Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mox mixed oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Mixed Oxide (MOX) Fuel Fabrication Facility Project Lessons Learned - Scott  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMyMinutes from DecemberCannon, MOX Federal

2

An improved characterization method for international accountancy measurements of fresh and irradiated mixed oxide (MOX) fuel: helping achieve continual monitoring and safeguards through the fuel cycle  

SciTech Connect (OSTI)

Nuclear fuel accountancy measurements are conducted at several points through the nuclear fuel cycle to ensure continuity of knowledge (CofK) of special nuclear material (SNM). Non-destructive assay (NDA) measurements are performed on fresh fuel (prior to irradiation in a reactor) and spent nuclear fuel (SNF) post-irradiation. We have developed a fuel assembly characterization system, based on the novel concept of 'neutron fingerprinting' with multiplicity signatures to ensure detailed CofK of nuclear fuel through the entire fuel cycle. The neutron fingerprint in this case is determined by the measurement of the various correlated neutron signatures, specific to fuel isotopic composition, and therefore offers greater sensitivity to variations in fissile content among fuel assemblies than other techniques such as gross neutron counting. This neutron fingerprint could be measured at the point of fuel dispatch (e.g. from a fuel fabrication plant prior to irradiation, or from a reactor site post-irradiation), monitored during transportation of the fuel assembly, and measured at a subsequent receiving site (e.g. at the reactor site prior to irradiation, or reprocessing facility post-irradiation); this would confirm that no unexpected changes to the fuel composition or amount have taken place during transportation and/ or reactor operations. Changes may indicate an attempt to divert material for example. Here, we present the current state of the practice of fuel measurements for both fresh mixed oxide (MOX) fuel and SNF (both MOX and uranium dioxide). This is presented in the framework of international safeguards perspectives from the US and UK. We also postulate as to how the neutron fingerprinting concept could lead to improved fuel characterization (both fresh MOX and SNF) resulting in: (a) assured CofK of fuel across the nuclear fuel cycle, (b) improved detection of SNM diversion, and (c) greater confidence in safeguards of SNF transportation.

Evans, Louise G [Los Alamos National Laboratory; Croft, Stephen [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Tobin, S. J. [Los Alamos National Laboratory; Menlove, H. O. [Los Alamos National Laboratory; Schear, M. A. [Los Alamos National Laboratory; Worrall, Andrew [U.K. NNL

2011-01-13T23:59:59.000Z

3

An improved characterization method for international accountancy measurements of fresh and irradiated mixed oxide (MOX) fuel: helping achieve continual monitoring and safeguards through the fuel cycle  

SciTech Connect (OSTI)

Nuclear fuel accountancy measurements are conducted at several points through the nuclear fuel cycle to ensure continuity of knowledge (CofK) of special nuclear material (SNM). Non-destructive assay (NDA) measurements are performed on fresh fuel (prior to irradiation in a reactor) and spent nuclear fuel (SNF) post-irradiation. We have developed a fuel assembly characterization system, based on the novel concept of 'neutron fingerprinting' with multiplicity signatures to ensure detailed CofK of nuclear fuel through the entire fuel cycle. The neutron fingerprint in this case is determined by the measurement of the various correlated neutron signatures, specific to fuel isotopic composition, and therefore offers greater sensitivity to variations in fissile content among fuel assemblies than other techniques such as gross neutron counting. This neutron fingerprint could be measured at the point of fuel dispatch (e.g. from a fuel fabrication plant prior to irradiation, or from a reactor site post-irradiation), monitored during transportation of the fuel assembly, and measured at a subsequent receiving site (e.g. at the reactor site prior to irradiation, or reprocessing facility post-irradiation); this would confirm that no unexpected changes to the fuel composition or amount have taken place during transportation and/or reactor operations. Changes may indicate an attempt to divert material for example. Here, we present the current state of the practice of fuel measurements for both fresh mixed oxide (MOX) fuel and SNF (both MOX and uranium dioxide). This is presented in the framework of international safeguards perspectives from the US and UK. We also postulate as to how the neutron fingerprinting concept could lead to improved fuel characterization (both fresh MOX and SNF) resulting in: (a) assured CofK of fuel across the nuclear fuel cycle, (b) improved detection of SNM diversion, and (c) greater confidence in safeguards of SNF transportation.

Evans, Louise G [Los Alamos National Laboratory; Croft, Stephen [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Tobin, S. J. [Los Alamos National Laboratory; Boyer, B. D. [Los Alamos National Laboratory; Menlove, H. O. [Los Alamos National Laboratory; Schear, M. A. [Los Alamos National Laboratory; Worrall, Andrew [U.K., NNL

2010-11-24T23:59:59.000Z

4

All About MOX  

ScienceCinema (OSTI)

In 1999, the Nuclear Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

None

2014-08-06T23:59:59.000Z

5

advanced mox fuel: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to verify the burnup of plutonium loaded in the reactor as a Mixed Oxide (MOX) fuel. It examines the magnitude and temporal variation in the antineutrino signals expected...

6

Economics of nuclear fuel cycles : option valuation and neutronics simulation of mixed oxide fuels  

E-Print Network [OSTI]

In most studies aiming at the economic assessment of nuclear fuel cycles, a primary concern is to keep scenarios economically comparable. For Uranium Oxide (UOX) and Mixed Oxide (MOX) fuels, a traditional way to achieve ...

De Roo, Guillaume

2009-01-01T23:59:59.000Z

7

Light water reactor mixed-oxide fuel irradiation experiment  

SciTech Connect (OSTI)

The United States Department of Energy Office of Fissile Materials Disposition is sponsoring and Oak Ridge National Laboratory (ORNL) is leading an irradiation experiment to test mixed uranium-plutonium oxide (MOX) fuel made from weapons-grade (WG) plutonium. In this multiyear program, sealed capsules containing MOX fuel pellets fabricated at Los Alamos National Laboratory (LANL) are being irradiated in the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). The planned experiments will investigate the utilization of dry-processed plutonium, the effects of WG plutonium isotopics on MOX performance, and any material interactions of gallium with Zircaloy cladding.

Hodge, S.A.; Cowell, B.S. [Oak Ridge National Lab., TN (United States); Chang, G.S.; Ryskamp, J.M. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.

1998-06-01T23:59:59.000Z

8

NNSA B-Roll: MOX Facility  

ScienceCinema (OSTI)

In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

None

2010-09-01T23:59:59.000Z

9

Risk analysis of shipping plutonium pits and mixed oxide fuel  

E-Print Network [OSTI]

, one possible option that has been identified for disposition of excess U.S. weapons plutonium is the transformation into mixed oxide (MOX) fuel, that then would be used as fuel in a commercial nuclear power plant. Any such process will involve...

Caldwell, Amy Baker

2012-06-07T23:59:59.000Z

10

Mixed oxide solid solutions  

DOE Patents [OSTI]

The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

Magno, Scott (Dublin, CA); Wang, Ruiping (Fremont, CA); Derouane, Eric (Liverpool, GB)

2003-01-01T23:59:59.000Z

11

Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel  

SciTech Connect (OSTI)

The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

Cowell, B.S.; Fisher, S.E.

1999-02-01T23:59:59.000Z

12

Development of advanced mixed oxide fuels for plutonium management  

SciTech Connect (OSTI)

A number of advanced Mixed Oxide (MOX) fuel forms are currently being investigated at Los Alamos National Laboratory that have the potential to be effective plutonium management tools. Evolutionary Mixed Oxide (EMOX) fuel is a slight perturbation on standard MOX fuel, but achieves greater plutonium destruction rates by employing a fractional nonfertile component. A pure nonfertile fuel is also being studied. Initial calculations show that the fuel can be utilized in existing light water reactors and tailored to address different plutonium management goals (i.e., stabilization or reduction of plutonium inventories residing in spent nuclear fuel). In parallel, experiments are being performed to determine the feasibility of fabrication of such fuels. Initial EMOX pellets have successfully been fabricated using weapons-grade plutonium.

Eaton, S.; Beard, C.; Buksa, J.; Butt, D.; Chidester, K.; Havrilla, G.; Ramsey, K.

1997-06-01T23:59:59.000Z

13

Transmutation of Transuranic Elements in Advanced MOX and IMF Fuel Assemblies Utilizing Multi-recycling Strategies  

E-Print Network [OSTI]

of nuclear power plants worldwide. To do so efficiently, several new fuel assembly designs are proposed in this Thesis: these include (1) Mixed Oxide Fuel (MOX), (2) MOX fuel with Americium coating, (3) Inert-Matrix Fuel (IMF) with UOX as inner zone, and (4...

Zhang, Yunhuang

2011-02-22T23:59:59.000Z

14

Theory of Antineutrino Monitoring of Burning MOX Plutonium Fuels  

E-Print Network [OSTI]

This letter presents the physics and feasibility of reactor antineutrino monitoring to verify the burnup of plutonium loaded in the reactor as a Mixed Oxide (MOX) fuel. It examines the magnitude and temporal variation in the antineutrino signals expected for different MOX fuels, for the purposes of nuclear accountability and safeguards. The antineutrino signals from reactor-grade and weapons-grade MOX are shown to be distinct from those from burning low enriched uranium. Thus, antineutrino monitoring could be used to verify the destruction of plutonium in reactors, though verifying the grade of the plutonium being burned is found to be more challenging.

Hayes, A C; Nieto, Michael Martin; WIlson, W B

2011-01-01T23:59:59.000Z

15

Theory of Antineutrino Monitoring of Burning MOX Plutonium Fuels  

E-Print Network [OSTI]

This letter presents the physics and feasibility of reactor antineutrino monitoring to verify the burnup of plutonium loaded in the reactor as a Mixed Oxide (MOX) fuel. It examines the magnitude and temporal variation in the antineutrino signals expected for different MOX fuels, for the purposes of nuclear accountability and safeguards. The antineutrino signals from reactor-grade and weapons-grade MOX are shown to be distinct from those from burning low enriched uranium. Thus, antineutrino monitoring could be used to verify the destruction of plutonium in reactors, though verifying the grade of the plutonium being burned is found to be more challenging.

A. C. Hayes; H. R. Trellue; Michael Martin Nieto; W. B. WIlson

2011-10-03T23:59:59.000Z

16

Impact of conversion to mixed-oxide fuels on reactor structural components  

SciTech Connect (OSTI)

The use of mixed-oxide (MOX) fuel to replace conventional uranium fuel in commercial light-water power reactors will result in an increase in the neutron flux. The impact of the higher flux on the structural integrity of reactor structural components must be evaluated. This report briefly reviews the effects of radiation on the mechanical properties of metals. Aging degradation studies and reactor operating experience provide a basis for determining the areas where conversion to MOX fuels has the potential to impact the structural integrity of reactor components.

Yahr, G.T.

1997-04-01T23:59:59.000Z

17

MOX fuel arrangement for nuclear core  

DOE Patents [OSTI]

In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.

Kantrowitz, Mark L. (Portland, CT); Rosenstein, Richard G. (Windsor, CT)

2001-07-17T23:59:59.000Z

18

Mox fuel arrangement for nuclear core  

DOE Patents [OSTI]

In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion. characteristics of the assembly.

Kantrowitz, Mark L. (Portland, CT); Rosenstein, Richard G. (Windsor, CT)

2001-05-15T23:59:59.000Z

19

MOX fuel arrangement for nuclear core  

DOE Patents [OSTI]

In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly. 38 figs.

Kantrowitz, M.L.; Rosenstein, R.G.

1998-10-13T23:59:59.000Z

20

MOX fuel arrangement for nuclear core  

DOE Patents [OSTI]

In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.

Kantrowitz, Mark L. (Portland, CT); Rosenstein, Richard G. (Windsor, CT)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mox mixed oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Safety issues in fabricating mixed oxide fuel using surplus weapons plutonium  

SciTech Connect (OSTI)

This paper presents an assessment of the safety issues and implications of fabricating mixed oxide (MOX) fuel using surplus weapons plutonium. The basis for this assessment is the research done at Los Alamos National Laboratory (LANL) in identifying and resolving the technical issues surrounding the production of PuO{sub 2} feed, removal of gallium from the PuO{sub 2} feed, the fabrication of test fuel, and the work done at the LANL plutonium processing facility. The use of plutonium in MOX fuel has been successfully demonstrated in Europe, where the experience has been almost exclusively with plutonium separated from commercial spent nuclear fuel. This experience in safely operating MOX fuel fabrication facilities directly applies to the fabrication and irradiation of MOX fuel made from surplus weapons plutonium. Consequently, this paper focuses on the technical difference between plutonium from surplus weapons, and light-water reactor recycled plutonium. Preliminary assessments and research lead to the conclusion that no new process or product safety concerns will arise from using surplus weapons plutonium in MOX fuel.

Buksa, J.; Badwan, F.; Barr, M.; Motley, F.

1998-07-01T23:59:59.000Z

22

New MOX Conservation Garden Features Federally Endangered Plant  

E-Print Network [OSTI]

is located, has been certified as a Leadership in Energy and Environmental Design (LEED) Gold buildingNew MOX Conservation Garden Features Federally Endangered Plant Linda Lee, botanist for the Savannah River Ecology Lab (from left), Clay Ramsey , federal project director of the Mixed Oxide Fuel

Georgia, University of

23

Methane Activation by Transition-Metal Oxides, MOx (M ) Cr, Mo, W; x ) 1, 2, 3) Xin Xu,# Francesco Faglioni, and William A. Goddard, III*  

E-Print Network [OSTI]

Methane Activation by Transition-Metal Oxides, MOx (M ) Cr, Mo, W; x ) 1, 2, 3) Xin Xu,# Francesco, 2002 Recent experiments on the dehydrogenation-aromatization of methane (DHAM) to form benzene using a MoO3/HZSM-5 catalyst stimulated us to examine methane activation by the transition-metal oxide

Goddard III, William A.

24

Los Alamos National Laboratory summary plan to fabricate mixed oxide lead assemblies for the fissile material disposition program  

SciTech Connect (OSTI)

This report summarizes an approach for using existing Los Alamos National Laboratory (Laboratory) mixed oxide (MOX) fuel-fabrication and plutonium processing capabilities to expedite and assure progress in the MOX/Reactor Plutonium Disposition Program. Lead Assembly MOX fabrication is required to provide prototypic fuel for testing in support of fuel qualification and licensing requirements. It is also required to provide a bridge for the full utilization of the European fabrication experience. In part, this bridge helps establish, for the first time since the early 1980s, a US experience base for meeting the safety, licensing, safeguards, security, and materials control and accountability requirements of the Department of Energy and Nuclear Regulatory Commission. In addition, a link is needed between the current research and development program and the production of disposition mission fuel. This link would also help provide a knowledge base for US regulators. Early MOX fabrication and irradiation testing in commercial nuclear reactors would provide a positive demonstration to Russia (and to potential vendors, designers, fabricators, and utilities) that the US has serious intent to proceed with plutonium disposition. This report summarizes an approach to fabricating lead assembly MOX fuel using the existing MOX fuel-fabrication infrastructure at the Laboratory.

Buksa, J.J.; Eaton, S.L.; Trellue, H.R.; Chidester, K.; Bowidowicz, M.; Morley, R.A.; Barr, M.

1997-12-01T23:59:59.000Z

25

Issues in the use of Weapons-Grade MOX Fuel in VVER-1000 Nuclear Reactors: Comparison of UO2 and MOX Fuels  

SciTech Connect (OSTI)

The purpose of this report is to quantify the differences between mixed oxide (MOX) and low-enriched uranium (LEU) fuels and to assess in reasonable detail the potential impacts of MOX fuel use in VVER-1000 nuclear power plants in Russia. This report is a generic tool to assist in the identification of plant modifications that may be required to accommodate receiving, storing, handling, irradiating, and disposing of MOX fuel in VVER-1000 reactors. The report is based on information from work performed by Russian and U.S. institutions. The report quantifies each issue, and the differences between LEU and MOX fuels are described as accurately as possible, given the current sources of data.

Carbajo, J.J.

2005-05-27T23:59:59.000Z

26

Plutonium Consumption Program, CANDU Reactor Project: Feasibility of BNFP Site as MOX Fuel Supply Facility. Final report  

SciTech Connect (OSTI)

An evaluation was made of the technical feasibility, cost, and schedule for converting the existing unused Barnwell Nuclear Fuel Facility (BNFP) into a Mixed Oxide (MOX) CANDU fuel fabrication plant for disposition of excess weapons plutonium. This MOX fuel would be transported to Ontario where it would generate electricity in the Bruce CANDU reactors. Because CANDU MOX fuel operates at lower thermal load than natural uranium fuel, the MOX program can be licensed by AECB within 4.5 years, and actual Pu disposition in the Bruce reactors can begin in 2001. Ontario Hydro will have to be involved in the entire program. Cost is compared between BNFP and FMEF at Hanford for converting to a CANDU MOX facility.

NONE

1995-06-30T23:59:59.000Z

27

Decay Heat Calculations for PWR and BWR Assemblies Fueled with Uranium and Plutonium Mixed Oxide Fuel using SCALE  

SciTech Connect (OSTI)

In currently operating commercial nuclear power plants (NPP), there are two main types of nuclear fuel, low enriched uranium (LEU) fuel, and mixed-oxide uranium-plutonium (MOX) fuel. The LEU fuel is made of pure uranium dioxide (UO{sub 2} or UOX) and has been the fuel of choice in commercial light water reactors (LWRs) for a number of years. Naturally occurring uranium contains a mixture of different uranium isotopes, primarily, {sup 235}U and {sup 238}U. {sup 235}U is a fissile isotope, and will readily undergo a fission reaction upon interaction with a thermal neutron. {sup 235}U has an isotopic concentration of 0.71% in naturally occurring uranium. For most reactors to maintain a fission chain reaction, the natural isotopic concentration of {sup 235}U must be increased (enriched) to a level greater than 0.71%. Modern nuclear reactor fuel assemblies contain a number of fuel pins potentially having different {sup 235}U enrichments varying from {approx}2.0% to {approx}5% enriched in {sup 235}U. Currently in the United States (US), all commercial nuclear power plants use UO{sub 2} fuel. In the rest of the world, UO{sub 2} fuel is still commonly used, but MOX fuel is also used in a number of reactors. MOX fuel contains a mixture of both UO{sub 2} and PuO{sub 2}. Because the plutonium provides the fissile content of the fuel, the uranium used in MOX is either natural or depleted uranium. PuO{sub 2} is added to effectively replace the fissile content of {sup 235}U so that the level of fissile content is sufficiently high to maintain the chain reaction in an LWR. Both reactor-grade and weapons-grade plutonium contains a number of fissile and non-fissile plutonium isotopes, with the fraction of fissile and non-fissile plutonium isotopes being dependent on the source of the plutonium. While only RG plutonium is currently used in MOX, there is the possibility that WG plutonium from dismantled weapons will be used to make MOX for use in US reactors. Reactor-grade plutonium in MOX fuel is generally obtained from reprocessed irradiated nuclear fuel, whereas weapons-grade plutonium is obtained from decommissioned nuclear weapons material and thus has a different plutonium (and other actinides) concentration. Using MOX fuel instead of UOX fuel has potential impacts on the neutronic performance of the nuclear fuel and the design of the nuclear fuel must take these differences into account. Each of the plutonium sources (RG and WG) has different implications on the neutronic behavior of the fuel because each contains a different blend of plutonium nuclides. The amount of heat and the number of neutrons produced from fission of plutonium nuclides is different from fission of {sup 235}U. These differences in UOX and MOX do not end at discharge of the fuel from the reactor core - the short- and long-term storage of MOX fuel may have different requirements than UOX fuel because of the different discharged fuel decay heat characteristics. The research documented in this report compares MOX and UOX fuel during storage and disposal of the fuel by comparing decay heat rates for typical pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies with and without weapons-grade (WG) and reactor-grade (RG) MOX fuel.

Ade, Brian J [ORNL; Gauld, Ian C [ORNL

2011-10-01T23:59:59.000Z

28

Benchmark of SCALE (SAS2H) isotopic predictions of depletion analyses for San Onofre PWR MOX fuel  

SciTech Connect (OSTI)

The isotopic composition of mixed-oxide (MOX) fuel, fabricated with both uranium and plutonium, after discharge from reactors is of significant interest to the Fissile Materials Disposition Program. The validation of the SCALE (SAS2H) depletion code for use in the prediction of isotopic compositions of MOX fuel, similar to previous validation studies on uranium-only fueled reactors, has corresponding significance. The EEI-Westinghouse Plutonium Recycle Demonstration Program examined the use of MOX fuel in the San Onofre PWR, Unit 1, during cycles 2 and 3. Isotopic analyses of the MOX spent fuel were conducted on 13 actinides and {sup 148}Nd by either mass or alpha spectrometry. Six fuel pellet samples were taken from four different fuel pins of an irradiated MOX assembly. The measured actinide inventories from those samples has been used to benchmark SAS2H for MOX fuel applications. The average percentage differences in the code results compared with the measurement were {minus}0.9% for {sup 235}U and 5.2% for {sup 239}Pu. The differences for most of the isotopes were significantly larger than in the cases for uranium-only fueled reactors. In general, comparisons of code results with alpha spectrometer data had extreme differences, although the differences in the calculations compared with mass spectrometer analyses were not extremely larger than that of uranium-only fueled reactors. This benchmark study should be useful in estimating uncertainties of inventory, criticality and dose calculations of MOX spent fuel.

Hermann, O.W.

2000-02-01T23:59:59.000Z

29

Mixed-oxide fuel decay heat analysis for BWR LOCA safety evaluation  

SciTech Connect (OSTI)

The mixed-oxide (MOX) fuel decay heat behavior is analyzed for Boiling Water Reactor (BWR) Loss of Coolant Accident (LOCA) safety evaluation. The physical reasoning on why the decay heat power fractions of MOX fuel fission product (FP) are significantly lower than the corresponding decay heat power fractions of uranium-oxide (UOX) fuel FP is illustrated. This is primarily due to the following physical phenomena. -The recoverable energies per fission of plutonium (Pu)-239 and Pu-241 are significantly higher than those of uranium (U)-235 and U-238. Consequently, the fission rate required to produce the same amount of power in MOX fuel is significantly lower than that in UOX fuel, which leads to lower subsequent FP generation rate and associated decay heat power in MOX fuel than those in UOX fuel. - The effective FP decay energy per fission of Pu-239 is significantly lower than the corresponding effective FP decay energy per fission of U-235, e.g., Pu-239's 10.63 Mega-electron-Volt (MeV) vs. U-235's 12.81 MeV at the cooling time 0.2 second. This also leads to lower decay heat power in MOX fuel than that in UOX fuel. The FP decay heat is shown to account for more than 90% of the total decay heat immediately after shutdown. The FP decay heat results based on the American National Standard Institute (ANSI)/American Nuclear Society (ANS)-5.1-1979 standard method are shown very close to the corresponding FP decay heat results based on the ANSI/ANS-5.1-2005 standard method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method are shown very close to but mostly slightly lower than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1971 method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method or the ANSI/ANS-5.1-1971 method are shown significantly larger than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1979 standard method or the ANSI/ANS-5.1-2005 standard method. (authors)

Chiang, R. T. [AREVA Inc., 303 Ravendale Drive, Mountain View, CA 94043 (United States)

2013-07-01T23:59:59.000Z

30

Mixed oxide nanoparticles and method of making  

DOE Patents [OSTI]

Methods and apparatus for producing mixed oxide nanoparticulates are disclosed. Selected thermophilic bacteria cultured with suitable reducible metals in the presence of an electron donor may be cultured under conditions that reduce at least one metal to form a doped crystal or mixed oxide composition. The bacteria will form nanoparticles outside the cell, allowing easy recovery. Selection of metals depends on the redox potentials of the reducing agents added to the culture. Typically hydrogen or glucose are used as electron donors.

Lauf, Robert J. (Oak Ridge, TN); Phelps, Tommy J. (Knoxville, TN); Zhang, Chuanlun (Columbia, MO); Roh, Yul (Oak Ridge, TN)

2002-09-03T23:59:59.000Z

31

LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect (OSTI)

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1998-08-01T23:59:59.000Z

32

MOX Lead Assembly Fabrication at the Savannah River Site  

SciTech Connect (OSTI)

The U. S. Department of Energy (DOE) announced its intent to prepare an Environmental Impact Statement (EIS) under the National Environmental Policy Act (NEPA) on the disposition of the nations weapon-usable surplus plutonium.This EIS is tiered from the Storage and Disposition of Weapons-Usable Fissile Material Programmatic Environmental Impact Statement issued in December 1996,and the associated Record of Decision issued on January, 1997. The EIS will examine reasonable alternatives and potential environmental impacts for the proposed siting, construction, and operation of three types of facilities for plutonium disposition. The three types of facilities are: a pit disassembly and conversion facility, a facility to immobilize surplus plutonium in a glass or ceramic form for disposition, and a facility to fabricate plutonium oxide into mixed oxide (MOX) fuel.As an integral part of the surplus plutonium program, Oak Ridge National Laboratory (ORNL) was tasked by the DOE Office of Fissile Material Disposition(MD) as the technical lead to organize and evaluate existing facilities in the DOE complex which may meet MD`s need for a domestic MOX fuel fabrication demonstration facility. The Lead Assembly (LA) facility is to produce 1 MT of usable test fuel per year for three years. The Savannah River Site (SRS) as the only operating plutonium processing site in the DOE complex, proposes two options to carry out the fabrication of MOX fuel lead test assemblies: an all Category I facility option and a combined Category I and non-Category I facilities option.

Geddes, R.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Spiker, D.L.; Poon, A.P.

1997-12-01T23:59:59.000Z

33

Process for etching mixed metal oxides  

DOE Patents [OSTI]

An etching process is described using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstrom range may be achieved by this method. 1 fig.

Ashby, C.I.H.; Ginley, D.S.

1994-10-18T23:59:59.000Z

34

Process for etching mixed metal oxides  

DOE Patents [OSTI]

An etching process using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstom range may be achieved by this method.

Ashby, Carol I. H. (Edgewood, NM); Ginley, David S. (Evergreen, CO)

1994-01-01T23:59:59.000Z

35

Characterization of candidate DOE sites for fabricating MOX fuel for lead assemblies  

SciTech Connect (OSTI)

The Office of Fissile Materials Disposition (MD) of the Department of Energy (DOE) is directing the program to disposition US surplus weapons-usable plutonium. For the reactor option for disposition of this surplus plutonium, MD is seeking to contract with a consortium, which would include a mixed-oxide (MOX) fuel fabricator and a commercial US reactor operator, to fabricate and burn MOX fuel in existing commercial nuclear reactors. This option would entail establishing a MOX fuel fabrication facility under the direction of the consortium on an existing DOE site. Because of the lead time required to establish a MOX fuel fabrication facility and the need to qualify the MOX fuel for use in a commercial reactor, MD is considering the early fabrication of lead assemblies (LAs) in existing DOE facilities under the technical direction of the consortium. The LA facility would be expected to produce a minimum of 1 metric ton heavy metal per year and must be operational by June 2003. DOE operations offices were asked to identify candidate sites and facilities to be evaluated for suitability to fabricate MOX fuel LAs. Savannah River Site, Argonne National Laboratory-West, Hanford, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory were identified as final candidates to host the LA project. A Site Evaluation Team (SET) worked with each site to develop viable plans for the LA project. SET then characterized the suitability of each of the five plans for fabricating MOX LAs using 28 attributes and documented the characterization to aid DOE and the consortium in selecting the site for the LA project. SET concluded that each option has relative advantages and disadvantages in comparison with other options; however, each could meet the requirements of the LA project as outlined by MD and SET.

Holdaway, R.F.; Miller, J.W.; Sease, J.D.; Moses, R.J.; O`Connor, D.G. [Oak Ridge National Lab., TN (United States); Carrell, R.D. [Technical Resources International, Inc., Richland, WA (United States); Jaeger, C.D. [Sandia National Labs., Albuquerque, NM (United States); Thompson, M.L.; Strasser, A.A. [Delta-21 Resources, Inc., Oak Ridge, TN (United States)

1998-03-01T23:59:59.000Z

36

Modeling of the performance of weapons MOX fuel in light water reactors  

SciTech Connect (OSTI)

Both the Russian Federation and the US are pursing mixed uranium-plutonium oxide (MOX) fuel in light water reactors (LWRs) for the disposition of excess plutonium from disassembled nuclear warheads. Fuel performance models are used which describe the behavior of MOX fuel during irradiation under typical power reactor conditions. The objective of this project is to perform the analysis of the thermal, mechanical, and chemical behavior of weapons MOX fuel pins under LWR conditions. If fuel performance analysis indicates potential questions, it then becomes imperative to assess the fuel pin design and the proposed operating strategies to reduce the probability of clad failure and the associated release of radioactive fission products into the primary coolant system. Applying the updated code to anticipated fuel and reactor designs, which would be used for weapons MOX fuel in the US, and analyzing the performance of the WWER-100 fuel for Russian weapons plutonium disposition are addressed in this report. The COMETHE code was found to do an excellent job in predicting fuel central temperatures. Also, despite minor predicted differences in thermo-mechanical behavior of MOX and UO{sub 2} fuels, the preliminary estimate indicated that, during normal reactor operations, these deviations remained within limits foreseen by fuel pin design.

Alvis, J.; Bellanger, P.; Medvedev, P.G.; Peddicord, K.L. [Texas A and M Univ., College Station, TX (United States). Nuclear Engineering Dept.; Gellene, G.I. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Chemistry and Biochemistry

1999-05-01T23:59:59.000Z

37

Surplus weapons plutonium: Technologies for pit disassembly/conversion and MOX fuel fabrication  

SciTech Connect (OSTI)

This paper will provide a description of the technologies involved in the disposition of plutonium from surplus nuclear weapon components (pits), based on pit disassembly and conversion and on fabrication of mixed oxide (MOX) fuel for disposition through irradiation in nuclear reactors. The MOX/Reactor option is the baseline disposition plan for both the US and russian for plutonium from pits and other clean plutonium metal and oxide. In the US, impure plutonium in various forms will be converted to oxide and immobilized in glass or ceramic, surrounded by vitrified high level waste to provide a radiation barrier. A similar fate is expected for impure material in Russia as well. The immobilization technologies will not be discussed. Following technical descriptions, a discussion of options for monitoring the plutonium during these processes will be provided.

Toevs, J.W.

1997-12-31T23:59:59.000Z

38

Experiment Safety Assurance Package for Mixed Oxide Fuel Irradiation in an Average Power Position (I-24) in the Advanced Test Reactor  

SciTech Connect (OSTI)

The Fissile Material Disposition Program Light Water Reactor Mixed Oxide Fuel Irradiation Test Project Plan details a series of test irradiations designed to investigate the use of weapons-grade plutonium in MOX fuel for light water reactors (LWR) (Cowell 1996a, Cowell 1997a, Thoms 1997a). Commercial MOX fuel has been successfully used in overseas reactors for many years; however, weapons-derived test fuel contains small amounts of gallium (about 2 parts per million). A concern exists that the gallium may migrate out of the fuel and into the clad, inducing embrittlement. For preliminary out-of-pile experiments, Wilson (1997) states that intermetallic compound formation is the principal interaction mechanism between zircaloy cladding and gallium. This interaction is very limited by the low mass of gallium, so problems are not expected with the zircaloy cladding, but an in-pile experiment is needed to confirm the out-of-pile experiments. Ryskamp (1998) provides an overview of this experiment and its documentation. The purpose of this Experiment Safety Assurance Package (ESAP) is to demonstrate the safe irradiation and handling of the mixed uranium and plutonium oxide (MOX) Fuel Average Power Test (APT) experiment as required by Advanced Test Reactor (ATR) Technical Safety Requirement (TSR) 3.9.1 (LMITCO 1998). This ESAP addresses the specific operation of the MOX Fuel APT experiment with respect to the operating envelope for irradiation established by the Upgraded Final Safety Analysis Report (UFSAR) Lockheed Martin Idaho Technologies Company (LMITCO 1997a). Experiment handling activities are discussed herein.

J. M . Ryskamp; R. C. Howard; R. C. Pedersen; S. T. Khericha

1998-10-01T23:59:59.000Z

39

A Validation Study of Pin Heat Transfer for MOX Fuel Based on the IFA-597 Experiments  

SciTech Connect (OSTI)

Abstract The IFA-597 (Integrated Fuel Assessment) experiments from the International Fuel Performance Experiments (IFPE) database were designed to study the thermal behavior of mixed oxide (MOX) fuel and the effects of an annulus on fission gas release in light-water-reactor fuel. An evaluation of nuclear fuel pin heat transfer in the FRAPCON-3.4 and Exnihilo codes for MOX fuel systems was performed, with a focus on the first 20 time steps ( 6 GWd/MT(iHM)) for explicit comparison between the codes. In addition, sensitivity studies were performed to evaluate the effect of the radial power shape and approximations to the geometry to account for the thermocouple hole, dish, and chamfer. The analysis demonstrated relative agreement for both solid (rod 1) and annular (rod 2) fuel in the experiment, demonstrating the accuracy of the codes and their underlying material models for MOX fuel, while also revealing a small energy loss artifact in how gap conductance is currently handled in Exnihilo for chamfered fuel pellets. The within-pellet power shape was shown to significantly impact the predicted centerline temperatures. This has provided an initial benchmarking of the pin heat transfer capability of Exnihilo for MOX fuel with respect to a well-validated nuclear fuel performance code.

Phillippe, Aaron M [ORNL; Clarno, Kevin T [ORNL; Banfield, James E [ORNL; Ott, Larry J [ORNL; Philip, Bobby [ORNL; Berrill, Mark A [ORNL; Sampath, Rahul S [ORNL; Allu, Srikanth [ORNL; Hamilton, Steven P [ORNL

2014-01-01T23:59:59.000Z

40

Synthesis and study of frustrated oxide and mixed anion materials   

E-Print Network [OSTI]

Mixed anion systems, such as oxynitrides and oxyfluorides, are an emerging class of interesting materials. The lower stability of mixed anion systems in comparison to oxide materials has had the consequence that this ...

Clark, Lucy

2013-11-28T23:59:59.000Z

Note: This page contains sample records for the topic "mox mixed oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

San Onofre PWR Data for Code Validation of MOX Fuel Depletion Analyses  

SciTech Connect (OSTI)

The isotopic composition of mixed-oxide fuel (fabricated with both uranium and plutonium isotope) discharged from reactors is of interest to the Fissile Material Disposition Program. The validation of depletion codes used to predict isotopic compositions of MOX fuel, similar to studies concerning uranium-only fueled reactors, thus, is very important. The EEI-Westinghouse Plutonium Recycle Demonstration Program was conducted to examine the use of MOX fuel in the San Onofre PWR, Unit I, during cycles 2 and 3. The data usually required as input to depletion codes, either one-dimensional or lattice codes, were taken from various sources and compiled into this report. Where data were either lacking or determined inadequate, the appropriate data were supplied from other references. The scope of the reactor operations and design data, in addition to the isotopic analyses, were considered to be of sufficient quality for depletion code validation.

Hermann, O.W.

1999-09-01T23:59:59.000Z

42

ANL-W MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect (OSTI)

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement (EIS). This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. The paper describes the following: Site map and the LA facility; process descriptions; resource needs; employment requirements; wastes, emissions, and exposures; accident analysis; transportation; qualitative decontamination and decommissioning; post-irradiation examination; LA fuel bundle fabrication; LA EIS data report assumptions; and LA EIS data report supplement.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1997-08-01T23:59:59.000Z

43

Hanford MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect (OSTI)

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site (SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. Hanford has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 1 facility. In all, a total of three LA MOX fuel fabrication options were identified by Hanford that could accommodate the program. In every case, only minor modification would be required to ready any of the facilities to accept the equipment necessary to accomplish the LA program.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1998-08-01T23:59:59.000Z

44

SMALL-SCALE TESTING OF PLUTONIUM (IV) OXALATE PRECIPITATION AND CALCINATION TO PLUTONIUM OXIDE TO SUPPORT THE MOX FEED MISSION  

SciTech Connect (OSTI)

The H-Canyon facility will be used to dissolve Pu metal for subsequent purification and conversion to plutonium dioxide (PuO{sub 2}) using Phase II of HB-Line. To support the new mission, SRNL conducted a series of experiments to produce calcined plutonium (Pu) oxide and measure the physical properties and water adsorption of that material. This data will help define the process operating conditions and material handling steps for HB-Line. An anion exchange column experiment produced 1.4 L of a purified 52.6 g/L Pu solution. Over the next nine weeks, seven Pu(IV) oxalate precipitations were performed using the same stock Pu solution, with precipitator feed acidities ranging from 0.77 M to 3.0 M nitric acid and digestion times ranging from 5 to 30 minutes. Analysis of precipitator filtrate solutions showed Pu losses below 1% for all precipitations. The four larger precipitation batches matched the target oxalic acid addition time of 44 minutes within 4 minutes. The three smaller precipitation batches focused on evaluation of digestion time and the oxalic acid addition step ranged from 25-34 minutes because of pump limitations in the low flow range. Following the precipitations, 22 calcinations were performed in the range of 610-690 C, with the largest number of samples calcined at either 650 or 635 C. Characterization of the resulting PuO{sub 2} batches showed specific surface areas in the range of 5-14 m{sup 2}/g, with 16 of the 22 samples in the range of 5-10 m2/g. For samples analyzed with typical handling (exposed to ambient air for 15-45 minutes with relative humidities of 20-55%), the moisture content as measured by Mass Spectrometry ranged from 0.15 to 0.45 wt % and the total mass loss at 1000 C, as measured by TGA, ranged from 0.21 to 0.58 wt %. For the samples calcined between 635 and 650 C, the moisture content without extended exposure ranged from 0.20 to 0.38 wt %, and the TGA mass loss ranged from 0.26 to 0.46 wt %. Of these latter samples, the samples calcined at 650 C generally had lower specific surface areas and lower moisture contents than the samples calcined at 635 C, which matches expectations from the literature. Taken together, the TGA-MS results for samples handled at nominally 20-50% RH, without extended exposure, indicate that the Pu(IV) oxalate precipitation process followed by calcination at 635-650 C appears capable of producing PuO{sub 2} with moisture content < 0.5 wt% as required by the 3013 Standard. Exposures of PuO{sub 2} samples to ambient air for 3 or more hours generally showed modest mass gains that were primarily gains in moisture content. These results point to the need for a better understanding of the moisture absorption of PuO{sub 2} and serve as a warning that extended exposure times, particularly above the 50% RH level observed in this study will make the production of PuO{sub 2} with less than 0.5 wt % moisture more challenging. Samples analyzed in this study generally contained approximately 2 monolayer equivalents of moisture. In this study, the bulk of the moisture released from samples below 300 C, as did a significant portion of the CO{sub 2}. Samples in this study consistently released a minor amount of NO in the 40-300 C range, but no samples released CO or SO{sub 2}. TGA-MS results also showed that MS moisture content accounted for 80 {+-} 8% of the total mass loss at 1000 C measured by the TGA. The PuO{sub 2} samples produced had particles sizes that typically ranged from 0.2-88 {micro}m, with the mean particle size ranging from 6.4-9.3 {micro}m. The carbon content of ten different calcination batches ranged from 190-480 {micro}g C/g Pu, with an average value of 290 {micro}g C/g Pu. A statistical review of the calcination conditions and resulting SSA values showed that in both cases tested, calcination temperature had a significant effect on SSA, as expected from literature data. The statistical review also showed that batch size had a significant effect on SSA, but the narrow range of batch sizes tested is a compelling reason to set aside that result until tests

Crowder, M.; Pierce, R.; Scogin, J.; Daniel, G.; King, W.

2012-06-25T23:59:59.000Z

45

Optical and electrical studies of cerium mixed oxides  

SciTech Connect (OSTI)

The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.

Sherly, T. R., E-mail: trsherly@gmail.com [Post Graduate Department of Physics, Sanathana Dharma College, Alappuzha, Kerala (India); Raveendran, R. [Nanoscience Research Laboratory, Sree Narayana College, Kollam, Kerala 691001 (India)

2014-10-15T23:59:59.000Z

46

LANL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect (OSTI)

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. LANL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within both Category 1 and 2 areas. Technical Area (TA) 55/Plutonium Facility 4 will be used to store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, assemble rods, and store fuel bundles. Bundles will be assembled at a separate facility, several of which have been identified as suitable for that activity. The Chemistry and Metallurgy Research Building (at TA-3) will be used for analytical chemistry support. Waste operations will be conducted in TA-50 and TA-54. Only very minor modifications will be needed to accommodate the LA program. These modifications consist mostly of minor equipment upgrades. A commercial reactor operator has not been identified for the LA irradiation. Postirradiation examination (PIE) of the irradiated fuel will take place at either Oak Ridge National Laboratory or ANL-W. The only modifications required at either PIE site would be to accommodate full-length irradiated fuel rods. Results from this program are critical to the overall plutonium distribution schedule.

Fisher, S.E.; Holdaway, R.; Ludwig, S.B. [and others

1998-08-01T23:59:59.000Z

47

Investigation of Mixed Oxide Catalysts for NO Oxidation | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOE VehicleStationary FuelPresentation fromEnergy Mixed

48

A study of ZnxZryOz mixed oxides for direct conversion of ethanol...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

study of ZnxZryOz mixed oxides for direct conversion of ethanol to isobutene. A study of ZnxZryOz mixed oxides for direct conversion of ethanol to isobutene. Abstract: ZnxZryOz...

49

Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide  

DOE Patents [OSTI]

Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

Poston, James A. (Star City, WV)

1997-01-01T23:59:59.000Z

50

The effects of nitrogen oxides on cytochrome P-450 mediated mixed-function oxidations in mammalian lung  

E-Print Network [OSTI]

THE EFFECTS OF NITROGEN OXIDES ON CYTOCHROME P-450 MEDIATED MIXED-FUNCTION OXIDATIONS IN ~IAN IUNG A Thesis by LEO DEAN TUCKER, II Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE August 1979 Major Subject: Biology THE EFFECTS OF NITROGEN OXIDES ON CYTOCHROME P-450 MEDIATED MIXED-FUNCTION OXIDATIONS IN MAMMALIAN LUNG A Thesis by LEO DEAN TUCKER, II Approved as to style and content by...

Tucker, Leo Dean

1979-01-01T23:59:59.000Z

51

Compared performances of ENDF/B-VI and JEF-2.2 for MOX core physics  

SciTech Connect (OSTI)

The United States is currently evaluating the use of mixed-oxide (MOX) fuel in commercial light water reactors for reducing weapons-grade Pu stockpiles. The design and licensing processes will require that the validity of the nuclear data libraries and codes used in the effort be demonstrated. Unfortunately, there are only a very limited number of relatively old and nonrepresentative integral experiments freely available to the US programs. This lack of adequate experimental data can be partially remediated by comparing the results of well-validated European codes with the results of candidate US codes. The authors have compared the performances of the JEF-2.2 and ENDF/B-VI.4 libraries for a series of benchmarks for k{sub eff}, void worth, and pin power distributions. Note that JEF-2.2 has been extensively validated for MOX applications. To obtain systematic comparisons between JEF-2.2 and ENDF/B-VI results, the two libraries were implemented with the same processing code options in two independent code systems: (1) VIM, a continuous-energy Monte Carlo code developed at Argonne National Laboratory, with its own processing codes independent of NJOY; and (2) DRAGON, a two-dimensional lattice code developed at Ecole Polytechnique de Montreal. A standard 172-energy-group structure was used in the NJOY processing code.

