort to couple and combine the benefits of small size, anisotropic morphology, and tunable chemical composition in order to devise a novel “family” of functional architectures. In particular, we have fabricated not only ultrathin 1-D Pd1–xCux alloys but also Pt-coated Pd1–xCux (i.e., Pt~Pd1–xCux; herein the ~ indicates an intimate association, but not necessarily actual bond formation, between the inner bimetallic core and the Pt outer shell) core–shell hierarchical nanostructures with readily tunable chemical compositions by utilizing a facile, surfactant-based, wet chemical synthesis coupled with a Cu underpotential deposition technique. Our main finding is that our series of as-prepared nanowires are functionally flexible. More precisely, we demonstrate that various examples within this “family” of structural motifs can be tailored for exceptional activity with all 3 of these important electrocatalytic reactions. In particular, we note that our series of Pd1–xCux nanowires all exhibit enhanced FAOR activities as compared with not only analogous Pd ultrathin nanowires but also commercial Pt and Pd standards, with Pd9Cu representing the “optimal” composition. Moreover, our group of Pt~Pd1–xCux nanowires consistently outperformed not only commercial Pt NPs but also ultrathin Pt nanowires by several fold orders of magnitude for both the MOR and EOR reactions in alkaline media. As a result, the variation of the MOR and EOR performance with

  4. Antiferromagnetic Kondo lattice in the layered compound CePd1xBi? and comparison to the superconductor LaPd1xBi?

    SciTech Connect (OSTI)

    Han, Fei; Wan, Xiangang; Phelan, Daniel; Stoumpos, Constantinos C.; Sturza, Mihai; Malliakas, Christos D.; Li, Qing'an; Han, Tian-Heng; Zhao, Qingbiao; Chung, Duck Young; Kanatzidis, Mercouri G.

    2015-07-13

    The layered compound CePd1xBi? with the tetragonal ZrCuSi?-type structure was obtained from excess Bi flux. Magnetic susceptibility data of CePd1xBi? show an antiferromagnetic ordering below 6 K and are anisotropic along the c axis and the ab plane. The anisotropy is attributed to crystal-electric-field (CEF) effects and a CEF model which is able to describe the susceptibility data is given. An enhanced Sommerfeld coefficient ? of 0.191 J mol Ce? K? obtained from specific-heat measurement suggests a moderate Kondo effect in CePd1xBi?. Other than the antiferromagnetic peak at 6 K, the resistivity curve shows a shoulderlike behavior around 75 K which could be attributed to the interplay between Kondo and CEF effects. Magnetoresistance and Hall-effect measurements suggest that the interplay reconstructs the Fermi-surface topology of CePd1xBi? around 75 K. Electronic structure calculations reveal that the Pd vacancies are important to the magnetic structure and enhance the CEF effects which quench the orbital moment of Ce at low temperatures.

  5. Graphene Monolayer Rotation on Ni(111) Facilities Bilayer Graphene Growth

    SciTech Connect (OSTI)

    Batzill M.; Sutter P.; Dahal, A.; Addou, R.

    2012-06-11

    Synthesis of bilayer graphene by chemical vapor deposition is of importance for graphene-based field effect devices. Here, we demonstrate that bilayer graphene preferentially grows by carbon-segregation under graphene sheets that are rotated relative to a Ni(111) substrate. Rotated graphene monolayer films can be synthesized at growth temperatures above 650 C on a Ni(111) thin-film. The segregated second graphene layer is in registry with the Ni(111) substrate and this suppresses further C-segregation, effectively self-limiting graphene formation to two layers.

  6. Nondestructive evaluation of Ni-Ti shape memory alloy

    SciTech Connect (OSTI)

    Meir, S.; Gordon, S.; Karsh, M.; Ayers, R.; Olson, D. L.; Wiezman, A.

    2011-06-23

    The nondestructive evaluation of nickel titanium (Ni-Ti) alloys for applications such as heat treatment for biomaterials applications (dental) and welding was investigated. Ni-Ti alloys and its ternary alloys are valued for mechanical properties in addition to the shape memory effect. Two analytical approaches were perused in this work. Assessment of the microstructure of the alloy that determines the martensitic start temperature (Ms) of Ni-Ti alloy as a function of heat treatment, and secondly, an attempt to evaluate a Friction Stir Welding, which involves thermo-mechanical processing of the alloy.

  7. Overall Photocatalytic Water Splitting with NiOx-SrTiO3 A Revised Mechanism

    SciTech Connect (OSTI)

    Townsend, Troy K.; Browning, Nigel D.; Osterloh, Frank

    2012-11-01

    NiOx (0 < x < 1) modified SrTiO3 (STO) is one of the best studied photocatalyst for overall water splitting under UV light. The established mechanism for this and many other NiOx containing catalysts assumes water oxidation to occur at the early transition metal oxide and water reduction at NiOx. Here we show that NiOx-STO is more likely a three component Ni-STO-NiO catalyst, in which STO absorbs the light, Ni reduces protons, and NiO oxidizes water. This interpretation is based on systematic H2/O2 evolution tests of appropriately varied catalyst compositions using oxidized, chemically and photochemically added nickel and NiO nanoparticle cocatalysts. Surface photovoltage (SPV) measurements reveal that Ni(0) serves as an electron trap (site for water reduction) and that NiO serves as a hole trap (site for water oxidation). Electrochemical measurements show that the overpotential for water oxidation correlates with NiO content, whereas the water reduction overpotential depends on Ni content. Photodeposition experiments with NiCl2 and H2PtCl6 on NiO-STO show that electrons are available on the STO surface, not on the NiO particles. Based on photoelectrochemistry, both NiO and Ni particles suppress the Fermi level in STO, but the effect of this shift on catalytic activity is not clear. Overall, the results suggest a revised role for NiO in NiOx-STO and in many other nickel-containing water splitting systems, including NiOx-La:KTaO3, and many layered perovskites.

  8. Application of cluster-plus-glue-atom model to barrierless CuNiTi and CuNiTa films

    SciTech Connect (OSTI)

    Li, Xiaona, E-mail: lixiaona@dlut.edu.cn; Ding, Jianxin; Wang, Miao; Dong, Chuang [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); Chu, Jinn P. [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2014-11-01

    To improve the thermal stability of copper and avoid its diffusion into surrounding dielectrics or interfacial reactions with them, the authors applied the cluster-plus-glue-atom model to investigate barrierless CuNiM (M?=?Ti or Ta) seed layers. The dissolution of the third element (Ti or Ta) in the Cu lattice with the aid of Ni significantly improved the thermal stability of the Cu seed layer. The appropriate M/Ni (M?=?Ti or Ta) ratio was selected to obtain a low resistivity: the resistivity was as low as 2.5??? cm for the (Ti{sub 1.5/13.5}Ni{sub 12/13.5}){sub 0.3}Cu{sub 99.7} film and 2.8??? cm for the (Ta{sub 1.1/13.1}Ni{sub 12/13.1}){sub 0.4}Cu{sub 99.6} film after annealing at 500?C for 1?h. After annealing at 500?C for 40?h, the two films remained stable without forming a Cu{sub 3}Si compound. The authors confirmed that the range of applications of the cluster-plus-glue-atom model could be extended. Therefore, a third element M with negative enthalpies of mixing with both Cu and Ni could be selected, under the premise that the mixing enthalpy of MNi is more negative than that of MCu.

  9. Excess Ni-doping induced enhanced room temperature magneto-functionality in Ni-Mn-Sn based shape memory alloy

    SciTech Connect (OSTI)

    Pramanick, S.; Giri, S.; Majumdar, S.; Chatterjee, S.

    2014-09-15

    Present work reports on the observation of large magnetoresistance (??30% at 80 kOe) and magnetocaloric effect (?12?Jkg{sup ?1}K{sup ?1} for 050 kOe) near room temperature (?290?K) on the Ni-excess ferromagnetic shape memory alloy Ni{sub 2.04}Mn{sub 1.4}Sn{sub 0.56}. The sample can be thought of being derived from the parent Ni{sub 2}Mn{sub 1.4}Sn{sub 0.6} alloy, where excess Ni was doped at the expense of Sn. Such Ni doping enhances the martensitic transition temperature and for the Ni{sub 2.04}Mn{sub 1.4}Sn{sub 0.56} it is found to be optimum (288?K). The doped alloy shows enhanced magneto-functional properties as well as reduced saturation magnetization as compared to the undoped counterpart at low temperature. A probable increment of antiferromagnetic correlation between Mn-atoms on Ni substitution can be accounted for the enhanced magneto-functional properties as well as reduction in saturation moment.

  10. The influence of nano-architectured CeOx supports in RhPd/CeO₂ for the catalytic ethanol steam reforming reaction

    SciTech Connect (OSTI)

    Divins, N. J.; Senanayake, S. D.; Casanovas, A.; Xu, W.; Trovarelli, A.; Llorca, J.

    2015-01-19

    The ethanol steam reforming (ESR) reaction has been tested over RhPd supported on polycrystalline ceria in comparison to structured supports composed of nanoshaped CeO₂ cubes and CeO₂ rods tailored towards the production of hydrogen. At 650-700 K the hydrogen yield follows the trend RhPd/CeO₂-cubes > RhPd/CeO₂ -rods > RhPd/CeO₂- polycrystalline, whereas at temperatures higher than 800 K the catalytic performance of all samples is similar and close to the thermodynamic equilibrium. The improved performance of RhPd/CeO₂-cubes and RhPd/CeO₂ -rods for ESR at low temperature is mainly ascribed to higher water-gas shift activity and a strong interaction between the bimetallic - oxide support interaction. STEM analysis shows the existence of RhPd alloyed nanoparticles in all samples, with no apparent relationship between ESR performance and RhPd particle size. X-ray diffraction under operating conditions shows metal reorganization on {100} and {110} ceria crystallographic planes during catalyst activation and ESR, but not on {111} ceria crystallographic planes. The RhPd reconstructing and tuned activation over ceria nanocubes and nanorods is considered the main reason for better catalytic activity with respect to conventional catalysts based on polycrystalline ceria

  11. The influence of nano-architectured CeOx supports in RhPd/CeO₂ for the catalytic ethanol steam reforming reaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Divins, N. J.; Senanayake, S. D.; Casanovas, A.; Xu, W.; Trovarelli, A.; Llorca, J.

    2015-01-19

    The ethanol steam reforming (ESR) reaction has been tested over RhPd supported on polycrystalline ceria in comparison to structured supports composed of nanoshaped CeO₂ cubes and CeO₂ rods tailored towards the production of hydrogen. At 650-700 K the hydrogen yield follows the trend RhPd/CeO₂-cubes > RhPd/CeO₂ -rods > RhPd/CeO₂- polycrystalline, whereas at temperatures higher than 800 K the catalytic performance of all samples is similar and close to the thermodynamic equilibrium. The improved performance of RhPd/CeO₂-cubes and RhPd/CeO₂ -rods for ESR at low temperature is mainly ascribed to higher water-gas shift activity and a strong interaction between the bimetallic -more » oxide support interaction. STEM analysis shows the existence of RhPd alloyed nanoparticles in all samples, with no apparent relationship between ESR performance and RhPd particle size. X-ray diffraction under operating conditions shows metal reorganization on {100} and {110} ceria crystallographic planes during catalyst activation and ESR, but not on {111} ceria crystallographic planes. The RhPd reconstructing and tuned activation over ceria nanocubes and nanorods is considered the main reason for better catalytic activity with respect to conventional catalysts based on polycrystalline ceria« less

  12. Intrinsic state lifetimes in {sup 103}Pd and {sup 106,107}Cd

    SciTech Connect (OSTI)

    Ashley, S. F.; Thomas, N. J.; Regan, P. H.; Gelletly, W.; Andgren, K.; McCutchan, E. A.; Casten, R. F.; Plettner, C.; Vinson, J.; Werner, V.; Williams, E.; Zamfir, N. V.; Amon, L.; Cakirli, R. B.; Clark, R. M.; Guerdal, G.; Keyes, K. L.; Papenberg, A.; Meyer, D. A.; Erduran, M. N.

    2007-12-15

    The mean-lifetimes, {tau}, of various medium-spin excited states in {sup 103}Pd and {sup 106,107}Cd have been deduced using the Recoil Distance Doppler Shift technique and the Differential Decay Curve Method. In {sup 106}Cd, the mean-lifetimes of the I{sup {pi}}=12{sup +} state at E{sub x}=5418 keV and the I{sup {pi}}=11{sup -} state at E{sub x}=4324 keV have been deduced as 11.4(17)ps and 8.2(7)ps, respectively. The associated {beta}{sub 2} deformation within the axially-symmetric deformed rotor model for these states are 0.14(1) and 0.14(1), respectively. The {beta}{sub 2} deformation of 0.14(1) for the I{sup {pi}}=12{sup +} state in {sup 106}Cd compares with a predicted {beta}{sub 2} value from total Routhian surface (TRS) calculations of 0.17. In addition, the mean-lifetimes of the yrast I{sup {pi}}=(15/2){sup -} states in {sup 103}Pd (at E{sub x}=1262 keV) and {sup 107}Cd (at E{sub x}=1360 keV) have been deduced to be 31.2(44)ps and 31.4(17)ps, respectively, corresponding to {beta}{sub 2} values of 0.16(1) and 0.12(1) assuming axial symmetry. Agreement with TRS calculations are good for {sup 103}Pd but deviate for that predicted for {sup 107}Cd.

  13. Synthesis of Pd9Ru@Pt nanoparticles for oxygen reduction reaction in acidic electrolytes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Yu; Hsieh, Yu -Chi; Chang, Li -Chung; Wu, Pu -Wei; Lee, Jyh -Fu

    2014-11-22

    Nanoparticles of PdRu, Pd₃Ru, and Pd₉Ru are synthesized and impregnated on carbon black via a wet chemical reflux process. X-ray diffraction patterns of the as-synthesized samples, PdxRu/C (x=1/3/9), suggest succesful formation of alloy without presence of individual Pd and Ru nanoparticles. Images from transmission electron microscope confirm irregularly-shaped nanoparticles with average size below 3 nm. Analysis from extended X-ray absorption fine structure on both Pd and Ru K-edge absorption profiles indicate the Ru atoms are enriched on the surface of PdxRu/C. Among these samples, the Pd₉Ru/C exhibits the strongest electrocatalytic activity for oxygen reduction reaction (ORR) in an oxygen-saturated 0.1more » M aqueous HClO₄ solution. Subsequently, the Pd₉Ru/C undegoes Cu under potential deposition, followed by a galvanic displacement reaction to deposit a Pt monolayer on the Pd₉Ru surface (Pd₉Ru@Pt). The Pd₉Ru@Pt reveals better ORR performance than that of Pt, reaching a mass activity of 0.38 mA μg⁻¹ Pt, as compared to that of commercially available Pt nanoparticles (0.107 mA μg⁻¹ Pt). Thus, the mechanisms responsible for the ORR enhancement are attributed to the combined effects of lattice strain and ligand interaction. In addition, this core-shell Pd₉Ru@Pt electrocatalyst represents a substantial reduction in the amount of Pt consumption and raw material cost.« less

  14. Tunability of exchange bias in Ni@NiO core-shell nanoparticles obtained by sequential layer deposition

    SciTech Connect (OSTI)

    D'Addato, Sergio; Spadaro, Maria Chiara; Luches, Paola; Valeri, Sergio; Grillo, Vincenzo; Rotunno, Enzo; Roldan Gutierrez, Manuel A.; Pennycook, Stephen J.; Ferretti, Anna Maria; Capetti, Elena; Ponti, A.

    2015-01-01

    Films of magnetic Ni@NiO core–shell nanoparticles (NPs, core diameter d ≅ 12 nm, nominal shell thickness variable between 0 and 6.5 nm) obtained with sequential layer deposition were investigated, to gain insight into the relationships between shell thickness/morphology, core-shell interface, and magnetic properties. Different values of NiO shell thickness ts could be obtained while keeping the Ni core size fixed, at variance with conventional oxidation procedures where the oxide shell is grown at the expense of the core. Chemical composition, morphology of the as-produced samples and structural features of the Ni/NiO interface were investigated with x-ray photoelectron spectroscopy and microscopy (scanning electron microscopy, transmission electron microscopy) techniques, and related with results from magnetic measurements obtained with a superconducting quantum interference device. The effect of the shell thickness on the magnetic properties could be studied. The exchange bias (EB) field Hbias is small and almost constant for ts up to 1.6 nm; then it rapidly grows, with no sign of saturation. This behavior is clearly related to the morphology of the top NiO layer, and is mostly due to the thickness dependence of the NiO anisotropy constant. The ability to tune the EB effect by varying the thickness of the last NiO layer represents a step towards the rational design and synthesis of core–shell NPs with desired magnetic properties.

  15. [NiIII(OMe)]-mediated reductive activation of CO2 affording a Ni(κ1-OCO) complex

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chiou, Tzung -Wen; Tseng, Yen -Ming; Lu, Tsai -Te; Weng, Tsu -Chien; Sokaras, Dimosthenes; Ho, Wei -Chieh; Kuo, Ting -Shen; Jang, Ling -Yun; Lee, Jyh -Fu; Liaw, Wen -Feng

    2016-02-24

    Here, carbon dioxide is expected to be employed as an inexpensive and potential feedstock of C1 sources for the mass production of valuable chemicals and fuel. Versatile chemical transformations of CO2, i.e. insertion of CO2 producing bicarbonate/acetate/formate, cleavage of CO2 yielding μ-CO/μ-oxo transition-metal complexes, and electrocatalytic reduction of CO2 affording CO/HCOOH/CH3OH/CH4/C2H4/oxalate were well documented. Herein, we report a novel pathway for the reductive activation of CO2 by the [NiIII(OMe)(P(C6H3-3-SiMe3-2-S)3)]– complex, yielding the [NiIII(κ1-OCO˙–)(P(C6H3-3-SiMe3-2-S)3)]– complex. The formation of this unusual NiIII(κ1-OCO˙–) complex was characterized by single-crystal X-ray diffraction, EPR, IR, SQUID, Ni/S K-edge X-ray absorption spectroscopy, and Ni valence-to-core X-ray emissionmore » spectroscopy. The inertness of the analogous complexes [NiIII(SPh)], [NiII(CO)], and [NiII(N2H4)] toward CO2, in contrast, demonstrates that the ionic [NiIII(OMe)] core attracts the binding of weak σ-donor CO2 and triggers the subsequent reduction of CO2 by the nucleophilic [OMe]– in the immediate vicinity. This metal–ligand cooperative activation of CO2 may open a novel pathway promoting the subsequent incorporation of CO2 in the buildup of functionalized products.« less

  16. Travelling fronts of the CO oxidation on Pd(111) with coverage-dependent diffusion

    SciTech Connect (OSTI)

    Cisternas, Jaime, E-mail: jecisternas@miuandes.cl [Facultad de Ingeniera y Ciencias Aplicadas, Universidad de los Andes, Monseor Alvaro del Portillo 12455, Las Condes, Santiago (Chile); Karpitschka, Stefan [Physics of Fluids, University of Twente, Drienerlolaan 5, 7522 NB Enschede (Netherlands); Wehner, Stefan [Institut fr Integrierte Naturwissenschaften - Physik, Universitt Koblenz-Landau, 56070 Koblenz (Germany)

    2014-10-28

    In this work, we study a surface reaction on Pd(111) crystals under ultra-high-vacuum conditions that can be modeled by two coupled reaction-diffusion equations. In the bistable regime, the reaction exhibits travelling fronts that can be observed experimentally using photo electron emission microscopy. The spatial profile of the fronts reveals a coverage-dependent diffusivity for one of the species. We propose a method to solve the nonlinear eigenvalue problem and compute the direction and the speed of the fronts based on a geometrical construction in phase-space. This method successfully captures the dependence of the speed on control parameters and diffusivities.

  17. An over view of excess heat production in the D/Pd system at SRI

    SciTech Connect (OSTI)

    Crouch-Baker, S.; Hauser, A.; Jevtic, N.

    1995-12-01

    Experiments have been undertaken to demonstrate and quantify the rate of heat production of palladium cathodes loaded electrochemically with deuterium. Excess heat has been observed in these experiments at SRI on more than 40 occasions in accurate and stable isothermal mass flow calorimeters. The excess power appears to be correlated with at least three criteria: the degree of deuterium loading (specified as the atomic ratio D/Pd), the Lime for which high loading is maintained, the interfacial current density. The correlation between excess heat production and these three variables will be discussed. In addition, the results of experiments designed to search for further products of the heat producing reaction will he reported.

  18. Cubic to Tetragonal Phase Transformation in Cold-Compressed Pd Nanocubes

    SciTech Connect (OSTI)

    Guo, Q.X.; Zhao, Y.S.; Mao, W.L.; Wang, Z.W.; Xiong, Y.J.; Xia, Y.N.; /Los Alamos /SLAC /Cornell U., LNS /Washington U., Seattle

    2009-06-09

    Pd nanocubes with an average side length of {approx}10 nm were compressed up to 24.8 GPa in a diamond-anvil cell (DAC). In situ synchrotron X-ray diffraction was used to monitor structural changes, and a face-centered cubic (fcc) to face-centered tetragonal (fct) distortion was observed for the first time. This novel discovery not only provides new insights into the pressure-induced behavior of faceted nanocrystals of palladium and other noble metals but also gives guidance for finding new phases in close-packed metals.

  19. Atomic-scale identification of Pd leaching in nanoparticle catalyzed C–C coupling: Effects of particle surface disorder

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Briggs, Beverly D.; Bedford, Nicholas M.; Seifert, Soenke; Koerner, Hilmar; Ramezani-Dakhel, Hadi; Heinz, Hendrik; Naik, Rajesh R.; Frenkel, Anatoly I.; Knecht, Marc R.

    2015-07-23

    C–C coupling reactions are of great importance in the synthesis of numerous organic compounds, where Pd nanoparticle catalyzed systems represent new materials to efficiently drive these reactions. Despite their pervasive utility, the catalytic mechanism of these particle-based reactions remains highly contested. Herein we present evidence of an atom leaching mechanism for Stille coupling under aqueous conditions using peptide-capped Pd nanoparticles. EXAFS analysis revealed Pd coordination changes in the nanoparticle consistent with Pd atom abstraction, where sizing analysis by SAXS confirmed particle size changes associated with a leaching process. It is likely that recently discovered highly disordered surface Pd atoms aremore » the favored catalytic active sites and are leached during oxidative addition, resulting in smaller particles. Thus, probing the mechanism of nanoparticle-driven C–C coupling reactions through structural analyses provides fundamental information concerning these active sites and their reactivity at the atomic-scale, which can be used to improve catalytic performance to meet important sustainability goals.« less

  20. Atomic-scale identification of Pd leaching in nanoparticle catalyzed C–C coupling: Effects of particle surface disorder

    SciTech Connect (OSTI)

    Briggs, Beverly D.; Bedford, Nicholas M.; Seifert, Soenke; Koerner, Hilmar; Ramezani-Dakhel, Hadi; Heinz, Hendrik; Naik, Rajesh R.; Frenkel, Anatoly I.; Knecht, Marc R.

