Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mt magnetotellurics z-axis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Z-Axis Tipper Electromagnetics | Open Energy Information  

Open Energy Info (EERE)

Z-Axis Tipper Electromagnetics Z-Axis Tipper Electromagnetics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Z-Axis Tipper Electromagnetics Details Activities (2) Areas (2) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Magnetotelluric Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 4,827.00482,700 centUSD 4.827 kUSD 0.00483 MUSD 4.827e-6 TUSD / mile Median Estimate (USD): 6,206.14620,614 centUSD 6.206 kUSD 0.00621 MUSD 6.20614e-6 TUSD / mile High-End Estimate (USD): 17,239.291,723,929 centUSD 17.239 kUSD 0.0172 MUSD 1.723929e-5 TUSD / mile Dictionary.png

2

MT3D: a 3 dimensional magnetotelluric modeling program (user's guide and documentation for Rev. 1)  

DOE Green Energy (OSTI)

MT3D.REV1 is a non-interactive computer program written in FORTRAN to do 3-dimensional magnetotelluric modeling. A 3-D volume integral equation has been adapted to simulate the MT response of a 3D body in the earth. An integro-difference scheme has been incorporated to increase the accuracy. This is a user's guide for MT3D.REV1 on the University of Utah Research Institute's (UURI) PRIME 400 computer operating under PRIMOS IV, Rev. 17.

Nutter, C.; Wannamaker, P.E.

1980-11-01T23:59:59.000Z

3

Magnetotelluric measurements  

DOE Green Energy (OSTI)

The ideas of flux quantization and Josephson tunneling are reviewed, and the operation of the dc SQUID as a magnetometer is described. The SQUID currently used for magnetotellurics has a sensitivity of 10/sup -14/ T Hz/sup -1/2/, a dynamic range at 10/sup 7/ in a 1 Hz bandwidth, a frequency response from 0 to 40 kHz, and a slewing rate of 5 x 10/sup -5/T s/sup -1/. Recent improvements in sensitivity are discussed: SQUIDS are rapidly approaching the limit imposed by the uncertainty principle. The essential ideas of magnetotelluric (MT) measurements are outlined, and it is shown how the remote reference method can lead to major reductions in bias errors compared to more conventional schemes. The field techniques of the Berkeley group are described. The practical application of MT requires that amplitude and phase spectra of apparent resistivities be transformed into a geologically useful distribution of subsurface resistivities. In many areas where MT is being applied today, the technique may not provide the information needed because stations are too few and widely spaced, or because we are unable to interpret data influenced by complex 3-D resistivity features. The results of two surveys, one detailed, the other regional, over the Klamath Basin, Oregon, are examined. The detailed survey is able to resolve small (1 km wide) structural features that are missed or add a component of spatial aliasing to the regional data. On the other hand, the regional survey avoids truncation effects that may occur when the survey undersamples an area.

Clarke, J.; Goldstein, N.E.

1980-06-01T23:59:59.000Z

4

Definition: Magnetotellurics | Open Energy Information  

Open Energy Info (EERE)

Magnetotellurics Magnetotellurics Jump to: navigation, search Dictionary.png Magnetotellurics Magnetotellurics (MT) is a natural-source (i.e., passive), electromagnetic method that measures the ratio of earth's naturally varying electric and magnetic fields over a wide range of frequencies to determine the resistivity structure of the subsurface (Reynolds, 1997). View on Wikipedia Wikipedia Definition Related Terms sustainability Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Magnetotellurics&oldid=502655" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services

5

Magnetotellurics At Dixie Hot Springs Area (Combs 2006) | Open...  

Open Energy Info (EERE)

Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes "MT, EM sounding, SP?; SP data and reservoir model may be...

6

Magnetotellurics At Soda Lake Area (Combs 2006) | Open Energy...  

Open Energy Info (EERE)

Lake Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes "EM sounding, MT, CSAMT, dipole-dipole resistivity; reservoir...

7

Definition: Magnetotelluric Techniques | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Magnetotelluric Techniques Jump to: navigation, search Dictionary.png Magnetotelluric Techniques Magnetotellurics is an electromagnetic geophysical method used to image the electrical resistivity structure of the subsurface through the measurement of electrical and magnetic fields at the earth's surface.[1] View on Wikipedia Wikipedia Definition Magnetotellurics (MT) is an electromagnetic geophysical method of imaging the earth's subsurface by measuring natural variations of electrical and magnetic fields at the Earth's surface. Investigation depth ranges from 300m below ground by recording higher frequencies down to 10,000m or deeper with long-period soundings. Developed in Russia and

8

Three dimensional magnetotelluric modeling  

DOE Green Energy (OSTI)

A three-dimensional (3D) volume integral equation solution was refined and adapted to magnetotelluric (MT) modeling. The refinement, incorporating an integro-difference scheme, increases the accuracy somewhat without increasing the computer time. Utilizing the two symmetry planes for a plane wave source decreases the computer storage by a factor of 8 and greatly reduces the computer time. Convergence checks and comparisons with other solutions show that our results are valid. Because of space charges at resistivity boundaries, low-frequency 3D responses are much different from 1D and 2D responses. Hence 3D models are required for interpreting MT data in the complex geothermal environment.

Hohmann, G.W.; Ting, S.C.

1978-07-01T23:59:59.000Z

9

A Five-Component Magneto-Telluric Method In Geothermal Exploration...  

Open Energy Info (EERE)

Exploration- The Mt-5-Ex Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Five-Component Magneto-Telluric Method In Geothermal Exploration-...

10

Magnetotellurics At Kilauea East Rift Area (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Magnetotellurics At Kilauea East Rift Area (Laney, Magnetotellurics At Kilauea East Rift Area (Laney, 2005) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes Magnetotelluric Imaging, G. Michael Hoversten. The project title derived from its inception. The project however moved from the application of MT on Kilauea in 2003 to the use of combined SP and conductivity mapping (MT) in 2004. The beginning of 2004 saw the completions of the Kilauea MT experiment by the acquisition of an additional 45 MT stations on Kilauea. We therefore decided to use the funds available to work at the Fort Bidwell Indian reservation where characterization work could be done at relatively low cost. We decided to perform a time lapse SP survey during a flow test

11

Magnetotellurics At Coso Geothermal Area (2006) | Open Energy Information  

Open Energy Info (EERE)

Magnetotellurics At Coso Geothermal Area (2006) Magnetotellurics At Coso Geothermal Area (2006) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Magnetotellurics Activity Date 2006 Usefulness useful DOE-funding Unknown Exploration Basis Use magnetotelluric data to model the reservoir. Notes Magnetotelluric (MT) data from 101 tensor stations over the East Flank of the Coso geothermal field, southeastern California, were inverted on a PC using a 3-D Gauss-Newton regularization algorithm based on a staggered-grid, finite difference forward problem and jacobians. Static shifts at each MT site can be included as additional parameters and solved for simultaneously. Recent modifications to the algorithm developed here include the addition of an LU solver to calculate the model parameter

12

Magnetotellurics At Kilauea Southwest Rift And South Flank Area (Laney,  

Open Energy Info (EERE)

Laney, Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Kilauea Southwest Rift And South Flank Area (Laney, 2005) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes Magnetotelluric Imaging, G. Michael Hoversten. The project title derived from its inception. The project however moved from the application of MT on Kilauea in 2003 to the use of combined SP and conductivity mapping (MT) in 2004. The beginning of 2004 saw the completions of the Kilauea MT experiment by the acquisition of an additional 45 MT stations on Kilauea. We therefore decided to use the funds available to work at the Fort Bidwell

13

Magnetotellurics At Truckhaven Area (Layman Energy Associates, 2010) | Open  

Open Energy Info (EERE)

Magnetotellurics At Truckhaven Area (Layman Energy Magnetotellurics At Truckhaven Area (Layman Energy Associates, 2010) Exploration Activity Details Location Truckhaven Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes The area of coverage for the DOE-funded geophysical surveys is shown in Figure 9. The 95 magnetotelluric (MT) soundings cover a central area of about 80 square kilometers. The 126 gravity stations extend over a broader area of about 150 square kilometers, centered on the same area covered by the MT soundings. A detailed description of the instrumentation and data acquisition procedures used for both surveys is provided in GSY-USA, Inc. (2003a). References Layman Energy Associates Inc. (2006) Final Scientific - Technical Report, Geothermal Resource Exploration Program, Truckhaven Area, Imperial

14

Magnetotellurics At Coso Geothermal Area (2004) | Open Energy Information  

Open Energy Info (EERE)

Magnetotellurics At Coso Geothermal Area (2004) Magnetotellurics At Coso Geothermal Area (2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Magnetotellurics Activity Date 2004 Usefulness not indicated DOE-funding Unknown Exploration Basis EGS potential of Coso Geothermal Region Notes A dense grid of magnetotelluric (MT) stations plus contiguous bipole array profiling centered over the east flank of the Coso geothermal system is being acquired. Acquiring good quality MT data in producing geothermal systems is a challenge due to production related electromagnetic (EM) noise and, in the case of Coso, due to proximity of a regional DC intertie power transmission line. To achieve good results, a remote reference completely outside the influence of the dominant source of EM noise must be

15

Magnetotellurics | Open Energy Information  

Open Energy Info (EERE)

Magnetotellurics Magnetotellurics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Magnetotellurics Details Activities (39) Areas (36) Regions (5) NEPA(8) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Magnetotelluric Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Cost Information Low-End Estimate (USD): 522.2252,222 centUSD

16

Magnetotellurics At Dixie Valley Geothermal Field Area (Laney, 2005) | Open  

Open Energy Info (EERE)

2005) 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation Mt/Galvanic Array Profiling, Phillip Wannamaker. A new-generation MT/DC array resistivity measurement system was applied at the Dixie Valley thermal area. Basic goals of the survey are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault

17

Magnetotellurics At Akutan Fumaroles Area (Kolker, Et Al., 2010) | Open  

Open Energy Info (EERE)

Akutan Fumaroles Area (Kolker, Et Al., 2010) Akutan Fumaroles Area (Kolker, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Akutan Fumaroles Area (Kolker, Et Al., 2010) Exploration Activity Details Location Akutan Fumaroles Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes "The 2009 MT survey detects a resistivity pattern typical of most economically viable geothermal reservoirs where a low resistivity, low permeability hydrothermal smectite alteration layer caps a higher temperature, permeable geothermal reservoir. The MT resistivity pattern indicates that a hydrothermally altered clay cap exists near the fumarole and probably overlies an outflow connection from the fumarole to the

18

2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets...  

Open Energy Info (EERE)

a 2-D magnetotelluric (MT) survey has been carried out on a 13 km long profile across the thermal anomaly in the area of the geothermal power plant of Soultz-sous-Forets in the...

19

A Target-Oriented Magnetotelluric Inversion Approach For Characterizing The  

Open Energy Info (EERE)

Target-Oriented Magnetotelluric Inversion Approach For Characterizing The Target-Oriented Magnetotelluric Inversion Approach For Characterizing The Low Enthalpy Gross Schonebeck Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Target-Oriented Magnetotelluric Inversion Approach For Characterizing The Low Enthalpy Gross Schonebeck Geothermal Reservoir Details Activities (0) Areas (0) Regions (0) Abstract: Electrical conductivity is a key parameter for the exploration and characterization of geothermal reservoirs as hot mineralized formation water of active geothermal areas usually exhibits significantly higher conductivity than the surrounding host rock. Here we present results of a magnetotelluric (MT) exploration experiment carried out in the vicinity of the Gross Schonebeck geothermal test site in Northern Germany, where a

20

Three-dimensional magnetotelluric characterization of the Coso geothermal  

Open Energy Info (EERE)

magnetotelluric characterization of the Coso geothermal magnetotelluric characterization of the Coso geothermal field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Three-dimensional magnetotelluric characterization of the Coso geothermal field Details Activities (1) Areas (1) Regions (0) Abstract: A dense grid of 125 magnetotelluric (MT) stations plus a single line of contiguous bipole array profiling has been acquired over the east flank of the Coso geothermal system, CA, USA. Due to production related electromagnetic (EM) noise the permanent observatory at Parkfield, CA was used as a remote reference to suppress this cultural EM noise interference. These data have been inverted to a fully three-dimensional (3D) resistivity model. This model shows the controlling geological structures possibly

Note: This page contains sample records for the topic "mt magnetotellurics z-axis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Further Analysis of 3D Magnetotelluric Measurements Over the Coso  

Open Energy Info (EERE)

Further Analysis of 3D Magnetotelluric Measurements Over the Coso Further Analysis of 3D Magnetotelluric Measurements Over the Coso Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Further Analysis of 3D Magnetotelluric Measurements Over the Coso Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: At last year's GRC annual meeting we presented initial results of a 3D investigation of the Coso Geothermal field utilizing a dense grid of magnetotelluric (MT) stations plus a single line of contiguous bipole array profiling over the east flank of the field (Newman et al., 2005). Motivation for this study is that electrical resistivity/ conductivity mapping can contribute to better improved understanding of enhanced geothermal systems (EGS) by imaging the geometry, bounds and controlling

22

Magnetotellurics At Northern Basin & Range Region (Pritchett, 2004) | Open  

Open Energy Info (EERE)

Magnetotellurics At Northern Basin & Range Region Magnetotellurics At Northern Basin & Range Region (Pritchett, 2004) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best way to find "hidden" basin and range geothermal resources of this general type is to carry out simultaneous SP and low-frequency MT surveys, and then

23

Magnetotellurics At Stillwater Area (Laney, 2005) | Open Energy Information  

Open Energy Info (EERE)

Magnetotellurics At Stillwater Area (Laney, 2005) Magnetotellurics At Stillwater Area (Laney, 2005) Exploration Activity Details Location Stillwater Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation Mt/Galvanic Array Profiling, Phillip Wannamaker. A new-generation MT/DC array resistivity measurement system was applied at the Dixie Valley thermal area. Basic goals of the survey are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault zones which have experienced fluid flux as indicated by low resistivity; 3), image the disposition of resistive, possible reservoir formations in

24

2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets-  

Open Energy Info (EERE)

D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets- D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets- Resistivity Distribution To About 3000 M Depth Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets- Resistivity Distribution To About 3000 M Depth Details Activities (0) Areas (0) Regions (0) Abstract: With the aim of investigating the possibilities of magnetotelluric methods for the exploration of potential Enhanced Geothermal System (EGS) sites in the Upper Rhine valley, a 2-D magnetotelluric (MT) survey has been carried out on a 13 km long profile across the thermal anomaly in the area of the geothermal power plant of Soultz-sous-Forets in the winter 2007/08. Despite strong artificial noise, processing using remote referencing and Sutarno phase consistent smoothing

25

A Closely-Spaced Magnetotelluric Study Of The Ahuachapan-Chipilapa  

Open Energy Info (EERE)

Closely-Spaced Magnetotelluric Study Of The Ahuachapan-Chipilapa Closely-Spaced Magnetotelluric Study Of The Ahuachapan-Chipilapa Geothermal Field, El Salvador Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Closely-Spaced Magnetotelluric Study Of The Ahuachapan-Chipilapa Geothermal Field, El Salvador Details Activities (0) Areas (0) Regions (0) Abstract: The distribution of electrical conductivity beneath the Ahuachapan-Chipilapa geothermal area was simulated using 2-D models based on 126 closely-spaced magnetotelluric (MT) measurements. The observed MT response was interpreted as being produced by the superposition of two orthogonal geological structural systems: an approximately E-W regional trend associated with the Central Graben structure, which affects the longer period response, and a local and younger N-S fault system that is

26

Initial Results of Magnetotelluric Array Surveying at the Dixie Valley  

Open Energy Info (EERE)

Initial Results of Magnetotelluric Array Surveying at the Dixie Valley Initial Results of Magnetotelluric Array Surveying at the Dixie Valley Geothermal Area, with Implications for Structural Controls and Hydrothermal Alteration Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Initial Results of Magnetotelluric Array Surveying at the Dixie Valley Geothermal Area, with Implications for Structural Controls and Hydrothermal Alteration Abstract A new generation MT array measurement system was applied in a contiguous bipole deployment at the Dixie Valley thermal area. Basic goals of the survey area are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single range front fault versus shallower, stepped pediment; 2) delineate fault zones which have experienced fluid flux as

27

Magnetotelluric Techniques | Open Energy Information  

Open Energy Info (EERE)

Magnetotelluric Techniques Magnetotelluric Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Magnetotelluric Techniques Details Activities (0) Areas (0) Regions (0) NEPA(2) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Sounding Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png Magnetotelluric Techniques:

28

REMOTE REFERENCE MAGNETOTELLURICS WITH SQUIDS  

E-Print Network (OSTI)

Time Dependent Electrical Resistivity by Magnetotellurics:Because the electrical resistivities of different types ofto determine the electrical resistivity of the ground. This

Gamble, Thomas D.

2011-01-01T23:59:59.000Z

29

Estimation of subsurface temperatures in the Tattapani geothermal field, central India from limited volume of magnetotelluric data and borehole thermograms using a constructive back-propagation neural network  

Science Conference Proceedings (OSTI)

A constructive back-propagation code which was designed to run as a single hidden layer, feed-forward neural network (SLFFNN) has been adapted and used to estimate subsurface temperature from a small volume of magnetotelluric (MT) derived ...

Anthony E. Akpan; Mahesh Narayanan; T. Harinarayana

30

Definition: Controlled Source Audio MT | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Controlled Source Audio MT Jump to: navigation, search Dictionary.png Controlled Source Audio MT Controlled Source Audio-Magnetotellurics (CSAMT) is an active source application of a magnetotelluric survey aimed at providing a more reliable signal and rapid acquisition time relative to a natural source MT measurement.[1] View on Wikipedia Wikipedia Definition Magnetotellurics (MT) is an electromagnetic geophysical method of imaging the earth's subsurface by measuring natural variations of electrical and magnetic fields at the Earth's surface. Investigation depth ranges from 300m below ground by recording higher frequencies down to 10,000m or deeper with long-period soundings. Developed in Russia and

31

Three dimensional magnetotelluric modeling. Final: volume 77-15  

DOE Green Energy (OSTI)

A three-dimensional (3D) volume integral equation solution was refined and adapted to magnetotelluric (MT) modeling. The refinement, incorporating an integro-difference scheme, increases the accuracy somewhat without increasing the computer time. Utilizing the two symmetry planes for a plane wave source decreases the computer storage by a factor of 8 and greatly reduces the computer time. Convergence checks and comparisons with other solutions show that our results are valid. Because of space charges at resistivity boundaries, low-frequency 3D responses are much different from 1D and 2D responses. Hence 3D models are required for interpreting MT data in the complex geothermal environment.

Hohmann, G.W.; Ting, S.C.

1978-07-01T23:59:59.000Z

32

3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal Field,  

Open Energy Info (EERE)

3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal Field, 3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal Field, Indonesia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: 3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal Field, Indonesia Details Activities (0) Areas (0) Regions (0) Abstract: Three-dimensional (3-D) interpretation was carried out for the magnetotelluric (MT) data obtained in a geothermal area in Indonesia. The inversion scheme was based on the linearized leastsquares method with smoothness regularization. In addition to the subsurface resistivity structure, static shifts were also included as unknown parameters in the inversion. Forward modeling was by the finite difference scheme. The sensitivity matrix was computed once for a homogeneous half space and used

33

Three-Dimensional Inversion of Magnetotelluric Data on a PC, Methodology  

Open Energy Info (EERE)

Dimensional Inversion of Magnetotelluric Data on a PC, Methodology Dimensional Inversion of Magnetotelluric Data on a PC, Methodology and Applications to the Coso Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Three-Dimensional Inversion of Magnetotelluric Data on a PC, Methodology and Applications to the Coso Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: We describe here efforts in technology development to invert magnetotelluric (MT) data collected in geothermal settings for three-dimensional resistivity models using desktop PC's or small clusters. A finite difference scheme is utilized for the forward problem, with various options to compute the parameter Jacobians, and parameter step estimates are defined using an explicit Gauss-Newton step. The paper

34

Application Of 3D Inversion To Magnetotelluric Data In The Ogiri Geothermal  

Open Energy Info (EERE)

Of 3D Inversion To Magnetotelluric Data In The Ogiri Geothermal Of 3D Inversion To Magnetotelluric Data In The Ogiri Geothermal Area, Japan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Application Of 3D Inversion To Magnetotelluric Data In The Ogiri Geothermal Area, Japan Details Activities (0) Areas (0) Regions (0) Abstract: A stable inversion technique has been developed for threedimensional (3D) interpretation of magnetotelluric (MT) data. The inversion method is based on the Gauss-Newton (linearized least-squares) method with smoothness regularization. Static shifts are also treated as unknown parameters in the inversion. The forward modeling is done by using the staggered-grid finite difference method. A Bayesian criterion ABIC is applied to searching for the optimum trade-off among the minimization of

35

A Five-Component Magneto-Telluric Method In Geothermal Exploration- The  

Open Energy Info (EERE)

Five-Component Magneto-Telluric Method In Geothermal Exploration- The Five-Component Magneto-Telluric Method In Geothermal Exploration- The Mt-5-Ex Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Five-Component Magneto-Telluric Method In Geothermal Exploration- The Mt-5-Ex Details Activities (1) Areas (1) Regions (0) Abstract: The present paper describes a new method designed both at recording and processing levels for a practical solution of the overall problem of the Earth electromagnetism, in geophysics. Up to now, the random character of the natural signals prevented any measurement of reliable values of the phase shift between the various electromagnetic components at a given place. Hence it is impossible numerically to solve the general linear relations binding these components simply by using the processes of

36

Magnetotellurics At Nw Basin & Range Region (Pritchett, 2004) | Open Energy  

Open Energy Info (EERE)

Magnetotellurics At Nw Basin & Range Region Magnetotellurics At Nw Basin & Range Region (Pritchett, 2004) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best way to find "hidden" basin and range geothermal resources of this general type is to carry out simultaneous SP and low-frequency MT surveys, and then

37

Magnetotelluric Methods | Open Energy Information  

Open Energy Info (EERE)

Magnetotelluric Methods Magnetotelluric Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Magnetotelluric Methods Details Activities (0) Areas (0) Regions (0) NEPA(3) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Magnetotelluric Methods: No definition has been provided for this term. Add a Definition References No exploration activities found. Document # Analysis Type Applicant Geothermal Area Lead Agency District Office Field Office Mineral Manager Surface Manager Development Phase(s) Techniques DOI-BLM-NV-C010-2012-0070-CX CX US Navy Geothermal Program Office Dixie Valley Geothermal Area BLM BLM Carson City District Office BLM Stillwater Field Office BLM BLM Geothermal/Exploration Reflection Survey

38

3D MAGNETOTELLURIC CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD | Open  

Open Energy Info (EERE)

CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: 3D Magnetotelluric characterization of the COSO Geothermal Field Details Activities (0) Areas (0) Regions (0) Abstract: Knowledge of the subsurface electrical resistivity/conductivity can contribute to a better understanding of complex hydrothermal systems, typified by Coso geothermal field, through mapping the geometry (bounds and controlling structures) over existing production. Three-dimensional magnetotelluric (MT) inversion is now an emerging technology for characterizing the resistivity structures of complex geothermal systems. The method appears to hold great promise, but histories exploiting truly 3D inversion that demonstrate the advantages that can be gained by acquiring

39

Magnetotellurics At Walker-Lane Transitional Zone Region (Pritchett, 2004)  

Open Energy Info (EERE)

Walker-Lane Transitional Zone Region (Pritchett, 2004) Walker-Lane Transitional Zone Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Walker-Lane Transitional Zone Region (Pritchett, 2004) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best

40

Magnetotellurics At Central Nevada Seismic Zone Region (Pritchett, 2004) |  

Open Energy Info (EERE)

Pritchett, 2004) Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Central Nevada Seismic Zone Region (Pritchett, 2004) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best way to find "hidden" basin and range geothermal resources of this general

Note: This page contains sample records for the topic "mt magnetotellurics z-axis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Controlled Source Audio MT | Open Energy Information  

Open Energy Info (EERE)

Controlled Source Audio MT Controlled Source Audio MT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Controlled Source Audio MT Details Activities (5) Areas (5) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Magnetotelluric Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Cost Information Low-End Estimate (USD): 1,866.44186,644 centUSD

42

Magnetotellurics At Newberry Caldera Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Magnetotellurics At Newberry Caldera Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Newberry Caldera Area...

43

Magnetotellurics At Jemez Pueblo Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Magnetotellurics At Jemez Pueblo Area (DOE GTP) Exploration Activity Details Location Jemez Pueblo Area Exploration Technique Magnetotellurics Activity Date Usefulness not...

44

Magnetotellurics At Mcgee Mountain Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Magnetotellurics At Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Mcgee Mountain Area (DOE...

45

Magnetotellurics At New River Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Magnetotellurics At New River Area (DOE GTP) Exploration Activity Details Location New River Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated...

46

Magnetotellurics At Long Valley Caldera Area (Sorey, Et Al., 1991) | Open  

Open Energy Info (EERE)

Long Valley Caldera Area (Sorey, Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes In 1986, Unocal Geothermal Division released results from 158 time-domain electromagnetic (TDEM) soundings and, with Chevron Resources, a total of 77 magnetotelluric (MT) stations. Reinterpretations of the Unocal and Chevron data (Park and Torres-Verdin, 1988 ) and the recent public-domain MT studies (e.g. Hermance et al., 1988) outline similar shallow low-resistivity regions. At shallow depths in the caldera References Michael L. Sorey, Gene A. Suemnicht, Neil C. Sturchio, Gregg A. Nordquist (1991) New Evidence On The Hydrothermal System In Long Valley

47

Audio-Magnetotellurics | Open Energy Information  

Open Energy Info (EERE)

Audio-Magnetotellurics Audio-Magnetotellurics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Audio-Magnetotellurics Details Activities (4) Areas (4) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Magnetotelluric Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Cost Information Low-End Estimate (USD): 1,118.26111,826 centUSD

48

3D Magnetotelluric characterization of the COSO GeothermalField  

DOE Green Energy (OSTI)

Knowledge of the subsurface electrical resistivity/conductivity can contribute to a better understanding of complex hydrothermal systems, typified by Coso geothermal field, through mapping the geometry (bounds and controlling structures) over existing production. Three-dimensional magnetotelluric (MT) inversion is now an emerging technology for characterizing the resistivity structures of complex geothermal systems. The method appears to hold great promise, but histories exploiting truly 3D inversion that demonstrate the advantages that can be gained by acquiring and analyzing MT data in three dimensions are still few in number. This project will address said issue, by applying 3D MT forward modeling and inversion to a MT data set acquired over the Coso geothermal field. The goal of the project is to provide the capability to image large geothermal reservoirs in a single self-consistent model. Initial analysis of the Coso MT data has been carried out using 2D MT imaging technology to construct an initial 3D resistivity model from a series of 2D resistivity images obtained using the inline electric field measurements (Zxy impedance elements) along different measurement transects. This model will be subsequently refined through a 3D inversion process. The initial 3D resistivity model clearly shows the controlling geological structures possibly influencing well production at Coso. The field data however, also show clear three dimensionality below 1 Hz, demonstrating the limitations of 2D resistivity imaging. The 3D MT predicted data arising from this starting model show good correspondence in dominant components of the impedance tensor (Zxy and Zyx) above 1Hz. Below 1 Hz there is significant differences between the field data and the 2D model data.

Newman, Gregory A.; Hoversten, Michael; Gasperikova, Erika; Wannamaker, Philip E.

2005-01-01T23:59:59.000Z

49

Electrical, electromagnetic, and magnetotelluric methods | Open Energy  

Open Energy Info (EERE)

Electrical, electromagnetic, and magnetotelluric methods Electrical, electromagnetic, and magnetotelluric methods Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Electrical, electromagnetic, and magnetotelluric methods Abstract Application of electrical methods began with Robert W. Fox's 1830 observation of self potentials associated with copper vein deposits in Cornwall. Conrad Schlumberger introduced the direct current equal potential line resistivity method in 1912. Harry W. Conklin received the first patents on the electromagnetic (EM) method in 1917. From these beginnings, the history of the development of the resistivity induced-polarization (IP), magnetotelluric and EM methods are traced to the present time. It is of interest to note that application of electrical methods flourished from

50

Magnetotellurics At Cove Fort Area (Toksoz, Et Al, 2010) | Open Energy  

Open Energy Info (EERE)

Cove Fort Area (Toksoz, Et Al, 2010) Cove Fort Area (Toksoz, Et Al, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Cove Fort Area (Toksoz, Et Al, 2010) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes We have collected various geophysical data around the geothermal field, including heat flow, gravity, MT, seismic surface wave phase and group velocity maps, seismic body wave travel time data and full seismic waveforms. All of these geophysical data sets have different strengths on characterizing subsurface structures and properties. Combining these data through a coordinated analysis and, when possible, by joint inversion

51

Seismic and magneto-telluric imaging for geothermal exploration at Jemez pueblo in New Mexico  

Science Conference Proceedings (OSTI)

A shallow geothermal reservoir in the Pueblo of Jemez in New Mexico may indicate a commercial-scale geothermal energy potential in the area. To explore the geothermal resource at Jemez Pueblo, seismic surveys are conducted along three lines for the purpose of imaging complex subsurface structures near the Indian Springs fault zone. A 3-D magneto-telluric (MT) survey is also carried out in the same area. Seismic and MT imaging can provide complementary information to reveal detailed geologic formation properties around the fault zones. The high-resolution seismic images will be used together with MT images, geologic mapping, and hydrogeochemistry, to explore the geothermal resource at Jemez Pueblo, and to determine whether a conunercial-scale geothermal resource exists for power generation or direct use applications after drilling and well testing.

Huang, Lianjie [Los Alamos National Laboratory; Albrecht, Michael [LOS ALAMOS GEOTHERMAL

2011-01-25T23:59:59.000Z

52

Magnetotellurics At Mccoy Geothermal Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Mccoy Geothermal Area (DOE GTP) Exploration Activity Details Location Mccoy Geothermal Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated...

53

Magnetotelluric studies in Grass Valley, Nevada  

DOE Green Energy (OSTI)

A program of detailed magnetotelluric soundings was initiated in 1974 in Green Valley, Nevada, as part of the Lawrence Berkeley Laboratory's major study of techniques for geothermal exploration in north central Nevada. The magnetotelluric program had three main goals; the determination of resistivity distribution at depths greater than that conveniently measured with other techniques; a comparison of the interpreted resistivity at shallow depth with the results of the other techniques; and the evaluation of the SQUID or Josephson effect magnetometer in practical field surveys. In addition, new numerical models were developed so that interpretation could be carried out in terms of fairly complex two-dimensional models.

Morrison, H.F.; Lee, K.H.; Oppliger, G.; Dey, A.

1979-01-01T23:59:59.000Z

54

Magnetotellurics At Valles Caldera - Redondo Area (Wilt & Haar, 1986) |  

Open Energy Info (EERE)

Magnetotellurics At Valles Caldera - Redondo Area (Wilt & Haar, 1986) Magnetotellurics At Valles Caldera - Redondo Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Valles Caldera - Redondo Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes Magnetotelluric results indicate deep low resistivity at the western edge of the caldera which may be associated with deep hot fluids. On the basis of geophysical and well data, we make three estimates of reservoir dimensions. Telluric profiles, magnetotelluric sounding, dc resistivity, and electromagnetic sounding surveys were all performed over the caldera in hopes of outlining deep drilling targets (Group 7 Inc., 1972; McPhar, 1973;

55

Magnetotelluric models of the Roosevelt Hot Springs thermal area, Utah  

DOE Green Energy (OSTI)

The Roosevelt Hot Springs (RHS) thermal area, which includes a hotwater-dominated fracture zone prospect, near the eastern margin of the Basin-Range tectonic province, conceivably possesses a whole family of resistivity structures that includes the following: deep hot brine reservoirs, deep-seated partially molten heat sources in the crust or upper mantle that drive the convective system, near-surface hydrothermal alteration zones, wet sedimentary fill in valleys, and a regional, apparently one-dimensional resistivity profile of the crust and upper mantle. This complex resistivity makeup, particular to RHS but probably similar to that at other geothermal areas in the Great Basin, must be treated as being fully three-dimensional (3-D). In an attempt to understand these structures, broadband (10/sup -3/ to 10/sup -2/ Hz) tensor magnetotelluric (MT) data were obtained including apparent resistivities (rho/sub a/), impedance phases (phi) and vertical magnetic field transfer functions for 93 sites in the vicinity of this resource area.