Finck, P.J.; Laurin-Kovitz, K.; Palmiotti, G.; Stenberg, C. [Argonne National Lab., IL (United States)

1998-12-31T23:59:59.000Z

52

Study of lithium diffusion in RF sputtered Nickel/Vanadium mixed oxides thin films  

E-Print Network [OSTI]

Study of lithium diffusion in RF sputtered NickelÁ/Vanadium mixed oxides thin films F. Artuso a lithium insertion inside RF sputtered Ni/V mixed oxides thin films have been investigated employing, showed three steps clearly involved in the intercalation mechanism of lithium in the oxide films: (i

Artuso, Florinda

53

SRS MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect (OSTI)

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site(SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. SRS has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 2 or 3 facility with storage of bulk PuO{sub 2} and assembly, storage, and shipping of fuel bundles in an S and S Category 1 facility. The total Category 1 approach, which is the recommended option, would be done in the 221-H Canyon Building. A facility that was never in service will be removed from one area, and a hardened wall will be constructed in another area to accommodate execution of the LA fuel fabrication. The non-Category 1 approach would require removal of process equipment in the FB-Line metal production and packaging glove boxes, which requires work in a contamination area. The Immobilization Hot Demonstration Program equipment in the Savannah River Technology Center would need to be removed to accommodate pellet fabrication. This work would also be in a contaminated area.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1998-08-01T23:59:59.000Z

54

Spectroscopic Characterization of Mixed Fe-Ni Oxide Electrocatalysts for the Oxygen Evolution Reaction in Alkaline  

E-Print Network [OSTI]

reaction spectroscopy showed the mixed oxide surfaces also have superior oxidation activity for methanol of producing hydrogen is from water electrolysis which enables H2 production from renewable energy sources

Frenkel, Anatoly

55

Performance of Thorium-Based Mixed Oxide Fuels for the Consumption of Plutonium and Minor Actinides in Current and Advanced Reactors  

SciTech Connect (OSTI)

A renewed interest in thorium-based fuels has arisen lately based on the need for proliferation resistance, longer fuel cycles, higher burnup and improved wasteform characteristics. Recent studies have been directed toward homogeneously mixed, heterogeneously mixed, and seed-and-blanket thorium-uranium fuel cycles that rely on "in situ" use of the bred-in U-233. However, due to the higher initial enrichment required to achieve acceptable burnups, these fuels are encountering economic constraints. Thorium can nevertheless play a large role in the nuclear fuel cycle; particularly in the reduction of plutonium. While uranium-based mixedoxide (MOX) fuel will decrease the amount of plutonium, the reduction is limited due to the breeding of more plutonium (and higher actinides) from the U-238. Here we present calculational results and a comparison of the potential burnup of a thorium-based and uranium-based mixed oxide fuel in a light water reactor (LWR). Although the uranium-based fuels outperformed the thorium-based fuels in achievable burnup, a depletion comparison of the initially charged plutonium (both reactor and weapons grade) showed that the thorium-based fuels outperformed the uranium-based fuels by more that a factor of 2; where more than 70% of the total plutonium in the thorium-based fuel is consumed during the cycle. This is significant considering that the achievable burnup of the thorium-based fuels were 1.4 to 4.6 times less than the uranium-based fuels. Furthermore, use of a thorium-based fuel could also be used as a strategy for reducing the amount of long-lived nuclides (including the minor actinides), and thus the radiotoxicity in spent nuclear fuel. Although the breeding of U-233 is a concern, the presence of U-232 and its daughter products can aid in making this fuel self-protecting, and/or enough U-238 can be added to denature the fissile uranium. From these calculations, it appears that thorium-based fuel for plutonium incineration is superior as compared to uranium-based fuel, and should be considered as an alternative to traditional MOX in both current and future reactor designs.

Weaver, Kevan Dean; Herring, James Stephen

2002-06-01T23:59:59.000Z

56

Experiment Safety Assurance Package for the 40- to 52-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-hole Positions in the Advanced Test Reactor  

SciTech Connect (OSTI)

This experiment safety assurance package (ESAP) is a revision of the last mixed uranium and plutonium oxide (MOX) ESAP issued in June 2002). The purpose of this revision is to provide a basis to continue irradiation up to 52 GWd/MT burnup [as predicted by MCNP (Monte Carlo N-Particle) transport code The last ESAP provided basis for irradiation, at a linear heat generation rate (LHGR) no greater than 9 kW/ft, of the highest burnup capsule assembly to 50 GWd/MT. This ESAP extends the basis for irradiation, at a LHGR no greater than 5 kW/ft, of the highest burnup capsule assembly from 50 to 52 GWd/MT.

S. T. Khericha; R. C. Pedersen

2003-09-01T23:59:59.000Z

57

Electrodepositionof Metal Alloyand Mixed Oxide Films Usinga Single-PrecursorTetranuclearCopper-NickelComplex  

E-Print Network [OSTI]

Compositionally uniform mixed metals, metal oxides, and alloys are used extensively as corrosion protective and catalysts. I-~For example, nickel-containing oxides and alloys are used for oxidative protection of very. Although Cu-Ni alloy deposition has been stud- ied for many years, none of the previous approaches has led

Kounaves, Samuel P.

58

Monte Carlo analysis of burnup-dependent plutonium concentration profiles in UO{sub 2} and MOX fuel pins  

SciTech Connect (OSTI)

The ability to accurately predict fuel performance is an essential requirement for fuel design studies. Prediction of plutonium concentration profiles in an irradiated fuel pin is important for fuel performance analysis and spent-fuel storage. The MCNP coupling with ORIGEN2 (MCWO) burnup calculation code as demonstrated in this paper can analyze the rim effect in UO{sub 2} and mixed-oxide (MOX) fuel pins. Acceptance of a code such as MCWO depends very strongly on its validation. Validation involves the benchmark of the code predictions to the in-pile experimental data and results of post-irradiation examinations (PIEs). In this paper, a validation was made by comparing the MCWO calculated results with the VIM-BURN code, which has been validated against PIE data. The validated MCWO can provide the best-estimate neutronic characteristics of fuel burnup performance analysis. In this paper, Pu concentration (wt%) and fission power profiles versus burnup of UO{sub 2} and reactor-grade (RG)-MOX fuel pins were calculated with MCWO, and results are discussed.

Chang, G.S. [Lockheed Martin Idaho Technologies, Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.

1998-09-01T23:59:59.000Z

59

Operation of mixed conducting metal oxide membrane systems under transient conditions  

DOE Patents [OSTI]

Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side, an oxidant feed surface, a permeate side, and a permeate surface, which method comprises controlling the differential strain between the permeate surface and the oxidant feed surface at a value below a selected maximum value by varying the oxygen partial pressure on either or both of the oxidant feed side and the permeate side of the membrane.

Carolan, Michael Francis (Allentown, PA)

2008-12-23T23:59:59.000Z

60

Research and development of americium-containing mixed oxide fuel for fast reactors  

SciTech Connect (OSTI)

The present status of the R and D program for americium-containing MOX fuel is reported. Successful achievements for development of fabrication technology with remote handling and evaluation of irradiation behavior together with evaluation of thermo-chemical properties based on the out-of-pile experiments are mentioned with emphasis on effects of Am addition on the MOX fuel properties. (authors)

Tanaka, Kosuke; Osaka, Masahiko; Sato, Isamu; Miwa, Shuhei; Koyama, Shin-ichi; Ishi, Yohei; Hirosawa, Takashi; Obayashi, Hiroshi; Yoshimochi, Hiroshi; Tanaka, Kenya [Japan Atomic Energy Agency: 4002 Narita-cho, O-arai-machi, Higashiibaraki-gun, Ibaraki, 311-1393 (Japan)

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "mox mixed oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Aliovalent Substitution in Mixed Ni-Mn-Co Oxide Cathodes  

E-Print Network [OSTI]

transition metal oxides, aliovalent substitution Acknowledgment This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy,

Kam, Kinson C.

2012-01-01T23:59:59.000Z

62

Synthesis and Characterization of MnO2-Based Mixed Oxides as Supercapacitors  

E-Print Network [OSTI]

difference, the stability over large potential range is considered to be a crucial factor for super- capacitors. In this study an attempt was made to synthesize at ambient tem- perature new mixed oxides based

Popov, Branko N.

63

Magnetic properties of mesoporous cobalt-silica-alumina ternary mixed oxides  

SciTech Connect (OSTI)

Mesoporous cobalt-silica-alumina mixed oxides with variable cobalt content have been synthesized through slow evaporation method by using Pluronic F127 non-ionic surfactant as template. N{sub 2} sorption analysis of the template-free mixed oxide samples revealed that these mesoporous materials have high BET surface areas together with large mesopores. Powder XRD, TEM, EDS, FT IR and EPR spectroscopic analysis have been employed to understand the nature of the mesophases, bonding and composition of the materials. Low temperature magnetic measurements of these mixed oxide materials show the presence of ferromagnetic correlation at elevated temperature though at low temperature paramagnetic to ferrimagnetic transition is observed. Highlights: Black-Right-Pointing-Pointer Mesoporous cobalt-silica-alumina ternary mixed oxides. Black-Right-Pointing-Pointer High surface area and mesoporosity in magnetic materials. Black-Right-Pointing-Pointer Ferromagnetic correlation at elevated temperature. Black-Right-Pointing-Pointer Low temperature paramagnetic to ferrimagnetic transition.

Pal, Nabanita [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India)] [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Seikh, Md. Motin [Department of Chemistry, Visva-Bharati University, Santiniketan, West Bengal (India)] [Department of Chemistry, Visva-Bharati University, Santiniketan, West Bengal (India); Bhaumik, Asim, E-mail: msab@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India)] [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India)

2013-02-15T23:59:59.000Z

64

A Scalable Turbulent Mixing Aerosol Reactor for Oxide-Coated Silicon Nanoparticles  

E-Print Network [OSTI]

energy supplied to the reactor by high velocity gas jets. The apparatus described here increased the throughput by a factor of 100 above previous laminar flow reactors, and the induced fast mixing enables scaleA Scalable Turbulent Mixing Aerosol Reactor for Oxide-Coated Silicon Nanoparticles Dean M. Holunga

Atwater, Harry

65

actinide mixed oxide: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear fuel devices of Pressurised Water Reactors are composed of uranium oxide pellets which is correlated to an oxygen mass gain. From these experiments, we deduce the...

66

amorphous mixed oxides: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: alloy of composition correspond- ing to the metallic components of the superconduct- ing oxides respectivement. Abstract. - Previous quenching experiments on 2212...

67

Control of differential strain during heating and cooling of mixed conducting metal oxide membranes  

DOE Patents [OSTI]

Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side and a permeate side, which method comprises controlling the differential strain between the oxidant feed side and the permeate side by varying either or both of the oxygen partial pressure and the total gas pressure on either or both of the oxidant feed side and the permeate side of the membrane while changing the temperature of the membrane from a first temperature to a second temperature.

Carolan, Michael Francis (Allentown, PA)

2007-12-25T23:59:59.000Z

68

Molten carbonate fuel cell cathode with mixed oxide coating  

DOE Patents [OSTI]

A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

Hilmi, Abdelkader; Yuh, Chao-Yi

2013-05-07T23:59:59.000Z

69

Synergetic effects of mixed copper-iron oxides oxygen carriers in chemical looping combustion  

SciTech Connect (OSTI)

Chemical looping combustion (CLC) is an emerging technology for clean energy production from fuels. CLC produces sequestration-ready CO{sub 2}-streams without a significant energy penalty. Development of efficient oxygen carriers is essential to successfully operate a CLC system. Copper and iron oxides are promising candidates for CLC. Copper oxide possesses high reactivity but it has issues with particle agglomeration due to its low melting point. Even though iron oxide is an inexpensive oxygen carrier it has a slower reactivity. In this study, mixed metal oxide carriers containing iron and copper oxides were evaluated for coal and methane CLC. The components of CuO and Fe{sub 2}O{sub 3} were optimized to obtain good reactivity while maintaining physical and chemical stability during cyclic reactions for methane-CLC and solid-fuel CLC. Compared with single metal oxygen carriers, the optimized Cu–Fe mixed oxide oxygen carriers demonstrated high reaction rate, better combustion conversion, greater oxygen usage and improved physical stability. Thermodynamic calculations, XRD, TGA, flow reactor studies and TPR experiments suggested that there is a strong interaction between CuO and Fe{sub 2}O{sub 3} contributing to a synergistic effect during CLC reactions. The amount of oxygen release of the mixed oxide carrier in the absence of a fuel was similar to that of the single metal oxides. However, in the presence of fuels, the oxygen consumption and the reaction profiles of the mixed oxide carriers were significantly better than that of the single metal oxides. The nature of the fuel not only influenced the reactivity, but also the final reduction status of the oxygen carriers during chemical looping combustion. Cu oxide of the mixed oxide was fully reduced metallic copper with both coal and methane. Fe oxide of the mixed oxide was fully reduced Fe metal with methane but it was reduced to only FeO with coal. Possible mechanisms of how the presence of CuO enhances the reduction of Fe{sub 2}O{sub 3} are discussed.

Siriwardane, Ranjani; Tian, Hanjing; Simonyi, Thomas; Poston, James

2013-06-01T23:59:59.000Z

70

Catalyst support of mixed cerium zirconium titanium oxide, including use and method of making  

DOE Patents [OSTI]

A durable catalyst support/catalyst is capable of extended water gas shift operation under conditions of high temperature, pressure, and sulfur levels. The support is a homogeneous, nanocrystalline, mixed metal oxide of at least three metals, the first being cerium, the second being Zr, and/or Hf, and the third importantly being Ti, the three metals comprising at least 80% of the metal constituents of the mixed metal oxide and the Ti being present in a range of 5% to 45% by metals-only atomic percent of the mixed metal oxide. The mixed metal oxide has an average crystallite size less than 6 nm and forms a skeletal structure with pores whose diameters are in the range of 4-9 nm and normally greater than the average crystallite size. The surface area of the skeletal structure per volume of the material of the structure is greater than about 240 m.sup.2/cm.sup.3. The method of making and use are also described.

Willigan, Rhonda R. (Manchester, CT); Vanderspurt, Thomas Henry (Glastonbury, CT); Tulyani, Sonia (Manchester, CT); Radhakrishnan, Rakesh (Vernon, CT); Opalka, Susanne Marie (Glastonbury, CT); Emerson, Sean C. (Broad Brook, CT)

2011-01-18T23:59:59.000Z

71

HB-LINE ANION EXCHANGE PURIFICATION OF AFS-2 PLUTONIUM FOR MOX  

SciTech Connect (OSTI)

Non-radioactive cerium (Ce) and radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the feasibility of using either gadolinium nitrate (Gd) or boric acid (B as H{sub 3}BO{sub 3}) as a neutron poison in the H-Canyon dissolution process. Expected typical concentrations of probable impurities were tested and the removal of these impurities by a decontamination wash was measured. Impurity concentrations are compared to two specifications - designated as Column A or Column B (most restrictive) - proposed for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). Use of Gd as a neutron poison requires a larger volume of wash for the proposed Column A specification. Since boron (B) has a higher proposed specification and is more easily removed by washing, it appears to be the better candidate for use in the H-Canyon dissolution process. Some difficulty was observed in achieving the Column A specification due to the limited effectiveness that the wash step has in removing the residual B after {approx}4 BV's wash. However a combination of the experimental 10 BV's wash results and a calculated DF from the oxalate precipitation process yields an overall DF sufficient to meet the Column A specification. For those impurities (other than B) not removed by 10 BV's of wash, the impurity is either not expected to be present in the feedstock or process, or recommendations have been provided for improvement in the analytical detection/method or validation of calculated results. In summary, boron is recommended as the appropriate neutron poison for H-Canyon dissolution and impurities are expected to meet the Column A specification limits for oxide production in HB-Line.

Kyser, E.; King, W.

2012-04-25T23:59:59.000Z

72

HB-LINE ANION EXCHANGE PURIFICATION OF AFS-2 PLUTONIUM FOR MOX  

SciTech Connect (OSTI)

Non-radioactive cerium (Ce) and radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the feasibility of using either gadolinium nitrate (Gd) or boric acid (B as H{sub 3}BO{sub 3}) as a neutron poison in the H-Canyon dissolution process. Expected typical concentrations of probable impurities were tested and the removal of these impurities by a decontamination wash was measured. Impurity concentrations are compared to two specifications - designated as Column A or Column B (most restrictive) - proposed for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). Use of Gd as a neutron poison requires a larger volume of wash for the proposed Column A specification. Since boron (B) has a higher proposed specification and is more easily removed by washing, it appears to be the better candidate for use in the H-Canyon dissolution process. Some difficulty was observed in achieving the Column A specification due to the limited effectiveness that the wash step has in removing the residual B after ~4 BV's wash. However a combination of the experimental 10 BV's wash results and a calculated DF from the oxalate precipitation process yields an overall DF sufficient to meet the Column A specification. For those impurities (other than B) not removed by 10 BV's of wash, the impurity is either not expected to be present in the feedstock or process, or recommendations have been provided for improvement in the analytical detection/method or validation of calculated results. In summary, boron is recommended as the appropriate neutron poison for H-Canyon dissolution and impurities are expected to meet the Column A specification limits for oxide production in HB-Line.

Kyser, E. A.; King, W. D.

2012-07-31T23:59:59.000Z

73

MOX recycling in GEN 3 + EPR Reactor homogeneous and stable full MOX core  

SciTech Connect (OSTI)

In the case of the EPR (European Pressurized Reactor) reactor, 100% MOX core management is possible with simple design adaptations which are not significantly costly. 100% MOX core management offers several highly attractive advantages. First, it is possible to have the same plutonium content in all the rods of a fuel assembly instead of having rods with 3 different plutonium contents, as in MOX assemblies in current PWRs. Secondly, the full MOX core is more homogeneous. Thirdly, the stability of the core is significantly increased due to a large reduction in the Xe effect. Fourthly, there is a potential for the performance of the MOX fuel to match that of new high performance UO{sub 2} fuel (enrichment up to 4.95 %) in terms of increased burn up and cycle length. Fifthly, since there is only one plutonium content, the manufacturing costs are reduced. Sixthly, there is an increase in the operating margins of the reactor, and in the safety margins in accident conditions. The use of 100% MOX core will improve both utilisation of natural uranium resources and reductions in high level radioactive waste inventory.

Arslan, M.; Villele, E. de; Gauthier, J.C.; Marincic, A. [AREVA - Tour AREVA, 1 Place Jean Millier, 92084 Paris La Defense (France)

2013-07-01T23:59:59.000Z

74

Preparation of extrusions of bulk mixed oxide compounds with high macroporosity and mechanical strength  

DOE Patents [OSTI]

A simple and effective method for producing bulk single and mixed oxide absorbents and catalysts is disclosed. The method yields bulk single oxide and mixed oxide absorbent and catalyst materials which combine a high macroporosity with relatively high surface area and good mechanical strength. The materials are prepared in a pellet form using as starting compounds, calcined powders of the desired composition and physical properties these powders are crushed to broad particle size distribution, and, optionally may be combined with an inorganic clay binder. The necessary amount of water is added to form a paste which is extruded, dried and heat treated to yield and desired extrudate strength. The physical properties of the extruded materials (density, macroporosity and surface area) are substantially the same as the constituent powder is the temperature of the heat treatment of the extrudates is approximately the same as the calcination temperature of the powder. If the former is substantially higher than the latter, the surface area decreases, but the macroporosity of the extrusions remains essentially constant.

Flytzani-Stephanopoulos, Maria (Winchester, MA); Jothimurugesan, Kandaswami (Baton Rouge, LA)

1990-01-01T23:59:59.000Z

75

Joining Mixed Conducting Oxides Using an Air-Fired Electrically Conductive Braze  

SciTech Connect (OSTI)

Due to their mixed oxygen ion and electron conducting properties, ceramics such as lanthanum strontium cobalt ferrites (LSCF) are attractive materials for use in active electrochemical devices such as solid oxide fuel cells (SOFC) and oxygen separation membranes. However, to take full advantage of the unique properties of these materials, reliable joining techniques need to be developed. If such a joining technique yields a ceramic-to-metal junction that is also electrically conductive, the hermetic seals in the device could provide the added function of either drawing current from the mixed conducting oxide, in the case of SOFC applications, or carrying it to the oxide to initate ionic conduction, in the case of oxygen separation and electrocatalysis applications. This would greatly reduce the need for complex interconnect design, thereby simplifying one of the major challenges faced in SOFC development. A process referred to as reactive air brazing (RAB) has been developed in which firing a Ag-CuO filler material in air creates a functional ceramic-to-metal junction, in which the silver-based matrix of the braze affords both metallic ductility and conductivity in the joint. Investigating a range of Ag-CuO alloy combinations determined that compositions containing between 1.4 and 16 mol% CuO appear to offer the best combination of wettability, joint strength, and electrical conductivity.

Hardy, John S.; Kim, Jin Yong Y.; Weil, K. Scott

2004-10-01T23:59:59.000Z

76

EDF Nuclear Power Plants Operating Experience with MOX fuel  

SciTech Connect (OSTI)

EDF started Plutonium recycling in PWR in 1987 and progressively all the 20 reactors, licensed in using MOX fuel, have been loaded with MOX assemblies. At the origin of MOX introduction, these plants operated at full power in base load and the core management limited the irradiation time of MOX fuel assemblies to 3 annual cycles. Since 1995 all these reactors can operate in load follow mode. Since that time, a large amount of experience has been accumulated. This experience is very positive considering: - Receipt, handling, in core behaviour, pool storage and shipment of MOX fuel; - Operation of the various systems of the plant; - Environment impact; - Radioprotection; - Safety file requirements; - Availability for the grid. In order to reduce the fuel cost and to reach a better adequacy between UO{sub 2} fuel reprocessing flow and plutonium consumption, EDF had decided to improve the core management of MOX plants. This new core management call 'MOX Parity' achieves parity for MOX and UO{sub 2} assemblies in term of discharge burn-up. Compared to the current MOX assembly the Plutonium content is increased from 7,08% to 8,65% (equivalent to natural uranium enriched to respectively 3,25% and 3,7%) and the maximum MOX assembly burn-up moves from 42 to 52 GWd/t. This amount of burn-up is obtained from loading MOX assemblies for one additional annual cycle. Some, but limited, adaptations of the plant are necessary. In addition a new MOX fuel assembly has been designed to comply with the safety criteria taking into account the core management performances. These design improvements are based on the results of an important R and D program including numerous experimental tests and post-irradiated fuel examinations. In particular, envelope conditions compared to MOX Parity neutronic solicitations has been extensively investigated in order to get a full knowledge of the in reactor fuel behavior. Moreover, the operating conditions of the plant have been evaluated in many details and finally no important impact is anticipated. The industrial maturity of plutonium recycling activities is fully demonstrated and a new progress can be done with a complete confidence. The licensing process of 'MOX Parity' core management is in progress and its implementation on the 20 PWR is now expected at mid 2007. (author)

Thibault, Xavier [EDF Generation, Tour EDF Part Dieu - 9 rue des Cuirassiers B.P.3181 - 69402 Lyon Cedex 03 (France)

2006-07-01T23:59:59.000Z

77

Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials  

DOE Patents [OSTI]

The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

Pierce, Robert A. (Aiken, SC); Smith, James R. (Corrales, NM); Ramsey, William G. (Aiken, SC); Cicero-Herman, Connie A. (Aiken, SC); Bickford, Dennis F. (Folly Beach, SC)

1999-01-01T23:59:59.000Z

78

A National Tracking Center for Monitoring Shipments of HEU, MOX, and Spent Nuclear Fuel: How do we implement?  

SciTech Connect (OSTI)

Nuclear material safeguards specialists and instrument developers at US Department of Energy (USDOE) National Laboratories in the United States, sponsored by the National Nuclear Security Administration (NNSA) Office of NA-24, have been developing devices to monitor shipments of UF6 cylinders and other radioactive materials , . Tracking devices are being developed that are capable of monitoring shipments of valuable radioactive materials in real time, using the Global Positioning System (GPS). We envision that such devices will be extremely useful, if not essential, for monitoring the shipment of these important cargoes of nuclear material, including highly-enriched uranium (HEU), mixed plutonium/uranium oxide (MOX), spent nuclear fuel, and, potentially, other large radioactive sources. To ensure nuclear material security and safeguards, it is extremely important to track these materials because they contain so-called “direct-use material” which is material that if diverted and processed could potentially be used to develop clandestine nuclear weapons . Large sources could be used for a dirty bomb also known as a radioactive dispersal device (RDD). For that matter, any interdiction by an adversary regardless of intent demands a rapid response. To make the fullest use of such tracking devices, we propose a National Tracking Center. This paper describes what the attributes of such a center would be and how it could ultimately be the prototype for an International Tracking Center, possibly to be based in Vienna, at the International Atomic Energy Agency (IAEA).

Mark Schanfein

2009-07-01T23:59:59.000Z

79

Microstructural Characterization of High Burn-up Mixed Oxide Fast Reactor Fuel  

SciTech Connect (OSTI)

High burn-up mixed oxide fuel with local burn-ups of 3.4–23.7% FIMA (fissions per initial metal atom) were destructively examined as part of a research project to understand the performance of oxide fuel at extreme burn-ups. Optical metallography of fuel cross-sections measured the fuel-to-cladding gap, clad thickness, and central void evolution in the samples. The fuel-to-cladding gap closed significantly in samples with burn-ups below 7–9% FIMA. Samples with burn-ups in excess of 7–9% FIMA had a reopening of the fuel-to-cladding gap and evidence of joint oxide-gain (JOG) formation. Signs of axial fuel migration to the top of the fuel column were observed in the fuel pin with a peak burn-up of 23.7% FIMA. Additionally, high burn-up structure (HBS) was observed in the two highest burn-up samples (23.7% and 21.3% FIMA). The HBS layers were found to be 3–5 times thicker than the layers found in typical LWR fuel. The results of the study indicate that formation of JOG and or HBS prevents any significant fuel-cladding mechanical interaction from occurring, thereby extending the potential life of the fuel elements.

Melissa C. Teague; Brian P. Gorman; Steven L. Hayes; Douglas L. Porter; Jeffrey King

2013-10-01T23:59:59.000Z

80

Relationship between transport properties and phase transformations in mixed-conducting oxides  

SciTech Connect (OSTI)

To elucidate the relationship between transport properties and phase transformations in mixed-conducting oxides, Sr{sub 0.9}Ca{sub 0.1}Co{sub 0.89}Fe{sub 0.11}O{sub 3-} {sub {delta}} (SCCFO) and SrCoO{sub 3-} {sub {delta}} (SCO) were chosen as the model materials and have been investigated in detail. Oxygen permeation measurements verified that both oxides are well permeable to oxygen at elevated temperatures, e.g., at 900 deg. C during a cooling procedure, oxygen permeation rates as large as 1.5 and 2.0 mL/min/cm{sup 2} could be obtained with disk-shaped SCCFO and SCO membranes of thickness 1.5 mm, respectively. But when cooled to critical temperatures, the oxygen permeability of these kinds of oxides diminished sharply, which could be recovered by increasing the temperature again to certain values. Abrupt changes on electrical conductivity were also observed for both oxides around the same region of temperature as that of oxygen permeability. As indicated by high-temperature X-ray diffraction and thermal analysis, the SCCFO and SCO systems undergo phase transformation between a low-temperature orthorhombic brownmillerite structure (B) or a hexagonal 2H-type structure (H) and a high-temperature cubic perovskite structure (C), respectively. The present results suggest the observed abrupt changes in transport properties versus temperature are attributed to such phase transformation, which may be directly associated with the order-disorder transition of oxygen vacancies. Moreover, compared to the B/C transformation that mainly involves an order-disorder transition on the oxygen sublattice, the H/C one necessarily also involves the cooperative long-range reorganization on the cation sublattice. Therefore it occurs at a higher temperature and absorbs more heat quantity than those of B/C transformation.

Deng, Z.Q. [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)]. E-mail: dzqm@dicp.ac.cn; Yang, W.S. [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Liu, W. [Laboratory of Advanced Functional Materials and Devices, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Chen, C.S. [Laboratory of Advanced Functional Materials and Devices, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China)

2006-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "mox mixed oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Shell Model for Atomistic Simulation of Lithium Diffusion in Mixed Mn/Ti Oxides  

SciTech Connect (OSTI)

Mixed Mn/Ti oxides present attractive physicochemical properties such as their ability to accommodate Li for application in Li-ion batteries. In this work, atomic parameters for Mn were developed to extend an existing shell model of the Li-Ti-O system and allow simulations of pure and lithiated Mn and mixed Mn/Ti oxide polymorphs. The shell model yielded good agreement with experimentally-derived structures (i.e. lattice parameters and inter-atomic distances) and represented an improvement over existing potential models. The shell model was employed in molecular dynamics (MD) simulations of Li diffusion in the 1×1 c direction channels of LixMn1 yTiyO2 with the rutile structure, where 0 ? x ? 0.25 and 0 ? y ? 1. In the infinite dilution limit, the arrangement of Mn and Ti ions in the lattice was found to have a significant effect on the activation energy for Li diffusion in the c channels due to the destabilization of half of the interstitial octahedral sites. Anomalous diffusion was demonstrated for Li concentrations as low as x = 0.125, with a single Li ion positioned in every other c channel. Further increase in Li concentration showed not only the substantial effect of Li-Li repulsive interactions on Li mobility but also their influence on the time dependence of Li diffusion. The results of the MD simulations can inform intrinsic structure-property relationships for the rational design of improved electrode materials for Li-ion batteries.

Kerisit, Sebastien N.; Chaka, Anne M.; Droubay, Timothy C.; Ilton, Eugene S.

2014-10-23T23:59:59.000Z

82

Criticality experiments with mixed oxide fuel pin arrays in plutonium-uranium nitrate solution  

SciTech Connect (OSTI)

A series of critical experiments was completed with mixed plutonium-uranium solutions having a Pu/(Pu + U) ratio of approximately 0.22 in a boiler tube-type lattice assembly. These experiments were conducted as part of the Criticality Data Development Program between the United States Department of Energy (USDOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. A complete description of the experiments and data are included in this report. The experiments were performed with an array of mixed oxide fuel pins in aqueous plutonium-uranium solutions. The fuel pins were contained in a boiler tube-type tank and arranged in a 1.4 cm square pitch array which resembled cylindrical geometry. One experiment was perfomed with the fuel pins removed from the vessel. The experiments were performed with a water reflector. The concentration of the solutions in the boiler tube-type tank was varied from 4 to 468 g (Pu + U)/liter. The ratio of plutonium to total heavy metal (plutonium plus uranium) was approximately 0.22 for all experiments.

Lloyd, R.C. (Pacific Northwest Lab., Richland, WA (United States)); Smolen, G.R. (Oak Ridge National Lab., TN (United States))

1988-08-01T23:59:59.000Z

83

A study of ZnxZryOz mixed oxides for direct conversion of ethanol to isobutene  

SciTech Connect (OSTI)

ZnxZryOz mixed oxides were studied for direct conversion of ethanol to isobutene. Reaction conditions (temperature, residence time, ethanol molar fraction, steam to carbon ratio), catalyst composition, and pretreatment conditions were investigated, aiming at high-yield production of isobutene under industrially relevant conditions. An isobutene yield of 79% was achieved with an ethanol molar fraction of 8.3% at 475 °C on fresh Zn1Zr8O17 catalysts. Further durability and regeneration tests revealed that the catalyst exhibited very slow deactivation via coking formation with isobutene yield maintained above 75% for more than 10 h time-on-stream. More importantly, the catalysts activity in terms of isobutene yield can be readily recovered after in situ calcination in air at 550 °C for 2.5 h. XRD, TPO, IR analysis of adsorbed pyridine (IR-Py), and nitrogen sorption have been used to characterize the surface physical/chemical properties to correlate the structure and performance of the catalysts.

Liu, Changjun; Sun, Junming; Smith, Colin; Wang, Yong

2013-10-02T23:59:59.000Z

84

Improved layered mixed transition metal oxides for Li-ion batteries  

SciTech Connect (OSTI)

Recent work in our laboratory has been directed towards development of mixed layered transition metal oxides with general composition Li[Ni, Co, M, Mn]O2 (M=Al, Ti) for Li ion battery cathodes. Compounds such as Li[Ni1/3Co1/3Mn1/3]O2 (often called NMCs) are currently being commercialized for use in consumer electronic batteries, but the high cobalt content makes them too expensive for vehicular applications such as electric vehicles (EV), plug-in hybrid electric vehicles (PHEVs), or hybrid electric vehicles (HEVs). To reduce materials costs, we have explored partial or full substitution of Co with Al, Ti, and Fe. Fe substitution generally decreases capacity and results in poorer rate and cycling behavior. Interestingly, low levels of substitution with Al or Ti improve aspects of performance with minimal impact on energy densities, for some formulations. High levels of Al substitution compromise specific capacity, however, so further improvements require that the Ni and Mn content be increased and Co correspondingly decreased. Low levels of Al or Ti substitution can then be used offset negative effects induced by the higher Ni content. The structural and electrochemical characterization of substituted NMCs is presented in this paper.

Doeff, Marca M.; Conry, Thomas; Wilcox, James

2010-03-05T23:59:59.000Z

85

Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment  

SciTech Connect (OSTI)

Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment.

Hsu, P.C.

1997-11-01T23:59:59.000Z

86

Slide 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MOX Update Kelly Trice, President & COO Shaw AREVA MOX Services, LLC. 2 What is MOX? * Mission - Convert at least 34 metric tons of U.S. weapons-grade plutonium to mixed oxide...

87

Anodically electrodeposited Co+Ni mixed oxide electrode: preparation and electrocatalytic activity for oxygen evolution in alkaline media  

SciTech Connect (OSTI)

Co+Ni mixed oxides on Ni substrate were prepared through anodic electrodeposition from Co(NO{sub 3}){sub 2} and Ni(NO{sub 3}){sub 2} aqueous solutions with five different Co{sup 2+}/Ni{sup 2+} ratios beside only Co{sup 2+}. By the electrochemical measurements, the optimum performance in electrocatalytic activity for oxygen evolution reaction in alkaline media was obtained on the Co+Ni mixed oxide deposited from the solution containing Co{sup 2+}/Ni{sup 2+} ratio of 1:1. The mixed oxide is corresponding to about 68at% Co contents with spinel-type NiCo{sub 2}O{sub 4} phase and porosity surface structure. The electrochemical kinetic parameters including exchange current density, Tafel slopes, reaction order with respect to [OH{sup -}] and standard electrochemical enthalpy of activation were analyzed also. A possible mechanism involving the formation of a physisorbed hydrogen peroxide intermediate in a slow electrochemical step was presented, which accounts for the values of the experimental results.

Wu Gang [Innovative Catalysis Program, Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084 (China)]. E-mail: wugang@mail.tsinghua.edu.cn; Li Ning [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Zhou Derui [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Mitsuo, Kurachi [Faculty of Engineering, Kyoto University, Kyoto 606-8283 (Japan); Xu Boqing [Innovative Catalysis Program, Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084 (China)

2004-10-01T23:59:59.000Z

88

PII S0016-7037(98)00136-7 The kinetics of mixed Ni-Al hydroxide formation on clay and aluminum oxide minerals  

E-Print Network [OSTI]

PII S0016-7037(98)00136-7 The kinetics of mixed Ni-Al hydroxide formation on clay and aluminum. This finding indicates that the dissolution of clay and aluminum oxide minerals can be promoted by metal ions

Sparks, Donald L.

89

Noise-like pulse based on dissipative four-wave-mixing with photonic crystal fiber filled by reduced graphene oxide  

E-Print Network [OSTI]

A noise-like pulse based on dissipative four-wave-mixing in a fiber cavity with photonic crystal fiber filled by reduced graphene oxide is proposed. Due to large evanescent field provided by 3 cm photonic crystal fiber and ultrahigh nonlinearity of reduced graphene oxide, this mixed structure provides excellent saturable absorption and high nonlinearity, which are necessary for generating four-wave-mixing (FWM). We experimentally prove that the mode-locked laser transfers its energy from center wavelength to sidebands through degenerate FWM, and new frequencies are generated via cascaded FWM among those sidebands. During this process, the frequencies located in various orders of longitudinal modes of the ring cavity are supported, and others are suppressed due to destructive interference. As the longitudinal modes of the cavity with a spacing of 6.874 MHz are partially supported, the loosely fixed phase relationship results in noise-like pulse with a coherent peak of 530 fs locating on a pedestal of 730.693 p...

Gao, Lei; Huang, Wei

2014-01-01T23:59:59.000Z

90

Solid state electron-hopping transport and frozen concentration gradients in a mixed valent viologen-tetraethylene oxide copolymer  

SciTech Connect (OSTI)

This paper describes electrochemistry and electron-hopping dynamics for a novel viologen-based redox polymer (poly-V{sup 2+}) formed from the copolymerization of tetraethylene glycol di-p-tosylate and 4,4{prime}-bipyridine. Current-potential responses and electron-hopping (i.e., self-exchange) rates have been measured for mixed valent films of poly-V{sup 2+} on interdigitated array electrodes contacted by tetrahydrofuran/acetonitrile/tetrabutylammonium perchlorate electrolyte solution and as dry mixed valent films in vacuum or dry nitrogen. Electron transfer rates vary with the mixed valency composition of poly-V{sup 2+/+} films (judging film composition from the electrolysis potential with the Nernst equation) according to bimolecular reaction theory for solvent-wetted but less well for dry films. Current-potential characteristics are also reported for mixed valent films that contain concentration gradients of the poly-V{sup 2+} and poly-V{sup +} redox states, which we attempt to freeze into place by drying the film under a gradient-generating potential bias so as to immobilize the film`s counterions. Current transients at room and reduced (-30{degree}C) temperature show that the room-temperature responses of films containing concentration gradients are sensitive to small changes in poly-V{sup 2+/+} oxidation state at the electrode/polymer interfaces. 24 refs., 9 figs., 1 tab.

Terrill, R.H.; Hutchison, J.E.; Murray, R.W. [Univ. of North Carolina, Chapel Hill, NC (United States)] [Univ. of North Carolina, Chapel Hill, NC (United States)

1997-02-27T23:59:59.000Z

91

THERMAL DESTRUCTION OF HIGHLY CHLORINATED MIXED WASTES WITHOUT GENERATING CORROSIVE OFF-GASES USING MOLTEN SALT OXIDATION (1,2)  

SciTech Connect (OSTI)

A pilot-scale MSO (Molten Salt Oxidation) system was used to process 45-gallons of a halogenated mixed waste that is difficult to treat with other thermal systems. The mixed waste was a halogenated solvent that consisted mostly of methylchloroform. The 80 weight percent of waste consisting of highly corrosive chlorine was captured in the first process vessel as sodium chloride. The sodium chloride leached chrome from that process vessel and the solidified salt exhibited the toxicity characteristic for chrome as measured by TCLP (Toxicity Characteristic Leaching Procedure) testing. The operating ranges for parameters such as salt bed temperature, off-gas temperature, and feed rate that enable sustained operation were identified. At feed rates below the sustainable limit, both processing capacity and maintenance requirements increased with feed rate. Design and operational modifications to increase the sustainable feed rate limit and reduce maintenance requirements reduced both salt carryover and volumetric gas flows.

Smith, W.; Feizollahi, F.

2002-02-25T23:59:59.000Z

92

The effects of asphalt binder oxidation on hot mix asphalt concrete mixture rheology and fatigue performance  

E-Print Network [OSTI]

. The decline in mixture fatigue life (determined using the calibrated mechanistic fatigue analysis approach with surface energy measurement) due to oxidation is significant. Pavement service life is dependent on the mixture, but can be estimated by a cumulative...

Jung, Sung Hoon

2009-06-02T23:59:59.000Z

93

Nuclear waste treatment - Studying the mixed ion type effects and concentration on the behaviour of oxide dispersions  

SciTech Connect (OSTI)

In order to gain good control over a particulate dispersion it is necessary to accurately characterise the strength of inter-particle forces that may be operating. Such control is not routinely used, as yet, in the nuclear industry despite the possible benefits. We are investigating the impact of mixed electrolyte systems, for example NaCl and Na{sub 2}SO{sub 4}, on the stability of oxide simulant particle dispersions. The electro-acoustic zeta potentials and shear yield stresses for concentrated dispersions have been measured across a range of pH conditions and electrolyte concentrations (0.001 M - 1.0 M). This paper summarizes initial data from these studies showing how the shear yield stress of concentrated aqueous oxide particle dispersions, can be adjusted through regulation of pH and the addition of background electrolytes (salt). The yield stress as a function of pH for these dispersions in mixed electrolytes showed a direct correlation with corresponding measurements of the zeta potential. Changes in the background electrolyte concentration or type were seen to cause a shift in the position of the isoelectric point (iep). Measurements of the shear yield stress showed a maximum at the iep corresponding to the position of maximum instability in the suspension. The consequences of these data for the efficient treatment of solid-liquid systems will be discussed. (authors)

Omokanye, Qanitalillahi; Biggs, Simon [Institute of Particle Science and Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)

2007-07-01T23:59:59.000Z

94

INVESTIGATION OF MIXED METAL SORBENT/CATALYSTS FOR THE SIMULTANEOUS REMOVAL OF SULFUR AND NITROGEN OXIDES  

SciTech Connect (OSTI)

Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}. The objective of this research is to conduct kinetic and parametric studies of the selective catalytic reduction of NO{sub x} with NH{sub 3} and CH{sub 4} over alumina-supported cerium oxide and copper oxide-cerium oxide sorbent/catalysts; investigate SO{sub 2} removal at lower temperatures by supported copper oxide-cerium oxide sorbents; and investigate the possibility of elemental sulfur production during regeneration with CO or with CH{sub 4}-air mixtures.

Ates Akyurtlu; Jale F. Akyurtlu

2000-04-10T23:59:59.000Z

95

INVESTIGATION OF MIXED METAL SORBENT/CATALYSTS FOR THE SIMULTANEOUS REMOVAL OF SULFUR AND NITROGEN OXIDES  

SciTech Connect (OSTI)

Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded research of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}. The objective of this research is to conduct kinetic and parametric studies of the selective catalytic reduction of NO{sub x} with NH{sub 3} and CH{sub 4} over alumina-supported cerium oxide and copper oxide-cerium oxide sorbent/catalysts; investigate SO{sub 2} removal at lower temperatures by supported copper oxide-cerium oxide sorbents; and investigate the possibility of elemental sulfur production during regeneration with CO or with CH{sub 4} air mixtures.

