National Library of Energy BETA

Sample records for mox gold supplier

  1. MOX

    National Nuclear Security Administration (NNSA)

    as MOX fuel will be significantly more expensive than anticipated. Given a lifecycle cost estimate for the program of approximately 30 billion or more and a challenging budget...

  2. All About MOX

    ScienceCinema (OSTI)

    None

    2014-08-06

    In 1999, the Nuclear Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  3. Strong Support for MOX Continues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    When completed, the MOX facility will convert weapons- grade plutonium to nuclear reactor fuel assemblies. These assemblies will then be used as fuel in commercial nuclear power ...

  4. Environmental Excellence Program Recognizes MOX Services | National...

    National Nuclear Security Administration (NNSA)

    of NNSA's Mixed Oxide (MOX) Fuel Fabrication Facility at the Savannah River Site. ... The MOX Fuel Fabrication Facility, currently under construction at the Savannah River Site ...

  5. PRIVACY IMPACT ASSESSMENT: Shaw Areva MOX Services, LLC MOX

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    . ,-) ')7 73?¥i5": )~"'f"YC-:;'~dt?f(~"'f9'FrrZ , . PRIVACY IMPACT ASSESSMENT: Shaw Areva MOX Services, LLC MOX Services Unclassified Information System Template - January 30, 2009, Version 2 Department of Energy Privacy Impact Assessment (pIA) Guidance is provided in the template. See DOE Order 206.1, Department of Energy Privacy Program, Appendix A, Privacy Impact Assessments, for requirements and additional guidance for conducting a PIA:

  6. MOX | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    MOX Mixed Oxide (MOX) Fuel Fabrication Facility Documents related to the project: Plutonium Disposition Study Options Independent Assessment Phase 1 Report, April 13, 2015 Plutonium Disposition Study Options Independent Assessment Phase 2 Report, August 20, 2015 Final Report of the Plutonium Disposition Red Team, August 13, 2015 Commentary on... Analysis of Surplus Weapons-Grade Plutonium Disposition Options The Administration remains firmly committed to disposing of surplus weapon-grade

  7. Adequate NQA-1 Suppliers

    Office of Environmental Management (EM)

    Issuance of the Office of Environmental Management Nuclear Supplier Alert System The Office of ... Distribution includes the DOE Ofl'lce of Health, Safety and Security (HSS) with ...

  8. Over 9600 Small Business Subcontracts Critical to the Success...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wise was recognized as a 2012 MOX Gold Supplier during a special presentation in Dayton. Bottom: Byers Precision Fabricators was recognized as a 2012 MOX Gold Supplier during a ...

  9. Department of Energy Announces Decision to Consolidate Surplus...

    Office of Environmental Management (EM)

    ... Wise was recognized as a 2012 MOX Gold Supplier during a special presentation in Dayton. Bottom: Byers Precision Fabricators was recognized as a 2012 MOX Gold Supplier during a ...

  10. Guidelines for Supplier, Vendor Shows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guidelines for Supplier, Vendor Shows Guidelines for SupplierVendor or Professional Local Trade FairsShows As a premier national research and development laboratory, LANL seeks...

  11. Adequate NQA-1 Suppliers

    Broader source: Energy.gov [DOE]

    Scope of Project Milestone Task 2.6: Request the procedures used for qualifying nuclear grade suppliers from each major EM contractor and evaluate the procedures to determine the level of...

  12. MOX Reprocessing at Tokai Reprocessing Plant

    SciTech Connect (OSTI)

    Taguchi, Katsuya; Nagaoka, Shinichi; Yamanaka, Atsushi; Nakamura, Yoshinobu; Omori, Eiichi; SATO, Takehiko; MIURA, Nobuyuki

    2007-07-01

    In March 2007, the first reprocessing of the 'Type B' MOX spent fuels of the Prototype Advanced Thermal Reactor FUGEN was initiated at Tokai Reprocessing Plant as a plant-scale demonstration of MOX fuel reprocessing. The operation was advanced satisfactorily and it has been confirmed that the MOX fuels as well as UO{sub 2} fuels can be reprocessed safely. Some characteristics of MOX fuels on reprocessing, such as properties of undissolved residue affecting the clarification process, are becoming visible. Reprocessing of the 'Type B' MOX fuels will be continued for several more years from now on, further investigations on solubility of fuels, characteristics of undissolved residues, progress of solvent degradation and so on will be continued. (authors)

  13. Actual Scale MOX Powder Mixing Test for MOX Fuel Fabrication Plant in Japan

    SciTech Connect (OSTI)

    Osaka, Shuichi; Kurita, Ichiro; Deguchi, Morimoto; Ito, Masanori; Goto, Masakazu

    2007-07-01

    Japan Nuclear Fuel Ltd. (hereafter, JNFL) promotes a program of constructing a MOX fuel fabrication plant (hereafter, J-MOX) to fabricate MOX fuels to be loaded in domestic light water reactors. Since Japanese fiscal year (hereafter, JFY) 1999, JNFL, to establish the technology for a smooth start-up and the stable operation of J-MOX, has executed an evaluation test for technology to be adopted at J-MOX. JNFL, based on a consideration that J-MOX fuel fabrication comes commercial scale production, decided an introduction of MIMAS technology into J-MOX main process, from powder mixing through pellet sintering, well recognized as mostly important to achieve good quality product of MOX fuel, since it achieves good results in both fuel production and actual reactor irradiation in Europe, but there is one difference that JNFL is going to use Japanese typical plutonium and uranium mixed oxide powder converted with the micro-wave heating direct de-nitration technology (hereafter, MH-MOX) but normal PuO{sub 2} of European MOX fuel fabricators. Therefore, in order to evaluate the suitability of the MH-MOX powder for the MIMAS process, JNFL manufactured small scale test equipment, and implemented a powder mixing evaluation test up until JFY 2003. As a result, the suitability of the MH-MOX powder for the MIMAS process was positively evaluated and confirmed It was followed by a five-years test named an 'actual test' from JFY 2003 to JFY 2007, which aims at demonstrating good operation and maintenance of process equipment as well as obtaining good quality of MOX fuel pellets. (authors)

  14. MOX Services Unclassified Information System PIA, National Nuclear Services

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Administration | Department of Energy MOX Services Unclassified Information System PIA, National Nuclear Services Administration MOX Services Unclassified Information System PIA, National Nuclear Services Administration MOX Services Unclassified Information System PIA, National Nuclear Services Administration MOX Services Unclassified Information System PIA, National Nuclear Services Administration (378.48 KB) More Documents & Publications TRAIN-PIA.pdf Occupational Medicine - Assistant

  15. NNSA B-Roll: MOX Facility

    ScienceCinema (OSTI)

    None

    2010-09-01

    In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  16. NNSA B-Roll: MOX Facility

    SciTech Connect (OSTI)

    2010-05-21

    In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  17. Supplier Toolbox | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Terms and Conditions Contractor Travel Policy Supplier Representations and Certifications Intellectual Property Clauses Bonds Cost Reimbursement Invoice Example Cost Share- Cost...