Wannamaker, P.E.; Ward, S.H.; Hohmann, G.W.; Sill, W.R.

1980-09-01T23:59:59.000Z

56

Magnetotellurics At Rio Grande Rift Region (Aiken & Ander, 1981...  

Open Energy Info (EERE)

Mark E. Ander (1981) A Regional Strategy For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Retrieved from "http:en.openei.orgwindex.php?titleMagnetote...

57

Magnetotellurics At Silver Peak Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Silver Peak Area (DOE GTP) Exploration Activity Details Location Silver Peak Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown...

58

Magnetotellurics At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Alum Geothermal Area (DOE GTP) Exploration Activity Details Location Alum Geothermal Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding...

59

3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal...  

Open Energy Info (EERE)

3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal Field, Indonesia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: 3-D...

60

Audio-magnetotelluric station location map Breitenbush Known Geothermal Resource Area, Oregon  

DOE Green Energy (OSTI)

Telluric profiles and audio-magnetotelluric data logs are presented for various frequencies and stations. (MHR)

Senterfit, R.M.; Long, C.L.

1976-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mt magnetotellurics z-axis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Magnetotellurics At Grass Valley Area (Morrison, Et Al., 1979) | Open  

Open Energy Info (EERE)

Grass Valley Area (Morrison, Et Al., 1979) Grass Valley Area (Morrison, Et Al., 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Grass Valley Area (Morrison, Et Al., 1979) Exploration Activity Details Location Grass Valley Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes The attempt to carry out a detailed interpretation of a magnetotelluric survey has demonstrated some fundamental problems that must be addressed in future surveys and in future research. (see paper conclusions) References H. Frank Morrison, K i Ha Lee, Gary Oppliger, Abhi jit De (1979) Magnetotelluric Studies In Grass Valley, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Magnetotellurics_At_Grass_Valley_Area_(Morrison,_Et_Al.,_1979)&oldid=387832"

62

Geophysics IV. Gravity, Magnetic, and Magnetotelluric Methods  

SciTech Connect

During the past two decades, the technology of geophysics has exploded. At the same time, the petroleum industry has been forced to look for more and more subtle traps in more and more difficult terrain. The choice of papers in this geophysics reprint volume reflects this evolution. The papers were chosen to help geologists, not geophysicists, enhance their knowledge of geophysics. Math-intensive papers were excluded because those papers are relatively esoteric and have limited applicability for most geologists. This volume concentrates on gravity, magnetic, and magnetotelluric methods. Each of the 10 papers were abstracted and indexed for the U.S. Department of Energy's Energy Data Base.

Beaumont, E.A.; Foster, N.H. (comps.)

1989-01-01T23:59:59.000Z

63

A Portable Elf-Mt System For Shallow Resistivity Sounding | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » A Portable Elf-Mt System For Shallow Resistivity Sounding Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Portable Elf-Mt System For Shallow Resistivity Sounding Details Activities (0) Areas (0) Regions (0) Abstract: In view of recent extensive investigation of shallow resistivity structure for active fault studies and geothermal exploration, we developed a portable magnetotelluric (MT) system for the extremely low frequency (ELF) range. The system aims primarily at making real-time analyses of MT data at the so-called Schumann resonance frequencies of ~ 8, 14 and 20 Hz.

64

Magnetotellurics At Socorro Mountain Area (Owens, Et Al., 2005) | Open  

Open Energy Info (EERE)

Owens, Et Al., 2005) Owens, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Socorro Mountain Area (Owens, Et Al., 2005) Exploration Activity Details Location Socorro Mountain Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes magneto-telluric surveys are pending for the near future when geochemical and surface geophysical surveys are complete. Results of this survey should verify the occurrence of low-resisitivity fluids and alteration at depth. References Lara Owens, Richard Baars, David Norman, Harold Tobin (2005) New Methods In Exploration At The Socorro Peak Kgra- A Gred Iii Project Retrieved from "http://en.openei.org/w/index.php?title=Magnetotellurics_At_Socorro_Mountain_Area_(Owens,_Et_Al.,_2005)&oldid=388765

65

A Magnetotelluric Survey Of The Nissyros Geothermal Field (Greece) | Open  

Open Energy Info (EERE)

Magnetotelluric Survey Of The Nissyros Geothermal Field (Greece) Magnetotelluric Survey Of The Nissyros Geothermal Field (Greece) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Magnetotelluric Survey Of The Nissyros Geothermal Field (Greece) Details Activities (0) Areas (0) Regions (0) Abstract: A preliminary magnetotelluric study consisting of twenty measurements, in the frequency range 128-0.016 Hz, was undertaken on the active volcanic island of Nissyros. Two boreholes identify the existence of high enthalpy manifestations. The results correlate well with the borehole logs and delineate, in a 1-D approximation, the existence and symmetry of a possible geothermal reservoir. Some of the main faulting features were detected as well as an inferred highly conductive zone at the centre of the

66

Magnetotellurics At Valles Caldera - Sulphur Springs Area (Wilt & Haar,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Magnetotellurics At Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes Magnetotelluric results indicate deep low resistivity at the western edge of the caldera which may be associated with deep hot fluids. On the basis of geophysical and well data, we make three estimates of reservoir

67

A Broadband Tensorial Magnetotelluric Study In The Travale Geothermal Field  

Open Energy Info (EERE)

Broadband Tensorial Magnetotelluric Study In The Travale Geothermal Field Broadband Tensorial Magnetotelluric Study In The Travale Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Broadband Tensorial Magnetotelluric Study In The Travale Geothermal Field Details Activities (0) Areas (0) Regions (0) Abstract: As a contribution to the EEC study of the potential contribution of electric and electromagnetic techniques to geothermal exploration, magnetotelluric studies have been undertaken with a sounding bandwidth ranging from 2 to 7 decades of period at more than 30 sites within the chosen test area of Travale. This area must be one of the most unfavourable for the application of electrical techniques on account both of the thickness (up to 2 km) of conducting (< 1 ohm / m in some locations) cover

68

Geothermal significance of magnetotelluric sounding in the eastern Snake  

Open Energy Info (EERE)

significance of magnetotelluric sounding in the eastern Snake significance of magnetotelluric sounding in the eastern Snake River Plain-Yellowstone Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geothermal significance of magnetotelluric sounding in the eastern Snake River Plain-Yellowstone Region Details Activities (1) Areas (1) Regions (0) Abstract: Magnetotelluric soundings along a profile extending from the Raft River geothermal area in southern Idaho in Yellowstone National Park in Wyoming reveal a highly anamalous crustal structure involving a conductive zone at depths that range from 18 km in the central part of the eastern Snake River Plain to 7 km beneath the Raft River thermal area and as little as 5 km in Yellowstone. Resistivities in this conductive zone are less than

69

Magnetotellurics At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Magnetotellurics At Raft River Geothermal Area (1977) Magnetotellurics At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Magnetotellurics Activity Date 1977 Usefulness useful DOE-funding Unknown Notes Magnetotelluric soundings along a profile extending from the Raft River geothermal area in southern Idaho in Yellowstone National Park in Wyoming reveal a highly anomalous crustal structure involving a conductive zone at depths that range from 18 km in the central part of the eastern Snake River Plain to 7 km beneath the Raft River thermal area and as little as 5 km in Yellowstone. Resistivities in this conductive zone are less than 10 ohm-m and at some sites than 1 ohm-m. References Stanley, W.D.; Boehl, J.E.; Bostick, F.X.; Smith, H.W. (10 June

70

An Audio-Magnetotelluric Investigation In Terceira Island (Azores) | Open  

Open Energy Info (EERE)

Audio-Magnetotelluric Investigation In Terceira Island (Azores) Audio-Magnetotelluric Investigation In Terceira Island (Azores) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Audio-Magnetotelluric Investigation In Terceira Island (Azores) Details Activities (0) Areas (0) Regions (0) Abstract: Ten audio-magnetotelluric soundings have been carried out along a profile crossing the Serra do Cume caldera in the eastern part of the Terceira Island (Azores). The main objectives of this investigation were to detect geoelectrical features related with tectonic structures and to characterize regional hydrological and hydrothermal aspects mainly those related to geothermal fluid dynamics. Three-dimensional numerical investigation showed that the data acquired at periods shorter than 1 s are not significantly affected by ocean effect. The data was analysed using the

71

Definition: Audio-Magnetotellurics | Open Energy Information  

Open Energy Info (EERE)

higher frequencies down to 10,000m or deeper with long-period soundings. Developed in Russia and France during the 1950s, MT is now an international academic discipline and is...

72

New approaches to estimation of magnetotelluric parameters  

DOE Green Energy (OSTI)

Fully efficient robust data processing procedures were developed and tested for single station and remote reference magnetotelluric (Mr) data. Substantial progress was made on development, testing and comparison of optimal procedures for single station data. A principal finding of this phase of the research was that the simplest robust procedures can be more heavily biased by noise in the (input) magnetic fields, than standard least squares estimates. To deal with this difficulty we developed a robust processing scheme which combined the regression M-estimate with coherence presorting. This hybrid approach greatly improves impedance estimates, particularly in the low signal-to-noise conditions often encountered in the dead band'' (0.1--0.0 hz). The methods, and the results of comparisons of various single station estimators are described in detail. Progress was made on developing methods for estimating static distortion parameters, and for testing hypotheses about the underlying dimensionality of the geological section.

Egbert, G.D.

1991-01-01T23:59:59.000Z

73

Magnetotellurics At Salt Wells Area (Bureau of Land Management, 2009) |  

Open Energy Info (EERE)

Salt Wells Area (Bureau of Land Management, 2009) Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Magnetotellurics Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary wells at Pads 1, 2, 4, and 7. Notes Data from these wells is proprietary, and so were unavailable for inclusion

74

3D Magnetotelluric Characterization Of The Geothermal Anomaly In The  

Open Energy Info (EERE)

Magnetotelluric Characterization Of The Geothermal Anomaly In The Magnetotelluric Characterization Of The Geothermal Anomaly In The Llucmajor Aquifer System (Majorca, Spain) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 3D Magnetotelluric Characterization Of The Geothermal Anomaly In The Llucmajor Aquifer System (Majorca, Spain) Details Activities (0) Areas (0) Regions (0) Abstract: In the Llucmajor aquifer system (Majorca Island, Spain) some geothermal evidences have appeared. This phenomenon is not isolated to Majorca and it is present in other areas, where it can be associated with structural conditions, especially to the extensional event suffered by the island after the Alpine Orogeny. However, the origin of this anomaly in Llucmajor is not well known, and there is no surface geological evidence of

75

Schlumberger soundings, audio-magnetotelluric soundings and telluric  

Open Energy Info (EERE)

soundings, audio-magnetotelluric soundings and telluric soundings, audio-magnetotelluric soundings and telluric mapping in and around the Coso Range, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Schlumberger soundings, audio-magnetotelluric soundings and telluric mapping in and around the Coso Range, California Details Activities (4) Areas (2) Regions (0) Abstract: Results of geophysical surveys in and around the Coso Range, and in particular in the area surrounding Coso Hot Springs are reported. Electrical properties of rocks associated with thermal phenomena of the Devil's Kitchen-Coso Hot Springs area in the Coso rhyolite dome field and the large arcuate fracture system previously postulated to represent a stage of incipient caldera formation were studied. Six individual plates

76

Magnetotellurics At Truckhaven Area (Warpinski, Et Al., 2004) | Open Energy  

Open Energy Info (EERE)

Magnetotellurics At Truckhaven Area (Warpinski, Et Magnetotellurics At Truckhaven Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Truckhaven Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes The Truckhaven project, which is located on the west flank of the Salton Trough in southern California, is north and west of several existing geothermal power generation facilities in the trough. An extensive shallow geothermal anomaly is known to exist in this area and this region corresponds to a gravity high, which has been further delineated by the drilling of numerous shallow temperature gradient wells and one deep, abandoned, test well. Layman Energy Associates has performed Phase I exploration tasks to further constrain the anomaly, including a detailed

77

Magnetotelluric Studies In Grass Valley, Nevada | Open Energy Information  

Open Energy Info (EERE)

Studies In Grass Valley, Nevada Studies In Grass Valley, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Magnetotelluric Studies In Grass Valley, Nevada Details Activities (1) Areas (1) Regions (0) Abstract: A program of detail magnetotelluric soundings was initiated in 1974 in Green Valley, Nevada, as part of the Lawrence Berkeley Laboratory's major study of techniques for geothermal exploration in north central Nevada. The magnetotelluric program had three main goals; the determination of resistivity distribution at depths greater than that conveniently measured with other techniques; a comparison of the interpreted resistivity at shallow depth with the results of the other techniques ; and the evaluation of the SQUID or Josephson effect magnetometer i n practical

78

Magnetotellurics At International Geothermal Area, Indonesia (Laney, 2005)  

Open Energy Info (EERE)

(Laney, 2005) (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At International Geothermal Area Indonesia (Laney, 2005) Exploration Activity Details Location International Geothermal Area Indonesia Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes Improving Exploration Models of Andesite-Hosted Geothermal Systems, Allis, Browne, Bruton, Christensen, Hulen, Lutz, Mindenhall, Nemcok, Norman, Powell and Stimac. The approach we are using is to characterize the petrology, geochemistry and fractures in core and cuttings samples and then integrate these data with measured downhole temperatures and pressures and with the compositions of the reservoir fluids. Our investigations represent

79

SYSTRAN MT dictionary development  

E-Print Network (OSTI)

SYSTRAN has demonstrated success in the MT field with its long history spanning nearly 30 years. As a general-purpose fully automatic MT system, SYSTRAN employs a transfer approach. Among its several components, large, carefully encoded, high-quality dictionaries are critical to SYSTRAN's translation capability. A total of over 2.4 million words and expressions are now encoded in the dictionaries for twelve source language systems (30 language pairs- one per year!). SYSTRAN'S dictionaries, along with its parsers, transfer modules, and generators, have been tested on huge amounts of text, and contain large terminology databases covering various domains and detailed linguistic rules. Using these resources, SYSTRAN MT systems have successfully served practical translation needs for nearly 30 years, and built a reputation in the MT world for their large, mature dictionaries. This paper describes various aspects of SYSTRAN MT dictionary development as an important part of the development and refinement of SYSTRAN MT systems. There are 4 major sections: 1) Role and Importance of Dictionaries in the SYSTRAN Paradigm describes the importance of coverage and depth in the dictionaries; 2) Dictionary Structure discusses the specifics of

Laurie Gerber; Jin Yang

1997-01-01T23:59:59.000Z

80

2D Joint Inversion Of Dc And Scalar Audio-Magnetotelluric Data...  

Open Energy Info (EERE)

D Joint Inversion Of Dc And Scalar Audio-Magnetotelluric Data In The Evaluation Of Low Enthalpy Geothermal Fields Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

Note: This page contains sample records for the topic "mt magnetotellurics z-axis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Audio-Magnetotellurics At Coso Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Coso Geothermal Area (1977) Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Audio-Magnetotellurics Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis To investigate electrical properties of rocks associated with thermal phenomena of the Devil's Kitchen-Coso Hot Springs area Notes Audio-magnetotelluric geophysical surveys determined that the secondary low in the geothermal area, best defined by the 7.5-Hz AMT map and dc soundings, is caused by a shallow conductive zone (5--30 ohm m) interpreted to be hydrothermally altered Sierra Nevada basement rocks containing saline water of a hot water geothermal system. This zone of lowest apparent resistivities over the basement rocks lies within a closed contour of a

82

3D Magnetotelluric characterization of the COSO Geothermal Field  

E-Print Network (OSTI)

model of the Coso geothermal field has been constructed. TheResistivity model of the Coso geothermal site compiled fromthe Department of Energy, Geothermal Program Office. MT data

Newman, Gregory A.; Hoversten, Michael; Gasperikova, Erika; Wannamaker, Philip E.

2005-01-01T23:59:59.000Z

83

NIST Open Machine Translation (OpenMT) Evaluation  

Science Conference Proceedings (OSTI)

DARPA TIDES Machine Translation 2004 Evaluation (MT04). Current and Recent DARPA TIDES MT Activities. MT04 takes ...

84

Audio-Magnetotellurics At Chena Area (Erkan, Et. Al., 2008) | Open Energy  

Open Energy Info (EERE)

Chena Geothermal Area Chena Geothermal Area (Erkan, Et. Al., 2008) Exploration Activity Details Location Chena Geothermal Area Exploration Technique Audio-Magnetotellurics Activity Date Usefulness not useful DOE-funding Unknown Notes An audio-magnetotelluric (AMT) survey was also carried out in August 2005 covering about 3 km_3 km around the CHS. Using controlled-source audio-magnetotelluric (CSAMT) and natural-source audio-magnetotelluric (NSAMT) methods, 1D and 2D inversions of the data were subsequently performed (Reed and Liu, 2006). The AMT results did not show an obvious low-resistivity anomaly in the vicinity of the hot springs. References Kamil Erkan, Gwen Holdmann, Walter Benoit, David Blackwell (2008) Understanding The Chena Hot Springs, Alaska, Geothermal System Using

85

Audio-Magnetotellurics At Baltazor Hot Springs Area (Isherwood & Mabey,  

Open Energy Info (EERE)

Audio-Magnetotellurics At Baltazor Hot Springs Area (Isherwood & Mabey, Audio-Magnetotellurics At Baltazor Hot Springs Area (Isherwood & Mabey, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Audio-Magnetotellurics At Baltazor Hot Springs Area (Isherwood & Mabey, 1978) Exploration Activity Details Location Baltazor Hot Springs Area Exploration Technique Audio-Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes The 27 Hz AMT map (Fig. 5a) defines a resistivity low near the hot spring with minimum values of 2.5 ohm-m; the deeper probing 7.5 Hz map (Fig. 5b) defines a similar low with minimum values of 1.6 ohm-m. Both maps show a second low to the south apparently associated with the low-density Cenozoic sediments. Three telluric profiles across the KGRA also define a low of

86

Magnetotellurics At U.S. West Region (Aiken & Ander, 1981) | Open Energy  

Open Energy Info (EERE)

Aiken & Ander, 1981) Aiken & Ander, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At U.S. West Region (Aiken & Ander, 1981) Exploration Activity Details Location U.S. West Region Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes Arizona, New Mexico, and southern Colorado References Carlos L.V. Aiken, Mark E. Ander (1981) A Regional Strategy For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Retrieved from "http://en.openei.org/w/index.php?title=Magnetotellurics_At_U.S._West_Region_(Aiken_%26_Ander,_1981)&oldid=389969" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties

87

2D Joint Inversion Of Dc And Scalar Audio-Magnetotelluric Data In The  

Open Energy Info (EERE)

Joint Inversion Of Dc And Scalar Audio-Magnetotelluric Data In The Joint Inversion Of Dc And Scalar Audio-Magnetotelluric Data In The Evaluation Of Low Enthalpy Geothermal Fields Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 2D Joint Inversion Of DC And Scalar Audio-Magnetotelluric Data In The Evaluation Of Low Enthalpy Geothermal Fields Details Activities (0) Areas (0) Regions (0) Abstract: Audio-magnetotelluric (AMT) and resistivity (dc) surveys are often used in environmental, hydrological and geothermal evaluation. The separate interpretation of those geophysical data sets assuming two-dimensional models frequently produces ambiguous results. The joint inversion of AMT and dc data is advocated by several authors as an efficient method for reducing the ambiguity inherent to each of those

88

Station location map, and audio-magnetotelluric and telluric data for Wendel-Amedee Known Geothermal Resource Area, California  

DOE Green Energy (OSTI)

The audio-magnetotelluric data log for Breitenbush Known Geothermal Resource Area, Oregon is presented covering 12 different frequencies and several stations. (MHR)

O'Donnell, J.E.; Long, C.L.; Senterfit, R.M.; Brougham, G.W.; Martinez, R.; Christopherson, K.R.

1976-01-01T23:59:59.000Z

89

Magnetotelluric investigations at the Roosevelt Hot Springs KGRA and Mineral Mountains, Utah. Topical report 78-1701. a. 6. 1  

DOE Green Energy (OSTI)

Twenty-five magnetotelluric (MT) sites were monitored. Amongst other MT functions, the transverse electric (TE) and transverse magnetic (TM) apparent resistivity and impedance phase data were provided for the frequency range 3 x 10/sup -3/ Hz to 100 Hz. Some one-dimensional inversion results for this area yielded very low values of estimated true resistivity. Such values are unrealistic in light of established notions about conductivity mechanisms in earth materials. Furthermore, the assembly of such inversions to form a crude two-dimensional model has yielded a calculated 2-D pseudosection far removed from the observed pseudosection. Trial-and-error modeling has provided a better fit although strong differences between observed and modeled data remain and cannot be overcome by any purely two-dimensional model. The most noteworthy difficulty is the presence of exaggerated contrasts in apparent resistivity persisting to the lowest frequency of observation for both modes of wave excitation. Single-conductor, 2-D, TE and TM modeling may explain such problems in terms of three-dimensional effects. Electrical strike estimation may be a meaningless endeavour in a strongly three-dimensional area. The total fields do not decompose into the standard principal modes (TE and TM) and H/sub z/ depends on horizontal derivatives of both electric field components. Multiple symmetry axes result in multiple estimated strike directions depending upon wherethe observer is located. When derivatives of electric field are relatively small, noise may be the determining factor. The estimated strike directions for the Roosevelt stations are, however, quite consistent. The elongate resistive horst structure of the Mineral Mts. situated in conductive valley fill is felt to be the overwhelming reason for such a consistency.

Wannamaker, P.

1978-01-01T23:59:59.000Z

90

MAGNETOTELLURIC SURVEYING AND MONITORING AT THE COSO GEOTHERMAL AREA,  

Open Energy Info (EERE)

SURVEYING AND MONITORING AT THE COSO GEOTHERMAL AREA, SURVEYING AND MONITORING AT THE COSO GEOTHERMAL AREA, CALIFORNIA, IN SUPPORT OF THE ENHANCED GEOTHERMAL SYSTEMS CONCEPT: SURVEY PARAMETERS AND INITIAL RESULTS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: MAGNETOTELLURIC SURVEYING AND MONITORING AT THE COSO GEOTHERMAL AREA, CALIFORNIA, IN SUPPORT OF THE ENHANCED GEOTHERMAL SYSTEMS CONCEPT: SURVEY PARAMETERS AND INITIAL RESULTS Details Activities (1) Areas (1) Regions (0) Abstract: Electrical resistivity may contribute to progress in enhanced geothermal systems (EGS) by imaging the geometry, bounds and controlling structures in existing production, and by monitoring changes in the underground resistivity properties in the vicinity of injection due to fracture porosity enhancement. To these ends, we are acquiring a dense grid

91

Category:Billings, MT | Open Energy Information  

Open Energy Info (EERE)

MT MT Jump to: navigation, search Go Back to PV Economics By Location Media in category "Billings, MT" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Billings MT NorthWestern Corporation.png SVFullServiceRestauran... 64 KB SVHospital Billings MT NorthWestern Corporation.png SVHospital Billings MT... 62 KB SVLargeHotel Billings MT NorthWestern Corporation.png SVLargeHotel Billings ... 62 KB SVLargeOffice Billings MT NorthWestern Corporation.png SVLargeOffice Billings... 62 KB SVMediumOffice Billings MT NorthWestern Corporation.png SVMediumOffice Billing... 62 KB SVMidriseApartment Billings MT NorthWestern Corporation.png SVMidriseApartment Bil... 63 KB SVOutPatient Billings MT NorthWestern Corporation.png SVOutPatient Billings ...

92

Audio-Magnetotellurics At Raft River Geothermal Area (1978) | Open Energy  

Open Energy Info (EERE)

Audio-Magnetotellurics At Raft River Geothermal Area Audio-Magnetotellurics At Raft River Geothermal Area (1978) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Audio-Magnetotellurics Activity Date 1978 Usefulness not indicated DOE-funding Unknown Exploration Basis To infer the structure and the general lithology underlying the valley Notes An area of low apparent resistivity values defined by the audiomagnetotelluric (AMT) survey appears to outline the extent of the geothermal reservoir even though the reservoir is deeper than the penetration of the survey. Self-potential anomalies relate to near surface hydrology. Upward leakage from the reservoir produces shallower effects that were measured by the AMT survey. References Mabey, D.R.; Hoover, D.B.; O'Donnell, J.E.; Wilson, C.W. (1

93

Generalized Error Analysis for Conventional and Remote Reference Magnetotellurics  

DOE Green Energy (OSTI)

An error analysis which applies to both conventional and remote reference magnetotelluric impedance and tipper estimates is developed based on the assumption that noise in the field measurements is governed by a complex normal distribution. Under the assumed model of noise it is shown that the theoretical expressions for the variances and covariances derived recently by Gamble et al (1979b) specifically for remote reference estimates apply to conventional estimates as well. However, calculations are biased if the impedance or tipper functions are biased. The impedance and tipper functions are calculated as ratios of two random functions of noisy field measurements. The expressions for the variances and covariances account for noise in both the numerator and denominator of the estimates. They are useful provided the probability that the magnitude of the random error in the denominator exceeds the magnitude of its expected value is small. Expressions for the bias errors of the impedance and tipper functions are obtained in order to assess the relative contributions of random and bias errors to the man squared error of the estimates. The relative magnitude of both random and bias errors depends on the noise level and on the values of the sample coherencies between various pairs of the field measurements used to compute a particular estimate.

Stodt, John A.

1982-11-01T23:59:59.000Z

94

Magnetotelluric Responces of Three-Dimentional Bodies in Layered Earths  

DOE Green Energy (OSTI)

The electric and magnetic fields scattered by a three-dimensional inhomogeneity in a conducting earth result largely from current-gathering, a boundary polarization charge phenomenon that becomes increasingly important as frequency falls. Boundary charges cause normalized electric field magnitudes, and thus tensor apparent resistivities and magnitudes of vertical admittance elements, to remain anomalous as frequency approaches zero. However, these E-field distortions below certain frequencies are essentially in-phase with the incident electric field. In addition, secondary magnetic field amplitudes over a body ultimately decline in proportion to the layered host impedance. It follows that tipper element magnitudes and all MT function phases become minimally affected at low frequencies by an inhomogeneity. Resistivity structure in nature is a collection of inhomogeneities of various scales, and the small structures in this collection can have MT responses as strong as those of the large structures. Hence, a severe distortion due to current-gathering in any nearby, small-scale geological noise can be superimposed to arbitrarily low frequencies upon the apparent resistivities and vertical admittance magnitudes of buried targets. On the other hand, the MT responses of small and large bodies have frequency dependencies that are, in general, separated as the square of the geometric scale factor distinguishing the different bodies.

Wannamaker, Phillip E.; Ward, Stanley H.; Hohmann, Gerald W.

1982-11-01T23:59:59.000Z

95

Ground Gravity Survey At Marysville Mt Area (Blackwell) | Open...  

Open Energy Info (EERE)

Ground Gravity Survey At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Ground Gravity Survey Activity Date...

96

Marysville Mt Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Marysville Mt Geothermal Area Marysville Mt Geothermal Area (Redirected from Marysville Mt Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Marysville Mt Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Montana Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

97

Large-scale 3D inversion of marine magnetotelluric data: Case study from the Gemini prospect, Gulf of Mexico  

E-Print Network (OSTI)

collected by the Scripps Institution of Oceanography SIO in the Gemini prospect, Gulf of MexicoLarge-scale 3D inversion of marine magnetotelluric data: Case study from the Gemini prospect, Gulf of Mexico Michael S. Zhdanov1 , Le Wan1 , Alexander Gribenko1 , Martin Cuma1 , Kerry Key2 , and Steven

Constable, Steve

98

Mt. Baker Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Mt. Baker Geothermal Project Mt. Baker Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Mt. Baker Geothermal Project Project Location Information Coordinates 48.777222222222°, -121.81333333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.777222222222,"lon":-121.81333333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

99

Marysville Mt Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Marysville Mt Geothermal Area Marysville Mt Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Marysville Mt Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Montana Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

100

Mt Ranier Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mt Ranier Geothermal Area Mt Ranier Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt Ranier Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Washington Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

Note: This page contains sample records for the topic "mt magnetotellurics z-axis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Toward assessing the geothermal potential of the Jemez Mountains volcanic complex: a telluric-magnetotelluric survey  

DOE Green Energy (OSTI)

Telluric-magnetotelluric studies were performed in the Jemez Mountains of north-central New Mexico to characterize the total geothermal system of the Valles Caldera and to be integrated with an east-west regional survey supported by the United States Geological Survey. The data from the regional survey indicate that electrically the San Juan Basin to the west of the Jemez Mountains is rather homogeneous in contrast to the eastern side near Las Vegas where the presence of a broad heterogeneous structure is clearly sensed. The data from the Jemez Mountain area are strikingly similar to other Rio Grande rift data and suggest a conducting layer at a depth of approximately 15 km. The telluric data indicate that the hydrothermal system in the area is of a localized nature.

Hermance, J.F.

1979-02-01T23:59:59.000Z

102

A data variance technique for automated despiking of magnetotelluric data with a remote reference  

Science Conference Proceedings (OSTI)

The magnetotelluric method employs co-located surface measurements of electric and magnetic fields to infer the local electrical structure of the earth. The frequency-dependent 'apparent resistivity' curves can be inaccurate at long periods if input data are contaminated - even when robust remote reference techniques are employed. Data despiking prior to processing can result in significantly more reliable estimates of long period apparent resistivities. This paper outlines a two-step method of automatic identification and replacement for spike-like contamination of magnetotelluric data; based on the simultaneity of natural electric and magnetic field variations at distant sites. This simultaneity is exploited both to identify windows in time when the array data are compromised, and to generate synthetic data that replace observed transient noise spikes. In the first step, windows in data time series containing spikes are identified via intersite comparison of channel 'activity' - such as the variance of differenced data within each window. In the second step, plausible data for replacement of flagged windows is calculated by Wiener filtering coincident data in clean channels. The Wiener filters - which express the time-domain relationship between various array channels - are computed using an uncontaminated segment of array training data. Examples are shown where the algorithm is applied to artificially contaminated data, and to real field data. In both cases all spikes are successfully identified. In the case of implanted artificial noise, the synthetic replacement time series are very similar to the original recording. In all cases, apparent resistivity and phase curves obtained by processing the despiked data are much improved over curves obtained from raw data.

Kappler, K.

2011-02-15T23:59:59.000Z

103

Microsoft Word - MtRichmond_CX  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Dorie Welch Project Manager - KEWM-4 Proposed Action: Mt. Richmond property funding Fish and Wildlife Project No.: 2011-003-00, BPA-007071 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Real Property transfers for cultural protection, habitat preservation, and wildlife management. Location: Fairdale and Yamhill quadrangles, in Yamhill County, Oregon (near Yamhill, Oregon). Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA is proposing to fund the Yamhill Soil and Water Conservation District's (YSWCD) purchase of the Mt. Richmond property (Property), a 284.66-acre parcel of land located west of the City of Yamhill in Yamhill County Oregon.