Ates Akyurtlu; Jale F. Akyurtlu

1999-11-30T23:59:59.000Z

96

Investigation of mixed metal sorbent/catalysts for the simultaneous removal of sulfur and nitrogen oxides  

SciTech Connect (OSTI)

Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}. The objective of this research is to conduct kinetic and parametric studies of the selective catalytic reduction of NO{sub x} with NH{sub 3} and CH{sub 4} over alumina-supported cerium oxide and copper oxide-cerium oxide sorbent/catalysts; investigate SO{sub 2} removal at lower temperatures by supported copper oxide-cerium oxide sorbents; and investigate the possibility of elemental sulfur production during regeneration with CO or with CH{sub 4}-air mixtures.

Akyurtlu, A.; Akyurtlu, J.F.

1999-03-31T23:59:59.000Z

97

LITERATURE REVIEW FOR OXALATE OXIDATION PROCESSES AND PLUTONIUM OXALATE SOLUBILITY  

SciTech Connect (OSTI)

A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign. H Canyon plans to commence conversion of plutonium metal to low-fired plutonium oxide in 2012 for eventual use in the Mixed Oxide Fuel (MOX) Facility. The flowsheet includes sequential operations of metal dissolution, ion exchange, elution, oxalate precipitation, filtration, and calcination. All processes beyond dissolution will occur in HB-Line. The filtration step produces an aqueous filtrate that may have as much as 4 M nitric acid and 0.15 M oxalate. The oxalate needs to be removed from the stream to prevent possible downstream precipitation of residual plutonium when the solution is processed in H Canyon. In addition, sending the oxalate to the waste tank farm is undesirable. This report addresses the processing options for destroying the oxalate in existing H Canyon equipment.

Nash, C.

2012-02-03T23:59:59.000Z

98

Comparison of REMIX vs. MOX fuel characteristics in multiple recycling in VVER reactor  

SciTech Connect (OSTI)

Multiple recycling of regenerated uranium-plutonium fuel in thermal reactors of VVER-1000 type with high enriched uranium feeding (REMIX-fuel) gives a possibility to terminate the accumulation of spent nuclear fuels (SNF) and Pu and decrease the accumulation of irradiated uranium by an order of magnitude. Results of comparison of VVER-1000 nuclear fuel cycle characteristics vs different fuel types such as UOX, MOX and REMIX-fuel have been presented. REMIX fuel (Regenerated Mixture of U-, Pu oxides) is the mixture of plutonium and uranium extracted from SNF and refined from other actinides and fission products with the addition of enriched uranium to provide the power potential necessary. The savings in terms of uranium quantities and separation works in the nuclear energy system (NES) with reactors using REMIX-fuel compared to the NES with uranium-fuelled reactors are shown to be of about 30% and 8%, respectively. For the NES with thermal reactors partially loaded with MOX-fuel, the uranium and separation works saving of about 14% would be obtained. Production of neptunium and americium in reactors with REMIX-fuel in steady state increases by a factor 3, and production of curium - by 10 compared to the reactors with UOX-fuel. This increase of minor actinide buildup is owed to the multiple recycling of plutonium. It should be noted that in this case all fuel assemblies contain high-background plutonium, and their manufacturing involves an expensive technology. Besides, management of REMIX-fuel will require special protection measures even during the fresh fuel manufacturing phase. The above-said gives ground to state that the use of REMIX fuel would be questionable in economic aspect.

Dekusar, V.M.; Kalashnikov, A.G.; Kapranova, E.N.; Korobitsyn, V.E.; Puzakov, A.Y. [State Scientific Centre of Russian Federation, Institute for Physics and Power Engineering, Obninsk (Russian Federation)

2013-07-01T23:59:59.000Z

99

Use of impure inert gases in the controlled heating and cooling of mixed conducting metal oxide materials  

DOE Patents [OSTI]

Method for processing an article comprising mixed conducting metal oxide material. The method comprises contacting the article with an oxygen-containing gas and either reducing the temperature of the oxygen-containing gas during a cooling period or increasing the temperature of the oxygen-containing gas during a heating period; during the cooling period, reducing the oxygen activity in the oxygen-containing gas during at least a portion of the cooling period and increasing the rate at which the temperature of the oxygen-containing gas is reduced during at least a portion of the cooling period; and during the heating period, increasing the oxygen activity in the oxygen-containing gas during at least a portion of the heating period and decreasing the rate at which the temperature of the oxygen-containing gas is increased during at least a portion of the heating period.

Carolan, Michael Francis (Allentown, PA); Bernhart, John Charles (Fleetwood, PA)

2012-08-21T23:59:59.000Z

100

ANALYTICAL RESULTS FOR MOX COLEMANITE SAMPLES RECEIVED ON JULY 22, 2013  

SciTech Connect (OSTI)

The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory (SRNL) is tasked with measuring the boron oxide content of the colemanite raw aggregate material prior to it being mixed into the concrete. SRNL received ten samples of colemanite for analysis on July 22, 2013. The elemental boron content of each sample was measured according to ASTM C 1301. The boron oxide content was calculated using the oxide conversion factor for boron.

Reigel, M.; Best, D.

2013-08-13T23:59:59.000Z

Note: This page contains sample records for the topic "mox mixed oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

ANALYTICAL RESULTS FOR MOX COLEMANITE SAMPLES RECEIVED ON JULY 22, 2013  

SciTech Connect (OSTI)

The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory (SRNL) is tasked with measuring the boron oxide content of the colemanite raw aggregate material prior to it being mixed into the concrete. SRNL received ten samples of colemanite for analysis on July 22, 2013. The elemental boron content of each sample was measured according to ASTM C 1301. The boron oxide content was calculated using the oxide conversion factor for boron.

Reigel, M.; Best, D.

2014-05-19T23:59:59.000Z

102

A Neutronic Analysis of TRU Recycling in PWRs Loaded with MOX-UE Fuel (MOX with U-235 Enriched U Support)  

SciTech Connect (OSTI)

This report presents the results of a study dealing with the homogeneous recycling of either Pu or Pu+Np or Pu+Np+Am or Pu+Np+Am+Cm in PWRs using MOX-UE fuel, i.e. standard MOX fuel with a U235 enriched uranium support instead of the standard tail uranium (0.25%) for standard MOX fuel. This approach allows to multirecycle Pu or TRU (Pu+MA) as long as U235 is available, by keeping the Pu or TRU content in the fuel constant and at a value ensuring a negative moderator void coefficient (i.e. the loss of the coolant brings imperatively the reactor to a subcritical state). Once this value is determined, the U235 enrichment of the MOX-UE fuel is adjusted in order to reach the target burnup (51 GWd/t in this study).

G. Youinou; S. Bays

2009-05-01T23:59:59.000Z

103

INVESTIGATION OF MIXED METAL SORBENT/CATALYSTS FOR THE SIMULTANEOUS REMOVAL OF SULFUR AND NITROGEN OXIDES  

SciTech Connect (OSTI)

Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}.

Ates Akyurtlu; Jale F. Akyurtle

2001-08-01T23:59:59.000Z

104

Formation of mixed oxide powders in flames: Part I. TiO sub 2 --SiO sub 2  

SciTech Connect (OSTI)

Mixed oxide powders, e.g., Al{sub 2}O{sub 3}--TiO{sub 2}, SiO{sub 2}--GeO{sub 2}, and TiO{sub 2}--SiO{sub 2}, are used in industry to produce ceramics, optical fibers, catalysts, and paint opacifiers. The properties of these products depend upon the morphology of the powders. Ceramics and optical fibers are produced using either a uniform mixture of multicomponent particles or a uniform solution. The desired morphology for catalysts is a high surface area and many active sites. TiO{sub 2} coated with a layer of SiO{sub 2} is the desired structure for use as a paint opacifier. In this paper, TiO{sub 2}--SiO{sub 2} mixed oxide powders were synthesized using a counterflow diffusion flame burner. TiCl{sub 4} and SiCl{sub 4} were used as source materials for the formation of oxide particles in hydrogen-oxygen flames. In-situ particle sizes were determined using dynamic light scattering. A thermophoretic sampling method also was used to collect particles directly onto carbon coated grids, and their size, morphology, and crystalline form examined using a transmission electron microscope. A photomultiplier at 90{degree} to the argon ion laser beam was used to measure the light-scattering intensity. The effect of temperature and of Si to Ti concentration ratio on particle morphology was investigated. Strong temperature dependence was observed. At high temperatures, TiO{sub 2} particles were covered with discrete SiO{sub 2} particles. At low temperatures, the structure changes to TiO{sub 2} particles encapsulated by SiO{sub 2}. TEM diffraction pattern measurements showed that the TiO{sub 2} is rutile and the SiO{sub 2} is amorphous silica. At high Si to Ti ratios, SiO{sub 2}-encapsulated TiO{sub 2} particles form. At low Si to Ti ratios, one obtains TiO{sub 2} particles covered with discrete SiO{sub 2} particles.

Hung, C.; Katz, J.L. (Department of Chemical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218 (United States))

1992-07-01T23:59:59.000Z

105

Synthesis of Mixed Metal Oxides for Hydrodeoxygenation of Pyrolysis Oil for Alternative Fuels Sarah McNew, Tiorra Ross and Carsten Sievers  

E-Print Network [OSTI]

· Flash pyrolysis on biomass [1] · Short residence times and flexible feed · Bio-oils produced are close to dissociate hydrogen Goal: synthesize metal free, sulfur free, catalysts for HDO Biomass Pyrolysis OilSynthesis of Mixed Metal Oxides for Hydrodeoxygenation of Pyrolysis Oil for Alternative Fuels Sarah

Das, Suman

106

Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases  

DOE Patents [OSTI]

This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.

Ayala, Raul E. (Clifton Park, NY)

1993-01-01T23:59:59.000Z

107

Melting temperatures of the ZrO{sub 2}-MOX system  

SciTech Connect (OSTI)

Severe accidents occurred at the Fukushima Daiichi Nuclear Power Plant Units 1-3 on March 11, 2011. MOX fuels were loaded in the Unit 3. For the thermal analysis of the severe accident, melting temperature and phase state of MOX corium were investigated. The simulated coriums were prepared from 4%Pu-containing MOX, 8%Pu-containing MOX and ZrO{sub 2}. Then X-ray diffraction, density and melting temperature measurements were carried out as a function of zirconium and plutonium contents. The cubic phase was observed in the 25%Zr-containing corium and the tetragonal phase was observed in the 50% and 75%Zr-containing coria. The lattice parameter and density monotonically changed with Pu content. Melting temperature increased with increasing Pu content; melting temperature were estimated to be 2932 K for 4%Pu MOX corium and 3012 K for 8%Pu MOX corium in the 25%ZrO{sub 2}-MOX system. The lowest melting temperature was observed for 50%Zr-containing corium. (authors)

Uchida, T.; Hirooka, S.; Kato, M.; Morimoto, K. [Japan Atomic Energy Agency, 4-33, Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1194 (Japan); Sugata, H.; Shibata, K.; Sato, D. [Inspection Development Company, 4-33, Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1194 (Japan)

2013-07-01T23:59:59.000Z

108

Neutronics Benchmarks for the Utilization of Mixed-Oxide Fuel: Joint US/Russian Progress Report for Fiscal 1997. Volume 3 - Calculations Performed in the Russian Federation  

SciTech Connect (OSTI)

This volume of the progress report provides documentation of reactor physics and criticality safety studies conducted in the Russian Federation during fiscal year 1997 and sponsored by the Fissile Materials Disposition Program of the US Department of Energy. Descriptions of computational and experimental benchmarks for the verification and validation of computer programs for neutron physics analyses are included. All benchmarks include either plutonium, uranium, or mixed uranium and plutonium fuels. Calculated physics parameters are reported for all of the contaminated benchmarks that the United States and Russia mutually agreed in November 1996 were applicable to mixed-oxide fuel cycles for light-water reactors.

NONE

1998-06-01T23:59:59.000Z

109

Options for converting excess plutonium to feed for the MOX fuel fabrication facility  

SciTech Connect (OSTI)

The storage and safekeeping of excess plutonium in the United States represents a multibillion-dollar lifecycle cost to the taxpayers and poses challenges to National Security and Nuclear Non-Proliferation. Los Alamos National Laboratory is considering options for converting some portion of the 13 metric tons of excess plutonium that was previously destined for long-term waste disposition into feed for the MOX Fuel Fabrication Facility (MFFF). This approach could reduce storage costs and security ri sks, and produce fuel for nuclear energy at the same time. Over the course of 30 years of weapons related plutonium production, Los Alamos has developed a number of flow sheets aimed at separation and purification of plutonium. Flow sheets for converting metal to oxide and for removing chloride and fluoride from plutonium residues have been developed and withstood the test oftime. This presentation will address some potential options for utilizing processes and infrastructure developed by Defense Programs to transform a large variety of highly impure plutonium into feedstock for the MFFF.

Watts, Joe A [Los Alamos National Laboratory; Smith, Paul H [Los Alamos National Laboratory; Psaras, John D [Los Alamos National Laboratory; Jarvinen, Gordon D [Los Alamos National Laboratory; Costa, David A [Los Alamos National Laboratory; Joyce, Jr., Edward L [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

110

Evaluation of weapons-grade mixed oxide fuel performance in U.S. Light Water Reactors using COMETHE 4D release 23 computer code  

E-Print Network [OSTI]

The COMETHE 4D Release 23 computer code was used to evaluate the thermal, chemical and mechanical performance of weapons-grade MOX fuel irradiated under U.S. light water reactor typical conditions. Comparisons were made to and UO? fuels exhibited...

Bellanger, Philippe

2012-06-07T23:59:59.000Z

111

US weapons-useable plutonium disposition policy: implementation of the MOX fuel option  

E-Print Network [OSTI]

US WEAPONS-USEABLE PLUTONIUM DISPOSITION POLICY: IMPLEMENTATION OF THE MOX FUEL OPTION A Thesis by VANESSA L. GONZALEZ Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements... for the degree of MASTER OF ARTS August 1998 Major Subject: Political Science US WEAPONS-USEABLE PLUTONIUM DISPOSITION POLICY: IMPLEMENTATION OF THE MOX FUEL OPTION A Thesis by VANESSA L. GONZALEZ Submitted to Texas ARM University in partial fulfillment...

Gonzalez, Vanessa L

2012-06-07T23:59:59.000Z

112

Direct Conversion of Bio-ethanol to Isobutene on Nanosized ZnxZryOz Mixed Oxides with Balanced Acid–Base Sites  

SciTech Connect (OSTI)

Bio-mass conversion has attracted increasing research interests to produce bio-fuels with bio-ethanol being a major product. Development of advanced processes to further upgrade bio-ethanol to other value added fuels or chemicals are pivotal to improving the economics of biomass conversion and deversifying the utilization of biomass resources. In this paper, for the first time, we report the direct conversion of bio-ethanol to isobutene with high yield (~83%) on a multifunctional ZnxZryOz mixed oxide with a dedicated balance of surface acid-base properties. This work illustrates the significance of rational design of a multifunctional mixed oxide catalyst for one step bio-ethanol conversion to a value-added intermediate, isobutene, for chemical and fuel production. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

Sun, Junming; Zhu, Kake; Gao, Feng; Wang, Chong M.; Liu, Jun; Peden, Charles HF; Wang, Yong

2011-06-17T23:59:59.000Z

113

U.S. weapons-usable plutonium disposition policy: Implementation of the MOX fuel option  

SciTech Connect (OSTI)

A comprehensive case study was conducted on the policy problem of disposing of US weapons-grade plutonium, which has been declared surplus to strategic defense needs. Specifically, implementation of the mixed-oxide fuel disposition option was examined in the context of national and international nonproliferation policy, and in contrast to US plutonium policy. The study reveals numerous difficulties in achieving effective implementation of the mixed-oxide fuel option including unresolved licensing and regulatory issues, technological uncertainties, public opposition, potentially conflicting federal policies, and the need for international assurances of reciprocal plutonium disposition activities. It is believed that these difficulties can be resolved in time so that the implementation of the mixed-oxide fuel option can eventually be effective in accomplishing its policy objective.

Woods, A.L. [ed.] [Amarillo National Resource Center for Plutonium, TX (United States); Gonzalez, V.L. [Texas A and M Univ., College Station, TX (United States). Dept. of Political Science

1998-10-01T23:59:59.000Z

114

EMSL - oxides  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

oxides en Influence of Adsorption Site and Wavelength on the Photodesorption of NO from the (Fe,Cr)3O4(111) Mixed Oxide Surface. http:www.emsl.pnl.govemslwebpublications...

115

Solid state reactions of nanocrystalline Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75} mixed oxide with high surface area silica in oxidizing and reducing atmosphere  

SciTech Connect (OSTI)

The interaction of nanocrystalline Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75} mixed oxide with a high surface amorphous silica support in an oxidizing and reducing atmosphere was studied by XRD, HRTEM, SAED, SEM and BET techniques. The Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75}-SiO{sub 2} system shows very high structural and size stability in the oxidizing atmosphere up to 1000 Degree-Sign C, but in hydrogen spreading of the oxide onto silica occurs at temperatures above 800 Degree-Sign C. In the oxidizing atmosphere stability of the mixed oxide is limited by extraction of ytterbium from the oxide driven by a tendency to form ytterbium silicates. A new polymorph of Yb silicate, isomorphic with y-Y{sub 2}Si{sub 2}O{sub 7} (yttrialite), has been identified in the samples containing the mixed Ce-Yb oxide. The absence of y-Yb{sub 2}Si{sub 2}O{sub 7} silicate in the Yb{sub 2}O{sub 3}-SiO{sub 2} samples treated in similar conditions indicates that Ce{sup 4+} ions are needed to stabilize the structure. - Graphical abstract: Structure evolution of nano-Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75}-SiO{sub 2} in air and in H{sub 2}. Highlights: Black-Right-Pointing-Pointer Nano-Ce{sub 0.50}Yb{sub 0.50}O{sub 1.75} on SiO{sub 2} is stable in air up to 1000 Degree-Sign C but spreads in hydrogen at 800 Degree-Sign C. Black-Right-Pointing-Pointer Formation of Yb silicates determines the stability of Ce{sub 0.50}Yb{sub 0.50}O{sub 1.75} at high temperatures. Black-Right-Pointing-Pointer New, y-Yb{sub 2}Si{sub 2}O{sub 7} silicate (yttrialite type) forms in Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75}-SiO{sub 2} in H{sub 2} at 1100 Degree-Sign C.

Malecka, Malgorzata A. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wroclaw 2 (Poland); Kepinski, Leszek, E-mail: L.Kepinski@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wroclaw 2 (Poland)

2012-08-15T23:59:59.000Z

116

Adsorption of propane, isopropyl, and hydrogen on cluster models of the M1 phase of Mo-V-Te-Nb-O mixed metal oxide catalyst  

SciTech Connect (OSTI)

The Mo-V-Te-Nb-O mixed metal oxide catalyst possessing the M1 phase structure is uniquely capable of directly converting propane into acrylonitrile. However, the mechanism of this complex eight-electron transformation, which includes a series of oxidative H-abstraction and N-insertion steps, remains poorly understood. We have conducted a density functional theory study of cluster models of the proposed active and selective site for propane ammoxidation, including the adsorption of propane, isopropyl (CH{sub 3}CHCH{sub 3}), and H which are involved in the first step of this transformation, that is, the methylene C-H bond scission in propane, on these active site models. Among the surface oxygen species, the telluryl oxo (Te=O) is found to be the most nucleophilic. Whereas the adsorption of propane is weak regardless of the MO{sub x} species involved, isopropyl and H adsorption exhibits strong preference in the order of Te=O > V=O > bridging oxygens > empty Mo apical site, suggesting the importance of TeO{sub x} species for H abstraction. The adsorption energies of isopropyl and H and consequently the reaction energy of the initial dehydrogenation of propane are strongly dependent on the number of ab planes included in the cluster, which points to the need to employ multilayer cluster models to correctly capture the energetics of surface chemistry on this mixed metal oxide catalyst.

Govindasamy, Agalya [University of Cincinnati; Muthukumar, Kaliappan [University of Cincinnati; Yu, Junjun [University of Cincinnati; Xu, Ye [ORNL; Guliants, Vadim V. [University of Cincinnati

2010-01-01T23:59:59.000Z

117

IDENTIFYING IMPURITIES IN SURPLUS NON PIT PLUTONIUM FEEDS FOR MOX OR ALTERNATIVE DISPOSITION  

SciTech Connect (OSTI)

This report provides a technical basis for estimating the level of corrosion products in materials stored in DOE-STD-3013 containers based on extrapolating available chemical sample results. The primary focus is to estimate the levels of nickel, iron, and chromium impurities in plutonium-bearing materials identified for disposition in the United States Mixed Oxide fuel process.

Allender, J; Moore, E

2010-07-14T23:59:59.000Z

118

Redox cycle stability of mixed oxides used for hydrogen generation in the cyclic water gas shift process  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: • Fe{sub 2}O{sub 3} modified with CaO, SiO{sub 2} and Al{sub 2}O{sub 3} was studied in cyclic water gas shift reactor. • For the first time stability of such oxides were tested for 100 redox cycles. • Optimally added oxides significantly improved the activity and the stability of Fe{sub 2}O{sub 3}. • Increased stability was attributed to the impediment of neck formation. - Abstract: Repeated cycles of the reduction of Fe{sub 3}O{sub 4} with reductive gas, e.g. hydrogen and subsequent oxidation of the reduced iron material with water vapor can be harnessed as a process for the production of pure hydrogen. The redox behavior of iron oxide modified with various amounts of SiO{sub 2}, CaO and Al{sub 2}O{sub 3} was investigated in the present study. The total amount of the additional metal oxides was always below 15 wt%. The samples were prepared by co-precipitation using urea hydrolysis method. The influence of various metal oxides on the hydrogen production capacity and the material stability was studied in detail in terms of temperature-programmed reduction (TPR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and BET analysis. Furthermore, the activity and the stability of the samples were tested in repeated reduction with diluted H{sub 2} and re-oxidation cycles with H{sub 2}O. The results indicate that combination of several oxides as promoter increases the stability of the iron oxide material by mitigating the sintering process. The positive influence of the oxides in stabilizing the iron oxide material is attributed to the impediment of neck formation responsible for sintering.

Datta, Pradyot, E-mail: pradyot.datta@gmail.com

2013-10-15T23:59:59.000Z

119

The design, construction, and testing of a nuclear fuel rod thermal simulation system to study gallium/Zircaloy interactions  

E-Print Network [OSTI]

friends for their unending support and patience during this project. Thank you so much! NOMENCLATURE Abbreviations and Acronyms WGPu- weapons grade plutonium DOE- Department of Energy MOX- mixed oxide fuel WG MOX- weapons grade MOX fuel LWR- light... to be employed were immobilization and fissioning the WGPu as mixed oxide (MOX) fuel in commercial power reactors. Both approaches have many advantages and disadvantages and are currently being studied by scientists and engineers all over the world. The use...

Allison, Christopher Curtis

2012-06-07T23:59:59.000Z

120

RELAP5/MOD3.2 analysis of a VVER-1000 reactor with UO[2] fuel and MOX fuel  

E-Print Network [OSTI]

.2 results showed a good agreement with calculations obtained with TECH-M computer program. The cladding temperatures of the MOX assembly have been compared with that of the hot UO? assembly. The peak cladding temperature of MOX assembly is about 55 K higher...

Fu, Chun

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "mox mixed oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Influence of Adsorption Site and Wavelength on the Photodesorption of NO from the (Fe,Cr)3O4(111) Mixed Oxide Surface  

SciTech Connect (OSTI)

The photochemical properties of nitric oxide on a mixed oxide single crystal surface was examined in ultrahigh vacuum (UHV) using temperature programmed desorption (TPD), photon stimulated desorption (PSD) and low energy electron diffraction (LEED). The mixed oxide was a 75% Fe and 25% Cr corundum (0001) oxide film prepared on an ?-Al2O3(0001) crystal, however its surface became terminated with a magnetite-like (111) structure after sputter/anneal cleaning, leading to a surface designated of (Fe,Cr)3O4(111). TPD of NO from the (Fe,Cr)3O4(111) surface revealed three chemisorbed states at 220, ~315 and 370 K assigned to NO binding at Fe3+, Cr3+ and Fe2+ sites, respectively. No significant thermal chemistry of NO was detected. NO photodesorption, the primary photochemical pathway in UHV, was sensitive to the adsorption site, with rates at the three adsorption sites following the trend: Fe3+ > Fe2+ > Cr3+. Multiexponential rate behavior seen in the overall NO PSD spectra was linked directly to site heterogeneity being manifested as a convolution of the individual NO photodesorption rates at the three types of surface sites. The photodesorption rate with UV light (365 nm) was ~10 times greater than that in the visible, but the per-photon rates across the visible spectrum (from 460 to 630 nm) were independent of the wavelength, which is suggestive of localized photon absorption at the adsorption site. Results in this study demonstrate that the adsorption site plays a critical role in determining photochemical rates on complex oxide surfaces. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multi-program national laboratory operated for DOE by Battelle. The research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

Henderson, Michael A.

2014-09-11T23:59:59.000Z

122

Multirecycling of Plutonium from LMFBR Blanket in Standard PWRs Loaded with MOX Fuel  

SciTech Connect (OSTI)

It is now well-known that, from a physics standpoint, Pu, or even TRU (i.e. Pu+M.A.), originating from LEU fuel irradiated in PWRs can be multirecycled also in PWRs using MOX fuel. However, the degradation of the isotopic composition during irradiation necessitates using enriched U in conjunction with the MOX fuel either homogeneously or heterogeneously to maintain the Pu (or TRU) content at a level allowing safe operation of the reactor, i.e. below about 10%. The study is related to another possible utilization of the excess Pu produced in the blanket of a LMFBR, namely in a PWR(MOX). In this case the more Pu is bred in the LMFBR, the more PWR(MOX) it can sustain. The important difference between the Pu coming from the blanket of a LMFBR and that coming from a PWR(LEU) is its isotopic composition. The first one contains about 95% of fissile isotopes whereas the second one contains only about 65% of fissile isotopes. As it will be shown later, this difference allows the PWR fed by Pu from the LMFBR blanket to operate with natural U instead of enriched U when it is fed by Pu from PWR(LEU)

Sonat Sen; Gilles Youinou

2013-02-01T23:59:59.000Z

123

International safeguards for a MOX facility--verification to detect protracted falsification  

SciTech Connect (OSTI)

The theoretical underpinnings of sequential material unaccounted for minus the difference statistic ((MUF-D)) analysis are developed. Methodologically, procedures applicable to sequential MUF data can, in many cases, be adapted to the (MUF-D) problem. Detection of protracted falsification is illustrated in a system study of a modern, state-of-the-art mixed oxide fuel fabrication facility. 12 refs., 2 figs., 7 tabs.

Picard, R.R.; Pillay, K.K.S.

1989-07-01T23:59:59.000Z

124

In situ Fourier transform infrared spectroscopy of adsorbed species on mixed metal oxide catalysts for higher alcohol synthesis  

SciTech Connect (OSTI)

Fourier Transform Infrared Spectroscopy was utilized to identify adsorbed species on Zn/Cu/Cr oxide and potassium carbonate-promoted Zn/Cu/Cr oxide catalysts at 285/sup 0/C and atmospheric pressure. Adsorption of various molecules on catalysts provided information about the nature of the adsorbed species. As a result of CO/H/sub 2/ mixture, methanol and formaldehyde adsorption two types of species formed, namely a methoxy and a formate. The adsorption of ethanol, acetaldehyde and acetic acid at 285/sup 0/C revealed stable acetate species. Ethanol and acetaldehyde adsorption also produced an ethoxy species whose formation was much favored on promoted catalysts. 136 refs., 46 figs., 14 tabs.

Baysar, A.

1986-01-01T23:59:59.000Z

125

Trans_package_Poster_Draft_8_7_12.indd  

National Nuclear Security Administration (NNSA)

Lead Shield Design and Testing Requirements: Plutonium, unirradiated mixed oxide (MOX) fuel assemblies, and transuranic (TRU) waste would be transported in U.S. Nuclear Regulatory...

126

EIS-0283: Notice of Intent to Prepare a Supplement to the Draft...  

Broader source: Energy.gov (indexed) [DOE]

environmental impacts of using mixed oxide (MOX) fuel in six specific commercial nuclear reactors at three sites for the disposition of surplus weapons-grade plutonium....

127

Interaction of iron-copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal  

SciTech Connect (OSTI)

The objective of this work was to prepare supported bimetallic Fe–Cu oxygen carriers and to evaluate their performance for the chemical-looping combustion (CLC) process with simulated synthesis gas derived from steam gasification of coal/air. Ten-cycle CLC tests were conducted with Fe–Cu oxygen carriers in an atmospheric thermogravimetric analyzer utilizing simulated synthesis gas derived from the steam gasification of Polish Janina coal and Illinois #6 coal as fuel. The effect of temperature on reaction rates, chemical stability, and oxygen transport capacity were determined. Fractional reduction, fractional oxidation, and global rates of reactions were calculated from the thermogravimetric analysis (TGA) data. The supports greatly affected reaction performance. Data showed that reaction rates and oxygen capacities were stable during the 10-cycle TGA tests for most Fe–Cu/support oxygen carriers. Bimetallic Fe–Cu/support oxygen carriers showed higher reduction rates than Fe-support oxygen carriers. The carriers containing higher Cu content showed better stabilities and better reduction rates. An increase in temperature from 800 °C to 900 °C did not have a significant effect on either the oxygen capacity or the reduction rates with synthesis gas derived from Janina coal. Oxidation reaction was significantly faster than reduction reaction for all supported Fe–Cu oxygen carriers. Carriers with higher Cu content had lower oxidation rates. Ten-cycle TGA data indicated that these oxygen carriers had stable performances at 800–900 °C and might be successfully used up to 900 °C for coal CLC reaction in the presence of steam.

Siriwardane, Ranjani V. [U.S. DOE; Ksepko, Ewelina; Tian, Hanging [URS

2013-01-01T23:59:59.000Z

128

High-energy mechanical synthesis of nanophase fluorite-structured mixed oxide catalysts with a high redox activity  

SciTech Connect (OSTI)

A series of nanostructured, highly defective, ternary solid solutions containing CeO{sub 2}, ZrO{sub 2}, and MnO{sub 2} or CuO were prepared by high-energy mechanical milling of individual components. Morphological and redox properties were studied by XRD, HRTEM and temperature-programmed reduction techniques. It was shown that the introduction of small amounts of copper and manganese strongly promotes the redox behavior of cerium at lower temperatures in comparison with CeO{sub 2} and CeO{sub 2}-ZrO{sub 2}. High temperature treatment of up to 1,400 K was also shown to further promote overall redox capacity without affecting low-temperature redox behavior. Moreover, evidence is provided to show that Cu and Mn are dissolved within the CeO{sub 2} lattice structure. Addition of dopants enhances catalytic redox properties in the oxidation of CO at low temperatures, which is associated with the high concentration of oxygen vacancies that form on the introduction of aliovalent elements into the ceria-zirconia lattice.

Primavera, A.; Trovarelli, A.; Terribile, D.; Leitenburg, C. de; Dolcetti, G. [Univ. di Udine (Italy). Dipt. di Scienze e Tecnologie Chimiche; Llorca, J. [Univ. de Barcelona (Spain). Dept. de Quimica Inorganica

1997-12-31T23:59:59.000Z

129

TRU decontamination of high-level Purex waste by solvent extraction using a mixed octyl(phenyl)-N,N-diisobutyl-carbamoylmethylphosphine oxide/TBP/NPH (TRUEX) solvent  

SciTech Connect (OSTI)

The TRUEX (transuranium extraction) process was tested on a simulated high-level dissolved sludge waste (DSW). A batch counter-current extraction mode was used for seven extraction and three scrub stages. One additional extraction stage and two scrub stages and all strip stages were performed by batch extraction. The TRUEX solvent consisted of 0.20 M octyl(phenyl)-N,N-diisobutylcarbamoyl-methylphosphine oxide-1.4 M TBP in Conoco (C/sub 12/-C/sub 14/). The feed solution was 1.0 M in HNO/sub 3/, 0.3 M in H/sub 2/C/sub 2/O/sub 4/ and contained mixed (stable) fission products, U, Np, Pu, and Am, and a number of inert constituents, e.g., Fe and Al. The test showed that the process is capable of reducing the TRU concentration in the DSW by a factor of 4 x 10/sup 4/ (to <100 nCi/g of disposed form) and reducing the quantity of TRU waste by two orders of magnitude.

Horwitz, E.P.; Kalina, D.G.; Diamond, H.; Kaplan, L.; Vandegrift, G.F.; Leonard, R.A.; Steindler, M.J.; Schulz, W.W.

1984-01-01T23:59:59.000Z

130

Waste Form Development for the Solidification of PDCF/MOX Liquid Waste Streams  

SciTech Connect (OSTI)

At the Savannah River Site, part of the Department of Energy's nuclear materials complex located in South Carolina, cementation has been selected as the solidification method for high-alpha and low-activity waste streams generated in the planned plutonium disposition facilities. A Waste Solidification Building (WSB) that will be used to treat and solidify three radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility) and the Mixed Oxide Fuel Fabrication Facility is in the preliminary design stage. The WSB is expected to treat a transuranic (TRU) waste stream composed primarily of americium and two low-level waste (LLW) streams. The acidic wastes will be concentrated in the WSB evaporator and neutralized in a cement head tank prior to solidification. A series of TRU mixes were prepared to produce waste forms exhibiting a range of processing and cured properties. The LLW mixes were prepared using the premix from the preferred TRU waste form. All of the waste forms tested passed the Toxicity Characteristic Leaching Procedure. After processing in the WSB, current plans are to dispose of the solidified TRU waste at the Waste Isolation Pilot Plant in New Mexico and the solidified LLW waste at an approved low-level waste disposal facility.

COZZI, ALEX

2004-02-18T23:59:59.000Z

131

Formation of mixed oxide powders in flames: Part II. SiO sub 2 --GeO sub 2 and Al sub 2 O sub 3 --TiO sub 2  

SciTech Connect (OSTI)

SiO{sub 2}--GeO{sub 2} and Al{sub 2}O{sub 3}--TiO{sub 2} mixed oxide powders were synthesized using a counterflow diffusion flame burner. SiCl{sub 4}, GeCl{sub 4}, Al(CH{sub 3}){sub 3}, and TiCl{sub 4} were used as source materials for the formation of oxide particles in hydrogen-oxygen flames. {ital In} {ital situ} particle sizes were determined using dynamic light-scattering. Powders were collected using two different methods, a thermophoretic method (particles are collected onto carbon coated TEM grids) and an electrophoretic method (particles are collected onto stainless steel strips). Their size, morphology, and crystalline form were examined using a transmission electron microscope and an x-ray diffractometer. A photomultiplier at 90{degree} to the argon ion laser beam was used to measure the light-scattering intensity. The formation of the mixed oxides was investigated using Si to Ge and Al to Ti ratios of 3:5 and 1:1, respectively. Heterogeneous nucleation of the SiO{sub 2} on the surface of the GeO{sub 2} was observed. In Al{sub 2}O{sub 3}--TiO{sub 2} mixtures, both oxide particles form at the same temperature. X-ray diffraction analysis of particles sampled at temperatures higher than 1553 K showed the presence of rutile, {gamma}--Al{sub 2}O{sub 3}, and aluminum titanate. Although the particle formation processes for SiO{sub 2}--GeO{sub 2} is very different from that for Al{sub 2}O{sub 3}--TiO{sub 2}, both mixed oxides result in very uniform mixtures.

Hung, C.; Miquel, P.F.; Katz, J.L. (Department of Chemical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218 (United States))

1992-07-01T23:59:59.000Z

132

Single-Site Vanadyl Activation, Functionalization, and Reoxidation Reaction Mechanism for Propane Oxidative Dehydrogenation on the Cubic V4O10 Cluster  

E-Print Network [OSTI]

, and mixed metal oxide (MMO) catalysts for selective oxidation and ammoxida- tion of propene to acrolein

Goddard III, William A.

133

Compared performances of ENDF/B-VI and JEF-2.2 for MOX core physics.  

SciTech Connect (OSTI)

The US is currently evaluating the use of MOX fuel in commercial LWR's for reducing weapons grade Pu stockpiles. The design and licensing processes will require that the validity of the nuclear data libraries and codes used in the effort be demonstrated. Unfortunately, there are only a very limited number of relatively old and non representative integral experiments' freely available to the US programs. This lack of adequate experimental data can be partially remediated by comparing the results of well validated European codes with the results of candidate US codes. The demonstration can actually be divided in two components: a code to code (Monte Carlo) comparison can easily demonstrate the validity and limits of the proposed algorithms; and the performances of nuclear data libraries should be compared, major trends should be observed, and their origins should be explained in terms of differences in evaluated nuclear data; In this paper, we have compared the performances of the JEF-2.2 and ENDF/B-VI.4 libraries for a series of benchmarks for k{sub eff}, void worth, and pin power distributions. Note that JEF-2.2 has been extensively validated for MOX applications.

Finck, P. J.

1998-07-08T23:59:59.000Z

134

Evaluation of fuel cycle scenarios on MOX fuel recycling in PWRs and SFRs  

SciTech Connect (OSTI)

Prospects on advanced fuel cycle scenario are considered for achieving a progressive integration of Sodium Fast Reactor (SFR) technology within the current French Pressurized Water Reactor (PWR) nuclear fleet, in a view to benefit from fissile material multi-recycling capability. A step by step process is envisioned, and emphasis is put on its potential implementation through the nuclear mass inventory calculations with the COSAC code. The overall time scale is not optimized. The first step, already implemented in several countries, the plutonium coming from the reprocessing of used Light Water Reactor (LWR) fuels is recycled into a small number of LWRs. The second step is the progressive introduction of the first SFRs, in parallel with the continuation of step 1. This second step lets to prepare the optimized multi recycling of MOX fuel which is considered in step 3. Step 3 is characterized by the introduction of a greater number of SFR and MOX management between EPR reactors and SFRs. In the final step 4, all the fleet is formed with SFRs. This study assesses the viability of each step of the overall scenario. The switch from one step to the other one could result from different constrains related to issues such as resources, waste, experience feedback, public acceptance, country policy, etc.

Carlier, B.; Caron-Charles, M.; Van Den Durpel, L. [AREVA, 1 place Jean Millier, Paris La Defense (France); Senentz, G. [AREVA, 33 rue La Lafayette, 75009 Paris (France); Serpantie, J.P. [AREVA, 10 rue Juliette Recamier, Lyon (France)

2013-07-01T23:59:59.000Z

135

Analytical Results For MOX Colemanite Concrete Samples Received On September 4, 2013  

SciTech Connect (OSTI)

The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory (SRNL) is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. SRNL received three samples of colemanite concrete for analysis on September 4, 2013. The average total density of each of the samples measured by the ASTM method C 642, the average partial hydrogen density was measured using method ASTM E 1131, and the average partial boron density of each sample was measured according to ASTM C 1301. The lower limits and measured values for the total density, hydrogen partial density, and boron partial density are presented. For all the samples tested, the total density and the boron partial density met or exceeded the specified limit. None of the samples met the lower limit for hydrogen partial density.

Reigel, Marissa M.

2013-09-24T23:59:59.000Z

136

Analytical Results For MOX Colemanite Concrete Samples Received On November, 2013  

SciTech Connect (OSTI)

The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory (SRNL) is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. SRNL received two samples of colemanite concrete for analysis on November 21, 2013. The average total density of each of the samples measured by the ASTM method C 642, the average partial hydrogen density was measured using method ASTM E 1131, and the average partial boron density of each sample was measured according to ASTM C 1301. For all the samples tested, the total density and the boron partial density met or exceeded the specified limit. None of the samples met the lower limit for hydrogen partial density.

Reigel, Marissa M.

2013-12-18T23:59:59.000Z

137

ANALYTICAL RESULTS FOR MOX COLEMANITE CONCRETE SAMPLES RECEIVED ON NOVEMBER 21, 2013  

SciTech Connect (OSTI)

The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory (SRNL) is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. SRNL received two samples of colemanite concrete for analysis on November 21, 2013. The average total density of each of the samples measured by the ASTM method C 642, the average partial hydrogen density was measured using method ASTM E 1131, and the average partial boron density of each sample was measured according to ASTM C 1301. The lower limits and measured values for the total density, hydrogen partial density, and boron partial density are presented. For all the samples tested, the total density and the boron partial density met or exceeded the specified limit. None of the samples met the lower limit for hydrogen partial density.

Reigel, M.

2014-05-19T23:59:59.000Z

138

ANALYTICAL RESULTS FOR MOX COLEMANITE CONCRETE SAMPLES RECEIVED ON SEPTEMBER 4, 2013  

SciTech Connect (OSTI)

The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory (SRNL) is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. SRNL received three samples of colemanite concrete for analysis on September 4, 2013. The average total density of each of the samples measured by the ASTM method C 642, the average partial hydrogen density was measured using method ASTM E 1131, and the average partial boron density of each sample was measured according to ASTM C 1301. The lower limits and measured values for the total density, hydrogen partial density, and boron partial density are presented. For all the samples tested, the total density and the boron partial density met or exceeded the specified limit. None of the samples met the lower limit for hydrogen partial density.

Reigel, M.

2014-05-19T23:59:59.000Z

139

THERMAL EVALUATION OF THE USE OF BWR MOX SNF IN THE WASTE PACKAGE DESIGN (SCPB: N/A)  

SciTech Connect (OSTI)

This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) as specified in the Waste Package Implementation Plan (pp. 4-8,4-11,4-24, 5-1, and 5-13; Ref. 5.10) and Waste Package Plan (pp. 3-15,3-17, and 3-24; Ref. 5.9). The design data request addressed herein is: (1) Characterize the conceptual 40 BWR and 24 BWR Multi-Purpose Canister (MPC) Waste Package (WP) design to show that the design is feasible for use in the MGDS environment when loaded with BWR MOX SNF. (2) Characterize the conceptual 44 BWR and 24 BWR Uncanistered Fuel (UCF) Waste Package (WP) design to show that the design is feasible for use in the MGDS environment when loaded with BWR MOX SNF. The purpose of this analysis is to respond to a concern that the long-term disposal thermal issues for the WP Design, if used with SNF designed for a MOX fuel cycle, do not preclude WP compatibility with the MGDS. The objective of this analysis is to provide thermal parameter information for the conceptual WP design with disposal container which is loaded with BWR MOX SNF under nominal MGDS repository conditions. The results are intended to show that the design has a reasonable chance to meet the MGDS design requirements for normal MGDS operation, and to provide the required guidance to determining the major design issues for future design efforts, and to show that the BWR MOX SNF loaded WP performance is similar to an WP loaded with commercial BWR SNF.