  18. Supplier Information Form Date: New Revision

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supplier Information Form Date: New Revision Interested suppliers may complete and submit a Supplier Information Form to be included into LANS' vendor database. Suppliers are advised that there is no guarantee any solicitations or awards will be sent to Supplier by submitting a Supplier Information Form; however, in the event a solicitation is sent to the Supplier from an LANS Procurement Official, then a more formal quotation/offer may be required. Legal Business Name: D/B/A: (if applicable)

  19. Quality Procedure - Supplier Qualification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supplier Qualification Quality Procedure - Supplier Qualification This procedure establishes the responsibilities and process for supplier qualification activities conducted by Environmental Management (EM) Headquarters (HQ) Office of Standards and Quality Assurance in accordance with EM-QA-001, Environmental Management Quality Assurance Program. Quality Procedure - Supplier Qualification (2.03 MB) More Documents & Publications Quality Procedure - Approved Suppliers List Quality Procedure -

  20. Tag: Suppliers | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tag: Suppliers Displaying 1 - 10 of 38... Category: Suppliers Container Technologies Industries, LLC receives small business award CNS recently honored Container Technologies...

  1. MOX and MOX with 237Np/241Am Inert Fission Gas Generation Comparison in ATR

    SciTech Connect (OSTI)

    G. S. Chang; M. Robel; W. J. Carmack; D. J. Utterbeck

    2006-06-01

    The treatment of spent fuel produced in nuclear power generation is one of the most important issues to both the nuclear community and the general public. One of the viable options to long-term geological disposal of spent fuel is to extract plutonium, minor actinides (MA), and potentially long-lived fission products from the spent fuel and transmute them into short-lived or stable radionuclides in currently operating light-water reactors (LWR), thus reducing the radiological toxicity of the nuclear waste stream. One of the challenges is to demonstrate that the burnup-dependent characteristic differences between Reactor-Grade Mixed Oxide (RG-MOX) fuel and RG-MOX fuel with MA Np-237 and Am 241 are minimal, particularly, the inert gas generation rate, such that the commercial MOX fuel experience base is applicable. Under the Advanced Fuel Cycle Initiative (AFCI), developmental fuel specimens in experimental assembly LWR-2 are being tested in the northwest (NW) I-24 irradiation position of the Advanced Test Reactor (ATR). The experiment uses MOX fuel test hardware, and contains capsules with MOX fuel consisting of mixed oxide manufactured fuel using reactor grade plutonium (RG-Pu) and mixed oxide manufactured fuel using RG-Pu with added Np/Am. This study will compare the fuel neutronics depletion characteristics of Case-1 RG-MOX and Case-2 RG-MOX with Np/Am.

  2. MOX Two-Year Construction Anniversary | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Two-Year Construction Anniversary MOX Two-Year Construction Anniversary MOX Two-Year Construction Anniversary In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus

  3. MOX fuel arrangement for nuclear core

    DOE Patents [OSTI]

    Kantrowitz, Mark L.; Rosenstein, Richard G.

    2001-07-17

    In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.

  4. Mox fuel arrangement for nuclear core

    DOE Patents [OSTI]

    Kantrowitz, Mark L.; Rosenstein, Richard G.

    2001-05-15

    In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion. characteristics of the assembly.

  5. MOX fuel arrangement for nuclear core

    DOE Patents [OSTI]

    Kantrowitz, Mark L.; Rosenstein, Richard G.

    1998-01-01

    In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.

  6. MOX fuel arrangement for nuclear core

    DOE Patents [OSTI]

    Kantrowitz, M.L.; Rosenstein, R.G.

    1998-10-13

    In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly. 38 figs.

  7. Supplier Information Form | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supplier Information Form PDF icon SB_SIF_form_Rev_0110

  8. MOX recycling in GEN 3 + EPR Reactor homogeneous and stable full MOX core

    SciTech Connect (OSTI)

    Arslan, M.; Villele, E. de; Gauthier, J.C.; Marincic, A.

    2013-07-01

    In the case of the EPR (European Pressurized Reactor) reactor, 100% MOX core management is possible with simple design adaptations which are not significantly costly. 100% MOX core management offers several highly attractive advantages. First, it is possible to have the same plutonium content in all the rods of a fuel assembly instead of having rods with 3 different plutonium contents, as in MOX assemblies in current PWRs. Secondly, the full MOX core is more homogeneous. Thirdly, the stability of the core is significantly increased due to a large reduction in the Xe effect. Fourthly, there is a potential for the performance of the MOX fuel to match that of new high performance UO{sub 2} fuel (enrichment up to 4.95 %) in terms of increased burn up and cycle length. Fifthly, since there is only one plutonium content, the manufacturing costs are reduced. Sixthly, there is an increase in the operating margins of the reactor, and in the safety margins in accident conditions. The use of 100% MOX core will improve both utilisation of natural uranium resources and reductions in high level radioactive waste inventory.

  9. MOX Three-Year Construction Anniversary | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Three-Year Construction Anniversary August 1, 2010 marks the third year of successful construction at the Mixed Oxide (MOX) Fuel Fabrication Facility at the Savannah River Site near Aiken, SC. Shaw AREVA MOX Services, LLC is under contract with the National Nuclear Security Administration (NNSA) to design, build, and operate MOX Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium.

  10. Microsoft PowerPoint - MOX Adventure_Reactor Subcommittee_Tamara...

    National Nuclear Security Administration (NNSA)

    3 MOX Fuel - General MOX fuel pellets from former weapons plutonium Blend of 5% PuO 2 with 95% depleted UO 2 Like LEU fuel pellets, MOX fuel pellets are primarily ...

  11. Suppliers | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Suppliers Suppliers The Consolidated Nuclear Security Supply Chain Management department wants to alert suppliers to an active email scam involving request for quotations and issuance of purchase orders that purport to originate from CNS but are in fact fraudulent. Please see this important notice to our suppliers. We are committed to obtaining the best value in the products and services we purchase. We purchase environmentally friendly products, including those with reduced packaging and those

  12. NNSA Holds Groundbreaking at MOX Facility | National Nuclear...

    National Nuclear Security Administration (NNSA)

    NNSA's plutonium disposition program moved another step forward with the start of site preparation for its Mixed Oxide (MOX) Fuel Fabrication Facility at the Savannah River Site. ...

  13. Microsoft PowerPoint - MOX Adventure_Reactor Subcommittee_Tamara Reavis

    National Nuclear Security Administration (NNSA)

    MOX Adventure Tamara Reavis May 2015 Page 2 Overview of Presentation > Characteristics of MOX Fuel  MOX Fuel at Duke Energy  MOX Fuel and NMMSS Page 3 MOX Fuel - General  MOX fuel pellets from former weapons plutonium  Blend of ~5% PuO 2 with ~95% depleted UO 2  Like LEU fuel pellets, MOX fuel pellets are primarily uranium  Fission power comes primarily from plutonium (Pu 239 ) instead of uranium (U 235 )  Other than the material of the fuel pellets, MOX and uranium fuel

  14. UK mining invests, suppliers profit

    SciTech Connect (OSTI)

    2009-04-15

    In the midst of a major economic crisis in the United Kingdom, equipment suppliers have been reporting a number of considerable purchases by British coal mining companies. In December 2008, Liebherr-Great Britain delivered the first two of four Rq350 Litronic hydraulic excavators for use at the Broken Cross opencast coal site in Lanarkshire, Scotland. Ten Terex TR100 rigid haulers were delivered to the site in late 2008. Hatfield Colliery at Stainforth, South Yorkshire, has been reopened by PowerFuel. The main equipment for two longwall faces was supplied by Joy Mining Machinery UK Ltd. 2 photos.

  15. Feasibility Study of MOX Fuel Online Burnup Analysis

    SciTech Connect (OSTI)

    Dennis, M.L.; Usman, S.