104

Mt Peak Utility | Open Energy Information  

Open Energy Info (EERE)

Peak Utility Peak Utility Jump to: navigation, search Name Mt Peak Utility Facility Mt Peak Utility Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Mnt Peak Utility Energy Purchaser Mnt Peak Utility Location Midlothian TX Coordinates 32.42144978°, -97.02427357° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.42144978,"lon":-97.02427357,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

105

Mt Poso Cogeneration | Open Energy Information  

Open Energy Info (EERE)

Poso Cogeneration Poso Cogeneration Jump to: navigation, search Name Mt Poso Cogeneration Place Bakersfield, California Zip 93308 Product California-based project developer for the Mt Poso Cogeneration project near Bakersfield, California. Coordinates 44.78267°, -72.801369° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.78267,"lon":-72.801369,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

106

Data Acquisition-Manipulation At Marysville Mt Area (Blackwell) | Open  

Open Energy Info (EERE)

Marysville Mt Area (Blackwell) Marysville Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful DOE-funding Unknown Notes Heat flow analysis. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Retrieved from "http://en.openei.org/w/index.php?title=Data_Acquisition-Manipulation_At_Marysville_Mt_Area_(Blackwell)&oldid=388982" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs

107

Integrated dense array and transect MT surveying at dixie valley...  

Open Energy Info (EERE)

2007 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Integrated dense array and transect MT surveying at dixie valley geothermal...

108

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating...  

Open Energy Info (EERE)

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating and Revising 100 Years of Studies The USGS published a USGS Professional Paper in 2010 entitled

109

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating...  

Open Energy Info (EERE)

Search Share this page on Facebook icon Twitter icon Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating and Revising 100 Years of Studies Dataset Summary...

110

,"Whitlash, MT Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Whitlash, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

111

,"Havre, MT Natural Gas Pipeline Imports From Canada (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Havre, MT Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2003 ,"Release Date:","172014" ,"Next...

112

,"Babb, MT Natural Gas Pipeline Imports From Canada (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Babb, MT Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

113

,"Sweetgrass, MT Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Sweetgrass, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

114

Controlled Source Audio MT At Roosevelt Hot Springs Area (Combs...  

Open Energy Info (EERE)

Activity Date Usefulness not indicated DOE-funding Unknown Notes "SP, MT, dipole-dipole resistivity, CSAMT; sufficient electrical data may be available" References Jim Combs (1...

115

Mt Signal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Signal Geothermal Area Signal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt Signal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.65,"lon":-115.71,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

116

WPA Omnibus Award MT Wind Power Outreach  

DOE Green Energy (OSTI)

The objective of this grant was to further the development of Montana??s vast wind resources for small, medium, and large scale benefits to Montana and the nation. This was accomplished through collaborative work with wind industry representatives, state and local governments, the agricultural community, and interested citizens. Through these efforts MT Dept Environmental Quality (DEQ) was able to identify development barriers, educate and inform citizens, as well as to participate in regional and national dialogue that will spur the development of wind resources. The scope of DEQ??s wind outreach effort evolved over the course of this agreement from the development of the Montana Wind Working Group and traditional outreach efforts, to the current focus on working with the state??s university system to deliver a workforce trained to enter the wind industry.

Brian Spangler, Manager Energy Planning and Renewables

2012-01-30T23:59:59.000Z

117

Data Update for Mt. Tom, Holyoke, MA September 2005  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA September 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for September 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

118

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA March 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for March 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

119

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA June 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for June 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

120

Data Update for Mt. Tom, Holyoke, MA February 2006  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA February 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for February 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

Note: This page contains sample records for the topic "mt magnetotellurics z-axis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Data Update for Mt. Tom, Holyoke, MA January 2007  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA January 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for January 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

122

Data Update for Mt. Tom, Holyoke, MA October 2005  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA October 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for October 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

123

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA June 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for June 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

124

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA March 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for March 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

125

Data Update for Mt. Tom, Holyoke, MA January 2006  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA January 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for December 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

126

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA April 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for April 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

127

Data Update for Mt. Tom, Holyoke, MA January 2008  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA January 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for January 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

128

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA March 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for March 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

Massachusetts at Amherst, University of

129

Data Update for Mt. Tom, Holyoke, MA September 2007  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA September 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for September 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

130

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA July 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for July 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

Massachusetts at Amherst, University of

131

Data Update for Mt. Tom, Holyoke, MA August 2006  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA August 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for August 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

132

Data Update for Mt. Tom, Holyoke, MA November 2007  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA November 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for November 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

133

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA April 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for April 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

Massachusetts at Amherst, University of

134

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA July 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for July 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

135

Data Update for Mt. Tom, Holyoke, MA November 2005  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA November 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for November 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

136

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA April 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for April 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

137

Data Update for Mt. Tom, Holyoke, MA September 2006  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA September 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for September 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

138

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA May 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for May 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

139

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA July 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for July 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

140

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA May 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for May 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

Massachusetts at Amherst, University of

Note: This page contains sample records for the topic "mt magnetotellurics z-axis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA June 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for June 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

Massachusetts at Amherst, University of

142

Data Update for Mt. Tom, Holyoke, MA October 2007  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA October 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for October 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

143

Data Update for Mt. Tom, Holyoke, MA February 2008  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA February 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for February 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

144

Data Update for Mt. Tom, Holyoke, MA August 2007  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA August 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for August 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

145

Data Update for Mt. Tom, Holyoke, MA November 2006  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA November 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for November 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

146

Data Update for Mt. Tom, Holyoke, MA October 2006  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA October 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for October 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

147

Data Update for Mt. Tom, Holyoke, MA February 2007  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA February 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for February 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

148

Data Update for Mt. Tom, Holyoke, MA December 2005  

E-Print Network (OSTI)

Data Update for Mt. Tom, Holyoke, MA December 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for December 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

149

Ground Magnetics At Marysville Mt Area (Blackwell) | Open Energy  

Open Energy Info (EERE)

Ground Magnetics At Marysville Mt Area (Blackwell) Ground Magnetics At Marysville Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Ground Magnetics Activity Date Usefulness not useful DOE-funding Unknown Notes A ground magnetic survey located no anomaly with an amplitude of more than 20 or 30 gammas that could be associated with the thermal anomaly, however the magnetic data did outline the Cretaceous stock in great detail and allow the removal from the gravity field of the effect of the stock. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Retrieved from "http://en.openei.org/w/index.php?title=Ground_Magnetics_At_Marysville_Mt_Area_(Blackwell)&oldid=389390"

150

Multi-site magnetotelluric measurement system with real-time data analysis. Final technical report No. 210  

DOE Green Energy (OSTI)

A magnetotelluric measurement system has been designed to provide a more cost effective electrical method for geothermal and mineral exploration. The theoretical requirements and sensitivities of the magnetotelluric inversion process were specifically addressed in determining system performance requirements. Significantly reduced instrument noise levels provide improved data quality, and simultaneous measurement at up to six locations provides reduced cost per site. Remotely located, battery powered, instrumentation packages return data to a central controlling site through a 2560 baud wire-line or radio link. Each remote package contains preamplifiers, data conditioning filters, and a 12-bit gain ranging A-D converter for frequencies from 0.001 Hz to 8 Hz. Data frequencies above 8 Hz are processed sequentially by a heterodyne receiver to reduce bandwidth to within the limits of the 2560 baud data link. The central data collection site provides overall control for the entire system. The system operator interacts with the system through a CRT terminal, and he receives hard copy from a matrix graphics printer. Data from the remote packages may be recorded in time sequence on a magnetic tape cartridge system, or an optional Hewlett-Packard 21MX minicomputer can be used to perform real-time frequency analysis. The results of this analysis provide feedback to the operator for improved evaluation of system performance and for selection of future measurement sites.

Becker, J.D.; Bostick, F.X. Jr.; Smith, H.W.

1981-09-01T23:59:59.000Z

151

Controlled Source Audio MT At Pilgrim Hot Springs Area (DOE GTP...  

Open Energy Info (EERE)

Controlled Source Audio MT At Pilgrim Hot Springs Area (DOE GTP) Exploration Activity Details Location Pilgrim Hot Springs Area Exploration Technique Controlled Source Audio MT...

152

Controlled Source Audio MT At Soda Lake Area (Combs 2006) | Open...  

Open Energy Info (EERE)

Exploration Technique Controlled Source Audio MT Activity Date Usefulness not indicated DOE-funding Unknown Notes "EM sounding, MT, CSAMT, dipole-dipole resistivity; reservoir...

153

Mt St Helens Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mt St Helens Geothermal Area Mt St Helens Geothermal Area (Redirected from Mt St Helens Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt St Helens Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Washington Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

154

3D Mt Resistivity Imaging For Geothermal Resource Assessment And  

Open Energy Info (EERE)

Resistivity Imaging For Geothermal Resource Assessment And Resistivity Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: 3D Mt Resistivity Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Details Activities (3) Areas (2) Regions (0) Abstract: MT and TDEM surveys acquired in 2005 were integrated with existing MT and TDEM data recovered from obsolete formats to characterize the geometry of the geothermal reservoir. An interpretation based on the correlation of the 3D MT resistivity with well properties indicated that most of the previous exploration wells had been tarted close to but not in the center of areas tha appeared most likely to be permeable. Such

155

Field Mapping At Marysville Mt Area (Blackwell) | Open Energy Information  

Open Energy Info (EERE)

Mt Area (Blackwell) Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Field Mapping Activity Date Usefulness useful DOE-funding Unknown Notes Geologic mapping has outlined a structure which may be a partial control on the high heat flow. The Cretaceous intrusive (outlined by the magnetic data) and the heat flow anomaly occupy a broad dome in the Precambrian rocks, the stock outcropping in the northwest portion of the dome, and the heat flow anomaly restricted to the southwest portion of the dome. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa

156

Mt. St. Helens' Aerosols: Some Tropospheric and Stratospheric Effects  

Science Conference Proceedings (OSTI)

Aerosol optical depth measurements based on the attenuation of direct solar radiation before and after the six major explosive eruptions of Mt. St. Helens during 1980 are presented. These automated measurements are from a site 200 km mostly cut ...

J. J. Michalsky; G. M. Stokes

1983-04-01T23:59:59.000Z

157

MT Energie GmbH Co KG | Open Energy Information  

Open Energy Info (EERE)

Saxony, Germany Zip 27404 Sector Services Product MT-Energie provides both turn-key biogas plants and related components and services. Coordinates 53.295765, 9.27964 Loading...

158

Havre, MT Natural Gas Pipeline Imports From Canada (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Million Cubic Feet) Havre, MT Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA...

159

Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada...  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 2 2013 3 5 4 6 9...

160

Havre, MT Natural Gas Pipeline Imports From Canada (Dollars per...  

Gasoline and Diesel Fuel Update (EIA)

Dollars per Thousand Cubic Feet) Havre, MT Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

Note: This page contains sample records for the topic "mt magnetotellurics z-axis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

New approaches to estimation of magnetotelluric parameters. Final technical report, 1 August 1989--31 July 1991  

DOE Green Energy (OSTI)

Fully efficient robust data processing procedures were developed and tested for single station and remote reference magnetotelluric (Mr) data. Substantial progress was made on development, testing and comparison of optimal procedures for single station data. A principal finding of this phase of the research was that the simplest robust procedures can be more heavily biased by noise in the (input) magnetic fields, than standard least squares estimates. To deal with this difficulty we developed a robust processing scheme which combined the regression M-estimate with coherence presorting. This hybrid approach greatly improves impedance estimates, particularly in the low signal-to-noise conditions often encountered in the ``dead band`` (0.1--0.0 hz). The methods, and the results of comparisons of various single station estimators are described in detail. Progress was made on developing methods for estimating static distortion parameters, and for testing hypotheses about the underlying dimensionality of the geological section.

Egbert, G.D.

1991-12-31T23:59:59.000Z

162

Mt. Wachusett Community College Makes Huge Investment in Wind Power |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mt. Wachusett Community College Makes Huge Investment in Wind Power Mt. Wachusett Community College Makes Huge Investment in Wind Power Mt. Wachusett Community College Makes Huge Investment in Wind Power March 14, 2011 - 1:14pm Addthis Mount Wachusett Community College staff Bill Swift, Bob LaBonte, Norm Boudreau, George Couillard and Vestas trainer Bill Fulkerson about to ascend the MWCC north wind turbine | Photo courtesy of GreenOnGreenStreet Mount Wachusett Community College staff Bill Swift, Bob LaBonte, Norm Boudreau, George Couillard and Vestas trainer Bill Fulkerson about to ascend the MWCC north wind turbine | Photo courtesy of GreenOnGreenStreet Mark Higgins Operations Supervisor, Wind & Water Power Technologies Office What will this project do? The turbines are expected to provide an annual savings of approximately $700,000 based on the area's current utility rates.

163

Mt St Helens Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mt St Helens Geothermal Area Mt St Helens Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt St Helens Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Washington Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

164

Werner Steimle, MT(ASCP) OSU Student Health Services Laboratory  

E-Print Network (OSTI)

Werner Steimle, MT(ASCP) OSU Student Health Services Laboratory Staff Medical Technologist OSU Student Health Services Laboratory Corvallis, OR · 1998 ­ 2007 Section Supervisor, Laboratory Salem Hospital Regional Health Services Salem, OR · 1994 ­ 1998 Lead Medical Technologist/ Oregon

Tullos, Desiree

165

GRR/Section 13-MT-a - Land Use Assessment | Open Energy Information  

Open Energy Info (EERE)

MT-a - Land Use Assessment < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 13-MT-a - Land Use...

166

Micro-Earthquake At Marysville Mt Area (Blackwell) | Open Energy  

Open Energy Info (EERE)

Area (Blackwell) Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Micro-Earthquake Activity Date Usefulness not indicated DOE-funding Unknown Notes A seismic ground noise was carried out but the ground noise in the anomaly area (and the surrounding region) was extremely low, approximately 4 orders of magnitude below that observed in the geothermal areas in the Salton Sea between 1-10 Hz (in units of power density). Because of this very low background noise the micro-earthquake survey was possible with instrument gains well in excess of a million. Regional micro-earthquake activity was located within about 15 km of the geothermal area but no micro-earthquakes

167

Mt. Edgecumbe High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Edgecumbe High School Wind Project Edgecumbe High School Wind Project Jump to: navigation, search Name Mt. Edgecumbe High School Wind Project Facility Mt. Edgecumbe High School Sector Wind energy Facility Type Community Wind Location AK Coordinates 57.053928°, -135.356903° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.053928,"lon":-135.356903,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

168

File:INL-geothermal-mt.pdf | Open Energy Information  

Open Energy Info (EERE)

mt.pdf mt.pdf Jump to: navigation, search File File history File usage Montana Geothermal Resources Size of this preview: 728 × 600 pixels. Full resolution ‎(5,100 × 4,200 pixels, file size: 1.99 MB, MIME type: application/pdf) Description Montana Geothermal Resources Sources Idaho National Laboratory Authors Patrick Laney; Julie Brizzee Related Technologies Geothermal Creation Date 2003-11-01 Extent State Countries United States UN Region Northern America States Montana File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:41, 16 December 2010 Thumbnail for version as of 12:41, 16 December 2010 5,100 × 4,200 (1.99 MB) MapBot (Talk | contribs) Automated upload from NREL's "mapsearch" data

169

Thermal And-Or Near Infrared At Marysville Mt Area (Blackwell) | Open  

Open Energy Info (EERE)

Marysville Mt Area (Blackwell) Marysville Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness not indicated DOE-funding Unknown Notes No further mention of infrared photography. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Retrieved from "http://en.openei.org/w/index.php?title=Thermal_And-Or_Near_Infrared_At_Marysville_Mt_Area_(Blackwell)&oldid=386636" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties

170

Application of natural electromagnetic field methods (magnetotellurics/geomagnetic variations) to exploring for energy resources: development of a broad-band data acquisition/processing facility. Topical report, May 1, 1979-April 30, 1980  

DOE Green Energy (OSTI)

Progress is summarized in the following fields: a review of the present state of knowledge of the deep thermal regimes associated with major rift systems of the world, field studies of several major tectonomagmatic systems, and design and testing of new magnetotelluric/geomagnetic variation field system for studying thermal regimes in the continental crust. (MHR)

Hermance, J.F.

1980-01-01T23:59:59.000Z

171

m(T2): The Truth behind the glamour.  

E-Print Network (OSTI)

ar X iv :h ep -p h/ 03 04 22 6v 1 2 3 A pr 2 00 3 Cavendish HEP-2002-02/14 PACS: 14.80.Ly 13.85.Qk mT2 : the truth behind the glamour Alan Barr Christopher Lester Phil Stephens Cavendish Laboratory, University of Cambridge, Madingley Road... .5 % 22.2 % Table 1: The lightest chargino mass, the mass difference, ?M?1 = m?+1 ?m?01 , and two chargino branching ratios for the AMSB-like points discussed in section 4.2. The hadronic branching ratios can be found in [7]. 4.2 Case 2 AMSB...

Barr, Alan; Lester, Christopher G; Stephens, Phil

172

Preliminary results for the abundance of multicored EAS at Mt. Norikura  

Science Conference Proceedings (OSTI)

Multicore type EAS was observed by 54 m2 spark chamber at Mt. Norikura (740 g/?cm2). As a preliminary result

Norikura Air Shower Group

1979-01-01T23:59:59.000Z

173

Mt Wheeler Power, Inc (Utah) | Open Energy Information  

Open Energy Info (EERE)

Utah Utah Utility Id 13073 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0786/kWh Commercial: $0.0810/kWh Industrial: $0.0610/kWh The following table contains monthly sales and revenue data for Mt Wheeler Power, Inc (Utah). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 11.289 138.131 203 9.256 101.356 114 1.61 12.38 14 22.155 251.867 331

174

Village of Mt Horeb, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Horeb, Wisconsin (Utility Company) Horeb, Wisconsin (Utility Company) Jump to: navigation, search Name Mt Horeb Village of Place Wisconsin Utility Id 13036 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership

175

Mt Carmel Public Utility Co | Open Energy Information  

Open Energy Info (EERE)

Public Utility Co Public Utility Co Jump to: navigation, search Name Mt Carmel Public Utility Co Place Illinois Utility Id 13032 Utility Location Yes Ownership I NERC Location SERC NERC SERC Yes ISO MISO Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Service Commercial Commercial Electric Space Heating Service Commercial Large Light and Power Electric Service - Less Than 10 MW Industrial Large Light and Power Electric Service - equal or greater than 10 MW

176

Rule-based partial MT using enhanced finite-state grammars in NooJ  

Science Conference Proceedings (OSTI)

The paper argues for the viability and utility of partial machine translation (MT) in multilingual information systems. The notion of partial MT is modelled on partial parsing and involves a bottomup pattern matching approach where the finite-state transducers ... Keywords: NooJ system, finite-state language processing, local grammars, machine translation, multilingual information systems

Tams Vradi

2007-06-01T23:59:59.000Z

177

Self Potential At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) |  

Open Energy Info (EERE)

Self Potential At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Self Potential At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Exploration Activity Details Location Mt Princeton Hot Springs Area Exploration Technique Self Potential Activity Date Usefulness useful DOE-funding Unknown Notes Used to map fracture and fluid flow patterns. References K. Richards, A. Revil, A. Jardani, F. Henderson, M. Batzle, A. Haas (2010) Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Colorado, Using Geoelectrical Methods Retrieved from "http://en.openei.org/w/index.php?title=Self_Potential_At_Mt_Princeton_Hot_Springs_Area_(Richards,_Et_Al.,_2010)&oldid=388680"

178

Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) | Open  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A dipole-dipole resistivity survey of the area was carried out with estimated penetration up to 700 meters and no indication of low values of resistivity were found associated with the thermal anomaly. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Marysville_Mt_Area_(Blackwell)&oldid=510539

179

GRR/Section 7-MT-a - Energy Facility Siting | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 7-MT-a - Energy Facility Siting GRR/Section 7-MT-a - Energy Facility Siting < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-MT-a - Energy Facility Siting 07MTAEnergyFacilitySiting (6).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Major Facility Siting Act ARM Title 17 Triggers None specified Click "Edit With Form" above to add content 07MTAEnergyFacilitySiting (6).pdf 07MTAEnergyFacilitySiting (6).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Montana Major Facility Siting Act governs the siting of energy facilities in Montana. 7-MT-a.1 to 7-MT-a.2 - Does the Power Plant Have a Production Capacity of

180

The Magnetotelluric Inverse Problem  

E-Print Network (OSTI)

15721592. Banks, R. , 1969: Geomagnetic variations and theThe inverse problem in geomagnetic induction. Z. Geophys. ,sound inferences from geomagnetic sounding, doi:10.1016/j.

Medin, Ashley E

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mt magnetotellurics z-axis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The magnetotelluric inverse problem  

E-Print Network (OSTI)

15721592. Banks, R. , 1969: Geomagnetic variations and theThe inverse problem in geomagnetic induction. Z. Geophys. ,sound inferences from geomagnetic sounding, doi:10.1016/j.

Medin, Ashley E.

2008-01-01T23:59:59.000Z

182

Mt Princeton Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Princeton Hot Springs Geothermal Area Princeton Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt Princeton Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.73166667,"lon":-106.17,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

183

3-D Density Model Of Mt Etna Volcano (Southern Italy) | Open Energy  

Open Energy Info (EERE)

3-D Density Model Of Mt Etna Volcano (Southern Italy) 3-D Density Model Of Mt Etna Volcano (Southern Italy) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 3-D Density Model Of Mt Etna Volcano (Southern Italy) Details Activities (0) Areas (0) Regions (0) Abstract: A detailed density model of Mt. Etna and its surrounding areas has been evaluated using a 3-D inversion of the gravimetric data acquired in the 1980's. Several high-density and low-density bodies are found, penetrating from shallow depths as far down as 12 km bsl. A positive correlation (in terms of location, extent, density, and velocity) is established between several anomalies of the density model and features identified in previously published seismic tomographies. A prominent high-density body extending down to 7 km bsl is recognized in the southern

184

Thermal And-Or Near Infrared At Mt Ranier Area (Frank, 1995) | Open Energy  

Open Energy Info (EERE)

Thermal And-Or Near Infrared At Mt Ranier Area Thermal And-Or Near Infrared At Mt Ranier Area (Frank, 1995) Exploration Activity Details Location Mt Ranier Area Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness useful DOE-funding Unknown Notes Infrared images acquired through joint US. Department of Energy and U.S. Geological Survey efforts (Kieffer et al., 1982) show a representative pattern of heat emission from the summit area (Fig. 5). References David Frank (1995) Surficial Extent And Conceptual Model Of Hydrothermal System At Mount Rainier, Washington Retrieved from "http://en.openei.org/w/index.php?title=Thermal_And-Or_Near_Infrared_At_Mt_Ranier_Area_(Frank,_1995)&oldid=386481" Categories: Exploration Activities DOE Funded Activities What links here Related changes

185

GRR/Section 6-MT-e - Floodplain Development Permit | Open Energy  

Open Energy Info (EERE)

6-MT-e - Floodplain Development Permit 6-MT-e - Floodplain Development Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-MT-e - Floodplain Development Permit 06MTEFloodplainDevelopmentPermit (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Federal Emergency Management Agency Triggers None specified Click "Edit With Form" above to add content 06MTEFloodplainDevelopmentPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Anyone planning new development within a designated Special Flood Hazard Areas (SFHA). Check with local floodplain [www.mtfloodplain.mt.gov

186

Integrated dense array and transect MT surveying at dixie valley geothermal  

Open Energy Info (EERE)

dense array and transect MT surveying at dixie valley geothermal dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal alteration and deep fluid sources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Integrated dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal alteration and deep fluid sources Authors Philip E. Wannamaker, William M. Doerner and Derrick P. Hasterok Conference proceedings, 32th workshop on geothermal reservoir Engineering, Stanford University; Stanford University; 2007 Published Publisher Not Provided, 2007 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Integrated dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal

187

Atmospheric Carbon Dioxide Record from In Situ Measurements at Mt. Cimone  

NLE Websites -- All DOE Office Websites (Extended Search)

Mt. Cimone Mt. Cimone Atmospheric Carbon Dioxide Record from In Situ Measurements at Mt. Cimone graphics Graphics data Data Investigators Tiziano Colombo and Riccardo Santaguida Italian Meteorological Service, Via delle Ville, 100-41029 Sestola (MO), Italy Period of Record 1979-1997 Methods Continuous atmospheric CO2 measurements have been carried out at Mt. Cimone since 1979. Since December 1988, air samples have also been collected approximately once per week in a pair of 2-L, electropolished, stainless steel cylindrical flasks. From 1979 until December 1988, a Hartmann and Braun URAS-2T NDIR gas analyzer was used for CO2 determinations. Currently, CO2 determinations are made through the use of a Siemens Ultramat-5E NDIR gas analyzer. Water vapor is eliminated by passing the air through a U-tube

188

Rock Sampling At Mt Ranier Area (Frank, 1995) | Open Energy Information  

Open Energy Info (EERE)

Mt Ranier Area (Frank, 1995) Mt Ranier Area (Frank, 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Mt Ranier Area (Frank, 1995) Exploration Activity Details Location Mt Ranier Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes This paper relies primarily on minerals, gases, and water found in surficial deposits to construct a conceptual model for Mount Rainier that considers the following factors: - Locations of hydrothermal leakage at the surface; - Structures that provide permeable paths of fluid egress to the surface; - Amount of excess heat discharge; - Composition of surficial thermal fluids; - Composition, guided by mineralogy, of subsurface thermal fluids. Analytical data used as a basis for the model are from samples

189

A Large Self-Potential Anomaly And Its Changes On The Quiet Mt Fuji, Japan  

Open Energy Info (EERE)

Self-Potential Anomaly And Its Changes On The Quiet Mt Fuji, Japan Self-Potential Anomaly And Its Changes On The Quiet Mt Fuji, Japan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Large Self-Potential Anomaly And Its Changes On The Quiet Mt Fuji, Japan Details Activities (0) Areas (0) Regions (0) Abstract: Self-potential (SP) surveys were carried out on Mt. Fuji volcano, Japan, and an intense positive anomaly (about 2000 mV) was found in the summit area. The positive SP anomaly was stable on 2001 and 2002, but increased 150 mV in amplitude on September 12, 2003, and suddenly decreased 300 mV two weeks later. This amplitude change coincides with the emergence of the fumaroles, which appeared for the first time in 40 years, on the east-northeast flank 6 km apart from the summit. The SP anomaly is thought

190

GRR/Section 1-MT-a - Land Use Considerations | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 1-MT-a - Land Use Considerations GRR/Section 1-MT-a - Land Use Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 1-MT-a - Land Use Considerations 01MTALandUseConsiderations.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 01MTALandUseConsiderations.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Add Text Print PDF Retrieved from "http://en.openei.org/w/index.php?title=GRR/Section_1-MT-a_-_Land_Use_Considerations&oldid=685537" Categories: Regulatory Roadmap State Sections Geothermal Regulatory Roadmap Sections

191

Missing Stratospheric Ozone Decrease at Southern Hemisphere Middle Latitudes after Mt. Pinatubo: A Dynamical Perspective  

Science Conference Proceedings (OSTI)

Although large total ozone decreases occurred in the Northern Hemisphere extratropics in the years after the volcanic eruption of Mt. Pinatubo that are generally attributed to the eruption, comparable decreases did not emerge in the Southern ...

C. Schnadt Poberaj; J. Staehelin; D. Brunner

2011-09-01T23:59:59.000Z

192

GRR/Section 6-MT-f - Short-term Water Quality Standard for Turbidity...  

Open Energy Info (EERE)

GRRSection 6-MT-f - Short-term Water Quality Standard for Turbidity (318 Authorization) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home...

193

GRR/Section 14-MT-d - 401 Water Quality Certification | Open...  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon GRRSection 14-MT-d - 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY...

194

Port of Morgan, MT Natural Gas Pipeline Exports to Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

Million Cubic Feet) Port of Morgan, MT Natural Gas Pipeline Exports to Canada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

195

Port of Morgan, MT Natural Gas Pipeline Exports to Canada (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Dollars per Thousand Cubic Feet) Port of Morgan, MT Natural Gas Pipeline Exports to Canada (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

196

Time-Domain Electromagnetics At Long Valley Caldera Area (Sorey...  

Open Energy Info (EERE)

released results from 158 time-domain electromagnetic (TDEM) soundings and, with Chevron Resources, a total of 77 magnetotelluric (MT) stations. Reinterpretations of the...

197

Monitoring and Targeting (M&T): A Low Investment, Low Risk Approach to Energy Cost Savings  

E-Print Network (OSTI)

Monitoring and Targeting (M&T) is a disciplined approach to energy management that ensures that energy resources are used to their maximum economic advantage. M&T serves two principal functions: Ongoing, day-to-day control of energy use Planned improvements in energy efficiency Key elements of an M&T program include: Measurement of utility (steam, fuel, power) consumption levels The establishment of consumption targets that take variations in key variables (e.g., throughput, conversion, product quality...etc.) into account Comparison of actual vs. target energy usage "Exception reports" to highlight areas experiencing unusually good or unusually poor performance An established protocol, involving both management and operating personnel, for reviewing and acting upon the energy information available. Tracking and reporting of the savings achieved Periodic review and reassessment of the energy targets. This paper briefly reviews key M&T concepts and their application in industrial settings. Practical aspects of program implementation -such as data entry, target setting, report generation, software requirements, and personnel orientation and training -are discussed. Representative savings produced by M&T in a variety of plant types also are presented. These savings typically are achieved with little or no capital investment.

McMullan, A.; Rutkowski, M.; Karp, A.

2001-05-01T23:59:59.000Z

198

GRR/Section 4-MT-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 4-MT-a - State Exploration Process GRR/Section 4-MT-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-MT-a - State Exploration Process 04MTAStateExplorationProcess (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Montana Board of Oil and Gas Conservation Regulations & Policies ARM 17.20.202: Geothermal Exploration Plan ARM 17.20.203: Initial Field Report ARM 17.20.204: Periodic Field Report ARM 17.20.205: Final Field Report ARM 17.20.206: Geological Report MCA 82-1-103: Notice of Intent MCA 82-1-104: Bond MCA 82-1-105: Permit Issuance MCA 82-1-106: NOI Forwarded MCA 82-1-107: Notice to Surface Owner MCA 82-1-108: Record of Work Performed Triggers

199

GRR/Section 14-MT-b - MPDES Permitting Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 14-MT-b - MPDES Permitting Process GRR/Section 14-MT-b - MPDES Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-MT-b - MPDES Permitting Process 14MTBMPDESPermittingProcess.pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality United States Environmental Protection Agency Regulations & Policies MCA 75-5-402: Duties of MDEQ MCA 75-5-403: Denial, Modification, Review 75-5-611: Violation, Hearing Triggers None specified Click "Edit With Form" above to add content 14MTBMPDESPermittingProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

200

Direct-Current Resistivity Survey At Mt Princeton Hot Springs Area  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity Survey At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Exploration Activity Details Location Mt Princeton Hot Springs Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Used to map fracture and fluid flow patterns. References K. Richards, A. Revil, A. Jardani, F. Henderson, M. Batzle, A. Haas (2010) Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs,

Note: This page contains sample records for the topic "mt magnetotellurics z-axis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

GRR/Section 14-MT-e - Groundwater Pollution Control System | Open Energy  

Open Energy Info (EERE)

MT-e - Groundwater Pollution Control System MT-e - Groundwater Pollution Control System < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-MT-e - Groundwater Pollution Control System 14MTEGroundwaterPollutionControlSystemPermit (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Water Quality Act (Montana Codes Annotated 75-5-101 et seq.) Administrative Rules of Montana 17.30.1001 et seq. Triggers None specified Click "Edit With Form" above to add content 14MTEGroundwaterPollutionControlSystemPermit (1).pdf 14MTEGroundwaterPollutionControlSystemPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

202

GRR/Section 20-MT-a - Well Abandonment Process | Open Energy Information  

Open Energy Info (EERE)

20-MT-a - Well Abandonment Process 20-MT-a - Well Abandonment Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 20-MT-a - Well Abandonment Process 20MTAWellAbandonmentProcess.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Regulations & Policies Rule 36.21.671 - Abandonment of Flowing Wells Rule 36.21.810 - Abandonment Rule Chapter 36.21 Board of Water Well Contractors Triggers None specified Click "Edit With Form" above to add content 20MTAWellAbandonmentProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Montana requires the employment of particular engineering standards when

203

Geothermal Literature Review At Mt Ranier Area (Frank, 1995) | Open Energy  

Open Energy Info (EERE)

Geothermal Literature Review At Mt Rainier Area Geothermal Literature Review At Mt Rainier Area (Frank, 1995) Exploration Activity Details Location Mt Rainier Area Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes This paper relies primarily on minerals, gases, and water found in surficial deposits to construct a conceptual model for Mount Rainier that considers the following factors: - Locations of hydrothermal leakage at the surface; - Structures that provide permeable paths of fluid egress to the surface; - Amount of excess heat discharge; - Composition of surficial thermal fluids; - Composition, guided by mineralogy, of subsurface thermal fluids. Analytical data used as a basis for the model are from samples collected during field investigations in 1982-1985 (Frank, 1985), whereas

204

GRR/Section 17-MT-b - Montana Stream Protection Act (SPA 124 Permit) | Open  

Open Energy Info (EERE)

GRR/Section 17-MT-b - Montana Stream Protection Act (SPA 124 Permit) GRR/Section 17-MT-b - Montana Stream Protection Act (SPA 124 Permit) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 17-MT-b - Montana Stream Protection Act (SPA 124 Permit) 17MTBMontanaStreamProtectionActSPA124Permit.pdf Click to View Fullscreen Contact Agencies Montana Fish, Wildlife & Parks Regulations & Policies MCA 87-5-501 et seq Montana Stream Protection Triggers None specified Click "Edit With Form" above to add content 17MTBMontanaStreamProtectionActSPA124Permit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Montana has a policy to preserve fish and wildlife habitat as well as

205

GRR/Section 15-MT-a - Air Quality Permit | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 15-MT-a - Air Quality Permit GRR/Section 15-MT-a - Air Quality Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15-MT-a - Air Quality Permit 15MTAAirQualityPermit (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Code Annotated 75-2 Administrative Rules of Montana 17.8 Triggers None specified Click "Edit With Form" above to add content 15MTAAirQualityPermit (1).pdf 15MTAAirQualityPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Montana Department of Environmental Quality (DEQ) requires a Montana Air Permit to construct and operate a new or modified source of air

206

GRR/Section 3-MT-a - State Geothermal Resource Lease | Open Energy  

Open Energy Info (EERE)

3-MT-a - State Geothermal Resource Lease 3-MT-a - State Geothermal Resource Lease < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-MT-a - State Geothermal Resource Lease 03MTAStateGeothermalResourceLease.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Regulations & Policies Rule 36.25.404 Triggers None specified Click "Edit With Form" above to add content 03MTAStateGeothermalResourceLease.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart is intended to document the process behind the geothermal resource lease in Montana. The procedure is outlined in Rule 36.25.404.