    2015-07-23

    C–C coupling reactions are of great importance in the synthesis of numerous organic compounds, where Pd nanoparticle catalyzed systems represent new materials to efficiently drive these reactions. Despite their pervasive utility, the catalytic mechanism of these particle-based reactions remains highly contested. Herein we present evidence of an atom leaching mechanism for Stille coupling under aqueous conditions using peptide-capped Pd nanoparticles. EXAFS analysis revealed Pd coordination changes in the nanoparticle consistent with Pd atom abstraction, where sizing analysis by SAXS confirmed particle size changes associated with a leaching process. It is likely that recently discovered highly disordered surface Pd atoms are the favored catalytic active sites and are leached during oxidative addition, resulting in smaller particles. Thus, probing the mechanism of nanoparticle-driven C–C coupling reactions through structural analyses provides fundamental information concerning these active sites and their reactivity at the atomic-scale, which can be used to improve catalytic performance to meet important sustainability goals.

  1. Enhancing low-temperature activity and durability of Pd-based diesel oxidation catalysts using ZrO2 supports

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Mi -Young; Kyriakidou, Eleni A.; Choi, Jae -Soon; Toops, Todd J.; Binder, Andrew J.; Thomas, Cyril; Schwartz, Viviane; Chen, Jihua; Hensley, Dale K.; Parks, II, James E.

    2016-01-18

    In this study, we investigated the impact of ZrO2 on the performance of palladium-based oxidation catalysts with respect to low-temperature activity, hydrothermal stability, and sulfur tolerance. Pd supported on ZrO2 and SiO2 were synthesized for a comparative study. Additionally, in an attempt to maximize the ZrO2 surface area and improve sulfur tolerance, a Pd support with ZrO2-dispersed onto SiO2 was studied. The physicochemical properties of the catalysts were examined using ICP, N2 sorption, XRD, SEM, TEM, and NH3-, CO2-, and NOx-TPD. The activity of the Pd catalysts were measured from 60 to 600 °C in a flow of 4000 ppmmore » CO, 500 ppm NO, 1000 ppm C3H6, 4% O2, 5% H2O, and Ar balance. The Pd catalysts were evaluated in fresh, sulfated, and hydrothermally aged states. Overall, the ZrO2-containing catalysts showed considerably higher CO and C3H6 oxidation activity than Pd/SiO2 under the reaction conditions studied.« less

  2. Ni(NiO)/single-walled carbon nanotubes composite: Synthesis of electro-deposition, gas sensing property for NO gas and density functional theory calculation

    SciTech Connect (OSTI)

    Li, Li; Zhang, Guo; Chen, Lei; Bi, Hong-Mei; Shi, Ke-Ying

    2013-02-15

    Graphical abstract: The Ni(NiO)/semiconducting single-walled carbon nanotubes composite collected from the cathode after electro-deposition shows a high sensitivity to low-concentration NO gas at room temperature (18 C). Display Omitted Highlights: ? Ni(NiO) nanoparticles were deposited on semiconducting SWCNTs by electro-deposition. ? Ni(NiO)/semiconducting SWCNTs film shows a high sensitivity to NO gas at 18 C. ?Theoretical calculation reveals electron transfer from SWCNTs to NO via Ni. -- Abstract: Single-walled carbon nanotubes which contains metallic SWCNTs (m-SWCNTs) and semiconducting SWCNTs (s-SWCNTs) have been obtained under electric arc discharge. Their separation can be effectively achieved by the electro-deposition method. The Ni(NiO)/s-SWCNTs composite was found on cathode where Ni was partially oxidized to NiO at ambient condition with Ni(NiO) nanoparticles deposited uniformly on the bundles of SWCNTs. These results were confirmed by Raman spectra, transmission electron microscopy (TEM), scanning electron microscopy (SEM), UVvisNIR and TG characterizations. Furthermore, investigation of the gas sensing property of Ni(NiO)/s-SWCNTs composite film to NO gas at 18 C demonstrated the sensitivity was approximately 5% at the concentration of 97 ppb. Moreover, density functional theory (DFT) calculations were performed to explore the sensing mechanism which suggested the adsorption of NO molecules onto the composite through NNi interaction as well as the proposition of electron transfer mechanisms from SWCNTs to NO via the Ni medium.

  3. Interdiffusion in nanometric Fe/Ni multilayer films

    SciTech Connect (OSTI)

    Liu, JX; Barmak, K

    2015-03-01

    Fe (3.1 nm)/Ni (3.3 nm)](20) multilayer films were prepared by DC magnetron sputtering onto oxidized Si(100) substrates. The Fe and Ni layers were shown to both be face-centered cubic by x-ray diffraction. Interdiffusion of the Fe and Ni layers in the temperature range of 300-430 degrees C was studied by x-ray reflectivity. From the decay of the integral intensity of the superlattice peak, the activation energy and the pre-exponential term for the effective interdiffusion coefficient were determined as to 1.06 +/- 0.07 eV and 5 x 10(-10) cm(2)/s, respectively. The relevance of the measured interdiffusion coefficient to the laboratory timescale synthesis of L1(0) ordered FeNi as a rare-earth free permanent magnet is discussed. (C) 2015 American Vacuum Society.

  4. N"I. L-S- Rad. Mat. DU

    Office of Legacy Management (LM)

    N"I. L-S- Rad. Mat. DU DU (UF4) Enr. U. Norm. U Thorium 34 Ti Alloy Subtotals Commercial ... Nuclear 1063- 570 1,484,083.2 14' Thorium Bridge- port Brass 762 380 -o- -o- 380 ...

  5. Support effects on hydrotreating activity of NiMo catalysts

    SciTech Connect (OSTI)

    Dominguez-Crespo, M.A. Arce-Estrada, E.M.; Torres-Huerta, A.M.

    2007-10-15

    The effect of the gamma alumina particle size on the catalytic activity of NiMoS{sub x} catalysts prepared by precipitation method of aluminum acetate at pH = 10 was studied. The structural characterization of the supports was measured by using XRD, pyridine FTIR-TPD and nitrogen physisorption. NiMo catalysts were characterized during the preparation steps (annealing and sulfidation) using transmission electron microscopy (TEM). Hydrogen TPR studies of the NiMo catalysts were also carried out in order to correlate their hydrogenating properties and their catalytic functionality. Catalytic tests were carried out in a pilot plant at 613, 633 and 653 K temperatures. The results showed that the rate constants of hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatizing (HDA) at 613-653 K decreased in the following order: A > B > C corresponding to the increase of NiMoS particle size associated to these catalysts.

  6. Oxidation-resistant, solution-processed plasmonic Ni nanochain...

    Office of Scientific and Technical Information (OSTI)

    Oxidation-resistant, solution-processed plasmonic Ni nanochain-SiOsub x (x < 2) selective solar thermal absorbers Citation Details In-Document Search Title: Oxidation-resistant, ...

  7. Double dumbbell shaped AgNi alloy by pulsed electrodeposition

    SciTech Connect (OSTI)

    Dhanapal, K.; Vasumathi, M.; Santhi, Kalavathy; Narayanan, V. Stephen, A.

    2014-01-28

    Silver-Nickel is the well-known thermally immiscible system that makes them quite complex for the formation of alloy. This kind of alloy can be attained from electrodeposition method. In the present work, AgNi alloy was synthesized by pulsed electrodeposition in a single bath two electrode system with the use of anodic alumina membrane. The prepared AgNi alloy and pure Ag were characterized with X-ray Diffraction (XRD) for structural confirmation, Scanning Electron Microscopy (SEM) for morphological, and magnetic properties by Vibrating Sample Magnetometer, respectively. The X-ray Diffraction study shows the formation of cubic structure for pure Ag. SEM analysis reveals the double dumbbell morphology for AgNi alloy and spherically agglomeration for pure silver. Hysteresis behaviour from VSM measurement indicates that the AgNi alloy have good ferro-magnetic properties.

  8. A polymorphism in metallothionein 1A (MT1A) is associated with cadmium-related excretion of urinary beta 2‐microglobulin

    SciTech Connect (OSTI)

    Lei, Lijian; Chang, Xiuli; Rentschler, Gerda; Tian, Liting; Zhu, Guoying; Chen, Xiao; Jin, Taiyi; Broberg, Karin

    2012-12-15

    Objectives: Cadmium (Cd) toxicity of the kidney varies between individuals despite similar exposure levels. In humans Cd is mainly bound to metallothioneins (MT), which scavenge its toxic effects. Here we analyzed whether polymorphisms in MT genes MT1A and MT2A influence Cd-related kidney damage. Methods: In a cross-sectional study N = 512 volunteers were selected from three areas in South-Eastern China, which to varying degree were Cd-polluted from a smelter (control area [median Cd in urine U-Cd = 2.67 μg/L], moderately [U-Cd = 4.23 μg/L] and highly [U-Cd = 9.13 μg/L] polluted areas). U-Cd and blood Cd (B-Cd) concentrations were measured by graphite-furnace atomic absorption spectrometry. MT1A rs11076161 (G/A), MT2A rs10636 (G/C) and MT2A rs28366003 (A/G) were determined by Taqman assays; urinary N-Acetyl-beta-(D)-Glucosaminidase (UNAG) by spectrometry, and urinary β2-microglobulin (UB2M) by ELISA. Results: Higher B-Cd (natural log-transformed) with increasing number of MT1A rs11076161 A-alleles was found in the highly polluted group (p-value trend = 0.033; all p-values adjusted for age, sex, and smoking). In a linear model a significant interaction between rs11076161 genotype and B-Cd was found for UNAG (p = 0.001) and UB2M concentrations (p = 0.001). Carriers of the rs11076161 AA genotype showed steeper slopes for the associations between Cd in blood and natural log-transformed UB2M (β = 1.2, 95% CI 0.72–1.6) compared to GG carriers (β = 0.30, 95% CI 0.15–0.45). Also for UNAG (natural log-transformed) carriers of the AA genotype had steeper slopes (β = 0.55, 95% CI 0.27–0.84) compared to GG carriers (β = 0.018, 95% CI − 0.79–0.11). Conclusions: MT1A rs11076161 was associated with B-Cd concentrations and Cd-induced kidney toxicity at high exposure levels. -- Highlights: ► Cadmium is toxic to the kidney but the susceptibility differs between individuals. ► The toxic effect of cadmium is scavenged by metallothioneins. ► A common variant of

  9. A Study on a Tritium Separation Process Using Self-Developing Gas Chromatography with Pd-Pt Alloy

    SciTech Connect (OSTI)

    Kojima, S.; Yokosawa, M.; Matsuyama, M.; Numata, M.; Kato, T.; Watanabe, K.

    2005-07-15

    To study the practical application of a tritium separation process using Self-Developing Gas Chromatography (SDGC) using a Pd-Pt alloy, intermediate scale-up experiments (22 mm ID x 2 m length column) and the development of a computational simulation method have been conducted. In addition, intermediate scale production of Pd-Pt powder has been developed for the scale-up experiments.The following results were obtained: (1) a 50-fold scale-up from 3 mm to 22 mm causes no significant impact on the SDGC process; (2) the Pd-Pt alloy powder is applicable to a large size SDGC process; and (3) the simulation enables preparation of a conceptual design of a SDGC process for tritium separation.

  10. Sample dependence of giant magnetocaloric effect in a cluster-glass system Ho{sub 5}Pd{sub 2}

    SciTech Connect (OSTI)

    Toyoizumi, Saori Tamaki, Akira; Kitazawa, Hideaki; Mamiya, Hiroaki; Terada, Noriki; Tamura, Ryo; Dönni, Andreas; Kawamura, Yukihiko; Morita, Kengo

    2015-05-07

    In order to investigate the effect of vacancy on the magnetocaloric effect in Ho{sub 5}Pd{sub 2}, we have carried out X-ray diffraction, magnetization, and specific heat measurements in the rare-earth intermetallic compound Ho{sub 5+x}Pd{sub 2}(−0.4 ≤ x ≤ 0.4). The maximum magnetic entropy change −ΔS{sub m}{sup max}, the maximum adiabatic temperature change ΔT{sub ad}{sup max}, and the relative cooling power of Ho{sub 5+x}Pd{sub 2} take large values at x = 0−0.4 for the field change of 5 T. The paramagnetic Curie temperature θ{sub p} increases with an increase of x. This fact suggests that the enhancement of ferromagnetic coupling among the correlated spins leads to the increase of magnetocaloric effect.

  11. Enhanced electrocatalytic activity and stability of Pd3V/C nanoparticles with a trace amount of Pt decoration for the oxygen reduction reaction

    SciTech Connect (OSTI)

    Liu, Sufen; Han, Lili; Zhu, Jing; Xiao, Weiping; Wang, Jie; Liu, Hongfang; Xin, Huolin; Wang, Deli

    2015-09-14

    In this study, carbon supported Pd3V bimetallic alloy nanoparticles (Pd3V/C) have been successfully synthesized via a simple impregnation–reduction method, followed by high temperature treatment under a H2 atmosphere. Electrochemical tests reveal that the half-wave potential of Pd3V/C-500 shifts positively 40 mV compared with Pd/C. However, the catalytic activity of Pd3V/C-500 suffers from serious degradation after 1k cycles. By a spontaneous displacement reaction or co-reduction method, a trace amount of Pt was decorated on the surface or inside of the Pd3V/C nanoparticles. The catalytic activity and stability of the Pd3V@Pt/C and Pt-Pd3V/C catalysts for the oxygen reduction reaction (ORR) are enhanced significantly, and are comparable to commercial Pt/C. In addition, the Pt mass activity of Pd3V@Pt/C and Pt-Pd3V/C improves by factors of 10.9 and 6.5 at 0.80 V relative to Pt/C. Moreover, Pt-decorated Pd3V/C nanoparticles show almost no obvious morphology change after durability tests, because the Pt-rich shell plays an important role in preventing degradation.

  12. EFFECT OF IMPURITIES ON THE PERFORMANCE OF A Pd-Ag DIFFUSER

    SciTech Connect (OSTI)

    Morgan, G.

    2010-12-16

    A commercially fabricated diffuser purchased from Johnson-Matthey, Inc. was evaluated for performance characterization testing at the Savannah River National Laboratory (SRNL). Different impurities are often present in the feed streams of the process diffusers, but the effect of these impurities on the diffuser performance is currently unknown. Various impurities were introduced into the feed stream of the diffuser at various levels ranging from 0.5% to 10% of the total flow in order to determine the effect that these impurities have on the permeation of hydrogen through the palladium-silver membrane. The introduction of various impurities into the feed stream of the diffuser had a minimal effect on the overall permeation of hydrogen through the Pd-Ag membrane. Of the four impurities introduced into the feed stream, carbon monoxide (CO) was the only impurity that showed any evidence of causing a reduction in the amount of hydrogen permeating through the Pd-Ag membrane. The hydrogen permeation returned to its baseline level after the CO was removed from the feed stream. There were no lasting effects of the CO exposure on the ability of the membrane to effectively separate hydrogen from the non-hydrogen species in the gas stream under the conditions tested.

  13. Crystal structure of Tb5Ni2In4, and magnetic properties of Dy5Ni2In4...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Crystal structure of Tb5Ni2In4, and ... DOE Contract Number: DE-AC02-07CH11358 Resource Type: Journal Article Resource Relation: ...

  14. Anomalous magnetic behavior in nanocomposite materials of reduced graphene oxide-Ni/NiFe{sub 2}O{sub 4}

    SciTech Connect (OSTI)

    Kollu, Pratap E-mail: anirmalagrace@vit.ac.in; Prathapani, Sateesh; Varaprasadarao, Eswara K.; Mallick, Sudhanshu; Bahadur, D. E-mail: anirmalagrace@vit.ac.in; Santosh, Chella; Grace, Andrews Nirmala E-mail: anirmalagrace@vit.ac.in

    2014-08-04

    Magnetic Reduced Graphene Oxide-Nickel/NiFe{sub 2}O{sub 4} (RGO-Ni/NF) nanocomposite has been synthesized by one pot solvothermal method. Respective phase formations and their purities in the composite are confirmed by High Resolution Transmission Electron Microscope and X Ray Diffraction, respectively. For the RGO-Ni/NF composite material finite-size effects lead to the anomalous magnetic behavior, which is corroborated in temperature and field dependent magnetization curves. Here, we are reporting the behavior of higher magnetization values for Zero Field Cooled condition to that of Field Cooled for the RGO-Ni/NF nanocomposite. Also, the observed negative and positive moments in Hysteresis loops at relatively smaller applied fields (100?Oe and 200?Oe) are explained on the basis of surface spin disorder.

  15. Corrosion behavior of Ni and Ni-based alloys in concentrated NaOH solutions at high temperatures

    SciTech Connect (OSTI)

    Yasuda, M.; Fukumoto, K.; Ogata, Y.; Hine, F.

    1988-12-01

    Corrosion behavior of SUS 310S austenitic stainless steel, Alloy 600, Monel 400, and Ni 200 and NaOH solutions in the concentration range 30-60% at high temperatures up to 166/sup 0/C was studied. In solutions containing dissolved oxygen or under oxidizing conditions, all the specimens examined were corroded seriously due to oxygen diffusion through the porous oxide layer consisting of ..beta..-Ni(OH)/sub 2/. In hydrogen-saturated solutions, on the other hand, these Ni alloys were corrosion resistant because nickel in the alloys was active to oxidation of hydrogen. The specimens were corroded by deaerated solution at high temperatures in which hydrogen evolution took place as the counterreaction. The corrosion rate controlled by the hydrogen formation reaction increased exponentially with the decrease of the Ni content in the alloy.

  16. The catalytic behavior of precisely synthesized Pt–Pd bimetallic catalysts for use as diesel oxidation catalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wong, Andrew P.; Kyriakidou, Eleni A.; Toops, Todd J.; Regalbuto, John R.

    2016-04-17

    The demands of stricter diesel engine emission regulations have created challenges for current exhaust systems. With advances in low-temperature internal combustion engines and their operations, advances must also be made in vehicle exhaust catalysts. Most current diesel oxidation catalysts use heavy amounts of precious group metals (PGMs) for hydrocarbon (HC), CO, and NO oxidation. These catalysts are expensive and are most often synthesized with poor bimetallic interaction and dispersion. In this paper, the goal was to study the effect of aging on diesel emission abatement of Pt–Pd bimetallic nanoparticles precisely prepared with different morphologies: well dispersed core–shell vs. well dispersedmore » homogeneously alloyed vs. poorly dispersed, poorly alloyed particles. Alumina and silica supports were studied. Particle morphology and dispersion were analyzed before and after hydrothermal treatments by XRD, EDX, and STEM. Reactivity as a function of aging was measured in simulated diesel engine exhaust. While carefully controlled bimetallic catalyst nanoparticle structure has a profound influence on initial or low temperature catalytic activity, the differences in behavior disappear with higher temperature aging as thermodynamic equilibrium is achieved. The metallic character of Pt-rich alumina-supported catalysts is such that behavior rather closely follows the Pt–Pd metal phase diagram. Nanoparticles disparately composed as well-dispersed core–shell (via seq-SEA), well-dispersed homogeneously alloyed (via co-SEA), and poorly dispersed, poorly alloyed (via co-DI) end up as well alloyed, large particles of almost the same size and activity. With Pd-rich systems, the oxidation of Pd also figures into the equilibrium, such that Pd-rich oxide phases appear in the high temperature forms along with alloyed metal cores. Finally, the small differences in activity after high temperature aging can be attributed to the synthesis methods, sequential SEA and co

  17. Monitoring of arsenic, boron and mercury by lichen and soil analysis in the Mt. Amiata geothermal area (central Italy)

    SciTech Connect (OSTI)

    Loppi, S.

    1997-12-31

    Epiphytic lichens and top-soils from the Mt. Amiata geothermal field (central Italy) were analyzed for their As, B and Hg content. Three areas were selected: (1) Abbadia S. Salvatore, where a large Hg mine with smelting and roasting plant was located; (2) Piancastagnaio, where there are geothermal power plants; (3) a remote site far from mines and geothermal power plants. The results showed that the geothermal power plants do not represent a macroscopic source of arsenic and boron contamination in the area. As far as mercury is concerned, at the Hg mining area of Abbadia S. Salvatore concentrations were extremely high both in soil and epiphytic lichens, and the anomalous content in these organisms was due to the uptake of elemental mercury originating from soil degassing. At the geothermal area of Piancastagnaio, soil mercury was not different from that in the control area, but Hg in lichens was almost twice the control levels, suggesting that the gaseous emissions from the geothermal power plants are an important source of air contamination.

  18. Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Chenyang; Jin, Ke; Béland, Laurent K.; Zhang, Feifei; Yang, Taini; Qiao, Liang; Zhang, Yanwen; Bei, Hongbin; Christen, Hans M.; Stoller, Roger E.; et al

    2016-02-01

    We report that energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation. Both cross-sectional transmission electron microscopy characterization (TEM) and Rutherford backscattering spectrometry channeling (RBS-C) spectra show that the range of radiation-induced defect clusters farmore » exceed the theoretically predicted depth in all materials after high-dose irradiation. Defects in nickel migrate faster than in NiCo and NiFe. Both vacancy-type stacking fault tetrahedra (SFT) and interstitial loops coexist in the same region, which is consistent with molecular dynamics simulations. Kinetic activation relaxation technique (k-ART) simulations for nickel showed that small vacancy clusters, such as di-vacancies and tri-vacancies, created by collision cascades are highly mobile, even at room temperature. The slower migration of defects in the alloy along with more localized energy dissipation of the displacement cascade may lead to enhanced radiation tolerance.« less

  19. Conversion of CH4 into H2 at 300 C using Pd/MnO2 catalyst made with an effect of water oxidation

    SciTech Connect (OSTI)

    Koyanaka, Hideki; Takeuchi, K; Kolesnikov, Alexander I

    2014-01-01

    A novel electricity-free deposition of palladium on the surface of manganese dioxide, which has a crystal structure of ramsdellite, was studied. Using the Pd deposition, a nano-particle of Pd/MnO2 was prepared, and it was used for a catalytic performance for reforming methane into hydrogen at 300 C.

  20. Enhanced room temperature ferromagnetism in antiferromagnetic NiO nanoparticles

    SciTech Connect (OSTI)

    Ravikumar, Patta; Kisan, Bhagaban; Perumal, A.

    2015-08-15

    We report systematic investigations of structural, vibrational, resonance and magnetic properties of nanoscale NiO powders prepared by ball milling process under different milling speeds for 30 hours of milling. Structural properties revealed that both pure NiO and as-milled NiO powders exhibit face centered cubic structure, but average crystallite size decreases to around 11 nm along with significant increase in strain with increasing milling speed. Vibrational properties show the enhancement in the intensity of one-phonon longitudinal optical (LO) band and disappearance of two-magnon band due to size reduction. In addition, two-phonon LO band exhibits red shift due to size-induced phonon confinement effect and surface relaxation. Pure NiO powder exhibit antiferromagnetic nature, which transforms into induced ferromagnetic after size reduction. The average magnetization at room temperature increases with decreasing the crystallite size and a maximum moment of 0.016 μ{sub B}/f.u. at 12 kOe applied field and coercivity of 170 Oe were obtained for 30 hours milled NiO powders at 600 rotation per minute milling speed. The change in the magnetic properties is also supported by the vibrational properties. Thermomagnetization measurements at high temperature reveal a well-defined magnetic phase transition at high temperature (T{sub C}) around 780 K due to induced ferromagnetic phase. Electron paramagnetic resonance (EPR) studies reveal a good agreement between the EPR results and magnetic properties. The observed results are described on the basis of crystallite size variation, defect density, large strain, oxidation/reduction of Ni and interaction between uncompensated surfaces and particle core with lattice expansion. The obtained results suggest that nanoscale NiO powders with high T{sub C} and moderate magnetic moment at room temperature with cubic structure would be useful to expedite for spintronic devices.