    2006-07-01

    This research is an extension of well established Non-Destructive Analysis of UO fuel using gamma spectroscopy of Cs-137 and other related isotopes. Given the performance similarities between UO fuel and MOX fuel, investigations are underway to develop similar correlation for MOX. MOX fuel burnup and decay simulations are being performed using ORIGEN-ARP (Oak Ridge Isotope Generation and Depletion Code - Automatic Rapid Processing). Simulation results are being analyzed and will be used to determine performance specifications of a detection system for field applications. Analysis of isotopic activity from irradiated fuel will be used to develop correlations to determine burn-up and Plutonium content of MOX fuel. These results will be particularly useful in view of the recent interest in MOX fuel. (authors)

  16. The manufacture and performance of homogeneous microstructure SBR MOX fuel

    SciTech Connect (OSTI)

    Barker, Matthew A.; Stephenson, Keith; Weston, Rebecca

    2007-07-01

    In the early 1980's, British experience in the manufacture of mixed-oxide fast reactor fuel was used to develop a new thermal MOX manufacturing route called the Short Binder-less Route (SBR). Laboratory- scale development led to the manufacture of commercial PWR fuel in a small pilot plant, and the construction of the full-scale dual-line Sellafield MOX Plant (SMP). SMP's first MOX assemblies are now under irradiation. SBR MOX is manufactured with 100% co-milled feedstock, leading to a microstructure dominated by a solid solution of (U,Pu)O{sub 2} at the nominal enrichment. A comprehensive fuel performance research programme has demonstrated the benign performance of SBR MOX up to 54 MWd/kgHM. In particular, the homogeneous microstructure is believed to be instrumental in the favourable fission gas retention and PCI resistance properties. (authors)

  17. MOX Cross-Section Libraries for ORIGEN-ARP

    SciTech Connect (OSTI)

    Gauld, I.C.

    2003-07-01

    The use of mixed-oxide (MOX) fuel in commercial nuclear power reactors operated in Europe has expanded rapidly over the past decade. The predicted characteristics of MOX fuel such as the nuclide inventories, thermal power from decay heat, and radiation sources are required for design and safety evaluations, and can provide valuable information for non-destructive safeguards verification activities. This report describes the development of computational methods and cross-section libraries suitable for the analysis of irradiated MOX fuel with the widely-used and recognized ORIGEN-ARP isotope generation and depletion code of the SCALE (Standardized Computer Analyses for Licensing Evaluation) code system. The MOX libraries are designed to be used with the Automatic Rapid Processing (ARP) module of SCALE that interpolates appropriate values of the cross sections from a database of parameterized cross-section libraries to create a problem-dependent library for the burnup analysis. The methods in ORIGEN-ARP, originally designed for uranium-based fuels only, have been significantly upgraded to handle the larger number of interpolation parameters associated with MOX fuels. The new methods have been incorporated in a new version of the ARP code that can generate libraries for low-enriched uranium (LEU) and MOX fuel types. The MOX data libraries and interpolation algorithms in ORIGEN-ARP have been verified using a database of declared isotopic concentrations for 1042 European MOX fuel assemblies. The methods and data are validated using a numerical MOX fuel benchmark established by the Organization for Economic Cooperation and Development (OECD) Working Group on burnup credit and nuclide assay measurements for irradiated MOX fuel performed as part of the Belgonucleaire ARIANE International Program.

  18. Sandia National Laboratories: Working with Sandia: Current Suppliers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Suppliers Construction Supplier Resources iSupplier iSupplier Account Manage your company profile within our iSupplier Portal How to manage your iSupplier Account Accounts Payable Accounts Payable Invoicing Process Contract Information Contract Information Construction/Facilities Construction/Facilities Contract Audit Contract Audit Economic Impact Economic Impact Current and Past News Scam Notice, July 2015 Suspect/Counterfeit Help Management iSupplier Account supreg@sandia.gov

  19. Energy Secretary Bodman Commends Key Milestone In MOX Program | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Commends Key Milestone In MOX Program Energy Secretary Bodman Commends Key Milestone In MOX Program April 1, 2005 - 11:28am Addthis WASHINGTON, DC - In response to the Nuclear Regulatory Commission's (NRC) authorization of the construction of a U.S. Mixed-Oxide (MOX) Fuel Fabrication Facility at the Department of Energy's Savannah River Site in South Carolina, Secretary of Energy Samuel W. Bodman today released the following statement: "Issuing the permit for construction of a

  20. MOX Fuel Presentation to Duke Board of Directors

    National Nuclear Security Administration (NNSA)

    PuO 2 with 95% depleted UO 2 - Like LEU fuel pellets, MOX fuel pellets are primarily uranium * Fission power comes primarily from plutonium (Pu 239 ) instead of uranium (U 235 )...

  1. Oversight Scheduling and Operational Awareness at the Savannah River Site, March 2013

    Office of Environmental Management (EM)

    MOX Fuel Fabrication Facility | Department of Energy Over 9600 Small Business Subcontracts Critical to the Success of NNSA's MOX Fuel Fabrication Facility Over 9600 Small Business Subcontracts Critical to the Success of NNSA's MOX Fuel Fabrication Facility January 3, 2013 - 10:38am Addthis Top: MOX Services President Kelly Trice, left, presents a certificate to Wise President and Owner David Abney and Wise Marketing Director Renee Abney. Wise was recognized as a 2012 MOX Gold Supplier during

  2. Over 9600 Small Business Subcontracts Critical to the Success of NNSA's

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MOX Fuel Fabrication Facility | Department of Energy Over 9600 Small Business Subcontracts Critical to the Success of NNSA's MOX Fuel Fabrication Facility Over 9600 Small Business Subcontracts Critical to the Success of NNSA's MOX Fuel Fabrication Facility January 3, 2013 - 10:38am Addthis Top: MOX Services President Kelly Trice, left, presents a certificate to Wise President and Owner David Abney and Wise Marketing Director Renee Abney. Wise was recognized as a 2012 MOX Gold Supplier during

  3. An integrated approach for the verification of fresh mixed oxide fuel (MOX) assemblies at light water reactor MOX recycle reactors

    SciTech Connect (OSTI)

    Menlove, Howard O; Lee, Sang - Yoon

    2009-01-01

    This paper presents an integrated approach for the verification of mixed oxide (MOX) fuel assemblies prior to their being loaded into the reactor. There is a coupling of the verification approach that starts at the fuel fabrication plant and stops with the transfer of the assemblies into the thermal reactor. The key measurement points are at the output of the fuel fabrication plant, the receipt at the reactor site, and the storage in the water pool as fresh fuel. The IAEA currently has the capability to measure the MOX fuel assemblies at the output of the fuel fabrication plants using a passive neutron coincidence counting systems of the passive neutron collar (PNCL) type. Also. at the MOX reactor pool, the underwater coincidence counter (UWCC) has been developed to measure the MOX assemblies in the water. The UWCC measurement requires that the fuel assembly be lifted about two meters up in the storage rack to avoid interference from the fuel that is stored in the rack. This paper presents a new method to verify the MOX fuel assemblies that are in the storage rack without the necessity of moving the fuel. The detector system is called the Underwater MOX Verification System (UMVS). The integration and relationship of the three measurements systems is described.

  4. Important notice to suppliers | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    notice to ... Important notice to suppliers The Consolidated Nuclear Security Supply Chain Management department wants to alert suppliers to an active email scam involving...