H. Wang

1997-01-23T23:59:59.000Z

140

Doped palladium containing oxidation catalysts  

DOE Patents [OSTI]

A supported oxidation catalyst includes a support having a metal oxide or metal salt, and mixed metal particles thereon. The mixed metal particles include first particles including a palladium compound, and second particles including a precious metal group (PMG) metal or PMG metal compound, wherein the PMG metal is not palladium. The oxidation catalyst may also be used as a gas sensor.

Mohajeri, Nahid

2014-02-18T23:59:59.000Z

Note: This page contains sample records for the topic "mox mixed oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Integration Strategy for DB-MHR TRISO Fuel production in conjunction with MOX Fuel production  

SciTech Connect (OSTI)

One of the nuclear power options for the future involves the evolution of gas cooled reactors to support the likely high temperature operations needed for commercial scale hydrogen production. One such proposed option is to use a Gas Turbine Modular Helium Reactor fueled with uranium based TRISO (coated particle) fuel. It has also been suggested that such a MHR could be operated in a ''Deep Burn'' manner fueled with TRISO fuel produced from recycle spent nuclear fuel. This concept known as a DBMHR must withstand significant development and fuel fabrication cost to be economically viable. The purpose of this report is to consider and propose a strategy where synergy with a parallel MOX fuel to LWR program provides economic or other advantage for either or both programs. A strategy involving three phases has been envisioned with potential for economic benefit relative to a stand-alone TRISO/DBMHR program. Such a strategy and related timing will ultimately be driven by economics, but is offered here for consideration of value to the total AFCI program. Phase I Near-term. Conventional spent fuel aqueous processing, MOX fuel fabrication, and use of present and future LWR/ALWR's with objective of a ''Continuous Recycle'' mode of fuel cycle management. Phase II Intermediate. Augmentation of LWR/ALWR industry with MHR deployment as justified by hydrogen economy and/or electrical demand. Phase III Long-term. Introduction of DBMHR's to offer alternative method for transuranic destruction and associated repository benefits, in addition to Phase II benefits. The basic philosophy of this strategy appears sound. However, the details of the technology plans and economic evaluations should receive additional detail and evaluation in the next fiscal year as funding can support.

MCGUIRE, DAVID

2005-09-30T23:59:59.000Z

142

ANALYTICAL RESULTS FOR MOX COLEMANITE CONCRETE SAMPLES RECEIVED ON JANUARY 15, 2013  

SciTech Connect (OSTI)

The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory (SRNL) is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. SRNL received twelve samples of colemanite concrete for analysis on January 15, 2013. The average total density of each of the samples measured by the ASTM method C 642, the average partial hydrogen density was measured using method ASTM E 1131, and the average partial boron density of each sample was measured according to ASTM C 1301. The lower limits and measured values for the total density, hydrogen partial density, and boron partial density are presented. For all the samples tested, the total density and the hydrogen partial density met or exceeded the specified limit. All of the samples met or exceeded the boron partial density lower bound with the exception of samples G3-M11-2000-H, G3-M11-3000-M, and G5-M1-3000-H which are below the limit of 1.65E-01 g/cm{sup 3}.

Reigel, M.

2014-05-19T23:59:59.000Z

143

ANALYTICAL RESULTS OF MOX COLEMANITE CONCRETE SAMPLES POURED AUGUST 29, 2012  

SciTech Connect (OSTI)

The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. Samples poured 8/29/12 were received on 9/20/2012 and analyzed. The average total density of each of the samples measured by the ASTM method C 642 was within the lower bound of 1.88 g/cm{sup 3}. The average partial hydrogen density of samples 8.6.1, 8.7.1, and 8.5.3 as measured using method ASTM E 1311 met the lower bound of 6.04E-02 g/cm{sup 3}. The average measured partial boron density of each sample met the lower bound of 1.65E-01 g/cm{sup 3} measured by the ASTM C 1301 method. The average partial hydrogen density of samples 8.5.1, 8.6.3, and 8.7.3 did not meet the lower bound. The samples, as received, were not wrapped in a moist towel as previous samples and appeared to be somewhat drier. This may explain the lower hydrogen partial density with respect to previous samples.

Cozzi, A.; Best, D.; Reigel, M.

2012-10-30T23:59:59.000Z

144

ANALYTICAL RESULTS OF MOX COLEMANITE CONCRETE SAMPLE PBC-44.2  

SciTech Connect (OSTI)

The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. Sample PBC-44.2 was received on 9/20/2012 and analyzed. The average total density measured by the ASTM method C 642 was 2.03 g/cm{sup 3}, within the lower bound of 1.88 g/cm3. The average partial hydrogen density was 6.64E-02 g/cm{sup 3} as measured using method ASTM E 1311 and met the lower bound of 6.04E-02 g/cm{sup 3}. The average measured partial boron density was 1.70E-01 g/cm{sup 3} which met the lower bound of 1.65E-01 g/cm{sup 3} measured by the ASTM C 1301 method.

Best, D.; Cozzi, A.; Reigel, M.

2012-12-20T23:59:59.000Z

145

ANALYTICAL RESULTS OF MOX COLEMANITE CONCRETE SAMPLE POURED MAY 4, 2012  

SciTech Connect (OSTI)

The Mixed Oxide Fuel Fabrication Facility (MFFF) will use Colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses. The Savannah River National Laboratory is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. Sample 04 May 12/Test/S1-1, S1-2, and S1-3 was received on 5/9/2012 and analyzed. The total density measure by the ASTM method C 642 was 2.00 g/cm{sup 3}, within the lower bound of 1.88 g/cm{sup 3}. The partial hydrogen density of 6.35E-02 g/cm{sup 3} as measured using method ASTM E 1311 met the lower bound of 6.04E-02 g/cm{sup 3}. The measured partial boron density of 1.88E-01 g/cm{sup 3} exceeded the lower bound of 1.65E-01 g/cm{sup 3} when the sodium peroxide fusion dissolution method was used in place of the prescribed ASTM C 1301 method.

Cozzi, A.; Best, D.; Reigel, M.

2012-06-14T23:59:59.000Z

146

ANALYTICAL RESULTS OF MOX COLEMANITE CONCRETE SAMPLE POURED JULY 25, 2012 - CURED 28 DAYS  

SciTech Connect (OSTI)

The Mixed Oxide Fuel Fabrication Facility (MFFF) will use Colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. Samples 8.1.2, 8.2.2, 8.3.2, and 8.4.2 were received on 8/1/2012 and analyzed after curing for 28 days. The average total density measured by the ASTM method C 642 was 2.09 g/cm{sup 3}, within the lower bound of 1.88 g/cm{sup 3}. The average partial hydrogen density was 7.48E-02 g/cm{sup 3} as measured using method ASTM E 1311 and met the lower bound of 6.04E-02 g/cm{sup 3}. The average measured partial boron density was 1.71E-01 g/cm{sup 3} which met the lower bound of 1.65E-01 g/cm{sup 3} measured by the ASTM C 1301 method.

Cozzi, A. D.; Best, D. R.; Reigel, M. M.

2012-09-18T23:59:59.000Z

147

ANALYTICAL RESULTS OF MOX COLEMANITE CONCRETE SAMPLES POURED AUGUST 29, 2012  

SciTech Connect (OSTI)

The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. Samples poured 8/29/12 were received on 9/20/2012 and analyzed. The average total density of each of the samples measured by the ASTM method C 642 was within the lower bound of 1.88 g/cm{sup 3}. The average partial hydrogen density of samples 8.6.1, 8.7.1, and 8.5.3 as measured using method ASTM E 1311 met the lower bound of 6.04E-02 g/cm{sup 3}. The average measured partial boron density of each sample met the lower bound of 1.65E-01 g/cm{sup 3} measured by the ASTM C 1301 method. The average partial hydrogen density of samples 8.5.1, 8.6.3, and 8.7.3 did not meet the lower bound. The samples, as received, were not wrapped in a moist towel as previous samples and appeared to be somewhat drier. This may explain the lower hydrogen partial density with respect to previous samples.

Best, D.; Cozzi, A.; Reigel, M.

2012-12-20T23:59:59.000Z

148

Analytical Results Of MOX Colemanite Concrete Sample PBC-44.2  

SciTech Connect (OSTI)

The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. Sample PBC-44.2 was received on 9/20/2012 and analyzed. The average total density measured by the ASTM method C 642 was 2.03 g/cm{sup 3}, within the lower bound of 1.88 g/cm{sup 3}. The average partial hydrogen density was 6.64E-02 g/cm{sup 3} as measured using method ASTM E 1311 and met the lower bound of 6.04E-02 g/cm{sup 3}. The average measured partial boron density was 1.97E-01 g/cm{sup 3} which met the lower bound of 1.65E-01 g/cm{sup 3} measured by the ASTM C 1301 method.

Cozzi, A. D.; Best, D. R.; Reigel, M. M.

2012-10-18T23:59:59.000Z

149

ANALYTICAL RESULTS FOR MOX COLEMANITE CONCRETE SAMPLES RECEIVED ON JANUARY 15, 2013  

SciTech Connect (OSTI)

The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory (SRNL) is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. SRNL received twelve samples of colemanite concrete for analysis on January 15, 2013. The average total density of each of the samples measured by the ASTM method C 642, the average partial hydrogen density was measured using method ASTM E 1311, and the average partial boron density of each sample was measured according to ASTM C 1301. The lower limits and measured values for the total density, hydrogen partial density, and boron partial density are presented. For all the samples tested, the total density and the hydrogen partial density met or exceeded the specified limit. All of the samples met or exceeded the boron partial density lower bound with the exception of samples G3-M11-2000-H, G3-M11-3000-M, and G5-M1-3000-H which are below the limit of 1.65E-01 g/cm3.

Reigel, M.; Best, D.

2013-02-13T23:59:59.000Z

150

Investigation of mixed metal sorbent/catalysts for the simultaneous removal of sulfur and nitrogen oxides. Semiannual report, Apr 1, 1998--Oct 31, 1998  

SciTech Connect (OSTI)

Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823--900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}. The objective of this research is to conduct kinetic and parametric studies of the selective catalytic reduction of NO{sub x} with NH{sub 3} and CH{sub 4} over alumina-supported cerium oxide and copper oxide-cerium oxide sorbent/catalysts; investigate SO{sub 2} removal at lower temperatures by supported copper oxide-cerium oxide sorbents; and investigate the possibility of elemental sulfur production during regeneration with CO or with CH{sub 4} air mixtures. The sorbents consisting of cerium oxide and copper oxide impregnated on alumina have been prepared and characterized. Their sulfation performance has been investigated in a TGA setup, studying mainly the effects of temperature and sorbent composition. The results of the sulfation experiments have been evaluated and presented in this report. A study to model the sulfation selectivity of the two constituents of the sorbents is also underway.

Dr. Ates Akyurtlu; Dr. Jale F. Akyurtlu

1998-10-31T23:59:59.000Z

151

Gold, Copper, and Platinum Nanoparticles Dispersed on CeOx/TiO2(110) Surfaces: High Water-Gas Shift Activity and the Nature of the Mixed-Metal Oxide at the Nanometer Level  

SciTech Connect (OSTI)

At small coverages of ceria on TiO{sub 2}(110), the CeO{sub x} nanoparticles have an unusual coordination mode. Scanning tunneling microscopy and density-functional calculations point to the presence of Ce{sub 2}O{sub 3} dimers, which form diagonal arrays that have specific orientations of 0, 24, and 42{sup o} with respect to the [1 -1 0] direction of the titania substrate. At high coverages of ceria on TiO{sub 2}(110), the surface exhibits two types of terraces. In one type, the morphology is not very different from that observed at low ceria coverage. However, in the second type of terrace, there is a compact array of ceria particles with structures that do not match the structures of CeO{sub 2}(111) or CeO{sub 2}(110). The titania substrate imposes on the ceria nanoparticles nontypical coordination modes, enhancing their chemical reactivity. This phenomenon leads to a larger dispersion of supported metal nanoparticles (M = Au, Cu, Pt) and makes possible the direct participation of the oxide in catalytic reactions. The M/CeO{sub x}/TiO{sub 2}(110) surfaces display an extremely high catalytic activity for the water-gas shift reaction that follows the sequence Au/CeO{sub x}/TiO{sub 2}(110) < Cu/CeO{sub x}/TiO{sub 2}(110) < Pt/CeO{sub x}/TiO{sub 2}(110). For low coverages of Cu and CeO{sub x}, Cu/CeO{sub x}/TiO{sub 2}(110) is 8-12 times more active than Cu(111) or Cu/ZnO industrial catalysts. In the M/CeO{sub x}/TiO{sub 2}(110) systems, there is a strong coupling of the chemical properties of the admetal and the mixed-metal oxide: The adsorption and dissociation of water probably take place on the oxide, CO adsorbs on the admetal nanoparticles, and all subsequent reaction steps occur at the oxide-admetal interface. The high catalytic activity of the M/CeO{sub x}/TiO{sub 2}(110) surfaces reflects the unique properties of the mixed-metal oxide at the nanometer level.

Park, J.; Graciani, J; Evans, J; Stacchiola, D; Senanayake, S; Barrio, L; Liu, P; Fdez. Sanz, J; Hrbek, J; Rodriguez, J

2010-01-01T23:59:59.000Z

152

Gold, Copper and Platinum Nanoparticles Dispersed on CeOx/TiO2(110) Surfaces: High Water-Gas Shift Activity and the Nature of the Mixed-Metal Oxide at the Nanometer Level  

SciTech Connect (OSTI)

At small coverages of ceria on TiO{sub 2}(110), the CeO{sub x} nanoparticles have an unusual coordination mode. Scanning tunneling microscopy and density-functional calculations point to the presence of Ce{sub 2}O{sub 3} dimers, which form diagonal arrays that have specific orientations of 0, 24, and 42{sup o} with respect to the [1 -1 0] direction of the titania substrate. At high coverages of ceria on TiO{sub 2}(110), the surface exhibits two types of terraces. In one type, the morphology is not very different from that observed at low ceria coverage. However, in the second type of terrace, there is a compact array of ceria particles with structures that do not match the structures of CeO{sub 2}(111) or CeO{sub 2}(110). The titania substrate imposes on the ceria nanoparticles nontypical coordination modes, enhancing their chemical reactivity. This phenomenon leads to a larger dispersion of supported metal nanoparticles (M = Au, Cu, Pt) and makes possible the direct participation of the oxide in catalytic reactions. The M/CeO{sub x}/TiO{sub 2}(110) surfaces display an extremely high catalytic activity for the water-gas shift reaction that follows the sequence Au/CeO{sub x}/TiO{sub 2}(110) < Cu/CeO{sub x}/TiO{sub 2}(110) < Pt/CeO{sub x}/TiO{sub 2}(110). For low coverages of Cu and CeO{sub x}, Cu/CeO{sub x}/TiO{sub 2}(110) is 8-12 times more active than Cu(111) or Cu/ZnO industrial catalysts. In the M/CeO{sub x}/TiO{sub 2}(110) systems, there is a strong coupling of the chemical properties of the admetal and the mixed-metal oxide: The adsorption and dissociation of water probably take place on the oxide, CO adsorbs on the admetal nanoparticles, and all subsequent reaction steps occur at the oxide-admetal interface. The high catalytic activity of the M/CeO{sub x}/TiO{sub 2}(110) surfaces reflects the unique properties of the mixed-metal oxide at the nanometer level.

Rodriguez, J.A.; Park, J.B.; Graciani, J.; Evans, J.; Stacchiola, D.; Senanayake, S.D.; Barrio, L.; Liu, P.; Sanz, J.F.; Hrbek, J.

2010-01-13T23:59:59.000Z

153

Material unaccounted for at the Southwest Experimental Fast Oxide Reactor: The SEFOR MUF  

SciTech Connect (OSTI)

The U.S. Atomic Energy Commission contracted with the General Electric Company to design, construct, and operate the Southwest Experimental Fast Oxide Reactor (SEFOR) to measure the Doppler effect for fast neutron breeder reactors. It contracted with Nuclear Fuel Services to fabricate the fuel rods for the reactor. When the reactor went critical in May, 1969, it appeared that some of the mixed uranium-plutonium oxide (MOX) fuel rods did not contain the specified quantity of plutonium. The SEFOR operators soon found several fuel rods which appeared to be low in plutonium. The safeguards group at Brookhaven was asked to look into the problem and, if possible, determine how much plutonium was missing from the unirradiated rods and from the larger number which had been slightly irradiated in the reactor. It was decided that the plutonium content of the unirradiated and irradiated rods could be measured relative to a reference rod using a high resolution gamma-ray detector and also by neutron measurements using an auto-correlation circuit recently developed at the Naval Research Laboratory (NRL). During the next two years, Brookhaven personnel and C.V. Strain of NRL made several trips to the SEFOR reactor. About 250 of the 775 rods were measured by two or more methods, using a sodium-iodide detector, a high-resolution germanium detector, a neutron detector, or the reactor (to measure reactivity). The research team concluded that 4.6 {+-} 0.46 kg of plutonium was missing out of the 433 kg that the rods should have contained. This report describes the SEFOR experiment and the procedures used to determine the material unaccounted for, or MUF.

Higinbotham, W.A.

1994-11-07T23:59:59.000Z

154

THERMAL EVALUATION OF THE USE OF BWR MOX SNF IN THE MULTI-PURPOSE CANISTER (MPC) WITH ACD DISPOSAL CONTAINER (SCPB: N/A)  

SciTech Connect (OSTI)

This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) as specified in the Waste Package Implementation Plan (pp. 4-8,4-11,4-24,5-1, and 5-13; Ref. 5.10) and Waste Package Plan (pp. 3-15,3-17, and 3-24; Ref. 5.9). The design data request addressed herein is: (1) Characterize the conceptual 40 BWR Multi-Purpose Canister (MPC) Waste Package (WP) design to show that the design is feasible for use in the MGDS environment when loaded with BWR MOX SNF. (2) Characterize the conceptual 24 BWR Multi-Purpose Canister (MPC) Waste Package (WP) design to show that the design is feasible for use in the MGDS environment when loaded with BWR MOX SNF. The purpose of this analysis is to respond a concern that the long-term disposal thermal issues for the Multi-Purpose Canister (MPC) Subsystem Design, if used with SNF designed for a MOX fuel cycle, do not preclude MPC compatibility with the MGDS. The objective of this analysis is to provide thermal parameter information for the conceptual MPC design with disposal container which is loaded with BWR MOX SNF under nominal MGDS repository conditions. The results are intended to show that the design has a reasonable chance to meet the MGDS design requirements for normal MGDS operation, to provide the required guidance to determining the major design issues for future design efforts, and to show that the BWR MOX SNF loaded MPC performance is similar to an MPC loaded with commercial BWR SNF. Future design efforts will focus on specific MPC vendor designs and BWR MOX SNF designs when they become available.

T.L. Lotz

1995-11-13T23:59:59.000Z

155

Disposition of weapons-grade plutonium in Westinghouse reactors  

E-Print Network [OSTI]

We have studied the feasibility of using weapons-grade plutonium in the form of mixed-oxide (MOX) fuel in existing Westinghouse reactors. We have designed three transition cycles from an all LEU core to a partial MOX core. We found that four...

Alsaed, Abdelhalim Ali

2012-06-07T23:59:59.000Z

156

Accident source terms for light-water nuclear power plants using high-burnup or MOX fuel.  

SciTech Connect (OSTI)

Representative accident source terms patterned after the NUREG-1465 Source Term have been developed for high burnup fuel in BWRs and PWRs and for MOX fuel in a PWR with an ice-condenser containment. These source terms have been derived using nonparametric order statistics to develop distributions for the timing of radionuclide release during four accident phases and for release fractions of nine chemical classes of radionuclides as calculated with the MELCOR 1.8.5 accident analysis computer code. The accident phases are those defined in the NUREG-1465 Source Term - gap release, in-vessel release, ex-vessel release, and late in-vessel release. Important differences among the accident source terms derived here and the NUREG-1465 Source Term are not attributable to either fuel burnup or use of MOX fuel. Rather, differences among the source terms are due predominantly to improved understanding of the physics of core meltdown accidents. Heat losses from the degrading reactor core prolong the process of in-vessel release of radionuclides. Improved understanding of the chemistries of tellurium and cesium under reactor accidents changes the predicted behavior characteristics of these radioactive elements relative to what was assumed in the derivation of the NUREG-1465 Source Term. An additional radionuclide chemical class has been defined to account for release of cesium as cesium molybdate which enhances molybdenum release relative to other metallic fission products.

Salay, Michael (U.S. Nuclear Regulatory Commission, Washington, D.C.); Gauntt, Randall O.; Lee, Richard Y. (U.S. Nuclear Regulatory Commission, Washington, D.C.); Powers, Dana Auburn; Leonard, Mark Thomas

2011-01-01T23:59:59.000Z

157

Neutrino Mixing  

E-Print Network [OSTI]

In this review we present the main features of the current status of neutrino physics. After a review of the theory of neutrino mixing and oscillations, we discuss the current status of solar and atmospheric neutrino oscillation experiments. We show that the current data can be nicely accommodated in the framework of three-neutrino mixing. We discuss also the problem of the determination of the absolute neutrino mass scale through Tritium beta-decay experiments and astrophysical observations, and the exploration of the Majorana nature of massive neutrinos through neutrinoless double-beta decay experiments. Finally, future prospects are briefly discussed.

Carlo Giunti; Marco Laveder

2004-10-01T23:59:59.000Z

158

Performance testing and Bayesian Reliability Analysis of small diameter, high power electric heaters for the simulation of nuclear fuel rod temperatures  

E-Print Network [OSTI]

proposed full test using prototypic mixed-oxide fuel (MOX) containing plutonium from converted nuclear weapons. Bayesian reliability analysis methods were used to determine the expected heater failure rate because of the expected short test duration...

O'Kelly, David Sean

2012-06-07T23:59:59.000Z

159

Quantitative NDA Measurements of Advanced Reprocessing Product Materials Containing U, NP, PU, and AM  

E-Print Network [OSTI]

of this first principle technique have been identified: (1) quantitative measurement of uranium, neptunium, plutonium, and americium materials; (2) quantitative measurement of mixed oxide (MOX) materials; (3) quantitative measurement of uranium materials; and (4...

Goddard, Braden

2013-04-05T23:59:59.000Z

160

ZPR-6 assembly 7 high {sup 240} PU core : a cylindrical assemby with mixed (PU, U)-oxide fuel and a central high {sup 240} PU zone.  

SciTech Connect (OSTI)

Over a period of 30 years more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited to form the basis for criticality safety benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactor physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. The term 'benchmark' in a ZPR program connotes a particularly simple loading aimed at gaining basic reactor physics insight, as opposed to studying a reactor design. In fact, the ZPR-6/7 Benchmark Assembly (Reference 1) had a very simple core unit cell assembled from plates of depleted uranium, sodium, iron oxide, U3O8, and plutonium. The ZPR-6/7 core cell-average composition is typical of the interior region of liquid-metal fast breeder reactors (LMFBRs) of the era. It was one part of the Demonstration Reactor Benchmark Program,a which provided integral experiments characterizing the important features of demonstration-size LMFBRs. As a benchmark, ZPR-6/7 was devoid of many 'real' reactor features, such as simulated control rods and multiple enrichment zones, in its reference form. Those kinds of features were investigated experimentally in variants of the reference ZPR-6/7 or in other critical assemblies in the Demonstration Reactor Benchmark Program.

Lell, R. M.; Schaefer, R. W.; McKnight, R. D.; Tsiboulia, A.; Rozhikhin, Y.; Nuclear Engineering Division; Inst. of Physics and Power Engineering

2007-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "mox mixed oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Experiment Safety Assurance Package for the 40- to 50-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-Hole Positions in the Advanced Test Reactor  

SciTech Connect (OSTI)

This experiment safety assurance package (ESAP) is a revision of the last MOX ESAP issued in February 2001(Khericha 2001). The purpose of this revision is to identify the changes in the loading pattern and to provide a basis to continue irradiation up to {approx}42 GWd/MT burnup (+ 2.5%) as predicted by MCNP (Monte Carlo N-Particle) transport code before the preliminary postirradiation examination (PIE) results for 40 GWd/MT burnup are available. Note that the safety analysis performed for the last ESAP is still applicable and no additional analysis is required (Khericha 2001). In July 2001, it was decided to reconfigure the test assembly using the loading pattern for Phase IV, Part 3, at the end of Phase IV, Part 1, as the loading pattern for Phase IV, Parts 2 and 3. Three capsule assemblies will be irradiated until the highest burnup capsule assembly accumulates: {approx}50 GWd/MT burnup, based on the MCNP code predictions. The last ESAP suggests that at the end of Phase IV, Part 1, we remove the two highest burnup capsule assemblies ({at} {approx}40 GWd/MT burnup) and send them to ORNL for PIE. Then, irradiate the test assembly using the loading pattern for Phase IV, Part 2, until the highest burnup capsule reaches {approx}40 GWd/MT burnup per MCNP-predicted values.

Khericha, S.T.

2002-06-30T23:59:59.000Z

162

Experiment Safety Assurance Package for the 40- to 50-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-Hole Positions in the Advanced Test Reactor  

SciTech Connect (OSTI)

This experiment safety assurance package (ESAP) is a revision of the last MOX ESAP issued in February 2001(Khericha 2001). The purpose of this revision is to identify the changes in the loading pattern and to provide a basis to continue irradiation up to ~42 GWd/MT burnup (+ 2.5% as predicted by MCNP (Monte Carlo N-Particle) transport code before the preliminary postirradiation examination (PIE) results for 40 GWd/MT burnup are available. Note that the safety analysis performed for the last ESAP is still applicable and no additional analysis is required (Khericha 2001). In July 2001, it was decided to reconfigure the test assembly using the loading pattern for Phase IV, Part 3, at the end of Phase IV, Part 1, as the loading pattern for Phase IV, Parts 2 and 3. Three capsule assemblies will be irradiated until the highest burnup capsule assembly accumulates: ~50 GWd/MT burnup, based on the MCNP code predictions. The last ESAP suggests that at the end of Phase IV, Part 1, we remove the two highest burnup capsule assemblies (@ ~40 GWd/MT burnup) and send them to ORNL for PIE. Then, irradiate the test assembly using the loading pattern for Phase IV, Part 2, until the highest burnup capsule reaches ~40 GWd/MT burnup per MCNP-predicted values.

Khericha, Soli T

2002-06-01T23:59:59.000Z

163

Fluorescence-based detection methodologies for nitric oxide using transition metal scaffolds  

E-Print Network [OSTI]

Chapter 1. Fluorescence-Based Detection Methodologies for Nitric Oxide: A Review. Chapter 2. Cobalt Chemistry with Mixed Aminotroponimine Salicylaldimine Ligands: Synthesis, Characterization, and Nitric Oxide Reactivity. ...

Hilderbrand, Scott A. (Scott Alan), 1976-

2004-01-01T23:59:59.000Z

164

E-Print Network 3.0 - alleviates oxidative damage Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

may cause erosion damage... into oxidation and exfoliation,mixed oxidant attack, molten salt accelerated corrosion, and the effect... of corrosion on the mechanical properties of...

165

E-Print Network 3.0 - alleviating oxidative damage Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

may cause erosion damage... into oxidation and exfoliation,mixed oxidant attack, molten salt accelerated corrosion, and the effect... of corrosion on the mechanical properties of...

166

Oxygen nonstoichiometry and defect structure analysis of B-site mixed perovskite-type oxide (La, Sr)(Cr, M)O{sub 3-{delta}} (M=Ti, Mn and Fe)  

SciTech Connect (OSTI)

The defect chemical relationships in various B-site mixed LaCrO{sub 3}-based ceramics were investigated by means of high-temperature gravimetry. The nonstoichiometric deviation, {delta}, in (La{sub 0.7}Sr{sub 0.3})(Cr{sub 1-y}Ti{sub y})O{sub 3-{delta}} (y=0.1, 0.2 and 0.3) (LSCT){sub ,} (La{sub 0.75}Sr{sub 0.25})(Cr{sub 0.5}Mn{sub 0.5})O{sub 3-{delta}} (LSCM) and (La{sub 0.75}Sr{sub 0.25})(Cr{sub 0.5}Fe{sub 0.5})O{sub 3-{delta}} (LSCF) were measured as a function of oxygen partial pressure, P{sub O{sub 2}}, at temperatures between 973 and 1373 K. The effects of partial replacement of the donor on Cr-sites were examined in LSCT. In LSCM and LSCF, effects of the partial substitution of isovalent transition metals on Cr-sites are discussed. Oxygen nonstoichiometries of various B-site mixed LaCrO{sub 3}-based ceramics were compared with those of A-site substituted perovskite-type oxides, (La{sub 1-x}Sr{sub x})MO{sub 3-{delta}} (where x=0-0.3, M=Cr, Mn and Fe). The partial substitution of the different elements on Cr-sites drastically changed the P{sub O{sub 2}} and temperature dependence of oxygen vacancy formation in LaCrO{sub 3}-based ceramics. The defect equilibrium relationships of the localized electron well explained the oxygen vacancy formation in B-site mixed LaCrO{sub 3}-based ceramics. Oxygen vacancy formation in (La{sub 0.7}Sr{sub 0.3})(Cr{sub 1-y}Ti{sub y})O{sub 3-{delta}} (y=0.1 and 0.2) and (La{sub 0.7}Sr{sub 0.3})(Cr{sub 0.7}Ti{sub 0.3})O{sub 3-{delta}} was explained by redox reaction of Cr and Ti ions, respectively. The defect equilibrium relationships of LSCM and LSCF were interpreted by redox reaction of Mn ions and Fe ions, respectively. No significant change in valence state of Cr{sup 3+} ions in LSCM and LSCF was confirmed under the experimental conditions. - Graphical abstract: Oxygen nonstoichiometry of (La{sub 0.75}Sr{sub 0.25})(Cr{sub 0.5}Fe{sub 0.5})O{sub 3-{delta}} was plotted as the functions of partial oxygen pressure and temperature. The results were well explained by the localized electron on the Fe-sites and the equilibrium constants of the defect chemical equation were determined. A hysteresis was observed under the reducing atmospheres above 1173 K due to decomposition of Fe ions.

Oishi, Masatsugu [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)], E-mail: oishi@mail.tagen.tohoku.ac.jp; Yashiro, Keiji; Sato, Kazuhisa; Mizusaki, Junichiro [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Kawada, Tatsuya [Graduate School of Environmental Studies, Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

2008-11-15T23:59:59.000Z

167

Metal oxide films on metal  

DOE Patents [OSTI]

A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

1995-01-01T23:59:59.000Z

168

Investigation of Mixed Oxide Catalysts for NO Oxidation  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

169

ZPR-6 assembly 7 high {sup 240}Pu core experiments : a fast reactor core with mixed (Pu,U)-oxide fuel and a centeral high{sup 240}Pu zone.  

SciTech Connect (OSTI)

ZPR-6 Assembly 7 (ZPR-6/7) encompasses a series of experiments performed at the ZPR-6 facility at Argonne National Laboratory in 1970 and 1971 as part of the Demonstration Reactor Benchmark Program (Reference 1). Assembly 7 simulated a large sodium-cooled LMFBR with mixed oxide fuel, depleted uranium radial and axial blankets, and a core H/D near unity. ZPR-6/7 was designed to test fast reactor physics data and methods, so configurations in the Assembly 7 program were as simple as possible in terms of geometry and composition. ZPR-6/7 had a very uniform core assembled from small plates of depleted uranium, sodium, iron oxide, U{sub 3}O{sub 8} and Pu-U-Mo alloy loaded into stainless steel drawers. The steel drawers were placed in square stainless steel tubes in the two halves of a split table machine. ZPR-6/7 had a simple, symmetric core unit cell whose neutronic characteristics were dominated by plutonium and {sup 238}U. The core was surrounded by thick radial and axial regions of depleted uranium to simulate radial and axial blankets and to isolate the core from the surrounding room. The ZPR-6/7 program encompassed 139 separate core loadings which include the initial approach to critical and all subsequent core loading changes required to perform specific experiments and measurements. In this context a loading refers to a particular configuration of fueled drawers, radial blanket drawers and experimental equipment (if present) in the matrix of steel tubes. Two principal core configurations were established. The uniform core (Loadings 1-84) had a relatively uniform core composition. The high {sup 240}Pu core (Loadings 85-139) was a variant on the uniform core. The plutonium in the Pu-U-Mo fuel plates in the uniform core contains 11% {sup 240}Pu. In the high {sup 240}Pu core, all Pu-U-Mo plates in the inner core region (central 61 matrix locations per half of the split table machine) were replaced by Pu-U-Mo plates containing 27% {sup 240}Pu in the plutonium component to construct a central core zone with a composition closer to that in an LMFBR core with high burnup. The high {sup 240}Pu configuration was constructed for two reasons. First, the composition of the high {sup 240}Pu zone more closely matched the composition of LMFBR cores anticipated in design work in 1970. Second, comparison of measurements in the ZPR-6/7 uniform core with corresponding measurements in the high {sup 240}Pu zone provided an assessment of some of the effects of long-term {sup 240}Pu buildup in LMFBR cores. The uniform core version of ZPR-6/7 is evaluated in ZPR-LMFR-EXP-001. This document only addresses measurements in the high {sup 240}Pu core version of ZPR-6/7. Many types of measurements were performed as part of the ZPR-6/7 program. Measurements of criticality, sodium void worth, control rod worth and reaction rate distributions in the high {sup 240}Pu core configuration are evaluated here. For each category of measurements, the uncertainties are evaluated, and benchmark model data are provided.

Lell, R. M.; Morman, J. A.; Schaefer, R.W.; McKnight, R.D.; Nuclear Engineering Division

2009-02-23T23:59:59.000Z

170

A global approach of the representativity concept: Application on a high-conversion light water reactor MOX lattice case  

SciTech Connect (OSTI)

The development of new types of reactor and the increase in the safety specifications and requirements induce an enhancement in both nuclear data knowledge and a better understanding of the neutronic properties of the new systems. This enhancement is made possible using ad hoc critical mock-up experiments. The main difficulty is to design these experiments in order to obtain the most valuable information. Its quantification is usually made by using representativity and transposition concepts. These theories enable to extract some information about a quantity of interest (an integral parameter) on a configuration, but generally a posteriori. This paper presents a more global approach of this theory, with the idea of optimizing the representativity of a new experiment, and its transposition a priori, based on a multiparametric approach. Using a quadratic sum, we show the possibility to define a global representativity which permits to take into account several quantities of interest at the same time. The maximization of this factor gives information about all quantities of interest. An optimization method of this value in relation to technological parameters (over-clad diameter, atom concentration) is illustrated on a high-conversion light water reactor MOX lattice case. This example tackles the problematic of plutonium experiment for the plutonium aging and a solution through the optimization of both the over-clad and the plutonium content. (authors)

Santos, N. D.; Blaise, P.; Santamarina, A. [CEA, DEN/DER/SPRC Cadarache, F-13108 Saint Paul-lez-Durance (France)

2013-07-01T23:59:59.000Z

171

Heterogeneous Reburning By Mixed Fuels  

SciTech Connect (OSTI)

Recent studies of heterogeneous reburning, i.e., reburning involving a coal-derived char, have elucidated its variables, kinetics and mechanisms that are valuable to the development of a highly efficient reburning process. Young lignite chars contain catalysts that not only reduce NO, but they also reduce HCN that is an important intermediate that recycles to NO in the burnout zone. Gaseous CO scavenges the surface oxides that are formed during NO reduction, regenerating the active sites on the char surface. Based on this mechanistic information, cost-effective mixed fuels containing these multiple features has been designed and tested in a simulated reburning apparatus. Remarkably high reduction of NO and HCN has been observed and it is anticipated that mixed fuel will remove 85% of NO in a three-stage reburning process.

Anderson Hall

2009-03-31T23:59:59.000Z

172

Approved for public release; distribution is unlimited.  

E-Print Network [OSTI]

approximately 5 mm in diameter by 5 mm tal/. Compositions measured ranged from depleted uranium oxide to mixtures of plutonium and depleted uranium oxide (MOX) and mixed oxides with small percentages of minor.1943 - - - Title: Resonant Ultrasound Spectroscopy Measurements of the Elastic Properties of Uranium

173

An autonomous long-term fast reactor system and the principal design limitations of the concept  

E-Print Network [OSTI]

Actinides MOX Mixed OXide MSR Molten-Salt Reactors NERI Nuclear Energy Research Initiative vii PWR Pressurized Water Reactor RGPu Reactor-Grade Plutonium SCNES Self-Consistent Nuclear Energy System STAR Secure Transportable Autonomous Reactor... of LWR?s, the drastic increase of Am and Cm inventories are observed after uranium fuel irradiation and the second recycling of MOX fuel.1 Therefore, partitioning and transmutation of the recovered MA?s could significantly reduce the long...

Tsvetkova, Galina Valeryevna

2004-09-30T23:59:59.000Z

174

Gallium interactions with Zircaloy  

E-Print Network [OSTI]

of weapons-grade plutonium (WGPu) in the United States is the conversion of weapons-grade plutonium into mixed-oxide (MOX) reactor fuel. MOX fuel fabricated in this way must be compatible with currently used nuclear fuel components. Since US WGPu contains... that gallium may have on zircaloy cladding during reactor operation. As a result of the reprocessing of spent fuel used in European nuclear programs, many studies have been conducted on the production and behavior of MOX fuel in traditional reactors [5...

West, Michael Keith

2012-06-07T23:59:59.000Z

175

Fuel qualification issues and strategies for reactor-based surplus plutonium disposition  

SciTech Connect (OSTI)

The Department of Energy (DOE) has proposed irradiation of mixed-oxide (MOX) fuel in existing commercial reactors as a disposition method for surplus plutonium from the weapons program. The burning of MOX fuel in reactors is supported by an extensive technology base; however, the infrastructure required to implement reactor-based plutonium disposition does not exist domestically. This report identifies and examines the actions required to qualify and license weapons-grade (WG) plutonium-based MOX fuels for use in domestic commercial light-water reactors (LWRs).

Cowell, B.S.; Copeland, G.L.; Moses, D.L.

1997-08-01T23:59:59.000Z

176

Method of forming supported doped palladium containing oxidation catalysts  

DOE Patents [OSTI]

A method of forming a supported oxidation catalyst includes providing a support comprising a metal oxide or a metal salt, and depositing first palladium compound particles and second precious metal group (PMG) metal particles on the support while in a liquid phase including at least one solvent to form mixed metal comprising particles on the support. The PMG metal is not palladium. The mixed metal particles on the support are separated from the liquid phase to provide the supported oxidation catalyst.

Mohajeri, Nahid

2014-04-22T23:59:59.000Z

177

Experiences with treatment of mixed waste  

SciTech Connect (OSTI)

During its many years of research activities involving toxic chemicals and radioactive materials, Los Alamos National Laboratory (Los Alamos) has generated considerable amounts of waste. Much of this waste includes chemically hazardous components and radioisotopes. Los Alamos chose to use an electrochemical process for the treatment of many mixed waste components. The electro-chemical process, which the authors are developing, can treat a great variety of waste using one type of equipment built at a moderate expense. Such a process can extract heavy metals, destroy cyanides, dissolve contamination from surfaces, oxidize toxic organic compounds, separate salts into acids and bases, and reduce the nitrates. All this can be accomplished using the equipment and one crew of trained operating personnel. Results of a treatability study of chosen mixed wastes from Los Alamos Mixed Waste Inventory are presented. Using electrochemical methods cyanide and heavy metals bearing wastes were treated to below disposal limits.

Dziewinski, J.; Marczak, S.; Smith, W.H. [Los Alamos National Lab., NM (United States); Nuttall, E. [Univ. of New Mexico, Albuquerque, NM (United States). Chemical and Nuclear Engineering Dept.

1996-04-10T23:59:59.000Z

178

Fuel Mix Disclosure  

Broader source: Energy.gov [DOE]

In January 1999, the Colorado Public Utility Commission (PUC) adopted regulations requiring the state's utilities to disclose information regarding their fuel mix to retail customers. Utilities are...

179

Mixed waste characterization reference document  

SciTech Connect (OSTI)

Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

NONE

1997-09-01T23:59:59.000Z

180

Guidelines for mixed waste minimization  

SciTech Connect (OSTI)

Currently, there is no commercial mixed waste disposal available in the United States. Storage and treatment for commercial mixed waste is limited. Host States and compacts region officials are encouraging their mixed waste generators to minimize their mixed wastes because of management limitations. This document provides a guide to mixed waste minimization.

Owens, C.

1992-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "mox mixed oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

ADVANCED MIXING MODELS  

SciTech Connect (OSTI)

The process of recovering and processing High Level Waste (HLW) the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four mixers (pumps) located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are typically set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The focus of the present work is to establish mixing criteria applicable to miscible fluids, with an ultimate goal of addressing waste processing in HLW tanks at SRS and quantifying the mixing time required to suspend sludge particles with the submersible jet pump. A single-phase computational fluid dynamics (CFD) approach was taken for the analysis of jet flow patterns with an emphasis on the velocity decay and the turbulent flow evolution for the farfield region from the pump. Literature results for a turbulent jet flow are reviewed, since the decay of the axial jet velocity and the evolution of the jet flow patterns are important phenomena affecting sludge suspension and mixing operations. The work described in this report suggests a basis for further development of the theory leading to the identified mixing indicators, with benchmark analyses demonstrating their consistency with widely accepted correlations. Although the indicators are somewhat generic in nature, they are applied to Savannah River Site (SRS) waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. One of the main objectives in the waste processing is to provide feed of a uniform slurry composition at a certain weight percentage (e.g. typically {approx}13 wt% at SRS) over an extended period of time. In preparation of the sludge for slurrying, several important questions have been raised with regard to sludge suspension and mixing of the solid suspension in the bulk of the tank: (1) How much time is required to prepare a slurry with a uniform solid composition? (2) How long will it take to suspend and mix the sludge for uniform composition in any particular waste tank? (3) What are good mixing indicators to answer the questions concerning sludge mixing stated above in a general fashion applicable to any waste tank/slurry pump geometry and fluid/sludge combination?

Lee, S.; Dimenna, R.; Tamburello, D.