  1. Probing the Mechanism of the Mycobacterium tuberculosis [beta]-Ketoacyl-Acyl Carrier Protein Synthase III mtFabH: Factors Influencing Catalysis and Substrate Specificity

    SciTech Connect (OSTI)

    Brown, Alistair K.; Sridharan, Sudharsan; Kremer, Laurent; Lindenberg, Sandra; Dover, Lynn G.; Sacchettini, James C.; Besra, Gurdyal S.

    2010-11-30

    Mycolic acids are the dominant feature of the Mycobacterium tuberculosis cell wall. These {alpha}-alkyl, {beta}-hydroxy fatty acids are formed by the condensation of two fatty acids, a long meromycolic acid and a shorter C{sub 24}-C{sub 26} fatty acid. The component fatty acids are produced via a combination of type I and II fatty acid synthases (FAS) with FAS-I products being elongated by FAS-II toward meromycolic acids. The {beta}-ketoacyl-acyl carrier protein (ACP) synthase III encoded by mtfabH (mtFabH) links FAS-I and FAS-II, catalyzing the condensation of FAS-I-derived acyl-CoAs with malonyl-acyl carrier protein (ACP). The acyl-CoA chain length specificity of mtFabH was assessed in vitro; the enzyme extended longer, physiologically relevant acyl-CoA primers when paired with AcpM, its natural partner, than with Escherichia coli ACP. The ability of the enzyme to use E. coli ACP suggests that a similar mode of binding is likely with both ACPs, yet it is clear that unique factors inherent to AcpM modulate the substrate specificity of mtFabH. Mutation of proposed key mtFabH residues was used to define their catalytic roles. Substitution of supposed acyl-CoA binding residues reduced transacylation, with double substitutions totally abrogating activity. Mutation of Arg{sup 46} revealed its more critical role in malonyl-AcpM decarboxylation than in the acyl-CoA binding role. Interestingly, this effect was suppressed intragenically by Arg{sup 161} {yields} Ala substitution. Our structural studies suggested that His{sup 258}, previously implicated in malonyl-ACP decarboxylation, also acts as an anchor point for a network of water molecules that we propose promotes deprotonation and transacylation of Cys{sup 122}.

  2. Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Splitting | Stanford Synchrotron Radiation Lightsource Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting Thursday, April 30, 2015 Operando XAS showing structural changes at Fe dopants in Ni(OH)2/NiOOH host structure. Ni(OH)2 is oxidized into γ-NiOOH under OER operating conditions, inducing significant M-O bond contraction at both Ni and Fe sites. Theoretical modeling of site specific OER overpotentials using DFT+U reveals the origin of

  3. Modified Ni-Cu catalysts for ethanol steam reforming

    SciTech Connect (OSTI)

    Dan, M.; Mihet, M.; Almasan, V.; Borodi, G.; Katona, G.; Muresan, L.; Lazar, M. D.

    2013-11-13

    Three Ni-Cu catalysts, having different Cu content, supported on γ-alumina were synthesized by wet co-impregnation method, characterized and tested in the ethanol steam reforming (ESR) reaction. The catalysts were characterized for determination of: total surface area and porosity (N{sub 2} adsorption - desorption using BET and Dollimer Heal methods), Ni surface area (hydrogen chemisorption), crystallinity and Ni crystallites size (X-Ray Diffraction), type of catalytic active centers (Hydrogen Temperature Programmed Reduction). Total surface area and Ni crystallites size are not significantly influenced by the addition of Cu, while Ni surface area is drastically diminished by increasing of Cu concentration. Steam reforming experiments were performed at atmospheric pressure, temperature range 150-350°C, and ethanol - water molar ration of 1 at 30, using Ar as carrier gas. Ethanol conversion and hydrogen production increase by the addition of Cu. At 350°C there is a direct connection between hydrogen production and Cu concentration. Catalysts deactivation in 24h time on stream was studied by Transmission Electron Microscopy (TEM) and temperature-programmed reduction (TPR) on used catalysts. Coke deposition was observed at all studied temperatures; at 150°C amorphous carbon was evidenced, while at 350°C crystalline, filamentous carbon is formed.

  4. An Update on NiCE Support for BISON

    SciTech Connect (OSTI)

    McCaskey, Alex; Billings, Jay Jay; Deyton, Jordan H.; Wojtowicz, Anna

    2015-09-01

    The Nuclear Energy Advanced Modeling and Simulation program (NEAMS) from the Department of Energy s Office of Nuclear Energy has funded the development of a modeling and simulation workflow environment to support the various codes in its nuclear energy scientific computing toolkit. This NEAMS Integrated Computational Environment (NiCE) provides extensible tools and services that enable efficient code execution, input generation, pre-processing visualizations, and post-simulation data analysis and visualization for a large portion of the NEAMS Toolkit. A strong focus for the NiCE development team throughout FY 2015 has been support for the Multiphysics Object Oriented Simulation Environment (MOOSE) and the NEAMS nuclear fuel performance modeling application built on that environment, BISON. There is a strong desire in the program to enable and facilitate the use of BISON throughout nuclear energy research and industry. A primary result of this desire is the need for strong support for BISON in NiCE. This report will detail improvements to NiCE support for BISON. We will present a new and improved interface for interacting with BISON simulations in a variety of ways: (1) improved input model generation, (2) embedded mesh and solution data visualizations, and (3) local and remote BISON simulation launch. We will also show how NiCE has been extended to provide support for BISON code development.

  5. Probing the nuclides {sup 102}Pd, {sup 106}Cd, and {sup 144}Sm for resonant neutrinoless double-electron capture

    SciTech Connect (OSTI)

    Goncharov, M.; Blaum, K.; Eliseev, S.; Block, M.; Herfurth, F.; Minaya Ramirez, E.; Droese, C.; Schweikhard, L.; Novikov, Yu. N.; Zuber, K.

    2011-08-15

    The Q values for double-electron capture in {sup 102}Pd, {sup 106}Cd, and {sup 144}Sm have been measured by Penning-trap mass spectrometry. The results exclude at present all three nuclides from the list of suitable candidates for a search for resonant neutrinoless double-electron capture.

  6. Activity and Evolution of Vapor Deposited Pt-Pd Oxygen Reduction Catalysts for Solid Acid Fuel Cells

    SciTech Connect (OSTI)

    Papandrew, Alexander B; Chisholm, Calum R; Zecevic, strahinja; Veith, Gabriel M; Zawodzinski, Thomas A

    2013-01-01

    The performance of hydrogen fuel cells based on the crystalline solid proton conductor CsH2PO4 is circumscribed by the mass activity of platinum oxygen reduction catalysts in the cathode. Here we report on the first application of an alloy catalyst in a solid acid fuel cell, and demonstrate an activity 4.5 times greater than Pt at 0.8 V. These activity enhancements were obtained with platinum-palladium alloys that were vapor-deposited directly on CsH2PO4 at 210 C. Catalyst mass activity peaks at a composition of 84 at% Pd, though smaller activity enhancements are observed for catalyst compositions exceeding 50 at% Pd. Prior to fuel cell testing, Pd-rich catalysts display lattice parameter expansions of up to 2% due to the presence of interstitial carbon. After fuel cell testing, a Pt-Pd solid solution absent of lattice dilatation and depleted in carbon is recovered. The structural evolution of the catalysts is correlated with catalyst de-activation.

  7. Monte Carlo calculations and experimental measurements of dosimetric parameters of the IRA-{sup 103}Pd brachytherapy source

    SciTech Connect (OSTI)

    Sadeghi, Mahdi; Raisali, Gholamreza; Hosseini, S. Hamed; Shavar, Arzhang

    2008-04-15

    This article presents a brachytherapy source having {sup 103}Pd adsorbed onto a cylindrical silver rod that has been developed by the Agricultural, Medical, and Industrial Research School for permanent implant applications. Dosimetric characteristics (radial dose function, anisotropy function, and anisotropy factor) of this source were experimentally and theoretically determined in terms of the updated AAPM Task group 43 (TG-43U1) recommendations. Monte Carlo simulations were used to calculate the dose rate constant. Measurements were performed using TLD-GR200A circular chip dosimeters using standard methods employing thermoluminescent dosimeters in a Perspex phantom. Precision machined bores in the phantom located the dosimeters and the source in a reproducible fixed geometry, providing for transverse-axis and angular dose profiles over a range of distances from 0.5 to 5 cm. The Monte Carlo N-particle (MCNP) code, version 4C simulation techniques have been used to evaluate the dose-rate distributions around this model {sup 103}Pd source in water and Perspex phantoms. The Monte Carlo calculated dose rate constant of the IRA-{sup 103}Pd source in water was found to be 0.678 cGy h{sup -1} U{sup -1} with an approximate uncertainty of {+-}0.1%. The anisotropy function, F(r,{theta}), and the radial dose function, g(r), of the IRA-{sup 103}Pd source were also measured in a Perspex phantom and calculated in both Perspex and liquid water phantoms.

  8. Determination of redox reaction rates and orders by in situ liquid cell electron microscopy of Pd and Au solution growth

    SciTech Connect (OSTI)

    Sutter, Eli A.; Sutter, Peter W.

    2014-11-19

    In-situ liquid cell transmission and scanning transmission electron microscopy (TEM/STEM) experiments are important as they provide direct insight into processes in liquids, such as solution growth of nanoparticles among others. In liquid cell TEM/STEM redox reaction experiments the hydrated electrons e?aq created by the electron beam are responsible for the reduction of metal-ion complexes. Here we investigate the rate equation of redox reactions involving reduction by e?aq generated by the electron beam during in-situ liquid TEM/STEM. Specifically we consider the growth of Pd on Au seeds in aqueous solutions containing Pd-chloro complexes. From the quantification of the rate of Pd deposition at different electron beam currents and as a function of distance from a stationary, nanometer-sized exciting beam, we determine that the reaction is first order with respect to the concentration of hydrated electrons, [e?aq]. In addition, by comparing Pd- and Au-deposition, we further demonstrate that measurements of the local deposition rate on nanoparticles in the solution via real-time imaging can be used to measure not only [e?aq] but also the rate of reduction of a metal-ion complex to zero-valent metal atoms in solution.

  9. Contribution of individual interfaces in the MgO/Co/Pd trilayer to perpendicular magnetic anisotropy upon annealing

    SciTech Connect (OSTI)

    Kim, Minseok; Kim, Sanghoon; Ko, Jungho; Hong, Jongill

    2015-03-09

    The contribution of each interface of the MgO/Co/Pd trilayer to the perpendicular magnetic anisotropy (PMA) was studied by changing chemical and crystalline structures through annealing. We found that volumetric anisotropy in the MgO/Co/Pd trilayer was significantly increased due to enhanced magnetoelastic anisotropy caused by stress built up most likely at the MgO/Co interface during annealing. When the trilayer was annealed at 400 °C, the alloy formation at the Co/Pd interface additionally increased the volumetric anisotropy. Our x-ray magnetic circular dichroism study supported that those structural modifications led to an increase in the orbital moment through spin-orbit coupling (SOC) along the film normal two times larger than that of the as-deposited trilayer, thereby enhancing PMA greatly. Our experimental results prove that the Co/Pd interface, rather than the MgO/Co interface, plays an essential role in inducing strong PMA in the trilayer. The precise investigation of annealing effect on both volumetric and interfacial anisotropies can provide a methodological solution to improve the SOC of the trilayer that can serve as the core unit of spintronic devices.

  10. Superior performance of Ni-W-Ce mixed-metal oxide catalysts for ethanol steam reforming: Synergistic effects of W- and Ni-dopants

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rodriguez, Jose A.; Liu, Zongyuan; Xu, Wenqian; Yao, Siyu; Johnson-Peck, Aaron C.; Zhao, Fuzhen; Michorczyk, Piotr; Kubacka, Anna; Stach, Eric A.; Fernandez-Garica, Marcos; et al

    2014-11-26

    The ethanol steam reforming (ESR) reaction was studied over a series of Ni-W-Ce oxide catalysts. The structures of the catalysts were characterized using in-situ techniques including X-ray diffraction, Pair Distribution Function, X-ray absorption fine structure and transmission electron microscopy; while possible surface intermediates for the ESR reaction were investigated by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. In these materials, all the W and part of the Ni were incorporated into the CeO? lattice, with the remaining Ni forming highly dispersed nano NiO (moreThe Ni-W-Ce systeme exhibited a much larger lattice strain than those seen for Ni-Ce and W-Ce. Synergistic effects between Ni and W inside ceria produced a substantial amount of defects and O vacancies that led to high catalytic activity, selectivity and stability (i.e. resistance to coke formation) during ethanol steam reforming.less

  11. Surface Segregation in a PdCu Alloy Hydrogen Separation Membrane

    SciTech Connect (OSTI)

    Miller, J.B.; Matranga, C.S.; Gellman, A.J.

    2007-06-01

    Separation of hydrogen from mixed gas streams is an important step for hydrogen generation technologies, including hydrocarbon reforming and coal/biomass gasification. Dense palladium-based membranes have received significant attention for this application because of palladiums ability to dissociatively adsorb molecular hydrogen at its surface for subsequent transport of hydrogen atoms through its bulk. Alloying palladium with minor components, like copper, has been shown to improve both the membranes structural characteristics and resistance to poisoning of its catalytic surface [1]. Surface segregationa composition difference between the bulk material and its surfaceis common in alloys and can affect important surface processes. Rational design of alloy membranes requires that surface segregation be understood, and possibly controlled. In this work, we examine surface segregation in a polycrystalline Pd70Cu30 hydrogen separation membrane as a function of thermal treatment and adsorption of hydrogen sulfide.

  12. Controlled Growth of Metal Phthalocyanine on Deactivated Si Surfaces by Selective p-d Orbital Coupling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wagner, Sean R.; Huang, Bing; Park, Changwon; Feng, Jiagui; Yoon, Mina; Zhang, Pengpeng

    2015-08-26

    Poor control of the interactions that govern organic molecular growth continues to hinder the prospect of organic electronic nano- architectures. Particularly, a selective mechanism for tuning the molecule-substrate interaction has been a long sought after goal towards tailored molecular growth. Here, combining scanning tun- neling microscopy and density functional theory we show that by controlling the strength of orbital hybridization between phthalo- cyanine molecules and the deactivated Si surface via the selective p-d orbital coupling, we can tune the molecular ordering and molecular orientation at the hetero-interface. This mechanism offers a novel approach to balance the critical interactions, leading tomorecontrolled long-ranged ordered molecular growth that can be incorporated into modern electronics.less

  13. Tunable magnetization dynamics in disordered FePdPt ternary alloys: Effects of spin orbit coupling

    SciTech Connect (OSTI)

    Ma, L.; Fan, W. J. Chen, F. L.; Zhou, S. M.; Li, S. F.; Lai, T. S.; He, P.; Xu, X. G.; Jiang, Y.

    2014-09-21

    The magnetization dynamics of disordered Fe₀.₅(Pd{sub 1–x}Pt{sub x})₀.₅ alloy films was studied by time-resolved magneto-optical Kerr effect and ferromagnetic resonance. The intrinsic Gilbert damping parameter α₀ and the resonance linewidth change linearly with the Pt atomic concentration. In particular, the induced in-plane uniaxial anisotropy constant K{sub U} also increases for x increasing from 0 to 1. All these results can be attributed to the tuning effect of the spin orbit coupling. For the disordered ternary alloys, an approach is proposed to control the induced in-plane uniaxial anisotropy, different from conventional thermal treat methods, which is helpful to design and fabrications of spintronic devices.

  14. Air-kerma strength determination of a new directional {sup 103}Pd source

    SciTech Connect (OSTI)

    Aima, Manik Reed, Joshua L.; DeWerd, Larry A.; Culberson, Wesley S.

    2015-12-15

    Purpose: A new directional {sup 103}Pd planar source array called a CivaSheet™ has been developed by CivaTech Oncology, Inc., for potential use in low-dose-rate (LDR) brachytherapy treatments. The array consists of multiple individual polymer capsules called CivaDots, containing {sup 103}Pd and a gold shield that attenuates the radiation on one side, thus defining a hot and cold side. This novel source requires new methods to establish a source strength metric. The presence of gold material in such close proximity to the active {sup 103}Pd region causes the source spectrum to be significantly different than the energy spectra of seeds normally used in LDR brachytherapy treatments. In this investigation, the authors perform air-kerma strength (S{sub K}) measurements, develop new correction factors for these measurements based on an experimentally verified energy spectrum, and test the robustness of transferring S{sub K} to a well-type ionization chamber. Methods: S{sub K} measurements were performed with the variable-aperture free-air chamber (VAFAC) at the University of Wisconsin Medical Radiation Research Center. Subsequent measurements were then performed in a well-type ionization chamber. To realize the quantity S{sub K} from a directional source with gold material present, new methods and correction factors were considered. Updated correction factors were calculated using the MCNP 6 Monte Carlo code in order to determine S{sub K} with the presence of gold fluorescent energy lines. In addition to S{sub K} measurements, a low-energy high-purity germanium (HPGe) detector was used to experimentally verify the calculated spectrum, a sodium iodide (NaI) scintillating counter was used to verify the azimuthal and polar anisotropy, and a well-type ionization chamber was used to test the feasibility of disseminating S{sub K} values for a directional source within a cylindrically symmetric measurement volume. Results: The UW VAFAC was successfully used to measure the S

  15. Ag-Pd-Cu alloy inserted transparent indium tin oxide electrodes for organic solar cells

    SciTech Connect (OSTI)

    Kim, Hyo-Joong; Seo, Ki-Won; Kim, Han-Ki; Noh, Yong-Jin; Na, Seok-In

    2014-09-01

    The authors report on the characteristics of Ag-Pd-Cu (APC) alloy-inserted indium tin oxide (ITO) films sputtered on a glass substrate at room temperature for application as transparent anodes in organic solar cells (OSCs). The effect of the APC interlayer thickness on the electrical, optical, structural, and morphological properties of the ITO/APC/ITO multilayer were investigated and compared to those of ITO/Ag/ITO multilayer electrodes. At the optimized APC thickness of 8 nm, the ITO/APC/ITO multilayer exhibited a resistivity of 8.55 × 10{sup −5} Ω cm, an optical transmittance of 82.63%, and a figure-of-merit value of 13.54 × 10{sup −3} Ω{sup −1}, comparable to those of the ITO/Ag/ITO multilayer. Unlike the ITO/Ag/ITO multilayer, agglomeration of the metal interlayer was effectively relieved with APC interlayer due to existence of Pd and Cu elements in the thin region of the APC interlayer. The OSCs fabricated on the ITO/APC/ITO multilayer showed higher power conversion efficiency than that of OSCs prepared on the ITO/Ag/ITO multilayer below 10 nm due to the flatness of the APC layer. The improved performance of the OSCs with ITO/APC/ITO multilayer electrodes indicates that the APC alloy interlayer prevents the agglomeration of the Ag-based metal interlayer and can decrease the thickness of the metal interlayer in the oxide-metal-oxide multilayer of high-performance OSCs.

  16. Structure, thermodynamic, and magnetic properties of Ln[sub 4]PdO[sub 7] with Ln = La, Nd, Sm, Eu, and Gd

    SciTech Connect (OSTI)

    Andersson, M.; Grins, J.; Nygren, M. (Stockholm Univ. (Sweden))

    1999-09-01

    The structure of Nd[sub 4]PdO[sub 7] has been determined and refined using the Rietveld method and combined CuK[alpha][sub 1] X-ray and neutron powder data in space group P[bar 1] with unit cell a = 15.972(2), b = 7.1927(7), c = 6.9160(6) [angstrom], [alpha] = 96.299(4), [beta] = 131.643(3), [gamma] = 121.438(3)[degree], V = 353.83(6) [angstrom][sup 3] and Z = 2, to R[sub F] = 2.0% (neutron data) and R[sub F] = 6.2% (X-ray data). The structure is closely related to the monoclinic La[sub 4]PdO[sub 7] structure and exhibits Nd atoms coordinated by seven O atoms and Pd atoms coordinated by a square of O atoms. Isolated chains of trans-corner-sharing PdO[sub 4] squares are straight in the La[sub 4]PdO[sub 7] structure and staggered in the Nd[sub 4]PdO[sub 7] structure. Electron and X-ray powder diffraction data show that Ln[sub 4]PdO[sub 7] with Ln = Sm, Eu, and Gd is isostructural with Nd[sub 4]PdO[sub 7]. The enthalpies of dissolution of Ln[sub 4]PdO[sub 7] (Ln = La, Nd) in 1.000 M HCl have been measured with an in-house built calorimeter, and from these values the enthalpies of formation for the compounds have been calculated. The decomposition temperatures of Ln[sub 4]PdO[sub 7] with Ln = La and Nd in oxygen have been determined by thermogravimetric measurements and found to decrease from 1645 [+-] 10 K for La[sub 4]PdO[sub 7] to 1540 [+-] 10 K for Nd[sub 4]PdO[sub 7]. Using these data, an Ellingham diagram has been constructed assuming temperature-independent [Delta]H[sub f][degree] and [Delta]S[sub f][degree]. The magnetic susceptibilities of Ln[sub 4]PdO[sub 7] with Ln = La, Nd, Sm, Eu, Gd, recorded in the temperature range 10--320 K, were found to be in agreement with the expected ones for noninteracting Ln[sup 3+] ions.

  17. Mitigation of Sulfur Poisoning of Ni/Zirconia SOFC Anodes by Antimony and Tin

    SciTech Connect (OSTI)

    Marina, Olga A.; Coyle, Christopher A.; Engelhard, Mark H.; Pederson, Larry R.

    2011-02-28

    Surface Ni/Sb and Ni/Sb alloys were found to efficiently minimize the negative effects of sulfur on the performance of Ni/zirconia anode-supported solid oxide fuel cells (SOFC). Prior to operating on fuel gas containing low concentrations of H2S, the nickel/zirconia anodes were briefly exposed to antimony or tin vapor, which only slightly affected the SOFC performance. During the subsequent exposures to 1 and 5 ppm H2S, increases in anodic polarization losses were minimal compared to those observed for the standard nickel/zirconia anodes. Post-test XPS analyses showed that Sb and Sn tended to segregate to the surface of Ni particles, and further confirmed a significant reduction of adsorbed sulfur on the Ni surface in Ni/Sn and Ni/Sb samples compared to the Ni. The effect may be the result of weaker sulfur adsorption on bimetallic surfaces, adsorption site competition between sulfur and Sb or Sn on Ni, or other factors. The use of dilute binary alloys of Ni-Sb or Ni-Sn in the place of Ni, or brief exposure to Sb or Sn vapor, may be effective means to counteract the effects of sulfur poisoning in SOFC anodes and Ni catalysts. Other advantages, including suppression of coking or tailoring the anode composition for the internal reforming, are also expected.