  5. Supplier's Quick Guide to Sandia Electronic Invoicing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 4 - Purchase Orders: Enter PO number only in search box and press 'Go', DO NOT enter any other fields. ... Invoice Payment Terms Section 8. Available Invoice Terms (Optional) Suppliers ...

  6. Supplier Performance Evaluation and Rating System (SPEARS)

    SciTech Connect (OSTI)

    Oged, M.; Warner, D.; Gurbuz, E.

    1993-03-01

    The SSCL Magnet Quality Assurance Department has implemented a Supplier Performance Evaluation and Rating System (SPEARS) to assess supplier performance throughout the development and production stages of the SSCL program. The main objectives of SPEARS are to promote teamwork and recognize performance. This paper examines the current implementation of SPEARS. MSD QA supports the development and production of SSCsuperconducting magnets while implementing the requirements of DOE Order 5700.6C. The MSD QA program is based on the concept of continuous improvement in quality and productivity. The QA program requires that procurement of items and services be controlled to assure conformance to specification. SPEARS has been implemented to meet DOE requirements and to enhance overall confidence in supplier performance. Key elements of SPEARS include supplier evaluation and selection as well as evaluation of furnished quality through source inspection, audit, and receipt inspection. These elements are described in this paper.

  7. Quality Procedure - Approved Suppliers List | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approved Suppliers List Quality Procedure - Approved Suppliers List This procedure establishes the responsibilities, process, and records for developing and maintaining the Approved Suppliers List (ASL) for EM Headquarters Office of Standards and Quality Assurance in accordance with EM-QA-001, Environmental Management Quality Assurance Program. Quality Procedure - Approved Suppliers List (2.06 MB) More Documents & Publications Quality Procedure - Supplier Qualification Quality Procedure -

  8. ANALYSIS AND EXAMINATION OF MOX FUEL FROM NONPROLIFERATION PROGRAMS

    SciTech Connect (OSTI)

    McCoy, Kevin; Machut, Dr McLean; Morris, Robert Noel; Blanpain, Patrick; Hemrick, James Gordon

    2013-01-01

    The U.S. Department of Energy has decided to dispose of a portion of the nation s surplus plutonium by reconstituting it into mixed oxide (MOX) fuel and irradiating it in commercial power reactors. Four lead assemblies were manufactured and irradiated to a maximum fuel rod burnup of 47.3 MWd/kg heavy metal. This was the first commercial irradiation of MOX fuel with a 240Pu/239Pu ratio of less than 0.10. Five fuel rods with varying burnups and plutonium contents were selected from one of the assemblies and shipped to Oak Ridge National Laboratory for hot cell examination. The performance of the rods was analyzed with AREVA s next-generation GALILEO code. The results of the analysis confirmed that the fuel rods had performed safely and predictably, and that GALILEO is applicable to MOX fuel with a low 240Pu/239Pu ratio as well as to standard MOX. The results are presented and compared to the GALILEO database. In addition, the fuel cladding was tested to confirm that traces of gallium in the fuel pellets had not affected the mechanical properties of the cladding. The irradiated cladding was found to remain ductile at both room temperature and 350 C for both the axial and circumferential directions.

  9. Supplier's Quick Guide to Sandia Electronic Invoicing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supplier's Quick Guide to Sandia Electronic Invoicing Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. 2 Table of Contents ACCESS TO ISUPPLIER & OTHER INFORMATION:

  10. How to select a water treatment supplier

    SciTech Connect (OSTI)

    Keister, T.E.

    1995-06-01

    This paper is a continuation of one first presented in 1984 at the International Water Conference. Since that time many things have changed, not the least of which is my means of earning a living. While my prospective upon the world has changed due to conversion from user to supplier, the industrial world today is also much different than that of ten years ago. Major factors driving change are the explosion in computer technology, new environmental realities and restrictions, and a radically different world from both the political and economic standpoints. All of these areas directly impact upon water treatment and the selection of a supplier. Your attention is called to the sponsor of this paper, the Association of Water Technologies (AWT). The AWT is the trade association representing {open_quotes}small{close_quotes} water treatment companies, which presently control at least 21% of the US market in water treatment services. This 21% plus market share is greater than that of any single water treatment supplier. Growth of the AWT has been quite remarkable since its founding nine short years ago, membership now stands at approximately 370 companies. The growth of the Association is a good indication that the individual small water treatment suppliers, making up 74% of the membership, are also growing. Given the huge marketing budgets of the six major water treatment companies, it is sometimes difficult to realize that there are approximately 800 other water treatment companies in the market. Many of these smaller companies can oftentimes provide a better water treatment program than a major company can due to better service, closer customer contact, superior technology, and lower overhead costs. Selection of a water treatment supplier, be it a major or one of the smaller companies, should be made upon a firm foundation of facts, not marketing {open_quotes}hype{close_quotes}.

  11. Sandia National Laboratories: What Sandia Looks For In Our Suppliers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prospective Suppliers What Sandia Looks For In Our Suppliers What Does Sandia Buy? Business Opportunities Website Small Business Working with Sandia What Sandia Looks For In Our Suppliers Suppliers must have the ability to demonstrate sustained high performance in cost, quality, safety, and on-time delivery. In addition: Innovation and responsiveness Customer focused Financially healthy and lean Product and service leadership within their industry Share commitment to mission success Able to

  12. Sandia National Laboratories: Working with Sandia: Supplier Registration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prospective Suppliers What Sandia Looks For In Our Suppliers What Does Sandia Buy? Business Opportunities Website Small Business Working with Sandia Supplier Registration Step 1. SAM Registration In order to do business with Sandia National Laboratories, businesses will be required to be registered in the System for Award Management (SAM). SAM is a government portal that enables secure registration as a potential supplier of products or services to Sandia National Laboratories and other

  13. Mixed Oxide (MOX) Fuel Fabrication Facility | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) fieldoffices / Savannah River Field Office Mixed Oxide (MOX) Fuel Fabrication Facility Documents related to the project: Plutonium Disposition Study Options Independent Assessment Phase 1 Report, April 13, 2015 Plutonium Disposition Study Options Independent Assessment Phase 2 Report, August 20, 2015 Final Report of the Plutonium Disposition Red Team, August 13, 2015 Commentary on Report by High Bridge Associates, Inc., Feb. 12, 2016 Related Topics Mixed Oxide Fuel

  14. MOX Lead Assembly Fabrication at the Savannah River Site

    SciTech Connect (OSTI)

    Geddes, R.L.; Spiker, D.L.; Poon, A.P.

    1997-12-01

    The U. S. Department of Energy (DOE) announced its intent to prepare an Environmental Impact Statement (EIS) under the National Environmental Policy Act (NEPA) on the disposition of the nations weapon-usable surplus plutonium.This EIS is tiered from the Storage and Disposition of Weapons-Usable Fissile Material Programmatic Environmental Impact Statement issued in December 1996,and the associated Record of Decision issued on January, 1997. The EIS will examine reasonable alternatives and potential environmental impacts for the proposed siting, construction, and operation of three types of facilities for plutonium disposition. The three types of facilities are: a pit disassembly and conversion facility, a facility to immobilize surplus plutonium in a glass or ceramic form for disposition, and a facility to fabricate plutonium oxide into mixed oxide (MOX) fuel.As an integral part of the surplus plutonium program, Oak Ridge National Laboratory (ORNL) was tasked by the DOE Office of Fissile Material Disposition(MD) as the technical lead to organize and evaluate existing facilities in the DOE complex which may meet MD`s need for a domestic MOX fuel fabrication demonstration facility. The Lead Assembly (LA) facility is to produce 1 MT of usable test fuel per year for three years. The Savannah River Site (SRS) as the only operating plutonium processing site in the DOE complex, proposes two options to carry out the fabrication of MOX fuel lead test assemblies: an all Category I facility option and a combined Category I and non-Category I facilities option.