207

GRR/Section 5-MT-a - Drilling and Well Development | Open Energy  

Open Energy Info (EERE)

GRR/Section 5-MT-a - Drilling and Well Development GRR/Section 5-MT-a - Drilling and Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-MT-a - Drilling and Well Development 05MTADrillingAndWellDevelopment (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana Department of Environmental Quality Regulations & Policies MCA 37-43-104: Monitoring Wells MCA 37-43-302: License Requirements MCA 37-43-306: Bonding Requirements Triggers None specified Click "Edit With Form" above to add content 05MTADrillingAndWellDevelopment (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

208

RECIPIENT:MT DEQ u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MT DEQ MT DEQ u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlVIINATION PROJECT TITLE: Montana FormauJ SEP Page 1 of2 STATE: MT Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number em Number DE-FOA000643 NT43199 GF0-Q043199-OO1 Based on my review ofthe inrormation concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.IA), I have made the following determination: ex. EA, [IS APPENDIX AND NUMBER: Description: A9 Information gathering, analysis, and dissemination Information gathering (induding, but not limited to, literature surveys, inventories, site visits, and audits), data analysis (including, but not limited to, computer modeling), document preparation

209

GRR/Section 6-MT-b - Construction Storm Water Permit | Open Energy  

Open Energy Info (EERE)

MT-b - Construction Storm Water Permit MT-b - Construction Storm Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-MT-b - Construction Storm Water Permit 06MTBConstructionStormWaterPermit (7).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Code Annotated 75-5 [ARM 17.30.1101] Triggers None specified Click "Edit With Form" above to add content 06MTBConstructionStormWaterPermit (7).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Montana regulates water quality under Montana Code Annotated 75-5. The

210

GRR/Section 12-MT-a - Flora & Fauna Considerations | Open Energy  

Open Energy Info (EERE)

GRR/Section 12-MT-a - Flora & Fauna Considerations GRR/Section 12-MT-a - Flora & Fauna Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 12-MT-a - Flora & Fauna Considerations 12MTAFloraFaunaConsiderations (2).pdf Click to View Fullscreen Contact Agencies Montana Fish, Wildlife & Parks Regulations & Policies Commercial Use Administrative Rules Triggers None specified Click "Edit With Form" above to add content 12MTAFloraFaunaConsiderations (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart and the following content outlines the flora and fauna considerations that are specific to Montana and in addition to federal

211

GRR/Section 6-MT-a - Montana Overdimensional or Overweight Load Permit |  

Open Energy Info (EERE)

GRR/Section 6-MT-a - Montana Overdimensional or Overweight Load Permit GRR/Section 6-MT-a - Montana Overdimensional or Overweight Load Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-MT-a - Montana Overdimensional or Overweight Load Permit 06MTAMontanaOverdimensionalOrOverweightLoadPermit (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Transportation Regulations & Policies Montana Code Annotated 61-10-101 et seq. Administrative Rules of Monatana 18.8 Triggers None specified Click "Edit With Form" above to add content 06MTAMontanaOverdimensionalOrOverweightLoadPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

212

Controlled Source Audio MT At Cove Fort Area - Liquid (Combs 2006) | Open  

Open Energy Info (EERE)

Cove Fort Area - Liquid (Combs 2006) Cove Fort Area - Liquid (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Controlled Source Audio MT At Cove Fort Area (Combs 2006) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Controlled Source Audio MT Activity Date Usefulness not indicated DOE-funding Unknown Notes "SP, dipole-dipole resistivity, CSAMT; sufficient electrical data are available. Reservoir model?" References Jim Combs (1 January 2006) Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Controlled_Source_Audio_MT_At_Cove_Fort_Area_-_Liquid_(Combs_2006)&oldid=598122"

213

GRR/Section 3-MT-e - Encroachment Permit | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 3-MT-e - Encroachment Permit GRR/Section 3-MT-e - Encroachment Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-MT-e - Encroachment Permit 03MTEEncroachmentPermit.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana Department of Transportation Triggers None specified Click "Edit With Form" above to add content 03MTEEncroachmentPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart is intended to address the permitting requirements for encroachments on Montana Department of Transportation lands.

214

GRR/Section 18-MT-a - Underground Storage Tanks | Open Energy Information  

Open Energy Info (EERE)

MT-a - Underground Storage Tanks MT-a - Underground Storage Tanks < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-MT-a - Underground Storage Tanks 18MTAUndergroundStorageTanks (2).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Code Annotated 75-11-501 Administrative Rules of Montana 17-56 Triggers None specified Click "Edit With Form" above to add content 18MTAUndergroundStorageTanks (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A developer must obtain an Underground Storage Tank Installation Permit

215

GRR/Section 14-MT-a - Nonpoint Source Pollution | Open Energy Information  

Open Energy Info (EERE)

MT-a - Nonpoint Source Pollution MT-a - Nonpoint Source Pollution < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-MT-a - Nonpoint Source Pollution 14MTANonpointSourcePollution (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Montana Watershed Coordination Council United States Environmental Protection Agency Regulations & Policies Clean Water Act Triggers None specified Click "Edit With Form" above to add content 14MTANonpointSourcePollution (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Nonpoint source (NPS) pollution is the state's single largest source of

216

GRR/Section 14-MT-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-MT-d - Section 401 Water Quality Certification GRR/Section 14-MT-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-MT-d - Section 401 Water Quality Certification 14MTD401WaterQualityCertification (2).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Federal Clean Water Act (33 USC § 1251 et seq.) Montana Codes Annotated 75-5-401 Aministrative Rules of Montana Chapter 30 Administrative Rules of Montana 17.30.101 through 109 Triggers None specified Click "Edit With Form" above to add content 14MTD401WaterQualityCertification (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

217

Water Sampling At Mt St Helens Area (Shevenell & Goff, 1995) | Open Energy  

Open Energy Info (EERE)

Helens Area (Shevenell & Goff, 1995) Helens Area (Shevenell & Goff, 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt St Helens Area (Shevenell & Goff, 1995) Exploration Activity Details Location Mt St Helens Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown References Lisa Shevenell, Fraser Goff (1995) Evolution Of Hydrothermal Waters At Mount St Helens, Washington, Usa Retrieved from "http://en.openei.org/w/index.php?title=Water_Sampling_At_Mt_St_Helens_Area_(Shevenell_%26_Goff,_1995)&oldid=389549" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

218

Water Sampling At Mt Ranier Area (Frank, 1995) | Open Energy Information  

Open Energy Info (EERE)

Water Sampling At Mt Rainier Area (Frank, 1995) Water Sampling At Mt Rainier Area (Frank, 1995) Exploration Activity Details Location Mt Rainier Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes This paper relies primarily on minerals, gases, and water found in surficial deposits to construct a conceptual model for Mount Rainier that considers the following factors: - Locations of hydrothermal leakage at the surface; - Structures that provide permeable paths of fluid egress to the surface; - Amount of excess heat discharge; - Composition of surficial thermal fluids; - Composition, guided by mineralogy, of subsurface thermal fluids. Analytical data used as a basis for the model are from samples collected during field investigations in 1982-1985 (Frank, 1985), whereas

219

GRR/Section 6-MT-f - Short-term Water Quality Standard for Turbidity (318  

Open Energy Info (EERE)

GRR/Section 6-MT-f - Short-term Water Quality Standard for Turbidity (318 GRR/Section 6-MT-f - Short-term Water Quality Standard for Turbidity (318 Authorization) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-MT-f - Short-term Water Quality Standard for Turbidity (318 Authorization) 06MTFShortTermWaterQualityStandardForTurbidity318Authorization.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana Department of Environmental Quality Montana Fish, Wildlife & Parks Regulations & Policies MCA 75-5-318 Triggers None specified Click "Edit With Form" above to add content 06MTFShortTermWaterQualityStandardForTurbidity318Authorization.pdf Error creating thumbnail: Page number not in range.

220

GRR/Section 6-MT-d - Other Overview | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 6-MT-d - Other Overview GRR/Section 6-MT-d - Other Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-MT-d - Other Overview 06MTDOtherOverview.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana Department of Environmental Quality Montana Fish, Wildlife & Parks Triggers None specified Click "Edit With Form" above to add content 06MTDOtherOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This overview is intended to direct the developer to additional construction permits. For projects intended near waterways, Montana also provides a joint

Note: This page contains sample records for the topic "mt magnetotellurics z-axis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

GRR/Section 3-MT-f - Right-of-Way Easement for Utilities | Open Energy  

Open Energy Info (EERE)

3-MT-f - Right-of-Way Easement for Utilities 3-MT-f - Right-of-Way Easement for Utilities < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-MT-f - Right-of-Way Easement for Utilities 03MTFRightOfWayEasementForUtilitiesProcess.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana State Historic Preservation Office Triggers None specified Click "Edit With Form" above to add content 03MTFRightOfWayEasementForUtilitiesProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart is intended to describe the process for obtaining an

222

GRR/Section 18-MT-b - Hazardous Waste Facility Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-MT-b - Hazardous Waste Facility Permit GRR/Section 18-MT-b - Hazardous Waste Facility Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-MT-b - Hazardous Waste Facility Permit 18MTBHazardousWasteFacilityPermit.pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Code Annotated Title 75, Chapter 10, Part 4 Administrative Rules of Montana Title 17, Chapter 53 40 CFR 260 through 40 CFR 270 40 CFR 124 Triggers None specified Click "Edit With Form" above to add content 18MTBHazardousWasteFacilityPermit.pdf 18MTBHazardousWasteFacilityPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

223

GRR/Section 8-MT-a - Transmission Siting Process | Open Energy Information  

Open Energy Info (EERE)

8-MT-a - Transmission Siting Process 8-MT-a - Transmission Siting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-MT-a - Transmission Siting Process 08MTATransmission (3).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Code Annotated Title 75, Chapter 20 Montana Environmental Policy Act MCA 75-20-301 Findings Necessary for Certification ARM 17.20.1606 Electric Transmission Lines, Need Standard ARM 17.20.907 ARM 17.20.920 ARM 17.20.921 ARM 17.20.923 ARM 17.20.1902 Triggers None specified Click "Edit With Form" above to add content 08MTATransmission (3).pdf 08MTATransmission (3).pdf Error creating thumbnail: Page number not in range.

224

MT_GEQ_Handbook_July2009.doc MUSIC EDUCATION AND MUSIC THERAPY (MEMT)  

E-Print Network (OSTI)

MT_GEQ_Handbook_July2009.doc MUSIC EDUCATION AND MUSIC THERAPY (MEMT) Music Therapy Graduate Equivalency Program Handbook Music Therapy Graduate Equivalency Program Individuals who hold baccalaureate in Music Therapy planning outline. This handbook is designed to supplement the information in the KU

Peterson, Blake R.

225

PyMT: a post-WIMP multi-touch user interface toolkit  

Science Conference Proceedings (OSTI)

Multi-touch and tabletop input paradigms open novel doors for post-WIMP (Windows, Icons, Menus, Pointer) user interfaces. Developing these novel interfaces and applications poses unique challenges for designers and programmers alike. We present PyMT ... Keywords: GUI, Python, UI toolkits, graphics, multi-touch, open source, post-WIMP, user interfaces

Thomas E. Hansen; Juan Pablo Hourcade; Mathieu Virbel; Sharath Patali; Tiago Serra

2009-11-01T23:59:59.000Z

226

GRR/Section 3-MT-b - State Land Access | Open Energy Information  

Open Energy Info (EERE)

b - State Land Access b - State Land Access < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-MT-b - State Land Access 03MTBStateLandAccess (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana State Land Board Regulations & Policies Montana Code 77-4-101 et seq Geothermal Resources Natural Resources and Conservation Rules Triggers None specified Click "Edit With Form" above to add content 03MTBStateLandAccess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative 3-MT-b.1 - Application for Lease, Right-of-Way, or Easement

227

GRR/Section 14-MT-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 14-MT-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-MT-c - Underground Injection Control Permit 14MTCUndergroundInjectionControlPermit.pdf Click to View Fullscreen Contact Agencies United States Environmental Protection Agency Triggers None specified Click "Edit With Form" above to add content 14MTCUndergroundInjectionControlPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

228

GRR/Section 11-MT-a - State Cultural Considerations | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 11-MT-a - State Cultural Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-MT-a - State Cultural Considerations 11MTAStateCulturalConsiderations (1).pdf Click to View Fullscreen Contact Agencies Montana State Historic Preservation Office Regulations & Policies MCA 22-3-421: Report of Discovery on State Land MCA 22-3-800: Human Skeletal Remains and Burial Site Protection Act Triggers None specified Click "Edit With Form" above to add content

229

GRR/Section 3-MT-c - Encroachment Overview | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 3-MT-c - Encroachment Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-MT-c - Encroachment Overview 03MTCEncroachmentOverview.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Triggers None specified Click "Edit With Form" above to add content 03MTCEncroachmentOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative There are several individual right of way or encroachment procedures in Montana. This overview is intended to lead the developer to the appropriate

230

Aeromagnetic Survey At Mt St Helens Area (Towle, 1983) | Open Energy  

Open Energy Info (EERE)

Towle, 1983) Towle, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Mt St Helens Area (Towle, 1983) Exploration Activity Details Location Mt St Helens Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes The VLF method has proved useful in mapping the crater and central dome of Mount St. Helens. More detailed and extensive VLF investigations as well as other electrical and electromagnetic studies will be useful in determining the electrical structure of Mount St. Helens in more detail. Electrical and electromagnetic methods would be especially useful in determining the actual electrical conductivity of partial melt beneath the dome. The ability of these methods to determine the correlation of surface features

231

GRR/Section 11-MT-b - Human Remains Process | Open Energy Information  

Open Energy Info (EERE)

b - Human Remains Process b - Human Remains Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-MT-b - Human Remains Process 11MTBHumanRemainsProcess (1).pdf Click to View Fullscreen Contact Agencies Montana State Historic Preservation Office Regulations & Policies MCA 22-3-805: Discovery of Human Remains or Burial Material Triggers None specified Click "Edit With Form" above to add content 11MTBHumanRemainsProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative _ 11-MT-b.1 - Cease Operations and Contact County Coroner MCA 22-3-805: (1) A [developer] who by...construction, or other ground-disturbing

232

GRR/Section 17-MT-a - Aesthetic Resource Assessment | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 17-MT-a - Aesthetic Resource Assessment < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 17-MT-a - Aesthetic Resource Assessment 17MTAAestheticResourceAssessment.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana Department of Environmental Quality Montana Fish, Wildlife & Parks Regulations & Policies MCA 75-7-101 et seq The Natural Streambed and Land Preservation Act of 1975 MCA 87-5-501 et seq Montana Stream Protection

233

Sykes, M.T., I.C. Prentice, and W. Cramer. 1996. A bioclimatic  

NLE Websites -- All DOE Office Websites (Extended Search)

Sykes, M.T., I.C. Prentice, and W. Cramer. 1996. A bioclimatic Sykes, M.T., I.C. Prentice, and W. Cramer. 1996. A bioclimatic model for the potential distributions of north European tree species under present and future climates. Journal of Biogeography 23(2):203- 233. A bioclimatic model based on physiological constraints to plant growth and regeneration is used here in an empirical way to describe the present natural distributions of northern Europe's major trees. Bioclimatic variables were computed from monthly means of temperature, precipitation and sunshine (%) interpolated to a 10' grid taking into account elevation. Minimum values of mean coldest-month temperature (T-c) and 'effective' growing degree days (GDD*) were fitted to species' range limits. GDD* is total annual growing degree days (GDD) minus GDD to budburst (GDD(o)). Each species was assigned to one of the

234

GRR/Section 9-MT-a - Montana Environmental Policy Act | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 9-MT-a - Montana Environmental Policy Act < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 9-MT-a - Montana Environmental Policy Act 09MTAMontanaEnvironmentalPolicyAct.pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Montana Environmental Quality Council Regulations & Policies Montana Environmental Policy Act National Environmental Policy Act ARM 36-2-521 et seq ARM 17-4-607 General Requirements for MFWP Triggers None specified Click "Edit With Form" above to add content 09MTAMontanaEnvironmentalPolicyAct.pdf Error creating thumbnail: Page number not in range.

235

GRR/Section 19-MT-a - Water Access & Water Rights Issues | Open Energy  

Open Energy Info (EERE)

GRR/Section 19-MT-a - Water Access & Water Rights Issues GRR/Section 19-MT-a - Water Access & Water Rights Issues < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-MT-a - Water Access & Water Rights Issues 19MTAWaterAccessWaterRightsIssues (2).pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Regulations & Policies MCA Title 85 Water Use MCA 77-4-108 Water Rights in Connection with Geothermal Development MCA 85-2-307 MCA 85-2-308 MCA 85-2-309 MCA 85-2-310 MCA 85-2-311 MCA 85-2-313 MCA 85-2-315 Triggers None specified Click "Edit With Form" above to add content 19MTAWaterAccessWaterRightsIssues (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

236

Structural and heat-flow implications of infrared anomalies at Mt. Hood, Oregon  

DOE Green Energy (OSTI)

Surface thermal features occur in an area of 9700 m/sup 2/ at Mt. Hood, on the basis of an aerial line-scan survey made April 26, 1973. The distribution of the thermal areas below the summit of Mt. Hood, shown on planimetrically corrected maps at 1 : 12,000, suggests structural control by a fracture system and brecciated zone peripheral to a hornblende-dacite plug dome (Crater Rock), and by a concentric fracture system that may have been associated with development of the present crater. The extent and inferred temperature of the thermal areas permits a preliminary estimate of a heat discharge of 10 megawatts, by analogy with similar fumarole and thermal fields of Mt. Baker, Washington. This figure includes a heat loss of 4 megawatts (MW) via conduction, diffusion, evaporation, and radiation to the atmosphere, and a somewhat less certain loss of 6 MW via fumarolic mass transfer of vapor and advective heat loss from runoff and ice melt. The first part of the estimate is based on two-point models for differential radiant exitance and differential flux via conduction, diffusion, evaporation, and radiation from heat balance of the ground surface. Alternate methods for estimating volcanogenic geothermal flux that assume a quasi-steady state heat flow also yield estimates in the 5-11 MW range. Heat loss equivalent to cooling of the dacite plug dome is judged to be insufficient to account for the heat flux at the fumarole fields.

Friedman, J.D.; Frank, D.

1977-01-01T23:59:59.000Z

237

Quantitative Analysis of Mt. St. Helens Ash by X-Ray Diffraction and X-Ray Fluorescence Spectrometry  

Science Conference Proceedings (OSTI)

A quantitative study by x-ray diffraction, optical polarizing microscopy, and x-ray fluorescence spectrometry of fallout and ambient ash from three Mt. St. Helens eruptions has revealed a consistent picture of the mineralogical and elemental ...

Briant L. Davis; L. Ronald Johnson; Dana T. Griffen; William Revell Phillips; Robert K. Stevens; David Maughan

1981-08-01T23:59:59.000Z

238

An Estimate of the Chemical and Radiative Perturbation of Stratospheric Ozone Following the Eruption of Mt. Pinatubo  

Science Conference Proceedings (OSTI)

In this work a numerical assessment is attempted of trace species interactions with aerosols injected in the stratosphere by the eruption of Mt. Pinatubo. A photochemical two-dimensional model is used for this purpose, with heterogeneous chemical ...

G. Pitari; V. Rizi

1993-10-01T23:59:59.000Z

239

An assessment of regional climate trends and changes to the Mt. Jaya glaciers of Irian Jaya  

E-Print Network (OSTI)

Over the past century, glaciers throughout the tropics have predominately retreated. These small glaciers, which respond quickly to climate changes, are becoming increasingly important in understanding glacier-climate interactions. The glaciers on Mt. Jaya in Irian Jaya, Indonesia are the last remaining tropical glaciers in the Western Pacific region. Although considerable research exists investigating the climatic factors most affecting tropical glacier mass balance, extensive research on the Mt. Jaya glaciers has been lacking since the early 1970s. Using IKONOS satellite images, the ice extents of the Mt. Jaya glaciers in 2000, 2002, 2003, 2004, and 2005 were mapped. The mapping indicates that the recessional trend which began in the mid-19th century has continued. Between 1972 (Allison, 1974; Allison and Peterson, 1976) and 2000, the glaciers lost approximately 67.6% of their area, representing a reduction in surface ice area from 7.2 km2 to 2.35 km2. From 2000 to 2005, the glaciers lost an additional 0.54 km2, representing approximately 24% of the 2000 area. Rates of ice loss, calculated from area measurements for the Mt. Jaya glaciers in 1942, 1972, 1987, and 2005, indicate that ice loss on Mt. Jaya has increased during each subsequent period. Preliminary modeling, using 600 hPa atmospheric temperature, specific humidity, wind speeds, surface precipitation, and radiation values, acquired from the NCEP Reanalysis dataset, indicates that the only climate variable having a statistically-significant change with a magnitude great enough to strongly affect ice loss on these glaciers was an increase in the mean monthly atmospheric temperature of 0.24?°C between 1972 and 1987. However, accelerated ice loss occurring from 1988-2005 without large observed changes in the weather variables indicates that a more complex explanation may be required. Small, though statistically-significant changes were found in regional precipitation, with precipitation decreasing from 1972-1987 and increasing from 1988-2005. While, individually, these changes were not of sufficient magnitude to have greatly affected ice loss on these glaciers, increased precipitation along with a rising freezing level may have resulted in a greater proportion of the glacier surface being affected by rain. This may account for the increased recession rate observed in the latter period.

Kincaid, Joni L.

2003-05-01T23:59:59.000Z

240

Continuous Profiling of Magnetotelluric Fields  

E-Print Network (OSTI)

S. , 1984, Advanced Geomagnetic Sounding: Elsevier ScienceThe inverse 0roblem of geomagnetic induction: Geophys. J. ,1970, Inversion of the geomagnetic London, 315, 185-194.

Verdin, C.T.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mt magnetotellurics z-axis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

MT2-reconstructed invisible momenta as spin analizers, and an application to top polarization  

E-Print Network (OSTI)

Full event reconstruction is known to be challenging in cases with more than one undetected final-state particle, such as pair production of two states each decaying semi-invisibly. On the other hand, full event reconstruction would allow to access angular distributions sensitive to the spin fractions of the decaying particles, thereby dissecting their production mechanism. We explore this possibility in the case of Standard-Model t-tbar production followed by a leptonic decay of both W bosons, implying two undetected final-state neutrinos. We estimate the t and tbar momentum vectors event by event using information extracted from the kinematic variable MT2. The faithfulness of the estimated momenta to the true momenta is then tested in observables sensitive to top polarization and t-tbar spin correlations. Our method thereby provides a novel approach towards the evaluation of these observables, and towards testing t-tbar production beyond the level of the total cross section. While our discussion is confined to t-tbar production as a benchmark, the method is applicable to any process whose decay topology allows to construct MT2.

Diego Guadagnoli; Chan Beom Park

2013-08-09T23:59:59.000Z

242

Mt. Hood geothermal exploratory drilling and testing plan. Old Maid Flat holes No. 1 and No. 7A  

DOE Green Energy (OSTI)

This plan has been prepared to establish the objectives and set forth the procedures and guidelines for conducting geothermal exploratory drilling and testing operations in the Old Maid Flat area of Mt. Hood, Oregon, approximately 50 miles east of Portland. The project will be conducted on lands within the Mt. Hood National Forest, which are currently under Federal Lease OR 13994 to the Northwest Geothermal Corporation. The exploratory geothermal operations will consist of (1) testing an existing 4,000-foot temperature gradient hole to determine the quality of geothermal fluids, and (2) drilling and testing a new 5,000-foot hole to determine overall geothermal reservoir characteristics.

Not Available

1980-05-01T23:59:59.000Z

243

GRR/Section 17-MT-c - Natural Streambed and Land Preservation Act (310  

Open Energy Info (EERE)

c - Natural Streambed and Land Preservation Act (310 c - Natural Streambed and Land Preservation Act (310 Permit) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 17-MT-c - Natural Streambed and Land Preservation Act (310 Permit) 17MTCNaturalStreambedAndLandPreservationAct310Permit.pdf Click to View Fullscreen Contact Agencies Local Conservation District Montana Department of Natural Resources & Conservation Montana Fish, Wildlife & Parks Regulations & Policies MCA 75-7-101 et seq The Natural Streambed and Land Preservation Act of 1975 Triggers None specified Click "Edit With Form" above to add content 17MTCNaturalStreambedAndLandPreservationAct310Permit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

244

GRR/Section 17-MT-d - Streamside Management Zone Law | Open Energy  

Open Energy Info (EERE)

d - Streamside Management Zone Law d - Streamside Management Zone Law < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 17-MT-d - Streamside Management Zone Law 17MTDStreamsideManagementZoneLawProcess.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Triggers None specified Click "Edit With Form" above to add content 17MTDStreamsideManagementZoneLawProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Any landowner or operator conducting a series of commercial forest practices that will access, harvest, or regenerate trees on a defined land

245

GRR/Section 3-MT-d - Land Use License Process | Open Energy Information  

Open Energy Info (EERE)

d - Land Use License Process d - Land Use License Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-MT-d - Land Use License Process 03MTDLandUseLicenseProcess (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Regulations & Policies Surface Management Rule 36.25.103 Triggers None specified Click "Edit With Form" above to add content 03MTDLandUseLicenseProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The land use license is intended to be used for short-term use of state-owned lands. This license may be used for casual use of the lands

246

GRR/Section 11-MT-c - Cultural Resource Discovery | Open Energy Information  

Open Energy Info (EERE)

c - Cultural Resource Discovery c - Cultural Resource Discovery < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-MT-c - Cultural Resource Discovery 11MTCCulturalResourceDiscoveryProcess (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana State Historic Preservation Office Regulations & Policies 36 CFR 800.16: NHPA Definitions MCA 22-3-421: Montana Antiquities Definitions MCA 22-3-429: Consultation, Notice, Appeal MCA 22-3-430: Mitigation MCA 22-3-435: Report of Discovery ARM 36.2.801-813: Antiquities Triggers None specified Click "Edit With Form" above to add content 11MTCCulturalResourceDiscoveryProcess (1).pdf Error creating thumbnail: Page number not in range.

247

Resource appraisal of the Mt. Shasta Wilderness Study area, Siskiyou County, California  

DOE Green Energy (OSTI)

Results of geological, geochemical, and aeromagnetic surveys indicate that the only potentially extractable resource of Mt. Shasta may be geothermal energy, but the potential within the Wilderness Study Area is low. Some sulfur and gypsum occur locally around active and extinct fumaroles near the summit but are too small to indicate a resource. Cinder deposits have been mined near the Wilderness Study Area, but almost none are exposed within it. The levels of trace-metal anomalies relative to background values and the amounts of exposed mineralized rock are too small to indicate economic potential. It is concluded that any significant potential for future geothermal development is more likely to exist on and near the lower slopes of the volcano, generally outside the study area. (JGB)

Christiansen, R.L.; Kleinhampl, F.J.; Blakely, R.J.; Tuchek, E.T.; Johnson, F.L.; Conyac, M.D.

1977-01-01T23:59:59.000Z

248

Traffic Management Command, ATTN: MT-INFF, 5611 Columbia Pike, Falls  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

/ 'Vol 52,-No. 212. !/- Tuesday; November 3, -1987 1 Notices.- . / 'Vol 52,-No. 212. !/- Tuesday; November 3, -1987 1 Notices.- . . and responsibility of that company. This is not intented to prevent a carrier from interchanging equipment to allow for the through movement of traffic. Master- leases which do not meet the requirements of a long-term lease or that depend on other documentation and/or subleases to be complete are viewed as trip-leases. DATE: Comments must be received on or before 1 January 1988. ADDRESS: Comments should be addressed to: Headquarters, Military Traffic Management Command, ATTN: MT-INFF, 5611 Columbia Pike, Falls Church, VA 22041-5050. FOR FURTHER INFORMATION CONTACT. Ms. Patricia McCormick, HQMTMC 5611 Columbia Pike, Falls Church, VA 22041- 5050, (202] 756-1887. SUPPLEMENTARY INFORMATION. Master- leases which do not conform to the

249

Analyses of Nuclear ldhA Gene and mtDNA Control Region Sequences of Atlantic Northern Bluen Tuna  

E-Print Network (OSTI)

Analyses of Nuclear ldhA Gene and mtDNA Control Region Sequences of Atlantic Northern Blue®n Tuna: There has been considerable debate about whether the Atlantic northern blue®n tuna exist as a single®n tuna from the Mediterranean Sea and the northwestern Atlantic Ocean. Pairwise comparisons of multiple

Ely, Bert

250

Pattern recognition of volcanic tremor data on Mt. Etna (Italy) with KKAnalysis-A software program for unsupervised classification  

Science Conference Proceedings (OSTI)

Continuous seismic monitoring plays a key role in the surveillance of the Mt. Etna volcano. Besides earthquakes, which often herald eruptive episodes, the persistent background signal, known as volcanic tremor, provides important information on the volcano ... Keywords: Cluster analysis, Fuzzy C-means, K-means, Self-organizing map, Volcano monitoring, Volcano seismology

A. Messina; H. Langer

2011-07-01T23:59:59.000Z

251

EM SSAB NATIONAL CHAIRS MEETING Deer Creek State Park, Mt. Sterling, Ohio  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM SSAB NATIONAL CHAIRS MEETING EM SSAB NATIONAL CHAIRS MEETING Deer Creek State Park, Mt. Sterling, Ohio November 5-7, 2013 DAY 1 - Tuesday, November 5, 2013 8:00 a.m. - 8:20 a.m. Welcome and Opening Remarks Cate Alexander, EM SSAB Designated Federal Officer Will Henderson, Chair, Portsmouth Site Specific Advisory Board William Murphie, Manager, Portsmouth Paducah Project Office, DOE-EM 8:20 a.m. - 8:30 a.m. Overview of Meeting Eric Roberts, Facilitator 8:30 a.m. - 9:30 a.m. EM Program Update Alice Williams, Associate Principal Deputy Assistant Secretary for Environmental Management 9:30 a.m. - 10:20 a.m. Round Robin (Chairs' Site Reports) 5 minutes each 10:20 a.m. - 10:30 a.m. Recognition of Departing Chairs 10:30 a.m. - 10:45 a.m. Break 10:45 a.m. - 12:00

252

CO2 flood tests on whole core samples of the Mt. Simon sandstone, Illinois Basin  

SciTech Connect

Geological sequestration of CO2, whether by enhanced oil recovery (EOR), coal-bed methane (CBM) recovery, or saline aquifer injection is a promising near-term sequestration methodology. While tremendous experience exists for EOR, and CBM recovery has been demonstrated in existing fields, saline aquifer injection studies have only recently been initiated. Studies evaluating the availability of saline aquifers suitable for CO2 injection show great potential, however, the long-term fate of the CO2 injected into these ancient aqueous systems is still uncertain. For the subject study, a series of laboratory-scale CO2 flood tests were conducted on whole core samples of the Mt. Simon sandstone from the Illinois Basin. By conducting these tests on whole core samples rather than crushed core, an evaluation of the impact of the CO2 flood on the rock mechanics properties as well as the geochemistry of the core and brine solution has been possible. This empirical data could provide a valuable resource for the validation of reservoir models under development for these engineered CO2 systems.