  18. Weldability of an Ni/sub 3/Al alloy

    SciTech Connect (OSTI)

    Santella, M.L.; David, S.A.; Horton, J.A.

    1986-01-01

    Since joining by conventional welding processes is an important means of fabricating structural components, weldability has become a key issue in the development of these new Ni/sub 3/Al alloys. Results of an initial evaluation of the weldability of Ni/sub 3/Al containing 0.1 at. % B and 0.5 at. % Hf are reported. Plates were prepared by conventional methods and used to make full penetration electron beam and gas tungsten arc welds. Initial results indicate that hafnium improves the weldability of Ni/sub 3/Al alloys although they are still susceptible to cracking. Examination of microstructures indicated that a distinct microsegregation pattern developed in the welds and affected the ordering behavior of fusion zones. Room temperature tensile testing suggested that welds can have strength and ductility values comparable to base materials, and that postweld heat treatment can improve tensile properties.

  19. Bimetallic Fe-Ni Oxygen Carriers for Chemical Looping Combustion

    SciTech Connect (OSTI)

    Bhavsar, Saurabh; Veser, Goetz

    2013-11-06

    The relative abundance, low cost, and low toxicity of iron make Fe-based oxygen carriers of great interest for chemical looping combustion (CLC), an emerging technology for clean and efficient combustion of fossil and renewable fuels. However, Fe also shows much lower reactivity than other metals (such as Ni and Cu). Here, we demonstrate strong improvement of Fe-based carriers by alloying the metal phase with Ni. Through a combination of carrier synthesis and characterization with thermogravimetric and fixed-bed reactor studies, we demonstrate that the addition of Ni results in a significant enhancement in activity as well as an increase in selectivity for total oxidation. Furthermore, comparing alumina and ceria as support materials highlights the fact that reducible supports can result in a strong increase in oxygen carrier utilization.

  20. Atomic and electronic structure of Ni-Nb metallic glasses

    SciTech Connect (OSTI)

    Yuan, C. C.; Yang, Y.-F. Xi, X. K.

    2013-12-07

    Solid state {sup 93}Nb nuclear magnetic resonance spectroscopy has been employed to investigate the atomic and electronic structures in Ni-Nb based metallic glass (MG) model system. {sup 93}Nb nuclear magnetic resonance (NMR) isotropic metallic shift of Ni{sub 60}Nb{sub 35}Sn{sub 5} has been found to be ∼100 ppm lower than that of Ni{sub 60}Nb{sub 35}Zr{sub 5} MG, which is correlated with their intrinsic fracture toughness. The evolution of {sup 93}Nb NMR isotropic metallic shifts upon alloying is clearly an electronic origin, as revealed by both local hyperfine fields analysis and first-principle computations. This preliminary result indicates that, in addition to geometrical considerations, atomic form factors should be taken into a description of atomic structures for better understanding the mechanical behaviors of MGs.

  1. Healing of graphene on single crystalline Ni(111) films

    SciTech Connect (OSTI)

    Zeller, Patrick; Wintterlin, Joost; Speck, Florian; Ostler, Markus; Weinl, Michael; Schreck, Matthias; Seyller, Thomas

    2014-11-10

    The annealing of graphene layers grown on 150?nm thick single crystal Ni(111) films was investigated in situ by low energy electron microscopy and photoemission electron microscopy. After growth, by means of chemical vapor deposition of ethylene, the graphene layers consist of several domains showing different orientations with respect to the underlying Ni surface and also of small bilayer areas. It is shown that, in a controlled process, the rotated domains can be transformed into lattice-aligned graphene, and the bilayer areas can be selectively dissolved, so that exclusively the aligned monolayer graphene is obtained. The ordering mechanism involves transport of C atoms across the surface and solution in the bulk.

  2. Local Metal and Deuterium Ordering in the Deuterated ZrTiNi C14...

    Office of Scientific and Technical Information (OSTI)

    Local Metal and Deuterium Ordering in the Deuterated ZrTiNi C14 Laves Phase Citation Details In-Document Search Title: Local Metal and Deuterium Ordering in the Deuterated ZrTiNi ...

  3. Latent instabilities in metallic LaNiO₃ films by strain control...

    Office of Scientific and Technical Information (OSTI)

    LaNiO films by strain control of Fermi-surface topology Prev Next Title: Latent instabilities in metallic LaNiO films by strain control of Fermi-surface topology ...

  4. Latent instabilities in metallic LaNiO₃ films by strain control...

    Office of Scientific and Technical Information (OSTI)

    Latent instabilities in metallic LaNiO films by strain control of Fermi-surface topology Prev Next Title: Latent instabilities in metallic LaNiO films by strain control ...

  5. Deformation behavior of Nb nanowires in TiNiCu shape memory alloy...

    Office of Scientific and Technical Information (OSTI)

    in TiNiCu shape memory alloy matrix This content will become publicly available on August 18, 2016 Title: Deformation behavior of Nb nanowires in TiNiCu shape memory alloy matrix ...

  6. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized...

    Office of Scientific and Technical Information (OSTI)

    Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition Title: Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter ...

  7. Fusion reactions of Ni 58 , 64 + Sn 124 (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Fusion reactions of Ni 58 , 64 + Sn 124 Citation Details In-Document Search Title: Fusion reactions of Ni 58 , 64 + Sn 124 Authors: Jiang, C. L. ; Stefanini, A. M. ; Esbensen, H. ; ...

  8. Coexistence of charge-density wave and ferromagnetism in Ni2MnGa...

    Office of Scientific and Technical Information (OSTI)

    Coexistence of charge-density wave and ferromagnetism in Ni2MnGa Citation Details In-Document Search Title: Coexistence of charge-density wave and ferromagnetism in Ni2MnGa ...

  9. Electronic structure of the heavy-fermion caged compound Ce?Pd??X? (X = Si, Ge) studied by density functional theory and photoelectron spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yamaoka, Hitoshi; Jarrige, Ignace; Schwier, Eike F.; Arita, Masashi; Shimada, Kenya; Tsujii, Naohito; Jiang, Jian; Hayashi, Hirokazu; Iwasawa, Hideaki; Namatame, Hirofumi; et al

    2015-03-30

    The electronic structure of Ce?Pd??X? (X = Si, Ge) has been studied using detailed density functional theory (DFT) calculations and high-resolution photoelectron spectroscopy (PES) measurements. The orbital decomposition of the electronic structure by DFT calculations indicates that Ce atoms at the (8c) site surrounded by 16 Pd atoms have a more localized nature and a tendency to be magnetic. Ce atoms in the (4a) site surrounded by 12 Pd and 6 X atoms, on the other, show only a negligible magnetic moment. In the photoemission valence-band spectra we observe a strong f? (Ce??) component with a small fraction of fmore(Ce?) component. The spectral weight of f component near the Fermi level Ce?Pd??Si? is stronger than that for Ce?Pd??Ge? at the 4d-4f resonance, suggesting stronger c-f hybridization in the former. This may hint to the origin of the large electronic specific coefficient of Ce?Pd??Si? compared to Ce?Pd??Ge?.less

  10. Local structure study of Fe dopants in Ni-deficit Ni3Al alloys

    SciTech Connect (OSTI)

    V. N. Ivanovski; Umicevic, A.; Belosevic-Cavor, J.; Lei, Hechang; Li, Lijun; Cekic, B.; Koteski, V.; Petrovic, C.

    2015-08-24

    We found that the local electronic and magnetic structure, hyperfine interactions, and phase composition of polycrystalline Ni–deficient Ni 3-x FexAl (x = 0.18 and 0.36) were investigated by means of 57 Fe Mössbauer spectroscopy. The samples were characterized by X–ray diffraction and magnetization measurements. The ab initio calculations performed with the projector augmented wave method and the calculations of the energies of iron point defects were done to elucidate the electronic structure and site preference of Fe doped Ni 3 Al. Moreover, the value of calculated electric field gradient tensor Vzz=1.6 1021Vm-2 matches well with the results of Mössbauer spectroscopy and indicates that the Fe atoms occupy Ni sites.

  11. Superior performance of Ni-W-Ce mixed-metal oxide catalysts for ethanol steam reforming: Synergistic effects of W- and Ni-dopants

    SciTech Connect (OSTI)

    Rodriguez, Jose A.; Liu, Zongyuan; Xu, Wenqian; Yao, Siyu; Johnson-Peck, Aaron C.; Zhao, Fuzhen; Michorczyk, Piotr; Kubacka, Anna; Stach, Eric A.; Fernandez-Garica, Marcos; Senanayake, Sanjaya D.

    2014-11-26

    The ethanol steam reforming (ESR) reaction was studied over a series of Ni-W-Ce oxide catalysts. The structures of the catalysts were characterized using in-situ techniques including X-ray diffraction, Pair Distribution Function, X-ray absorption fine structure and transmission electron microscopy; while possible surface intermediates for the ESR reaction were investigated by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. In these materials, all the W and part of the Ni were incorporated into the CeO? lattice, with the remaining Ni forming highly dispersed nano NiO (< 2 nm) outside the Ni-W-Ce oxide structure. The nano NiO was reduced to Ni under ESR conditions. The Ni-W-Ce systeme exhibited a much larger lattice strain than those seen for Ni-Ce and W-Ce. Synergistic effects between Ni and W inside ceria produced a substantial amount of defects and O vacancies that led to high catalytic activity, selectivity and stability (i.e. resistance to coke formation) during ethanol steam reforming.

  12. Formation of less-known structurally complex ?{sub b} and orthorhombic quasicrystalline approximant ?{sub n} on solidification of selected AlPdCr alloys

    SciTech Connect (OSTI)

    Adamech, M.; ?erni?kov, I.; ?urika, L.; Kolesr, V.; Drienovsk, M.; Bednar?k, J.; Svoboda, M.; Janovec, J.

    2014-11-15

    The evolution of phases was investigated on cooling of Al{sub 71}Pd{sub 24}Cr{sub 5}, Al{sub 73}Pd{sub 20}Cr{sub 7}, and Al{sub 73}Pd{sub 23}Cr{sub 4} alloys from 1350 C down to ambient temperature with the rate of 10 Cmin{sup ?1}. To perform the investigation, differential thermal analysis, synchrotron X-ray powder diffraction, and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy were used. In all the investigated alloys structurally complex phases ?{sub n} (?{sub 6} + ?{sub 28}) and ?{sub b}, as well as the ?-phase were identified. Based on the results of differential thermal analysis, sequences of phase transformations were determined. The Al{sub 71}Pd{sub 24}Cr{sub 5} alloy started to solidify at 1031.4 C through ?. Primary dendrites of ?{sub b} were observed in Al{sub 73}Pd{sub 20}Cr{sub 7} and Al{sub 73}Pd{sub 23}Cr{sub 4} alloys. In the second step of solidification ? and/or ?{sub b} were formed. The peritectic reaction, liquid + ?{sub b} + ? ? ?{sub n} + ?{sub b} + ?, leading to the formation of the quasicrystalline approximant ?{sub n} (?{sub 6} + ?{sub 28}) took place in the final step of solidification at approximately 792 C. - Highlights: Structurally complex ?{sub n} (?{sub 6} + ?{sub 28}), ?{sub b} and ?-phases were identified. The Al{sub 71}Pd{sub 24}Cr{sub 5} alloy started to solidify at 1031.4 C through the primary ? phase. The Al{sub 73}Pd{sub 20}Cr{sub 7} and Al{sub 73}Pd{sub 23}Cr{sub 4} alloys solidified in the same way. The quasicrystalline approximant ?{sub n} (?{sub 6} + ?{sub 28}) was formed at approximately 792 C.

  13. Dissecting the steps of CO2 reduction: 2. The interaction of CO and CO2 with Pd/?-Al2O3: an in situ FTIR study

    SciTech Connect (OSTI)

    Szanyi, Janos; Kwak, Ja Hun

    2014-08-07

    Alumina supported Pd catalysts with metal loadings of 0.5, 2.5 and 10 wt% were investigated by in situ FTIR spectroscopy in order to understand the nature of adsorbed species formed during their exposure to CO2 and CO. Exposing the annealed samples to CO2 at 295 K resulted in the formation of alumina support-bound surface species only: linear adsorbed CO2, bidentate carbonates and bicarbonates. Room temperature exposure of all three samples to CO produced IR features characteristic of both ionic and metallic Pd, as well as bands we observed upon CO2 adsorption (alumina support-bound species). Low temperature (100 K) adsorption of CO on the three samples provided information about the state of Pd after oxidation and reduction. Oxidized samples contained exclusively ionic Pd, while mostly metallic Pd was present in the reduced samples. Subsequent annealing of the CO-saturated samples revealed the facile (low temperature) reduction of PdOx species by adsorbed CO. This process was evidenced by the variations in IR bands characteristic of ionic and metallic Pd-bound CO, as well as by the appearance of IR bands associated with CO2 adsorption as a function of annealing temperature. Samples containing oxidized Pd species (oxidized, annealed or reduced) always produced CO2 upon their exposure to CO, while CO2-related surface entities were observed on samples having only fully reduced (metallic) Pd. Acknowledgements: The catalyst preparation was supported by a Laboratory Directed Research and Development (LDRD) project. This work was supported by the US Department of Energy Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. JHK also acknowledges the support of this work by the 2013 Research Fund of UNIST (Ulsan National Institute of Science and Technology, Ulsan, Korea).

  14. Damage accumulation in ion-irradiated Ni-based concentrated solid-solution alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ullah, Mohammad W.; Aidhy, Dilpuneet S.; Zhang, Yanwen; Weber, William J.

    2016-01-01

    We investigate Irradiation-induced damage accumulation in Ni0.8Fe0.2 and Ni0.8Cr0.2 alloys by using molecular dynamics simulations to assess possible enhanced radiation-resistance in these face-centered cubic (fcc), single-phase, concentrated solid-solution alloys, as compared with pure fcc Ni.

  15. Green Synthesis of Ag and Pd Nanospheres, Nanowires, and Nanorods Using Vitamin B 2 : Catalytic Polymerisation of Aniline and Pyrrole

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nadagouda, Mallikarjuna N.; Varma, Rajender S.

    2008-01-01

    Formore » the first time, we report green chemistry approach using vitamin B 2 in the synthesis of silver (Ag) and palladium (Pd), nanospheres, nanowires, and nanorods at room temperature without using any harmful reducing agents, such as sodium borohydride ( NaBH 4 ) or hydroxylamine hydrochloride and any special capping or dispersing agent. Vitamin B 2 was used as reducing agent as well as capping agent due to its high-water solubility, biodegradability, and low-toxicity compared with other reducing agents. The average particle size of nanoprticle was found to be Ag (average size 6.1 ± 0.1 nm) and Pd (average size 4.1 ± 0.1 nm) nanoparticles in ethylene glycol and Ag (average size 5.9 ± 0.1 nm, and average size 6.1 ± 0.1) nanoparticles in acetic acid and NMP, respectively. The formation of noble multiple shape nanostructures and their self assembly were dependent on the solvent employed for the preparation. When water was used as solvent media, Ag and Pd nanoparticles started to self-assemble into rod-like structures and in isopropanol Ag and Pd nanoparticles yielded wire-like structures with a thickness in the range of 10 to 20 nm and several hundred microns in length. In acetone and acetonitrile medium, the Ag and Pd nanoparticles are self-assembled into a regular pattern making nanorod structures with thicknesses ranging from 100 to 200 nm and lengths of a few microns. The so-synthesized nanostructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, and UV spectroscopy. The ensuing Ag and Pd nanoparticles catalyzed the reactions of aniline and pyrrole to generate polyaniline and polypyrrole nanofibers and may find various technological and biological applications. This single-step greener approach is general and can be extended to other noble metals and transition metal oxides.« less

  16. High Temperature coatings based on {beta}-NiAI

    SciTech Connect (OSTI)

    Severs, Kevin

    2012-07-10

    High temperature alloys are reviewed, focusing on current superalloys and their coatings. The synthesis, characerization, and oxidation performance of a NiAl–TiB{sub 2} composite are explained. A novel coating process for Mo–Ni–Al alloys for improved oxidation performance is examined. The cyclic oxidation performance of coated and uncoated Mo–Ni–Al alloys is discussed.

  17. High strain rate deformation of NiAl

    SciTech Connect (OSTI)

    Maloy, S.A.; Gray, G.T. III; Darolia, R.

    1994-07-01

    NiAl is a potential high temperature structural material. Applications for which NiAl is being considered (such as rotating components in jet engines) requires knowledge of mechanical properties over a wide range of strain rates. Single crystal NiAl (stoichiometric and Ni 49.75Al 0.25Fe) has been deformed in compression along [100] at strain rates of 0.001, 0.1/s and 2000/s and temperatures of 76,298 and 773K. <111> slip was observed after 76K testing at a strain rate of 0.001/s and 298K testing at a strain rate of 2000/s. Kinking was observed after deformation at 298K and a strain rate of 0.001/s and sometimes at 298 K and a strain rate of 0.1/s. Strain hardening rates of 8200 and 4000 MPa were observed after 773 and 298K testing respectively, at a strain rate of 2000/s. Results are discussed in reference to resulting dislocation substructure.

  18. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miner, Elise M.; Fukushima, Tomohiro; Sheberla, Dennis; Sun, Lei; Surendranath, Yogesh; Dinca, Mircea

    2016-03-08

    Control over the architectural and electronic properties of heterogeneous catalysts poses a major obstacle in the targeted design of active and stable non-platinum group metal electrocatalysts for the oxygen reduction reaction. Here we introduce Ni3(HITP)2 (HITP=2, 3, 6, 7, 10, 11-hexaiminotriphenylene) as an intrinsically conductive metal-organic framework which functions as a well-defined, tunable oxygen reduction electrocatalyst in alkaline solution. Ni3(HITP)2 exhibits oxygen reduction activity competitive with the most active non-platinum group metal electrocatalysts and stability during extended polarization. The square planar Ni-N4 sites are structurally reminiscent of the highly active and widely studied non-platinum group metal electrocatalysts containing M-N4 units.more » Ni3(HITP)2 and analogues thereof combine the high crystallinity of metal-organic frameworks, the physical durability and electrical conductivity of graphitic materials, and the diverse yet well-controlled synthetic accessibility of molecular species. As a result, such properties may enable the targeted synthesis and systematic optimization of oxygen reduction electrocatalysts as components of fuel cells and electrolysers for renewable energy applications.« less

  19. mu. /sup +/SR in amorphous spin glasses Pd/sub 75/Fe/sub 5/Si/sub 20/ and Pd/sub 75/Fe/sub 5/P/sub 5/

    SciTech Connect (OSTI)

    Brewer, J.H.; Spencer, D.P.; Huang, C.Y.; Uemura, Y.J.; Chen, H.S.

    1986-01-01

    The zero-field muon spin relaxation function G/sub zz/(t) has been measured as a function of reduced temperature t = T/T/sug g/ in the amorphous metallic spin glasses Pd/sub 75/Fe/sub 5/Si/sub 20/ and Pd/sub 75/Fe/sub 5/P/sub 20/. The results are in qualitative agreement with earlier measurements on dilute alloy spin glasses, including an onset of static order below T/sub g/ and a (t/(t - 1))/sup 2/ dependence of the correlation time tau/sub c/ above T/sub g/. Both samples have the same tau/sub c/(t) above T/sub g/ and almost identical static width ..delta../sub s/ ..-->.. ..delta../sub 0/ approx. = 43 ..mu..s/sup -1/) as T ..-->.. 0, but the t-dependence of ..delta../sub s/ near T/sub g/ differs markedly.

  20. Magnetic properties of Ni substituted Y-type barium ferrite

    SciTech Connect (OSTI)

    Won, Mi Hee; Kim, Chul Sung

    2014-05-07

    Y-type barium hexaferrite is attractive material for various applications, such as high frequency antennas and RF devices, because of its interesting magnetic properties. Especially, Ni substituted Y- type hexaferrites have higher magnetic ordering temperature than other Y-type. We have investigated macroscopic and microscopic properties of Y-type barium hexaferrite. Ba{sub 2}Co{sub 2−x}Ni{sub x}Fe{sub 12}O{sub 22} (x = 0, 0.5, 1.0, 1.5, and 2.0) samples are prepared by solid-state reaction method and studied by X-ray diffraction (XRD), vibrating sample magnetometer, and Mössbauer spectroscopy, as well as a network analyzer for high frequency characteristics. The XRD pattern is analyzed by Rietveld refinement method and confirms the hexagonal structure with R-3m. The hysteresis curve shows ferrimagnetic behavior. Saturation magnetization (M{sub s}) decreases with Ni contents. Ni{sup 2+}, which preferentially occupies the octahedral site with up-spin sub-lattice, has smaller spin value S of 1 than Co{sup 2+} having S = 3/2. The zero-field-cooled (ZFC) measurement of Ba{sub 2}Co{sub 1.5}Ni{sub 0.5}Fe{sub 12}O{sub 22} shows that Curie and spin transition temperatures are found to be 718 K and 209 K, respectively. The Curie temperature T{sub C} is increased with Ni contents, while T{sub S} is decreased with Ni. The Mössbauer spectra were measured at various temperatures and fitted by using a least-squares method with six sextet of six Lorentzian lines for Fe sites, corresponding to the 3b{sub VI}, 6c{sub IV}*, 6c{sub VI}, 18h{sub VI}, 6c{sub IV}, and 3a{sub IV} sites at below T{sub C}. From Mössbauer measurements, we confirmed the spin state of Fe ion to be Fe{sup 3+} and obtained the isomer shift (δ), magnetic hyperfine field (H{sub hf}), and the occupancy ratio of Fe ions at six sub-lattices. The complex permeability and permittivity are measured between 100 MHz and 4 GHz, suggesting that Y-type barium hexaferrite is promising for antenna

  1. 90° magnetic coupling in a NiFe/FeMn/biased NiFe multilayer spin valve component investigated by polarized neutron reflectometry

    SciTech Connect (OSTI)

    Callori, S. J. Bertinshaw, J.; Cortie, D. L.; Cai, J. W. Zhu, T.; Le Brun, A. P.; Klose, F.

    2014-07-21

    We have observed 90° magnetic coupling in a NiFe/FeMn/biased NiFe multilayer system using polarized neutron reflectometry. Magnetometry results show magnetic switching for both the biased and free NiFe layers, the latter of which reverses at low applied fields. As these measurements are only capable of providing information about the total magnetization within a sample, polarized neutron reflectometry was used to investigate the reversal behavior of the NiFe layers individually. Both the non-spin-flip and spin-flip neutron reflectometry signals were tracked around the free NiFe layer hysteresis loop and were used to detail the evolution of the magnetization during reversal. At low magnetic fields near the free NiFe coercive field, a large spin-flip signal was observed, indicating magnetization aligned perpendicular to both the applied field and pinned layer.