  15. Isotopic Details of the Spent Catawba-1 MOX Fuel Rods at ORNL

    SciTech Connect (OSTI)

    Ellis, Ronald James

    2015-04-01

    The United States Department of Energy funded Shaw/AREVA MOX Services LLC to fabricate four MOX Lead Test Assemblies (LTA) from weapons-grade plutonium. A total of four MOX LTAs (including MX03) were irradiated in the Catawba Nuclear Station (Unit 1) Catawba-1 PWR which operated at a total thermal power of 3411 MWt and had a core with 193 total fuel assemblies. The MOX LTAs were irradiated along with Duke Energy s irradiation of eight Westinghouse Next Generation Fuel (NGF) LEU LTAs (ref.1) and the remaining 181 LEU fuel assemblies. The MX03 LTA was irradiated in the Catawba-1 PWR core (refs.2,3) during cycles C-16 and C-17. C-16 began on June 5, 2005, and ended on November 11, 2006, after 499 effective full power days (EFPDs). C-17 started on December 29, 2006, (after a shutdown of 48 days) and continued for 485 EFPDs. The MX03 and three other MOX LTAs (and other fuel assemblies) were discharged at the end of C-17 on May 3, 2008. The design of the MOX LTAs was based on the (Framatome ANP, Inc.) Mark-BW/MOX1 17 17 fuel assembly design (refs. 4,5,6) for use in Westinghouse PWRs, but with MOX fuel rods with three Pu loading ranges: the nominal Pu loadings are 4.94 wt%, 3.30 wt%, and 2.40 wt%, respectively, for high, medium, and low Pu content. The Mark-BW/MOX1 (MOX LTA) fuel assembly design is the same as the Advanced Mark-BW fuel assembly design but with the LEU fuel rods replaced by MOX fuel rods (ref. 5). The fabrication of the fuel pellets and fuel rods for the MOX LTAs was performed at the Cadarache facility in France, with the fabrication of the LTAs performed at the MELOX facility, also in France.

  16. Final assessment of MOX fuel performance experiment with Japanese PWR specification fuel in the HBWR

    SciTech Connect (OSTI)

    Fujii, Hajime; Teshima, Hideyuki; Kanasugi, Katsumasa; Kosaka, Yuji; Arakawa, Yasushi

    2007-07-01

    In order to obtain high burn-up MOX fuel irradiation performance data, SBR and MIMAS MOX fuel rods with Pu-fissile enrichment of about 6 wt% had been irradiated in the HBWR from 1995 to 2006. The peak burn-up of MOX pellet achieved 72 GWd/tM. In this test, fuel centerline temperature, rod internal pressure, stack length and cladding length were measured for MOX fuel and UO{sub 2} fuel as reference. MOX fuel temperature is confirmed to have no significant difference in comparison with UO{sub 2}, taking into account of adequate thermal conductivity degradation due to PuO{sub 2} addition and burn-up development. And the measured fuel temperature agrees well with FINE code calculation up to high burn-up region. Fission gas release of MOX is possibly greater than UO{sub 2} based on temperature and pressure assessment. No significant difference is confirmed between SBR and MIMAS MOX on FGR behavior. MOX fuel swelling rate agrees well with solid swelling rate in the literature. Cladding elongation data shows onset of PCMI in high power region. (authors)

  17. Issues in the use of Weapons-Grade MOX Fuel in VVER-1000 Nuclear Reactors: Comparison of UO2 and MOX Fuels

    SciTech Connect (OSTI)

    Carbajo, J.J.

    2005-05-27

    The purpose of this report is to quantify the differences between mixed oxide (MOX) and low-enriched uranium (LEU) fuels and to assess in reasonable detail the potential impacts of MOX fuel use in VVER-1000 nuclear power plants in Russia. This report is a generic tool to assist in the identification of plant modifications that may be required to accommodate receiving, storing, handling, irradiating, and disposing of MOX fuel in VVER-1000 reactors. The report is based on information from work performed by Russian and U.S. institutions. The report quantifies each issue, and the differences between LEU and MOX fuels are described as accurately as possible, given the current sources of data.

  18. A Neutronic Analysis of TRU Recycling in PWRs Loaded with MOX-UE Fuel (MOX with U-235 Enriched U Support)

    SciTech Connect (OSTI)

    G. Youinou; S. Bays

    2009-05-01

    This report presents the results of a study dealing with the homogeneous recycling of either Pu or Pu+Np or Pu+Np+Am or Pu+Np+Am+Cm in PWRs using MOX-UE fuel, i.e. standard MOX fuel with a U235 enriched uranium support instead of the standard tail uranium (0.25%) for standard MOX fuel. This approach allows to multirecycle Pu or TRU (Pu+MA) as long as U235 is available, by keeping the Pu or TRU content in the fuel constant and at a value ensuring a negative moderator void coefficient (i.e. the loss of the coolant brings imperatively the reactor to a subcritical state). Once this value is determined, the U235 enrichment of the MOX-UE fuel is adjusted in order to reach the target burnup (51 GWd/t in this study).

  19. Development of a fresh MOX fuel transport package for disposition of weapons plutonium

    SciTech Connect (OSTI)

    Ludwig, S.B.; Pope, R.B.; Shappert, L.B.; Michelhaugh, R.D.; Chae, S.M.

    1998-11-01

    The US Department of Energy announced its Record of Decision on January 14, 1997, to embark on a dual-track approach for disposition of surplus weapons-usable plutonium using immobilization in glass or ceramics and burning plutonium as mixed-oxide (MOX) fuel in reactors. In support of the MOX fuel alternative, Oak Ridge National Laboratory initiated development of conceptual designs for a new package for transporting fresh (unirradiated) MOX fuel assemblies between the MOX fabrication facility and existing commercial light-water reactors in the US. This paper summarizes progress made in development of new MOX transport package conceptual designs. The development effort has included documentation of programmatic and technical requirements for the new package and development and analysis of conceptual designs that satisfy these requirements.

  20. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    Gasoline and Diesel Fuel Update (EIA)

    See footnotes at end of table. 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State 386 Energy Information...

  1. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Marketing Annual 1998 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

  2. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketing Annual 1995 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

  3. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1999 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

  4. Sandia National Laboratories: Working with Sandia: Become a Supplier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    attempts to procure goods from existing laboratory suppliers. View Notice Step 1. SAM Registration Government Registration within the System for Award Management (SAM) The...

  5. Energy Supplier Obligations and White Certificate Schemes: Comparative...

    Open Energy Info (EERE)

    ways different European Union (EU) member states, including the United Kingdom, Italy, France, Denmark and Belgium, have implemented energy supplier obligations and white...

  6. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1997 401 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  7. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketing Annual 1999 359 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  8. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Marketing Annual 1998 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) -...

  9. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Marketing Annual 1999 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) -...

  10. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Marketing Annual 1995 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) -...