O'Connor, William K.; Rush, Gilbert E.

2005-09-01T23:59:59.000Z

253

Chemical Weathering of New Pyroclastic Deposits from Mt. Merapi (Java), Indonesia  

SciTech Connect

Java Island, Indonesia with abundant amount of pyroclastic deposits is located in the very active and dynamic Pacific Ring of Fires. Studying the geochemical weathering indices of these pyroclastic deposits is important to get a clear picture about weathering profiles on deposits resulting from the eruption of Mt. Merapi. Immediately after the first phase of the eruption (March to June 2006), moist and leached pyroclastic deposits were collected. These pyroclastic deposits were found to be composed of volcanic glass, plagioclase feldspar in various proportions, orthopyroxene, clinopyroxene, olivine, amphibole, and titanomagnetite. Total elemental composition of the bulk samples (including trace elements and heavy metals) were determined by wet chemical methods and X-ray fluorescence (XRF) analyses. Weathering of the pyroclastic deposits was studied using various weathering indices. The Ruxton ratio, weathering index of Parker, Vought resudual index and chemical index of weathering of moist pyroclastic are lower than the leached sample but the alteration indices (chemical and plagioclase) are slightly higher in the moist compared to the leached pyroclastic deposits.

Fiantis, Dian; Nelson, Malik; Van Ranst, Eric; Shamshudin, Josup; Qafoku, Nikolla

2009-09-01T23:59:59.000Z

254

Structural controls, alteration, permeability and thermal regime of Dixie Valley from new-generation MT/galvanic array profiling  

DOE Green Energy (OSTI)

State-of-the-art MT array measurements in contiguous bipole deployments across the Dixie Valley thermal area have been integrated with regional MT transect data and other evidence to address several basic geothermal goals. These include 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault zones which have experienced fluid flux as indicated by low resistivity; 3), infer ultimate heat and fluid sources for the thermal area; and 4), from a generic technique standpoint, investigate the capability of well-sampled electrical data for resolving subsurface structure. Three dense lines cross the Senator Fumaroles area, the Cottonwood Creek and main producing area, and the low-permeability region through the section 10-15 area, and have stand-alone MT soundings appended at one or both ends for local background control. Regularized 2-D inversion implies that shallow pediment basement rocks extend for a considerable distance (1-2 km) southeastward from the topographic scarp of the Stillwater Range under all three dense profiles, but especially for the Senator Fumaroles line. This result is similar to gravity interpretations in the area, but with the intrinsic depth resolution possible from EM wave propagation. Low resistivity zones flank the interpreted main offsetting fault especially toward the north end of the field which may be due to alteration from geothermal fluid outflow and upflow. The appended MT soundings help to substantiate a deep, subvertical conductor intersecting the base of Dixie Valley from the middle crust, which appears to be a hydrothermal conduit feeding from deep crustal magmatic underplating. This may supply at least part of the high temperature fluids and explain enhanced He-3 levels in those fluids.

Philip E. Wannamaker

2007-11-30T23:59:59.000Z

255

Jeanne Wright, RN, BSN, MT, CCRP, CIM, RAC, SoCRA Research Analyst Lead, University of Michigan, Michigan Institute for Clinical and Health Research  

E-Print Network (OSTI)

Jeanne Wright, RN, BSN, MT, CCRP, CIM, RAC, SoCRA Research Analyst Lead, University of Michigan&D. CERTIFICATIONS Regulatory Affairs Certification (2012) National Association of IRB Managers (CIM), 2009

Eustice, Ryan

256

Complete nucleotide sequences of the domestic cat (Felis catus) mitochondrial genome and a transposed mtDNA tandem repeat (Numt) in the nuclear genome  

SciTech Connect

The complete 17,009-bp mitochondrial genome of the domestic cat, Felis catus, has been sequenced and conforms largely to the typical organization of previously characterized mammalian mtDNAs. Codon usage and base composition also followed canonical vertebrate patterns, except for an unusual ATC (non-AUG) codon initiating the NADH dehydrogenase subunit 2 (ND2) gene. Two distinct repetitive motifs at opposite ends of the control region contribute to the relatively large size (1559 bp) of this carnivore mtDNA. Alignment of the feline mtDNA genome to a homologous 7946-bp nuclear mtDNA tandem repeat DNA sequence in the cat, Numt, indicates simple repeat motifs associated with insertion/deletion mutations. Overall DNA sequence divergence between Numt and cytoplasmic mtDNA sequence was only 5.1%. Substitutions predominate at the third codon position of homologous feline protein genes. Phylogenetic analysis of mitochondrial gene sequences confirms the recent transfer of the cytoplasmic mtDNA sequences to the domestic cat nucleus and recapitulates evolutionary relationships between mammal species. 86 refs., 4 figs., 3 tabs.

Lopez, J.V.; Cevario, S.; O`Brien, S.J. [National Cancer Institute, Frederick, MD (United States)

1996-04-15T23:59:59.000Z

257

DOI-BLM-NV-B020-2010-0106-CX | Open Energy Information  

Open Energy Info (EERE)

-0106-CX -0106-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-B020-2010-0106-CX CX at Alum Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Sierra Geothermal Power Geothermal Area Alum Geothermal Area Project Location California Project Phase Geothermal/Exploration Techniques Hyperspectral Imaging, Magnetic Techniques, Magnetotellurics, Slim Holes, Z-Axis Tipper Electromagnetics Comments airborne thermal survey Time Frame (days) Application Time 182 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Battle Mountain Managing Field Office BLM Tonopah Field Office

258

Terrain effects in resistivity and magnetotelluric surveys  

Science Conference Proceedings (OSTI)

A three-dimensional finite element computer algorithm which can accommodate arbitrarily complex topography and subsurface structure, has been developed to model the resistivity response of the earth. The algorithm has undergone extensive evaluation and is believed to provide accurate results for realistic earth models. Testing included comparison to scale model measurements, analytically calculated solutions, and results calculated numerically by other independent means. Computer modeling experiments have demonstrated that it is possible to remove the effect of topography on resistivity data under conditions where such effects dominate the response. This can be done without resorting to lengthy and costly trial and error computer modeling. After correction, the data can be interpreted with confidence that the anomalies are due only to subsurface structure. The results of case studies on resistivity field data measured in high relief topography are discussed.

Holcombe, H.T.

1982-12-01T23:59:59.000Z

259

The Tasman Project Of Seafloor Magnetotelluric Exploration  

E-Print Network (OSTI)

generating magnetic storms is the solar win~ a plasma mainlysfe (solar flare event) Principal Magnetic Storm Principalsolar plasma produce the initial phase of the storm (denoted

Ferguson, Ian James

1988-01-01T23:59:59.000Z

260

The Tasman Project Of Seafloor Magnetotelluric Exploration  

E-Print Network (OSTI)

units (for example the volt which equals 1 A- I .kg.m2.s-3).C=coulomb D E R S p (j n V=volt Q=ohm S O.m S.m- l S=siemensunits of metres (m), seconds (s), volts (V), amperes (A) and

Ferguson, Ian James

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mt magnetotellurics z-axis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Geothermal resource assessment of Mt. Hood volcano, Oregon, Phase I study. Technical progress report No. 2, October 1, 1977--March 31, 1978  

DOE Green Energy (OSTI)

Several phases of the Mt. Hood geothermal resource assessment project are nearing completion. Most of the field work has been completed for the geologic study, gravity survey, and water sampling portions of the project. Thermal modelling, water analyses, rock analyses and age dating, and preparation of a complete Bouguer gravity map are in progress.

Hull, D.A.

1978-05-31T23:59:59.000Z

262

Effects of the Mt. Pinatubo eruption on the radiative and chemical processes in the troposphere and stratosphere  

Science Conference Proceedings (OSTI)

The LLNL 2-D zonally averaged chemical-radiative transport model of the global atmosphere was used to study the effects of the June 15, 1991 eruption of the Mt. Pinatubo volcano on stratospheric processes. SAGE-11 time-dependent aerosol surface area density and optical extinction data were used as input into the model. By the winter solstice, 1991, a maximum change in column ozone was observed in the equatorial region of {minus}2% (with heterogeneous chemical reactions on sulfuric acid aerosols) and {minus}5.5% (including heterogeneous reactions plus radiative feedbacks). Maximum local ozone decreases of 12% were derived in the equatorial region, at 25 km, for winter solstice 1991. Column NO{sub 2} peaked ({minus}14%) at 30 S in October 1991. Local concentrations of NO{sub x}, Cl{sub x}, and HO{sub x}, in the lower stratosphere, were calculated to have changed between 30 S and 30 N by {minus}40%, +80%, and +60% respectively.

Kinnison, D.E.; Grant, K.E.; Connell, P.S.; Wuebbles, D.J.

1992-07-05T23:59:59.000Z

263

Geothermal exploration technology. Annual report, 1978  

DOE Green Energy (OSTI)

Progress is reported on the following programs: electrical and electromagnetic computer modeling techniques; minicomputer for in-field processing of magnetotelluric data; superconducting thin-film gradiometer and magnetometers for geophysical applications; magnetotellurics with SQUID magnetometers; controlled-source electromagnetic system; geothermal seismic field system development; Klamath Basin geothermal resource and exploration technique evaluation; Mt. Hood geothermal resource evaluation; East Mesa seismic study; seismological studies at Cerro Prieto; self-potential studies at Cerro Prieto; resistivity studies at Cerro Prieto; magnetotelluric survey at Cerro Prieto; and precision gravity studies at Cerro Prieto. (MHR)

Not Available

1978-01-01T23:59:59.000Z

264

Sodium arsenite alters cell cycle and MTHFR, MT1/2, and c-Myc protein levels in MCF-7 cells  

SciTech Connect

There is limited available information on the effects of arsenic on enzymes participating in the folate cycle. Therefore, our aim was to evaluate the effects of sodium arsenite on the protein levels of methylenetetrahydrofolate reductase (MTHFR) and dihydrofolate reductase (DHFR) and its further relationship with the expression MT1/2 and c-myc in MCF-7 cells. Arsenite treatment (0-10 muM) for 4 h decreased MTHFR levels in a concentration-dependent fashion without significant effects on DHFR. The effects on MTHFR were observed at arsenite concentrations not significantly affecting cell viability. We also observed an increase in S-phase recruitment at all concentrations probed. Lower concentrations (< 5 muM) induced cell proliferation, showing a high proportion of BrdU-stained cells, indicating a higher DNA synthesis rate. However, higher concentrations (>= 5 muM) or longer treatment periods induced apoptosis. Arsenite also induced dose-dependent increases in MT1/2 and c-Myc protein levels. The levels of MTHFR were inversely correlated to MT1/2 and c-Myc overexpression and increased S-phase recruitment. Our findings indicate that breast epithelial cells are responsive to arsenite and suggest that exposure may pose a risk for breast cancer. The reductions in MTHFR protein levels contribute to understand the mechanisms underlying the induction of genes influencing growth regulation, such as c-myc and MT1/2. However, further research is needed to ascertain if the effects here reported following short-time and high-dose exposure are relevant for human populations chronically exposed to low arsenic concentrations.

Ruiz-Ramos, Ruben [Centro de Investigacion en Salud Poblacional, INSP, Cuernavaca, Morelos (Mexico); Departamento de Toxicologia, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, 07360 Mexico D.F. (Mexico); Lopez-Carrillo, Lizbeth [Centro de Investigacion en Salud Poblacional, INSP, Cuernavaca, Morelos (Mexico); Albores, Arnulfo [Departamento de Toxicologia, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, 07360 Mexico D.F. (Mexico); Hernandez-Ramirez, Raul U. [Centro de Investigacion en Salud Poblacional, INSP, Cuernavaca, Morelos (Mexico); Cebrian, Mariano E., E-mail: mcebrian@cinvestav.m [Departamento de Toxicologia, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, 07360 Mexico D.F. (Mexico)

2009-12-15T23:59:59.000Z

265

Search for supersymmetry in hadronic final states using $M_{T2}$ in pp collisions at $\\sqrt{s}$ = 7 TeV  

E-Print Network (OSTI)

A search for supersymmetry or other new physics resulting in similar final states is presented using a data sample of 4.73 inverse femtobarns of pp collisions collected at sqrt(s)=7 TeV with the CMS detector at the LHC. Fully hadronic final states are selected based on the variable MT2, an extension of the transverse mass in events with two invisible particles. Two complementary studies are performed. The first targets the region of parameter space with medium to high squark and gluino masses, in which the signal can be separated from the standard model backgrounds by a tight requirement on MT2. The second is optimized to be sensitive to events with a light gluino and heavy squarks. In this case, the MT2 requirement is relaxed, but a higher jet multiplicity and at least one b-tagged jet are required. No significant excess of events over the standard model expectations is observed. Exclusion limits are derived for the parameter space of the constrained minimal supersymmetric extension of the standard model, as...

Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Er, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Hrmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knnz, Valentin; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schfbeck, Robert; Strauss, Josef; Taurok, Anton; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Staykova, Zlatka; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Lonard, Alexandre; Marage, Pierre Edouard; Reis, Thomas; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jrmie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Verwilligen, Piet; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; De Jesus Damiao, Dilson; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Ald Jnior, Walter Luiz; Carvalho, Wagner; Custdio, Analu; Da Costa, Eliza Melo; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Soares Jorge, Luana; Sznajder, Andre; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Siguang; Zhu, Bo; Zou, Wei; Avila, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Khalil, Shaaban; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Mntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Azzolini, Virginia; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Hrknen, Jaakko; Heikkinen, Mika Aatos; Karimki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampn, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindn, Tomas; Luukka, Panja-Riina; Menp, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Karjalainen, Ahti; Korpela, Arja; Tuuva, Tuure; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis

2012-01-01T23:59:59.000Z

266

MT@TMS  

Science Conference Proceedings (OSTI)

This came on the heels of a statement released earlier in the month by the UK's Department for Environment, Food, and Rural Affairs (DEFRA), saying in part,...

267

MT@TMS  

Science Conference Proceedings (OSTI)

Oct 15, 2010 ... This report certainly played a key role in moving academic ... with the elite group of physicists and other scientists developing the atomic bomb.

268

MT@TMS  

Science Conference Proceedings (OSTI)

Sep 16, 2009 ... Duranar Powder Coatings: PPG Industries, Pittsburgh, Pennsylvania. ... Nanocrystal Solar Cells: Lawrence Berkeley National Laboratory and...

269

MT@TMS  

Science Conference Proceedings (OSTI)

Apr 20, 2013 ... Ron earned a BSc and BEng (1944), a Master MetEng (1954), and a Doctor of Applied Science (1967) from the University of Melbourne.

270

MT@TMS  

Science Conference Proceedings (OSTI)

May 28, 2012 ... Wettability and Interfacial Phenomena Between Metals and Ceramic/Refractory Materials:Submitted by Martin Pech-Canul. For a more...

271

MT@TMS  

Science Conference Proceedings (OSTI)

Dec 29, 2011... pyrometallurgical processingviewed as inherently pollutingcan ... to address air, land, and water pollution is part of that long-term dream.

272

MT@TMS  

Science Conference Proceedings (OSTI)

Jan 15, 2009 ... Combined heat and power (CHP) technologies, which capture and reuse waste heat from electric or mechanical power, account for about nine...

273

MT@TMS  

Science Conference Proceedings (OSTI)

Sep 3, 2009... an anti-reflective coating that facilitates the efficient conversion of solar ... the region to weather the current economic downturn far better than...

274

MT@TMS  

Science Conference Proceedings (OSTI)

Mar 31, 2013 ... During its five operational years, Roadrunner, part of the U.S. National Nuclear Security Administration's Advanced Simulation and Computing...

275

MT@TMS  

Science Conference Proceedings (OSTI)

Oct 29, 2010 ... The process used in drilling Marcellus shalealso known as frackingentails pumping millions of gallons of water and chemicals deep...

276

MT@TMS  

Science Conference Proceedings (OSTI)

Apr 20, 2012... and yttrium are used in fluorescent light fixtures, while neodymium ... in electronic/electrical applications and in support radio and light bulbs,...

277

MT@TMS  

Science Conference Proceedings (OSTI)

Met. Trans. Home .... as well as the environmental impacts and national security implications of that mix, and consider how they might leverage their research to...

278

MT@TMS  

Science Conference Proceedings (OSTI)

Jul 7, 2009 ... Through interviews with Harrie J. Stevens, director of the Center for Glass ... tensile stress, as well as manufacturing and tempering techniques.

279

MT@TMS  

Science Conference Proceedings (OSTI)

Mar 24, 2013 ... Materials for Nuclear Power ... high temperature heat recovery; high temperature thermal storage; and use of domestically abundant ores.

280

MT@TMS  

Science Conference Proceedings (OSTI)

Dec 29, 2011 ... CHAMINI L. MENDIS National Institute for Materials Science, Japan JOM Advisor, Magnesium Committee The adoption of magnesium alloys in...

Note: This page contains sample records for the topic "mt magnetotellurics z-axis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

MT@TMS  

Science Conference Proceedings (OSTI)

Jun 19, 2013 ... These resources are free to all web users, so feel free to browse and download whatever you find useful. Development of the Materials...

282

MT@TMS  

Science Conference Proceedings (OSTI)

May 28, 2012... Division of the National Institute of Standards and Technology and advisor to the director on the Materials Genome ... Since the best way to experience a TMS Annual Meeting is to actually be ... 2013 All rights reserved.

283

MT@TMS  

Science Conference Proceedings (OSTI)

Mar 21, 2013... radiation detection, thermal barrier, and tribological applications. ... reveal a prospect for the improvement and optimization of solar reflectors.

284

MT@TMS  

Science Conference Proceedings (OSTI)

Dec 29, 2011 ... The question of where all of the additional electricity to power our vehicles ... The continuing high price of many metals in 2011 had a significant...

285

MT@TMS  

Science Conference Proceedings (OSTI)

Jan 18, 2013 ... You're going to make things very different when the price of oil goes ... deeply about how to increase the amount of electricity generated by...

286

MT@TMS  

Science Conference Proceedings (OSTI)

Jul 1, 2011 ... Request Meeting Information .... Could you share a few of the key points that you are planning to make? ... We already have a program called Advanced Technological ... Manufacturing Innovation; Electrical, Communications and Cyber ... Interdisciplinary Research Teams (MIRT) representing collaborative...

287

MT@TMS  

Science Conference Proceedings (OSTI)

Mar 20, 2013 ... This included limited resources and faculty availability, as well as limits on the number of courses that could be included in undergraduate...

288

MT@TMS  

Science Conference Proceedings (OSTI)

Dec 3, 2010 ... A Quadrennial Energy Review (QER) could likewise establish national goals and coordinate actions across agencies. It could also identify the...

289

MT@TMS  

Science Conference Proceedings (OSTI)

Jul 9, 2012 ... You are not signed in | Login here | New User? ... TMS Energy ... that will reduce dependence on non-renewable resources and improve the...

290

MT@TMS  

Science Conference Proceedings (OSTI)

Aug 23, 2012 ... A postulated failure mode consisting of a pinhole leak in a heat exchanger tube raises safety concerns because of autoignition of the working...

291

MT@TMS  

Science Conference Proceedings (OSTI)

Jun 3, 2009 ... Materials at the University of Puerto Rico-Mayagez: The Surge .... Department of Electrical and Computer Engineering professor and principal...

292

MT@TMS  

Science Conference Proceedings (OSTI)

Mar 6, 2009 ... ALEXANDRA CINTRN-APONTE, UNIVERSITY OF PUERTO RICO AT ... "Grain Refinement of Pure Al and Al-Si Alloy by Applying Electric...

293

MT@TMS  

Science Conference Proceedings (OSTI)

Materials for Nuclear Power ... Posted on: 10/04/2011 ... scientific workforce and accelerating the transition from research to new products, processes and services, ... MS&T 2011 is organized as a partnership the American Ceramic Society, the...

294

MT@TMS  

Science Conference Proceedings (OSTI)

Aug 18, 2010 ... Materials for Nuclear Power ... The 1297 Magna Carta represents the transition from a brokered agreement to ... often called America's Birth Certificate because it is the first world map to label ... The Archives will display the Magna Carta until early 2011 while plans for the new encasement are developed.

295

MT@TMS  

Science Conference Proceedings (OSTI)

Feb 12, 2010 ... This efficiency is more than five times greater than that of traditional ... offers better color rendering properties than is typically found in CFLs.

296

MT@TMS  

Science Conference Proceedings (OSTI)

... zeolite, dubbed SBN, captured enough medium source methane to turn it to high purity methane, which in turn could be used to generate efficient electricity.

297

MT@TMS  

Science Conference Proceedings (OSTI)

Jul 1, 2011 ... It definitely left an impression that we thought funding for research was important enough to merit taking a trip to DC, especially getting toward...

298

MT@TMS  

Science Conference Proceedings (OSTI)

Jun 23, 2013... the survey, with three-quarters saying they would participate in open data sharing if encouraged as a term/condition of funding or publication.

299

MT@TMS  

Science Conference Proceedings (OSTI)

Aug 23, 2012... successful technology implementation, Smith will present examples highlighting efforts in sustainability, composite materials, and lighting.

300

MT@TMS  

Science Conference Proceedings (OSTI)

Feb 3, 2009 ... Reported Scientific American on January 14, There was less talk of biofuels and almost no talk of hydrogen than in previous years, with the...

Note: This page contains sample records for the topic "mt magnetotellurics z-axis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

MT@TMS  

Science Conference Proceedings (OSTI)

Mar 13, 2011 ... The U.S. Department of Energy Office (DOE) of Energy Efficiency and Renewable Energy (EERE) is seeking applicants for a postdoctoral...

302

MT@TMS  

Science Conference Proceedings (OSTI)

Investigations will focus on searching for signs of the Higgs boson, a previously undetected particle thought to generate mass. Scientists will also probe the...

303

MT@TMS  

Science Conference Proceedings (OSTI)

Dec 3, 2008 ... CERN scientists are confident, however, that the LHC will be up and running next year to resume its search for the Higgs boson particle and...

304

MT@TMS  

Science Conference Proceedings (OSTI)

Sep 20, 2011 ... Gary Gladysz, vice president of Technology for Trelleborg Offshore and a symposium organizer, said that deciding to pursue his Ph.D. under...

305

MT@TMS  

Science Conference Proceedings (OSTI)

Sep 9, 2009 ... A research team lead by Brookhaven National Laboratory, New York, has confirmed that certain conditions necessary for superconductivity...

306

MT@TMS  

Science Conference Proceedings (OSTI)

They also typically add copper, which retards the growth of algae, moss, and lichen. The Michigan team believes the stamp sand could prove an attractive...

307

MT@TMS  

Science Conference Proceedings (OSTI)

Access Scalable High-Power Redox Capacitors with Aligned Nanoforests of Crystalline MnO2 Nanorods by High Voltage Electrophoretic Deposition.

308

MT@TMS  

Science Conference Proceedings (OSTI)

A new form of clean coal technology reached an important milestone, with the successful operation of a research-scale combustion system at The Ohio State...

309

MT@TMS  

Science Conference Proceedings (OSTI)

Oct 15, 2010 ... Mailing Lists Rental ... Over the past 25 years, the conference has covered many topics and, ... As in previous conferences, utility engineers and consultants ... Gabriel Ilevbare, Electric Power Institute, is the technical program...

310

MT@TMS  

Science Conference Proceedings (OSTI)

May 5, 2009 ... Materials for Nuclear Power .... All developed standards fulfill the requirements of the GRID computing, which largely ... To close gaps in the model chain, a further extension of microstructure simulation models is necessary.

311

MT@TMS  

Science Conference Proceedings (OSTI)

Jul 2, 2009 ... Funding for the research was provided by the U.S. Department of Energy's Fossil Energy Advanced Research Materials Program and the Office...

312

MT@TMS  

Science Conference Proceedings (OSTI)

Dec 12, 2010 ... Next-generation materials for renewable energy production and ... of recycling technologies are all materials research realms with recent...

313

MT@TMS  

Science Conference Proceedings (OSTI)

Apr 20, 2013 ... The authors of this articleand organizers of ICME 2013are Mei Li, Ford Motor Company, Dearborn, MI; Carelyn Campbell, NIST,...

314

MT@TMS  

Science Conference Proceedings (OSTI)

Aug 5, 2010... are taught such as thermodynamics (e.g., HSC Chemistry and its flow sheeting capability), mass and heat transfer, fluid flow, materials, and,...

315

MT@TMS  

Science Conference Proceedings (OSTI)

Nov 2, 2009 ... The AFDC is managed by NREL and sponsored by the Clean Cities Initiative, a government-industry partnership sponsored by DOE's Vehicle...

316

MT@TMS  

Science Conference Proceedings (OSTI)

Explores the potential of wind, solar, geothermal, solar-thermal, hydroelectric, and other renewable energy sources. Also presents likely deployment timelines, ...

317

MT@TMS  

Science Conference Proceedings (OSTI)

Feb 3, 2010 ... BRaDD covers data from alumina refineries around the world and has been developed as a comparative tool enabling identification of trends...

318

MT@TMS  

Science Conference Proceedings (OSTI)

Nov 30, 2012... National Laboratories, SLAC National Accelerator Laboratory, Northwestern University, University of Chicago, University of Illinois-Chicago,...

319

MT@TMS  

Science Conference Proceedings (OSTI)

The key enabler that the MGI has identified in achieving this is a materials innovation infrastructure. The TMS Orlando Materials Innovation Principles was cited...

320

MT@TMS  

Science Conference Proceedings (OSTI)

Oct 15, 2010 ... On S3226, which supports the development of an offshore wind power industry on the Great Lakes, Herderick commented, you can tell that a...

Note: This page contains sample records for the topic "mt magnetotellurics z-axis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

MT@TMS  

Science Conference Proceedings (OSTI)

Pyrohydrolysis, recycling of lixiviants, and water conservation will also be explored, as well as the potential use of chloride technology for the development of...

322

MT@TMS  

Science Conference Proceedings (OSTI)

In fact, the 21st century presents a range of challenges arising from every aspect of life from providing food, water, and energy to realizing livable cities;...

323

MT@TMS  

Science Conference Proceedings (OSTI)

Apr 20, 2012 ... Materials for Nuclear Power .... He commented that today's culture for managing science, in many instances, ... geologist with the Idaho National Engineering and Environmental Laboratory. ... Our work was supported by assessment from various components of the corporation, so funding was secure.

324

MT@TMS  

Science Conference Proceedings (OSTI)

Mar 31, 2009 ... Rube Goldberg and his creations became so popular that he has his own Webster's Dictionary definition: A comically involved, complicated...

325

MT@TMS  

Science Conference Proceedings (OSTI)

Nov 23, 2012 ... We thought the particle size would be too small to effectively capture, said Prentice. Not only can we capture the powder, we've also worked...

326

MT@TMS  

Science Conference Proceedings (OSTI)

Apr 19, 2010 ... Despite time limitations and a steep learning curve, Diedrich feels fortunate that she has found a hobby that meshes her artistic talents with her...

327

MT@TMS  

Science Conference Proceedings (OSTI)

Aug 13, 2012 ... The U.S. Department of Energy (DOE) announced seven new projects on August 13 that support the development of lighter and stronger...

328

MT@TMS  

Science Conference Proceedings (OSTI)

Jun 11, 2012 ... The U.S. Department of Energy (DOE) will invest up to $120 million over five years to launch a new Energy Innovation Hub, focused on...

329

MT@TMS  

Science Conference Proceedings (OSTI)

A mechanical engineer who later became interested in materials science and biology, Suresh has done pioneering work studying the biomechanics of blood...

330

MT@TMS  

Science Conference Proceedings (OSTI)

Apr 19, 2010... 34 were formed, and the students studied the basic facts, wrote essays, ... of rigorous analysis, active engagement, and creative synthesis.

331

MT@TMS  

Science Conference Proceedings (OSTI)

Jul 26, 2012 ... ASME and ASCE have been collaborating on the salary survey report for the last five years. The firm enetrix, a division of Gallup Inc., prepared...

332

MT@TMS  

Science Conference Proceedings (OSTI)

May 30, 2012 ... Materials for Nuclear Power ... with companies and activities in several relevant areas of the industry (e.g., coal, gas, nuclear, solar, wind).

333

MT@TMS  

Science Conference Proceedings (OSTI)

Qatalum is a joint venture company equally owned by Qatar Petroleum and Hydro ... Headquartered in Oslo, Hydro is a Fortune Global 500 supplier of aluminum...

334

MT@TMS  

Science Conference Proceedings (OSTI)

... expertise of five industrial companies, three research centers, and four universities from the United Kingdom, Sweden, France, Switzerland, Greece, and Spain...

335

MT@TMS  

Science Conference Proceedings (OSTI)

Posted on: 10/16/2009. Gossan Resources Limited, headquartered in Manitoba, Canada, announced October 1 that Phase II bench scale testing has confirmed...

336

MT@TMS  

Science Conference Proceedings (OSTI)

... Reactor Materials and Components with Neutron and Synchrotron Radiation ... Hume-Rothery Award Symposium: Electronic Structure Theory of Stability and...

337

MT@TMS  

Science Conference Proceedings (OSTI)

Oct 9, 2009 ... For most homeowners, the technology is expensive and cumbersome ... generally cost 30 to 40 percent less than current solar energy systems.

338

MT@TMS  

Science Conference Proceedings (OSTI)

Nov 30, 2009 ... Experiment Quantifies Consumer Benefits of Deep Energy Retrofit ... home owners willing to have their houses undergo a deep energy retrofit ... structures that use the latest in energy-efficient materials and technologies.

339

MT@TMS  

Science Conference Proceedings (OSTI)

Sep 23, 2011... Science Foundation's Industry & University Cooperative Research Program, ... for portable electronics, as well as hybrid and electric vehicles.