2011-02-14T23:59:59.000Z

182

TECHNICAL BASIS FOR DOE STANDARD 3013 EQUIVALENCY SUPPORTING REDUCED TEMPERATURE STABILIZATION OF OXALATE-DERIVED PLUTONIUM OXIDE PRODUCED BY THE HB-LINE FACILITY AT SAVANNAH RIVER SITE  

SciTech Connect (OSTI)

The HB-Line (HBL) facility at the Savannah River Site (SRS) is designed to produce high-purity plutonium dioxide (PuO{sub 2}) which is suitable for future use in production of Mixed Oxide (MOX) fuel. The MOX Fuel Fabrication Facility (MFFF) requires PuO{sub 2} feed to be packaged per the U.S. Department of Energy (DOE) Standard 3013 (DOE-STD-3013) to comply with the facility's safety basis. The stabilization conditions imposed by DOE-STD-3013 for PuO{sub 2} (i.e., 950 C for 2 hours) preclude use of the HBL PuO{sub 2} in direct fuel fabrication and reduce the value of the HBL product as MFFF feedstock. Consequently, HBL initiated a technical evaluation to define acceptable operating conditions for production of high-purity PuO{sub 2} that fulfills the DOE-STD-3013 criteria for safe storage. The purpose of this document is to demonstrate that within the defined operating conditions, the HBL process will be equivalent for meeting the requirements of the DOE-STD-3013 stabilization process for plutonium-bearing materials from the DOE complex. The proposed 3013 equivalency reduces the prescribed stabilization temperature for high-purity PuO{sub 2} from oxalate precipitation processes from 950 C to 640 C and places a limit of 60% on the relative humidity (RH) at the lowest material temperature. The equivalency is limited to material produced using the HBL established flow sheet, for example, nitric acid anion exchange and Pu(IV) direct strike oxalate precipitation with stabilization at a minimum temperature of 640 C for four hours (h). The product purity must meet the MFFF acceptance criteria of 23,600 {micro}g/g Pu (i.e., 2.1 wt %) total impurities and chloride content less than 250 {micro}g/g of Pu. All other stabilization and packaging criteria identified by DOE-STD-3013-2012 or earlier revisions of the standard apply. Based on the evaluation of test data discussed in this document, the expert judgment of the authors supports packaging the HBL product under a 3013 equivalency. Under the defined process conditions and associated material specifications, the high-purity PuO{sub 2} produced in HBL presents no unique safety concerns for packaging or storage in the 3013 required configuration. The PuO{sub 2} produced using the HBL flow sheet conditions will have a higher specific surface area (SSA) than PuO{sub 2} stabilized at 950 C and, consequently, under identical conditions will adsorb more water from the atmosphere. The greatest challenge to HBL operators will be controlling moisture content below 0.5 wt %. However, even at the 0.5 wt % moisture limit, the maximum acceptable pressure of a stoichiometric mixture of hydrogen and oxygen in the 3013 container is greater than the maximum possible pressure for the HBL PuO{sub 2} product.

Duffey, J.; Livingston, R.; Berg, J.; Veirs, D.

2012-07-02T23:59:59.000Z

183

Fuel Mix Disclosure  

Broader source: Energy.gov [DOE]

California's retail electricity suppliers must disclose to all customers the fuel mix used in the generation of electricity. Utilities must use a standard label created by the California Energy...

184

Brush Busters Mixing Guide  

E-Print Network [OSTI]

This easy-to-use guide gives mixing instructions for sprays to control huisache, mesquite, redberry cedar, saltcedar, tallowtree and yucca and to treat hardwood cut stumps. It can easily be attached to a sprayer if desired...

McGinty, Allan; Ueckert, Darrell

2004-02-05T23:59:59.000Z

185

Fuel Mix Disclosure  

Broader source: Energy.gov [DOE]

Hawaii requires the state’s retail electric suppliers to disclose details regarding the fuel mix of their electric generation to retail customers. Such information must be provided on customers’...

186

Fuel Mix Disclosure  

Broader source: Energy.gov [DOE]

Washington’s retail electric suppliers must disclose details regarding the fuel mix of their electric generation to customers. Electric suppliers must provide such information in a standard format...

187

Evaporative oxidation treatability test report  

SciTech Connect (OSTI)

In 1992, Congress passed the Federal Facilities Compliance Act that requires the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with the Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). In response to the need for mixed-waste treatment capacity where available off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed wastes with treatment options and develop a strategy for treatment of its mixed wastes. DOE-AL manages operations at nine sites with mixed-waste inventories. The Treatment Selection Team determined a need to develop mobile treatment capacity to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste not only must address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. On the basis of recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (GJPO) are evaporative oxidation, thermal desorption, and treated wastewater evaporation. Rust Geotech, the DOE-GJPO prime contractor, was assigned to design and fabricate mobile treatment units (MTUs) for these three technologies and to deliver the MTUs to selected DOE-AL sites. To conduct treatability tests at the GJPO, Rust leased a pilot-scale evaporative oxidation unit from the Clemson Technical Center (CTC), Anderson, South Carolina. The purpose of this report is to document the findings and results of tests performed using this equipment.

NONE

1995-04-01T23:59:59.000Z

188

High-Affinity and Cooperative Binding of Oxidized Calmodulin by Methionine Sulfoxide Reductase  

SciTech Connect (OSTI)

Methionines play an important role in modulating protein-protein interactions associated with intracellular signaling, and their reversible oxidation to form methionine sulfoxides [Met(O)] in calmodulin (CaM) and other signaling proteins has been suggested to couple cellular redox changes to protein function changes through the action of methionine sulfoxide reductases (Msr). Prior measurements indicate the full recovery of target protein activation upon the stereospecific reduction of oxidized CaM by MsrA, where the formation of the S-stereoisomer of Met(O) selectively inhibits the CaM-dependent activation of the Ca-ATPase. However, the physiological substrates of MsrA remain unclear, as neither the binding specificities nor affinities of protein targets have been measured. To assess the specificity of binding and its possible importance in the maintenance of CaM function, we have measured the kinetics of repair and the binding affinity between oxidized CaM and MsrA. Reduction of Met(O) in fully oxidized CaM by MsrA is sensitive to protein folding, as repair of the intact protein is incomplete, with > 6 Met(O) remaining in each CaM following MsrA reduction. In contrast, following proteolytic digestion, MsrA is able to fully reduce one-half of the oxidized methionines, indicating that Met(O) within folded proteins are not substrates for MsrA repair. Further, in comparison to free Met(O), the turnover number and Km for oxidized CaM (CaMox) are substantially smaller, indicating that the binding interaction retards Msr recycling to reduce steady-state enzyme activity. Mutation of the active site (i.e., C72S) in MsrA permitted equilibrium-binding measurements using both ensemble and single-molecule measurements obtained by fluorescence correlation spectroscopy (FCS). Multiple MsrA bind tightly to CaMox (Kd = 70 +- 10 nM) with an affinity that is three orders of magnitude greater than the Michaelis constant (KM = 71 +- 8 micromolar). These results indicate that MsrA selectively reduces surface-exposed Met(O) within unstructured sequences and suggest that only a small subset of oxidized proteins are substrates for MsrA, which may selectively modulate the function of key signaling proteins as part of an adaptive response to oxidative stress.

Xiong, Yijia; Chen, Baowei; Smallwood, Heather S.; Urbauer, Ramona J.; Markillie, Lye Meng; Galeva, Nadezhda A.; Williams, Todd D.; Squier, Thomas C.

2006-12-12T23:59:59.000Z

189

ADVANCED MIXING MODELS  

SciTech Connect (OSTI)

The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four dual-nozzle jet mixers located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The work described in this report establishes the basis for further development of the theory leading to the identified mixing indicators, the benchmark analyses demonstrating their consistency with widely accepted correlations, and the application of those indicators to SRS waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. If shorter mixing times can be shown to support Defense Waste Processing Facility (DWPF) or other feed requirements, longer pump lifetimes can be achieved with associated operational cost and schedule savings. The focus of the present work is to establish mixing criteria associated with the waste processing at SRS and to quantify the mixing time required to suspend sludge particles with the submersible jet pump. Literature results for a turbulent jet flow are reviewed briefly, since the decay of the axial jet velocity and the evolution of the jet flow patterns are important phenomena affecting sludge suspension and mixing operations. One of the main objectives in the waste processing is to provide the DWPF a uniform slurry composition at a certain weight percentage (typically {approx}13 wt%) over an extended period of time. In preparation of the sludge for slurrying to DWPF, several important questions have been raised with regard to sludge suspension and mixing of the solid suspension in the bulk of the tank: (1) How much time is required to prepare a slurry with a uniform solid composition for DWPF? (2) How long will it take to suspend and mix the sludge for uniform composition in any particular waste tank? (3) What are good mixing indicators to answer the questions concerning sludge mixing stated above in a general fashion applicable to any waste tank/slurry pump geometry and fluid/sludge combination? Grenville and Tilton (1996) investigated the mixing process by giving a pulse of tracer (electrolyte) through the submersible jet nozzle and by monitoring the conductivity at three locations within the cylindrical tank. They proposed that the mixing process was controlled by the turbulent kinetic energy dissipation rate in the region far away from the jet entrance. They took the energy dissipation rates in the regions remote from the nozzle to be proportional to jet velocity and jet diameter at that location. The reduction in the jet velocity was taken to be proportional to the nozzle velocity and distance from the nozzle. Based on their analysis, a correlation was proposed. The proposed correlation was shown to be valid over a wide range of Reynolds numbers (50,000 to 300,000) with a relative standard deviation of {+-} 11.83%. An improved correlat

Lee, S; Richard Dimenna, R; David Tamburello, D

2008-11-13T23:59:59.000Z

190

Mixed waste: Proceedings  

SciTech Connect (OSTI)

This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E. [eds.] [Temple Univ., Philadelphia, PA (United States). Dept. of Environmental Safety and Health

1993-12-31T23:59:59.000Z

191

Mixing by Swimming Algae  

E-Print Network [OSTI]

In this fluid dynamics video, we demonstrate the microscale mixing enhancement of passive tracer particles in suspensions of swimming microalgae, Chlamydomonas reinhardtii. These biflagellated, single-celled eukaryotes (10 micron diameter) swim with a "breaststroke" pulling motion of their flagella at speeds of about 100 microns/s and exhibit heterogeneous trajectory shapes. Fluorescent tracer particles (2 micron diameter) allowed us to quantify the enhanced mixing caused by the swimmers, which is relevant to suspension feeding and biogenic mixing. Without swimmers present, tracer particles diffuse slowly due solely to Brownian motion. As the swimmer concentration is increased, the probability density functions (PDFs) of tracer displacements develop strong exponential tails, and the Gaussian core broadens. High-speed imaging (500 Hz) of tracer-swimmer interactions demonstrates the importance of flagellar beating in creating oscillatory flows that exceed Brownian motion out to about 5 cell radii from the swimm...

Guasto, Jeffrey S; Gollub, J P; Pesci, Adriana I; Goldstein, Raymond E

2009-01-01T23:59:59.000Z

192

Mixed crystal organic scintillators  

DOE Patents [OSTI]

A mixed organic crystal according to one embodiment includes a single mixed crystal having two compounds with different bandgap energies, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source, wherein the signal response signature does not include a significantly-delayed luminescence characteristic of neutrons interacting with the organic crystal relative to a luminescence characteristic of gamma rays interacting with the organic crystal. According to one embodiment, an organic crystal includes bibenzyl and stilbene or a stilbene derivative, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source.

Zaitseva, Natalia P; Carman, M Leslie; Glenn, Andrew M; Hamel, Sebastien; Hatarik, Robert; Payne, Stephen A; Stoeffl, Wolfgang

2014-09-16T23:59:59.000Z

193

A mixed-valence copper coordination polymer generated by hydrothermal metal/ligand redox reactions  

E-Print Network [OSTI]

A mixed-valence copper coordination polymer generated by hydrothermal metal/ligand redox reactions A novel coordination polymer of mixed-valence copper(I,II) with 4,4A-bipyridine and in situ oxidized and crystallographically char- acterized to be a laminated structure via weak copper(II)­ oxygen interactions. Extended

Li, Jing

194

Catalytic iron oxide for lime regeneration in carbonaceous fuel combustion  

SciTech Connect (OSTI)

Lime utilization for sulfurous oxides absorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. It is found that iron oxide present in the spent limestone acts as a catalyst to regenerate the spent limestone in a reducing environment. With only small quantities of iron oxide the calcium can be recycled at a significantly increased rate.

Shen, M.; Yang, R.T.

1980-09-30T23:59:59.000Z

195

Oxidation catalyst  

DOE Patents [OSTI]

The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

Ceyer, Sylvia T. (Cambridge, MA); Lahr, David L. (Cambridge, MA)

2010-11-09T23:59:59.000Z

196

Cost and Schedule of the Mixed Oxide Fuel Fabrication Facility...  

Broader source: Energy.gov (indexed) [DOE]

at the Savannah River Site" BACKGROUND In September 2000, the United States and Russia signed a Plutonium Management and Disposition Agreement for the disposal of surplus...

197

Bacterial Production of Mixed Metal Oxide Nanoparticles - Energy Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground High Energy Physics (HEP) HEPPortal

198

Magnetically coupled system for mixing  

SciTech Connect (OSTI)

The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

2014-04-01T23:59:59.000Z

199

Development of a RELAP5-3D three-dimensional model of a VVER-1000 Nuclear Power Plant for analysis of a large-break loss-of-coolant accident  

E-Print Network [OSTI]

large-break loss-of-coolant accident (LB LOCA). A validated, one-dimensional control of the nuclear power plant, for the study of the effects of mixed oxide (MOX) fuel, was modified to include a standard fuel loading of UO?. The development...

Clarno, Kevin Taylor

2012-06-07T23:59:59.000Z

200

IT IS 5 MINUTES TO MIDNIGHT www.thebulletin.org  

E-Print Network [OSTI]

in the environmental impact of uranium mining. Additionally, if the United States considers building fast reactors that the high cost of reprocessing spent fuel and fabricating mixed-oxide (MOX) fuel rods--a mixture of uranium volumetric reduction in nuclear waste, conservation of uranium re- sources, and a reduction

Holmes, Christopher D.

Note: This page contains sample records for the topic "mox mixed oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A rational minor actinide (MA) recycling concept based on innovative oxide fuel with high AM content  

SciTech Connect (OSTI)

A rational MA recycle concept based on high Am content fuel has been proposed. A design study of an Am- MOX fabrication plant, which is a key facility for the MA recycle concept, has been done and the facility concept was clarified from the viewpoint of basic process viability. Preliminary cost estimation suggested that the total construction cost of the MA recycle facilities including Am-MOX, Np-MOX and MA recovery could be comparable with that of the large scale LWR-MOX fabrication plant required for plutonium in LWR fuel cycle. (authors)

Tanaka, Kenya; Sato, Isamu; Ishii, Tetsuya; Yoshimochi, Hiroshi; Asaga, Takeo [Japan Atomic Energy Agency, 4002 Narita-cho, O-arai-machi, Higasiibaraki-gun, Ibaraki-ken, 311-1393 (Japan); Kurosaki, Ken [Osaka University, 2-1 Yamadaoka, Suita-shi, Osaka 565-0871 (Japan)

2007-07-01T23:59:59.000Z

202

Application of Direct Tension Testing to Laboratory Samples to Investigate the Effects of Hot Mix Asphalt Aging  

E-Print Network [OSTI]

While the oxidation of binders in hot mix asphalt (HMA) pavements and its subsequent detrimental effects on pavement life have been well recognized in the last few years, many important issues have not yet been investigated. Understanding how best...

Padigala, Meghana 1989-

2012-12-07T23:59:59.000Z

203

Implementation of deep soil mixing at the Kansas City Plant  

SciTech Connect (OSTI)

In July 1996, the US Department of Energy (DOE) Kansas City Plant (KCP), AlliedSignal Federal Manufacturing and Technologies, and Oak Ridge National Laboratory (ORNL), conducted field-scale tests of in situ soil mixing and treatment technologies within the Northeast Area (NEA) of the KCP at the Former Ponds site. This demonstration, testing, and evaluation effort was conducted as part of the implementation of a deep soil mixing (DSM) innovative remedial technology demonstration project designed to test DSM in the low-permeability clay soils at the KCP. The clay soils and groundwater beneath this area are contaminated by volatile organic compounds (VOCs), primarily trichloroethene (TCE) and 1,2-dichloroethene (1,2-DCE). The demonstration project was originally designed to evaluate TCE and 1,2-DCE removal efficiency using soil mixing coupled with vapor stripping. Treatability study results, however, indicated that mixed region vapor stripping (MRVS) coupled with calcium oxide (dry lime powder) injection would improve TCE and 1,2-DCE removal efficiency in saturated soils. The scope of the KCP DSM demonstration evolved to implement DSM with the following in situ treatment methodologies for contaminant source reduction in soil and groundwater: DSM/MRVS coupled with calcium oxide injection; DSM/bioaugmentation; and DSM/chemical oxidation using potassium permanganate. Laboratory treatability studies were started in 1995 following collection of undisturbed soil cores from the KCP. These studies were conducted at ORNL, and the results provided information on optimum reagent concentrations and mixing ratios for the three in situ treatment agents to be implemented in the field demonstration.

Gardner, F.G.; Korte, N. [Oak Ridge National Lab., Grand Junction, CO (United States); Strong-Gunderson, J.; Siegrist, R.L.; West, O.R.; Cline, S.R. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Baker, J. [AlliedSignal, Inc., Kansas City, MO (United States)

1998-11-01T23:59:59.000Z

204

On Symmetric Lepton Mixing Matrices  

E-Print Network [OSTI]

Contrary to the quark mixing matrix, the lepton mixing matrix could be symmetric. We study the phenomenological consequences of this possibility. In particular, we find that symmetry would imply that |U_{e3}| is larger than 0.16, i.e., above its current 2 sigma limit. The other mixing angles are also constrained and CP violating effects in neutrino oscillations are suppressed, even though |U_{e3}| is sizable. Maximal atmospheric mixing is only allowed if the other observables are outside their current 3 sigma ranges, and sin^2 theta_{23} lies typically below 0.5. The Majorana phases are not affected, but the implied values of the solar neutrino mixing angle have some effect on the predictions for neutrinoless double beta decay. We further discuss some formal properties of a symmetric mixing matrix.

Hochmuth, K A; Hochmuth, Kathrin A.; Rodejohann, Werner

2007-01-01T23:59:59.000Z

205

Radioactive mixed waste disposal  

SciTech Connect (OSTI)

Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

Jasen, W.G.; Erpenbeck, E.G.

1993-02-01T23:59:59.000Z

206

Optimal broadcasting of mixed states  

SciTech Connect (OSTI)

The N to M (M{>=}N) universal quantum broadcasting of mixed states {rho}{sup xN} is proposed for a qubit system. The broadcasting of mixed states is universal and optimal in the sense that the shrinking factor is independent of the input state and achieves the upper bound. The quantum broadcasting of mixed qubits is a generalization of the universal quantum cloning machine for identical pure input states. A pure state decomposition of the identical mixed qubits {rho}{sup xN} is obtained.

Dang Guifang; Fan Heng [Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)

2007-08-15T23:59:59.000Z

207

Fuel Mix and Emissions Disclosure  

Broader source: Energy.gov [DOE]

As part of the state's 1997 electric utility restructuring legislation, Illinois established provisions for the disclosure of fuel mix and emissions data. All electric utilities and alternative...

208

Fuel Mix and Emissions Disclosure  

Broader source: Energy.gov [DOE]

Virginia’s 1999 electric industry restructuring law requires the state's electricity providers to disclose -- "to the extent feasible" -- fuel mix and emissions data regarding electric generation....

209

Fuel Mix and Emissions Disclosure  

Broader source: Energy.gov [DOE]

Ohio's 1999 electric industry restructuring law requires the state's electricity suppliers to disclose details regarding their fuel mix and emissions to customers. Electric utilities and...

210

Fuel Mix and Emissions Disclosure  

Broader source: Energy.gov [DOE]

Maryland’s 1999 electric utility restructuring legislation requires all electric companies and electricity suppliers to provide customers with details regarding the fuel mix and emissions of...

211

Fuel Mix and Emissions Disclosure  

Broader source: Energy.gov [DOE]

Oregon's 1999 electric utility restructuring legislation requires electricity companies and electric service suppliers to disclose details regarding their fuel mix and emissions of electric...

212

Halton Sequences for Mixed Logit  

E-Print Network [OSTI]

Customers’ Choice Among Energy Supplier Simulation based oncustomers’ choice of energy supplier. Surveyed customerspreferences for energy suppliers, such that a mixed logit is

Train, Kenneth

2000-01-01T23:59:59.000Z

213

PRIVACY IMPACT ASSESSMENT: Shaw Areva MOX Services, LLC MOX  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010Energy6 Frontera GenerationMedicine - AssistantOfficeSPRO

214

Project Profile: High Performance Reduction/Oxidation Metal Oxides...  

Office of Environmental Management (EM)

High Performance ReductionOxidation Metal Oxides for Thermochemical Energy Storage Project Profile: High Performance ReductionOxidation Metal Oxides for Thermochemical Energy...

215

Strong Support for MOX Continues  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout » Staff125,849| OSTI, US About BPAA3Ta2AsS11 (A =

216

Planar ceramic membrane assembly and oxidation reactor system  

DOE Patents [OSTI]

Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

Carolan, Michael Francis (Allentown, PA); Dyer, legal representative, Kathryn Beverly (Allentown, PA); Wilson, Merrill Anderson (West Jordan, UT); Ohm, Ted R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Peterson, David (Uniontown, OH); Chen, Christopher M. (Allentown, PA); Rackers, Keith Gerard (Louisville, OH); Dyer, deceased, Paul Nigel (Allentown, PA)

2007-10-09T23:59:59.000Z

217

Planar ceramic membrane assembly and oxidation reactor system  

DOE Patents [OSTI]

Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

Carolan, Michael Francis (Allentown, PA); Dyer, legal representative, Kathryn Beverly (Allentown, PA); Wilson, Merrill Anderson (West Jordan, UT); Ohrn, Ted R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Peterson, David (Uniontown, OH); Chen, Christopher M. (Allentown, PA); Rackers, Keith Gerard (Louisville, OH); Dyer, Paul Nigel (Allentown, PA)

2009-04-07T23:59:59.000Z

218

Asphalt Oxidation Kinetics and Pavement Oxidation Modeling  

E-Print Network [OSTI]

Most paved roads in the United States are surfaced with asphalt. These asphalt pavements suffer from fatigue cracking and thermal cracking, aggravated by the oxidation and hardening of asphalt. This negative impact of asphalt oxidation on pavement...

Jin, Xin

2012-07-16T23:59:59.000Z

219

Compositional changes in red and violet smoke mixes after combustion  

SciTech Connect (OSTI)

Anthraquinone-derived dyes are commonly used in colored dye mixes prepared for signal smoke grenades. Biological studies have shown, however, that a number of these dyes exhibit bacterial mutagenicity. In addition, these dyes are similar in structure to several polycyclic aromatic hydrocarbons which are well-known carcinogens. The grenades contain not only anthraquinone-derived dyes, but also a pyrotechnic fuel and cooling and starting mixes consisting primarily of potassium chlorate and nitrate, sodium bicarbonate, and sulfur. These dyes are volatilized at temperatures up to 550/sup 0/C during the detonation of the grenade, which could subject the dyes to oxidative and pyrolytic reactions that could result in a variety of reaction by-products. As part of a program to investigate possible environmental and occupational risks of the colored smoke dyes and in signal grenades, two colored smoke mixes, red and violet, have been studied both before and after detonation to evaluate any differences in composition due to the combustion process. This report focuses primarily on the separation and identification of the components of the original and combusted red and violet smoke mixes. The conditions for the detonation of the smoke grenades and sampling of the combusted smoke mixes are also discussed.

Buchanan, M.V.; Rubin, I.B.; Moneyhun, J.H.

1983-01-01T23:59:59.000Z

220

Synthesis and structure of nanocrystalline mixed Ce–Yb silicates  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: • New method of synthesis of nanocrystalline mixed lanthanide silicates is proposed. • Formation of A-type (Ce{sub 1?y}Yb{sub y}){sub 2}Si{sub 2}O{sub 7} in well dispersed Ce{sub 1?x}Yb{sub x}O{sub 2?(x/2)}–SiO{sub 2} system. • Formation of Yb{sub y}Ce{sub 9.33?y}(SiO{sub 4}){sub 6}O{sub 2} in agglomerated Ce{sub 1?x}Yb{sub x}O{sub 2?(x/2)}–SiO{sub 2} system. - Abstract: This work presents results of studies on synthesis and structure of mixed, nanocrystalline Ce–Yb silicates. Using TEM, XRD and FTIR we showed that heat treatment of nanocrystalline Ce{sub 1?x}Yb{sub x}O{sub 2?(x/2)} (x = 0.3, 0.5) mixed oxide supported on amorphous silica in reducing atmosphere, results in formation of Ce–Yb mixed silicates. Dispersion of the oxide on the silica surface and thus a local lanthanide/Si atomic ratio determines the stoichiometry of the silicate. Oxide crystallites uniformly dispersed on the silica surface transformed into A-(Ce{sub 1?y}Yb{sub y}){sub 2}Si{sub 2}O{sub 7} disilicate, while the agglomerated nanoparticles converted into Yb{sub y}Ce{sub 9.33?y}(SiO{sub 4}){sub 6}O{sub 2} oxyapatite silicate as an intermediate phase.

Ma?ecka, Ma?gorzata A., E-mail: M.Malecka@int.pan.wroc.pl; K?pi?ski, Leszek

2013-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "mox mixed oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Indium-Vanadium Oxides Deposited by Radio Frequency Sputtering: New Thin Film Transparent  

E-Print Network [OSTI]

in many works, metal/vanadium mixed oxides have favorable properties when used as charge storage, 144 (No. 12), 4099. (2) Opara Krasovec, U.; Orel, B.; Reisfeld, R. Electrochem. Solid- State Let

Artuso, Florinda

222

Vehicle Technologies Office Merit Review 2014: Investigation of Mixed Oxide Catalysts for NO Oxidation  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Lab at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about investigation...

223

Interactions of gallium with zircaloy cladding  

E-Print Network [OSTI]

CHAPTER I INTRODUCTION The accepted options for the disposition of weapons-grade plutonium (WGPu) are immobilization or conversion to a mixed-oxide (MOX) reactor fuel. There are two benefits of conversion, one, the plutonium can't be converted back... into a viable weapon and two, the material could be used as an energy producing natural resource. Typical reactors use uranium dioxide enriched with about 3'le U-235. The proposed MOX fuel would consist of depleted uranium with WGPu. In order...

Mitchell, Lee Josey

2012-06-07T23:59:59.000Z

224

Ceramic-based fuel technologies: scope and status  

SciTech Connect (OSTI)

This presentation is an overview of the approach, status and path forward for ongoing tasks under the ceramic fuel development part of the program. Experimental work is focused on fundamental studies employing depleted urania-based compositions and mixed oxide (MOX) and minor actinide-bearing MOX. Contributions are included from researchers at LANL, ORNL and BNL. The audience for this presentation consists of the various participants in the FCRD program. Those participants include representatives from: DOE-NE, other national laboratories, DOE funded university researchers, DOE funded industry teams, FCRD funded advisors, and occasionally NRC.

Mcclellan, Kenneth J [Los Alamos National Laboratory

2010-12-16T23:59:59.000Z

225

The Mixed Waste Management Facility monthly report and revised FY95 plan, May 1995  

SciTech Connect (OSTI)

This report contains the project summary, as well as the financial summary for the Mixed Waste Management Facility at Lawrence Livermore National Laboratory. Detailed accomplishments and milestone status are reported in the Task Summaries. The major accomplishments during this reporting period are included the following areas: preliminary design; systems integration; briefings for the Environmental Programs Scientific Advisory Committee; integrated cost/scheduling estimating system; feed preparation; mediated electrochemical oxidation; and molten salt oxidation.

Streit, R.D.

1995-06-01T23:59:59.000Z

226

Delivery system for molten salt oxidation of solid waste  

DOE Patents [OSTI]

The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

Brummond, William A. (Livermore, CA); Squire, Dwight V. (Livermore, CA); Robinson, Jeffrey A. (Manteca, CA); House, Palmer A. (Walnut Creek, CA)

2002-01-01T23:59:59.000Z

227

Fuel Mix and Emissions Disclosure  

Broader source: Energy.gov [DOE]

Rhode Island requires all entities that sell electricity in the state to disclose details regarding the fuel mix and emissions of their electric generation to end-use customers. This information...

228

Mixed-mu superconducting bearings  

DOE Patents [OSTI]

A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

Hull, John R. (Hinsdale, IL); Mulcahy, Thomas M. (Western Springs, IL)

1998-01-01T23:59:59.000Z

229

Fuel Mix and Emissions Disclosure  

Broader source: Energy.gov [DOE]

In September 2002, the Minnesota Public Utilities Commission (PUC) issued an order requiring the state's regulated electric utilities to disclose to customers details on the fuel mix and emissions...

230

Is the tribimaximal mixing accidental?  

SciTech Connect (OSTI)

The tribimaximal (TBM) mixing is not accidental if structures of the corresponding leptonic mass matrices follow immediately from certain (residual or broken) flavor symmetry. We develop a simple formalism which allows one to analyze effects of deviations of the lepton mixing from TBM on the structure of the neutrino mass matrix and on the underlying flavor symmetry. We show that possible deviations from the TBM mixing can lead to strong modifications of the mass matrix and strong violation of the TBM-mass relations. As a result, the mass matrix may have an 'anarchical' structure with random values of elements or it may have some symmetry that differs from the TBM symmetry. Interesting examples include matrices with texture zeros, matrices with certain 'flavor alignment' as well as hierarchical matrices with a two-component structure, where the dominant and subdominant contributions have different symmetries. This opens up new approaches to understanding the lepton mixing.

Abbas, Mohammed [Ain Shams University, Faculty of Sciences, Abbassiyah 11566, Cairo (Egypt); Center for Theoretical Physics (CTP), British University in Egypt, BUE, El-Sherouk City, Cairo (Egypt); Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I-34014 Trieste (Italy); Smirnov, A. Yu. [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I-34014 Trieste (Italy); Institute for Nuclear Research, Russian Academy of Sciences, Moscow (Russian Federation)

2010-07-01T23:59:59.000Z

231

Mixed-mu superconducting bearings  

DOE Patents [OSTI]

A mixed-mu superconducting bearing is disclosed including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure. 9 figs.

Hull, J.R.; Mulcahy, T.M.

1998-03-03T23:59:59.000Z

232

Fuel Mix and Emissions Disclosure  

Broader source: Energy.gov [DOE]

Iowa adopted regulations in 2003 that generally require rate-regulated electric utilities to disclose to customers the fuel mix and estimated emissions, in pounds per megawatt-hour (MWh), of...

233

Fluid Mixing from Viscous Fingering  

E-Print Network [OSTI]

Mixing efficiency at low Reynolds numbers can be enhanced by exploiting hydrodynamic instabilities that induce heterogeneity and disorder in the flow. The unstable displacement of fluids with different viscosities, or ...

Jha, Birendra

234

Fuel Mix and Emissions Disclosure  

Broader source: Energy.gov [DOE]

Michigan's Customer Choice and Electric Reliability Act of 2000 (P.A. 141) requires electric suppliers to disclose to customers details related to the fuel mix and emissions, in pounds per megawatt...

235

Fuel Mix and Emissions Disclosure  

Broader source: Energy.gov [DOE]

In 2001, Nevada enacted legislation requiring the state’s electric utilities to provide details regarding the fuel mix and emissions of electric generation to their customers. Utilities must...

236

Quantum computing with mixed states  

E-Print Network [OSTI]

We discuss a model for quantum computing with initially mixed states. Although such a computer is known to be less powerful than a quantum computer operating with pure (entangled) states, it may efficiently solve some problems for which no efficient classical algorithms are known. We suggest a new implementation of quantum computation with initially mixed states in which an algorithm realization is achieved by means of optimal basis independent transformations of qubits.

Michael Siomau; Stephan Fritzsche

2011-01-17T23:59:59.000Z

237

Quantum computing with mixed states  

E-Print Network [OSTI]

We discuss a model for quantum computing with initially mixed states. Although such a computer is known to be less powerful than a quantum computer operating with pure (entangled) states, it may efficiently solve some problems for which no efficient classical algorithms are known. We suggest a new implementation of quantum computation with initially mixed states in which an algorithm realization is achieved by means of optimal basis independent transformations of qubits.

Siomau, Michael

2011-01-01T23:59:59.000Z

238

Neutrino Masses and Flavor Mixing  

E-Print Network [OSTI]

We discuss the neutrino oscillations, using texture zero mass matrices for the leptons. The reactor mixing angle $\\theta^{}_{l}$ is calculated. The ratio of the masses of two neutrinos is determined by the solar mixing angle. We can calculate the masses of the three neutrinos: $m_1$ $\\approx$ 0.003 eV - $m_2$ $\\approx$ 0.012 eV - $m_3$ $\\approx$ 0.048 eV.

Fritzsch, Harald

2015-01-01T23:59:59.000Z

239

Neutrino Masses and Flavor Mixing  

E-Print Network [OSTI]

We discuss the neutrino oscillations, using texture zero mass matrices for the leptons. The reactor mixing angle $\\theta^{}_{l}$ is calculated. The ratio of the masses of two neutrinos is determined by the solar mixing angle. We can calculate the masses of the three neutrinos: $m_1$ $\\approx$ 0.003 eV - $m_2$ $\\approx$ 0.012 eV - $m_3$ $\\approx$ 0.048 eV.

Harald Fritzsch

2015-03-06T23:59:59.000Z

240

Development of ceramic mixed potential sensors for automotive application  

SciTech Connect (OSTI)

Mixed potential sensors that utilize Gd{sub 0.2}Ce{sub 0.8}O{sub 2} electrolytes and patterned dense 1 {micro}m-thick LaMnO{sub 3} thin films were studied at 600 C and 1%O{sub 2}. The response to C{sub 3}H{sub 6} and CO of two different sensor configurations were studied continuously for 1000 hrs versus an air reference. Although two different current collection schemes and two different metal oxide electrode geometries were employed, the magnitude of the mixed potential generated by both sensors was remarkably similar. From previous work with Au-ceria-Pt mixed potential sensors, this behavior is attributed to precisely controlling the metal oxide electrode/solid electrolyte interface unlike the random interface produced when Au electrodes are used. Although doped ceria is not a suitable electrolyte for automotive exhaust gas applications, this work serves to illustrate design goals for zirconia-based sensors.

Brasha, E. (Eric); Mukundan, R. (Rangachary); Brown, D. R. (David R.); Garzon, F. H. (Fernando H.); Visser, J. (Jaco)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mox mixed oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Independent Oversight Review, Advanced Mixed Waste Treatment...  

Broader source: Energy.gov (indexed) [DOE]

Review, Advanced Mixed Waste Treatment Project - April 2013 April 2013 Review of Radiation Protection Program Implementation at the Advanced Mixed Waste Treatment Project of...

242

Occupant satisfaction in mixed-mode buildings.  

E-Print Network [OSTI]

Strategies for Mixed-Mode Buildings, Summary Report, CenterCBE). 2006. Website: Mixed-Mode Building Case Studies.Department of Environmental Building Research Establishment

Brager, Gail; Baker, Lindsay

2008-01-01T23:59:59.000Z

243

Occupant satisfaction in mixed-mode buildings  

E-Print Network [OSTI]

Environmental Quality in Green Buildings”. Indoor Air; 14 (Strategies for Mixed-Mode Buildings, Summary Report, CenterCBE). 2006. Website: Mixed-Mode Building Case Studies.

Brager, Gail; Baker, Lindsay

2009-01-01T23:59:59.000Z

244

Oxidative particle mixtures for groundwater treatment  

DOE Patents [OSTI]

The invention is a method and a composition of a mixture for degradation and immobilization of contaminants in soil and groundwater. The oxidative particle mixture and method includes providing a material having a minimal volume of free water, mixing at least one inorganic oxidative chemical in a granular form with a carrier fluid containing a fine grained inorganic hydrophilic compound and injecting the resulting mixture into the subsurface. The granular form of the inorganic oxidative chemical dissolves within the areas of injection, and the oxidative ions move by diffusion and/or advection, therefore extending the treatment zone over a wider area than the injection area. The organic contaminants in the soil and groundwater are degraded by the oxidative ions, which form solid byproducts that can sorb significant amounts of inorganic contaminants, metals, and radionuclides for in situ treatment and immobilization of contaminants. The method and composition of the oxidative particle mixture for long-term treatment and immobilization of contaminants in soil and groundwater provides for a reduction in toxicity of contaminants in a subsurface area of contamination without the need for continued injection of treatment material, or for movement of the contaminants, or without the need for continuous pumping of groundwater through the treatment zone, or removal of groundwater from the subsurface area of contamination.

Siegrist, Robert L. (Boulder, CO); Murdoch, Lawrence C. (Clemson, SC)

2000-01-01T23:59:59.000Z

245

Photo-oxidation catalysts  

DOE Patents [OSTI]

Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

Pitts, J. Roland (Lakewood, CO); Liu, Ping (Irvine, CA); Smith, R. Davis (Golden, CO)

2009-07-14T23:59:59.000Z

246

Life cycle costs for the domestic reactor-based plutonium disposition option  

SciTech Connect (OSTI)

Projected constant dollar life cycle cost (LCC) estimates are presented for the domestic reactor-based plutonium disposition program being managed by the US Department of Energy Office of Fissile Materials Disposition (DOE/MD). The scope of the LCC estimate includes: design, construction, licensing, operation, and deactivation of a mixed-oxide (MOX) fuel fabrication facility (FFF) that will be used to purify and convert weapons-derived plutonium oxides to MOX fuel pellets and fabricate MOX fuel bundles for use in commercial pressurized-water reactors (PWRs); fuel qualification activities and modification of facilities required for manufacture of lead assemblies that will be used to qualify and license this MOX fuel; and modification, licensing, and operation of commercial PWRs to allow irradiation of a partial core of MOX fuel in combination with low-enriched uranium fuel. The baseline cost elements used for this document are the same as those used for examination of the preferred sites described in the site-specific final environmental impact statement and in the DOE Record of Decision that will follow in late 1999. Cost data are separated by facilities, government accounting categories, contract phases, and expenditures anticipated by the various organizations who will participate in the program over a 20-year period. Total LCCs to DOE/MD are projected at approximately $1.4 billion for a 33-MT plutonium disposition mission.

Williams, K.A.

1999-10-01T23:59:59.000Z

247

Oxidation of propylene over copper oxide catalysts  

E-Print Network [OSTI]

work on other phases of this project concerning cata- lytic oxidation of hydrocarbons has been described by Sanderson (59), Looney (34), Burns (11), Dunlop (17), Woodham (71), and Perkins (49). The early work of Sanderson indicated that chromia-alumina... and pro- moted chromia?alumina agents possessed the ability to catalyze the oxidation of propane by air. Subsequent work of Looney suggested that propylene was a primary product of this oxidation; hence most investigations since then have been confined...

Billingsley, David Stuart

1958-01-01T23:59:59.000Z

248

Lifetime Assessment for Thermal Barrier Coatings: Tests for Measuring Mixed Mode Delamination Toughness  

E-Print Network [OSTI]

the thermally grown oxide (TGO), and a porous ceramic topcoat which serves as the thermal insulation. DetailsLifetime Assessment for Thermal Barrier Coatings: Tests for Measuring Mixed Mode Delamination Mechanisms leading to degradation of the adherence of thermal barrier coatings (TBC) used in aircraft

Hutchinson, John W.

249

Cerium Oxide Coating for Oxidation Reduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Award In order to produce power more efficiently and cleanly, the next generation of power plant boilers, turbines, solid oxide fuel cells (SOFCs) and other essential...

250

Influence of perovskite termination on oxide heteroepitaxy D. A. Schmidta  

E-Print Network [OSTI]

Influence of perovskite termination on oxide heteroepitaxy D. A. Schmidta Department of Physics exhibits mixed La­O and Al­O2 surface terminations at 400 °C. Heteroepitaxial TiO2, grown by evaporating Ti, regardless of termination, indicating that the substrate cations and perovskite surface polarity play little

Olmstead, Marjorie

251

The catalytic reduction of nitric oxide with ammonia over tetraamminecopper (II) complexes  

E-Print Network [OSTI]

primary goal has been to develop catalysts that will promote selective reduction of nitric oxide to nitrogen with various reducing agents. The use of metals and mixed metal oxide catalysts with reducing agents such as hydrogen, car- bon monoxide... the energy of the v* orbital of NO in relationship to tne energies 11, 12 of the d orbitals of the metal. ' Although nitric oxide is thermo- dynamically unstable, with respect to decomposition to nitrogen and The citations of the following cages follow...

Oates, Margaret Deron

1979-01-01T23:59:59.000Z

252

Pico- and nanosecond laser ablation of mixed tungsten / aluminium films  

E-Print Network [OSTI]

In order to extend the investigation of laser-assisted cleaning of ITER-relevant first mirror materials to the picosecond regime, a commercial laser system delivering 10 picosecond pulses at 355 nm at a frequency of up to 1 MHz has been used to investigate the ablation of mixed aluminium (oxide) / tungsten (oxide) layers deposited on poly- and nanocrystalline molybdenum as well as nanocrystalline rhodium mirrors. Characterization before and after cleaning using scanning electron microscopy (SEM) and spectrophotometry shows heavy dust formation, resulting in a degradation of the reflectivity. Cleaning using a 5 nanosecond pulses at 350 and 532 nm, on the other hand, proved very promising. The structure of the film remnants suggests that in this case buckling was the underlying removal mechanism rather than ablation. Repeated coating and cleaning using nanosecond pulses is demonstrated.

Wisse, M; Steiner, R; Mathys, D; Stumpp, A; Joanny, M; Travere, J M; Meyer, E

2014-01-01T23:59:59.000Z

253

Bs Mixing at the Tevatron  

SciTech Connect (OSTI)

The Tevatron collider at Fermilab provides a very rich environment for the study of B{sub s} mesons. B{sub s} Mixing is the most important analysis within the B Physics program of both experiments. In this paper they summarize the most recent results on this topic from both D0 and CDF experiments. There were very important updates in both experiments after his last talk, hence the organizers warmly recommended me to include the latest available results on B{sub s} mixing, instead of what he presents there.

Gomez-Ceballos, Guillelmo; /Cantabria Inst. of Phys.

2006-04-01T23:59:59.000Z

254

Mixed ternary heterojunction solar cell  

DOE Patents [OSTI]

A thin film heterojunction solar cell and a method of making it has a p-type layer of mixed ternary I-III-VI.sub.2 semiconductor material in contact with an n-type layer of mixed binary II-VI semiconductor material. The p-type semiconductor material includes a low resistivity copper-rich region adjacent the back metal contact of the cell and a composition gradient providing a minority carrier mirror that improves the photovoltaic performance of the cell. The p-type semiconductor material preferably is CuInGaSe.sub.2 or CuIn(SSe).sub.2.

Chen, Wen S. (Seattle, WA); Stewart, John M. (Seattle, WA)

1992-08-25T23:59:59.000Z

255

Aspen Ecology in the MixedAspen Ecology in the Mixed Conifer TypeConifer Type  

E-Print Network [OSTI]

Aspen Ecology in the MixedAspen Ecology in the Mixed Conifer TypeConifer Type Wayne D. Shepperd Colorado State University Fort Collins, CO Aspen Ecology in the MixedAspen Ecology in the Mixed ConiferAssumptions Mixed conifer forests are a collection of different species, each with different ecologic requirements

256

Dark energy and particle mixing  

E-Print Network [OSTI]

We show that the vacuum condensate due to particle mixing is responsible of a dynamically evolving dark energy. In particular, we show that values of the adiabatic index close to -1 for vacuum condensates of neutrinos and quarks imply, at the present epoch, contributions to the vacuum energy compatible with the estimated upper bound on the dark energy.