  11. Gold Nanoparticles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kornberg Research Science Perspective Chemistry World 16 December 2007 Structure of a Coated Gold Nanoparticle summary written by Amber Dance, SLAC Communication Office A team of scientists, working in part at SSRL's crystallography beam lines and led by Stanford Professor Roger Kornberg, has determined for the first time the atomic structure (at 1.1 Å resolution) of a thiol-covered gold nanoparticle, a discovery with potential for a range of applications from biosensors to nanotransistors. The

  12. Suppliers and Environmental Innovation: The Automotive Paint Process

    SciTech Connect (OSTI)

    Geffen, Charlette A.; Rothenberg, Sandra

    2000-01-01

    Automobile assembly plants worldwide face increasing pressures in the environmental arena. How a plant responds to these issues has significant implications for the cost and quality of plant operations. This paper uses three case studies of U.S. assembly plants to examine the role of partnerships between original equipment manufacturers (OEMs) and their suppliers in improving the environmental performance of manufacturing operations. We find that strong partnerships with suppliers, supported by appropriate incentive systems, were a significant element of the successful application of innovative environmental technologies. Supplier staff members were an important part of achieving environmental performance improvements while maintaining production quality and cost goals. The management factors influencing the extent and nature of supplier involvement are identified. The results of this work point to the importance of suppliers in addressing the manufacturing challenges of the future.

  13. Development of ORIGEN Libraries for Mixed Oxide (MOX) Fuel Assembly Designs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mertyurek, Ugur; Gauld, Ian C.

    2015-12-24

    In this research, ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup.more » The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. Finally, the nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.« less

  14. Development of ORIGEN Libraries for Mixed Oxide (MOX) Fuel Assembly Designs

    SciTech Connect (OSTI)

    Mertyurek, Ugur; Gauld, Ian C.

    2015-12-24

    In this research, ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup. The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. Finally, the nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.

  15. Melting temperatures of the ZrO{sub 2}-MOX system

    SciTech Connect (OSTI)

    Uchida, T.; Hirooka, S.; Kato, M.; Morimoto, K.; Sugata, H.; Shibata, K.; Sato, D.

    2013-07-01

    Severe accidents occurred at the Fukushima Daiichi Nuclear Power Plant Units 1-3 on March 11, 2011. MOX fuels were loaded in the Unit 3. For the thermal analysis of the severe accident, melting temperature and phase state of MOX corium were investigated. The simulated coriums were prepared from 4%Pu-containing MOX, 8%Pu-containing MOX and ZrO{sub 2}. Then X-ray diffraction, density and melting temperature measurements were carried out as a function of zirconium and plutonium contents. The cubic phase was observed in the 25%Zr-containing corium and the tetragonal phase was observed in the 50% and 75%Zr-containing coria. The lattice parameter and density monotonically changed with Pu content. Melting temperature increased with increasing Pu content; melting temperature were estimated to be 2932 K for 4%Pu MOX corium and 3012 K for 8%Pu MOX corium in the 25%ZrO{sub 2}-MOX system. The lowest melting temperature was observed for 50%Zr-containing corium. (authors)

  16. Japanese suppliers in transition from domestic nuclear reactor vendors to international suppliers

    SciTech Connect (OSTI)

    Forsberg, C.W.; Reich, W.J.; Rowan, W.J.

    1994-06-27

    Japan is emerging as a major leader and exporter of nuclear power technology. In the 1990s, Japan has the largest and strongest nuclear power supply industry worldwide as a result of the largest domestic nuclear power plant construction program. The Japanese nuclear power supply industry has moved from dependence on foreign technology to developing, design, building, and operating its own power plants. This report describes the Japanese nuclear power supply industry and examines one supplier--the Mitsubishi group--to develop an understanding of the supply industry and its relationship to the utilities, government, and other organizations.

  17. ORNL Supplier Database - Stay in Touch! | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORNL Supplier Database - Stay in Touch! ORNL Supplier Database - Stay in Touch! December 5, 2014 - 4:19pm Addthis Small business owners seeking to do business with the U.S. Department of Energy may already be aware of the Oak Ridge Supplier Database. The Small Business Programs Office at Oak Ridge National Laboratory (ORNL) would like to keep in touch with you periodically about pertinent, small business-related information. This may include updates from ORNL, the Department of Energy (DOE), the

  18. Examination of Risk Analysis Methods for MOX Land Transport in Japan

    SciTech Connect (OSTI)

    HOHNSTREITER, GLENN FREDRICK; PIERCE, JIM D.

    2003-04-01

    This report presents background information and methodology for a risk assessment of mixed oxide (MOX) reactor fuel transport in the nation of Japan to support their nuclear energy program. This work includes an extensive literature review, a review of other MOX activities worldwide, a survey of the statutory requirements for transporting nuclear materials, a discussion of risk assessment methodology, and calculation results for specific examples. Typical risk evaluations are given to provide guidance for later risk analyses specific to MOX fuel transport in Japan. This report also includes specific information that will be required for routes, cask types, accident-rate statistics, and population densities along specified routes, along with other detailed information needed for risk analysis studies pertinent to MOX transport in Japan. This information will be used in future specific risk studies.

  19. Microsoft Word - Managing Your iSupplier Profile Job Aid R12 05092012.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Managing Your iSupplier Profile Table of Contents Summary of Your iSupplier Profile...........................................................................................................................2 Accessing Your Account for the First Time.............................................................................................................2 Navigating to Your

  20. NNSA Marks Two-Year Construction Milestone at MOX Facility in South

    National Nuclear Security Administration (NNSA)

    Carolina | National Nuclear Security Administration | (NNSA) Marks Two-Year Construction Milestone at MOX Facility in South Carolina July 31, 2009 WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) today marked the second full year of successful construction of the Mixed Oxide (MOX) Fuel Fabrication Facility at the Savannah River Site (SRS) near Aiken, South Carolina, by launching a new online multimedia kit on NNSA's website. The kit, which includes a photo gallery that

  1. The Nuclear Suppliers Group: A multilateral arrangement devoted to supplier coordination

    SciTech Connect (OSTI)

    Dedik, T.; Thorne, C.E.; Goorevich, R.S.

    1995-12-31

    When the then-26 adherents to the Nuclear Suppliers Group (NSG) Guidelines met for the first time in more than 13 years in The Hague in April 1991 it began a new and dynamic process for coordinating the full range of nuclear supplier issues. In less than four years the NSG has expanded its membership to 31 countries and has implemented major changes to its Guidelines and commodity control lists. Enhancements to the Regime agreed to by the Group since its reinvigoration include the adoption of controls on nuclear-related-dual-use equipment, materials and technology; the requirements for a recipient country to have an agreement with the International Atomic Energy Agency calling for safeguards on its entire nuclear program, both now and in the future; a major expansion of the Trigger List (the list of commodities which ``trigger`` safeguards as a condition of supply) to clarify and add detail to the controlled commodities; comparable controls on technologies associated with Trigger List items; and ``fixes`` to the Guidelines to control retransfers and exports to countries with suspect nonproliferation credentials. This paper provides a comprehensive overview of the NSG and discusses in detail the past, present and future work of the Group.

  2. Programmatic and technical requirements for the FMDP fresh MOX fuel transport package

    SciTech Connect (OSTI)

    Ludwig, S. B.; Michelhaugh, R. D.; Pope, R. B.; Shappert, L. B.; Singletary, B. H.; Chae, S. M.; Parks, C. V.; Broadhead, B. L.; Schmid, S. P.; Cowart, C. G.