340

MT@TMS  

Science Conference Proceedings (OSTI)

Jun 19, 2013 ... Energy security, resource sustainability, environmental issues, and aging infrastructure are just a few of the challenges facing 21st century...

Note: This page contains sample records for the topic "mt magnetotellurics z-axis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

MT@TMS  

Science Conference Proceedings (OSTI)

However, the ideas intuitively make economic and 'energy saving' sense. Approaches such as the use of more efficient grinding equipment and limiting the ...

342

MT@TMS  

Science Conference Proceedings (OSTI)

Nov 23, 2012 ... Also discussed will be the rapid development of shale oil production, along with changes in global refining capacity (and coking capacity).

343

Possible Magmatic Input to the Dixie Valley Geothermal Field, and  

Open Energy Info (EERE)

Possible Magmatic Input to the Dixie Valley Geothermal Field, and Possible Magmatic Input to the Dixie Valley Geothermal Field, and Implications for District-Scale Resource Exploration, Inferred from Magnetotelluric (MT) Resistivity Surveying Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Possible Magmatic Input to the Dixie Valley Geothermal Field, and Implications for District-Scale Resource Exploration, Inferred from Magnetotelluric (MT) Resistivity Surveying Abstract Magnetotelluric (MT) profiling in northwestern Nevadais used to test hypotheses on the main sources of heat andhydrothermal fluid for the Dixie Valley-Central NevadaSeismic Belt area. The transect reveals families of resistivitystructures commonly dominated by steeply-dipping features,some of which may be of key geothermal significance. Mostnotably, 2-D inversion

344

Experiment Safety Assurance Package for the 40- to 50-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-Hole Positions in the Advanced Test Reactor  

SciTech Connect

This experiment safety assurance package (ESAP) is a revision of the last MOX ESAP issued in February 2001(Khericha 2001). The purpose of this revision is to identify the changes in the loading pattern and to provide a basis to continue irradiation up to ~42 GWd/MT burnup (+ 2.5% as predicted by MCNP (Monte Carlo N-Particle) transport code before the preliminary postirradiation examination (PIE) results for 40 GWd/MT burnup are available. Note that the safety analysis performed for the last ESAP is still applicable and no additional analysis is required (Khericha 2001). In July 2001, it was decided to reconfigure the test assembly using the loading pattern for Phase IV, Part 3, at the end of Phase IV, Part 1, as the loading pattern for Phase IV, Parts 2 and 3. Three capsule assemblies will be irradiated until the highest burnup capsule assembly accumulates: ~50 GWd/MT burnup, based on the MCNP code predictions. The last ESAP suggests that at the end of Phase IV, Part 1, we remove the two highest burnup capsule assemblies (@ ~40 GWd/MT burnup) and send them to ORNL for PIE. Then, irradiate the test assembly using the loading pattern for Phase IV, Part 2, until the highest burnup capsule reaches ~40 GWd/MT burnup per MCNP-predicted values.

Khericha, Soli T

2002-06-01T23:59:59.000Z

345

Experiment Safety Assurance Package for the 40- to 50-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-Hole Positions in the Advanced Test Reactor  

SciTech Connect

This experiment safety assurance package (ESAP) is a revision of the last MOX ESAP issued in February 2001(Khericha 2001). The purpose of this revision is to identify the changes in the loading pattern and to provide a basis to continue irradiation up to {approx}42 GWd/MT burnup (+ 2.5%) as predicted by MCNP (Monte Carlo N-Particle) transport code before the preliminary postirradiation examination (PIE) results for 40 GWd/MT burnup are available. Note that the safety analysis performed for the last ESAP is still applicable and no additional analysis is required (Khericha 2001). In July 2001, it was decided to reconfigure the test assembly using the loading pattern for Phase IV, Part 3, at the end of Phase IV, Part 1, as the loading pattern for Phase IV, Parts 2 and 3. Three capsule assemblies will be irradiated until the highest burnup capsule assembly accumulates: {approx}50 GWd/MT burnup, based on the MCNP code predictions. The last ESAP suggests that at the end of Phase IV, Part 1, we remove the two highest burnup capsule assemblies ({at} {approx}40 GWd/MT burnup) and send them to ORNL for PIE. Then, irradiate the test assembly using the loading pattern for Phase IV, Part 2, until the highest burnup capsule reaches {approx}40 GWd/MT burnup per MCNP-predicted values.

Khericha, S.T.

2002-06-30T23:59:59.000Z

346

Experiment Safety Assurance Package for the 40- to 52-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-hole Positions in the Advanced Test Reactor  

SciTech Connect

This experiment safety assurance package (ESAP) is a revision of the last mixed uranium and plutonium oxide (MOX) ESAP issued in June 2002). The purpose of this revision is to provide a basis to continue irradiation up to 52 GWd/MT burnup [as predicted by MCNP (Monte Carlo N-Particle) transport code The last ESAP provided basis for irradiation, at a linear heat generation rate (LHGR) no greater than 9 kW/ft, of the highest burnup capsule assembly to 50 GWd/MT. This ESAP extends the basis for irradiation, at a LHGR no greater than 5 kW/ft, of the highest burnup capsule assembly from 50 to 52 GWd/MT.

S. T. Khericha; R. C. Pedersen

2003-09-01T23:59:59.000Z

347

A Regional Strategy For Geothermal Exploration With Emphasis On Gravity And  

Open Energy Info (EERE)

Strategy For Geothermal Exploration With Emphasis On Gravity And Strategy For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Regional Strategy For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Details Activities (4) Areas (2) Regions (0) Abstract: As part of the resource evaluation and exploration program conducted by Los Alamos Scientific Laboratory for the national Hot Dry Rock (HDR) Geothermal Program, a regional magnetotelluric (MT) survey of New Mexico and Arizona is being performed. The MT lines are being located in areas where the results of analysis of residual gravity anomaly maps of Arizona and New Mexico, integrated with other geologic and geophysical studies indicate the greatest potential for HDR resources. The residual

348

Visualizing the Surface Infrastructure Used to Move 2 MtCO2/year from the Dakota Gasification Company to the Weyburn CO2 Enhanced Oil Recovery Project: Version of July 1, 2009  

Science Conference Proceedings (OSTI)

Google Earth Pro has been employed to create an interactive flyover of the worlds largest operational carbon dioxide capture and storage project. The visualization focuses on the transport and storage of 2 MtCO2/year which is captured from the Dakota Gasification Facility (Beula, North Dakota) and transported 205 miles and injected into the Weyburn oil field in Southeastern Saskatchewan.

Dooley, James J.

2009-07-09T23:59:59.000Z

349

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University-THERMAL INFRARED BAND AND MAGNETOTELLURIC METHOD TO SIMULATE A GEOTHERMAL SITTING AT MT. CIREMAI, WEST JAVA at surface is crucial for geothermal exploration. Since field observations to map surface manifestation

Stanford University

350

Multi-fluid shocks in clusters of galaxies: entropy, sigma_ v-T, M-T and L_x-T scalings  

E-Print Network (OSTI)

The nonthermal phenomena in clusters of galaxies are considered in the context of the hierarchical model of cosmic structure formation by accretion and merging of the dark matter (DM) substructures.Accretion and merging processes produce large-scale gas shocks. The plasma shocks are expected to be collisionless. In the course of cluster's aggregation, the shocks, being the main gas-heating agent, generate turbulent magnetic fields and accelerate energetic particles via collisionless multi-fluid plasma relaxation processes. The intracluster gas heating and entropy production rate by a collisionless shock may differ significantly from that in a single-fluid collisional shock. Simple scaling relations for postshock ion temperature and entropy as functions of shock velocity in strong collisionless multi-fluid shocks are presented. We show that the multi-fluid nature of the collisionless shocks results in high gas compression, reduced entropy production and modified sigma_v-T, M-T and L_x-T scalings. The scaling i...

Bykov, A M

2005-01-01T23:59:59.000Z

351

Multi-fluid shocks in clusters of galaxies: entropy, sigma_ v-T, M-T and L_x-T scalings  

E-Print Network (OSTI)

The nonthermal phenomena in clusters of galaxies are considered in the context of the hierarchical model of cosmic structure formation by accretion and merging of the dark matter (DM) substructures.Accretion and merging processes produce large-scale gas shocks. The plasma shocks are expected to be collisionless. In the course of cluster's aggregation, the shocks, being the main gas-heating agent, generate turbulent magnetic fields and accelerate energetic particles via collisionless multi-fluid plasma relaxation processes. The intracluster gas heating and entropy production rate by a collisionless shock may differ significantly from that in a single-fluid collisional shock. Simple scaling relations for postshock ion temperature and entropy as functions of shock velocity in strong collisionless multi-fluid shocks are presented. We show that the multi-fluid nature of the collisionless shocks results in high gas compression, reduced entropy production and modified sigma_v-T, M-T and L_x-T scalings. The scaling indexes estimated for a simple model of a strong accretion multi-fluid shock are generally consistent with observations. Soft X-ray and extreme ultraviolet photons dominate the emission of strong accretion shock precursors that appear as large-scale filaments. Magnetic fields, turbulence and energetic particles constitute the nonthermal components contributing into the pressure balance, energy transport and emission of clusters. Nonthermal emission of energetic particles could be a test to constrain the cluster properties.

A. M. Bykov

2005-01-26T23:59:59.000Z

352

Three-Dimensional Inversion of Magnetotelluric Data on a PC,...  

Open Energy Info (EERE)

additional parameters solved in the inversion. Initial inversion results for the Coso data set qualitatively resemble previous models from 2-D inversion stitches and from massively...

353

Changes related to "A Magnetotelluric Survey Of The Nissyros...  

Open Energy Info (EERE)

Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind View New Pages Recent Changes All...

354

Pages that link to "A Magnetotelluric Survey Of The Nissyros...  

Open Energy Info (EERE)

Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History...

355

3D Magnetotelluric Characterization Of The Geothermal Anomaly...  

Open Energy Info (EERE)

where it can be associated with structural conditions, especially to the extensional event suffered by the island after the Alpine Orogeny. However, the origin of this anomaly...

356

Three-dimensional magnetotelluric characterization of the Coso...  

Open Energy Info (EERE)

has been acquired over the east flank of the Coso geothermal system, CA, USA. Due to production related electromagnetic (EM) noise the permanent observatory at Parkfield, CA was...

357

Thermal regimes of major volcanic centers: Magnetotelluric constraints  

DOE Green Energy (OSTI)

The interpretation of geophysical/electromagnetic field data has been used to study dynamical processes in the crust beneath three of the major tectono-volcanic features in North America: the Long Valley/Mono Craters Volcanic Complex in eastern California, the Cascades Volcanic Belt in Oregon, and the Rio Grande Rift in the area of Socorro, New Mexico. Primary accomplishments have been in the area of creating and implementing a variety of 2-D generalized inverse computer codes, and the application of these codes to fields studies on the basin structures and he deep thermal regimes of the above areas. In order to more fully explore the space of allowable models (i.e. those inverse solutions that fit the data equally well), several distinctly different approaches to the 2-D inverse problem have been developed: (1) an overdetermined block inversion; (2) an overdetermined spline inverstion; (3) a generalized underdetermined total inverse which allows one to tradeoff certain attributes of their model, such as minimum structure (flat models), roughness (smooth models), or length (small models). Moreover, we are exploring various approaches for evaluating the resolution model parameters for the above algorithms. 33 refs.

Hermance, J.F.

1989-10-02T23:59:59.000Z

358

Thermal regimes of major volcanic centers: magnetotelluric constraints  

DOE Green Energy (OSTI)

The focus of activity at this laboratory is on applying natural electromagnetic methods along with other geophysical techniques to studying the dynamical processes and thermal regimes associated with centers of major volcanic activity. We are presently emphasizing studies of the Long Valley/Mono Craters Volcanic Complex, the Cascades Volcanic Belt, and the Valles Caldera. This work addresses questions regarding geothermal energy, chemical transport of minerals in the crust, emplacement of economic ore deposits, and optimal siting of drill-holes for scientific purposes. In addition, since much of our work is performed in the intermontane sedimentary basins of the western US (along with testing our field-system in some of the graben structures in the Northeast), there is an application of these studies to developing exploration and interpretational strategies for detecting and delineating structures associated with hydrocarbon reserves.

Hermance, J.F.

1987-11-13T23:59:59.000Z

359

A Broadband Tensorial Magnetotelluric Study In The Travale Geothermal...  

Open Energy Info (EERE)

Login | Sign Up Wiki Browse Latinoamrica Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy...

360

Three-dimensional magnetotelluric characterization of the Coso ...  

south and southwest of Devils Kitchen to ... strike-slip motion between stable North America and the ... Production well 34-9RD2 grazes the eastern ...

Note: This page contains sample records for the topic "mt magnetotellurics z-axis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Magnetotellurics At Kilauea Southwest Rift And South Flank Area...  

Open Energy Info (EERE)

the funds available to work at the Fort Bidwell Indian reservation where characterization work could be done at relatively low cost. We decided to perform a time lapse SP survey...

362

Audio-Magnetotellurics At Baltazor Hot Springs Area (Isherwood...  

Open Energy Info (EERE)

1.6 ohm-m. Both maps show a second low to the south apparently associated with the low-density Cenozoic sediments. Three telluric profiles across the KGRA also define a low of...

363

3D Magnetotelluric characterization of the COSO Geothermal Field  

E-Print Network (OSTI)

of the subsurface electrical resistivity/conductivity canfluid flow. Electrical resistivity/conductivity is a primary

Newman, Gregory A.; Hoversten, Michael; Gasperikova, Erika; Wannamaker, Philip E.

2005-01-01T23:59:59.000Z

364

Schlumberger soundings, audio-magnetotelluric soundings and telluric...  

Open Energy Info (EERE)

the Coso Range, and in particular in the area surrounding Coso Hot Springs are reported. Electrical properties of rocks associated with thermal phenomena of the Devil's...

365

Further Analysis of 3D Magnetotelluric Measurements Over the...  

Open Energy Info (EERE)

over the east flank of the field (Newman et al., 2005). Motivation for this study is that electrical resistivity conductivity mapping can contribute to better improved...

366

MAGNETOTELLURIC SURVEYING AND MONITORING AT THE COSO GEOTHERMAL...  

Open Energy Info (EERE)

SURVEYING AND MONITORING AT THE COSO GEOTHERMAL AREA, CALIFORNIA, IN SUPPORT OF THE ENHANCED GEOTHERMAL SYSTEMS CONCEPT: SURVEY PARAMETERS AND INITIAL RESULTS Jump to: navigation,...

367

Miniature MT optical assembly (MMTOA)  

DOE Patents (OSTI)

An optical assembly (10) includes a rigid mount (12) with a recess (26) proximate a first side thereof, a substrate (14), and an optical die (16) flip-chip bonded to the substrate (14). The substrate (14) is secured to the first side of the mount and includes a plurality of die bonding elements (40), a plurality of optical apertures (32), and a plurality of external bonding elements (42). A plurality of traces (44) interconnect the die bonding elements (40) and the external bonding elements (42). The optical die (16) includes a plurality of optical elements, each element including an optical signal interface (48), the die being bonded to the plurality of die bonding elements (40) such that the optical signal interface (48) of each element is in registry with an optical aperture (32) of the substrate (14) and the die (16) is at least partially enclosed by the recess (26).

Laughlin, Daric (Overland Park, KS); Abel, Phillip (Overland Park, KS)

2008-04-01T23:59:59.000Z

368

EMSL: News - MT Thomas Award  

NLE Websites -- All DOE Office Websites (Extended Search)

accomplishments that include seminal and novel theoretical advancements in understanding electron transfer reactions at environmental interfaces and its impact on the field of...

369

NVN-89306 | Open Energy Information  

Open Energy Info (EERE)

NVN-89306 NVN-89306 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: NVN-89306 CU at {{{GeothermalArea}}} for Geothermal/Exploration, Spring Gulch MT Survey General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CU Applicant Terra Gen Dixie Valley Development Co Geothermal Area {{{GeothermalArea}}}"{{{GeothermalArea}}}" cannot be used as a page name in this wiki. Project Location Project Phase Geothermal/Exploration Techniques Magnetotellurics Comments MT Survey, Spring Gulch Project Time Frame (days) Participating Agencies Lead Agency Nevada Funding Agency none provided Managing District Office Winnemucca Managing Field Office Humboldt River Funding Agencies none provided Surface Manager BLM

370

Spontaneous Potential At Fort Bidwell Area (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Spontaneous Potential At Fort Bidwell Area (Laney, 2005) Spontaneous Potential At Fort Bidwell Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Spontaneous Potential Well Log At Fort Bidwell Area (Laney, 2005) Exploration Activity Details Location Fort Bidwell Area Exploration Technique Spontaneous Potential Well Log Activity Date Usefulness not indicated DOE-funding Unknown Notes Magnetotelluric Imaging, G. Michael Hoversten. The project title derived from its inception. The project however moved from the application of MT on Kilauea in 2003 to the use of combined SP and conductivity mapping (MT) in 2004. The beginning of 2004 saw the completions of the Kilauea MT experiment by the acquisition of an additional 45 MT stations on Kilauea. We therefore decided to use the funds available to work at the Fort Bidwell

371

MT paper-2 column.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

GT2005-68203 INSERTION OF SHOCK WAVE COMPRESSION TECHNOLOGY INTO MICRO TURBINES FOR INCREASED EFFICIENCY AND REDUCED COSTS ABSTRACT The following analysis is presented to serve as a preliminary design guide for micro turbine engine designers to consider the potential advantages of incorporating the Rampressor into their recuperated engine designs. It is shown that the increase in compressor efficiency and the shift in optimum pressure will increase the efficiency of the engine and lower the recuperator inlet temperature and specific cost. This also provides the opportunity to increase the turbine inlet temperature and specific power without incorporating more costly air-cooled metal or ceramic components into the turbine design.

372

Mt Wheeler Power, Inc | Open Energy Information  

Open Energy Info (EERE)

Nevada Nevada Utility Id 13073 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GS (Small General Service) Commercial H-1(Metered Residential or Commercial Electric Heat) Residential H-2 (Unmetered Residential Electric Heat Rate) Residential Irrigation Rate (Annual Charge) Commercial Irrigation Rate (Demand Charge) Commercial Irrigation Rate (Kilowatt Hour Rate) Commercial Irrigation Rate (Load Factor Rate) Commercial Irrigation Rate (Off-Peak Rate) Commercial

373

Methane Hydrates - Mt. Elbert Well Log Data  

NLE Websites -- All DOE Office Websites (Extended Search)

more. Project background information - Alaska North Slope Gas Hydrate Reservoir Characterization - DE-FC26-01NT41332 More information on the National Methane Hydrates R&D Program...

374

WIND DATA REPORT Ragged Mt Maine  

E-Print Network (OSTI)

Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst. This report covers wind Average Wind Speeds, September 1, 2007 ­ November 30, 2007. January 22, 2008 Renewable Energy Research ­ Turbulence Intensity vs. Wind Speed, September 1, 2007 ­ November 30, 2007. January 22, 2008 Renewable Energy

Massachusetts at Amherst, University of

375

Improving AMBER, an MT evaluation metric  

Science Conference Proceedings (OSTI)

A recent paper described a new machine translation evaluation metric, AMBER. This paper describes two changes to AMBER. The first one is incorporation of a new ordering penalty; the second one is the use of the downhill simplex algorithm to tune the ...

Boxing Chen; Roland Kuhn; George Foster

2012-06-01T23:59:59.000Z

376

MT@TMS Frequently Asked Questions  

Science Conference Proceedings (OSTI)

For some Web browsers, a yellow message will appear, requesting you to allow scripted windows. Click on the yellow message bar. A gray message bar will...

377

Babb, MT Natural Gas Export to Canada  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011...

378

OpenMT12 Evaluation Results  

Science Conference Proceedings (OSTI)

... NJU, Nanjing University, China, Yes, NRC, NRC Canada, Canada, Yes, Yes, OSU, Ohio State University, USA, Yes, Yes, ... NRC, NRC Canada, Canada ...

2013-01-18T23:59:59.000Z

379

Babb, MT Natural Gas Export to Canada  

Gasoline and Diesel Fuel Update (EIA)

6 2007 2008 2009 2010 2011 View History Pipeline Volumes 0 0 0 0 0 20 1996-2011 Pipeline Prices -- -- -- -- -- 3.39 1996-2011...

380

Havre, MT Natural Gas Exports to Canada  

Annual Energy Outlook 2012 (EIA)

1998 1999 2000 2001 2002 2003 View History Pipeline Volumes NA NA 1,309 NA NA 0 1998-2003 Pipeline Prices NA NA 3.66 NA NA -- 1998-2003...

Note: This page contains sample records for the topic "mt magnetotellurics z-axis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

TheJournalofCellBiology The Rockefeller University Press, 0021-9525  

E-Print Network (OSTI)

in Z-axis position of microtubule plus ends during polymerization (Pol.) and depolymerization (de-Pol

Manstein, Dietmar J.

382

CX-001731: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31: Categorical Exclusion Determination 31: Categorical Exclusion Determination CX-001731: Categorical Exclusion Determination Recovery Act: Application of a New Structural Model and Exploration Technologies to Define a Blind Geothermal System: A Viable Alternative to Grid-Drilling for Geothermal Exploration: McCoy, Churchill County, Nevada CX(s) Applied: B3.1, A9 Date: 04/16/2010 Location(s): Churchill County, Nevada Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Magma Energy (United States) Corporation (MEC) would demonstrate the potential geothermal resource at the McCoy geothermal area in Churchill County, Nevada (NV). In Phase 1 (exploration geophysics), Magma would collect and interpret resistivity data from both Magnetotelluric (MT) and Controlled-Source Audio-Magnetotelluric (CSAMT) electrical surveys, and

383

CX-007430: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30: Categorical Exclusion Determination 30: Categorical Exclusion Determination CX-007430: Categorical Exclusion Determination Innovative Computational Tools for Reducing Exploration Risk Through Integration of Water-rock Interactions and Magnetotelluric Surveys CX(s) Applied: A9, B3.6 Date: 12/01/2011 Location(s): Utah Offices(s): Golden Field Office The University of Utah would utilize DOE and cost share funds to develop the framework and procedures required to relate reservoir permeabilities (from indicators of water-rock ratios), degree and type of clay alteration, and temperature to the electrical resistivities of geothermal systems as recorded by magnetotelluric (MT) surveys. Laboratory work would be conducted in the X-ray diffraction and fluid inclusion laboratories located at the Energy and Geoscience Institute (EGI ), 423 Wakara Way, Research

384

A Numerical Evaluation Of Electromagnetic Methods In Geothermal Exploration  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home GEOTHERMAL ENERGYGeothermal Home Journal Article: A Numerical Evaluation Of Electromagnetic Methods In Geothermal Exploration Details Activities (0) Areas (0) Regions (0) Abstract: The size and low resistivity of the clay cap associated with a geothermal system create a target well suited for electromagnetic (EM) methods and also make electrical detection of the underlying geothermal reservoir a challenge. Using 3-D numerical models, we evaluate four EM techniques for use in geothermal exploration: magnetotellurics (MT), controlled-source audio magnetotellurics (CSAMT), long-offset time-domain EM (LOTEM), and short-offset time-domain EM (TEM). Our results show that all of these techniques can delineate the clay cap, but none can be said to unequivocally detect the reservoir. We do find, however, that the EM

385

Exploration of the El Hoyo-Monte Galan Geothermal Concession. Final report  

DOE Green Energy (OSTI)

In January 1996 Trans-Pacific Geothermal Corporation (TGC) was granted a geothermal concession of 114 square kilometers from the Instituto Nicaragueense de Energie (INE) for the purpose of developing between 50 and 150 MWe of geothermal electrical generating capacity. The Concession Agreement required TGC to perform geological, geophysical, and geochemical studies as part of the development program. TGC commenced the geotechnical studies in January 1996 with a comprehensive review of all existing data and surveys. Based on this review, TGC formulated an exploration plan and executed that plan commencing in April, 1996. The ground magnetic (GM), self potential (SP), magnetotelluric/controlled source audio magnetotelluric (MT/CSAMT) and one-meter temperature surveys, data integration, and synthesis of a hydrogeologic model were performed. The purpose of this report is to present a compilation of all data gathered from the geophysical exploration program and to provide an integrated interpretation of that data.

NONE

1997-12-01T23:59:59.000Z

386

Interpretation of Geoelectric Structure at Hululais Prospect Area, South Sumatra  

DOE Green Energy (OSTI)

Schlumberger resistivity surveys were conducted in 1993 as part of a combined geological, geophysical and geological program to investigate a geothermal prospect in the Hululais area, Southern Sumatra. These resistivity data resolved the upper conductive layer and were interpreted to define the shallow extent of a possible geothermal system. A follow-up magnetotelluric (MT) survey was carried out to probe deeper than the dc resistivity survey results achieved. However, the resistive sub-stratum below the conductive layer was still poorly resolved. Possible reasons for this include a preferential channeling of the telluric current within the thick shallow very conductive layer, thus limiting the penetration depth of the magnetotelluric signals and poor resolution due to high noise levels caused by significant rain and sferics.

Mulyadi

1995-01-01T23:59:59.000Z

387

Cryptic Faulting and Multi-Scale Geothermal Fluid Connections in the Dixie  

Open Energy Info (EERE)

Cryptic Faulting and Multi-Scale Geothermal Fluid Connections in the Dixie Cryptic Faulting and Multi-Scale Geothermal Fluid Connections in the Dixie Valley-Central Nevada Seismic Belt Area- Implications from Mt Resistivity Surveying Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Cryptic Faulting and Multi-Scale Geothermal Fluid Connections in the Dixie Valley-Central Nevada Seismic Belt Area- Implications from Mt Resistivity Surveying Abstract Extended magnetotelluric (MT) profiling results over the Dixie Valley-Central Nevada Seismic Belt area were recently completed to explore the hypothesis that fluid circulation to depths of 10 km or more is generating well temperatures in the field >280 C.This transect has revealed families of resistivity structures commonly dominated by high-angle

388

Deep resistivity structure in southwestern Utah and its geothermal significance  

DOE Green Energy (OSTI)

Magnetotelluric (MT) measurements in southwestern Utah have yielded a model of resistivity structure in this area to a depth of about 100 km. The MT observations are strongly affected by Great Basin graben sedimentary fill, which constitutes conductive upper-crustal lateral inhomogeneity and requires simulation using two- and three-dimensional modeling algorithms before deeper portions of the resistivity section can be resolved. Included in the model is a layer of low resistivity (20 ..cap omega..-m) residing from 35 to 65 km depth. Sensitivity tests of the data to the structure weigh strongly against the top of this layer being as shallow as 25 km and against the conductivity and thickness of the layer being highly correlated. No intra-crustal low-resistivity layer is indicated by the MT data.

Wannamaker, P.E.; Ward, S.H.; Hohmann, G.W.; Sill, W.R.

1983-02-01T23:59:59.000Z

389

Area selection for diamonds using magnetotellurics: Examples from southern Africa Alan G. Jones a,  

E-Print Network (OSTI)

of the Witwatersrand, Jan Smuts Avenue, Johannesburg 2050, South Africa k ABB AB, HVDC, Ludvika, SE-77180, Sweden a b

Jones, Alan G.

390

SAGA Biennial Technical Meeting and Exhibition Short Paper Magnetotelluric imaging across a Neoproterozoic collision  

E-Print Network (OSTI)

and Industrial Research, Address, sfourie@csir.co.za 11. ABB AB, HVDC, Ludvika, SE-77180, Sweden; 12. Other

Jones, Alan G.

391

SAGA Biennial Technical Meeting and Exhibition Short Paper Magnetotelluric study in northeastern Botswana  

E-Print Network (OSTI)

of the Witwatersrand, Jan Smuts Avenue, Johannesburg 2050, South Africa, WebbS@geosciences.wits.ac.za 11: ABB AB, HVDC

Jones, Alan G.

392

Property:References | Open Energy Information  

Open Energy Info (EERE)

References References Jump to: navigation, search This is a property of type Text. Subproperties This property has the following 43 subproperties: A Active Seismic Techniques Aeromagnetic Survey Airborne Gravity Survey Audio-Magnetotellurics C Chemical Logging Compound and Elemental Analysis Controlled Source Audio MT Controlled Source Frequency-Domain Magnetics D DC Resistivity Survey (Dipole-Dipole Array) DC Resistivity Survey (Mise-Á-La-Masse) DC Resistivity Survey (Pole-Dipole Array) DC Resistivity Survey (Schlumberger Array) DC Resistivity Survey (Wenner Array) Direct-Current Resistivity Survey D cont. Downhole Techniques E Electrical Profiling Configurations Electrical Techniques Electromagnetic Techniques F Frequency-Domain Electromagnetic Survey G Geodetic Survey Geophysical Techniques

393

NVN-087930 | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: NVN-087930 CU at Desert Queen Geothermal Area for Geothermal/Exploration, {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CU Applicant Magma Energy Geothermal Area Desert Queen Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Magnetotelluric Methods Comments MT Survey Time Frame (days) Application Time 7 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office Humboldt River Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 2009/09/09 Application Document Type NOI

394

NVN-084629 | Open Energy Information  

Open Energy Info (EERE)

29 29 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: NVN-084629 CU at Patua Geothermal Area for Geothermal/Exploration, MT Survey at Patua Geothermal Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CU Applicant Vulcan Energy Geothermal Area Patua Geothermal Area Project Location Fernley, Nevada Project Phase Geothermal/Exploration Techniques Magnetotellurics Time Frame (days) Application Time 13 Participating Agencies Lead Agency Nevada Funding Agency none provided Managing District Office Winnemucca Managing Field Office Humboldt River Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 2008/01/22 Application Document Type NOI

395

Property:Abstract | Open Energy Information  

Open Energy Info (EERE)

Abstract Abstract Jump to: navigation, search This is a property of type Text. Pages using the property "Abstract" Showing 25 pages using this property. (previous 25) (next 25) 2 2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets- Resistivity Distribution To About 3000 M Depth + With the aim of investigating the possibilities of magnetotelluric methods for the exploration of potential Enhanced Geothermal System (EGS) sites in the Upper Rhine valley, a 2-D magnetotelluric (MT) survey has been carried out on a 13 km long profile across the thermal anomaly in the area of the geothermal power plant of Soultz-sous-Forets in the winter 2007/08. Despite strong artificial noise, processing using remote referencing and Sutarno phase consistent smoothing revealed significant results from 10 out of 16 sites. Indication for 1-D structures was found in the shortest periods, 2-D effects in the periods up to 40 s, and 3-D effects in the long period range. Since 3-D effects were found in the longer periods, 2-D inversion was carried out for periods smaller than 40 s. The results of the inversion are consistent with the geology of the geothermal site and distinguish well the sediments from the granitic basement including the structures given by the faults. A conductive anomaly with a resistivity of about 3 Ωm has been found at a depth down to 2000 m in the area of the Soultz and Kutzenhausen faults, which is attributed to geothermal processes.

396

Time-Domain Electromagnetics At Long Valley Caldera Area (Sorey, Et Al.,  

Open Energy Info (EERE)

1991) 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes In 1986, Unocal Geothermal Division released results from 158 time-domain electromagnetic (TDEM) soundings and, with Chevron Resources, a total of 77 magnetotelluric (MT) stations. Reinterpretations of the Unocal and Chevron data (Park and Torres-Verdin, 1988 ) and the recent public-domain MT studies (e.g. Hermance et al., 1988) outline similar shallow low-resistivity regions. At shallow depths in the caldera References Michael L. Sorey, Gene A. Suemnicht, Neil C. Sturchio, Gregg A.

397

Ground Gravity Survey At Truckhaven Area (Layman Energy Associates, 2009) |  

Open Energy Info (EERE)

Truckhaven Area (Layman Energy Associates, 2009) Truckhaven Area (Layman Energy Associates, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Truckhaven Area (Layman Energy Associates, 2009) Exploration Activity Details Location Truckhaven Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The area of coverage for the DOE-funded geophysical surveys is shown in Figure 9. The 95 magnetotelluric (MT) soundings cover a central area of about 80 square kilometers. The 126 gravity stations extend over a broader area of about 150 square kilometers, centered on the same area covered by the MT soundings. A detailed description of the instrumentation and data acquisition procedures used for both surveys is provided in GSY-USA, Inc.