A. Capolupo; S. Capozziello; G. Vitiello

2008-08-30T23:59:59.000Z

257

Advances in compressible turbulent mixing  

SciTech Connect (OSTI)

This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.

Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.

1992-01-01T23:59:59.000Z

258

Mixcoin Anonymity for Bitcoin with accountable mixes  

E-Print Network [OSTI]

Abstract. We propose Mixcoin, a protocol to facilitate anonymous payments in Bitcoin and similar cryptocurrencies. We build on the emergent phenomenon of currency mixes, adding an accountability mechanism to expose theft. We demonstrate that incentives of mixes and clients can be aligned to ensure that rational mixes will not steal. Our scheme is efficient and fully compatible with Bitcoin. Against a passive attacker, our scheme provides an anonymity set of all other users mixing coins contemporaneously. This is an interesting new property with no clear analog in better-studied communication mixes. Against active attackers our scheme offers similar anonymity to traditional communication mixes. 1

Joseph Bonneau; Arvind Narayanan; Andrew Miller; Jeremy Clark; Joshua A. Kroll; Edward W. Felten

259

Unit Operation Efficiency Improvement Through Motionless Mixing  

E-Print Network [OSTI]

instances, the power consumption associated with mix ing operations constitutes the major energy demand of a plant or factory. Generally speaking, most industrial mixing occurs in a tank with a motor driven shaft and a mixing blade or paddle assembly... 1/4 inch in diameter, to units many feet in diameter weighing tons. (Figs. 4 and 5). MECHANICAL AND MOTIONLESS MIXERS COMPARED Figure 6 shows a typical mechanical mixing system when materials A and Bare pumped to a mix tank, and the mixed pro...

King, L. T.

1984-01-01T23:59:59.000Z

260

THE MICROSTRUCTURAL LOCATION OF THE INTERGRANULAR METAL OXIDE PHASE IN A ZINC OXIDE VARISTOR  

E-Print Network [OSTI]

OXIDE PHASE IN A ZINC OXIDE VARISTOR MICROSI'RUCTIJRALMETAL OXIDE PHASE IN A ZINC OXIDE VARISTOR David R. Clarke

Clarke, D. E

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mox mixed oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Reactor-Based Plutonium Disposition: Opportunities, Options, and Issues  

SciTech Connect (OSTI)

The end of the Cold War has created a legacy of surplus fissile materials (plutonium and highly enriched uranium) in the United States (U.S.) and the former Soviet Union. These materials pose a danger to national and international security. During the past few years, the U.S. and Russia have engaged in an ongoing dialog concerning the safe storage and disposition of surplus fissile material stockpiles. In January 1997, the Department of Energy (DOE) announced the U. S. would pursue a dual track approach to rendering approximately 50 metric tons of plutonium inaccessible for use in nuclear weapons. One track involves immobilizing the plutonium by combining it with high-level radioactive waste in glass or ceramic ''logs''. The other method, referred to as reactor-based disposition, converts plutonium into mixed oxide (MOX) fuel for nuclear reactors. The U.S. and Russia are moving ahead rapidly to develop and demonstrate the technology required to implement the MOX option in their respective countries. U.S. MOX fuel research and development activities were started in the 1950s, with irradiation of MOX fuel rods in commercial light water reactors (LWR) from the 1960s--1980s. In all, a few thousand MOX fuel rods were successfully irradiated. Though much of this work was performed with weapons-grade or ''near'' weapons-grade plutonium--and favorable fuel performance was observed--the applicability of this data for licensing and use of weapons-grade MOX fuel manufactured with modern fuel fabrication processes is somewhat limited. The U.S. and Russia are currently engaged in an intensive research, development, and demonstration program to support implementation of the MOX option in our two countries. This paper focuses on work performed in the U.S. and provides a brief summary of joint U.S./Russian work currently underway.

Greene, S.R.

1999-07-17T23:59:59.000Z

262

Mixing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

bandwidth <> Individual pulse sub-ps resolution Individual lines <> Train resolution improvement needed "Streak camera" :) Single-shot :( Low resolution (10 ps ) :) Train...

263

Mixing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fundProject8Mistakes to Avoid Mistakes to Avoid

264

Rotational Mixing and Lithium Depletion  

E-Print Network [OSTI]

I review basic observational features in Population I stars which strongly implicate rotation as a mixing agent; these include dispersion at fixed temperature in coeval populations and main sequence lithium depletion for a range of masses at a rate which decays with time. New developments related to the possible suppression of mixing at late ages, close binary mergers and their lithium signature, and an alternate origin for dispersion in young cool stars tied to radius anomalies observed in active young stars are discussed. I highlight uncertainties in models of Population II lithium depletion and dispersion related to the treatment of angular momentum loss. Finally, the origins of rotation are tied to conditions in the pre-main sequence, and there is thus some evidence that enviroment and planet formation could impact stellar rotational properties. This may be related to recent observational evidence for cluster to cluster variations in lithium depletion and a connection between the presence of planets and s...

Pinsonneault, M H

2010-01-01T23:59:59.000Z

265

Comparison of the Catalytic Oxidation Reaction on Graphene Oxide and Reduced Graphene Oxide  

E-Print Network [OSTI]

Comparison of the Catalytic Oxidation Reaction on Graphene Oxide and Reduced Graphene Oxide Laboratory (PAL), Pohang 790-784, Republic of Korea ABSTRACT: The capacities of graphene oxide (GO) and reduced graphene oxide (rGO) films grown on silicon substrate to cause the aniline to azobenzene oxidation

Kim, Sehun

266

Neutrino mixing, flavor states and dark energy  

E-Print Network [OSTI]

We shortly summarize the quantum field theory formalism for the neutrino mixing and report on recent results showing that the vacuum condensate induced by neutrino mixing can be interpreted as a dark energy component of the Universe.

M. Blasone; A. Capolupo; S. Capozziello; G. Vitiello

2007-11-06T23:59:59.000Z

267

Estimating a mixed strategy employing maximum entropy  

E-Print Network [OSTI]

MIXED STRATEGY EMPLOYING MAXIMUM ENTROPY by Amos Golan LarryMixed Strategy Employing Maximum Entropy Amos Golan Larry S.Abstract Generalized maximum entropy may be used to estimate

Golan, Amos; Karp, Larry; Perloff, Jeffrey M.

1996-01-01T23:59:59.000Z

268

Mixed Alcohol Synthesis Catalyst Screening  

SciTech Connect (OSTI)

National Renewable Energy Laboratory (NREL) and Pacific Northwest National Laboratory (PNNL) are conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). PNNL is tasked with obtaining commercially available or preparing promising mixed-alcohol catalysts and screening them in a laboratory-scale reactor system. Commercially available catalysts and the most promising experimental catalysts are provided to NREL for testing using a slipstream from a pilot-scale biomass gasifier. From the standpoint of producing C2+ alcohols as the major product, it appears that the rhodium catalyst is the best choice in terms of both selectivity and space-time yield (STY). However, unless the rhodium catalyst can be improved to provide minimally acceptable STYs for commercial operation, mixed alcohol synthesis will involve significant production of other liquid coproducts. The modified Fischer-Tropsch catalyst shows the most promise for providing both an acceptable selectivity to C2+ alcohols and total liquid STY. However, further optimization of the Fischer-Tropsch catalysts to improve selectivity to higher alcohols is highly desired. Selection of a preferred catalyst will likely entail a decision on the preferred coproduct slate. No other catalysts tested appear amenable to the significant improvements needed for acceptable STYs.

Gerber, Mark A.; White, James F.; Stevens, Don J.

2007-09-03T23:59:59.000Z

269

Optimization Online - Analysis of mixed integer programming ...  

E-Print Network [OSTI]

Jul 15, 2014 ... Analysis of mixed integer programming formulations for single machine scheduling problems with sequence dependent setup times and ...

Thiago Henrique Nogueira

2014-07-15T23:59:59.000Z

270

Dark energy induced by neutrino mixing  

E-Print Network [OSTI]

The energy content of the vacuum condensate induced by the neutrino mixing is interpreted as dynamically evolving dark energy.

Antonio Capolupo; Salvatore Capozziello; Giuseppe Vitiello

2006-12-11T23:59:59.000Z

271

Oxidation Resistant Graphite Studies  

SciTech Connect (OSTI)

The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

W. Windes; R. Smith

2014-07-01T23:59:59.000Z

272

MixedConifer Forests in Southwest Colorado  

E-Print Network [OSTI]

April 2010 Mixed­Conifer Forests in Southwest Colorado A Summary of Existing Knowledge and Considerations for Restoration and Management #12;Mixed Conifer Forests in Southwest Colorado 1Mixed-Conifer Forests in Southwest Colorado 1 ABOUT THE COLORADO FOREST RESTORATION INSTITUTE The Colorado Forest

273

Oxide strengthened molybdenum-rhenium alloy  

DOE Patents [OSTI]

Provided is a method of making an ODS molybdenum-rhenium alloy which includes the steps of: (a) forming a slurry containing molybdenum oxide and a metal salt dispersed in an aqueous medium, the metal salt being selected from nitrates or acetates of lanthanum, cerium or thorium; (b) heating the slurry in the presence of hydrogen to form a molybdenum powder comprising molybdenum and an oxide of the metal salt; (c) mixing rhenium powder with the molybdenum powder to form a molybdenum-rhenium powder; (d) pressing the molybdenum-rhenium powder to form a molybdenum-rhenium compact; (e) sintering the molybdenum-rhenium compact in hydrogen or under a vacuum to form a molybdenum-rhenium ingot; and (f) compacting the molybdenum-rhenium ingot to reduce the cross-sectional area of the molybdenum-rhenium ingot and form a molybdenum-rhenium alloy containing said metal oxide. The present invention also provides an ODS molybdenum-rhenium alloy made by the method. A preferred Mo--Re-ODS alloy contains 7-14 weight % rhenium and 2-4 volume % lanthanum oxide.

Bianco, Robert (Cleveland, OH); Buckman, Jr., R. William (Pittsburgh, PA)

2000-01-01T23:59:59.000Z

274

Flammability Analysis For Actinide Oxides Packaged In 9975 Shipping Containers  

SciTech Connect (OSTI)

Packaging options are evaluated for compliance with safety requirements for shipment of mixed actinide oxides packaged in a 9975 Primary Containment Vessel (PCV). Radiolytic gas generation rates, PCV internal gas pressures, and shipping windows (times to reach unacceptable gas compositions or pressures after closure of the PCV) are calculated for shipment of a 9975 PCV containing a plastic bottle filled with plutonium and uranium oxides with a selected isotopic composition. G-values for radiolytic hydrogen generation from adsorbed moisture are estimated from the results of gas generation tests for plutonium oxide and uranium oxide doped with curium-244. The radiolytic generation of hydrogen from the plastic bottle is calculated using a geometric model for alpha particle deposition in the bottle wall. The temperature of the PCV during shipment is estimated from the results of finite element heat transfer analyses.

Laurinat, James E.; Askew, Neal M.; Hensel, Steve J.

2013-03-21T23:59:59.000Z

275

Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions  

DOE Patents [OSTI]

A biofilter is described for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method is described of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described. 6 figs.

Apel, W.A.

1998-08-18T23:59:59.000Z

276

Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions  

DOE Patents [OSTI]

A biofilter for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described.

Apel, William A. (Idaho Falls, ID)

1998-01-01T23:59:59.000Z

277

Barium oxide, calcium oxide, magnesia, and alkali oxide free glass  

DOE Patents [OSTI]

A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

2013-09-24T23:59:59.000Z

278

METAL OXIDE NANOPARTICLES  

SciTech Connect (OSTI)

This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

2007-10-01T23:59:59.000Z

279

Corium quench in deep pool mixing experiments  

SciTech Connect (OSTI)

The results of two recent corium-water thermal interaction (CWTI) tests are described in which a stream of molten corium was poured into a deep pool of water in order to determine the mixing behavior, the corium-to-water heat transfer rates, and the characteristic sizes of the quenched debris. The corium composition was 60% UO/sub 2/, 16% ZrO/sub 2/, and 24% stainless steel by weight; its initial temperature was 3080 K, approx.160 K above the oxide phase liquidus temperature. The corium pour stream was a single-phase 2.2 cm dia liquid column which entered the water pool in film boiling at approx.4 m/s. The water subcooling was 6 and 75C in the two tests. Test results showed that with low subcooling, rapid steam generation caused the pool to boil up into a high void fraction regime. In contrast, with large subcooling no net steam generation occurred, and the pool remained relatively quiescent. Breakup of the jet appeared to occur by surface stripping. In neither test was the breakup complete during transit through the 32 cm deep water pool, and molten corium channeled to the base where it formed a melt layer. The characteristic heat transfer rates measured 3.5 MJ/s and 2.7 MJ/s during the fall stage for small and large subcooling, respectively; during the initial stage of bed quench, the surface heat fluxes measured 2.4 MW/m/sup 2/ and 3.7 MW/m/sup 2/, respectively. A small mass of particles was formed in each test, measuring typically 0.1 to 1 mm and 1 to 5 mm dia for the large and small subcooling conditions, respectively. 9 refs., 13 figs., 1 tab.

Spencer, B.W.; McUmber, L.; Gregorash, D.; Aeschlimann, R.; Sienicki, J.J.

1985-01-01T23:59:59.000Z

280

Iron-phosphate ceramics for solidification of mixed low-level waste  

DOE Patents [OSTI]

A method of immobilizing mixed low-level waste is provided which uses low cost materials and has a relatively long hardening period. The method includes: forming a mixture of iron oxide powders having ratios, in mass %, of FeO:Fe.sub.2 O.sub.3 :Fe.sub.3 O.sub.4 equal to 25-40:40-10:35-50, or weighing a definite amount of magnetite powder. Metallurgical cinder can also be used as the source of iron oxides. A solution of the orthophosphoric acid, or a solution of the orthophosphoric acid and ferric oxide, is formed and a powder phase of low-level waste and the mixture of iron oxide powders or cinder (or magnetite powder) is also formed. The acid solution is mixed with the powder phase to form a slurry with the ratio of components (mass %) of waste:iron oxide powders or magnetite:acid solution=30-60:15-10:55-30. The slurry is blended to form a homogeneous mixture which is cured at room temperature to form the final product.

Aloy, Albert S. (St. Petersburg, RU); Kovarskaya, Elena N. (St. Petersburg, RU); Koltsova, Tatiana I. (St. Petersburg, RU); Macheret, Yevgeny (Idaho Falls, ID); Medvedev, Pavel G. (Ozersk, RU); Todd, Terry (Aberdeen, ID)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mox mixed oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Orifice mixing of immiscible liquids  

E-Print Network [OSTI]

solution (7). The present study of orif1ce mixing is a continuation of previous research on this project which yielded a relationship explaining the effect of operating conditions upon the format1on of 1nterfacial area for the system water-kerosene.... The experimental technique evolved by Helch (18), Vesselhoff (19), McNair (8), and Scott (IA) was changed only slightly. Their work on water-kerosene was repeated for the liquid pairs trichloroethylene-water, heptanol-water, 20 per oent aqueous sucrose-kerosene...

McDonough, Joseph Aloysius

1960-01-01T23:59:59.000Z

282

Fuels for Sodium-cooled Fast Reactors: U.S. Perspective  

SciTech Connect (OSTI)

The U.S. experience with mixed oxide, metal, and mixed carbide fuels is substantial, comprised of irradiation of over 50,000 MOX rods, over 130,000 metal rods, and 600 mixed carbide rods, in EBR-II and FFTF alone. All three types have all been demonstrated capable of fuel utilization at or above 200 GWd/MTHM. To varying degrees, life-limiting phenomena for each type have been identified and investigated, and there are no disqualifying safety-related fuel behaviors. All three fuel types appear capable of meeting SFR fuel requirements, with reliability of MOX and metal fuel well established. Improvements in irradiation performance of cladding and duct alloys has been a key development in moving these fuel designs toward higher-burnup potential. Selection of one fuel system over another will depend on circumstances particular to the application and on issues other than fuel performance, such as fabrication cost or overall system safety performance.

Douglas C. Crawford; Douglas L. Porter; Steven L. Hayes

2007-09-01T23:59:59.000Z

283

Thermal-Hydraulic Analysis of Seed-Blanket Unit Duplex Fuel Assemblies with VIPRE-01  

E-Print Network [OSTI]

nucleate boiling ratio EFIT European Facility for Industrial Transmutation EMT Effective Medium Theory EOL end-of-life EURO-TRANS EUROpean research program for the TRANSmutation of high level nuclear waste in ADS EPRI Electric Power Research... MA minor actinides ME Maxwell-Eucken viii MDNBR minimum departure from nucleate boiling ratio MNFI modified Nuclear Fuels Industries Mo molybdenum MOX mixed-oxide M-R multi-recycling NFI Nuclear Fuels Industries Np neptunium NPP nuclear...

McDermott, Patrick 1987-

2012-11-15T23:59:59.000Z

284

Stabilized chromium oxide film  

DOE Patents [OSTI]

Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150A are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

Nyaiesh, A.R.; Garwin, E.L.

1986-08-04T23:59:59.000Z

285

Stabilized chromium oxide film  

DOE Patents [OSTI]

Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

Garwin, Edward L. (Los Altos, CA); Nyaiesh, Ali R. (Palo Alto, CA)

1988-01-01T23:59:59.000Z

286

Reducible oxide based catalysts  

DOE Patents [OSTI]

A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

2010-04-06T23:59:59.000Z

287

Y{sub 2}MoSe{sub 3}O{sub 12} and Y{sub 2}MoTe{sub 3}O{sub 12}: Solid-state synthesis, structure determination, and characterization of two new quaternary mixed metal oxides containing asymmetric coordination environment  

SciTech Connect (OSTI)

Two new quaternary yttrium molybdenum selenium/tellurium oxides, Y{sub 2}MoSe{sub 3}O{sub 12} and Y{sub 2}MoTe{sub 3}O{sub 12} have been prepared by standard solid-state reactions using Y{sub 2}O{sub 3}, MoO{sub 3}, and SeO{sub 2} (or TeO{sub 2}) as reagents. Single-crystal X-ray diffraction was used to determine the crystal structures of the reported materials. Although both of the materials contain second-order Jahn–Teller (SOJT) distortive cations and are stoichiometrically similar, they reveal different structural features: while Y{sub 2}MoSe{sub 3}O{sub 12} shows a three-dimensional framework consisting of YO{sub 8}, MoO{sub 6}, and SeO{sub 3} groups, Y{sub 2}MoTe{sub 3}O{sub 12} exhibits a layered structure composed of YO{sub 8}, MoO{sub 4}, TeO{sub 3}, and TeO{sub 4} polyhedra. With the Mo{sup 6+} cations in Y{sub 2}MoSe{sub 3}O{sub 12}, a C{sub 3}-type intraoctahedral distortion toward a face is observed, in which the direction of the out-of-center distortion for Mo{sup 6+} is away from the oxide ligand linked to a Se{sup 4+} cation. The Se{sup 4+} and Te{sup 4+} cations in both materials are in asymmetric coordination environment attributed to the lone pairs. Elemental analyses, infrared spectroscopy, thermal analyses, intraoctahedral distortions, and dipole moment calculations for the compounds are also presented. - Graphical abstract: Y{sub 2}MoSe{sub 3}O{sub 12} reveals a three-dimensional framework consisting of YO{sub 8}, MoO{sub 6}, and SeO{sub 3} polyhedra, whereas Y{sub 2}MoTe{sub 3}O{sub 12} exhibits a layered structure composed of YO{sub 8}, MoO{sub 4}, TeO{sub 3}, and TeO{sub 4} groups. - Highlights: • Two new selenite and tellurite (Y{sub 2}MoQ{sub 3}O{sub 12}; Q=Se and Te) are synthesized. • Y{sub 2}MoQ{sub 3}O{sub 12} contain second-order Jahn–Teller distortive cations in asymmetric environments. • The intra-octahedral distortion of the Mo{sup 6+} is influenced by the Se{sup 4+}.

Bang, Seong-eun; Pan, Zhi; Kim, Yeong Hun; Lee, Dong Woo; Ok, Kang Min, E-mail: kmok@cau.ac.kr

2013-12-15T23:59:59.000Z

288

An atmospheric mixing index for Houston, Texas  

E-Print Network [OSTI]

was devoted to study of the meteorological conditions undez which adverse concentration of pollutants occurred. Niemeyer (1960) studied air pollution episodes in che eastern United States and suggested that the simul- ' aneous occurrence of (1) very low... by Niemeyer. In his investigation, Holzworth used mixing height (MH) as a parameter to determine the vertical mixing of the air pollutants near the ground. Gross (1970) defined the mixing height as the level through which there is relatively vigor- ous...

Norton, Colburn Lee

1975-01-01T23:59:59.000Z

289

Method for stabilizing low-level mixed wastes at room temperature  

DOE Patents [OSTI]

A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH){sub 4} to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set. 4 figs.

Wagh, A.S.; Singh, D.

1997-07-08T23:59:59.000Z

290

Method for stabilizing low-level mixed wastes at room temperature  

DOE Patents [OSTI]

A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH).sub.4 to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set.

Wagh, Arun S. (Joliet, IL); Singh, Dileep (Westmont, IL)

1997-01-01T23:59:59.000Z

291

TANK MIXING STUDY WITH FLOW RECIRCULATION  

SciTech Connect (OSTI)

The primary objective of this work is to quantify the mixing time when two miscible fluids are mixed by one recirculation pump and to evaluate adequacy of 2.5 hours of pump recirculation to be considered well mixed in SRS tanks, JT-71/72. The work scope described here consists of two modeling analyses. They are the steady state flow pattern analysis during pump recirculation operation of the tank liquid and transient species transport calculations based on the initial steady state flow patterns. The modeling calculations for the mixing time are performed by using the 99% homogeneity criterion for the entire domain of the tank contents.

Lee, S.

2014-06-25T23:59:59.000Z

292

Lanthanide doped strontium barium mixed halide scintillators  

SciTech Connect (OSTI)

The present invention provides for a composition comprising an inorganic scintillator comprising a lanthanide-doped strontium barium mixed halide useful for detecting nuclear material.

Gundiah, Gautam; Bizarri, Gregory; Hanrahan, Stephen M; Bourret-Courchesne, Edith; Derenzo, Stephen E

2013-07-16T23:59:59.000Z

293

Optimization Online - Mixed-Integer Nonlinear Optimization  

E-Print Network [OSTI]

Dec 2, 2012 ... Mixed-Integer Nonlinear Optimization. Pietro Belotti(pbelott ***at*** clemson.edu) Sven Leyffer(leyffer ***at*** mcs.anl.gov) Christian ...

Pietro Belotti

2012-12-02T23:59:59.000Z

294

Perspective Reformulations of Mixed Integer Nonlinear Programs ...  

E-Print Network [OSTI]

Abstract. We study mixed integer nonlinear programs (MINLP)s that are ... earlier work of Ceria and Soares (1999) as well as recent work by Frangioni and ...

2009-06-02T23:59:59.000Z

295

Optimization Online - Concrete Structure Design Using Mixed ...  

E-Print Network [OSTI]

Nov 26, 2009 ... Abstract: We present a mixed-integer nonlinear programming (MINLP) formulation to achieve minimum-cost designs for reinforced concrete ...

Andres Guerra

2009-11-26T23:59:59.000Z

296

Residential Waste Do not mix in  

E-Print Network [OSTI]

Residential Waste Do not mix in Newspaper Cardboard Paper ScrapsMagazines and Miscellaneous Paper Experiment-Relatedand ResidentialWastebyType #12;

Nakamura, Iku

297

Modulation of mixed-phase titania photoluminescence by oxygen adsorption  

SciTech Connect (OSTI)

We investigate the effect of oxygen (O{sub 2}) adsorption on photoluminescence properties of mixed-phase titania nanoparticle films deposited by femtosecond pulsed laser deposition, aiming to assess preliminary conclusions about the feasibility of opto-chemical sensing based on titania. We evidence that O{sub 2} produces opposite responses in rutile and anatase photoluminescence efficiency, highlighting interesting potentialities for future double-parametric optical sensing based on titania. The results evidence an important role of lattice oxygen atoms, suggesting that the standard Schottky barrier mechanism driving the response toward gas species in most used metal-oxide sensors (e.g., tin dioxide) is not the only active mechanism in titania.

Pallotti, D.; Orabona, E.; Amoruso, S.; Maddalena, P. [Dipartimento di Fisica, Universitá degli Studi di Napoli “Federico II,” Via Cintia, I-80126 Napoli (Italy); Institute for Superconductors, Oxides and Innovative Materials and Devices, CNR-SPIN, U.O.S. Napoli, Via Cintia, I-80126 Napoli (Italy); Lettieri, S., E-mail: stefano.lettieri@spin.cnr.it [Institute for Superconductors, Oxides and Innovative Materials and Devices, CNR-SPIN, U.O.S. Napoli, Via Cintia, I-80126 Napoli (Italy)

2014-07-21T23:59:59.000Z

298

Implications of Plutonium isotopic separation on closed fuel cycles and repository design  

SciTech Connect (OSTI)

Advances in laser enrichment may enable relatively low-cost plutonium isotopic separation. This would have large impacts on LWR closed fuel cycles and waste management. If Pu-240 is removed before recycling plutonium as mixed oxide (MOX) fuel, it would dramatically reduce the buildup of higher plutonium isotopes, Americium, and Curium. Pu-240 is a fertile material and thus can be replaced by U-238. Eliminating the higher plutonium isotopes in MOX fuel increases the Doppler feedback, simplifies reactor control, and allows infinite recycle of MOX plutonium in LWRs. Eliminating fertile Pu-240 and Pu-242 reduces the plutonium content in MOX fuel and simplifies fabrication. Reducing production of Pu-241 reduces production of Am-241 - the primary heat generator in spent nuclear fuels after several decades. Reducing heat generating Am-241 would reduce repository cost and waste toxicity. Avoiding Am- 241 avoids its decay product Np-237, a nuclide that partly controls long-term oxidizing repository performance. Most of these benefits also apply to LWR plutonium recycled into fast reactors. There are benefits for plutonium isotopic separation in fast reactor fuel cycles (particularly removal of Pu-242) but the benefits are less. (author)

Forsberg, C. [Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 20129 (United States)

2013-07-01T23:59:59.000Z

299

Inference of ICF Implosion Core Mix using Experimental Data and Theoretical Mix Modeling  

SciTech Connect (OSTI)

The mixing between fuel and shell materials in Inertial Confinement Fusion (ICF) implosion cores is a current topic of interest. The goal of this work was to design direct-drive ICF experiments which have varying levels of mix, and subsequently to extract information on mixing directly from the experimental data using spectroscopic techniques. The experimental design was accomplished using hydrodynamic simulations in conjunction with Haan's saturation model, which was used to predict the mix levels of candidate experimental configurations. These theoretical predictions were then compared to the mixing information which was extracted from the experimental data, and it was found that Haan's mix model performed well in predicting trends in the width of the mix layer. With these results, we have contributed to an assessment of the range of validity and predictive capability of the Haan saturation model, as well as increased our confidence in the methods used to extract mixing information from experimental data.

Welser-Sherrill, L; Haynes, D A; Mancini, R C; Cooley, J H; Tommasini, R; Golovkin, I E; Sherrill, M E; Haan, S W

2008-04-30T23:59:59.000Z

300

Inference of ICF implosion core mix using experimental data and theoretical mix modeling  

SciTech Connect (OSTI)

The mixing between fuel and shell materials in Inertial Confinement Fusion (lCF) implosion cores is a current topic of interest. The goal of this work was to design direct-drive ICF experiments which have varying levels of mix, and subsequently to extract information on mixing directly from the experimental data using spectroscopic techniques. The experimental design was accomplished using hydrodynamic simulations in conjunction with Haan's saturation model, which was used to predict the mix levels of candidate experimental configurations. These theoretical predictions were then compared to the mixing information which was extracted from the experimental data, and it was found that Haan's mix model predicted trends in the width of the mix layer as a function of initial shell thickness. These results contribute to an assessment of the range of validity and predictive capability of the Haan saturation model, as well as increasing confidence in the methods used to extract mixing information from experimental data.

Sherrill, Leslie Welser [Los Alamos National Laboratory; Haynes, Donald A [Los Alamos National Laboratory; Cooley, James H [Los Alamos National Laboratory; Sherrill, Manolo E [Los Alamos National Laboratory; Mancini, Roberto C [UNR; Tommasini, Riccardo [LLNL; Golovkin, Igor E [PRISM COMP. SCIENCES; Haan, Steven W [LLNL

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mox mixed oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Impact of Fission Products Impurity on the Plutonium Content of Metal- and Oxide- Fuels in Sodium Cooled Fast Reactors  

SciTech Connect (OSTI)

This short report presents the neutronic analysis to evaluate the impact of fission product impurity on the Pu content of Sodium-cooled Fast Reactor (SFR) metal- and oxide- fuel fabrication. The similar work has been previously done for PWR MOX fuel [1]. The analysis will be performed based on the assumption that the separation of the fission products (FP) during the reprocessing of UOX spent nuclear fuel assemblies is not perfect and that, consequently, a certain amount of FP goes into the Pu stream used to fabricate SFR fuels. Only non-gaseous FPs have been considered (see the list of 176 isotopes considered in the calculations in Appendix 1 of Reference 1). Throughout of this report, we define the mixture of Pu and FPs as PuFP. The main objective of this analysis is to quantify the increase of the Pu content of SFR fuels necessary to maintain the same average burnup at discharge independently of the amount of FP in the Pu stream, i.e. independently of the PuFP composition. The FP losses are considered element-independent, i.e., for example, 1% of FP losses mean that 1% of all non-gaseous FP leak into the Pu stream.

Hikaru Hiruta; Gilles Youinou

2013-09-01T23:59:59.000Z

302

Oxidative Tritium Decontamination System  

DOE Patents [OSTI]

The Oxidative Tritium Decontamination System, OTDS, provides a method and apparatus for reduction of tritium surface contamination on various items. The OTDS employs ozone gas as oxidizing agent to convert elemental tritium to tritium oxide. Tritium oxide vapor and excess ozone gas is purged from the OTDS, for discharge to atmosphere or transport to further process. An effluent stream is subjected to a catalytic process for the decomposition of excess ozone to diatomic oxygen. One of two configurations of the OTDS is employed: dynamic apparatus equipped with agitation mechanism and large volumetric capacity for decontamination of light items, or static apparatus equipped with pressurization and evacuation capability for decontamination of heavier, delicate, and/or valuable items.

Gentile, Charles A. (Plainsboro, NJ), Guttadora, Gregory L. (Highland Park, NJ), Parker, John J. (Medford, NJ)

2006-02-07T23:59:59.000Z

303

Controlled CO preferential oxidation  

DOE Patents [OSTI]

Method is described for controlling the supply of air to a PROX (PReferential OXidation for CO cleanup) reactor for the preferential oxidation in the presence of hydrogen wherein the concentration of the hydrogen entering and exiting the PROX reactor is monitored, the difference there between correlated to the amount of air needed to minimize such difference, and based thereon the air supply to the PROX reactor adjusted to provide such amount and minimize such difference. 2 figs.

Meltser, M.A.; Hoch, M.M.

1997-06-10T23:59:59.000Z

304

Stabilization of a mixed waste sludge for land disposal  

SciTech Connect (OSTI)

A solidification and stabilization technique was developed for a chemically complex mixed waste sludge containing nitrate processing wastes, sewage sludge and electroplating wastewaters, among other wastes. The sludge is originally from a solar evaporation pond and has high concentrations of nitrate salts; cadmium, chromium, and nickel concentrations of concern; and low levels of organic constituents and alpha and beta emitters. Sulfide reduction of nitrate and precipitation of metallic species, followed by evaporation to dryness and solidification of the dry sludge in recycled high density polyethylene with added lime was determined to be a satisfactory preparation for land disposal in a mixed waste repository. The application of post-consumer polyethylene has the added benefit of utilizing another problem-causing waste product. A modified Toxicity Characteristic Leaching Procedure was used to determine required treatment chemical dosages and treatment effectiveness. The waste complexity prohibited use of standard chemical equilibrium methods for prediction of reaction products during treatment. Waste characterization followed by determination of thermodynamic feasibility of oxidation and reduction products. These calculations were shown to be accurate in laboratory testing. 13 refs., 3 figs., 2 tabs.

Powers, S.E.; Zander, A.K. [Clarkson Univ., Potsdam, NY (United States)

1996-12-31T23:59:59.000Z

305

Identifying Mixed Chemical and Radioactive Waste Mixed waste is: any waste material containing both radioactive materials  

E-Print Network [OSTI]

Identifying Mixed Chemical and Radioactive Waste Mixed waste is: any waste material containing both as noted on the list, you do not have a mixed waste and it may be managed as a normal radioactive waste radioactive waste after initially dating the container, the hold for decay time is extended, but you cannot

Straight, Aaron

306

ADVANCED OXIDATION PROCESS  

SciTech Connect (OSTI)

The removal of recalcitrant sulfur species, dibenzothiophene and its derivatives, from automotive fuels is an integral component in the development of cleaner burning and more efficient automobile engines. Oxidative desulfurization (ODS) wherein the dibenzothiophene derivative is converted to its corresponding sulfoxide and sulfone is an attractive approach to sulfur removal because the oxidized species are easily extracted or precipitated and filtered from the hydrocarbon phase. Fe-TAML{reg_sign} activators of hydrogen peroxide (TAML is Tetra-Amido-Macrocyclic-Ligand) catalytically convert dibenzothiophene and its derivatives rapidly and effectively at moderate temperatures (50-60 C) and ambient pressure to the corresponding sulfoxides and sulfones. The oxidation process can be performed in both aqueous systems containing alcohols such as methanol, ethanol, or t-butanol, and in a two-phase hydrocarbon/aqueous system containing tert-butanol or acetonitrile. In the biphasic system, essentially complete conversion of the DBT to its oxidized products can be achieved using slightly longer reaction times than in homogeneous solution. Among the key features of the technology are the mild reaction conditions, the very high selectivity where no over oxidation of the sulfur compounds occurs, the near stoichiometric use of hydrogen peroxide, the apparent lack of degradation of sensitive fuel components, and the ease of separation of oxidized products.

Dr. Colin P. Horwitz; Dr. Terrence J. Collins

2003-11-04T23:59:59.000Z

307

Thin films of mixed metal compounds  

DOE Patents [OSTI]

A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

Mickelsen, Reid A. (Bellevue, WA); Chen, Wen S. (Seattle, WA)

1985-01-01T23:59:59.000Z

308

Neutrino mixing and oscillations in astrophysical environments  

SciTech Connect (OSTI)

A brief review of the current status of neutrino mixing and oscillations in astrophysical environments, with particular emphasis on the Sun and core-collapse supernovae, is given. Implications of the existence of sterile states which mix with the active neutrinos are discussed.

Balantekin, A. B. [Physics Department, University of Wisconsin, Madison WI 53706 (United States)

2014-05-02T23:59:59.000Z

309

Predictions From High Scale Mixing Unification Hypothesis  

E-Print Network [OSTI]

Starting with 'High Scale Mixing Unification' hypothesis, we investigate the renormalization group evolution of mixing parameters and masses for both Dirac and Majorana type neutrinos. Following this hypothesis, the PMNS mixing parameters are taken to be identical to the CKM ones at a unifying high scale. Then, they are evolved to a low scale using MSSM renormalization-group equations. For both type of neutrinos, the renormalization group evolution 'naturally' results in a non-zero and small value of leptonic mixing angle $\\theta_{13}$. One of the important predictions of this analysis is that, in both cases, the mixing angle $\\theta_{23}$ turns out to be non-maximal for most of the parameter range. We also elaborate on the important differences between Dirac and Majorana neutrinos within our framework and how to experimentally distinguish between the two scenarios. Furthermore, for both cases, we also derive constraints on the allowed parameter range for the SUSY breaking and unification scales, for which th...

Srivastava, Rahul

2015-01-01T23:59:59.000Z

310

Thin films of mixed metal compounds  

DOE Patents [OSTI]

Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

Mickelsen, R.A.; Chen, W.S.

1985-06-11T23:59:59.000Z

311

Mixed waste characterization, treatment & disposal focus area  

SciTech Connect (OSTI)

The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

NONE

1996-08-01T23:59:59.000Z

312

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOE Patents [OSTI]

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Riley, B.; Szreders, B.E.

1988-04-26T23:59:59.000Z

313

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOE Patents [OSTI]

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Brian, Riley (Willimantic, CT); Szreders, Bernard E. (Oakdale, CT)

1989-01-01T23:59:59.000Z

314

Cerium Oxide Coating for Oxidation Reduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStanding Friedel Waves,TheoryParliament'v0,MixturesCerium Oxide

315

Fast mix table construction for material discretization  

SciTech Connect (OSTI)

An effective hybrid Monte Carlo-deterministic implementation typically requires the approximation of a continuous geometry description with a discretized piecewise-constant material field. The inherent geometry discretization error can be reduced somewhat by using material mixing, where multiple materials inside a discrete mesh voxel are homogenized. Material mixing requires the construction of a 'mix table,' which stores the volume fractions in every mixture so that multiple voxels with similar compositions can reference the same mixture. Mix table construction is a potentially expensive serial operation for large problems with many materials and voxels. We formulate an efficient algorithm to construct a sparse mix table in O(number of voxels x log number of mixtures) time. The new algorithm is implemented in ADVANTG and used to discretize continuous geometries onto a structured Cartesian grid. When applied to an end-of-life MCNP model of the High Flux Isotope Reactor with 270 distinct materials, the new method improves the material mixing time by a factor of 100 compared to a naive mix table implementation. (authors)

Johnson, S. R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

2013-07-01T23:59:59.000Z

316

Decaking of coal or oil shale during pyrolysis in the presence of iron oxides  

DOE Patents [OSTI]

A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere is described. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis. 4 figs., 8 tabs.

Rashid Khan, M.

1988-05-05T23:59:59.000Z

317

Decaking of coal or oil shale during pyrolysis in the presence of iron oxides  

DOE Patents [OSTI]

A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis.

Khan, M. Rashid (Morgantown, WV)

1989-01-01T23:59:59.000Z

318

Laboratory directed research and development on disposal of plutonium recovered from weapons. FY1994 final report  

SciTech Connect (OSTI)

This research project was conceived as a multi-year plan to study the use of mixed plutonium oxide-uranium oxide (MOX) fuel in existing nuclear reactors. Four areas of investigation were originally proposed: (1) study reactor physics including evaluation of control rod worth and power distribution during normal operation and transients; (2) evaluate accidents focusing upon the reduced control rod worth and reduced physical properties of PuO{sub 2}; (3) assess the safeguards required during fabrication and use of plutonium bearing fuel assemblies; and (4) study public acceptance issues associated with using material recovered from weapons to fuel a nuclear reactor. First year accomplishments are described. Appendices contain 2 reports entitled: development and validation of advanced computational capability for MOX fueled ALWR assembly designs; and long-term criticality safety concerns associated with weapons plutonium disposition.

Pitts, J.H.; Choi, J.S.

1994-11-14T23:59:59.000Z

319

Methanol partial oxidation reformer  

DOE Patents [OSTI]

A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

1999-01-01T23:59:59.000Z

320

Methanol partial oxidation reformer  

DOE Patents [OSTI]

A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mox mixed oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Methanol partial oxidation reformer  

DOE Patents [OSTI]

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-17T23:59:59.000Z

322

Methanol partial oxidation reformer  

DOE Patents [OSTI]

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-24T23:59:59.000Z

323

Molecular water oxidation catalyst  

DOE Patents [OSTI]

A dimeric composition of the formula: ##STR1## wherein L', L", L'", and L"" are each a bidentate ligand having at least one functional substituent, the ligand selected from bipyridine, phenanthroline, 2-phenylpyridine, bipyrimidine, and bipyrazyl and the functional substituent selected from carboxylic acid, ester, amide, halogenide, anhydride, acyl ketone, alkyl ketone, acid chloride, sulfonic acid, phosphonic acid, and nitro and nitroso groups. An electrochemical oxidation process for the production of the above functionally substituted bidentate ligand diaqua oxo-bridged ruthenium dimers and their use as water oxidation catalysts is described.

Gratzel, Michael (St. Sulpice, CH); Munavalli, Shekhar (Bel Air, MD); Pern, Fu-Jann (Lakewood, CO); Frank, Arthur J. (Lakewood, CO)

1993-01-01T23:59:59.000Z

324

Tetraalklylammonium polyoxoanionic oxidation catalysts  

DOE Patents [OSTI]

Alkanes are catalytically oxidized in air or oxygen using iron-substituted polyoxoanions (POAs) of the formula: H{sub e{minus}z}[(n-C{sub 4}H{sub 9}){sub 4}N]{sub z}(XM{sub 11}M{prime}O{sub 39}){sup {minus}e}. The M{prime} (e.g., iron(III)/iron(II)) reduction potential of the POAs is affected by selection of the central atom X and the framework metal M, and by the number of tetrabutyl-ammonium groups. Decreased Fe(III)/Fe(II) reduction potential has been found to correlate to increased oxidation activity.

Ellis, P.E.; Lyons, J.E.; Myers, H.K. Jr.; Shaikh, S.N.

1998-10-06T23:59:59.000Z

325

Tetraalykylammonium polyoxoanionic oxidation catalysts  

DOE Patents [OSTI]

Alkanes are catalytically oxidized in air or oxygen using iron-substituted polyoxoanions (POAs) of the formula: H.sub.e-z ›(n-C.sub.4 H.sub.9).sub.4 N!.sub.z (XM.sub.11 M'O.sub.39).sup.-e The M' (e.g., iron(III)/iron(II)) reduction potential of the POAs is affected by selection of the central atom X and the framework metal M, and by the number of tetrabutyl-ammonium groups. Decreased Fe(III)/Fe(II) reduction potential has been found to correlate to increased oxidation activity.

Ellis, Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA); Myers, Jr., Harry K. (Cochranville, PA); Shaikh, Shahid N. (Media, PA)

1998-01-01T23:59:59.000Z

326

Regenerable MgO promoted metal oxide oxygen carriers for chemical looping combustion  

DOE Patents [OSTI]

The disclosure provides an oxygen carrier comprised of a plurality of metal oxide particles in contact with a plurality of MgO promoter particles. The MgO promoter particles increase the reaction rate and oxygen utilization of the metal oxide when contacting with a gaseous hydrocarbon at a temperature greater than about 725.degree. C. The promoted oxide solid is generally comprised of less than about 25 wt. % MgO, and may be prepared by physical mixing, incipient wetness impregnation, or other methods known in the art. The oxygen carrier exhibits a crystalline structure of the metal oxide and a crystalline structure of MgO under XRD crystallography, and retains these crystalline structures over subsequent redox cycles. In an embodiment, the metal oxide is Fe.sub.2O.sub.3, and the gaseous hydrocarbon is comprised of methane.