    1997-12-01

    This document is intended to guide the designers of the package to all pertinent regulatory and other design requirements to help ensure the safe and efficient transport of the weapons-grade (WG) fresh MOX fuel under the Fissile Materials Disposition Program. To accomplish the disposition mission using MOX fuel, the unirradiated MOX fuel must be transported from the MOX fabrication facility to one or more commercial reactors. Because the unirradiated fuel contains large quantities of plutonium and is not sufficient radioactive to create a self-protecting barrier to deter the material from theft, DOE intends to use its fleet of safe secure trailers (SSTs) to provide the necessary safeguards and security for the material in transit. In addition to these requirements, transport of radioactive materials must comply with regulations of the Department of Transportation and the Nuclear Regulatory Commission (NRC). In particular, NRC requires that the packages must meet strict performance requirements. The requirements for shipment of MOX fuel (i.e., radioactive fissile materials) specify that the package design is certified by NRC to ensure the materials contained in the packages are not released and remain subcritical after undergoing a series of hypothetical accident condition tests. Packages that pass these tests are certified by NRC as a Type B fissile (BF) package. This document specifies the programmatic and technical design requirements a package must satisfy to transport the fresh MOX fuel assemblies.

  3. Gold Nanoantennas

    SciTech Connect (OSTI)

    2012-01-01

    An array of gold nanoantennas laced into an artificial membrane enhances the fluorescence intensity of three different molecules when they pass through plasmonic hot spots in the array. Watch for the blue, green and red flashes. The photobleaching at the end of each fluorescence event (white flashes) is indicative of single molecule observations.

  4. Comment to NOI re Retrospective Risk Pooling Program For Suppliers

    Broader source: Energy.gov [DOE]

    Comment by Cameco Resources On Retrospective Risk Pooling Program For Suppliers, 75 Fed. Reg. 43945 (July 27, 2010), Section 934 Rule Making. As discussed below, Cameco believes that producers and...

  5. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    U.S. Energy Information Administration (EIA) Indexed Site

    - - 466.1 466.1 See footnotes at end of table. 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State 356 Energy Information...

  6. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    U.S. Energy Information Administration (EIA) Indexed Site

    - - 532.1 532.1 See footnotes at end of table. 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State 356 Energy Information...

  7. LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

  8. Characterization of candidate DOE sites for fabricating MOX fuel for lead assemblies

    SciTech Connect (OSTI)

    Holdaway, R.F.; Miller, J.W.; Sease, J.D.; Moses, R.J.; O`Connor, D.G.; Carrell, R.D.; Jaeger, C.D.; Thompson, M.L.; Strasser, A.A.

    1998-03-01

    The Office of Fissile Materials Disposition (MD) of the Department of Energy (DOE) is directing the program to disposition US surplus weapons-usable plutonium. For the reactor option for disposition of this surplus plutonium, MD is seeking to contract with a consortium, which would include a mixed-oxide (MOX) fuel fabricator and a commercial US reactor operator, to fabricate and burn MOX fuel in existing commercial nuclear reactors. This option would entail establishing a MOX fuel fabrication facility under the direction of the consortium on an existing DOE site. Because of the lead time required to establish a MOX fuel fabrication facility and the need to qualify the MOX fuel for use in a commercial reactor, MD is considering the early fabrication of lead assemblies (LAs) in existing DOE facilities under the technical direction of the consortium. The LA facility would be expected to produce a minimum of 1 metric ton heavy metal per year and must be operational by June 2003. DOE operations offices were asked to identify candidate sites and facilities to be evaluated for suitability to fabricate MOX fuel LAs. Savannah River Site, Argonne National Laboratory-West, Hanford, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory were identified as final candidates to host the LA project. A Site Evaluation Team (SET) worked with each site to develop viable plans for the LA project. SET then characterized the suitability of each of the five plans for fabricating MOX LAs using 28 attributes and documented the characterization to aid DOE and the consortium in selecting the site for the LA project. SET concluded that each option has relative advantages and disadvantages in comparison with other options; however, each could meet the requirements of the LA project as outlined by MD and SET.

  9. Critical Experiments that Simulated Damp MOX Powders - Do They Meet the Need?

    SciTech Connect (OSTI)

    J. Blair Briggs; Dr. Ali Nouri; Dr. Claes Nordborg

    2005-09-01

    The OECD Nuclear Energy Agency (NEA) Working Party on Nuclear Criticality Safety (WPNCS) identified the MOX fuel manufacturing process as an area in which there is a need for additional integral benchmark data. The specific need focused on damp MOX powders. The WPNCS was ultimately asked by the NEA Nuclear Science Committee (NSC) to provide the framework for the selection and performance of new experiments that fill the identified need. A set of criteria was established to enable uniform comparison of experimental proposals with generic MOX application data. Criteria were established for five general characteristics: (1) neutronic parameters, (2) type of experiments, (3) financial aspects, (4) schedule, and (5) other considerations. Proposals were judged most importantly on their ability to match the neutronic parameters of predetermined MOX applications. The neutronic parameters that formed the basis for comparison included core average values (not local values) for flux, fission and capture rate; detailed balance data (fission and capture) for the main isotopes (Actinides, H and O); sensitivity coefficients to important nuclear reactions (fission, capture, elastic and inelastic scatter, nu-bar, mu-bar) for all uranium and plutonium isotopes, hydrogen, and oxygen; sensitivity profiles to the main nuclear reactions for uranium and plutonium isotopes; energy of average lethargy causing fission; and the average fission group energy. The focus of this paper is on the definition of the need; the neutronics criteria established to assess which, if any, of three proposed MOX experimental programs best meet the need; and the actual assessment of the proposed experimental programs.

  10. Modeling of the performance of weapons MOX fuel in light water reactors

    SciTech Connect (OSTI)

    Alvis, J.; Bellanger, P.; Medvedev, P.G.; Peddicord, K.L.; Gellene, G.I.

    1999-05-01

    Both the Russian Federation and the US are pursing mixed uranium-plutonium oxide (MOX) fuel in light water reactors (LWRs) for the disposition of excess plutonium from disassembled nuclear warheads. Fuel performance models are used which describe the behavior of MOX fuel during irradiation under typical power reactor conditions. The objective of this project is to perform the analysis of the thermal, mechanical, and chemical behavior of weapons MOX fuel pins under LWR conditions. If fuel performance analysis indicates potential questions, it then becomes imperative to assess the fuel pin design and the proposed operating strategies to reduce the probability of clad failure and the associated release of radioactive fission products into the primary coolant system. Applying the updated code to anticipated fuel and reactor designs, which would be used for weapons MOX fuel in the US, and analyzing the performance of the WWER-100 fuel for Russian weapons plutonium disposition are addressed in this report. The COMETHE code was found to do an excellent job in predicting fuel central temperatures. Also, despite minor predicted differences in thermo-mechanical behavior of MOX and UO{sub 2} fuels, the preliminary estimate indicated that, during normal reactor operations, these deviations remained within limits foreseen by fuel pin design.

  11. Greenhouse Gases into Gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turning Greenhouse Gases into Gold Greenhouse Gases into Gold NERSC simulations reveal reaction mechanism behind CO conversion into carbon-neutral fuels and chemicals November ...