  2. First-principles investigations of Ni3Al(111) and NiAl(110) surfaces at metal dusting conditions

    SciTech Connect (OSTI)

    Saadi, Souheil

    2011-03-01

    We investigate the structure and surface composition of the {gamma}{prime}-Ni{sub 3}Al(111) and {beta}-NiAl(110) alloy surfaces at conditions relevant for metal dusting corrosion related to catalytic steam reforming of natural gas. In regular service as protective coatings, nickel-aluminum alloys are protected by an oxide scale, but in case of oxide scale spallation, the alloy surface may be directly exposed to the reactive gas environment and vulnerable to metal dusting. By means of density functional theory and thermochemical calculations for both the Ni{sub 3}Al and NiAl surfaces, the conditions under which CO and OH adsorption is to be expected and under which it is inhibited, are mapped out. Because CO and OH are regarded as precursors for nucleating graphite or oxide on the surfaces, phase diagrams for the surfaces provide a simple description of their stability. Specifically, this study shows how the CO and OH coverages depend on the steam to carbon ratio (S/C) in the gas and thereby provide a ranking of the carbon limits on the different surface phases.

  3. X-ray photoelectron spectroscopy studies on Pd doped SnO{sub 2} liquid petroleum gas sensor

    SciTech Connect (OSTI)

    Phani, A.R.

    1997-10-01

    The present investigation deals with the electrical response of palladium doped tin oxide, as a means of improving the selectivity for liquid petroleum gas (LPG) in the presence of CO, CH{sub 4}. The sensor element with the composition of Pd(1.5 wt{percent}) in the base material SnO{sub 2} sintered at 800{degree}C, has shown a high sensitivity towards LPG with a negligible cross interference of CO and CH{sub 4} at an operating temperature of 350{degree}C. This greatly suggests the possibility of utilizing the sensor for the detection of LPG. X-ray photoelectron spectroscopy studies have been carried out to determine the possible chemical species involved in the gas-solid interaction and the enhancing mechanism of the Pd doped SnO{sub 2} sensor element, towards LPG sensitivity. {copyright} {ital 1997 American Institute of Physics.}

  4. Nonlinear transport in quasi-one-dimensional Nb{sub 2}PdS{sub 5} nanowires

    SciTech Connect (OSTI)

    Ning, Wei; Yu, Hongyan; Wang, Ning; Han, Yuyan; Yang, Jiyong; Du, Haifeng; Zhang, Changjin; Liu, Yequn; Yang, Kun; Tian, Mingliang Zhang, Yuheng

    2014-10-27

    Nb{sub 2}PdS{sub 5} is a newly discovered quasi-one-dimensional (quasi-1D) superconductor with a high upper critical field along the chain direction. Here, we report the size-dependent electronic properties of Nb{sub 2}PdS{sub 5} nanowires obtained by ultrasonically cleaving the bulk crystals. The nanowires exhibit a superconductor to insulator transition as the cross-sectional area decreases. Moreover, for the thinner nanowires with insulating state, the transport properties exhibit a power-law dependence on both temperature and bias voltage at an intermediate temperature (<30 K), followed by a conduction saturation below 10 K. We found that such an apparent power-law behavior can be described by the extended variable range hopping theory developed recently for the multichannel quasi-1D systems, where the localization of electrons is expected to be dominant instead of the Luttinger liquid nature.

  5. Kondo hole behavior in Ce{sub 0.97} La{sub 0.03}Pd{sub 3}

    SciTech Connect (OSTI)

    Lawrence, J.M.; Graf, T.; Hundley, M.F.; Mandrus, D.; Thompson, J.D. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Lacerda, A.; Torikachvili, M.S. [National High Magnetic Field Laboratory, Pulse Facility, Los Alamos, New Mexico 87545 (United States)] [National High Magnetic Field Laboratory, Pulse Facility, Los Alamos, New Mexico 87545 (United States); Sarrao, J.L.; Fisk, Z. [National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306 (United States)] [National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306 (United States)

    1996-05-01

    We present results for the resistivity, the magnetoresistance, and the specific heat of Ce{sub 0.97}La{sub 0.03}Pd{sub 3} and CePd{sub 3}. The impurity contributions to these measurements follow the predictions of the single-impurity Kondo model for a Kondo temperature {ital T}{sub {ital L}}{approx_equal}65 K, assuming that the impurity behaves as a crystal-field split ({Gamma}{sub 7}) doublet. Assuming a {ital J}=5/2 impurity, the value of {ital T}{sub {ital L}} needed to fit these experiments varies from 65 to 125 K. The contribution to the susceptibility may be too small to be explained by the model. These results address whether the nonmagnetic impurity behaves as a Kondo hole. {copyright} {ital 1996 The American Physical Society.}

  6. Engineering of high performance supercapacitor electrode based on Fe-Ni/Fe{sub 2}O{sub 3}-NiO core/shell hybrid nanostructures

    SciTech Connect (OSTI)

    Singh, Ashutosh K. E-mail: aksingh@bose.res.in; Mandal, Kalyan

    2015-03-14

    The present work reports on fabrication and supercapacitor applications of a core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures (HNs) electrode. The core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures have been fabricated through a two step method (nanowire fabrication and their controlled oxidation). The 1D hybrid nanostructure consists of highly porous shell layer (redox active materials NiO and Fe{sub 2}O{sub 3}) and the conductive core (FeNi nanowire). Thus, the highly porous shell layer allows facile electrolyte diffusion as well as faster redox reaction kinetics; whereas the conductive FeNi nanowire core provides the proficient express way for electrons to travel to the current collector, which helps in the superior electrochemical performance. The core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures electrode based supercapacitor shows very good electrochemical performances in terms of high specific capacitance nearly 1415?F g{sup ?1} at a current density of 2.5?A g{sup ?1}, excellent cycling stability and rate capability. The high quality electrochemical performance of core/shell hybrid nanostructures electrode shows its potential as an alternative electrode for forthcoming supercapacitor devices.

  7. PdHx entrapped in covalent triazine framework modulates selectivity in glycerol oxidation [Modulation of palladium activity and stability by a covalent triazine framework

    SciTech Connect (OSTI)

    Chan-Thaw, Carine E.; Villa, Alberto; Wang, Di; Biroli, Alessio; Veith, Gabriel M; Thomas, Arne; Prati, Laura

    2015-06-25

    The confinement of a Pd nanoparticle within a nitrogen-containing covalent triazine framework (CTF) material was investigated to understand if the highly tunable CTF chemistry mediates the Pd catalytic properties through an ensemble effect with the CTF nitrogen atoms or a confinement effect within the CTF pores. The results surprisingly demonstrate that the CTF stabilizes the formation of 2.6 nm PdHx particles within the pores. These PdHx particles are very active for the liquid phase oxidation of glycerol due to the in situ formation of H2O2 which catalytically promotes the initial C-C cleavage. In addition the confined particles are stable over many catalytic cycles whereas nanoparticles trapped outside of the pores loose activity rapidly. These results indicate that there is the potential to tune the CTF chemistry to significantly modify the chemistry of the catalytic metals.

  8. PdHx entrapped in covalent triazine framework modulates selectivity in glycerol oxidation [Modulation of palladium activity and stability by a covalent triazine framework

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chan-Thaw, Carine E.; Villa, Alberto; Wang, Di; Biroli, Alessio; Veith, Gabriel M; Thomas, Arne; Prati, Laura

    2015-06-25

    The confinement of a Pd nanoparticle within a nitrogen-containing covalent triazine framework (CTF) material was investigated to understand if the highly tunable CTF chemistry mediates the Pd catalytic properties through an ensemble effect with the CTF nitrogen atoms or a confinement effect within the CTF pores. The results surprisingly demonstrate that the CTF stabilizes the formation of 2.6 nm PdHx particles within the pores. These PdHx particles are very active for the liquid phase oxidation of glycerol due to the in situ formation of H2O2 which catalytically promotes the initial C-C cleavage. In addition the confined particles are stable overmore » many catalytic cycles whereas nanoparticles trapped outside of the pores loose activity rapidly. These results indicate that there is the potential to tune the CTF chemistry to significantly modify the chemistry of the catalytic metals.« less

  9. Pt and Pd catalyzed oxidation of Li2O2 and DMSO during Li–O2 battery charging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gittleson, Forrest S.; Ryu, Won-Hee; Schwab, Mark; Tong, Xiao; Taylor, André D.

    2016-01-01

    Rechargeable Li-O2 and Li-air batteries require electrode and electrolyte materials that synergistcally promote long-term cell operation. We investigate the role of noble metals Pt and Pd as catalysts for the Li-O2 oxidation process and their compatibility with a dimethyl sulfoxide (DMSO) based electrolyte. Lastly, we identify a basis for low potential Li2O2 evolution followed by oxidative decomposition of the electrolyte to form carbonate side products.

  10. Complex magnetism and strong electronic correlations in Ce2PdGe3

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baumbach, R. E.; Gallagher, A.; Besara, T.; Sun, J.; Siegrist, T.; Singh, D. J.; Thompson, J. D.; Ronning, F.; Bauer, E. D.

    2015-01-05

    Single-crystal x-ray diffraction, magnetic susceptibility, magnetization, heat capacity, and electrical resistivity measurements are reported for the new tetragonal compound Ce2PdGe3, which forms in the space group P42/mmc (No. 131)—a relative of the α₋ThSi2-type structure. Measurements reveal a two-part antiferromagnetic phase transition at TN,1=10.7 K and TN,2=9.6 K and subsequent ferromagnetlike ordering near TC≈2.25 K. The ordered ground state emerges from a lattice of Ce ions that are hybridized with the conduction electrons, as revealed by the enhanced electronic coefficient of the specific heat γ≈50 mJ/mol-Ce-K2 (extrapolated to T=0 for T < TC). Lastly, electronic structure calculations reveal a Fermi surfacemore » that includes sheets with distinct nesting vectors. We find chemical/structural disorder also plays an important role, as evidenced by results from single-crystal x-ray diffraction, the width of the peaks in the heat capacity at TN and TC, and the small residual resistivity ratio RRR=ρ300K/ρ0=1.8.« less

  11. Momentum-space structure of quasielastic spin fluctuations in Ce3Pd20Si6

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Portnichenko, P. Y.; Cameron, A. S.; Surmach, M. A.; Deen, Pascale P.; Paschen, S.; Prokofiev, A.; Mignot, Jean-Michel; Strydom, A. M.; Telling, Mark T. F.; Podlesnyak, Andrey A.; et al

    2015-01-01

    Surrounded by heavy-fermion metals, Ce3Pd20Si6 is one of the heaviest-electron systems known to date. Here we used high-resolution neutron spectroscopy to observe low-energy magnetic scattering from a single crystal of this compound in the paramagnetic state. We investigated its temperature dependence and distribution in momentum space, which was not accessible in earlier measurements on polycrystalline samples. At low temperatures, a quasielastic magnetic response with a half-width Γ ≈ 0.1 meV persists with varying intensity all over the Brillouin zone. It forms a broad hump centered at the (111) scattering vector, surrounded by minima of intensity at (002), (220), and equivalentmore » wave vectors. The momentum-space structure distinguishes this signal from a simple crystal-field excitation at 0.31 meV, suggested previously, and rather lets us ascribe it to short-range dynamical correlations between the neighboring Ce ions, mediated by the itinerant heavy f electrons via the Ruderman-Kittel-Kasuya-Yosida mechanism. With increasing temperature, the energy width of the signal follows the conventional T1/2 law, Γ(T)=Γ0+A√T. Lastly, the momentum-space symmetry of the quasielastic response suggests that it stems from the simple-cubic Ce sublattice occupying the 8c Wyckoff site, whereas the crystallographically inequivalent 4a site remains magnetically silent in this material.« less

  12. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yoneda, Aki; Henson, William R.; Goldner, Nicholas K.; Park, Kun Joo; Forsberg, Kevin J.; Kim, Soo Ji; Pesesky, Mitchell W.; Foston, Marcus; Dantas, Gautam; Moon, Tae Seok

    2016-02-02

    Lignin-derived (e.g. phenolic) compounds can compromise the bioconversion of lignocellulosic biomass to fuels and chemicals due to their toxicity and recalcitrance. The lipid-accumulating bacterium Rhodococcus opacus PD630 has recently emerged as a promising microbial host for lignocellulose conversion to value-added products due to its natural ability to tolerate and utilize phenolics. To gain a better understanding of its phenolic tolerance and utilization mechanisms, we adaptively evolved R. opacus over 40 passages using phenol as its sole carbon source (up to 373% growth improvement over wild-type), and extensively characterized two strains from passages 33 and 40. The two adapted strains showedmore » higher phenol consumption rates (~20 mg/l/h) and ~2-fold higher lipid production from phenol than the wild-type strain.Whole-genome sequencing and comparative transcriptomics identified highly-upregulated degradation pathways and putative transporters for phenol in both adapted strains, highlighting the important linkage between mechanisms of regulated phenol uptake, utilization, and evolved tolerance. Our study shows that the R. opacus mutants are likely to use their transporters to import phenol rather than export them, suggesting a new aromatic tolerance mechanism. The identified tolerance genes and pathways are promising candidates for future metabolic engineering in R. opacus for improved lignin conversion to lipid-based products.« less

  13. Superconductivity and Physical Properties of CaPd2Ge2 Single Crystals

    SciTech Connect (OSTI)

    Anand, V K; Kim, Hyunsoo; Tanatar, Makariy A; Prozorov, Ruslan; Johnston, David C

    2014-10-08

    We present the superconducting and normal state properties of CaPd2Ge2 single crystals investigated by magnetic susceptibility ?, isothermal magnetization M, heat capacity Cp, in-plane electrical resistivity ? and London penetration depth ? versus temperature T and magnetic field H measurements. Bulk superconductivity is inferred from the ?(T) and Cp(T) data. The ?(T) data exhibit metallic behavior and a superconducting transition with Tc onset = 1.98 K and zero resistivity at Tc 0 = 1.67 K. The ?(T) reveals the onset of superconductivity at 2.0 K. For T > 2.0 K, the ?(T) and M(H) are weakly anisotropic paramagnetic with ?ab > ?c. The Cp(T) data confirm the bulk superconductivity below Tc = 1.69(3) K. The superconducting state electronic heat capacity is analyzed within the framework of a single-band ?-model of BCS superconductivity and various normal and superconducting state parameters are estimated. Within the ?-model, the Cp(T) data and the ab plane ?(T) data consistently indicate a moderately anisotropic s-wave gap with ?(0)/kBTc ? 1.6, somewhat smaller than the BCS value of 1.764. The relationship of the heat capacity jump at Tc and the penetration depth measurement to the anisotropy in the s-wave gap is discussed.

  14. Determination of redox reaction rates and orders by in situ liquid cell electron microscopy of Pd and Au solution growth

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sutter, Eli A.; Sutter, Peter W.

    2014-11-19

    In-situ liquid cell transmission and scanning transmission electron microscopy (TEM/STEM) experiments are important as they provide direct insight into processes in liquids, such as solution growth of nanoparticles among others. In liquid cell TEM/STEM redox reaction experiments the hydrated electrons e⁻aq created by the electron beam are responsible for the reduction of metal-ion complexes. Here we investigate the rate equation of redox reactions involving reduction by e⁻aq generated by the electron beam during in-situ liquid TEM/STEM. Specifically we consider the growth of Pd on Au seeds in aqueous solutions containing Pd-chloro complexes. From the quantification of the rate of Pdmore » deposition at different electron beam currents and as a function of distance from a stationary, nanometer-sized exciting beam, we determine that the reaction is first order with respect to the concentration of hydrated electrons, [e⁻aq]. In addition, by comparing Pd- and Au-deposition, we further demonstrate that measurements of the local deposition rate on nanoparticles in the solution via real-time imaging can be used to measure not only [e⁻aq] but also the rate of reduction of a metal-ion complex to zero-valent metal atoms in solution.« less

  15. Gram-Scale Synthesized Pd2Co-Supported PtMonolayers Electrocatalysts for Oxygen Reduction Reaction

    SciTech Connect (OSTI)

    Zhou, W.P.; Sasaki, K.; Su, D.; Zhu, Y.; Wang, J.X.; Adzic, R.R.

    2010-04-21

    Gram-scale synthesis of Pt{sub ML} electrocatalysts with a well-defined core-shell structure has been carried out using method involving galvanic displacement of an underpotential deposition Cu layer. The Pt shell thickness can be controlled by stepwise deposition. The Pt{at}Pd{sub 2}Co/C nanoparticles were characterized by X-ray powder diffraction, aberration-corrected scanning transmission electron microscopy, high-resolution energy-loss spectrometry, and in situ X-ray absorption spectroscopy. A complete Pt shell of 0.6 nm on a Pd{sub 2}Co core has been confirmed. The Pt{at}Pd{sub 2}Co/C core-shell electrocatalysts showed a very high activity for the oxygen reduction reaction; the Pt mass and specific activity were 0.72 A mg{sup -1}{sub Pt} and 0.5 mA cm{sup -2}, respectively (3.5 and 2.5 times higher than the corresponding values for commercial Pt catalysts), at 0.9 V in 0.1 M HClO{sub 4} at room temperature. In an accelerated potential cycling test, a loss in active surface area and a decrease in catalytic activity for gram-scale-synthesized Pt{sub ML} catalysts were also determined.

  16. Domain wall pinning on strain relaxation defects (stacking faults) in nanoscale FePd (001)/MgO thin films

    SciTech Connect (OSTI)

    Hsiao, C. H.; Ouyang, Chuenhou E-mail: houyang@mx.nthu.edu.tw; Yao, Y. D.; Lo, S. C.; Chang, H. W. E-mail: houyang@mx.nthu.edu.tw

    2015-10-05

    FePd (001) films, prepared by an electron beam deposition system on MgO(100), exhibit a perpendicular magnetic anisotropy (1.7 × 10{sup 7 }erg/cc) with a high order parameter (0.92). The relation between stacking faults induced by the strain relaxation, which act as strong domain wall pinning sites, and the perpendicular coercivity of (001) oriented L1{sub 0} FePd films prepared at different temperatures have been investigated. Perpendicular coercivity can be apparently enhanced by raising the stacking fault densities, which can be elevated by climbing dissociation of total dislocation. The increased stacking fault densities (1.22 nm{sup −2}) with large perpendicular coercivity (6000 Oe) are obtained for samples prepared at 650 °C. This present work shows through controlling stacking fault density in FePd film, the coercivity can be manipulated, which can be applied in future magnetic devices.

  17. Synthesis and photocatlytic performance of nano-sized TiO{sub 2} materials prepared by dealloying Ti–Cu–Pd amorphous alloys

    SciTech Connect (OSTI)

    Jiang, Jing; Zhu, Shengli; Xu, Wence; Cui, Zhenduo; Yang, Xianjin

    2015-05-15

    Highlights: • TiO{sub 2} nanospindles were synthesized by dealloying Ti–Cu–Pd amorphous alloy. • Pd significantly enhanced the exposure of high-energy (0 0 1) facet of TiO{sub 2}. • TiO{sub 2} with high-energy (0 0 1) facet showed good photocatalytic activity. - Abstract: TiO{sub 2} nanospindles with exposed (0 0 1) facet were synthesized through a simple dealloying reaction. The rutile photocatalysts were characterized by X-ray diffraction, scanning electron microscope and transmission electron microscope, inductively coupled plasma optical emission spectrometry and ultraviolet–visible spectrophotometer. A Rhodamine B dye (RhB) was used to detect the photocatalytic activity of TiO{sub 2} under full light irradiation. The presence of Pd in the original amorphous alloy reduced the surface free energy of TiO{sub 2}, stabilized the (0 0 1) facet. The Pd8-TiO{sub 2} sample exhibited the largest crystal size along the direction which is perpendicular to the (0 0 1) facet. The photocatalytic degradation rate of RhB was improved due to the Pd addition in the original amorphous alloy. This indicated that the exposure of (0 0 1) facets could enhance the activity of TiO{sub 2} photocatalyst. In addition, the presence of isolated Pd atoms on the surface of TiO{sub 2} would be another probable reason for the improvement of photocatalytic activity.

  18. Effect of Ag addition to L1{sub 0} FePt and L1{sub 0} FePd films grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Tokuoka, Y.; Seto, Y.; Kato, T.; Iwata, S.

    2014-05-07

    L1{sub 0} ordered FePt-Ag (5?nm) and FePd-Ag (5?nm) films were grown on MgO (001) substrate at temperatures of 250400?C by using molecular beam epitaxy method, and their crystal and surface structures, perpendicular magnetic anisotropies and Curie temperatures were investigated. In the case of FePt-Ag, Ag addition with the amount of 1020 at.?% was effective to promote L1{sub 0} ordering and granular growth, resulting in the increase of the perpendicular magnetic anisotropy and coercivity of the FePt-Ag films. On the other hand, in the case of FePd-Ag, Ag addition changed the surface morphology from island to continuous film associated with the reductions of its coercivity and perpendicular anisotropy. The variations of lattice constants and Curie temperature with Ag addition were significantly different between FePt-Ag and FePd-Ag. For FePd-Ag, the c and a axes lattice spacings and Curie temperature gradually changed with increasing Ag content, while they unchanged for FePt-Ag. These results suggest the possibility of the formation of FePdAg alloy in FePd-Ag, while Ag segregation in FePt-Ag.

  19. NiO nanoparticles induce apoptosis through repressing SIRT1 in human bronchial epithelial cells

    SciTech Connect (OSTI)

    Duan, Wei-Xia; He, Min-Di; Mao, Lin; Qian, Feng-Hua; Li, Yu-Ming; Pi, Hui-Feng; Liu, Chuan; Chen, Chun-Hai; Lu, Yong-Hui; Cao, Zheng-Wang; Zhang, Lei; Yu, Zheng-Ping; Zhou, Zhou

    2015-07-15

    With application of nano-sized nickel-containing particles (Nano-Ni) expanding, the health concerns about their adverse effects on the pulmonary system are increasing. However, the mechanisms for the pulmonary toxicity of these materials remain unclear. In the present study, we focused on the impacts of NiO nanoparticles (NiONPs) on sirtuin1 (SIRT1), a NAD-dependent deacetylase, and investigated whether SIRT1 was involved in NiONPs-induced apoptosis. Although the NiONPs tended to agglomerate in fluid medium, they still entered into the human bronchial epithelial cells (BEAS-2B) and released Ni{sup 2+} inside the cells. NiONPs at doses of 5, 10, and 20 μg/cm{sup 2} inhibited the cell viability. NiONPs' produced cytotoxicity was demonstrated through an apoptotic process, indicated by increased numbers of Annexin V positive cells and caspase-3 activation. The expression of SIRT1 was markedly down-regulated by the NiONPs, accompanied by the hyperacetylation of p53 (tumor protein 53) and overexpression of Bax (Bcl-2-associated X protein). However, overexpression of SIRT1 through resveratrol treatment or transfection clearly attenuated the NiONPs-induced apoptosis and activation of p53 and Bax. Our results suggest that the repression of SIRT1 may underlie the NiONPs-induced apoptosis via p53 hyperacetylation and subsequent Bax activation. Because SIRT1 participates in multiple biologic processes by deacetylation of dozens of substrates, this knowledge of the impact of NiONPs on SIRT1 may lead to an improved understanding of the toxic mechanisms of Nano-Ni and provide a molecular target to antagonize Nano-Ni toxicity. - Highlights: • NiONPs were taken up by BEAS-2B cells and released Ni{sup 2+}. • NiONPs produced cytotoxicity was demonstrated through an apoptotic process. • NiONPs repressed SIRT1 expression and activated p53 and Bax. • Overexpression of SIRT1 attenuated NiONPs-induced apoptosis via deacetylation p53.