Siriwardane, Ranjani V.; Miller, Duane D.

2014-08-19T23:59:59.000Z

327

Particle mixing, flavor condensate and dark energy  

E-Print Network [OSTI]

The mixing of neutrinos and quarks generate a vacuum condensate that, at the present epoch, behaves as a cosmological constant. The value of the dark energy is constrained today by the very small breaking of the Lorentz invariance.

Massimo Blasone; Antonio Capolupo; Giuseppe Vitiello

2009-12-08T23:59:59.000Z

328

Benchmarking Mixed Use Buildings in Portfolio Manager  

Broader source: Energy.gov (indexed) [DOE]

Type B 51% 25% 10% 14% Space Type A Space Type B Space Type C Space Type D Retail: if 51%will not earn a Score 3 | TAP Webcast eere.energy.gov Specific Guidance: Mixed-Use...

329

Duality for Mixed-Integer Linear Programs  

E-Print Network [OSTI]

The theory of duality for linear programs is well-developed and has been ... tended to mixed-integer linear programs, but this has proven difficult, in part because ...

2007-04-05T23:59:59.000Z

330

Mixing in a liquid metal electrode  

E-Print Network [OSTI]

Fluid mixing has first-order importance for many engineering problems in mass transport, including design and optimization of liquid-phase energy storage devices. Liquid metal batteries are currently being commercialized ...

Kelley, Douglas H.

331

Rating of Mixed Split Residential Air Conditioners  

E-Print Network [OSTI]

A methodology is presented for rating the performance of mixed, split residential air conditioners. The method accounts for the impact on system performance of the indoor evaporator, expansion device and fan; three major components that are likely...

Domanski, P. A.

1988-01-01T23:59:59.000Z

332

Characterization of Amorphous Zinc Tin Oxide Semiconductors....  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Amorphous Zinc Tin Oxide Semiconductors. Characterization of Amorphous Zinc Tin Oxide Semiconductors. Abstract: Amorphous zinc tin oxide (ZTO) was investigated to determine the...

333

Robotics for mixed waste operations, demonstration description  

SciTech Connect (OSTI)

The Department of Energy (DOE) Office of Technology Development (OTD) is developing technology to aid in the cleanup of DOE sites. Included in the OTD program are the Robotics Technology Development Program and the Mixed Waste Integrated Program. These two programs are working together to provide technology for the cleanup of mixed waste, which is waste that has both radioactive and hazardous constituents. There are over 240,000 cubic meters of mixed low level waste accumulated at DOE sites and the cleanup is expected to generate about 900,000 cubic meters of mixed low level waste over the next five years. This waste must be monitored during storage and then treated and disposed of in a cost effective manner acceptable to regulators and the states involved. The Robotics Technology Development Program is developing robotics technology to make these tasks safer, better, faster and cheaper through the Mixed Waste Operations team. This technology will also apply to treatment of transuranic waste. The demonstration at the Savannah River Site on November 2-4, 1993, showed the progress of this technology by DOE, universities and industry over the previous year. Robotics technology for the handling, characterization and treatment of mixed waste as well robotics technology for monitoring of stored waste was demonstrated. It was shown that robotics technology can make future waste storage and waste treatment facilities better, faster, safer and cheaper.

Ward, C.R.

1993-11-01T23:59:59.000Z

334

Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol...  

Energy Savers [EERE]

Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of...

335

Elucidating the Higher Stability of Vanadium (V) Cations in Mixed...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Elucidating the Higher Stability of Vanadium (V) Cations in Mixed Acid Based Redox Flow Battery Electrolytes. Abstract: The Vanadium (V) cation structures in mixed acid based...

336

Advanced Mixed Waste Treatment Project Achieves Impressive Safety...  

Office of Environmental Management (EM)

Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks June...

337

Mixing it up - Measuring diffusion in supercooled liquid solutions...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mixing it up - Measuring diffusion in supercooled liquid solutions of methanol and ethanol at temperatures near the glass Mixing it up - Measuring diffusion in supercooled liquid...

338

A Hierarchy of Bounds for Stochastic Mixed-Integer Programs  

E-Print Network [OSTI]

ing stochastic mixed-integer programs (SMIPs) is even harder, it is likely that ... We consider the following two-stage stochastic mixed-integer program (SMIP):.

2009-05-29T23:59:59.000Z

339

Mixed-mode diesel HCCI with External Mixture Formation: Preliminary...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results 2003 DEER Conference...

340

Tropospheric Chemistry of Internally Mixed Sea Salt and Organic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tropospheric Chemistry of Internally Mixed Sea Salt and Organic Particles: Surprising Reactivity of NaCl with Weak Organic Acids Tropospheric Chemistry of Internally Mixed Sea Salt...

Note: This page contains sample records for the topic "mox mixed oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fuel Effects on Mixing-Controlled Combustion Strategies for High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion Engines Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency...

342

Design Case Summary: Production of Mixed Alcohols from Municipal...  

Office of Environmental Management (EM)

Design Case Summary: Production of Mixed Alcohols from Municipal Solid Waste via Gasification Design Case Summary: Production of Mixed Alcohols from Municipal Solid Waste via...

343

Non carbon mixed conducting materials for PEFC electrocatalysts...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Non carbon mixed conducting materials for PEFC electrocatalysts and electrodes Non carbon mixed conducting materials for PEFC electrocatalysts and electrodes These slides were...

344

Development of Nitric Oxide Oxidation Catalysts for the Fast SCR Reaction  

SciTech Connect (OSTI)

This study was undertaken in order to assess the potential for oxidizing NO to NO{sub 2} in flue gas environments, with the aim of promoting the so-called fast SCR reaction. In principle this can result in improved SCR kinetics and reduced SCR catalyst volumes. Prior to commencing experimental work, a literature study was undertaken to identify candidate catalysts for screening. Selection criteria comprised (1) proven (or likely) activity for NO oxidation, (2) low activity for SO2 oxidation (where data were available), and (3) inexpensive component materials. Catalysts identified included supported base metal oxides, supported and unsupported mixed metal oxides, and metal ion exchanged ZSM-5 (Fe, Co, Cu). For comparison purposes, several low loaded Pt catalysts (0.5 wt% Pt) were also included in the study. Screening experiments were conducted using a synthetic feed gas representative of flue gas from coal-fired utility boilers: [NO] = 250 ppm, [SO{sub 2}] = 0 or 2800 ppm, [H{sub 2}O] = 7%, [CO{sub 2}] = 12%, [O{sub 2}] = 3.5%, balance = N{sub 2}; T = 275-375 C. Studies conducted in the absence of SO{sub 2} revealed a number of supported and unsupported metal oxides to be extremely active for NO oxidation to NO{sub 2}. These included known catalysts (Co{sub 3}O{sub 4}/SiO{sub 2}, FeMnO{sub 3}, Cr{sub 2}O{sub 3}/TiO{sub 2}), as well as a new one identified in this work, CrFeO{sub x}/SiO{sub 2}. However, in the presence of SO{sub 2}, all the catalysts tested were found to be severely deactivated with respect to NO oxidation. Of these, Co{sub 3}O{sub 4}/SiO{sub 2}, Pt/ZSM-5 and Pt/CeO{sub 2} showed the highest activity for NO oxidation in the presence of SO{sub 2} (based on peak NO conversions to NO{sub 2}), although in no cases did the NO conversion exceed 7%. Reactor studies indicate there are two components to SO{sub 2}-induced deactivation of Co{sub 3}O{sub 4}/SiO{sub 2}, corresponding to an irreversible deactivation due to sulfation of the surface of the Co{sub 3}O{sub 4} phase, together with a reversible inhibition due to competitive adsorption of SO{sub 2} with NO on the catalyst. In an effort to minimize the deactivating effect of SO{sub 2} on Co{sub 3}O{sub 4}/SiO{sub 2}, two synthetic approaches were briefly examined. These consisted of (1) the incorporation of highly dispersed Co(II) ions in silica, as a non-sulfating matrix, via the sol-gel preparation of CoO-SiO{sub 2}; and (2) the sol-gel preparation of a mixed metal oxide, CoO-Nb{sub 2}O{sub 5}-SiO{sub 2}, with the aim of exploiting the acidity of the niobium oxide to minimize SO2 adsorption. While both catalysts showed almost no activity for NO oxidation in the absence of SO{sub 2}, when SO{sub 2} was present low activity was observed, indicating that SO{sub 2} acts as a promoter for NO oxidation over these materials. The kinetics of NO oxidation over Co{sub 3}O{sub 4}/SiO{sub 2}, Pt/SiO{sub 2} and Pt/CeO{sub 2} were also examined. Co{sub 3}O{sub 4}/SiO{sub 2} was found to exhibit a higher apparent activation energy for NO oxidation than the Pt catalysts, while the combined reaction order in NO and O{sub 2} for the three catalysts was very close to one. CO{sub 2} was found to have no effect on the kinetics of NO oxidation over these catalysts. The presence of H{sub 2}O caused a decrease in NO conversion for both Co{sub 3}O{sub 4}/SiO{sub 2} and Pt/CeO{sub 2} catalysts, while no effect was observed for Pt/SiO{sub 2}. The inhibiting effect of water was reversible and is attributed to competitive adsorption with the reactants. In sum, this study has shown that a variety of base metal catalysts are very active for NO oxidation. However, all of the catalysts studied are strongly deactivated in the presence of 2800 ppm SO{sub 2} at typical flue gas temperatures; consequently improving catalyst resistance to SO{sub x} will be a pre-requisite if the fast SCR concept is to be applied to coal-fired flue gas conditions.

Mark Crocker

2005-09-30T23:59:59.000Z

345

Nanostructured transition metal oxides useful for water oxidation catalysis  

DOE Patents [OSTI]

The present invention provides for a composition comprising a nanostructured transition metal oxide capable of oxidizing two H.sub.2O molecules to obtain four protons. In some embodiments of the invention, the composition further comprises a porous matrix wherein the nanocluster of the transition metal oxide is embedded on and/or in the porous matrix.

Frei, Heinz M; Jiao, Feng

2013-12-24T23:59:59.000Z

346

SOLID OXIDE PLANAR AND TUBULAR SOLID OXIDE FUEL  

E-Print Network [OSTI]

SOLID OXIDE PLANAR AND TUBULAR SOLID OXIDE FUEL CELLS Dynamic Simulation Approach Modular Approach: Individual simulation modules for each fuel cell type · Tubular SOFC · Planar SOFC · MCFC · PEM Reformer · Slow pressure transients #12;Fuel Cell Assumptions · H2 electrochemically oxidized only · CO consumed

Mease, Kenneth D.

347

Oxidative Reforming of Biodiesel Over Molybdenum (IV) Oxide  

E-Print Network [OSTI]

Oxidative Reforming of Biodiesel Over Molybdenum (IV) Oxide Jessica Whalen, Oscar Marin Flores, Su University INTRODUCTION Energy consumption continues to skyrocket worldwide. Biodiesel is a renewable fuel as potential feedstock in solid oxide fuel cells. Petroleum based fuels become scarcer daily, and biodiesel

Collins, Gary S.

348

Highly oxidized superconductors  

DOE Patents [OSTI]

Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known syntheses in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed.

Morris, Donald E. (Kensington, CA)

1994-01-01T23:59:59.000Z

349

Highly oxidized superconductors  

DOE Patents [OSTI]

Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known synthesis in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed. 16 figs.

Morris, D.E.

1994-09-20T23:59:59.000Z

350

Optically transparent yttrium oxide  

SciTech Connect (OSTI)

A body is described comprising at least 99.9% yttrium oxide having a density of at least 99% of theoretically density, a sample of the body having a in-line transmission of at least 73%, over a wavelength range of 2-5 microns with the sample having a thickness of 0.375 inches.

Hartnett, T.; Greenberg, M.; Gentilman, R.L.

1988-08-02T23:59:59.000Z

351

Structure-Activity Relationship in Nanostructured Copper-Ceria-Based Preferential CO Oxidation Catalysts  

SciTech Connect (OSTI)

Two series of nanostructured oxidized copper-cerium catalysts with varying copper loadings, and prepared, respectively, by impregnation of ceria and by coprecipitation of the two components within reverse microemulsions, have been characterized in detail at structural and electronic levels by X-ray diffraction (XRD), Raman spectroscopy, high-resolution electron microscopy (HREM), X-ray energy dispersive spectroscopy (XEDS), X-ray photoelectron spectroscopy (XPS) (including Ar{sup +}-sputtering), and X-ray absorption fine structure (XAFS). These results have been correlated with analysis of their catalytic properties for preferential oxidation of CO in a H{sub 2}-rich stream (CO-PROX), complemented by Operando-DRIFTS. A relevant difference between the two series of catalysts concerns the nature of the support for the surface-dispersed copper oxide entities, which is essentially ceria for the samples prepared by impregnation and a Ce-Cu mixed oxide for those prepared by microemulsion-coprecipitation. The existence of copper segregation in the form of copper oxide or copper-enriched Cu-Ce mixed oxides for the latter type of samples is uniquely revealed by nanoprobe XEDS and XPS Ar{sup +}-sputtering experiments. The CO oxidation activity under CO-PROX conditions is correlated to the degree of support-promoted reduction achieved by the dispersed copper oxide particles under reaction conditions. Nevertheless, catalysts which display higher CO oxidation activity are generally more efficient also for the undesired H{sub 2} oxidation reaction. The balance between both reactions results in differences in the CO-PROX activity between the two series of catalysts which are examined on the basis of the structural differences found.

Gamarra,D.; Munuera, G.; Hungria, A.; Fernandez-Garcia, M.; Conesa, J.; Midgley, P.; Wang, X.; Hanson, J.; Rodriguez, J.; Martinez-Arias, A.

2007-01-01T23:59:59.000Z

352

Development studies for a novel wet oxidation process  

SciTech Connect (OSTI)

A catalytic wet oxidation process (DETOX), which uses an acidic iron solution to oxidize organic compounds to carbon dioxide, water, and other simple products, was investigated as a potential method for the treatment of multicomponent hazardous and mixed wastes. The organic compounds picric acid, poly(vinyl chloride), tetrachlorothiophene, pentachloropyridine, Aroclor 1260 (a polychlorinated biphenyl), and hexachlorobenzene were oxidized in 125 ml reaction vessels. The metals arsenic, barium, beryllium, cadmium, cerium (as a surrogate for plutonium), chromium, lead, mercury, neodymium (as a surrogate for uranium), nickel, and vanadium were tested in the DETOX solution. Barium, beryllium, cerium, chromium, mercury, neodymium, nickel, and vanadium were all found to be very soluble (>100 g/l) in the DETOX chloride-based solution. Arsenic, barium, cadmium, and lead solubilities were lower. Lead could be selectively precipitated from the DETOX solution. Chromium(VI) was reduced to relatively non-toxic chromium(III) by the solution. Six soils were contaminated with arsenic, barium, beryllium, chromium, lead, and neodymium oxides at approximately 0.1% by weight, and benzene, trichloroethene, mineral oil, and Aroclor 1260 at approximately 5% by weight total, and 5.g amounts treated with the DETOX solution in unstirred 125. ml reaction bombs. It is felt that soil treatment in a properly designed system is entirely possible despite incomplete oxidation of the less volatile organic materials in these unstirred tests.

Dhooge, P.M.; Hakim, L.B.

1994-01-01T23:59:59.000Z

353

Downhole steam generator having a downhole oxidant compressor  

DOE Patents [OSTI]

Apparatus and method for generation of steam in a borehole for penetration into an earth formation wherein a downhole oxidant compressor is used to compress relatively low pressure (atmospheric) oxidant, such as air, to a relatively high pressure prior to mixing with fuel for combustion. The multi-stage compressor receives motive power through a shaft driven by a gas turbine powered by the hot expanding combustion gases. The main flow of compressed oxidant passes through a velocity increasing nozzle formed by a reduced central section of the compressor housing. An oxidant bypass feedpipe leading to peripheral oxidant injection nozzles of the combustion chamber are also provided. The downhole compressor allows effective steam generation in deep wells without need for high pressure surface compressors. Feedback preheater means are provided for preheating fuel in a preheat chamber. Preheating of the water occurs in both a water feed line running from aboveground and in a countercurrent water flow channel surrounding the combustor assembly. The countercurrent water flow channels advantageously serve to cool the combustion chamber wall. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet for closing and sealing the combustion chamber from entry of reservoir fluids in the event of a flameout.

Fox, Ronald L. (Albuquerque, NM)

1983-01-01T23:59:59.000Z

354

Staged membrane oxidation reactor system  

DOE Patents [OSTI]

Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

2012-09-11T23:59:59.000Z

355

Staged membrane oxidation reactor system  

DOE Patents [OSTI]

Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

2014-05-20T23:59:59.000Z

356

Staged membrane oxidation reactor system  

DOE Patents [OSTI]

Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

2013-04-16T23:59:59.000Z

357

Air electrode composition for solid oxide fuel cell  

DOE Patents [OSTI]

An air electrode composition for a solid oxide fuel cell is disclosed. The air electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO.sub.3. The A-site of the air electrode composition comprises a mixed lanthanide in combination with rare earth and alkaline earth dopants. The B-site of the composition comprises Mn in combination with dopants such as Mg, Al, Cr and Ni. The mixed lanthanide comprises La, Ce, Pr and, optionally, Nd. The rare earth A-site dopants preferably comprise La, Nd or a combination thereof, while the alkaline earth A-site dopant preferably comprises Ca. The use of a mixed lanthanide substantially reduces raw material costs in comparison with compositions made from high purity lanthanum starting materials. The amount of the A-site and B-site dopants is controlled in order to provide an air electrode composition having a coefficient of thermal expansion which closely matches that of the other components of the solid oxide fuel cell.

Kuo, Lewis (Monroeville, PA); Ruka, Roswell J. (Pittsburgh, PA); Singhal, Subhash C. (Murrysville, PA)

1999-01-01T23:59:59.000Z

358

Air electrode composition for solid oxide fuel cell  

DOE Patents [OSTI]

An air electrode composition for a solid oxide fuel cell is disclosed. The air electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO{sub 3}. The A-site of the air electrode composition comprises a mixed lanthanide in combination with rare earth and alkaline earth dopants. The B-site of the composition comprises Mn in combination with dopants such as Mg, Al, Cr and Ni. The mixed lanthanide comprises La, Ce, Pr and, optionally, Nd. The rare earth A-site dopants preferably comprise La, Nd or a combination thereof, while the alkaline earth A-site dopant preferably comprises Ca. The use of a mixed lanthanide substantially reduces raw material costs in comparison with compositions made from high purity lanthanum starting materials. The amount of the A-site and B-site dopants is controlled in order to provide an air electrode composition having a coefficient of thermal expansion which closely matches that of the other components of the solid oxide fuel cell. 3 figs.

Kuo, L.; Ruka, R.J.; Singhal, S.C.

1999-08-03T23:59:59.000Z

359

REVIEW OF PLUTONIUM OXIDATION LITERATURE  

SciTech Connect (OSTI)

A brief review of plutonium oxidation literature was conducted. The purpose of the review was to ascertain the effect of oxidation conditions on oxide morphology to support the design and operation of the PDCF direct metal oxidation (DMO) furnace. The interest in the review was due to a new furnace design that resulted in oxide characteristics that are different than those of the original furnace. Very little of the published literature is directly relevant to the DMO furnace operation, which makes assimilation of the literature data with operating conditions and data a convoluted task. The oxidation behavior can be distilled into three regimes, a low temperature regime (RT to 350 C) with a relatively slow oxidation rate that is influenced by moisture, a moderate temperature regime (350-450 C) that is temperature dependent and relies on more or less conventional oxidation growth of a partially protective oxide scale, and high temperature oxidation (> 500 C) where the metal autocatalytically combusts and oxidizes. The particle sizes obtained from these three regimes vary with the finest being from the lowest temperature. It is surmised that the slow growth rate permits significant stress levels to be achieved that help break up the oxides. The intermediate temperatures result in a fairly compact scale that is partially protective and that grows to critical thickness prior to fracturing. The growth rate in this regime may be parabolic or paralinear, depending on the oxidation time and consequently the oxide thickness. The high temperature oxidation is invariant in quiescent or nearly quiescent conditions due to gas blanketing while it accelerates with temperature under flowing conditions. The oxide morphology will generally consist of fine particles (<15 {micro}m), moderately sized particles (15 < x < 250 {micro}m) and large particles (> 250 {micro}m). The particle size ratio is expected to be < 5%, 25%, and 70% for fine, medium and large particles, respectively, for metal temperatures in the 500-600 C range.

Korinko, P.

2009-11-12T23:59:59.000Z

360

THE MICROSTRUCTURAL LOCATION OF THE INTERGRANULAR METAL OXIDE PHASE IN A ZINC OXIDE VARISTOR  

E-Print Network [OSTI]

I• I ntroduct Ion Metal oxide varistors are ceramic semi-SECTION M METAL' OXIDE PHASE IN A ZINC OXIDE VARISTORTHE INTERGRANULAR METAL OXIDE PHASE IN A ZINC OXIDE VARISTOR

Clarke, D. E

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mox mixed oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

4, 23012331, 2004 Nitrogen oxides  

E-Print Network [OSTI]

of nitrogen oxide (NO), nitrogen dioxide (NO2) and ozone (O3) were performed simul- taneously with aerosolACPD 4, 2301­2331, 2004 Nitrogen oxides measurements in an Amazon site A. M. Cordova et al. Title and Physics Discussions Nitrogen oxides measurements in an Amazon site and enhancements associated with a cold

Paris-Sud XI, Université de

362

Graphene and Graphene Oxide: Biofunctionalization and Applications...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Graphene Oxide: Biofunctionalization and Applications in Biotechnology. Graphene and Graphene Oxide: Biofunctionalization and Applications in Biotechnology. Abstract: Graphene...

363

Temperature-dependent ion beam mixing  

SciTech Connect (OSTI)

Recent work on enhanced interdiffusion rates during ion-beam mixing at elevated temperatures is reviewed. As discussed previously, expected increase in ion-beam mixing rates due to `radiation-enhanced diffusion` (RED), i.e. the free migration of isolated vacancy and interstitial defects, is well documented in single-crystal specimens in the range of 0.4 to 0.6 of absolute melting temperature. In contrast, the increase often observed at somewhat lower temperatures during ion-beam mixing of polycrystalline specimens is not well understood. However, sufficient evidence is available to show that this increase reflects intracascade enhancement of a thermally-activated process that also occurs without irradiation. Recent evidence is presented which suggests that this process is Diffusion-induced Grain-Boundary Migration (DIGM). An important complementary conclusion is that because ion-beam mixing in single-crystal specimens exhibits no significant temperature dependence below that of RED, models that invoke only irradiation-specific phenomena, e.g., cascade-overlap, thermal-spikes, or liquid-diffusion, and hence which predict no difference in mixing behavior between single- or poly-crystalline specimens, cannot account for the existing results.

Rehn, L.E.; Alexander, D.E.

1993-08-01T23:59:59.000Z

364

Does Mixing Make Residential Ventilation More Effective?  

SciTech Connect (OSTI)

Ventilation dilutes or removes indoor contaminants to reduce occupant exposure. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. The total ventilation rate is the most important factor in determining the exposure of occupants to given sources, but the zone- specific distribution of exhaust and supply air, and the mixing of ventilation air can have significant roles. Different types of ventilation systems will provide different amounts of mixing depending on several factors such as air leakage through the building envelope, air distribution systems and the location of sources and occupants. This paper reports recent results of investigations to determine the impact that air mixing has on exposures of residential occupants to prototypical contaminants of concern. Evaluations of existing field measurements and simulations reported in the literature are combined with new analyses to provide an integrated overview of the topic. The results show that for extreme cases additional mixing can be a significant factor but for typical homes looking at average exposures mixing is not helpful and can even make exposures worse.

Sherman, Max; Walker, Iain

2010-08-16T23:59:59.000Z

365

Test plan for immobilization of salt-containing surrogate mixed wastes using polyester resins  

SciTech Connect (OSTI)

Past operations at many Department of Energy (DOE) sites have resulted in the generation of several waste streams with high salt content. These wastes contain listed and characteristic hazardous constituents and are radioactive. The salts contained in the wastes are primarily chloride, sulfate, nitrate, metal oxides, and hydroxides. DOE has placed these types of wastes under the purview of the Mixed Waste Focus Area (MWFA). The MWFA has been tasked with developing and facilitating the implementation of technologies to treat these wastes in support of customer needs and requirements. The MWFA has developed a Technology Development Requirements Document (TDRD), which specifies performance requirements for technology owners and developers to use as a framework in developing effective waste treatment solutions. This project will demonstrate the use of polyester resins in encapsulating and solidifying DOE`s mixed wastes containing salts, as an alternative to conventional and other emerging immobilization technologies.

Biyani, R.K.; Douglas, J.C.; Hendrickson, D.W.

1997-07-07T23:59:59.000Z

366

On the Electron Paramagnetic Resonance Studies in Mixed Alkali Borate Glasses  

SciTech Connect (OSTI)

Mixed alkali effect in oxide based glasses is one of the current research activity and studies on the behavior of spectroscopic parameters in these systems are quite important to understand the basic nature of this phenomenon. EPR studies of mixed alkali glasses Li{sub 2}O-K{sub 2}O-ZnO-B{sub 2}O{sub 3} doped with Fe{sup 3+} and Mn{sup 2+} were carried out at room temperature. The EPR spectra show typical resonances of d{sup 5} system (Fe{sup 3+} and Mn{sup 2+}) in all the measured glass specimens. Evaluated hyperfine constant, number of paramagnetic centers and paramagnetic susceptibility values show deviation from the linearity with the progressive substitution of the Li ion with K in glass network.

Padmaja, G. [Department of Physics, Kakatiya University, Warangal 506009 (India); Reddy, T. Goverdhan [Graphene Research Institute and Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of); Kistaiah, P. [Department of Physics, Osmania University, Hyderabad 500 007 (India)

2011-10-20T23:59:59.000Z

367

Mixed MSW and Vacuum Solutions of Solar Neutrino Problem  

E-Print Network [OSTI]

Assuming three flavour neutrino mixing takes place in vacuum, we investigate the possibility that the solar $\

Qiu-Yu Liu

1997-08-11T23:59:59.000Z

368

Millisecond Oxidation of Alkanes  

Broader source: Energy.gov [DOE]

This factsheet describes a project whose goal is to commercialize a production process for propylene and acrylic acid from propane using a catalytic auto-thermal oxydehydrogenation process operating at short contact times. Auto-thermal oxidation for conversion of propane to propylene and acrylic acid promises energy savings of 20 trillion Btu per year by 2020. In addition to reducing energy consumption, this technology can reduce manufacturing costs by up to 25 percent, and reduce a variety of greenhouse gas emissions.

369

Analysis on fuel breeding capability of FBR core region based on minor actinide recycling doping  

SciTech Connect (OSTI)

Nuclear fuel breeding based on the capability of fuel conversion capability can be achieved by conversion ratio of some fertile materials into fissile materials during nuclear reaction processes such as main fissile materials of U-233, U-235, Pu-239 and Pu-241 and for fertile materials of Th-232, U-238, and Pu-240 as well as Pu-238. Minor actinide (MA) loading option which consists of neptunium, americium and curium will gives some additional contribution from converted MA into plutonium such as conversion Np-237 into Pu-238 and it's produced Pu-238 converts to Pu-239 via neutron capture. Increasing composition of Pu-238 can be used to produce fissile material of Pu-239 as additional contribution. Trans-uranium (TRU) fuel (Mixed fuel loading of MOX (U-Pu) and MA composition) and mixed oxide (MOX) fuel compositions are analyzed for comparative analysis in order to show the effect of MA to the plutonium productions in core in term of reactor criticality condition and fuel breeding capability. In the present study, neptunium (Np) nuclide is used as a representative of MAin trans-uranium (TRU) fuel composition as Np-MOX fuel type. It was loaded into the core region gives significant contribution to reduce the excess reactivity in comparing to mixed oxide (MOX) fuel and in the same time it contributes to increase nuclear fuel breeding capability of the reactor. Neptunium fuel loading scheme in FBR core region gives significant production of Pu-238 as fertile material to absorp neutrons for reducing excess reactivity and additional contribution for fuel breeding.

Permana, Sidik; Novitrian,; Waris, Abdul [Nuclear Physics and Biophysics Research Division, Physics Department, Institut Teknologi Bandung (Indonesia); Ismail [Center for Technical Assessment of Nuclear Installation and Materials, Indonesian Nuclear Energy Regulatory (Indonesia); Suzuki, Mitsutoshi [Department of Science and Technology for Nuclear Material Management (STNM), Japan Atomic Energy Agency (JAEA) (Japan); Saito, Masaki [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology (Japan)

2014-09-30T23:59:59.000Z

370

CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE TREATMENT  

SciTech Connect (OSTI)

Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (both radioactive and hazardous according tohe Resource Conservation and Recovery Act) wastes. Depending on regulatory requirements, the mercury in the off-gas must be controlled with sometimes very high efficiencies. Compliance to the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards can require off-gas mercury removal efficiencies up to 99.999% for thermally treating some mixed waste streams. Several test programs have demonstrated this level of off-gas mercury control using fixed beds of granular sulfur-impregnated activated carbon. Other results of these tests include: (a) The depth of the mercury control mass transfer zone was less than 15-30 cm for the operating conditions of these tests, (b) MERSORB® carbon can sorb Hg up to 19 wt% of the carbon mass, and (c) the spent carbon retained almost all (98 – 99.99%) of the Hg; but when even a small fraction of the total Hg dissolves, the spent carbon can fail the TCLP test when the spent carbon contains high Hg concentrations. Localized areas in a carbon bed that become heated through heat of adsorption, to temperatures where oxidation occurs, are referred to as “bed hot spots.” Carbon bed hot spots must be avoided in processes that treat radioactive and mixed waste. Key to carbon bed hot spot mitigation are (a) designing for sufficient gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) monitoring and control of inlet gas flowrate, temperature, and composition, (c) monitoring and control of in-bed and bed outlet gas temperatures, and (d) most important, monitoring of bed outlet CO concentrations. An increase of CO levels in the off-gas downstream of the carbon bed to levels about 50-100 ppm higher than the inlet CO concentration indicate CO formation in the bed, caused by carbon bed hot spots. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from. Multiple high and high-high alarm levels should be used, with appropriate corrective actions for each level.

Nick Soelberg; Joe Enneking

2010-11-01T23:59:59.000Z

371

Dry powder mixes comprising phase change materials  

DOE Patents [OSTI]

Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 2 figures.

Salyer, I.O.

1994-02-01T23:59:59.000Z

372

Dry powder mixes comprising phase change materials  

DOE Patents [OSTI]

Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7[times]10[sup [minus]3] to about 7[times]10[sup [minus]2] microns and the p.c.m. must be added to the silica in an amount of 80 wt. % or less p.c.m. per combined weight of silica and p.c.m. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a p.c.m. material. The silica-p.c.m. mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

Salyer, I.O.

1993-05-18T23:59:59.000Z

373

Mixing enhancement by use of swirling jets  

SciTech Connect (OSTI)

It has been proposed that the mixing of fuel with air in the combustor of scramjet engines might be enhanced by the addition of swirl to the fuel jet prior to injection. This study investigated the effects of swirl on the mixing of a 30 deg wall jet into a Mach 2 flow. Cases with swirl and without swirl were investigated, with both helium and air simulating the fuel. Rayleigh scattering was used to visualize the flow, and seeding the fuel with water allowed it to be traced through the main flow. The results show that the addition of swirl to the fuel jet causes the fuel to mix more rapidly with the main flow, that larger amounts of swirl increase this effect, and that helium spreads better into the main flow than air. 12 refs.

Kraus, D.K.; Cutler, A.D.

1993-01-01T23:59:59.000Z

374

Dry powder mixes comprising phase change materials  

DOE Patents [OSTI]

A free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7 [times] 10[sup [minus]3] to about 7 [times] 10[sup [minus]2] microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 9 figs.

Salyer, I.O.

1992-04-21T23:59:59.000Z

375

Dry powder mixes comprising phase change materials  

SciTech Connect (OSTI)

Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

Salyer, Ival O. (Dayton, OH)

1992-01-01T23:59:59.000Z

376

Dry powder mixes comprising phase change materials  

SciTech Connect (OSTI)

Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

Salyer, Ival O. (Dayton, OH)

1994-01-01T23:59:59.000Z

377

Dry powder mixes comprising phase change materials  

SciTech Connect (OSTI)

Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garmets, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

Salyer, Ival O. (Dayton, OH)

1993-01-01T23:59:59.000Z

378

Dry powder mixes comprising phase change materials  

DOE Patents [OSTI]

Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

Salyer, Ival O. (Dayton, OH)

1993-01-01T23:59:59.000Z

379

Pulse Jet Mixing Tests With Noncohesive Solids  

SciTech Connect (OSTI)

This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid. The tests were conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants, and the test data were used to develop models predicting two measures of mixing performance for full-scale WTP vessels. The models predict the cloud height (the height to which solids will be lifted by the PJM action) and the critical suspension velocity (the minimum velocity needed to ensure all solids are suspended off the floor, though not fully mixed). From the cloud height, the concentration of solids at the pump inlet can be estimated. The predicted critical suspension velocity for lifting all solids is not precisely the same as the mixing requirement for 'disturbing' a sufficient volume of solids, but the values will be similar and closely related. These predictive models were successfully benchmarked against larger scale tests and compared well with results from computational fluid dynamics simulations. The application of the models to assess mixing in WTP vessels is illustrated in examples for 13 distinct designs and selected operational conditions. The values selected for these examples are not final; thus, the estimates of performance should not be interpreted as final conclusions of design adequacy or inadequacy. However, this work does reveal that several vessels may require adjustments to design, operating features, or waste feed properties to ensure confidence in operation. The models described in this report will prove to be valuable engineering tools to evaluate options as designs are finalized for the WTP. Revision 1 refines data sets used for model development and summarizes models developed since the completion of Revision 0.

Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Fort, James A.; Wells, Beric E.; Sundaram, S. K.; Scott, Paul A.; Minette, Michael J.; Smith, Gary L.; Burns, Carolyn A.; Greenwood, Margaret S.; Morgen, Gerald P.; Baer, Ellen BK; Snyder, Sandra F.; White, Michael K.; Piepel, Gregory F.; Amidan, Brett G.; Heredia-Langner, Alejandro

2012-02-17T23:59:59.000Z

380

Studying Mixed-Phased Clouds Using Ground-Based Active and Passive Remote Sensors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystalline Gallium Oxide ThinIon Cooling and EjectionStudying Mixed-Phased

Note: This page contains sample records for the topic "mox mixed oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions  

DOE Patents [OSTI]

This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

Balachandran, Uthamalingam (Hinsdale, IL); Poeppel, Roger B. (Glen Ellyn, IL); Kleefisch, Mark S. (Naperville, IL); Kobylinski, Thaddeus P. (Lisle, IL); Udovich, Carl A. (Joliet, IL)

1994-01-01T23:59:59.000Z

382

Mixed waste paper to ethanol fuel  

SciTech Connect (OSTI)

The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

Not Available

1991-01-01T23:59:59.000Z

383

Model Independent Bounds on Kinetic Mixing  

SciTech Connect (OSTI)

New Abelian vector bosons can kinetically mix with the hypercharge gauge boson of the Standard Model. This letter computes the model independent limits on vector bosons with masses from 1 GeV to 1 TeV. The limits arise from the numerous e{sup +}e{sup -} experiments that have been performed in this energy range and bound the kinetic mixing by {epsilon} {approx}< 0.03 for most of the mass range studied, regardless of any additional interactions that the new vector boson may have.

Hook, Anson; Izaguirre, Eder; Wacker, Jay G.; /SLAC

2011-08-22T23:59:59.000Z

384

B^0_s mixing at CDF  

SciTech Connect (OSTI)

The Tevatron collider at Fermilab provides a very rich environment for the study of b-hadrons. One of the most important analyses within the B physics program of the CDF experiment is B{sub s}{sup 0} mixing. Since the time this school was held, several improvements in the B{sub s}{sup 0} mixing analysis have made possible the measurement of the B{sub s}{sup 0} oscillation frequency, result that has been presented at the FPCP 2006 Conference.

Piedra, Jonatan; /Paris U., VI-VII

2006-08-01T23:59:59.000Z

385

Dry powder mixes comprising phase change materials  

DOE Patents [OSTI]

A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft.

Salyer, Ival O. (Dayton, OH)

1995-01-01T23:59:59.000Z

386

Dry powder mixes comprising phase change materials  

DOE Patents [OSTI]

A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft. 3 figs.

Salyer, I.O.

1995-12-26T23:59:59.000Z

387

Dry powder mixes comprising phase change materials  

DOE Patents [OSTI]

A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft. 3 figures.

Salyer, I.O.

1994-12-06T23:59:59.000Z

388

Dry powder mixes comprising phase change materials  

DOE Patents [OSTI]

A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft.

Salyer, Ival O. (Dayton, OH)

1994-01-01T23:59:59.000Z

389

Experimental studies of actinide volatilities with application to mixed waste oxidation processors  

SciTech Connect (OSTI)

The transpiration technique is used to measure volatilities of U from U{sub 3}O{sub 8}(s), Pu from PuO{sub 2}(s) and Pu and Am from PuO{sub 2}/2%AmO{sub 2}(s) in the presence of steam and oxygen at temperatures ranging from 900 to 1300{degree}C.

Krikorian, O.H.; Ebbinghaus, B.B.; Condit, R.H.; Adamson, M.G.; Fontes, A.S. Jr.; Fleming, D.L.

1993-04-30T23:59:59.000Z

390

Aliovalent titanium substitution in layered mixed Li Ni-Mn-Co oxides for lithium battery applications  

SciTech Connect (OSTI)

Improved electrochemical characteristics are observed for Li[Ni1/3Co1/3-yMyMn1/3]O2 cathode materials when M=Ti and y<0.07, compared to the baseline material, with up to 15percent increased discharge capacity.

Kam, Kinson; Doeff, Marca M.

2010-12-01T23:59:59.000Z

391

Improved layered mixed transition metal oxides for Li-ion batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries," Science 311(5763), 977-^ for Advanced Lithium-Ion Batteries," J. Electrochem. Soc.02 for lithium-ion batteries," Chem. Lett. , [3] Yabuuchi,

Doeff, Marca M.

2010-01-01T23:59:59.000Z

392

E-Print Network 3.0 - atr high-power mixed-oxide Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

75 A. R&D on a 50-kW, High-Efficiency, High-Power-Density, CO-Tolerant PEM Fuel Cell Stack System... of its high power density, quick start-up capability, and...

393

Improved layered mixed transition metal oxides for Li-ion batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries," Science 311 (5763),for rechargeable lithium batteries," Science 311(5763), 977-M n , ^ for Advanced Lithium-Ion Batteries," J. Electrochem.

Doeff, Marca M.

2010-01-01T23:59:59.000Z

394

Progress on Acidic Zirconia Mixed Oxides for Efficient NH3-SCR...  

Broader source: Energy.gov (indexed) [DOE]

length 7.00 in V 2.9 L *DOC * 400 cpsi 5.66 in, length 3.80 in V 1.6 L SCR SCR Turbo DOC Injector SCR SCR Turbo DOC Injector Engine test conditions: * Engine speed: 1300 -...

395

Study on Equilibrium Characteristics of Thorium-Plutonium-Minor Actinides Mixed Oxides Fuel in PWR  

SciTech Connect (OSTI)

A study on characteristics of thorium-plutonium-minor actinides utilization in the pressurized water reactor (PWR) with the equilibrium burnup model has been conducted. For a comprehensive evaluation, several fuel cycles scenario have been included in the present study with the variation of moderator-to-fuel volume ratio (MFR) of PWR core design. The results obviously exhibit that the neutron spectra grow to be harder with decreasing of the MFR. Moreover, the neutron spectra also turn into harder with the rising number of confined heavy nuclides. The required {sup 233}U concentration for criticality of reactor augments with the increasing of MFR for all heavy nuclides confinement and thorium and uranium confinement in PWR.

Waris, A.; Permana, S.; Kurniadi, R.; Su'ud, Z. [Bosscha Laboratory, Department of Physics, Nuclear Physics and Biophysics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (Indonesia); Sekimoto, H. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology (Japan)

2010-06-22T23:59:59.000Z

396

Determination of Radial Power Profiles in Thorium-Plutonium Mixed Oxide Fuel Pellets.  

E-Print Network [OSTI]

??To be able to license fuel for use in commercial nuclear reactors its thermomechanical behavior needs to be well known. For this, fuel performance codes… (more)

fredriksson, patrik

2014-01-01T23:59:59.000Z

397

Characterization of boria-alumina mixed oxides prepared by a sol-gel method.  

E-Print Network [OSTI]

for hydrotreating catalysts 32-53 . Nevertheless, the structure of the boria-alumina system with high specific

Boyer, Edmond

398

Thermal-Hydraulic Analysis of Advanced Mixed-Oxide Fuel Assemblies with VIPRE-01  

E-Print Network [OSTI]

depletion and core reshuffling, and fuel material thermal-physical properties. Additionally, a text-based coupling method is developed to facilitate the exchange of information between the neutronic code DRAGON and thermal-hydraulic code VIPRE-01. The new...

Bingham, Adam R.