398

3D Magnetotelluic characterization of the Coso Geothermal Field | Open  

Open Energy Info (EERE)

Magnetotelluic characterization of the Coso Geothermal Field Magnetotelluic characterization of the Coso Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 3D Magnetotelluic characterization of the Coso Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: Electrical resistivity may contribute to progress in understanding geothermal systems by imaging the geometry, bounds and controlling structures in existing production, and thereby perhaps suggesting new areas for field expansion. To these ends, a dense grid of magnetotelluric (MT) stations plus a single line of contiguous bipole array profiling has been acquired over the east flank of the Coso geothermal system. Acquiring good quality MT data in producing geothermal systems is a challenge due to production related electromagnetic (EM) noise and, in the

399

Geothermal exploration assessment and interpretation, Klamath Basin, Oregon: Swan Lake and Klamath Hills area  

DOE Green Energy (OSTI)

A synthesis and preliminary interpretation of predominantly geophysical information relating to the Klamath Basin geothermal resource is presented. The Swan Lake Valley area, northeast of Klamath Falls, and the Klamath Hills area, south of Klamath Falls, are discussed in detail. Available geophysical data, including gravity, magnetic, electrical resistivity, microearthquake, roving dipole resistivity, audio-magnetotelluric (AMT) and magnetotelluric (MT) data sets, are examined and reinterpreted for these areas. One- and two-dimensional modeling techniques are applied, and general agreement among overlapping data sets is achieved. The MT method appears well suited to this type of exploration, although interpretation is difficult in the complex geology. Roving dipole and AMT are useful in reconnaissance, while gravity and magnetics help in defining structure. For the Swan Lake Valley the data suggest buried electrically conductive zones beneath Meadow Lake Valley and Swan Lake, connected by a conductive layer at 1 kilometer depth. In the Klamath Hills area, the data suggest a conductive zone centered near the northwestern tip of Stukel Mountain, associated with a concealed northeast-trending cross-fault. Another conductive zone appears near some producing hot wells at the southwestern edge of the Klamath Hills. These conductive zones may represent geothermal reservoirs. Follow-up work is recommended for each target area.

Stark, M.; Goldstein, N.; Wollenberg, H.; Strisower, B.; Hege, H.; Wilt, M.

1979-05-01T23:59:59.000Z

400

Geothermal resource exploration assessment and data interpretation, Klamath Basin, Oregon: Swan Lake and Klamath Hills area  

DOE Green Energy (OSTI)

A synthesis and preliminary interpretation of predominantly geophysical information relating to the Klamath Basin geothermal resource is presented. The Swan Lake Valley area, northeast of Klamath Falls, and the Klamath Hills area, south of Klamath Falls, are discussed in detail. Available geophysical data, including gravity, magnetic, electrical resistivity, microseismic, roving dipole resistivity, audio-magnetotelluric (AMT) and magnetotelluric (MT) data sets, are examined and reinterpreted for these areas. One- and two-dimensional modeling techniques are applied, and general agreement among overlapping data sets is achieved. The MT method appears well suited to this type of exploration, although interpretation is difficult in the complex geology. Roving dipole and AMT are useful in reconnaissance, while gravity and magnetics help in defining structure. For the Swan Lake Valley the data suggest buried electrically conductive zones beneath Meadow Lake Valley and Swan Lake, connected by a conductive layer at 1 kilometer depth. In the Klamath Hills area, the data suggest a conductive zone centered near the northwestern tip of Stukel Mountain, associated with a concealed northeast-trending cross-fault. Another conductive zone appears near some producing hot wells at the southwestern edge of the Klamath Hills. These conductive zones may represent geothermal reservoirs. Specific types of follow-up work are recommended for each target area.

Stark, M.; Goldstein, N.; Wollenberg, H.; Strisower, B.; Hege, M.

1978-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "mt magnetotellurics z-axis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ARTIFACTS IN MAGNETIC RESONANCE IMAGING FROM ...  

Science Conference Proceedings (OSTI)

... We surmise that the symmetric susceptibility artifact is ... It has two components, the first handling material ... the positive z-axis, the z-component of the ...

402

City of Mt Pleasant, Iowa (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Iowa Iowa Utility Id 13038 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Commercial Demand Commercial Commercial Electric Heat - One Meter Service Residential Commercial Electric Heat - Two Meter Service Commercial Residential Residential Residential Electric Heat - One Meter Service Residential Residential Electric Heat - Two Meter Service Residential Security Lights- With Existing Pole Lighting

403

BWXT Pantex, LLC Route 726, Mt. Athos Road  

National Nuclear Security Administration (NNSA)

9B. DATED (SEE ITEM 11) I I DE-AC04-00AL66620 10B. DATED (SEE ITEM 13) CONTRACT ID CODE PAGE I OF 2 PAGES 2. AMENDMENTIMODIFICATION NO. MI18 extended. CODE I FACILITY CODE Offers must acknowledge receipt of this amendment prior to the hour and date specified in the solicitation as amended, by one of the following methods: (a) By completing Items 8 and 15, and returning - copies of the amendment; (b) By acknowledging receipt of this amendment on each copy of the offer submitted; or (c) By separate letter or telegram which includes a reference to the solicitation and amendment numbers. FAILURE OF YOUR ACKNOWLEDGMENT TO BE RECElVED AT THE PLACE DESIGNATED FOR THE RECEIPT OF OFFERS PRIOR TO THE HOUR AND DATE SPECIFIED MAY RESULT IN REJECTION OF YOUR OFFER. If by virtue of this amendment you desire to change an offer already submitted, such

404

BWXT Pantex, LLC Route 726, Mt. Athos Road  

National Nuclear Security Administration (NNSA)

9B. DATED (SEE E M 11) I 1 DE-ACO4-OOALO6020 10s. DATED (SEE ITEM 13) I . CONTRACT ID CODE PAGE I OF 2 PAGES 2. AMENDMENT/MODlFlCATlON NO. MO99 Offers must acknowledge receipt of this amendment priw to the hour and date specifid in the solicitation a s amended. by one of the fdlovving methods: (a) By completing Items 8 and 15, and returning - copies of the amendmmS (b) By acknwuledglng receipt of this amendment on each oopy of the offer submitted; or (c) By separate letttx or tdegram which includes a reference to the solicitation m d amendment n u m b . FAILURE OF YOUR ACKNOWLEDGMENT TO BE RECEIVED AT THE PLACE DESIGNATED FOR THE RECEIPT OF OFFERS PRIOR TO THE HOUR AND DATE SPECIFIED MAY RESULT IN REJECTION OF YOUR OFFER. If by virtue of this msndment yw desire to change an offa already submitted. such drmge

405

BWXT Pantex, LLC Route 726, Mt. Athos Road  

National Nuclear Security Administration (NNSA)

Sol-lClTATlONlMODlFlCATlON OF CONTRACT I Sol-lClTATlONlMODlFlCATlON OF CONTRACT I I . CONTRACT ID CODE PAGE I OF P PAGES 9B. DATED (SEE E M 11) 2. AMENDMENTIMODIFICATION NO. MI01 Offers must acknowledge receipt of this amendment prior to the hour and date specifmd in the solicitation as mended, by one of the following methods: (a) By completing Items 8 and 15, and returning - coples of the amendment; @) By acknowledging r d p t of this amendment on each copy of the offer submitted; or (c) By seperate letter or telegram whlch includes a refer- to the solicitation and mendmmt numbers. FAILURE OF YOUR ACKNOWLEDGMENT TO BE RECEIVED AT THE PLACE DESIGNATED FOR THE RECEIPT OF OFFERS PRIOR TO THE HOUR AND DATE SPECIFIED MAY RESULT IN REJECTION OF YOUR OFFER. If by virtus of this msndment you desire to change an offer drem-ly submitted, such change

406

BWXT Pantex, LLC Route 726, Mt. Athos Road  

NLE Websites -- All DOE Office Websites (Extended Search)

I I 1 CONTRACT ID CODE I I 9B. DATED (SEE ITEM 11) PAGE I OF 2 PAGES 10A. MODIFICATION OF CONTRACTIORDER NO. DE-AC04-00AL66620 1 1 1 0 B DATED (SEE ITEM 13) 2. AMENDMENTIMODIFICATION NO. M I 22 - . - extended. Offers must acknowledge receipt of this amendment prior to the hour and date specified in the solicitation as amended, by one of the following methods: (a) By completing Items 8 and 15, and returning - copies of the amendment; (b) By acknowledging receipt of this amendment on each copy of the offer submitted; or (c) By separate letter or telegram which includes a reference to the solicitation and amendment numbers. FAILURE OF YOUR ACKNOWLEDGMENT TO BE RECEIVED AT THE PLACE DESIGNATED FOR THE RECEIPT OF OFFERS PRIOR TO THE HOUR AND DATE SPECIFIED MAY RESULT IN REJECTION OF YOUR OFFER. If by virtue of this amendment you desire to change an offer already submitted, such

407

City of Mt Pleasant, Tennessee (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Tennessee Tennessee Utility Id 13039 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power - Part 1 (Small Commercial < 50 kW) Commercial General Power - Part 1 - > (Commercial 51 - 1000 kW) Commercial General Power - Part 2 - (51 - 1,000 kW) Industrial General Power - Part 3 - (1,001 - 5,000 kW) Industrial Outdoor Lighting - 100 W HPS Lighting Outdoor Lighting - 250 W HPS Lighting Outdoor Lighting - 400 W MH floodlight Lighting Residential Residential Average Rates

408

Chemical Characteristics of Fog Water at Mt. Tateyama ... - Springer  

Science Conference Proceedings (OSTI)

direct solar irradiance and the solar aureole radiance distributions, as ..... storms in the arid regions of the Asian continent during the autumn of 2006 can also be...

409

November 2012 JOM Focuses on Primary Metals ... - MT@TMS  

Science Conference Proceedings (OSTI)

Oct 16, 2012 ... This paper presents research on the novel technology of fluidized roasting reduction of low-grade pyrolusite using biogas residual as reductant...

410

BWXT Pantex, LLC Route 726, Mt. Athos Road Lynchburg, V  

National Nuclear Security Administration (NNSA)

DATA (If required) 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) 11. THlS ITEM ONLY APPI-IES TO AMENDMENTS OF SOLICITATIONS The above numbered...

411

BWXT Pantex, LLC Route 726, Mt. Athos Road  

National Nuclear Security Administration (NNSA)

ORDER NO. IN ITEM 10A. 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) I I B. THE ABOVE-NUMBERED CONTRACTIORDER IS MODIFIED TO REFLECT THE...

412

Whitlash, MT Natural Gas Imports by Pipeline from Canada  

Gasoline and Diesel Fuel Update (EIA)

GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba...

413

Sweetgrass, MT Liquefied Natural Gas Exports to Canada  

Gasoline and Diesel Fuel Update (EIA)

GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba...

414

Second generation sequencing allows for mtDNA mixture ...  

Science Conference Proceedings (OSTI)

... of additional discrimi- nation power, yet their ... using the NextGENe software package from SoftGenetics, Inc ... 18 savolainen P, Rosen b, Holmberg A ...

2012-10-09T23:59:59.000Z

415

Extending the BLEU MT evaluation method with frequency weightings  

Science Conference Proceedings (OSTI)

We present the results of an experiment on extending the automatic method of Machine Translation evaluation BLUE with statistical weights for lexical items, such as tf.idf scores. We show that this extension gives additional information about evaluated ...

Bogdan Babych; Anthony Hartley

2004-07-01T23:59:59.000Z

416

BWXT Pantex, LLC Route 726, Mt. Athos Road  

NLE Websites -- All DOE Office Websites (Extended Search)

Sponsors Process Manual N 481.1A Reimbursable Work for Department of Homeland Security O 482.1 DOE Facilities Technology Partnering Programs O 483.1 DOE Cooperative Research and...

417

BWXT Pantex, LLC Route 726, Mt. Athos Road  

NLE Websites -- All DOE Office Websites (Extended Search)

h 6 ) CODE U.S. Department of Energy National Nuclear Security Administratlon Manager, Pantex Site Office , P.O. Box 30030 Amarillo, TX 79120 4. REQUISITIOWPURCHASE REQ. NO. 11....

418

BWXT Pantex, LLC Route 726, Mt. Athos Road  

NLE Websites -- All DOE Office Websites (Extended Search)

6) CODE U.S. Department of Energy National Nuclear Security Administration Manager, Pantex Site Office P.O. Box 30030 Amarillo, TX 79120 4. REQUlSlTlONlPURCHASE REQ. NO. 11....

419

BWXT Pantex, LLC Route 726, Mt. Athos Road Lynchburg, V  

NLE Websites -- All DOE Office Websites (Extended Search)

6) CODE U.S. Department of Energy National Nuclear Security Administration Manager, Pantex Site Office P.O. Box 30030 Amarillo, TX 79120 4. REQUlSlTlONlPURCHASE REQ. NO. CODE I...

420

Whitlash, MT Natural Gas Pipeline Imports From Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6,820 6,420 6,533 12,767 2000's 13,733 11,428 12,558 14,475 20,069 11,157 9,120 8,945 9,834...

Note: This page contains sample records for the topic "mt magnetotellurics z-axis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Whitlash, MT Natural Gas Pipeline Imports From Canada (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3.57 3.80 3.68 3.81 3.94 4.01 3.95 3.73 3.65 3.37 3.20 3.10 2012 2.71 2.37 1.93 1.71 1.79 1.90 2.07 2.29 2.22 2.71 3.29...

422

Babb, MT Natural Gas Pipeline Exports to Canada (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 91 NA NA 2000's NA 549 143 38 1,429 0 0 0 0 0 2010's 0 20 - No Data Reported; -- Not...

423

Babb, MT Natural Gas Pipeline Imports From Canada (Dollars per...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.16 1.40 1.65 2.00 2000's 5.83 2.74 2.24 4.70 5.21 7.32 5.44 6.46 7.49 3.26 2010's 3.86 3.98...

424

Babb, MT Natural Gas Pipeline Exports to Canada (Dollars per...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.53 NA NA 2000's NA 3.55 2.28 6.48 4.98 -- -- -- -- -- 2010's -- 3.39 - No Data Reported; --...

425

Whitlash, MT Natural Gas Pipeline Imports From Canada (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.14 1.61 1.57 2.05 2000's 3.09 2.71 2.42 4.86 5.06 7.40 5.59 6.00 7.63 3.45 2010's 3.88 3.65...

426

Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Dollars...  

Annual Energy Outlook 2012 (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.08 3.79 3.87 3.96 4.08 4.18 3.94 3.78 3.71 3.37 3.24 2.96 2012 2.51 2.19 1.86 1.71 2.08 1.95 2.37 2.27 2.42 3.20 3.44...

427

Havre, MT Natural Gas Pipeline Exports to Canada (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 1,510 2000's 1,606 2,428 15,892 8,851 21,950 19,159 21,245 20,420 16,399 12,504 2010's 9,437...

428

Whitlash, MT Natural Gas Pipeline Imports From Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 586 518 591 564 622 539 612 629 604 606 591 599 2012 598 571 600 542 575 525 550 549 530 526 493 512 2013 511 452 475 485...

429

Havre, MT Natural Gas Pipeline Exports to Canada (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 640 555 634 583 587 562 607 581 512 553 498 495 2012 433 406 398 390 389 373 366 347 334 314 295 286 2013 271 230 232 184...

430

Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's NA 121 NA 347 2,728 2,043 2,012 1,539 1,373 1,109 2010's 932 781 716...

431

Babb, MT Natural Gas Pipeline Imports From Canada (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 10 164 251 1,367 1,953 1,897 1,872 2,240 1,262 884 623 285 2012 217 406 580 1,533 1,373 2,243 2,223 1,846 1,913 1,680 867...

432

Babb, MT Natural Gas Pipeline Imports From Canada (Dollars per...  

Annual Energy Outlook 2012 (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.21 4.18 4.17 4.17 4.23 4.30 4.08 3.91 3.82 3.40 3.25 3.12 2012 2.71 2.22 1.93 1.85 2.18 2.02 2.46 2.36 2.50 3.31 3.50...

433

Havre, MT Natural Gas Pipeline Exports to Canada (Dollars per...  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.06 3.88 3.86 3.97 4.09 4.18 4.03 3.83 3.76 3.44 3.31 3.30 2012 2.95 2.46 2.08 1.82 1.73 2.02 2.05 2.43 2.27 2.62 3.43...

434

Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Dollars...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's NA 1.94 NA 5.09 5.12 7.37 5.81 6.12 8.02 3.52 2010's 3.98 3.77 2.41...

435

Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 71 62 68 68 70 68 68 67 64 57 53 64 2012 57 60 63 62 65 61 68 60 55 57 52 55 2013 52 46 46 25 991...

436

Babb, MT Natural Gas Pipeline Exports to Canada (Dollars per...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3.39 - No Data Reported; -- Not Applicable; NA Not Available; W Withheld to avoid disclosure of individual company...

437

Babb, MT Natural Gas Pipeline Exports to Canada (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 20 - No Data Reported; -- Not Applicable; NA Not Available; W Withheld to avoid disclosure of individual company...

438

Babb, MT Natural Gas Pipeline Imports From Canada (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 16,545 18,477 17,776 3,841 2000's 295 2,571 6,326 4,645 4,333 396 7,343 4,580 4,057 6,702 2010's...

439

Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Dollars ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2011: 4.08: 3.79: 3.87: 3.96: 4.08: 4.18: 3.94: 3.78: 3.71: 3.37: 3.24: 2.96: 2012: 2.51: 2.19: 1.86: 1.71: 2.08 ...

440

Havre, MT Natural Gas Pipeline Exports to Canada (Dollars per...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2.05 2000's 3.25 3.40 2.74 4.80 5.32 7.33 6.05 6.16 8.14 3.63 2010's 4.05 3.82 2.40...

Note: This page contains sample records for the topic "mt magnetotellurics z-axis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Whitlash, MT Natural Gas Pipeline Imports From Canada (Dollars per ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2011: 3.57: 3.80: 3.68: 3.81: 3.94: 4.01: 3.95: 3.73: 3.65: 3.37: 3.20: 3.10: 2012: 2.71: 2.37: 1.93: 1.71: 1.79 ...

442

BWXT Pantex, LLC Route 726, Mt. Athos Road  

NLE Websites -- All DOE Office Websites (Extended Search)

for Owners and Operators of Underground Storage Tanks (UST) 40 CFR 300 National Oil and Hazardous Substances Pollution Contingency Plan 40 CFR 302 Designation, Reportable...

443

City of Mt Pleasant, Utah (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Utah Utah Utility Id 13037 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial-Over 5,000 KWH with demand-Within City Limits Commercial Commercial-Over 5,000 KWH with demand-outside City Limits Commercial Commercial-small user-outside city limits Commercial Commercial-small user-within city limits Commercial Irrigation Pumping-not restricted-Within City Limits Commercial Irrigation Pumping-not restricted-outside City Limits Commercial

444

GEOPHYSICS, VOL. 63, NO. 3 (MAY-JUNE 1998); P. 816825, 10 FIGS. Marine magnetotellurics for petroleum exploration  

E-Print Network (OSTI)

Drive, Austin, TX 78759. E-mail: 73321.3045@compuserve.com. Lawrence Berkeley Laboratory, University buried salt, carbonate, and volcanic horizons that efficiently reflect and scatter acoustic energy

Constable, Steve

445

Audio-magnetotelluric data log and station location map for the Dixie Valley Known Geothermal Resource Area (KGRA) Nevada  

DOE Green Energy (OSTI)

The station locations are mapped and the observed apparent resistivity in ohm-meters is tabulated for each location over the frequency range of 7.5 to 18,600 cycles/sec. (WHK)

Senterfit, R.M.; Hoover, D.; Tippens, C.

1976-01-01T23:59:59.000Z

446

Geophysical study of the crust and upper mantle beneath the central Rio Grande rift and adjacent Great Plains and Colorado Plateau  

Science Conference Proceedings (OSTI)

As part of the national hot dry rock (HDR) geothermal program conducted by Los Alamos Scientific Laboratory, a regional deep magnetotelluric (MT) survey of Arizona and New Mexico was performed. The main objective of the MT project was to produce a regional geoelectric contour map of the pervasive deep electrical conductor within the crust and/or upper mantle beneath the Colorado Plateau, Basin and Range Province, and Rio Grande rift. Three MT profiles cross the Jemez lineament. Preliminary one-dimensional analysis of the data suggest the lineament is associated with anomalously high electrical conductivity very shallow in the crust. An MT/audiomagnetotelluric (AMT) study of a 161 km/sup 2/ HDR prospect was performed on the Zuni Indian Reservation, New Mexico. Two-dimensional gravity modeling of a 700-km gravity profile at 34/sup 0/30'N latitude was used to study the crust and upper mantle beneath the Rio Grande rift. Several models of each of three consecutive layers were produced using all available geologic and geophysical constraints. Two short-wavelength anomalies along the gravity profile were analyzed using linear optimization techniques.

Ander, M.E.

1981-03-01T23:59:59.000Z

447

Property:FieldProcedures | Open Energy Information  

Open Energy Info (EERE)

FieldProcedures FieldProcedures Jump to: navigation, search Property Name FieldProcedures Property Type Text Description Description of actions, equipment and footprint of the exploration activity Subproperties This property has the following 39 subproperties: A Active Seismic Techniques Airborne Gravity Survey Audio-Magnetotellurics C Controlled Source Audio MT Cross-Dipole Acoustic Log D DC Resistivity Survey (Dipole-Dipole Array) DC Resistivity Survey (Mise-Á-La-Masse) DC Resistivity Survey (Pole-Dipole Array) DC Resistivity Survey (Schlumberger Array) DC Resistivity Survey (Wenner Array) Development Drilling Direct-Current Resistivity Survey Drilling Techniques E Earth Tidal Analysis Electrical Profiling Configurations Electromagnetic Techniques Exploration Drilling F FMI Log Frequency-Domain Electromagnetic Survey

448

Program Description  

NLE Websites -- All DOE Office Websites (Extended Search)

and refraction, gravity and magnetics, electromagnetics (including magnetotellurics), and electrical resistivity * involves extensive hands-on field experience * integrates...

449

NIST: Methane Symmetry Operations - Subgroup and Full ...  

Science Conference Proceedings (OSTI)

... 1, this leads to one of the three D 2d subgroups of T d . It is also possible to orient the CH 4 molecule differently, so that singling out the z axis leads ...

450

Controlled-source electromagnetic survey at Soda Lakes geothermal area, Nevada  

DOE Green Energy (OSTI)

The EM-60 system, a large-moment frequency-domain electromagnetic loop prospecting system, was operated in the Soda Lakes geothermal area, Nevada. Thirteen stations were occupied at distances ranging from 0.5-3.0 km from two transmitter sites. These yielded four sounding curves--the normalized amplitudes and phases of the vertical and radial magnetic fields as a function of frequency--at each station. In addition, two polarization ellipse parameters, ellipticity and tilt angle, were calculated at each frequency. The data were interpreted by means of a least-squares inversion procedure which fits a layered resistivity model to the data. A three-layer structure is indicated, with a near-surface 20 ohm-m layer of 100-400 m thickness, a middle 2 ohm-m layer of approximately 1 km thickness, and a basement of greater than 10 ohm-m. The models indicate a northwesterly structural strike; the top and middle layers seem to thicken from northeast to southwest. The results agree quite well with previous results of dipole-dipole and magnetotelluric (MT) surveys. The EM-60 survey provided greater depth penetration (1 to 1.5 km) than dipole-dipole, but MT far surpassed both in its depth of exploration. One advantage of EM in this area is its ease and speed of operation. Another advantage, its relative insensitivity to lateral inhomogeneities, is not as pronounced here as it would be in areas of more complex geology.

Stark, M.; Wilt, M.; Haught, J.R.; Goldstein, N.

1980-07-01T23:59:59.000Z

451

Geothermal energy resource investigations in the Eastern Copper River Basin, Alaska  

DOE Green Energy (OSTI)

This report consists of a review of the geological, geochemical and geophysical data available for the Eastern Copper River basin with emphasis on the mud volcanoes, and the results of geophysical and geochemical studies carried out in the summers of 1982 and 1984. The purpose was to determine if there are geothermal energy resources in the Copper River Basin. The Eastern Copper River basin is situated on the flanks of a major volcano, Mt. Drum, which was active as late as 200,000 years ago and which is thought to have retained significant amounts of residual heat at high levels. Mt. Wrangell, farther to the east, has been volcanically active up to the present time. The 1982 geophysical and geochemical surveys located three principal areas of possible geothermal interest, one near Tazlina and two near the Klawasi mud volcanoes. The intensive survey work of 1984 was concentrated on those areas. We have integrated the results of soil helium, soil mercury, gravity, aeromagnetic, electrical, self-potential, and controlled-source audio magnetotelluric (CSAMT) surveys to evaluate the geothermal potential of the areas studied. 36 figs.

Wescott, E.M.; Turner, D.L.

1985-06-01T23:59:59.000Z

452

ASC_RdMap7.7.55.10_MT.indd  

National Nuclear Security Administration (NNSA)

on The CoVer: on The CoVer: Dynamic void collapse in single crystal copper by dislocation emission. Shown is a small section of a 2.13-billion atom molecular dynamics simulation of a shock-compressed copper single crystal with a 0.41% preexisting void density. The simulation was performed using the SPaSM application running on BlueGene/L. Atoms in pristine fcc lattice sites are not shown, atoms in hcp stacking faults are grey, and other atoms (including surfaces and dislocation cores) are red. Untouched voids ahead of the shock front are visible in the upper right, while the complete collapse of voids leads to an array of planar stacking faults (grey) bounded by partial dislocation loops (red) behind the shock front. SPaSM is used to simulate many aspects of material

453

Microsoft Word - Granite-Mt-3G-Radio-Station-CX.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 0 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Creig Millen Project Manager - TEC-CSB-1 Proposed Action: Granite Mountain 3G Radio Station Project Budget Information: Work Order 00197218, Task 03 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.19 Siting, construction, and operation of microwave and radio communication towers and associated facilities... Location: Stevens County, Washington (T34N, R38E, Section 17) Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to install a new 100-foot radio tower, communication building, and related digital radio equipment at an existing BPA communications site on Granite Mountain in Stevens County, Washington. The new tower and building will upgrade and replace

454

LinguaNet: Embedded MT in a Cross-Border Messaging Systemfor European Law Enforcement  

Science Conference Proceedings (OSTI)

Globalisation of crime poses a serious threat to the international community and is a matter of growing concern to law enforcement agencies all over the world. In the combat against international and organized crime, the European Union (EU) has supported ... Keywords: Embedded machine translation, controlled-content data elements, multilingual casualty registration, multilingual knowledge databases, multilingual term bases, police communication

Inge Gorm Hansen; Henrik Selse Srensen

2002-09-01T23:59:59.000Z

455

Manual for Development of a Transient MODFLOW/MT3DMS/SEAWAT Simulation  

E-Print Network (OSTI)

the maximum pressure needed to lift the overburden (``the fracture pressure''), and new CO2 injection wells (MMscf) of natural gas burned to generate elec- tricity (n3045us2a.xls). All these data are posted generation has been calculated from the DOE EIA files epmxlfile4_1.xls (Report DOE/EIA-0226) for coal, and n

456

Using TectoMT as a preprocessing tool for phrase-based statistical machine translation  

Science Conference Proceedings (OSTI)

We present a systematic comparison of preprocessing techniques for two language pairs: English-Czech and English-Hindi. The two target languages, although both belonging to the Indo-European language family, show significant differences in morphology, ... Keywords: phrase-based translation, preprocessing, reordering

Daniel Zeman

2010-09-01T23:59:59.000Z

457

The School for Marine Science and The Heat Budget for Mt. Hope Bay  

E-Print Network (OSTI)

. This result has been often quoted in considering the power plant's impact on the physical and biological the heat contributions to MHB from the Brayton Point Power Station (BPPS), from the exchange across the air to uncertainty in the measurements used to estimate air-sea heat fluxes­the long-wave radiation in particular

Chen, Changsheng

458

form the caprock overlaying a 500-foot thick portion of the Mt...  

NLE Websites -- All DOE Office Websites (Extended Search)

likely to be concentrated within specific regions of a smaller number of these aquifers." Jordan K. Eccles, Lincoln Pratson, Richard G. Newell, and Robert B. Jackson, Energy...

459

Port of Del Bonita, MT Natural Gas Imports by Pipeline from Canada  

Gasoline and Diesel Fuel Update (EIA)

GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba...

460

Port of Morgan, MT Natural Gas Imports by Pipeline from Canada  

Annual Energy Outlook 2012 (EIA)

GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba...

Note: This page contains sample records for the topic "mt magnetotellurics z-axis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Complete mtDNA genomes of Anopheles darlingi and an approach to anopheline divergence time  

E-Print Network (OSTI)

State University of New York- Albany, Empire Plaza, Albany,State University of New York at Albany, Biomedical Sciences

2010-01-01T23:59:59.000Z

462

GRR/Section 17-MT-c - Natural Streambed and Land Preservation...  

Open Energy Info (EERE)

Conservation District Montana Department of Natural Resources & Conservation Montana Fish, Wildlife & Parks Regulations & Policies MCA 75-7-101 et seq The Natural Streambed and...

463

Overview of physical oceanographic measurements taken during the Mt. Mitchell Cruise to the ROPME Sea Area  

Science Conference Proceedings (OSTI)

The ROPME Sea Area (RSA) is one of the most important commercial waterways in the world. However, the number of direct oceanographic observations is small. An international program to study the effect of the Iraqi oil spill on the environment was sponsored by the ROPME, the Intergovernmental Oceanographic Commission, and the National Oceanic and Atmospheric Administration (NOAA).

Reynolds, R.M.

1993-03-31T23:59:59.000Z

464

MT DOE/EPSCoR planning grant. [Annual Technical Progress Report  

Science Conference Proceedings (OSTI)

The Montana DOE/EPSCoR planning process has made significant changes in the state of Montana. This is exemplified by notification from the Department of Energy's Experimental Program to Stimulate Competitive Research (DOE/EPSCoR) recommendation to fund Montana's 1992 graduate traineeship grant proposal in the amount of $500,000. This is a new award to Montana. DOE traineeship reviewers recognized that our planning grant enabled us to develop linkages and build the foundation for a competitive energy-related research and traineeship program in Montana. During the planning, we identified three major focus areas: Energy Resource Base, Energy Production, and Environmental Effects. For each focus area, we detailed specific problem areas that the trainees may research. We also created MORE, a consortium of industrial affiliates, state organizations, the Montana University System (MUS), tribal colleges, and DOE national laboratories. MORE and our state-wide Research and Education Workshop improved and solidified working relationships. We received numerous letters of support. DOE reviewers endorsed our traineeship application process. They praised the linkage of each traineeship with a faculty advisor, and the preference for teams of faculty members and two or more students. Particularly commendable'' were our programs to involve Native American educators and the leveraging effect'' of this on the human resources in the state. Finally, the DOE reviewers indicated that cost-sharing via support of Native Americans was creative and positive.

Bromenshenk, J.J.; Scruggs, V.L.