  20. Temperature-induced sign change of the magnetic interlayer coupling in Ni/Ni{sub 25}Mn{sub 75}/Ni trilayers on Cu{sub 3}Au(001)

    SciTech Connect (OSTI)

    Shokr, Y. A.; Zhang, B.; Sandig, O.; Kuch, W.; Erkovan, M.; Wu, C.-B.

    2015-05-07

    We investigated the magnetic interlayer coupling between two ferromagnetic (FM) Ni layers through an antiferromagnetic (AFM) Ni{sub 25}Mn{sub 75} layer and the influence of this coupling on the exchange bias phenomenon. The interlayer coupling energy of an epitaxial trilayer of 14 atomic monolayers (ML) Ni/45 ML Ni{sub 25}Mn{sub 75}/16 ML Ni on Cu{sub 3}Au(001) was extracted from minor-loop magnetization measurements using in-situ magneto-optical Kerr effect. The interlayer coupling changes from ferromagnetic to antiferromagnetic when the temperature is increased above 300?K. This sign change is interpreted as the result of the competition between an antiparallel Ruderman-Kittel-Kasuya-Yosida (RKKY)-type interlayer coupling, which dominates at high temperature, and a stronger direct exchange coupling across the AFM layer, which is present only below the Nel temperature of the AFM layer.

  1. Searches for supersymmetry using the M$_{T2}$ variable in hadronic events produced in pp collisions at 8 TeV

    SciTech Connect (OSTI)

    Khachatryan, V.

    2015-05-15

    Searches for supersymmetry (SUSY) are performed using a sample of hadronic events produced in 8 TeV pp collisions at the CERN LHC. The searches are based on the M$_{T2}$ variable, which is a measure of the transverse momentum imbalance in an event. The data were collected with the CMS detector and correspond to an integrated luminosity of 19.5 fb1. Two related searches are performed. The first is an inclusive search based on signal regions defined by the value of the M$_{T2}$ variable, the hadronic energy in the event, the jet multiplicity, and the number of jets identified as originating from bottom quarks. The second is a search for a mass peak corresponding to a Higgs boson decaying to a bottom quark-antiquark pair, where the Higgs boson is produced as a decay product of a SUSY particle. For both searches, the principal backgrounds are evaluated with data control samples. No significant excess over the expected number of background events is observed, and exclusion limits on various SUSY models are derived.

  2. Towards a specific reaction parameter density functional for reactive scattering of H{sub 2} from Pd(111)

    SciTech Connect (OSTI)

    Boereboom, J. M.; Wijzenbroek, M.; Somers, M. F.; Kroes, G. J.

    2013-12-28

    Recently, an implementation of the specific reaction parameter (SRP) approach to density functional theory (DFT) was used to study several reactive scattering experiments of H{sub 2} on Cu(111). It was possible to obtain chemical accuracy (1 kcal/mol ? 4.2 kJ/mol), and therefore, accurately model this paradigmatic example of activated H{sub 2} dissociation on a metal surface. In this work, the SRP-DFT methodology is applied to the dissociation of hydrogen on a Pd(111) surface, in order to test whether the SRP-DFT approach is also applicable to non-activated H{sub 2}-metal systems. In the calculations, the BornOppenheimer static surface approximations are used. A comparison to molecular beam sticking experiments, performed at incidence energies ?125 meV, on H{sub 2} + Pd(111) suggested the PBE-vdW [where the Perdew, Burke, and Ernzerhof (PBE) correlation is replaced by van der Waals correlation] functional as a candidate SRP density functional describing the reactive scattering of H{sub 2} on Pd(111). Unfortunately, quantum dynamics calculations are not able to reproduce the molecular beam sticking results for incidence energies <125 meV. From a comparison to initial state-resolved (degeneracy averaged) sticking probabilities it seems clear that for H{sub 2} + Pd(111) dynamic trapping and steering effects are important, and that these effects are not yet well modeled with the potential energy surfaces considered here. Applying the SRP-DFT method to systems where H{sub 2} dissociation is non-activated remains difficult. It is suggested that a density functional that yields a broader barrier distribution and has more non-activated pathways than PBE-vdW (i.e., non-activated dissociation at some sites but similarly high barriers at the high energy end of the spectrum) should allow a more accurate description of the available experiments. Finally, it is suggested that new and better characterized molecular beam sticking experiments be done on H{sub 2} + Pd(111), to

  3. Novel electrolyte chemistries for Mg-Ni rechargeable batteries.

    SciTech Connect (OSTI)

    Garcia-Diaz, Brenda; Kane, Marie; Au, Ming

    2010-10-01

    Commercial hybrid electric vehicles (HEV) and battery electric vehicles (BEV) serve as means to reduce the nation's dependence on oil. Current electric vehicles use relatively heavy nickel metal hydride (Ni-MH) rechargeable batteries. Li-ion rechargeable batteries have been developed extensively as the replacement; however, the high cost and safety concerns are still issues to be resolved before large-scale production. In this study, we propose a new highly conductive solid polymer electrolyte for Mg-Ni high electrochemical capacity batteries. The traditional corrosive alkaline aqueous electrolyte (KOH) is replaced with a dry polymer with conductivity on the order of 10{sup -2} S/cm, as measured by impedance spectroscopy. Several potential novel polymer and polymer composite candidates are presented with the best-performing electrolyte results for full cell testing and cycling.

  4. Intermixing in Cu/Ni multilayers induced by cold rolling

    SciTech Connect (OSTI)

    Wang, Z.; Perepezko, J. H.; Larson, D.; Reinhard, D.

    2015-04-28

    Repeated cold rolling was performed on multilayers of Cu60/Ni40 and Cu40/Ni60 foil arrays to study the details of driven atomic scale interfacial mixing. With increasing deformation, there is a significant layer refinement down to the nm level that leads to the formation of a solid solution phase from the elemental end members. Intriguingly, the composition of the solid solution is revealed by an oscillation in the composition profile across the multilayers, which is different from the smoothly varying profile due to thermally activated diffusion. During the reaction, Cu mixed into Ni preferentially compared to Ni mixing into Cu, which is also in contrast to the thermal diffusion behavior. This is confirmed by observations from X-ray diffraction, electron energy loss spectrum and atom probe tomography. The diffusion coefficient induced by cold rolling is estimated as 1.7 × 10{sup −17} m{sup 2}/s, which cannot be attributed to any thermal effect. The effective temperature due to the deformation induced mixing is estimated as 1093 K and an intrinsic diffusivity d{sub b}, which quantifies the tendency towards equilibrium in the absence of thermal diffusion, is estimated as 6.38 × 10{sup −18} m{sup 2}/s. The fraction of the solid solution phase formed is illustrated by examining the layer thickness distribution and is described by using an error function representation. The evolution of mixing in the solid solution phase is described by a simplified sinusoid model, in which the amplitude decays with increased deformation level. The promoted diffusion coefficient could be related to the effective temperature concept, but the establishment of an oscillation in the composition profile is a characteristic behavior that develops due to deformation.

  5. Precipitation in 18 wt% Ni maraging steel of grade 350

    SciTech Connect (OSTI)

    Tewari, R.; Mazumder, S.; Batra, I.S.; Dey, G.K.; Banerjee, S.

    2000-03-14

    The evolution of precipitates in maraging steel of grade 350 was studied using the complementary techniques of small angle X-ray scattering (SACS) and transmission electron microscopy (TEM). These investigations revealed that ageing the steel at 703 K involved a rhombohedral distortion of the supersaturated b.c.c. martensite accompanied by the appearance of diffuse {omega}-like structures. This was followed by the appearance of well-defined {omega} particles containing chemical order. At the ageing temperature of 783 K, Ni{sub 3}(Ti,Mo) precipitates were the first to appear with a growth exponent of 1/3. The values of the Pored exponent obtained from the SAXS profiles indicated that the {omega} particles, formed below 723 K, had diffuse interfaces up to an ageing time of 48 h. On the other hand, Ni{sub 3}(Ti,Mo) precipitates, formed above 723 K, developed sharp interfaces in just about an hour. Also, the steel exhibited scaling in phase separation both at 703 and 783 K, but only during the early stages. Through this study it was established that at temperatures of ageing less than 723 K, evolution of {omega} particles takes place through the collapse of the unstable b.c.c. lattice and, at temperatures above 723 K, precipitation of A{sub 3}B type of phases through the mechanism of clustering and ordering of atomic species. Sharp interfaces develop rather quickly when the mechanism of precipitation involves development and amplification of a concentration wave along as in the nucleation of Ni{sub 3}(Ti,Mo) at 783 K than when an interplay of both the displacement and concentration waves is required as in the evolution of {omega} at 703 K. These results indicate towards the possibility of existence of two separate time-temperature-transformation (TTT) curves, one for the evolution of {omega}-phase and another for nucleation and growth of Ni{sub 3}(Ti,Mo).

  6. Martensite transformation of epitaxial Ni-Ti films

    SciTech Connect (OSTI)

    Buschbeck, J.; Kozhanov, A.; Kawasaki, J. K.; James, R. D.; Palmstroem, C. J.

    2011-05-09

    The structure and phase transformations of thin Ni-Ti shape memory alloy films grown by molecular beam epitaxy are investigated for compositions from 43 to 56 at. % Ti. Despite the substrate constraint, temperature dependent x-ray diffraction and resistivity measurements reveal reversible, martensitic phase transformations. The results suggest that these occur by an in-plane shear which does not disturb the lattice coherence at interfaces.

  7. Intermetallic phase formation and breakdown of Mo diffusion barriers in Ni-Mo-Cu and Ni-Mo-Monel 400 diffusion triads

    SciTech Connect (OSTI)

    Shueh, Y.

    1988-01-01

    The purpose of this research was to study the kinetics of compound formation and the interdiffusion behavior of a sacrificial type diffusion barrier in a model system. Ni-Mo diffusion couples were annealed in an inert atmosphere at 950-1050{degree}C for 5-300 hours. Ni-Mo-Cu and Ni-Mo-Monel 400 diffusion triads with varied thicknesses of Mo layers sandwiched by Ni and C or Monel 400 disks were annealed under the same conditions. Parabolic growth of the intermetallic phase, {beta}, was observed at 1000{degree}C and 1050{degree}C in the semi-infinite Ni-Mo diffusion couple an din the Ni-Mo-Cu diffusion triad when a finite thickness of the Mo layer remained. The {beta} phase exhibited more or less planar morphology except in the case of some extremely rugged interfaces which were associated with grain boundaries adjacent to these interfaces. Dissociation and recession of the compound layer in Ni-Mo-Cu diffusion triads initiated when the Mo layer was nearly consumed. The product phases of the dissociation reaction are consistent with those predicted from the Ni-Mo-Cu ternary phase diagram. Numerical methods based on a finite difference technique, and an analytical solution based on diffusion controlled parabolic growth and quasi-steady-state approximation in the {beta} phase region were used to analyze the results.

  8. Auxiliary Ligand-Dependent Assembly of Several Ni/Ni-Cd Compounds with N2O2 Donor Tetradentate Symmetrical Schiff Base Ligand

    SciTech Connect (OSTI)

    Ge, Ying Ying; Li, Guo-Bi; Fang, Hua-Cai; Zhan, Xu Lin; Gu, Zhi-Gang; Chen, Jin Hao; Sun, Feng; Cai, Yue-Peng; Thallapally, Praveen K.

    2010-09-18

    Several low-dimensional Ni/Ni-Cd complexes containing N2O2 donor tetradentate symmetrical Schiff base ligand bis(acetylacetone)ethylene-diamine (sy-H2L2), namely, [Ni(sy-L2)]2?HLa?ClO4 (2), (HLa)2?(ClO4)?(NO3) (3), [Ni(sy-L2)X]2](4,4-bipy) (where La = 5,7-dimethyl-3,6-dihydro-2H-1,4-diazepine, X = ClO4 (4), X=NO3 (5), [Ni(sy-L2)Cd(SCN)2]n (6) and [Ni(sy-L2)?Cd(N3)2]n (7) have been synthesized from [Ni(sy-L2)]2?H2O (1). Complex 2, is three component discrete assembly generated from (HLa)+ moiety bridged with [Ni(sy-L2)] unit and ClO4- anion. A solution containing complex 2 and Cd(NO3)2 results in a mixture of 1 and 3. Further re-crystallization of 1 and 3 with various auxiliary ligands, provides coordination complexes 4 7 stabilized by weak hydrogen bonds in which 6 and 7 represent the first 1D heteronuclear complexes based on symmetric acacen-base Schiff base ligand.

  9. Ni(OH){sub 2} nanoflakes electrodeposited on Ni foam-supported vertically oriented graphene nanosheets for application in asymmetric supercapacitors

    SciTech Connect (OSTI)

    Wang, Xin; Liu, Jiyue; Wang, Yayu; Zhao, Cuimei; Zheng, Weitao

    2014-04-01

    Highlights: Ni(OH){sub 2}/vertically oriented graphene nanosheets (V-GNs) was prepared. Ni(OH){sub 2}/V-GNs had enhanced specific capacitance, cycling reversibility and stability. Performance of Ni(OH){sub 2}/GNs/NF-AC asymmetric supercapacitor was studied. - Abstract: Binderless Ni(OH){sub 2} nanoflakes grown on Ni foam (NF)-supported vertically oriented graphene nanosheets (V-GNs) has been fabricated as a positive electrode material for asymmetric supercapacitor (ASC), coupled with activated carbon (AC) as a counter electrode material. The introduction of V-GNs leads to dense growth of nanocrystalline ?-Ni(OH){sub 2} that is confirmed by X-ray diffraction, transmission electron microscopic and scanning electron microscopic analyses. The electrochemical performances of the Ni(OH){sub 2}/GNs/NF electrode are characterized by cyclic voltammetry and chargedischarge tests, which exhibit high specific capacitance of 2215 F g{sup ?1} at a scan current density of 2.3 A g{sup ?1}, enhanced cycling stability and high rate capability. The Ni(OH){sub 2}/GNs/NF-AC-based ASC can achieve a cell voltage of 1.4 V and a specific energy density of 11.11 Wh kg{sup ?1} at 0.5 mA cm{sup ?2} with a nearly 100% coulombic efficiency at room temperature.

  10. Facile approach to prepare hollow coreshell NiO microspherers for supercapacitor electrodes

    SciTech Connect (OSTI)

    Han, Dandan; Xu, Pengcheng; Jing, Xiaoyan; Wang, Jun; Song, Dalei; Liu, Jingyuan; Zhang, Milin

    2013-07-15

    A facile lamellar template method (see image) has been developed for the preparation of uniform hollow coreshell structure NiO (HCSNiO) with a nanoarchitectured wall structure. The prepared NiO was found to be highly crystalline in uniform microstructures with high specific surface area and pore volume. The results indicated that ethanol interacted with trisodium citrate played an important role for the formation of hollow coreshell spheres. On the basis of the analysis of the composition and the morphology, a possible formation mechanism was investigated. NiO microspheres with hollow coreshell showed excellent capacitive properties. The exceptional cyclic, structural and electrochemical stability with ?95% coulombic efficiency, and very low ESR value from impedance measurements promised good utility value of hollow coreshell NiO material in fabricating a wide range of high-performance electrochemical supercapacitors. - The hollow coreshell NiO was prepared with a facile lamellar template method. The prepared NiO show higher capacitance, lower ion diffusion resistance and better electroactive surface utilization for Faradaic reactions. - Highlights: Formation of hollow coreshell NiO via a novel and facile precipitation route. Exhibited uniform feature sizes and high surface area of hollow coreshell NiO. Synthesized NiO has high specific capacitance ( 448 F g{sup 1}) and very low ESR value. Increased 20% of long life cycles capability after 500 chargedischarge cycles.

  11. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B.; Gee, Leland B.; Scott, Aubrey D.; et al

    2015-08-10

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique ‘wagging’ mode involving H- motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)57Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe–CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)57Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)57Fe(CO)3]+ and DFT calculations, which collectively indicate amore » low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H- binding Ni more tightly than Fe. Lastly, the present methodology is also relevant to characterizing Fe–H moieties in other important natural and synthetic catalysts.« less

  12. Low temperature spin dynamics in Cr{sub 7}Ni-Cu-Cr{sub 7}Ni coupled molecular rings

    SciTech Connect (OSTI)

    Bordonali, L.; Furukawa, Y.; Mariani, M.; Sabareesh, K. P. V.; Garlatti, E.; Borsa, F.

    2014-05-07

    Proton Nuclear Magnetic Resonance (NMR) relaxation measurements have been performed down to very low temperature (50 mK) to determine the effect of coupling two Cr{sub 7}Ni molecular rings via a Cu{sup 2+} ion. No difference in the spin dynamics was found from nuclear spin lattice relaxation down to 1.5 K. At lower temperature, the {sup 1}H-NMR line broadens dramatically indicating spin freezing. From the plot of the line width vs. magnetization, it is found that the freezing temperature is higher (260 mK) in the coupled ring with respect to the single Cr{sub 7}Ni ring (140 mK)

  13. PT AND PT/NI "NEEDLE" ELETROCATALYSTS ON CARBON NANOTUBES WITH HIGH ACTIVITY FOR THE ORR

    SciTech Connect (OSTI)

    Colon-Mercado, H.

    2011-11-10

    Platinum and platinum/nickel alloy electrocatalysts supported on graphitized (gCNT) or nitrogen doped carbon nanotubes (nCNT) are prepared and characterized. Pt deposition onto carbon nanotubes results in Pt 'needle' formations that are 3.5 nm in diameter and {approx}100 nm in length. Subsequent Ni deposition and heat treatment results in PtNi 'needles' with an increased diameter. All Pt and Pt/Ni materials were tested as electrocatalysts for the oxygen reduction reaction (ORR). The Pt and Pt/Ni catalysts showed excellent performance for the ORR, with the heat treated PtNi/gCNT (1.06 mA/cm{sup 2}) and PtNi/nCNT (0.664 mA/cm{sup 2}) showing the highest activity.

  14. Prompt Proton Decay and Deformed Bands in 56Ni

    SciTech Connect (OSTI)

    Johansson, E. K.; Rudolph, D.; Andersson, L. L.; Torres, D. A.; Ragnarsson, I.; Andreoiu, C.; Baktash, Cyrus; Carpenter, M. P.; Charity, R. J.; Chiara, C. J.; Ekman, J.; Fahlander, C.; Hoel, C.; Pechenaya, O. L.; Reviol, W.; du Rietz, R.; Sarantites, D. G.; Seweryniak, D.; Sobotka, L. G.; Yu, Chang-Hong; Zhu, S.

    2008-06-01

    High-spin states in the doubly magic N=Z nucleus {sup 56}Ni have been investigated with three fusion-evaporation reaction experiments. New {gamma}-ray transitions are added, and a confirmation of a previously suggested prompt proton decay from a rotational band in {sup 56}Ni into the ground state of {sup 55}Co is presented. The rotational bands in {sup 56}Ni are discussed within the framework of cranked Nilsson-Strutinsky calculations.

  15. Structural and Mssbauer spectroscopic study of Fe-Ni alloy nanoparticles

    SciTech Connect (OSTI)

    Kumar, Asheesh; Banerjee, S. Sudarsan, V.; Meena, S. S.

    2014-04-24

    Nano-crystalline Fe-Ni alloys have been synthesized in ethylene glycol medium. Based on XRD studies it is confirmed that, in these alloys Fe atoms are incorporated at Ni site to form Ni-Fe solid solutions. Mssbauer studies have established that for alloy particles having smaller size there is significant concentration of two different types of paramagnetic Fe species and their relative concentration decreased with increase in particle size.

  16. Effect of Cu addition on the martensitic transformation of powder metallurgy processed Ti–Ni alloys

    SciTech Connect (OSTI)

    Kim, Yeon-wook; Choi, Eunsoo

    2014-10-15

    Highlights: • M{sub s} of Ti{sub 50}Ni{sub 50} powders is 22 °C, while M{sub s} of SPS-sintered porous bulk increases up to 50 °C. • M{sub s} of Ti{sub 50}Ni{sub 40}Cu{sub 20} porous bulk is only 2 °C higher than that of the powders. • Recovered stain of porous TiNi and TiNiCu alloy is more than 1.5%. - Abstract: Ti{sub 50}Ni{sub 50} and Ti{sub 50}Ni{sub 30}Cu{sub 20} powders were prepared by gas atomization and their transformation behaviors were examined by means of differential scanning calorimetry and X-ray diffraction. One-step B2–B19’ transformation occurred in Ti{sub 50}Ni{sub 50} powders, while Ti{sub 50}Ni{sub 30}Cu{sub 20} powders showed B2–B19 transformation behavior. Porous bulks with 24% porosity were fabricated by spark plasma sintering. The martensitic transformation start temperature (50 °C) of Ti{sub 50}Ni{sub 50} porous bulk is much higher than that (22 °C) of the as-solidified powders. However, the martensitic transformation start temperature (35 °C) of Ti{sub 50}Ni{sub 30}Cu{sub 20} porous bulk is almost the same as that (33 °C) of the powders. When the specimens were compressed to the strain of 8% and then unloaded, the residual strains of Ti{sub 50}Ni{sub 50} and Ti{sub 50}Ni{sub 30}Cu{sub 20} alloy bulks were 3.95 and 3.7%, respectively. However, these residual strains were recovered up to 1.7% after heating by the shape memory phenomenon.

  17. Effects of pH and anion on hydrogen sorption/desorption at/within oxide-derived Pd electrodes

    SciTech Connect (OSTI)

    Hu, C.C.; Wen, T.C.

    1995-05-01

    A lot of interest in the electrochemical behavior of H and D sorption within/at palladium has been prompted by Fleischmann and Pons` reports which had claimed to observe that nuclear fusion was induced by electrochemical compression of deuterium within a palladium lattice, although there are some disputes of this work in the open literature. Oxide-derived Pd electrodes were obtained by cathodic polarization of Pd oxide-coated titanium electrodes (fabricated by thermal decomposition) at 0 V (RHE) for 30 min in 1.5 mol/dm{sup 3} NaOH. Hydrogen adsorption/absorption (denoted hereafter as sorption) and desorption within/at these electrodes were obtained using cyclic voltammetry (CV), chronopotentiometry, and linear sweep voltammetry (LSV). CV results revealed that {beta}-PdH formation/oxidation is more reversible in either concentrated acid or base solutions than in intermediate pH media and the rate of {beta}-PDH desorption is faster in a pH solution <10. The oxidation of {beta}-PDH is electron transfer controlled in intermediate pH media, especially in weakly basic solutions due to the adsorption of H{sub 2}PO{sub 4}{sup {minus}}/HPO{sub 4}{sup 2{minus}}. The sequence of anions with respect to increasing ability to inhibit hydrogen sorption is: CH{sub 3}COO{sup {minus}} < Cl{sup {minus}} < HSO{sub 4}{sup {minus}} {approx_equal} ClO{sub 4} < HC{sub 2}O{sub 4} < H{sub 2}PO{sub 4}.