2010-07-14T23:59:59.000Z

399

Impact of a Mixed Oxide's Surface Composition and Structure on Its  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasicsScienceRadiationproperties atAdsorptive

400

LANL disassembles "pits," makes mixed-oxide fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs & GraduatesReducingLANL Demolishes

Note: This page contains sample records for the topic "mox mixed oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A study of ZnxZryOz mixed oxides for direct conversion of ethanol to  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011A FirstEMSLAEMSL strategy

402

Progress on Acidic Zirconia Mixed Oxides for Efficient NH3-SCR Catalysis |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309Department ofDepartment ofProgram(S3TEC )Department of

403

BENCH SCALE SALTSTONE PROCESS DEVELOPMENT MIXING STUDY  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) was requested to develop a bench scale test facility, using a mixer, transfer pump, and transfer line to determine the impact of conveying the grout through the transfer lines to the vault on grout properties. Bench scale testing focused on the effect the transfer line has on the rheological property of the grout as it was processed through the transfer line. Rheological and other physical properties of grout samples were obtained prior to and after pumping through a transfer line. The Bench Scale Mixing Rig (BSMR) consisted of two mixing tanks, grout feed tank, transfer pump and transfer hose. The mixing tanks were used to batch the grout which was then transferred into the grout feed tank. The contents of the feed tank were then pumped through the transfer line (hose) using a progressive cavity pump. The grout flow rate and pump discharge pressure were monitored. Four sampling stations were located along the length of the transfer line at the 5, 105 and 205 feet past the transfer pump and at 305 feet, the discharge of the hose. Scaling between the full scale piping at Saltstone to bench scale testing at SRNL was performed by maintaining the same shear rate and total shear at the wall of the transfer line. The results of scaling down resulted in a shorter transfer line, a lower average velocity, the same transfer time and similar pressure drops. The condition of flow in the bench scale transfer line is laminar. The flow in the full scale pipe is in the transition region, but is more laminar than turbulent. The resulting plug in laminar flow in the bench scale results in a region of no-mixing. Hence mixing, or shearing, at the bench scale should be less than that observed in the full scale, where this plug is non existent due to the turbulent flow. The bench scale tests should be considered to be conservative due to the highly laminar condition of flow that exists. Two BSMR runs were performed. In both cases, wall shearing was shown to reduce the rheological properties of the grout as it was processed through the transfer line. Samples taken at the static feed tank showed that gelling impacted the rheological properties of the grout before it was fed into the pump and transfer line. A comparison of the rheological properties of samples taken at the feed tank and transfer line discharge indicated shearing of the grout was occurring in the transfer line. Bench scale testing of different mixing methods with three different salt solutions showed that method of mixing influences the rheological properties of the grouts. The paddle blade mixing method of the salt solution used for the BMSR testing provided comparable rheological properties of the grout prepared in the BMSR after 14 minutes of processing, B3. The paddle blade mixing method can be used to represent BMSR results and mixing time can be adjusted to represent larger scale mixing.

Cozzi, A.; Hansen, E.

2011-08-03T23:59:59.000Z

404

Oxidative stress and oxidative damage in chemical carcinogenesis  

SciTech Connect (OSTI)

Reactive oxygen species (ROS) are induced through a variety of endogenous and exogenous sources. Overwhelming of antioxidant and DNA repair mechanisms in the cell by ROS may result in oxidative stress and oxidative damage to the cell. This resulting oxidative stress can damage critical cellular macromolecules and/or modulate gene expression pathways. Cancer induction by chemical and physical agents involves a multi-step process. This process includes multiple molecular and cellular events to transform a normal cell to a malignant neoplastic cell. Oxidative damage resulting from ROS generation can participate in all stages of the cancer process. An association of ROS generation and human cancer induction has been shown. It appears that oxidative stress may both cause as well as modify the cancer process. Recently association between polymorphisms in oxidative DNA repair genes and antioxidant genes (single nucleotide polymorphisms) and human cancer susceptibility has been shown.

Klaunig, James E., E-mail: jklauni@indiana.edu; Wang Zemin; Pu Xinzhu; Zhou Shaoyu

2011-07-15T23:59:59.000Z

405

All-alkoxide synthesis of strontium-containing metal oxides  

DOE Patents [OSTI]

A method for making strontium-containing metal-oxide ceramic thin films from a precursor liquid by mixing a strontium neo-pentoxide dissolved in an amine solvent and at least one metal alkoxide dissolved in a solvent, said at least one metal alkoxide selected from the group consisting of alkoxides of calcium, barium, bismuth, cadmium, lead, titanium, tantalum, hafnium, tungsten, niobium, zirconium, yttrium, lanthanum, antimony, chromium and thallium, depositing a thin film of the precursor liquid on a substrate, and heating the thin film in the presence of oxygen at between 550 and 700.degree. C.

Boyle, Timothy J. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

406

Method and apparatus for waste destruction using supercritical water oxidation  

DOE Patents [OSTI]

The invention relates to an improved apparatus and method for initiating and sustaining an oxidation reaction. A hazardous waste, is introduced into a reaction zone within a pressurized containment vessel. An oxidizer, preferably hydrogen peroxide, is mixed with a carrier fluid, preferably water, and the mixture is heated until the fluid achieves supercritical conditions of temperature and pressure. The heating means comprise cartridge heaters placed in closed-end tubes extending into the center region of the pressure vessel along the reactor longitudinal axis. A cooling jacket surrounds the pressure vessel to remove excess heat at the walls. Heating and cooling the fluid mixture in this manner creates a limited reaction zone near the center of the pressure vessel by establishing a steady state density gradient in the fluid mixture which gradually forces the fluid to circulate internally. This circulation allows the fluid mixture to oscillate between supercritical and subcritical states as it is heated and cooled.

Haroldsen, Brent Lowell (1251 Sprague St., Manteca, CA 95336); Wu, Benjamin Chiau-pin (2270 Goldenrod La., San Ramon, CA 94583)

2000-01-01T23:59:59.000Z

407

Oxidation resistant alloys, method for producing oxidation resistant alloys  

DOE Patents [OSTI]

A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800 C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800 C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700 C. at a low cost

Dunning, John S.; Alman, David E.

2002-11-05T23:59:59.000Z

408

Dark energy, cosmological constant and neutrino mixing  

E-Print Network [OSTI]

The today estimated value of dark energy can be achieved by the vacuum condensate induced by neutrino mixing phenomenon. Such a tiny value is recovered for a cut-off of the order of Planck scale and it is linked to the sub eV neutrino mass scale. Contributions to dark energy from auxiliary fields or mechanisms are not necessary in this approach.

A. Capolupo; S. Capozziello; G. Vitiello

2007-05-02T23:59:59.000Z

409

Mixed Stream Test Rig (MISTER) Startup Report  

SciTech Connect (OSTI)

This report describes the work accomplished to date to design, procure, assemble, authorize, and startup the Mixed Stream Test Rig (MISTER) at the Idaho National Laboratory (INL). It describes the reasons for establishing this capability, physical configuration of the test equipment, operations methodology, initial success, and plans for completing the initial 1,000 hour test.

Charles Park

2011-02-01T23:59:59.000Z

410

Symmetrical parametrizations of the lepton mixing matrix  

SciTech Connect (OSTI)

Advantages of the original symmetrical form of the parametrization of the lepton mixing matrix are discussed. It provides a conceptually more transparent description of neutrino oscillations and lepton number violating processes like neutrinoless double beta decay, clarifying the significance of Dirac and Majorana phases. It is also ideal for parametrizing scenarios with light sterile neutrinos.

Rodejohann, W. [Max-Planck-Institut fuer Kernphysik, Postfach 103980, 69029 Heidelberg (Germany); Valle, J. W. F. [AHEP Group, Institut de Fisica Corpuscular--C.S.I.C./Universitat de Valencia, Edificio Institutos de Paterna, Apt 22085, E-46071 Valencia (Spain)

2011-10-01T23:59:59.000Z

411

Hazardous and Radioactive Mixed Waste Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) hazardous and radioactive mixed waste policies and requirements and to implement the requirements of the Resource Conservation and Recovery Act (RCRA) within the framework of the environmental programs established under DOE O 5400.1. This directive does not cancel any directives.

1989-02-22T23:59:59.000Z

412

PCC Mix Designs Using Recycled Concrete  

E-Print Network [OSTI]

PCC Mix Designs Using Recycled Concrete Pavements Mary E. Vancura, Derek Tompkins, & Lev Khazanovich 21st Annual Transportation Research Conference #12;·! Reassessment of recycled concrete aggregate (RCA) use in rigid pavements ·! History of RCA use ·! Characteristics of RCA concrete ·! RCA production

Minnesota, University of

413

Charm -- a thermometer of the mixed phase  

E-Print Network [OSTI]

A charmed quark experiences drag and diffusion in the quark-gluon plasma, as well as strong interaction with the plasma surface. Our simulations indicate that charmed quarks created in heavy ion collisions will be trapped in the mixed phase and will come to equilibrium in it. Their momentum distribution will thus reflect the temperature at the confinement phase transition.

Benjamin Svetitsky; Asher Uziel

1997-09-03T23:59:59.000Z

414

Pulse Jet Mixing Tests With Noncohesive Solids  

SciTech Connect (OSTI)

This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants. The test data were used to independently develop mixing models that can be used to predict full-scale WTP vessel performance and to rate current WTP mixing system designs against two specific performance requirements. One requirement is to ensure that all solids have been disturbed during the mixing action, which is important to release gas from the solids. The second requirement is to maintain a suspended solids concentration below 20 weight percent at the pump inlet. The models predict the height to which solids will be lifted by the PJM action, and the minimum velocity needed to ensure all solids have been lifted from the floor. From the cloud height estimate we can calculate the concentration of solids at the pump inlet. The velocity needed to lift the solids is slightly more demanding than "disturbing" the solids, and is used as a surrogate for this metric. We applied the models to assess WTP mixing vessel performance with respect to the two perform¬ance requirements. Each mixing vessel was evaluated against these two criteria for two defined waste conditions. One of the wastes was defined by design limits and one was derived from Hanford waste characterization reports. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy the performance criteria used for any of the conditions evaluated. The remaining three vessel types provide varying assessments when the different particle characteristics are evaluated. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy the performance criteria used for any of the conditions evaluated. The remaining three vessel types provide varying assessments when the different particle characteristics are evaluated. The HLP-022 vessel was also evaluated using 12 m/s pulse jet velocity with 6-in. nozzles, and this design also did not satisfy the criteria for all of the conditions evaluated.

Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Fort, James A.; Wells, Beric E.; Sundaram, S. K.; Scott, Paul A.; Minette, Michael J.; Smith, Gary L.; Burns, Carolyn A.; Greenwood, Margaret S.; Morgen, Gerald P.; Baer, Ellen BK; Snyder, Sandra F.; White, Michael; Piepel, Gregory F.; Amidan, Brett G.; Heredia-Langner, Alejandro; Bailey, Sharon A.; Bower, John C.; Denslow, Kayte M.; Eakin, David E.; Elmore, Monte R.; Gauglitz, Phillip A.; Guzman, Anthony D.; Hatchell, Brian K.; Hopkins, Derek F.; Hurley, David E.; Johnson, Michael D.; Kirihara, Leslie J.; Lawler, Bruce D.; Loveland, Jesse S.; Mullen, O Dennis; Pekour, Mikhail S.; Peters, Timothy J.; Robinson, Peter J.; Russcher, Michael S.; Sande, Susan; Santoso, Christian; Shoemaker, Steven V.; Silva, Steve M.; Smith, Devin E.; Su, Yin-Fong; Toth, James J.; Wiberg, John D.; Yu, Xiao-Ying; Zuljevic, Nino

2009-05-11T23:59:59.000Z

415

Thermal and chemical remediation of mixed wastes  

DOE Patents [OSTI]

A process for treating organic waste materials without venting gaseous emissions to the atmosphere which includes oxidizing the organic waste materials at an elevated temperature not less than about 500.degree. C. with a gas having an oxygen content in the range of from about 20% to about 70% to produce an oxidation product containing CO.sub.2 gas. The gas is then filtered to remove particulates, and then contacted with an aqueous absorbent solution of alkali metal carbonates or alkanolamines to absorb a portion of the CO.sub.2 gas from the particulate-free oxidation product. The CO.sub.2 absorbent is thereafter separated for further processing. A process and system are also disclosed in which the waste materials are contacted with a reactive medium such as lime and product treatment as described.

Nelson, Paul A. (Wheaton, IL); Swift, William M. (Downers Grove, IL)

1997-01-01T23:59:59.000Z

416

Thermal and chemical remediation of mixed wastes  

DOE Patents [OSTI]

A process is described for treating organic waste materials without venting gaseous emissions to the atmosphere which includes oxidizing the organic waste materials at an elevated temperature not less than about 500 C with a gas having an oxygen content in the range of from about 20% to about 70% to produce an oxidation product containing CO{sub 2} gas. The gas is then filtered to remove particulates, and then contacted with an aqueous absorbent solution of alkali metal carbonates or alkanolamines to absorb a portion of the CO{sub 2} gas from the particulate-free oxidation product. The CO{sub 2} absorbent is thereafter separated for further processing. A process and system are also disclosed in which the waste materials are contacted with a reactive medium such as lime and product treatment as described. 8 figs.

Nelson, P.A.; Swift, W.M.

1997-12-16T23:59:59.000Z

417

Zinc oxide varistors and/or resistors  

DOE Patents [OSTI]

Varistors and/or resistors that includes doped zinc oxide gel microspheres. The doped zinc oxide gel microspheres preferably have from about 60 to about 95% by weight zinc oxide and from about 5 to about 40% by weight dopants based on the weight of the zinc oxide. The dopants are a plurality of dopants selected from silver salts, boron oxide, silicon oxide and hydrons oxides of aluminum, bismuth, cobalt, chromium, manganese, nickel, and antimony.

Arnold, Jr., Wesley D. (Oak Ridge, TN); Bond, Walter D. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

1993-01-01T23:59:59.000Z

418

ARM - Oxides of Nitrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearchWarmingMethane BackgroundFacilityOther Aircraft CampaignsOxides

419

Mixed waste focus area alternative technologies workshop  

SciTech Connect (OSTI)

This report documents the Mixed Waste Focus Area (MWFA)-sponsored Alternative Technology Workshop held in Salt Lake City, Utah, from January 24--27, 1995. The primary workshop goal was identifying potential applications for emerging technologies within the Options Analysis Team (OAT) ``wise`` configuration. Consistent with the scope of the OAT analysis, the review was limited to the Mixed Low-Level Waste (MLLW) fraction of DOE`s mixed waste inventory. The Los Alamos team prepared workshop materials (databases and compilations) to be used as bases for participant review and recommendations. These materials derived from the Mixed Waste Inventory Report (MWIR) data base (May 1994), the Draft Site Treatment Plan (DSTP) data base, and the OAT treatment facility configuration of December 7, 1994. In reviewing workshop results, the reader should note several caveats regarding data limitations. Link-up of the MWIR and DSTP data bases, while representing the most comprehensive array of mixed waste information available at the time of the workshop, requires additional data to completely characterize all waste streams. A number of changes in waste identification (new and redefined streams) occurred during the interval from compilation of the data base to compilation of the DSTP data base with the end result that precise identification of radiological and contaminant characteristics was not possible for these streams. To a degree, these shortcomings compromise the workshop results; however, the preponderance of waste data was linked adequately, and therefore, these analyses should provide useful insight into potential applications of alternative technologies to DOE MLLW treatment facilities.

Borduin, L.C.; Palmer, B.A.; Pendergrass, J.A. [Los Alamos National Lab., NM (United States). Technology Analysis Group

1995-05-24T23:59:59.000Z

420

Search for new manganese-cobalt oxides as positive electrode materials for lithium batteries P. Strobel, J. Tillier, A. Diaz, A. Ibarra-Palos, F. Thiry and J.B. Soupart *  

E-Print Network [OSTI]

positive electrode material for lithium batteries ; last but not least, copper or cobalt substitutionSearch for new manganese-cobalt oxides as positive electrode materials for lithium batteries P new mixed manganese-cobalt oxides for lithium battery positive electrode materials were obtained using

Boyer, Edmond

Note: This page contains sample records for the topic "mox mixed oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Enhanced Thermal Conductivity Oxide Fuels  

SciTech Connect (OSTI)

the purpose of this project was to investigate the feasibility of increasing the thermal conductivity of oxide fuels by adding small fractions of a high conductivity solid phase.

Alvin Solomon; Shripad Revankar; J. Kevin McCoy

2006-01-17T23:59:59.000Z

422

Continuous lengths of oxide superconductors  

DOE Patents [OSTI]

A layered oxide superconductor prepared by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon. A continuous length of a second substrate ribbon is overlaid on the first substrate ribbon. Sufficient pressure is applied to form a bound layered superconductor precursor powder between the first substrate ribbon and the second substrate ribbon. The layered superconductor precursor is then heat treated to establish the oxide superconducting phase. The layered oxide superconductor has a smooth interface between the substrate and the oxide superconductor.

Kroeger, Donald M. (Knoxville, TN); List, III, Frederick A. (Andersonville, TN)

2000-01-01T23:59:59.000Z

423

Buried oxide layer in silicon  

DOE Patents [OSTI]

A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

Sadana, Devendra Kumar (Pleasantville, NY); Holland, Orin Wayne (Lenoir, TN)

2001-01-01T23:59:59.000Z

424

The Aerobic Oxidation of Bromide to Dibromine Catalyzed by Homogeneous Oxidation Catalysts and Initiated by Nitrate in Acetic Acid  

SciTech Connect (OSTI)

A small amount of nitrate, ~0.002 molal, initiates the Co/Mn catalyzed aerobic oxidation of bromide compounds (HBr,NaBr,LiBr) to dibromine in acetic acid at room temperature. At temperatures 40oC or less , the reaction is autocatalytic. Co(II) and Mn(II) themselves and mixed with ionic bromide are known homogeneous oxidation catalysts. The reaction was discovered serendipitously when a Co/Br and Co/Mn/Br catalyst solution was prepared for the aerobic oxidation of methyaromatic compounds and the Co acetate contained a small amount of impurity i.e. nitrate. The reaction was characterized by IR, UV-VIS, MALDI and EXAFS spectroscopies and the coordination chemistry is described. The reaction is inhibited by water and its rate changed by pH. The change in these variables, as well as others, are identical to those observed during homogeneous, aerobic oxidation of akylaromatics. A mechanism is proposed. Accidental addition of a small amount of nitrate compound into a Co/Mn/Br/acetic acid mixture in a large, commercial feedtank is potentially dangerous.

Partenheimer, Walt; Fulton, John L.; Sorensen, Christina M.; Pham, Van Thai; Chen, Yongsheng

2014-06-01T23:59:59.000Z

425

Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report  

SciTech Connect (OSTI)

Four tasks are reported on: bundle geometry (wrapped and bare rods), subchannel geometry (bare rods), LMFBR outlet plenum flow mixing, and theoretical determination of local temperature fields in LMFBR fuel rod bundles. (DLC)

Todreas, N.E.; Golay, M.W.; Wold, L.

1981-02-01T23:59:59.000Z

426

Mixing device for materials with large density differences  

DOE Patents [OSTI]

An auger-tube pump mixing device is disclosed for mixing materials with large density differences while maintaining low stirring RPM and low power consumption. The mixing device minimizes the formation of vortexes and minimizes the incorporation of small bubbles in the liquid during mixing. By avoiding the creation of a vortex the device provides efficient stirring of full containers without spillage over the edge. Also, the device solves the problem of effective mixing in vessels where the liquid height is large compared to the diameter. Because of the gentle stirring or mixing by the device, it has application for biomedical uses where cell damage is to be avoided. 2 figs.

Gregg, D.W.

1994-08-16T23:59:59.000Z

427

Mixing device for materials with large density differences  

DOE Patents [OSTI]

An auger-tube pump mixing device for mixing materials with large density differences while maintaining low stirring RPM and low power consumption. The mixing device minimizes the formation of vortexes and minimizes the incorporation of small bubbles in the liquid during mixing. By avoiding the creation of a vortex the device provides efficient stirring of full containers without spillage over the edge. Also, the device solves the problem of effective mixing in vessels where the liquid height is large compared to the diameter. Because of the gentle stirring or mixing by the device, it has application for biomedical uses where cell damage is to be avoided.

Gregg, David W. (Moraga, CA)

1994-01-01T23:59:59.000Z

428

Operation of staged membrane oxidation reactor systems  

SciTech Connect (OSTI)

A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

Repasky, John Michael

2012-10-16T23:59:59.000Z

429

Low Temperature Constrained Sintering of Cerium Gadolinium Oxide Films for Solid Oxide Fuel Cell Applications  

E-Print Network [OSTI]

Temperature Solid Oxide Fuel Cells, In: S.C. Singhal and M.Tubular Solid Oxide Fuel Cell Technology, U.S. Department ofOxide Films for Solid Oxide Fuel Cell Applications by Jason

Nicholas, Jason.D.

2007-01-01T23:59:59.000Z

430

Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries  

DOE Patents [OSTI]

The present invention includes compositions and methods of making cation-substituted and fluorine-substituted spinel cathode compositions by firing a LiMn.sub.2-y-zLi.sub.yM.sub.zO.sub.4 oxide with NH.sub.4HF.sub.2 at low temperatures of between about 300 and 700.degree. C. for 2 to 8 hours and a .eta. of more than 0 and less than about 0.50, mixed two-phase compositions consisting of a spinel cathode and a layered oxide cathode, and coupling them with unmodified or surface modified graphite anodes in lithium ion cells.

Manthiram, Arumugam; Choi, Wongchang

2014-05-13T23:59:59.000Z

431

Cover and startup gas supply system for solid oxide fuel cell generator  

DOE Patents [OSTI]

A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell.

Singh, Prabhakar (Export, PA); George, Raymond A. (Pittsburgh, PA)

1999-01-01T23:59:59.000Z

432

Cover and startup gas supply system for solid oxide fuel cell generator  

DOE Patents [OSTI]

A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell. 4 figs.

Singh, P.; George, R.A.

1999-07-27T23:59:59.000Z

433

MIX and Instability Growth from Oblique Shock  

SciTech Connect (OSTI)

We have studied the formation and evolution of shock-induced mix resulting from interface features in a divergent cylindrical geometry. In this research a cylindrical core of high-explosive was detonated to create an oblique shock wave and accelerate the interface. The interfaces studied were between the high-explosive/aluminum, aluminum/plastic, and finally plastic/air. Pre-emplaced surface features added to the aluminum were used to modify this interface. Time sequence radiographic imaging quantified the resulting instability formation from the growth phase to over 60 {micro}s post-detonation. Thus allowing the study of the onset of mix and evolution to turbulence. The plastic used here was porous polyethylene. Radiographic image data are compared with numerical simulations of the experiments.

Molitoris, J D; Batteux, J D; Garza, R G; Tringe, J W; Souers, P C; Forbes, J W

2011-07-22T23:59:59.000Z

434

MSW effect for large mixing angles  

E-Print Network [OSTI]

The traditional physical description of neutrino flavor conversion in the Sun focuses on the notion of resonance. However, the resonance picture is valid only in the limit of small mixing angles theta. For large values of theta, the resonance picture leads to seemingly paradoxical results. This observation is important for understanding the physics of neutrino flavor conversion in the Sun, since the latest solar neutrino data seems to prefer large mixing angles. Here we review the basic arguments and in particular show that the resonance does not in general coincide with either the point of maximal violation of adiabaticity in the nonadiabatic case or the point of maximal flavor conversion in the adiabatic case. We also discuss a modified adiabaticity criterion.

Alexander Friedland

2001-06-04T23:59:59.000Z

435

Turbulence and turbulent mixing in natural fluids  

E-Print Network [OSTI]

Turbulence and turbulent mixing in natural fluids begins with big bang turbulence powered by spinning combustible combinations of Planck particles and Planck antiparticles. Particle prograde accretion on a spinning pair releases 42% of the particle rest mass energy to produce more fuel for turbulent combustion. Negative viscosity and negative turbulence stresses work against gravity, creating mass-energy and space-time from the vacuum. Turbulence mixes cooling temperatures until a quark-gluon strong-force SF freeze-out. Gluon-viscosity anti-gravity ({\\Lambda}SF) exponentially inflates the fireball to preserve big bang turbulence information at scales larger than ct as the first fossil turbulence. Cosmic microwave background CMB temperature anisotropies show big bang turbulence fossils along with fossils of weak plasma turbulence triggered (10^12 s) as plasma viscous forces permit gravitational fragmentation on supercluster to galaxy mass scales (10^13 s). Turbulent morphologies and viscous-turbulent lengths a...

Gibson, Carl H

2010-01-01T23:59:59.000Z

436

METHANE OXIDATION (AEROBIC) Helmut Brgmann  

E-Print Network [OSTI]

METHANE OXIDATION (AEROBIC) Helmut Bürgmann Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland Synonyms Methanotrophy Definition Methane oxidation is a microbial metabolic process for energy generation and carbon assimilation from methane that is carried out by specific

Wehrli, Bernhard

437

Mixed Waste Management Facility Groundwater Monitoring Report  

SciTech Connect (OSTI)

During fourth quarter 1997, eleven constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

Chase, J.

1998-03-01T23:59:59.000Z

438

Model of Large Mixing Angle MSW Solution  

E-Print Network [OSTI]

We have obtained the neutrino mass matrix with the large mixing angle (LMA) MSW solution, $\\sin^2 2\\th_\\odot=0.65\\sim 0.97$ and $\\Delta m_{\\odot}^2= 10^{-5}\\sim 10^{-4}\\eV^2$, in the $S_{3L}\\times S_{3R}$ flavor symmetry. The structure of our neutrino mass matrix is found to be stable against radiative corrections.

Morimitsu Tanimoto

2000-02-15T23:59:59.000Z

439

LDV Measurement of Confined Parallel Jet Mixing  

SciTech Connect (OSTI)

Laser Doppler Velocimetry (LDV) measurements were taken in a confinement, bounded by two parallel walls, into which issues a row of parallel jets. Two-component measurements were taken of two mean velocity components and three Reynolds stress components. As observed in isolated three dimensional wall bounded jets, the transverse diffusion of the jets is quite large. The data indicate that this rapid mixing process is due to strong secondary flows, transport of large inlet intensities and Reynolds stress anisotropy effects.

R.F. Kunz; S.W. D'Amico; P.F. Vassallo; M.A. Zaccaria

2001-01-31T23:59:59.000Z

440

Sideband Mixing in Intense Laser Backgrounds  

E-Print Network [OSTI]

The electron propagator in a laser background has been shown to be made up of a series of sideband poles. In this paper we study this decomposition by analysing the impact of the residual gauge freedom in the Volkov solution on the sidebands. We show that the gauge transformations do not alter the location of the poles. The identification of the propagator from the two-point function is maintained but we show that the sideband structures mix under residual gauge transformations.

Martin Lavelle; David McMullan

2014-07-04T23:59:59.000Z

Note: This page contains sample records for the topic "mox mixed oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Ultra Supercritical Steamside Oxidation  

SciTech Connect (OSTI)

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy's Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538 C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620 C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which require steam temperatures of up to 760 C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

Holcomb, Gordon R.; Cramer, Stephen D.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, Malgorzata

2005-01-01T23:59:59.000Z

442

Water and Gold: A Promising Mix for Future Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water and Gold: A Promising Mix for Future Batteries Water and Gold: A Promising Mix for Future Batteries Berkeley Lab Study Reveals Molecular Structure of Water at Gold Electrodes...

443

Evaluation of mixing characteristics of corn dry masa flours  

E-Print Network [OSTI]

Mixing characteristics of commercial and reformulated corn dry masa flours (DMF) were evaluated using a mixograph and a farinograph. The objectives were to evaluate the potential use of the mixograph and farinograph to study DMF mixing and hydration...

Lobeira Massu, Rodrigo

1996-01-01T23:59:59.000Z

444

Controlled Dispensing and Mixing of Pico- to Nanoliter Volumes...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dispensing and Mixing of Pico- to Nanoliter Volumes Using On-Demand Droplet-Based Microfluidics. Controlled Dispensing and Mixing of Pico- to Nanoliter Volumes Using On-Demand...

445

Lattice Boltzmann equation simulations of turbulence, mixing, and combustion  

E-Print Network [OSTI]

We explore the capability of lattice Boltzmann equation (LBE) method for complex fluid flows involving turbulence, mixing, and reaction. In the first study, LBE schemes for binary scalar mixing and multi-component reacting flow with reactions...

Yu, Huidan

2006-04-12T23:59:59.000Z

446

Eco blocks: Nontraditional use for mixed wastepaper  

SciTech Connect (OSTI)

In 1991, approximately 37%, by weight, of the materials going to landfills was paper. Landfill space in the US is becoming a critical problem in certain areas. This mixed paper fraction does not have a good use in traditional recycling applications. Wastepaper dealers have an excess of mixed wastepaper. This project explored the possibility of producing a value added product that would consume large amounts of mixed waste. The product selected was to produce 5 x 10 x 20 cm paper blocks. These blocks could find applications in building structures. The blocks were modeled using a heated platen press and an aluminum mold, fitted with porous brass plates on the top and bottom in order to ease water removal. The material produced was similar to synthetic wood. Unlike wood, it could be molded into different shapes if desired. The density and physical properties of tensile strength and modulus were determined and compared to wood. The water absorption properties were evaluated and found to be a potential problem. Various coatings were investigated in order to improve the water holdout properties. A manufacturing process was laid out and the cost of block production was estimated to be from $0.15 to $0.24 per block, which would make it competitive with other blocks.

Springer, A.M. [Miami Univ., Oxford, OH (United States); Rose, M. [EKA Nobel, Ashland, VA (United States); Ryu, R. [North Carolina State Univ., Raleigh, NC (United States)

1996-05-01T23:59:59.000Z

447

P-31 / Schlott P-31: Nodule Formation on Indium-Oxide Tin-Oxide  

E-Print Network [OSTI]

P-31 / Schlott P-31: Nodule Formation on Indium-Oxide Tin-Oxide Sputtering Targets M. Schlott, M from indium-oxide tin-oxide (ITO) targets [1]. Unfor- tunately, black growths, or nodules, commonly isostatic pressing partly reduced powder mixtures of 90 wt.% indium-oxide and 10 wt.% tin-oxide [4

448

Combustion method for simultaneous control of nitrogen oxides and products of incomplete combustion  

SciTech Connect (OSTI)

A method is described for combusting material with controlled generation of both nitrogen oxides and products of incomplete combustion comprising: (A) combusting material in a first combustion zone to produce gaseous exhaust containing products of incomplete combustion and products of complete combustion; (B) passing the gaseous exhaust from the first combustion zone into a second combustion zone having a width and an axial direction; (C) injecting through a lance with an orientation substantially parallel to said axial direction at least one stream of oxidant, without fuel, having a diameter less than 1/100 of the width of the second combustion zone and having an oxygen concentration of at least 30% into the second combustion zone at a high velocity of at least 300 feet per second; (D) aspirating products of incomplete combustion into the high velocity oxidant; (E) combusting products of incomplete combustion aspirated into the high velocity oxidant with high velocity oxidant within the second combustion zone to carry out a stable combustion by the mixing of the aspirated products of incomplete combustion with the high velocity oxidant; and (F) spreading out the combustion reaction by aspiration of products of complete combustion into the oxidant, said products of complete combustion also serving as a heat sink, to inhibit NO[sub x] formation.

Ho, Min-Da.

1993-05-25T23:59:59.000Z

449

CHARACTERIZATION OF MIXED CO2-TBPB HYDRATE FOR REFRIGERATION APPLICATIONS  

E-Print Network [OSTI]

in a dynamic loop and an Ostwald-de Waele model was obtained. Keywords: CO2, TBPB, mixed hydrates, solubility

Paris-Sud XI, Université de

450

International Environmental Agreements with Mixed Strategies and Investment  

E-Print Network [OSTI]

mixed strategies We ?rst review a canonical IEA model, then2001) and Barrett (2003) review this literature. IEA members

Hong, Fuhai; Karp, Larry

2012-01-01T23:59:59.000Z

451

Detection of oxidation in human serum lipoproteins  

E-Print Network [OSTI]

A method for the oxidation of lipoproteins in vitro was developed using the free radical initiator, 2,2?-azobis-(2-amidinopropane) dihydrochloride (AAPH). Following in vitro oxidation, the susceptibility to oxidation of the serum samples...

Myers, Christine Lee

2006-04-12T23:59:59.000Z

452

RISK AVERSION AND TECHNOLOGY MIX IN AN ELECTRICITY Guy MEUNIER  

E-Print Network [OSTI]

RISK AVERSION AND TECHNOLOGY MIX IN AN ELECTRICITY MARKET Guy MEUNIER Cahier n° 2013-23 ECOLE:chantal.poujouly@polytechnique.edu hal-00906944,version1-20Nov2013 #12;Risk aversion and technology mix in an electricity market Guy-aversion on the long-term equilibrium technology mix in an electricity market. It develops a model where firms can

Paris-Sud XI, Université de

453

Characterization of turbulent jet mixing in cylindrical tanks  

E-Print Network [OSTI]

, for the most part, confirms many of the findings of previous studies of jet mixing. First, mixing time in jet-mixed systems depends primarily upon the mass of the fluid in a tank and the amount of addition, to maximize the efficient transfer of momentum...

Schulte, Casey M

1998-01-01T23:59:59.000Z

454

Bifurcations of flame filaments in chaotically mixed combustion reactions  

E-Print Network [OSTI]

Bifurcations of flame filaments in chaotically mixed combustion reactions Shakti N. Menon and Georg ranging fields. Be- sides in the case of combustion, where mixing-induced bifurcations may lead mixing has a significant effect on combustion processes and in particular on flame filamental structures

Gottwald, Georg A.

455

MIXING RANK-ONE ACTIONS OF LOCALLY COMPACT ABELIAN GROUPS  

E-Print Network [OSTI]

MIXING RANK-ONE ACTIONS OF LOCALLY COMPACT ABELIAN GROUPS Alexandre I. Danilenko and Cesar E. Silva that such transformations are mixing of all orders [Ka], [Ry1] and have minimal self-joinings of all orders [Ki], [Ry1 this progress, not so many concrete examples of rank-one mixing ac- tions are known. Most of them were obtained

Silva, Cesar E.

456

Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report, December 1, 1980-February 28, 1981  

SciTech Connect (OSTI)

Information is presented concerning coolant mixing for wrapped and bare rod bundle geometry; bare rod subchannel geometry; LMFBR outlet plenum flow mixing; and theoretical determination of local temperature fields in LMFBR fuel rod bundles.

Todreas, N.E.

1981-04-01T23:59:59.000Z

457

Ethanol oxidation on metal oxide-supported platinum catalysts  

SciTech Connect (OSTI)

Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on the standard three-way catalysts, the conversion of unburned ethanol is low because both ethanol and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.

L. M. Petkovic 090468; Sergey N. Rashkeev; D. M. Ginosar

2009-09-01T23:59:59.000Z

458

Chapter 6: Thallium-Oxide Superconductors  

SciTech Connect (OSTI)

This chapter has 2 sections titled: (1) Spray-Deposited, TI-Oxide Films, and (2) Electrodeposited Ti-Oxide Superconductors.

Bhattacharya, R. N.

2010-01-01T23:59:59.000Z

459

Precise Application of Transparent Conductive Oxide Coatings...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Precise Application of Transparent Conductive Oxide Coatings for Flat Panel Displays and Photovoltaic Cells Technology available for licensing: New transparent conducting oxide...

460

New manganese catalyst for light alkane oxidation  

DOE Patents [OSTI]

Aluminophosphates containing manganese in the structural framework are employed for the oxidation of alkanes, for example the vapor phase oxidation of methane to methanol.

Durante, Vincent A. (West Chester, PA); Lyons, James E. (Wallingford, PA); Walker, Darrell W. (Visalia, CA); Marcus, Bonita K. (Radnor, PA)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mox mixed oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report, December 1, 1981-February 28, 1982  

SciTech Connect (OSTI)

Information is presented concerning wrapped and bare rod bundle geometry; bare rod subchannel geometry; and LMFBR outlet plenum flow mixing.

Todreas, N.A.

1982-07-01T23:59:59.000Z

462

Mediated electrochemical oxidation of organic wastes using a Co(III) mediator in a neutral electrolyte  

DOE Patents [OSTI]

An electrochemical cell with a Co(III) mediator and neutral pH anolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the cobalt mediator oxidizes the organics and insoluble radioactive species and is regenerated at the anode until all organics are converted to carbon dioxide and destroyed. The neutral electrolyte is non-corrosive, and thus extends the lifetime of the cell and its components.

Balazs, G. Bryan (Livermore, CA); Lewis, Patricia R. (Livermore, CA)

1999-01-01T23:59:59.000Z

463

Mediated electrochemical oxidation of organic wastes using a Co(III) mediator in a neutral electrolyte  

DOE Patents [OSTI]

An electrochemical cell with a Co(III) mediator and neutral pH anolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the cobalt mediator oxidizes the organics and insoluble radioactive species and is regenerated at the anode until all organics are converted to carbon dioxide and destroyed. The neutral electrolyte is non-corrosive, and thus extends the lifetime of the cell and its components. 2 figs.

Balazs, G.B.; Lewis, P.R.

1999-07-06T23:59:59.000Z

464

Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMyMinutes from DecemberCannon, MOX Federal|

465

Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Final report  

SciTech Connect (OSTI)

This project principally undertook the investigation of the thermal hydraulic performance of wire wrapped fuel bundles of LMFBR configuration. Results obtained included phenomenological models for friction factors, flow split and mixing characteristics; correlations for predicting these characteristics suitable for insertion in design codes; numerical codes for analyzing bundle behavior both of the lumped subchannel and distributed parameter categories and experimental techniques for pressure velocity, flow split, salt conductivity and temperature measurement in water cooled mockups of bundles and subchannels. Flow regimes investigated included laminar, transition and turbulent flow under forced convection and mixed convection conditions. Forced convections conditions were emphasized. Continuing efforts are underway at MIT to complete the investigation of the mixed convection regime initiated here. A number of investigations on outlet plenum behavior were also made. The reports of these investigations are identified.

Todreas, N.E.; Cheng, S.K.; Basehore, K.

1984-08-01T23:59:59.000Z

466

Scale dependence of entrainment-mixing mechanisms in cumulus clouds  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

This work empirically examines the dependence of entrainment-mixing mechanisms on the averaging scale in cumulus clouds using in situ aircraft observations during the Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) field campaign. A new measure of homogeneous mixing degree is defined that can encompass all types of mixing mechanisms. Analysis of the dependence of the homogenous mixing degree on the averaging scale shows that, on average, the homogenous mixing degree decreases with increasing averaging scales, suggesting that apparent mixing mechanisms gradually approach from homogeneous mixing to extreme inhomogeneous mixing with increasing scales. The scale dependence can be well quantified by an exponential function, providing first attempt at developing a scale-dependent parameterization for the entrainment-mixing mechanism. The influences of three factors on the scale dependence are further examined: droplet-free filament properties (size and fraction), microphysical properties (mean volume radius and liquid water content of cloud droplet size distributions adjacent to droplet-free filaments), and relative humidity of entrained dry air. It is found that the decreasing rate of homogeneous mixing degree with increasing averaging scales becomes larger with larger droplet-free filament size and fraction, larger mean volume radius and liquid water content, or higher relative humidity. The results underscore the necessity and possibility of considering averaging scale in representation of entrainment-mixing processes in atmospheric models.

Lu, Chunsong [Nanjing Univ. of Information Science and Technology (China). Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters; Chinese Acadamy of Sciences, Beijing (China); Brookhaven National Laboratory (BNL), Upton, NY (United States). Biological, Environmental and Climate Science Dept.; Liu, Yangang [Brookhaven National Laboratory (BNL), Upton, NY (United States). Biological, Environmental and Climate Science Dept.; Niu, Shengjie [Nanjing Univ. of Information Science and Technology (China). Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters; Endo, Satoshi [Brookhaven National Laboratory (BNL), Upton, NY (United States). Biological, Environmental and Climate Science Dept.

2014-12-27T23:59:59.000Z

467

TiO2-modified Ag-CuO Reactive Air Brazes for Improved Wettability on Mixed Ionic/Electronic Conductors  

SciTech Connect (OSTI)

Mixed ionic/electronic conducting perovskite oxides such as lanthanum strontium cobalt ferrite (LSCF) are strong candidates for potential use in a number of electrochemical devices, including gas separation membranes and solid oxide fuel cells (SOFC). Underlying the excitement over the these novel ceramics is the engineering challenge of effectively incorporating them into practical devices. Taking full advantage of the unique properties of advanced ceramics such as mixed conducting oxides depends in large part on being able to develop reliable joining techniques. Earlier studies have indicated that Ag-CuO reactive air braze (RAB) compositions are effective in joining to LSCF. Meanwhile, it has been found that small additions of as little as 0.5 mol% titanium oxide to Ag-CuO RAB compositions cause a dramatic increase in the wettability of RAB on many oxide ceramic surfaces. Therefore the wettabilty of Ag-CuO-TiO2 brazes on LSCF substrates will be examined and the flexural strength, microstructure, and conductivity of joints in LSCF made using Ag-CuO-TiO2 brazes will be discussed. Long-term aging effects on conductivity and microstructure will also be presented.

Hardy, John S.; Weil, K. Scott; Kim, Jin Yong Y.; Thomsen, Ed C.; Darsell, Jens T.

2005-03-01T23:59:59.000Z

468

B_s mixing at the Tevatron  

SciTech Connect (OSTI)

The measurement of the B{sub s} mixing oscillation frequency, {Delta}m{sup s}, has been the main goal for both experiments CDF and D0 which are running at the Tevatron collider. With 1 fb{sup -1} of data collected during the last four years D0 set a lower and upper limit on this frequency, 17 < {Delta}m{sub s} < 21 ps{sup -1}. CDF measured {Delta}m{sub s} with a precision better than 2% and the probability that the data could randomly fluctuate to mimic such a signature is 0.2%.

Lucchesi, Donatella; /Padua U.

2006-08-01T23:59:59.000Z

469

Effect of mixing on polymerization of styrene  

E-Print Network [OSTI]

Model R404 Differential Refractometer (DRI) was used to continuously monitor the reactor effluent. A portion of the liquid medium from the feed tank was used as a static reference in the DRI. To introduce a change in the refractive index of the fluid... the mixing pattern was made by desolving iodine crystals in the styrene used for pulse generation. A strobotact was used to monitor the rpm of the impeller shaft. To reduce the amount of degassing occurring in the reactor during the runs, the liquid...

Treybig, Michael Norris

2012-06-07T23:59:59.000Z

470

Mixed Mode Fuel Injector And Injection System  

DOE Patents [OSTI]

A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set that are controlled respectively by first and second three way needle control valves. Each fuel injector includes first and second concentric needle valve members. One of the needle valve members moves to an open position for a homogenous charge injection event, while the other needle valve member moves to an open position for a conventional injection event. The fuel injector has the ability to operate in a homogenous charge mode with a homogenous charge spray pattern, a conventional mode with a conventional spray pattern or a mixed mode.

Stewart, Chris Lee (Normal, IL); Tian, Ye (Bloomington, IL); Wang, Lifeng (Normal, IL); Shafer, Scott F. (Morton, IL)

2005-12-27T23:59:59.000Z

471

B lifetimes and mixing at the Tevatron  

SciTech Connect (OSTI)

The authors present recent results on b-hadron lifetimes and mixing obtained from the analysis of the data collected at the Tevatron Collider by the CDF and D0 Collaborations in the period 2002-2004. Many lifetime measurements have been updated since the Summer 2004 conferences, sometimes improving significantly the accuracy. Likewise the measurement of the B{sub d} oscillation frequency has been updated. New limits on the B{sub s} oscillation frequency have been determined using for the first time Run II data.

Bedeschi, Franco; /INFN, Pisa

2005-05-01T23:59:59.000Z

472

Mixed analog and digital ASIC design  

E-Print Network [OSTI]

. Design Issues 2 2 5 5 6 7 7 8 12 14 15 19 20 21 22 24 27 27 29 IV DESIGN METHODOLOGY A. Design Methodology 1. Transmission G