1992-08-31T23:59:59.000Z

465

Northwest Geothermal Corp. 's (NGC) plan of exploration, Mt. Hood Area, Clackamas County, Oregon  

DOE Green Energy (OSTI)

The Area Geothermal Supervisor (AGS) received a Plan of Operations (POO) from Northwest Geothermal Corporation (NGC) on 2/12/80. In the POO, NGC proposed two operations: testing and abandoning an existing 1219 meter (m) geothermal temperature gradient hole, designated as OMF No. 1, and drilling and testing a new 1524 m geothermal exploratory hole, to be designated as OMF No. 7A. The POO was amended on 5/6/80, to provide for the use of an imp

Not Available

1980-05-01T23:59:59.000Z

466

Efficient Inversion of Multi-frequency and Multi-source Electromagnetic Data: Final report  

Science Conference Proceedings (OSTI)

BES grant DE-FG02-06ER15819 supported efforts at Oregon State University (OSU) to develop improved inversion methods for 3D subsurface electromagnetic (EM) imaging. Three interrelated activities have been supported by this grant, and its predecessor (DE-FG02-06ER15818): (1) collaboration with a former student of the PI, Dr. Weerachai Siripunvaraporn (now Professor at Mahidol University in Bangkok, Thailand) on developing and refining inversion methods for 3D Magnetotelluric (MT) data . (2) Development at Oregon State University of a new modular system of computer codes for EM inversion, and initial testing and application of this inversion on several large field data sets. (3) Research on more efficient approaches to multi-transmitter EM inverse problems, to optimize use of expensive data sensitivity calculations needed for gradient based inversion schemes. The last of these activities was the main motivation for this research project, but the first two activities were important enabling steps that produced useful products and results in their own right, including freely avaialable software for 3D inversion of EM geophysical data.

Gary D. Egbert

2013-04-10T23:59:59.000Z

467

Deep electromagnetic sounding in central Nevada  

DOE Green Energy (OSTI)

Sixteen shallow and deep controlled source electromagnetic soundings were performed in Buena Vista Valley, near Winnemucca, Nevada, to investigate an intra-basement conductor previously detected with magnetotellurics. The survey was carried out with the LBL EM-60 system using a remote magnetic reference for low-frequency geomagnetic noise cancellation, 100-m- and 2.8-km-diameter transmitter loops, and a minicomputer for in-field processing. EM soundings were made at distances from 0.5 to 30 km from three loops over the frequency range 0.02 to 500 Hz. Data were interpreted by means of 1-D inversions and the resulting layered models were pieced together to yield an approximate 2-D geoelectric model along the N-S axis of the valley. The EM soundings and one MT sounding show a 3 to 7 ohm-m zone at a depth of four to seven km. The conductor appears to be deepest at the northern end of the valley and shallowest beneath a basement ridge that seems to divide Buena Vista Valley into two basinal structures. Similar intra-basement conductors are also reported 50 to 75 miles south in the Carson Sink-Fallon areas, suggesting a common source, probably related to an anomalously hot, thin crust.

Wilt, M.; Goldstein, N.E.; Haught, J.R.; Morrison, H.F.

1982-04-01T23:59:59.000Z

468

Intersecting Fault Trends and Crustal-Scale Fluid Pathways Below...  

Open Energy Info (EERE)

Intersecting Fault Trends and Crustal-Scale Fluid Pathways Below the Dixie Valley Geothermal Area, Nevada, Inferred from 3d Magnetotelluric Surveying Jump to: navigation, search...

469

A Regional Strategy For Geothermal Exploration With Emphasis...  

Open Energy Info (EERE)

For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Regional Strategy For...

470

Finding Hidden Geothermal Resources In The Basin And Range Using...  

Open Energy Info (EERE)

Magnetotellurics At Walker-Lane Transitional Zone Region (Pritchett, 2004) Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Pritchett, 2004) Modeling-Computer...

471

Superfund record of decision (EPA Region 8): Anaconda Company Smelter (ARWW and S) Operable Unit, Anaconda, MT, September 29, 1998  

SciTech Connect

The US Environmental Protection Agency (EPA), with the concurrence of the State of Montana Department of Environmental Quality (MDEQ), presents this Record of Decision (ROD) for the Anaconda Regional Water, Waste, and Soils (ARWW and S) Operable Unit (OU) of the Anaconda Smelter National Priorities List (NPL) Site. The ROD is based on the Administrative Record for the ARWW and S OU, including three Remedial Investigations (RIs) and five Feasibility Study (FS) Deliverables, human health and ecological risk assessments, the Proposed Plan, the public comments received, including those from the potentially responsible party (PRP), and EPA responses. The ROD presents a brief summary of the RIs and FS Deliverables, actual and potential risks to human health and the environment, and the Selected Remedy. EPA followed the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, the National Contingency Plan (NCP), and appropriate guidance in preparation of the ROD.

NONE

1998-11-01T23:59:59.000Z

472

A new deep branch of eurasian mtDNA macrohaplogroup M reveals additional complexity regarding the settlement of Madagascar  

E-Print Network (OSTI)

Zones. In PhD thesis University of Otago; 2003. 18. Adelaar AK: "Asian roots of the Malagasy: a linguistic perspec- tive". Volume 151. Leiden: Bijdragen tot de Taal-, Land- en Volkenkunde; 1995:325-356. 19. Dahl OC: Malgache et Maanjan. Une... P, Macaulay V, et al.: Climate change and postglacial human dispersals in southeast Asia. Mol Biol Evol 2008, 25(6):1209-1218. 41. Lansing JS, Cox MP, Downey SS, Gabler BM, Hallmark B, Karafet TM, Norquest P, Schoenfelder JW, Sudoyo H, Watkins JC...

Ricaut, Francois-X; Razafindrazaka, Harilanto; Cox, Murray P; Dugoujon, Jean-M; Guitard, Evelyne; Sambo, Clement; Mormina, Maru; Mirazon-Lahr, Marta; Ludes, Bertrand; Crubezy, Eric

2009-12-14T23:59:59.000Z

473

Optimal use of information for measuring M(t) in lepton + jets t anti-t events  

SciTech Connect

The observation of the top (t) quark served as one of the major confirmations of the validity of the standard model (SM) of particle interactions. Through radiative corrections of the SM, the mass of the top quark, along with that of the W boson, provide the best indication for the value of the mass of the hypothesized Higgs boson. The mass of the W is known to a precision of < 0.1%, while the uncertainty on the mass of the top quark is at the 4% level. Improvements in both measurements are required to limit the range of mass that the Higgs boson can assume in the SM, and, of course, to check whether that agrees with expectation. It is therefore important to develop techniques for extracting the mass of the top quark that can provide the sharpest values possible.

Juan Estrada

2003-10-14T23:59:59.000Z

474

Peptide aptamers as new tools to modulate clathrin-mediated internalisation - inhibition of MT1-MMP internalisation  

E-Print Network (OSTI)

.4, 100 mM NaCl, 2 mM EDTA, 1% Triton X-100, 60 mM octyl-D-glucoside) supplemented with complete protease inhibitor cocktail (Roche Molecular Biochemical, Hert- fordshire, UK), sonicated (80 Volts for 10 seconds, Sonics and Material Inc., Suffolk, UK...

Wickramasinghe, Rochana D; Ko Ferrigno, Paul; Roghi, Christian

2010-07-23T23:59:59.000Z

475

Existing and proposed surface and undergoing coal mines region VIII summary. [In CO, MT, ND, UT, WY, SD  

SciTech Connect

Coal mining is expected to increase three-fold between 1978 and about 1985 in the EPA Region VIII States (Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming). This report provides detailed information on existing, proposed, and speculative mines. The information includes location, mine operator, quantity of coal mined, and type of mine.

Kimball, D.B.

1979-02-01T23:59:59.000Z

476

Experiences and Challenges Scaling PFLOTRAN, a PETSc-based Code for Subsurface Reactive Flow Simulations,  

E-Print Network (OSTI)

(x,y,z) and utilizes complex stratigraphy (Figure 1) mapped from the Hanford EarthVision database [6 of preconditioner is a very simple one, but we have been surprised at how well it has worked at scale on large.) CUG 2009 Proceedings 3 of 14 #12;Figure 1: Hanford 300 Area stratigraphy (z scale = 20x, z axis ranges

477

Uniform insulation applied-B ion diode  

DOE Patents (OSTI)

An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, and ions may be focused at a point on the z axis.

Seidel, D.B.; Slutz, S.A.

1986-04-11T23:59:59.000Z

478

Uniform insulation applied-B ion diode  

DOE Patents (OSTI)

An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, the ions may be focused at a point on the z axis.

Seidel, David B. (Albuquerque, NM); Slutz, Stephen A. (Albuquerque, NM)

1988-01-01T23:59:59.000Z

479

Novel ultrahigh resolution data acquisition and image reconstruction for multi-detector row CT  

Science Conference Proceedings (OSTI)

We present and evaluate a special ultrahigh resolution mode providing considerably enhanced spatial resolution both in the scan plane and in the z-axis direction for a routine medical multi-detector row computed tomography (CT) system. Data acquisition is performed by using a flying focal spot both in the scan plane and in the z-axis direction in combination with tantalum grids that are inserted in front of the multi-row detector to reduce the aperture of the detector elements both in-plane and in the z-axis direction. The dose utilization of the system for standard applications is not affected, since the grids are moved into place only when needed and are removed for standard scanning. By means of this technique, image slices with a nominal section width of 0.4 mm (measured full width at half maximum=0.45 mm) can be reconstructed in spiral mode on a CT system with a detector configuration of 32x0.6 mm. The measured 2% value of the in-plane modulation transfer function (MTF) is 20.4 lp/cm, the measured 2% value of the longitudinal (z axis) MTF is 21.5 lp/cm. In a resolution phantom with metal line pair test patterns, spatial resolution of 20 lp/cm can be demonstrated both in the scan plane and along the z axis. This corresponds to an object size of 0.25 mm that can be resolved. The new mode is intended for ultrahigh resolution bone imaging, in particular for wrists, joints, and inner ear studies, where a higher level of image noise due to the reduced aperture is an acceptable trade-off for the clinical benefit brought about by the improved spatial resolution.

Flohr, T. G.; Stierstorfer, K.; Suess, C.; Schmidt, B.; Primak, A. N.; McCollough, C. H. [Siemens Medical Solutions, Computed Tomography CTE PA Siemensstr. 1, 91301 Forchheim (Germany) and Department of Diagnostic Radiology, Eberhard-Karls-Universitaet Tuebingen (Germany); Siemens Medical Solutions, Computed Tomography CTE PA Siemensstr. 1, 91301 Forchheim (Germany); Mayo Clinic College of Medicine, Department of Radiology, Rochester, Minnesota (United States)

2007-05-15T23:59:59.000Z

480

Final Report DOE Contract No. DE-FG36-04G014294 ICEKAP 2004: A Collaborative Joint Geophysical Imaging Project at Krafla and IDDP P.E. Malin, S.A. Onacha, E. Shalev Division of Earth and Ocean Sciences Nicholas School of the Environment Duke University Durham, NC 27708  

SciTech Connect

In this final report, we discuss both theoretical and applied research resulting from our DOE project, ICEKAP 2004: A Collaborative Joint Geophysical Imaging Project at Krafla and IDDP. The abstract below begins with a general discussion of the problem we addressed: the location and characterization of blind geothermal resources using microearthquake and magnetotelluric measurements. The abstract then describes the scientific results and their application to the Krafla geothermal area in Iceland. The text following this abstract presents the full discussion of this work, in the form of the PhD thesis of Stephen A. Onacha. The work presented here was awarded the Best Geophysics Paper at the 2005 Geothermal Resources Council meeting, Reno. This study presents the modeling of buried fault zones using microearthquake and electrical resistivity data based on the assumptions that fluid-filled fractures cause electrical and seismic anisotropy and polarization. In this study, joint imaging of electrical and seismic data is used to characterize the fracture porosity of the fracture zones. P-wave velocity models are generated from resistivity data and used in locating microearthquakes. Fracture porosity controls fluid circulation in the hydrothermal systems and the intersections of fracture zones close to the heat source form important upwelling zones for hydrothermal fluids. High fracture porosity sites occur along fault terminations, fault-intersection areas and fault traces. Hydrothermal fault zone imaging using resistivity and microearthquake data combines high-resolution multi-station seismic and electromagnetic data to locate rock fractures and the likely presence fluids in high temperature hydrothermal systems. The depths and locations of structural features and fracture porosity common in both the MT and MEQ data is incorporated into a joint imaging scheme to constrain resistivity, seismic velocities, and locations of fracture systems. The imaging of the fault zones is constrained by geological, drilling, and geothermal production data. The objective is to determine interpretation techniques for evaluating structural controls of fluid circulation in hydrothermal systems. The conclusions are: directions of MT polarization and anisotropy and MEQ S-splitting correlate. Polarization and anisotropy are caused by fluid filled fractures at the base of the clay cap. Microearthquakes occur mainly on the boundary of low resistivity within the fracture zone and high resistivity in the host rock. Resistivity is lowest within the core of the fracture zone and increases towards the margins of the fracture zone. The heat source and the clay cap for the hydrothermal have very low resistivity of less than 5?m. Fracture porosity imaged by resistivity indicates that it varies between 45-5% with most between 10-20%, comparable to values from core samples in volcanic areas in Kenya and Iceland. For resistivity values above 60?m, the porosity reduces drastically and therefore this might be used as the upper limit for modeling fracture porosity from resistivity. When resistivity is lower than 5?m, the modeled fracture porosity increases drastically indicating that this is the low resistivity limit. This is because at very low resistivity in the heat source and the clay cap, the resistivity is dominated by ionic conduction rather than fracture porosity. Microearthquakes occur mainly above the heat source which is defined by low resistivity at a depth of 3-4.5 km at the Krafla hydrothermal system and 4-7 km in the Longonot hydrothermal system. Conversions of S to P waves occur for microearthquakes located above the heat source within the hydrothermal system. Shallow microearthquakes occur mainly in areas that show both MT and S-wave anisotropy. S-wave splitting and MT anisotropy occurs at the base of the clay cap and therefore reflects the variations in fracture porosity on top of the hydrothermal system. In the Krafla hydrothermal system in Iceland, both MT polarization and MEQ splitting directions align with

Malin, Peter E.; Shalev, Eylon; Onacha, Stepthen A.

2006-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "mt magnetotellurics z-axis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Final Report DOE Contract No. DE-FG36-04G014294 ICEKAP 2004: A Collaborative Joint Geophysical Imaging Project at Krafla and IDDP P.E. Malin, S.A. Onacha, E. Shalev Division of Earth and Ocean Sciences Nicholas School of the Environment Duke University Durham, NC 27708  

Science Conference Proceedings (OSTI)

In this final report, we discuss both theoretical and applied research resulting from our DOE project, ICEKAP 2004: A Collaborative Joint Geophysical Imaging Project at Krafla and IDDP. The abstract below begins with a general discussion of the problem we addressed: the location and characterization of blind geothermal resources using microearthquake and magnetotelluric measurements. The abstract then describes the scientific results and their application to the Krafla geothermal area in Iceland. The text following this abstract presents the full discussion of this work, in the form of the PhD thesis of Stephen A. Onacha. The work presented here was awarded the Best Geophysics Paper at the 2005 Geothermal Resources Council meeting, Reno. This study presents the modeling of buried fault zones using microearthquake and electrical resistivity data based on the assumptions that fluid-filled fractures cause electrical and seismic anisotropy and polarization. In this study, joint imaging of electrical and seismic data is used to characterize the fracture porosity of the fracture zones. P-wave velocity models are generated from resistivity data and used in locating microearthquakes. Fracture porosity controls fluid circulation in the hydrothermal systems and the intersections of fracture zones close to the heat source form important upwelling zones for hydrothermal fluids. High fracture porosity sites occur along fault terminations, fault-intersection areas and fault traces. Hydrothermal fault zone imaging using resistivity and microearthquake data combines high-resolution multi-station seismic and electromagnetic data to locate rock fractures and the likely presence fluids in high temperature hydrothermal systems. The depths and locations of structural features and fracture porosity common in both the MT and MEQ data is incorporated into a joint imaging scheme to constrain resistivity, seismic velocities, and locations of fracture systems. The imaging of the fault zones is constrained by geological, drilling, and geothermal production data. The objective is to determine interpretation techniques for evaluating structural controls of fluid circulation in hydrothermal systems. The conclusions are: directions of MT polarization and anisotropy and MEQ S-splitting correlate. Polarization and anisotropy are caused by fluid filled fractures at the base of the clay cap. Microearthquakes occur mainly on the boundary of low resistivity within the fracture zone and high resistivity in the host rock. Resistivity is lowest within the core of the fracture zone and increases towards the margins of the fracture zone. The heat source and the clay cap for the hydrothermal have very low resistivity of less than 5?m. Fracture porosity imaged by resistivity indicates that it varies between 45-5% with most between 10-20%, comparable to values from core samples in volcanic areas in Kenya and Iceland. For resistivity values above 60?m, the porosity reduces drastically and therefore this might be used as the upper limit for modeling fracture porosity from resistivity. When resistivity is lower than 5?m, the modeled fracture porosity increases drastically indicating that this is the low resistivity limit. This is because at very low resistivity in the heat source and the clay cap, the resistivity is dominated by ionic conduction rather than fracture porosity. Microearthquakes occur mainly above the heat source which is defined by low resistivity at a depth of 3-4.5 km at the Krafla hydrothermal system and 4-7 km in the Longonot hydrothermal system. Conversions of S to P waves occur for microearthquakes located above the heat source within the hydrothermal system. Shallow microearthquakes occur mainly in areas that show both MT and S-wave anisotropy. S-wave splitting and MT anisotropy occurs at the base of the clay cap and therefore reflects the variations in fracture porosity on top of the hydrothermal system. In the Krafla hydrothermal system in Iceland, both MT polarization and MEQ splitting directions align with

Malin, Peter E.; Shalev, Eylon; Onacha, Stepthen A.

2006-12-15T23:59:59.000Z

482

U.S. Liquefied Natural Gas Exports To Brazil  

Annual Energy Outlook 2012 (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to...

483

Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management...  

Open Energy Info (EERE)

temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and...

484

Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau...  

Open Energy Info (EERE)

temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and...

485

BACKWARD K~;;p ELASTIC SCATTERING AND 0 PRODUCTION  

E-Print Network (OSTI)

Laboratory Mt. Holyoke Brookhaven National LaboratoryLaboratory Mt. Holyoke Brookhaven National Laboratoryhas been performed at the Brookhaven National Laboratory

Alston-Garnjost, M.

2011-01-01T23:59:59.000Z

486

??? 1  

NLE Websites -- All DOE Office Websites (Extended Search)

(100%) 47 Cement 386 88.5Mt 18 31.4Mt (35%) 25.4 Ammonia 50 3.3Mt 16 1.9 Mt (58%) 7.8 Oil refinery 3 9.4Mt 3 9.4Mt (100%) 3.3 TSINGHUA UNIVERSITY CO 2 Emission Sources in Hebei...

487

Sykes, M.T., I.C. Prentice, and W. Cramer. 1996. A bioclimatic model for the potential distributions of north European tree species  

E-Print Network (OSTI)

Angeles environment, with a constant offset caused by photosynthesis and respiration of the plants within possibilities with respect to the CO2 fertilization effect. First, the biomass in both tree forms might have increased, but carbon distribution among different parts of a tree was different. Second, the biomass may

488

FRAMES-2.0 Software System: Linking to the Groundwater Modeling System (GMS) RT3D and MT3DMS Models  

SciTech Connect

Linkages to the Groundwater Modeling System have been developed at Pacific Northwest National Laboratory to enable the Nuclear Regulatory Commission (NRC) to more realistically assess the risk to the public of radioactive contaminants at NRC-licensed sites. Common software tools presently in use are limited in that they cannot assess contaminant migration through complex natural environments. The purpose of this initiative is to provide NRC with a licensing safety-analysis tool with sufficient power, flexibility, and utility that it can serve as the primary software platform for analyzing the hazards associated with licensing actions at those complex sites at which the traditional tools are inappropriate. As a tool designed to realistically approximate prospective doses to the public, this initiative addresses NRCs safety-performance goal by confirming that licensing actions do not result in undue risk to the public.

Whelan, Gene; Castleton, Karl J.; Pelton, Mitch A.

2007-08-08T23:59:59.000Z

489

Rough order of magnitude cost estimate for immobilization of 18.2 MT of plutonium sharing existing facilities at Hanford with pit disassembly {ampersand} conversion facility: alternative 2  

SciTech Connect

The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 18.2 metric tons (nominal) of plutonium as a ceramic in an existing facility at Hanford, the Fuels and Materials Examination Facility (FMEF). The Pit Disassembly and Conversion Facility (PDCF), which is being costed in a separate report will also be located in the FMEF in this co- location option. The technical engineering data used as the basis for this study is presented in the EIS Data Call Input Report, `Plutonium Immobilization Plant Using Ceramic in Existing Facilities at Hanford.` The FMEF will require minimal facility modifications to accommodate the Plutonium Immobilization Plant (PIP). Adequate space is available within the FMEF for installation of the immobilization process equipment. Facility HVAC, utility, and support systems exist to support the immobilization operations. Building modifications are primarily the removal of the SAF line (gloveboxes and support equipment) on the 70` level and building interior changes. The plutonium immobilization equipment will primarily occupy the 42` and 70` levels of the FMEF, with the same equipment layout as in the sole occupancy case. The Pit Disassembly and Conversion Facility would occupy the 21` and O` (Entry) levels. Elements of the FMEF and adjacent Fuel Assembly Area (FAA) that will be shared by PIP and PDCF include shipping and receiving, laboratory, waste handling, security, offices, maintenance shops, SNM storage vault, and utilities. It was assumed that the existing utilities and support systems are adequate or only need minor upgrades to support both the PIP and PDCF. The PIP cost estimate was reconciled with the PDCF cost estimate to confirm the use and costs of shared systems and personnel. The facility design for a 50 metric ton plutonium throughput plant will be used for the 18.2 metric ton facility. Plutonium conversion operations will operate at the same design rate as the 50 metric ton facility over the 10 year operating period. Some of the process equipment will operate for a shorter period of time and fewer operators will be required. The assumptions, missions, design bases, facility and process descriptions, and accident analyses are the same. Therefore it is assumed that the capital cost for the 18.2 metric ton facility is identical to that of the 50 metric ton facility. However, the following operating costs will be less: consumable materials, equipment replacement and maintenance labor, employment requirements, and waste generation.

DiSabatino, A., LLNL

1998-06-01T23:59:59.000Z

490

Rough order of magnitude cost estimate for immobilization of 50 MT of plutonium sharing existing facilities at Hanford with pit disassembly {ampersand} conversion facility: alternative 11  

SciTech Connect

The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 50 metric tons (nominal) of plutonium as a ceramic in an existing facility at Hanford, the Fuels and Materials Examination Facility (FMEF). The Pit Disassembly and Conversion Facility (PDCF), which is being costed in a separate report by LANL, will also be located in the FMEF in this co-location option.

DiSabatino, A., LLNL

1998-06-01T23:59:59.000Z

491

Effects of a 60 Hz Magnetic Field of up to 50 mT on Human Neuromotor Control: An EEG/EMG/Tremor Study  

Science Conference Proceedings (OSTI)

High voltage power lines, industrial processes, and domestic electric appliances are among the numerous sources of daily exposure to extremely low frequency (ELF, below 300 Hz) magnetic fields (MF). ELF MF effects on humans have been studied over the past few decades, and these fields have been reported to affect human movement, brain electrical activity, and high-level brain information processing (cognition). Different strategies have been used to tackle this question using various physiological, ...

2013-11-25T23:59:59.000Z

492

Superfund Record of Decision (EPA Region 8): Silver Bow Creek/Butte Area, MT. (Second remedial action), June 1992. Interim report  

Science Conference Proceedings (OSTI)

The Silver Bow Creek/Butte Area site is a mining and processing area located 7 miles east of Anaconda in the Upper Clark Fork River Basin, Deer Lodge County, Montana. Site contamination is the result of over 100 years of mining and process operations in the area. Until the early 1970's, mining, milling, and smelting wastes were dumped directly into Silver Bow Creek and transported downstream. The ROD addresses an interim remedy for all media at OU12. The primary contaminants of concern affecting the soil, sediment, ground water, and surface water in the Inactive area are metals, including arsenic, chromium, and lead; and inorganics.

Not Available

1992-06-30T23:59:59.000Z

493

Superfund Record of Decision (EPA Region 8): Anaconda Smelter site, (Operable Unit 11 - Flue Dust), Deer Lodge County, Anaconda, MT. (Second remedial action), September 1991  

Science Conference Proceedings (OSTI)

The 6,000-acre Anaconda Smelter site is a former copper and ore processing facility in Deer Lodge County, Montana. Land use in the area is predominantly residential. The site is bounded on the north and east, respectively, by the Warm Springs Creek and Mill Creek, both of which are potential sources of drinking water. From 1884 until 1980 when activities ceased, the site was used for ore processing and smelting operations. In 1988, EPA conducted an investigation to determine the nature and extent of the flue dust contamination. A 1988 ROD addressed the Mill Creek Operable Unit (OU15) and documented the relocation of residents from the community surrounding the smelter site as the selected remedial action. The Record of Decision (ROD) addresses the Flue Dust Operable Unit (OU11). The primary contaminants of concern affecting this site from the flue dust materials are metals including arsenic, cadmium, and lead. The selected remedial action for the site is included.

Not Available

1991-09-23T23:59:59.000Z

494

554 J. Am. Chem. SOC.1993, 115, 554-562 161.12, 163.64;MS 248 (Mt +2), 246 (M+), 155, 126,84 (base peak).  

E-Print Network (OSTI)

peak). HRMS Calcd for C8Hl,N202Br:246.00039. Found: 246.0001. 3-[3-[[2-(Trimethylsilyl procedure as used for the synthesis of compound 32 and obtained as a colorless oil (32%) alone with 221 (8

Jones, William D.

495

Drivers of natural resource-based political conict College of Forestry and Conservation, University of Montana, Missoula, MT 59812, U.S.A.  

E-Print Network (OSTI)

for oil in the Arctic National Wildlife Refuge (ANWR), wolf and grizzly bear reintroduction£ict and controversy. Alaska provides a case in point. Debate over ANWR, the Alaskan rainforest, and the state's wolf ANWR, for example, is partly explained by its symbolism and its role in larger policy stories told

Nie, Martin

496

A variable for measuring masses at hadron colliders when missing energy is expected; mT2: the truth behind the glamour  

E-Print Network (OSTI)

: the truth behind the glamour Alan Barr, Christopher Lester and Phil Stephens Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3 0HE, UK E-mail: barr@hep.phy.cam.ac.uk, lester@hep.phy.cam.ac.uk and stephens... -slepton edge at S5, and the right-slepton edge at O1) and in both sets of cuts. The hard cuts are able to suppress 2360 A Barr et al Table 1. Parameters of the four AMSB-like points studied. The parameter was adjusted so that different values of #7;M?1 could...

Barr, Alan; Lester, Christopher G; Stephens, Phil

497

Analysis of natural gases, Rocky Mtn. Region (AZ, CO, MT, NM, UT and WY), 1951-1991 (for microcomputers). Data file  

Science Conference Proceedings (OSTI)

The U.S. Bureau of Mines diskette contains analysis and related source data for 2,545 natural gas samples collected from Rocky Mountain Region, which include the following states: Arizona, Colorado, Montana, New Mexico, Utah, and Wyoming. All samples were obtained and analyzed as part of the Bureau's investigations of the occurrences of helium in natural gases of countries with free market economies. The survey has been conducted since 1917. The analysis contained on the diskette: READ.ME, RCKMTN.TXT, RCKMTN.DBF, USHEANAL.DBF, and BASINCDE.TXT. The READ.ME file contains documentation. The RCKMTN.TXT file contains 2,545 natural gas analysis records in ASCII nondelimited, fixed-length format. The length of each record is 411 characters.

Not Available

1991-01-01T23:59:59.000Z

498

Method and apparatus for ion cyclotron spectrometry  

SciTech Connect

An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber that includes at least a first section that induces a first magnetron effect that increases a cyclotron frequency of an ion and at least a second section that induces a second magnetron effect that decreases the cyclotron frequency of an ion. The cyclotron frequency changes induced by the first and second magnetron effects substantially cancel one another so that an ion traversing the at least first and second sections will experience no net change in cyclotron frequency.

Dahl, David A. (Idaho Falls, ID); Scott, Jill R. (Idaho Falls, ID); McJunkin, Timothy R. (Idaho Falls, ID)

2010-08-17T23:59:59.000Z

499

Funding for state, city, and county governments in the state includes:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MT MT Montana Total Sum City, County, and SEO Allocations All $13,971,000 MT Montana State Energy Office $9,593,500 MT Anaconda-Deer Lodge City $50,000 MT Billings City $1,003,000 MT Bozeman City $175,500 MT Butte-Silver Bow City $138,700 MT Great Falls City $570,100 MT Havre City $50,000 MT Helena City $138,600 MT Kalispell City $96,700 MT Miles City City $50,000 MT Missoula City $680,400 MT Cascade County $94,400 MT Flathead County $274,200 MT Gallatin County $198,700 MT Lake County $119,500 MT Lewis and Clark County $120,400 MT Lincoln County $80,000 MT Missoula County $151,000 MT Park County $67,100 MT Ravalli County $167,400 MT Yellowstone County $151,800 In addition, today's announcement includes funding for the following Tribal

500

Geothermal Geophysical Research in Electrical Methods at UURI  

DOE Green Energy (OSTI)

The principal objective of electrical geophysical research at UURI has been to provide reliable exploration and reservoir assessment tools for the shallowest to the deepest levels of interest in geothermal fields. Three diverse methods are being considered currently: magnetotellurics (MT, and CSAMT), self-potential, and borehole resistivity. Primary shortcomings in the methods addressed have included a lack of proper interpretation tools to treat the effects of the inhomogeneous structures often encountered in geothermal systems, a lack of field data of sufficient accuracy and quantity to provide well-focused models of subsurface resistivity structure, and a poor understanding of the relation of resistivity to geothermal systems and physicochemical conditions in the earth generally. In MT, for example, interpretation research has focused successfully on the applicability of 2-D models in 3-D areas which show a preferred structural grain. Leading computer algorithms for 2-D and 3-D simulation have resulted and are combined with modern methods of regularized inversion. However, 3-D data coverage and interpretation is seen as a high priority. High data quality in our own research surveys has been assured by implementing a fully remote reference with digital FM telemetry and real-time processing with data coherence sorting. A detailed MT profile across Long Valley has mapped a caldera-wide altered tuff unit serving as the primary hydrothermal aquifer, and identified a low-resistivity body in the middle crust under the west moat which corresponds closely with teleseismic delay and low density models. In the CSAMT method, our extensive tensor survey over the Sulphur Springs geothermal system provides valuable structural information on this important thermal regime and allows a fundamental analysis of the CSAMT method in heterogeneous areas. The self-potential (SP) method is promoted as an early-stage, cost-effective, exploration technique for covered hydrothermal resources, of low to high temperature, which has little or no adverse environmental impact and yields specific targets for temperature gradient and fluid chemistry testing. Substantial progress has been made in characterizing SP responses for several known, covered geothermal systems in the Basin and Range and southern Rio Grande Rift, and at identifying likely, causative source areas of thermal fluids. (Quantifying buried SP sources requires detailed knowledge of the resistivity structure, obtainable through DC or CSAMT surveys with 2-D or 3-D modeling.) Borehole resistivity (BHR) methods may help define hot and permeable zones in geothermal systems, trace the flow of cooler injected fluids and determine the degree of-water saturation in vapor dominated systems. At UURI, we develop methods to perform field surveys and to model and interpret various borehole-to-borehole, borehole-to-surface and surface-to-borehole arrays. The status of our BHR research may be summarized as follows: (1) forward modeling algorithms have been developed and published to evaluate numerous resistivity methods and to examine the effects of well-casing and noise; (2) two inverse two-dimensional algorithms have been devised and successfully applied to simulated field data; (3) a patented, multi-array resistivity system has been designed and is under construction; and (4) we are seeking appropriate wells in geothermal and other areas in which to test the methods.

Wannamaker, Philip E.; Wright, Phillip M.

1992-03-24T23:59:59.000Z