  18. Structural and magnetic phase transitions in CeCu6-xTx (T = Ag,Pd)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Poudel, Lekhanath N.; De la cruz, Clarina; Payzant, E. Andrew; Koehler, Michael R.; May, Andrew F.; Garlea, Vasile O.; Taylor, Alice E.; Parker, David S.; Cao, Huibo B.; McGuire, Michael A.; et al

    2015-12-15

    The structural and the magnetic properties of CeCu6-xAgx (0 ≤ x ≤ 0.85) and CeCu6-xPdx (0 ≤ x ≤ 0.4) have been studied using neutron diffraction, resonant ultrasound spectroscopy (RUS), x-ray diffraction measurements, and first principles calculations. The structural and magnetic phase diagrams of CeCu6-xAgx and CeCu6-xPdx as a function of Ag/Pd composition are reported. The end member, CeCu6, undergoes a structural phase transition from an orthorhombic (Pnma) to a monoclinic (P21/c) phase at 240 K. In CeCu6-xAgx, the structural phase transition temperature (Ts) decreases linearly with Ag concentration and extrapolates to zero at xS ≈ 0.1. The structural transitionmore » in CeCu6-xPdx remains unperturbed with Pd substitution within the range of our study. The lattice constant b slightly decreases with Ag/Pd doping, whereas a and c increase with an overall increase in the unit cell volume. Both systems, CeCu6-xAgx and CeCu6-xPdx, exhibit a magnetic quantum critical point (QCP), at x ≈ 0.2 and x ≈ 0.05, respectively. Near the QCP, long range antiferromagnetic ordering takes place at an incommensurate wave vector (δ1 0 δ2), where δ1 ~ 0.62, δ2 ~ 0.25, x = 0.125 for CeCu6-xPdx and δ1 ~ 0.64, δ2 ~ 0.3, x = 0.3 for CeCu6-xAgx. As a result, the magnetic structure consists of an amplitude modulation of the Ce moments which are aligned along the c axis of the orthorhombic unit cell.« less

  19. Study of supported PtCu and PdAu bimetallic nanoparticles using in-situ x-ray tools.

    SciTech Connect (OSTI)

    Oxford, S. M.; Lee, P. L.; Chupas, P. J.; Chapman, K. W.; Kung, M. C.; Kung, H. H.; Northwestern Univ.

    2010-01-01

    A combination of two synchrotron X-ray techniques, X-ray absorption spectroscopy (XAS), and pair distribution function analysis (PDF) with complementary Fourier transform infrared (FTIR) spectroscopy measurement, was used to characterize the composition distributions of PdAu and PtCu bimetallic particles after treatment in H{sub 2} or CO and in the presence of these gases. This is the first reported application of PDF to the study of supported bimetallic nanoparticles. We found that XAS was informative in determining the component distribution of an initial sample, but PDF was better suited to following changes in the distribution upon changing the gas environment. Thus, the surface of a PtCu bimetallic particle of about 2.5 nm after treatment in H{sub 2} was found to be enriched in Cu, while the core was bimetallic. There was no evidence of a component-segregated core?shell structure. Treatment in CO caused enrichment of Pt to the surface layer, with a concomitant migration of Cu to the core. The average particle size remained the same. For the PdAu bimetallic particles, the surface and core compositions were similar after H{sub 2} treatment, and Pd was enriched in the surface after CO treatment. The X-ray results compared favorably to infrared spectroscopy results. The results demonstrated that the two X-ray techniques in combination can generate new information not available with either technique alone or other techniques, about the elemental distribution of bimetallic particles under conditions relevant to catalysis. They could provide new insight into structure-function relationships and time-on-stream behavior of bimetallic catalysts.

  20. Self-assembled Ni/TiO{sub 2} nanocomposite anodes synthesized...

    Office of Scientific and Technical Information (OSTI)

    Ni(core)TiOsub 2(shell) nanocomposite anodes were fabricated on three-dimensional, self-assembled nanotemplates of Tobacco mosaic virus using atomic layer deposition, exhibiting ...

  1. Simple route for the synthesis of supercapacitive Co-Ni mixed hydroxide thin films

    SciTech Connect (OSTI)

    Dubal, D.P.; Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 ; Jagadale, A.D.; Patil, S.V.; Lokhande, C.D.

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Novel method for deposition of Co-Ni mixed hydroxide. Black-Right-Pointing-Pointer Nanoparticle network of Co-Ni hydroxide. Black-Right-Pointing-Pointer High specific capacitance of 672 F g{sup -1}. Black-Right-Pointing-Pointer High discharge/charge rates. -- Abstract: Facile synthesis of Co-Ni mixed hydroxides films with interconnected nanoparticles networks through two step route is successfully established. These films have been characterized by X-ray diffraction (XRD), Fourier transform infrared technique (FTIR), scanning electron microscopy (SEM) and wettability test. Co-Ni film formation is confirmed from XRD and FTIR study. SEM shows that the surface of Co-Ni films is composed of interconnected nanoparticles. Contact angle measurement revealed the hydrophilic nature of films which is feasible for the supercapacitor. The electrochemical performance of the film is evaluated by cyclic voltammetry, and constant-current charge/discharge cycling techniques. Specific capacitance of the Co-Ni mixed hydroxide electrode achieved 672 F g{sup -1}. Impedance analysis shows that Co-Ni mixed hydroxide electrode provides less resistance for the intercalation and de-intercalation of ions. The Co-Ni mixed electrode exhibited good charge/discharge rate at different current densities. The results demonstrated that Co-Ni mixed hydroxide composite is very promising for the next generation high performance electrochemical supercapacitors.

  2. Ductile Ni.sub.3 Al alloys as bonding agents for ceramic materials

    DOE Patents [OSTI]

    Tiegs, Terry N.; McDonald, Robert R.

    1990-01-01

    An improved ceramic-metal composite comprising a mixture of a ceramic material with a ductile intermetallic alloy, preferably Ni.sub.3 Al.

  3. Ductile Ni[sub 3]Al alloys as bonding agents for ceramic materials in cutting tools

    DOE Patents [OSTI]

    Tiegs, T.N.; McDonald, R.R.

    1991-05-14

    An improved ceramic-metal composite comprising a mixture of a ceramic material with a ductile intermetallic alloy, preferably Ni[sub 3]Al is disclosed. 2 figures.

  4. Ductile Ni.sub.3 Al alloys as bonding agents for ceramic materials in cutting tools

    DOE Patents [OSTI]

    Tiegs, Terry N.; McDonald, Robert R.

    1991-01-01

    An improved ceramic-metal composite comprising a mixture of a ceramic material with a ductile intermetallic alloy, preferably Ni.sub.3 Al.

  5. Ductile Ni[sub 3]Al alloys as bonding agents for ceramic materials

    DOE Patents [OSTI]

    Tiegs, T.N.; McDonald, R.R.

    1990-04-24

    An improved ceramic-metal composite is described comprising a mixture of a ceramic material with a ductile intermetallic alloy, preferably Ni[sub 3]Al. 2 figs.

  6. SF6432-NI Fixed Price Contracts with the Newly Independent States...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... SITES (a) Permission to enter U.S. Government sites shall ... SF 6432-NI Title: Standard Terms & Conditions for Fixed ... premises are subject to search. (e) Contractor will ...

  7. SF6432-NI Fixed Price Contracts with the Newly Independent States...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... SITES Permission to enter U.S. Government sites shall ... premises are subject to search. (e) Contractor will ... Control : SF 6432-NI Title: Standard Terms & Conditions for ...

  8. Interfacial engineering of solution-processed Ni nanochain-SiOx...

    Office of Scientific and Technical Information (OSTI)

    Title: Interfacial engineering of solution-processed Ni ... 03755, USA Department of Chemical and Materials ... Type: Publisher's Accepted Manuscript Journal Name: Journal ...

  9. NiSource Energy Technologies Inc.: System Integration of Distributed Power for Complete Building Systems

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Summarizes NiSource Energy Technologies' work under contract to DOE's Distribution and Interconnection R&D. Includes studying distributed generation interconnection issues and CHP system performance.

  10. Effect of cold deformation on the recrystallization behavior of FePd alloy at the ordering temperature using electron backscatter diffraction

    SciTech Connect (OSTI)

    Lin, Hung-Pin; Chen, Yen-Chun; Chen, Delphic; Kuo, Jui-Chao

    2014-08-15

    In this study, the evolution of the recrystallization texture and microstructure was investigated after annealing of 50% and 90% cold-rolled FePd alloy at 530 C. The FePd alloy was produced by vacuum arc melting in an atmosphere of 97% Ar and 3% H{sub 2}. The specimens were cold rolled to achieve 50% and 90% reduction in thickness. Electron backscatter diffraction measurements were performed on the rolling directionnormal direction section. With increased deformation from 50% to 90%, recrystallized texture transition occurs. For the 50% cold-rolled alloy, the preferred orientation is (0 1 0) [11 0 1], which is close to the cubic orientation after 400 h of annealing. For the 90% cold-rolled alloy, the orientation changes to (0 5 4) [224 5] after 16 h of annealing. - Highlights: Texture and microstructure in cold-rolled FePd alloy was investigated during annealing using EBSD. The recrystallized texture of 50% cold-rolled FePd is (0 1 0) [11 0 1] at 530 C for 400 hours. The recrystallized texture of 90% cold-rolled FePd is changed to (0 5 4) [224 5] at 530 C after 16 hours.

  11. Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods

    SciTech Connect (OSTI)

    Lewis, Amanda; Zhao, Hongbin; Hopkins, Scott

    2014-09-30

    This report summarizes the work completed under the U.S. Department of Energy Project Award No.: DE-FE0001181 titled “Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods.” The project started in October 1, 2009 and was finished September 30, 2014. Pall Corporation worked with Cornell University to sputter and test palladium-based ternary alloys onto silicon wafers to examine many alloys at once. With the specialized equipment at Georgia Institute of Technology that analyzed the wafers for adsorbed carbon and sulfur species six compositions were identified to have resistance to carbon and sulfur species. These compositions were deposited on Pall AccuSep® supports by Colorado School of Mines and then tested in simulated synthetic coal gas at the Pall Corporation. Two of the six alloys were chosen for further investigations based on their performance. Alloy reproducibility and long-term testing of PdAuAg and PdZrAu provided insight to the ability to manufacture these compositions for testing. PdAuAg is the most promising alloy found in this work based on the fabrication reproducibility and resistance to carbon and sulfur. Although PdZrAu had great initial resistance to carbon and sulfur species, the alloy composition has a very narrow range that hindered testing reproducibility.

  12. Tuning magnetotransport in PdPt/Y{sub 3}Fe{sub 5}O{sub 12}: Effects of magnetic proximity and spin-orbit coupling

    SciTech Connect (OSTI)

    Zhou, X.; Ma, L.; Shi, Z.; Zhou, S. M.; Guo, G. Y.; Hu, J.; Wu, R. Q.

    2014-07-07

    We report that anisotropic magnetoresistance (AMR) and anomalous Hall conductivity (AHC) in the Pd{sub 1−x}Pt{sub x}/Y{sub 3}Fe{sub 5}O{sub 12} (YIG) bilayers could be tuned by varying the Pt concentration (x) and also temperature (T). In particular, the AHC at low T changes its sign when x increases from 0 to 1, agreeing with the negative and positive AHC predicted by our ab initio calculations for the magnetic proximity (MP)-induced ferromagnetic Pd and Pt, respectively. The AMR ratio is enhanced by ten times when x increases from 0 to 1. Furthermore, the AMR of PdPt/YIG bilayers shows similar T-dependence as the magnetic susceptibility of the corresponding bulk Pd/Pt, also indicating the MP effect as the origin of the AMR. The present work demonstrates that the alloying of Pt and Pd not only offers tunable spin-orbit coupling but also is useful to reveal the nature of the AMR and AHC in Pt/YIG bilayers, which are useful for spintronics applications.

  13. Blending Cr2O3 into a NiO-Ni electrocatalyst for sustained water splitting

    SciTech Connect (OSTI)

    Gong, Ming; Zhou, Wu; Kenney, Michael James; Kapusta, Rich; Cowley, Sam; Wu, Yingpeng; Lu, Bingan; Lin, Meng -Chang; Wang, Di -Yan; Yang, Jiang; Hwang, Bing -Joe; Dai, Hongjie

    2015-08-24

    The rising H2 economy demands active and durable electrocatalysts based on low-cost, earth-abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over-coated by a Cr2O3-blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr2O3 triphase material exhibits superior activity and stability similar to Pt for the hydrogen-evolution reaction in basic solutions. The chemically stable Cr2O3 is crucial for preventing oxidation of the Ni core, maintaining abundant NiO/Ni interfaces as catalytically active sites in the heterostructure and thus imparting high stability to the hydrogen-evolution catalyst. The highly active and stable electrocatalyst enables an alkaline electrolyzer operating at 20 mA cm2 at a voltage lower than 1.5 V, lasting longer than 3 weeks without decay. Thus, the non-precious metal catalysts afford a high efficiency of about 15 % for light-driven water splitting using GaAs solar cells.

  14. Hydrogen production via reforming of biogas over nanostructured Ni/Y catalyst: Effect of ultrasound irradiation and Ni-content on catalyst properties and performance

    SciTech Connect (OSTI)

    Sharifi, Mahdi; Haghighi, Mohammad; Abdollahifar, Mozaffar

    2014-12-15

    Highlights: • Synthesis of nanostructured Ni/Y catalyst by sonochemical and impregnation methods. • Enhancement of size distribution and active phase dispersion by employing sonochemical method. • Evaluation of biogas reforming over Ni/Y catalyst with different Ni-loadings. • Preparation of highly active and stable catalyst with low Ni content for biogas reforming. • Getting H{sub 2}/CO very close to equilibrium ratio by employing sonochemical method. - Abstract: The effect of ultrasound irradiation and various Ni-loadings on dispersion of active phase over zeolite Y were evaluated in biogas reforming for hydrogen production. X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray, Brunauer–Emmett–Teller, Fourier transform infrared analysis and TEM analysis were employed to observe the characteristics of nanostructured catalysts. The characterizations implied that utilization of ultrasound irradiation enhanced catalyst physicochemical properties including high dispersion of Ni on support, smallest particles size and high catalyst surface area. The reforming reactions were carried out at GHSV = 24 l/g.h, P = 1 atm, CH{sub 4}/CO{sub 2} = 1 and temperature range of 550–850 °C. Activity test displayed that ultrasound irradiated Ni(5 wt.%)/Y had the best performance and the activity remained stable during 600 min. Furthermore, the proposed reaction mechanism showed that there are three major reaction channels in biogas reforming.

  15. Investigation of defect clusters in ion-irradiated Ni and NiCo using diffuse X-ray scattering and electron microscopy

    SciTech Connect (OSTI)

    Olsen, Raina J.; Jin, Ke; Lu, Chenyang; Beland, Laurent K.; Wang, Lumin M.; Bei, Hongbin; Specht, Eliot D.; Larson, Bennett C.

    2016-01-01

    The nature of defect clusters in Ni and Ni$_{50}$Co$_{50}$ (NiCo) irradiated at room temperature with 2–16 MeV Ni ions is studied using asymptotic diffuse X-ray scattering and transmission electron microscopy (TEM). Analysis of the scattering data provides separate size distributions for vacancy and interstitial type defect clusters, showing that both types of defect clusters have a smaller size and higher density in NiCo than in Ni. Diffuse scattering results show good quantitative agreement with TEM results for cluster sizes greater than 4 nm diameter, but find that the majority of vacancy clusters are under 2 nm in NiCo, which, if not detected, would lead to the conclusion that defect density was actually lower in the alloy. Interstitial dislocation loops and stacking fault tetrahedra are identified by TEM. Lastly comparison of diffuse scattering lineshapes to those calculated for dislocation loops and SFTs indicates that most of the vacancy clusters are SFTs.

  16. Improved synthesis and crystal structure of the flexible pillared layer porous coordination polymer: Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN)4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wong-Ng, W.; Culp, J. T.; Chen, Y. S.; Zavalij, P.; Espinal, L.; Siderius, D. W.; Allen, A. J.; Scheins, S.; Matranga, C.

    2013-01-01

    This paper reports our synthesis of flexible coordination polymer, Ni(L)[Ni(CN)4], (L = 1,2-bis(4-pyridyl)ethylene (nicknamed bpene)), and its structural characterization using synchrotron single crystal X-ray diffraction. The structure of the purplish crystals has been determined to be monoclinic, space group P21/m, a = 13.5941(12) Å, b = 14.3621(12) Å, c = 14.2561(12) Å, β = 96.141(2)°, V = 2767.4(4) Å3, Z = 4, Dc = 1.46 g cm-1. Ni(bpene)[Ni(CN)4] assumes a pillared layer structure with layers defined by Ni[Ni(CN)4]n nets and bpene ligands acting as pillars. With the present crystallization technique which involves the use of concentrated ammonium hydroxide solution andmore » dimethyl sulfoxide (DMSO), disordered free bpene ligands and solvents of crystallization (DMSO and water molecules) occupy the pores, resulting in a formula of Ni(bpene)[Ni(CN)4](1/2)bpene∙DMSO2H2O, or Ni2N7C24H25SO3. Without the inclusion of free bpene ligands and solvent molecules, the free volume is approximately 61% of the total volume; this free volume fraction is reduced to 50% with the free ligands present. Pores without the free ligands were found to have a local diameter of 5.7 Å and a main aperture of 3.5 Å. Based on the successful crystal synthesis, we also devised a new bulk synthetic technique which yielded a polycrystalline material with a significantly improved CO2 uptake as compared to the originally reported powder material. The improved synthetic technique yielded a polycrystalline material with 40% higher CO2 uptake compared to the previously reported powder material. An estimated 14.4 molecules of CO2 per unit cell was obtained.« less

  17. Effect of the accumulation of excess Ni atoms in the crystal structure of the intermetallic semiconductor n-ZrNiSn

    SciTech Connect (OSTI)

    Romaka, V. A.; Rogl, P.; Romaka, V. V.; Stadnyk, Yu. V.; Hlil, E. K.; Krajovskii, V. Ya.; Horyn, A. M.

    2013-07-15

    The crystal structure, electron density distribution, and energy, kinetic, and magnetic properties of the n-ZrNiSn intermetallic semiconductor heavily doped with a Ni impurity are investigated. The effect of the accumulation of an excess number of Ni{sub 1+x} atoms in tetrahedral interstices of the crystal structure of the semiconductor is found and the donor nature of such structural defects that change the properties of the semiconductor is established. The results obtained are discussed within the Shklovskii-Efros model of a heavily doped and strongly compensated semiconductor.

  18. Improved oxidation sulfidation resistance of Fe-Cr-Ni alloys

    DOE Patents [OSTI]

    Natesan, K.; Baxter, D.J.

    1983-07-26

    High temperature resistance of Fe-Cr-Ni alloy compositions to oxidative and/or sulfidative conditions is provided by the incorporation of about 1 to 8 wt % of Zr or Nb and results in a two-phase composition having an alloy matrix as the first phase and a fine grained intermetallic composition as the second phase. The presence and location of the intermetallic composition between grains of the matrix provides mechanical strength, enhanced surface scale adhesion, and resistance to corrosive attack between grains of the alloy matrix at temperatures of 500 to 1000/sup 0/C.

  19. Oxidation sulfidation resistance of Fe-Cr-Ni alloys

    DOE Patents [OSTI]

    Natesan, Ken; Baxter, David J.

    1984-01-01

    High temperature resistance of Fe-Cr-Ni alloy compositions to oxidative and/or sulfidative conditions is provided by the incorporation of about 1-8 wt. % of Zr or Nb and results in a two-phase composition having an alloy matrix as the first phase and a fine grained intermetallic composition as the second phase. The presence and location of the intermetallic composition between grains of the matrix provides mechanical strength, enhanced surface scale adhesion, and resistance to corrosive attack between grains of the alloy matrix at temperatures of 500.degree.-1000.degree. C.

  20. Cu-Ni-Fe anodes having improved microstructure

    DOE Patents [OSTI]

    Bergsma, S. Craig; Brown, Craig W.

    2004-04-20

    A method of producing aluminum in a low temperature electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten electrolyte having alumina dissolved therein in an electrolytic cell containing the electrolyte. A non-consumable anode and cathode is disposed in the electrolyte, the anode comprised of Cu--Ni--Fe alloys having single metallurgical phase. Electric current is passed from the anode, through the electrolyte to the cathode thereby depositing aluminum on the cathode, and molten aluminum is collected from the cathode.

  1. Stable atomic structure of NiTi austenite

    SciTech Connect (OSTI)

    Zarkevich, Nikolai A; Johnson, Duane D

    2014-08-01

    Nitinol (NiTi), the most widely used shape-memory alloy, exhibits an austenite phase that has yet to be identified. The usually assumed austenitic structure is cubic B2, which has imaginary phonon modes, hence it is unstable. We suggest a stable austenitic structure that on average has B2 symmetry (observed by x-ray and neutron diffraction), but it exhibits finite atomic displacements from the ideal B2 sites. The proposed structure has a phonon spectrum that agrees with that from neutron scattering, has diffraction spectra in agreement with x-ray diffraction, and has an energy relative to the ground state that agrees with calorimetry data.

  2. Recent Advances in Pt Monolayer Electrocatalysts for Oxygen Reduction Reaction: Scale-up Synthesis, Structure, and Activity of Pt Shells on Pd Cores

    SciTech Connect (OSTI)

    Sasaki, K.; Wang, J.X.; Naohara, H.; Marinkovic, N.; More, Karren Leslie; Inada, H.; Adzic, R.R.

    2010-01-01

    We have established a scale-up synthesis method to produce gram-quantities of Pt monolayer electrocatalysts. The core-shell structure of the Pt/Pd/C electrocatalyst has been verified using the HAADF-STEM Z-contrast images, STEM/EELS, and STEM/EDS line profile analysis. The atomic structure of this electrocatalyst and formation of a Pt monolayer on Pd nanoparticle surfaces were examined using in situ EXAFS. The Pt mass activity of the Pt/Pd/C electrocatalyst for ORR is considerably higher than that of commercial Pt/C electrocatalysts. The results with Pt monolayer electrocatalysts may significantly impact science of electrocatalysis and fuel-cell technology, as they have demonstrated an exceptionally effective way of using Pt that can resolve problems of other approaches, including electrocatalysts inadequate activity and high Pt content.

  3. Recent Advances in Platinum Monolayer Electrocatalysts for Oxygen Reduction Reaction: Scale-up Synthesis Structure and Activity of Pt Shells on Pd Cores

    SciTech Connect (OSTI)

    Sasaki K.; Wang J.X.; Naohara H.; Marinkovic N.; More K.; Inada H.; Adzic R.R.

    2010-03-01

    We have established a scale-up synthesis method to produce gram-quantities of Pt monolayer electrocatalysts. The core-shell structure of the Pt/Pd/C electrocatalyst has been verified using the HAADF-STEM Z-contrast images, STEM/EELS, and STEM/EDS line profile analysis. The atomic structure of this electrocatalyst and formation of a Pt monolayer on Pd nanoparticle surfaces were examined using in situ EXAFS. The Pt mass activity of the Pt/Pd/C electrocatalyst for ORR is considerably higher than that of commercial Pt/C electrocatalysts. The results with Pt monolayer electrocatalysts may significantly impact science of electrocatalysis and fuel-cell technology, as they have demonstrated an exceptionally effective way of using Pt that can resolve problems of other approaches, including electrocatalysts inadequate activity and high Pt content.

  4. Visualizing the Surface Infrastructure Used to Move 2 MtCO2/year from the Dakota Gasification Company to the Weyburn CO2 Enhanced Oil Recovery Project: Version of July 1, 2009

    SciTech Connect (OSTI)

    Dooley, James J.

    2009-07-09

    Google Earth Pro has been employed to create an interactive flyover of the world’s largest operational carbon dioxide capture and storage project. The visualization focuses on the transport and storage of 2 MtCO2/year which is captured from the Dakota Gasification Facility (Beula, North Dakota) and transported 205 miles and injected into the Weyburn oil field in Southeastern Saskatchewan.

  5. Transformation of cis- and trans-2,3-dimethyloxiranes on a Pd/SiO{sub 2} catalyst

    SciTech Connect (OSTI)

    Fasi, A.; Notheisz, F.; Bartok, M.

    1997-04-01

    The transformation of cis- and trans-2,3-dimethyloxiranes on a Pd/SiO{sub 2} catalyst, leading to the formation of 2-butanone and 2-butanol, was studied in hydrogen and deuterium atmosphere. The effect of hydrogen and deuterium atmosphere. The effect of hydrogen pressure (1.3-100 kPa) and temperature (323-423 K) on the reaction rate was also measured. The transformation of the two stereoisomers involves different mechanisms. In the case of the cis-isomer, hydrogen participates in the cleavage of the C-O bond and different surface species belong to the two products. In the case of the trans-isomer, ring opening by hydrogen (the formation of 2-butanol) is less significant and the main reaction is intramolecular migration leading to the formation of 2-butanone. Considering the geometry of the adsorbed species, cis-2,3-dimethyloxirane is most probably adsorbed on the surface of the Pd catalyst in a planar manner, while the adsorption of the trans-isomer is intermediate between edgewise and planar adsorption model. 18 refs., 3 figs., 3 tabs.

  6. The effects of fabrication and annealing on the structure and hydrogen permeation of Pd-Au binary alloy membranes

    SciTech Connect (OSTI)

    Gade, Sabina K; Payzant, E Andrew; Park, Helen J; Thoen, Paul M; Way, J. Douglas

    2009-01-01

    The addition of gold to palladium membranes produces many desirable effects for hydrogen purification, including improved tolerance of sulfur compounds, reduction in hydride phase formation, and, for certain compositions, improved hydrogen permeability. The focus of this work is to determine if sequential plating can be used to produce self-supported alloy membranes with equivalent properties to membranes produced by conventional metallurgical techniques such as cold-working. Sequential electroplating and electroless plating were used to produce freestanding planar Pd-Au membranes with Au contents ranging from 0 to 20 wt%, consisting of Au layers on both sides of a pure Pd core. Membranes were characterized by single-gas permeation measurements, scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS), and high temperature, controlled-atmosphere XRD (HTXRD). Sequentially plated foils tested without any prior annealing had significantly lower H2 permeabilities than either measured or literature values for homogeneous foils of equivalent composition. This effect appears to be due to the formation of stable gold-enriched surface layers. Pretreatment of membranes to 1023 K created membranes with hydrogen permeabilities equivalent to literature values, despite the fact that trace amounts of surface gold remained detectable with XRD.

  7. Final Technical Report: First Principles Investigations for the Ensemble Effects of PdAu and PtAu Bimetallic Nanocatalysts

    SciTech Connect (OSTI)

    Ruqian Wu

    2012-05-18

    Bimetallic surfaces with tunable chemical properties have attracted broad attention in recent years due to their ample potential for heterogeneous catalysis applications. The local chemical properties of constituents are strongly altered from their parent metals by 'ligand effect', a term encompassing the influences of charge transfer, orbital rehybridization and lattice strain. In comparison to the aforementioned, the 'ensemble effect' associated with particular arrangements of the active constituents have received much less attention, despite their notable importance towards the determination of reactivity and selectivity of bimetallic catalysts. We performed theoretical studies for understanding the ensemble effects on bimetallic catalysis: (i) simulations for the formation of different ensembles on PdAu and PtAu nanoclusters; (ii) studies of the size, shape, and substrate dependence of their electronic properties; and (iii) simulations for model reactions such as CO oxidation, methanol, ethylene and water dehydrogenation on PdAu and PtAu nanoclusters. In close collaboration with leading experimental groups, our theoretical research elucidated the fundamentals of Au based bimetallic nanocatalysts.

  8. Electrolysis of uranium nitride containing fission product elements (Mo, Pd, Nd) in a molten LiCl-KCl eutectic

    SciTech Connect (OSTI)

    Satoh, Takumi; Iwai, Takashi; Arai, Yasuo

    2007-07-01

    The electrolysis of burnup-simulated uranium nitride, UN, containing representative solid fission product elements (Mo, Pd, Nd) was investigated in the molten LiCl-KCl eutectic salt with 0.54 wt% UCl{sub 3} from the view point of application of pyrochemical reprocessing to nitride fuel cycle. It was found from cyclic voltammetry and anodic polarization curve measurement that anodic dissolution of UN began at about -0.75 V vs. Ag/AgCl reference electrode in all samples. After the electrolysis at the constant anodic potential of -0.65 {approx} -0.60 V vs. Ag/AgCl, most of UN was dissolved into LiCl- KCl as UCl{sub 3} at the anode, and U was recovered in the liquid Cd cathode in all samples. Further, Nd was dissolved into LiCl-KCl as NdCl{sub 3}, while Mo and Pd were not dissolved but remained at the anode. (authors)

  9. Green Synthesis of Ag and Pd Nanospheres, Nanowires, and Nanorods Using VitaminB2: Catalytic Polymerisation of Aniline and Pyrrole

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nadagouda, Mallikarjuna N.; Varma, Rajender S.

    2008-01-01

    For the first time, we report green chemistry approach using vitaminB2in the synthesis of silver (Ag) and palladium (Pd), nanospheres, nanowires, and nanorods at room temperature without using any harmful reducing agents, such as sodium borohydride (NaBH4) or hydroxylamine hydrochloride and any special capping or dispersing agent. VitaminB2was used as reducing agent as well as capping agent due to its high-water solubility, biodegradability, and low-toxicity compared with other reducing agents. The average particle size of nanoprticle was found to be Ag (average size 6.10.1?nm) and Pd (average size 4.10.1?nm) nanoparticles in ethylene glycol and Agmore(average size 5.90.1?nm, and average size 6.10.1) nanoparticles in acetic acid and NMP, respectively. The formation of noble multiple shape nanostructures and their self assembly were dependent on the solvent employed for the preparation. When water was used as solvent media, Ag and Pd nanoparticles started to self-assemble into rod-like structures and in isopropanol Ag and Pd nanoparticles yielded wire-like structures with a thickness in the range of 10 to 20?nm and several hundred microns in length. In acetone and acetonitrile medium, the Ag and Pd nanoparticles are self-assembled into a regular pattern making nanorod structures with thicknesses ranging from 100 to 200?nm and lengths of a few microns. The so-synthesized nanostructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, and UV spectroscopy. The ensuing Ag and Pd nanoparticles catalyzed the reactions of aniline and pyrrole to generate polyaniline and polypyrrole nanofibers and may find various technological and biological applications. This single-step greener approach is general and can be extended to other noble metals and transition metal oxides.less

  10. Mo{sub 2}NiB{sub 2}-type (Gd, Tb, Dy){sub 2}Ni{sub 2.35}Si{sub 0.65} and La{sub 2}Ni{sub 3}-type (Dy, Ho){sub 2}Ni{sub 2.5}Si{sub 0.5} compounds: Crystal structure and magnetic properties

    SciTech Connect (OSTI)

    Morozkin, A.V.; Isnard, O.; Nirmala, R.; Malik, S.K.

    2015-05-15

    The crystal structure of new Mo{sub 2}NiB{sub 2}-type (Gd, Tb, Dy){sub 2}Ni{sub 2.35}Si{sub 0.65} (Immm, No. 71, oI10) and La{sub 2}Ni{sub 3}-type (Dy, Ho){sub 2}Ni{sub 2.5}Si{sub 0.5} (Cmce No. 64, oC20) compounds has been established using powder X-ray diffraction studies. Magnetization measurements show that the Mo{sub 2}NiB{sub 2}-type Gd{sub 2}Ni{sub 2.35}Si{sub 0.65} undergoes a ferromagnetic transition at ~66 K, whereas isostructural Tb{sub 2}Ni{sub 2.35}Si{sub 0.65} shows an antiferromagnetic transition at ~52 K and a field-induced metamagnetic transition at low temperatures. Neutron diffraction study shows that, in zero applied field, Tb{sub 2}Ni{sub 2.35}Si{sub 0.65} exhibits c-axis antiferromagnetic order with propagation vector K=[1/2, 0, 1/2] below its magnetic ordering temperature and Tb magnetic moment reaches a value of 8.32(5) μ{sub B} at 2 K. The La{sub 2}Ni{sub 3}-type Dy{sub 2}Ni{sub 2.5}Si{sub 0.5} exhibits ferromagnetic like transition at ~42 K with coexisting antiferromagnetic interactions and field induced metamagnetic transition below ~17 K. The magnetocaloric effect of Gd{sub 2}Ni{sub 2.35}Si{sub 0.65}, Tb{sub 2}Ni{sub 2.35}Si{sub 0.65} and Dy{sub 2}Ni{sub 2.5}Si{sub 0.5} is calculated in terms of isothermal magnetic entropy change and it reaches a maximum value of −14.3 J/kg K, −5.3 J/kg K and −10.3 J/kg K for a field change of 50 kOe near 66 K, 52 K and 42 K, respectively. Low temperature magnetic ordering with enhanced anisotropic effects in Tb{sub 2}Ni{sub 2.35}Si{sub 0.65} and Dy{sub 2}Ni{sub 2.35}Si{sub 0.65} is accompanied by a positive magnetocaloric effect with isothermal magnetic entropy changes of +12.8 J/kg K and ~+9.9 J/kg K, respectively at 7 K for a field change of 50 kOe. - Graphical abstract: The (Gd, Tb, Dy){sub 2}Ni{sub 2.35}Si{sub 0.65} supplement the series of Mo{sub 2}NiB{sub 2}-type rare earth compounds, whereas the (Dy, Ho){sub 2}Ni{sub 2.5}Si{sub 0.5} supplement the series of La{sub 2}Ni{sub 3}-type rare

  11. Deformations and magnetic rotations in the {sup 60}Ni nucleus

    SciTech Connect (OSTI)

    Torres, D. A.; Cristancho, F.; Andersson, L.-L.; Johansson, E. K.; Rudolph, D.; Fahlander, C.; Ekman, J.; Rietz, R. du; Andreoiu, C.; Carpenter, M. P.; Seweryniak, D.; Zhu, S.; Charity, R. J.; Chiara, C. J.; Hoel, C.; Pechenaya, O. L.; Reviol, W.; Sarantites, D. G.; Sobotka, L. G.; Baktash, C.

    2008-11-15

    Data from three experiments using the heavy-ion fusion evaporation-reaction {sup 36}Ar+{sup 28}Si have been combined to study high-spin states in the residual nucleus {sup 60}Ni, which is populated via the evaporation of four protons from the compound nucleus {sup 64}Ge. The GAMMASPHERE array was used for all the experiments in conjunction with a 4{pi} charged-particle detector arrays (MICROBALL, LUWUSIA) and neutron detectors (NEUTRON SHELL) to allow for the detection of {gamma} rays in coincidence with the evaporated particles. An extended {sup 60}Ni level scheme is presented, comprising more than 270{gamma}-ray transitions and 110 excited states. Their spins and parities have been assigned via directional correlations of {gamma} rays emitted from oriented states. Spherical shell-model calculations in the fp-shell characterize some of the low-spin states, while the experimental results of the rotational bands are analyzed with configuration-dependent cranked Nilsson-Strutinsky calculations.

  12. Influence of ion irradiation on switching field and switching field distribution in arrays of Co/Pd-based bit pattern media

    SciTech Connect (OSTI)

    Hauet, T.; Hellwig, O.; Dobisz, E.; Terris, B. D.; Park, S.-H.; Ravelosona, D.; Beigne, C.

    2011-04-25

    We have used ion irradiation to tune switching field and switching field distribution (SFD) in polycrystalline Co/Pd multilayer-based bit pattern media. Light He{sup +} ion irradiation strongly decreases perpendicular magnetic anisotropy amplitude due to Co/Pd interface intermixing, while the granular structure, i.e., the crystalline anisotropy, remains unchanged. In dot arrays, the anisotropy reduction leads to a decrease in coercivity (H{sub C}) but also to a strong broadening of the normalized SFD/H{sub C} (in percentage), since the relative impact of misaligned grains is enhanced. Our experiment thus confirms the major role of misorientated grains in SFD of nanodevice arrays.

  13. Structural and magnetic phase transitions in CeCu6-xTx (T = Ag,Pd)

    SciTech Connect (OSTI)

    Poudel, Lekhanath N.; De la cruz, Clarina; Payzant, E. Andrew; Koehler, Michael R.; May, Andrew F.; Garlea, Vasile O.; Taylor, Alice E.; Parker, David S.; Cao, Huibo B.; McGuire, Michael A.; Tian, Wei; Matsuda, Masaaki; Jeen, Hyoung Jeen; Lee, Ho Nyung; Hong, Tao; Calder, Stuart A.; Lumsden, Mark D.; Zhou, Haidong; Keppens, Veerle; Mandrus, D.; Christianson, Andrew D.

    2015-12-15

    The structural and the magnetic properties of CeCu6-xAgx (0 ≤ x ≤ 0.85) and CeCu6-xPdx (0 ≤ x ≤ 0.4) have been studied using neutron diffraction, resonant ultrasound spectroscopy (RUS), x-ray diffraction measurements, and first principles calculations. The structural and magnetic phase diagrams of CeCu6-xAgx and CeCu6-xPdx as a function of Ag/Pd composition are reported. The end member, CeCu6, undergoes a structural phase transition from an orthorhombic (Pnma) to a monoclinic (P21/c) phase at 240 K. In CeCu6-xAgx, the structural phase transition temperature (Ts) decreases linearly with Ag concentration and extrapolates to zero at xS ≈ 0.1. The structural transition in CeCu6-xPdx remains unperturbed with Pd substitution within the range of our study. The lattice constant b slightly decreases with Ag/Pd doping, whereas a and c increase with an overall increase in the unit cell volume. Both systems, CeCu6-xAgx and CeCu6-xPdx, exhibit a magnetic quantum critical point (QCP), at x ≈ 0.2 and x ≈ 0.05, respectively. Near the QCP, long range antiferromagnetic ordering takes place at an incommensurate wave vector (δ1 0 δ2), where δ1 ~ 0.62, δ2 ~ 0.25, x = 0.125 for CeCu6-xPdx and δ1 ~ 0.64, δ2 ~ 0.3, x = 0.3 for CeCu6-xAgx. As a result, the magnetic structure consists of an amplitude modulation of the Ce moments which are aligned along the c axis of the orthorhombic unit cell.

  14. Doubly-magic nature of {sup 56}Ni: Measurement of the ground state nuclear magnetic dipole moment of {sup 55}Ni

    SciTech Connect (OSTI)

    Berryman, J. S.; Crawford, H. L.; Mantica, P. F.; Stoker, J. B.; Minamisono, K.; Grinyer, G. F.; Rogers, W. F.; Brown, B. A.; Towner, I. S.

    2009-06-15

    The nuclear magnetic moment of the ground state of {sup 55}Ni (I{sup {pi}}=3/2{sup -}, T{sub 1/2}=204 ms) has been deduced to be |{mu}({sup 55}Ni)|=(0.976{+-}0.026) {mu}{sub N} using the {beta}-ray detecting nuclear magnetic resonance technique. Results of a shell model calculation in the full fp shell model space with the GXPF1 interaction reproduce the experimental value. Together with the known magnetic moment of the mirror partner {sup 55}Co, the isoscalar spin expectation value was extracted as <{sigma}{sigma}{sub z}>=0.91{+-}0.07. The <{sigma}{sigma}{sub z}> shows a trend similar to that established in the sd shell. The present theoretical interpretations of both {mu}({sup 55}Ni) and <{sigma}{sigma}{sub z}> for the T=1/2, A=55 mirror partners support the softness of the {sup 56}Ni core.

  15. Method For Making Electronic Circuits Having Nial And Ni3al Substrates

    DOE Patents [OSTI]

    Deevi, Seetharama C.; Sikka, Vinod K.

    2001-01-30

    A method for making electronic circuit component having improved mechanical properties and thermal conductivity comprises steps of providing NiAl and/or Ni.sub.3 Al, and forming an alumina layer thereupon prior to applying the conductive elements. Additional layers of copper-aluminum alloy or copper further improve mechanical strength and thermal conductivity.

  16. Features of primary damage by high energy displacement cascades in concentrated Ni-based alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Béland, Laurent Karim; Lu, Chenyang; Osetskiy, Yuri N.; Samolyuk, German D.; Caro, Alfredo; Wang, Lumin; Stoller, Roger E.

    2016-02-25

    Alloying of Ni with Fe or Co reduces primary damage production under ion irradiation. Similar results have been obtained from classical molecular dynamics simulations of 1, 10, 20, and 40 keV collision cascades in Ni, NiFe, and NiCo. In all cases, a mix of imperfect stacking fault tetrahedra, faulted loops with a 1/3 {111} Burgers vector, and glissile interstitial loops with a 1/2 {110} Burgers vector were formed, along with small sessile point defect complexes and clusters. Primary damage reduction occurs by three mechanisms. First, Ni-Co, Ni-Fe, Co-Co, and Fe-Fe short-distance repulsive interactions are stiffer than Ni-Ni interactions, which leadmore » to a decrease in damage formation during the transition from the supersonic ballistic regime to the sonic regime. This largely controls final defect production. Second, alloying decreases thermal conductivity, leading to a longer thermal spike lifetime. The associated annealing reduces final damage production. These two mechanisms are especially important at cascades energies less than 40 keV. Third, at the higher energies, the production of large defect clusters by subcascades is inhibited in the alloys. A number of challenges and limitations pertaining to predictive atomistic modeling of alloys under high-energy particle irradiation are discussed.« less

  17. Nanoscale compositional analysis of NiTi shape memory alloy films deposited by DC magnetron sputtering

    SciTech Connect (OSTI)

    Sharma, S. K.; Mohan, S.; Bysakh, S.; Kumar, A.; Kamat, S. V.

    2013-11-15

    The formation of surface oxide layer as well as compositional changes along the thickness for NiTi shape memory alloy thin films deposited by direct current magnetron sputtering at substrate temperature of 300 °C in the as-deposited condition as well as in the postannealed (at 600 °C) condition have been thoroughly studied by using secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and scanning transmission electron microscopy-energy dispersive x-ray spectroscopy techniques. Formation of titanium oxide (predominantly titanium dioxide) layer was observed in both as-deposited and postannealed NiTi films, although the oxide layer was much thinner (8 nm) in as-deposited condition. The depletion of Ti and enrichment of Ni below the oxide layer in postannealed films also resulted in the formation of a graded microstructure consisting of titanium oxide, Ni{sub 3}Ti, and B2 NiTi. A uniform composition of B2 NiTi was obtained in the postannealed film only below a depth of 200–250 nm from the surface. Postannealed film also exhibited formation of a ternary silicide (Ni{sub x}Ti{sub y}Si) at the film–substrate interface, whereas no silicide was seen in the as-deposited film. The formation of silicide also caused a depletion of Ni in the film in a region ∼250–300 nm just above the film substrate interface.

  18. Effect of Co/Ni ratios in cobalt nickel mixed oxide catalysts on methane combustion

    SciTech Connect (OSTI)

    Lim, Tae Hwan; Cho, Sung June; Yang, Hee Sung; Engelhard, Mark H.; Kim, Do Heui

    2015-07-31

    A series of cobalt nickel mixed oxide catalysts with the varying ratios of Co to Ni, prepared by co-precipitation method, were applied to methane combustion. Among the various ratios, cobalt nickel mixed oxides having the ratios of Co to Ni of (50:50) and (67:33) demonstrate the highest activity for methane combustion. Structural analysis obtained from X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) evidently demonstrates that CoNi (50:50) and (67:33) samples consist of NiCo2O4and NiO phase and, more importantly, NiCo2O4spinel structure is largely distorted, which is attributed to the insertion of Ni2+ions into octahedral sites in Co3O4spinel structure. Such structural dis-order results in the enhanced portion of surface oxygen species, thus leading to the improved reducibility of the catalysts in the low temperature region as evidenced by temperature programmed reduction by hydrogen (H2TPR) and X-ray photoelectron spectroscopy (XPS) O 1s results. They prove that structural disorder in cobalt nickel mixed oxides enhances the catalytic performance for methane combustion. Thus, it is concluded that a strong relationship between structural property and activity in cobalt nickel mixed oxide for methane combustion exists and, more importantly, distorted NiCo2O4spinel structure is found to be an active site for methane combustion.

  19. Structure of the NiFe2O4(001) surface in contact with gaseous...

    Office of Scientific and Technical Information (OSTI)

    Structure of the NiFe2O4(001) surface in contact with gaseous O2 and water vapor Citation ... Title: Structure of the NiFe2O4(001) surface in contact with gaseous O2 and water vapor ...

  20. Crystallization study of amorphous sputtered NiTi bi-layer thin film

    SciTech Connect (OSTI)

    Mohri, Maryam; Nili-Ahmadabadi, Mahmoud; Chakravadhanula, Venkata Sai Kiran

    2015-05-15

    The crystallization of Ni-rich/NiTiCu bi-layer thin film deposited by magnetron sputtering from two separate alloy targets was investigated. To achieve the shape memory effect, the NiTi thin films deposited at room temperature with amorphous structure were annealed at 773 K for 15, 30, and 60 min for crystallization. Characterization of the films was carried out by differential scanning calorimetry to indicate the crystallization temperature, grazing incidence X-ray diffraction to identify the phase structures, atomic force microscopy to evaluate surface morphology, scanning transmission electron microscopy to study the cross section of the thin films. The results show that the structure of the annealed thin films strongly depends on the temperature and time of the annealing. Crystalline grains nucleated first at the surface and then grew inward to form columnar grains. Furthermore, the crystallization behavior was markedly affected by composition variations. - Highlights: • A developed bi-layer Ni45TiCu5/Ni50.8Ti was deposited on Si substrate and crystallized. • During crystallization, The Ni{sub 45}TiCu{sub 5} layer is thermally less stable than the Ni-rich layer. • The activation energy is 302 and 464 kJ/mol for Cu-rich and Ni-rich layer in bi-layer, respectively.