  12. Performance of Cladding on MOX Fuel with Low 240Pu/239Pu Ratio

    SciTech Connect (OSTI)

    McCoy, Kevin; Blanpain, Patrick; Morris, Robert Noel

    2014-01-01

    The U.S. Department of Energy has decided to dispose of a portion of its surplus plutonium by reconstituting it into mixed oxide (MOX) fuel and irradiating it in commercial power reactors. As part of fuel qualification, four lead assemblies were manufactured and irradiated to a maximum fuel rod average burnup of 47.3 MWd/kg heavy metal. This was the world s first commercial irradiation of MOX fuel with a 240Pu/239Pu ratio less than 0.10. Five fuel rods with varying burnups and plutonium contents were selected from one of the assemblies and shipped to Oak Ridge National Laboratory for hot cell examination. This paper discusses the results of those examinations with emphasis on cladding performance. Exams relevant to the cladding included visual and eddy current exams, profilometry, microscopy, hydrogen analysis, gallium analysis, and mechanical testing. There was no discernible effect of the type of MOX fuel on the performance of the cladding.

  13. Estimate of the Sources of Plutonium-Containing Wastes Generated from MOX Fuel Production in Russia

    SciTech Connect (OSTI)

    Kudinov, K. G.; Tretyakov, A. A.; Sorokin, Yu. P.; Bondin, V. V.; Manakova, L. F.; Jardine, L. J.

    2002-02-26

    In Russia, mixed oxide (MOX) fuel is produced in a pilot facility ''Paket'' at ''MAYAK'' Production Association. The Mining-Chemical Combine (MCC) has developed plans to design and build a dedicated industrial-scale plant to produce MOX fuel and fuel assemblies (FA) for VVER-1000 water reactors and the BN-600 fast-breeder reactor, which is pending an official Russian Federation (RF) site-selection decision. The design output of the plant is based on a production capacity of 2.75 tons of weapons plutonium per year to produce the resulting fuel assemblies: 1.25 tons for the BN-600 reactor FAs and the remaining 1.5 tons for VVER-1000 FAs. It is likely the quantity of BN-600 FAs will be reduced in actual practice. The process of nuclear disarmament frees a significant amount of weapons plutonium for other uses, which, if unutilized, represents a constant general threat. In France, Great Britain, Belgium, Russia, and Japan, reactor-grade plutonium is used in MOX-fuel production. Making MOX-fuel for CANDU (Canada) and pressurized water reactors (PWR) (Europe) is under consideration in Russia. If this latter production is added, as many as 5 tons of Pu per year might be processed into new FAs in Russia. Many years of work and experience are represented in the estimates of MOX fuel production wastes derived in this report. Prior engineering studies and sludge treatment investigations and comparisons have determined how best to treat Pu sludges and MOX fuel wastes. Based upon analyses of the production processes established by these efforts, we can estimate that there will be approximately 1200 kg of residual wastes subject to immobilization per MT of plutonium processed, of which approximately 6 to 7 kg is Pu in the residuals per MT of Pu processed. The wastes are various and complicated in composition. Because organic wastes constitute both the major portion of total waste and of the Pu to be immobilized, the recommended treatment of MOX-fuel production waste is

  14. Multirecycling of Plutonium from LMFBR Blanket in Standard PWRs Loaded with MOX Fuel

    SciTech Connect (OSTI)

    Sonat Sen; Gilles Youinou

    2013-02-01

    It is now well-known that, from a physics standpoint, Pu, or even TRU (i.e. Pu+M.A.), originating from LEU fuel irradiated in PWRs can be multirecycled also in PWRs using MOX fuel. However, the degradation of the isotopic composition during irradiation necessitates using enriched U in conjunction with the MOX fuel either homogeneously or heterogeneously to maintain the Pu (or TRU) content at a level allowing safe operation of the reactor, i.e. below about 10%. The study is related to another possible utilization of the excess Pu produced in the blanket of a LMFBR, namely in a PWR(MOX). In this case the more Pu is bred in the LMFBR, the more PWR(MOX) it can sustain. The important difference between the Pu coming from the blanket of a LMFBR and that coming from a PWR(LEU) is its isotopic composition. The first one contains about 95% of fissile isotopes whereas the second one contains only about 65% of fissile isotopes. As it will be shown later, this difference allows the PWR fed by Pu from the LMFBR blanket to operate with natural U instead of enriched U when it is fed by Pu from PWR(LEU)

  15. A Validation Study of Pin Heat Transfer for MOX Fuel Based on the IFA-597 Experiments

    SciTech Connect (OSTI)

    Phillippe, Aaron M; Clarno, Kevin T; Banfield, James E; Ott, Larry J; Philip, Bobby; Berrill, Mark A; Sampath, Rahul S; Allu, Srikanth; Hamilton, Steven P

    2014-01-01

    Abstract The IFA-597 (Integrated Fuel Assessment) experiments from the International Fuel Performance Experiments (IFPE) database were designed to study the thermal behavior of mixed oxide (MOX) fuel and the effects of an annulus on fission gas release in light-water-reactor fuel. An evaluation of nuclear fuel pin heat transfer in the FRAPCON-3.4 and Exnihilo codes for MOX fuel systems was performed, with a focus on the first 20 time steps ( 6 GWd/MT(iHM)) for explicit comparison between the codes. In addition, sensitivity studies were performed to evaluate the effect of the radial power shape and approximations to the geometry to account for the thermocouple hole, dish, and chamfer. The analysis demonstrated relative agreement for both solid (rod 1) and annular (rod 2) fuel in the experiment, demonstrating the accuracy of the codes and their underlying material models for MOX fuel, while also revealing a small energy loss artifact in how gap conductance is currently handled in Exnihilo for chamfered fuel pellets. The within-pellet power shape was shown to significantly impact the predicted centerline temperatures. This has provided an initial benchmarking of the pin heat transfer capability of Exnihilo for MOX fuel with respect to a well-validated nuclear fuel performance code.

  16. Benchmark of SCALE (SAS2H) isotopic predictions of depletion analyses for San Onofre PWR MOX fuel

    SciTech Connect (OSTI)

    Hermann, O.W.

    2000-02-01

    The isotopic composition of mixed-oxide (MOX) fuel, fabricated with both uranium and plutonium, after discharge from reactors is of significant interest to the Fissile Materials Disposition Program. The validation of the SCALE (SAS2H) depletion code for use in the prediction of isotopic compositions of MOX fuel, similar to previous validation studies on uranium-only fueled reactors, has corresponding significance. The EEI-Westinghouse Plutonium Recycle Demonstration Program examined the use of MOX fuel in the San Onofre PWR, Unit 1, during cycles 2 and 3. Isotopic analyses of the MOX spent fuel were conducted on 13 actinides and {sup 148}Nd by either mass or alpha spectrometry. Six fuel pellet samples were taken from four different fuel pins of an irradiated MOX assembly. The measured actinide inventories from those samples has been used to benchmark SAS2H for MOX fuel applications. The average percentage differences in the code results compared with the measurement were {minus}0.9% for {sup 235}U and 5.2% for {sup 239}Pu. The differences for most of the isotopes were significantly larger than in the cases for uranium-only fueled reactors. In general, comparisons of code results with alpha spectrometer data had extreme differences, although the differences in the calculations compared with mass spectrometer analyses were not extremely larger than that of uranium-only fueled reactors. This benchmark study should be useful in estimating uncertainties of inventory, criticality and dose calculations of MOX spent fuel.

  17. Your're Invited: Join Our Supplier Outreach Event on August 19th

    Broader source: Energy.gov [DOE]

    On August 19, 2011, the Department of Energy will be co-sponsoring a suppliers outreach event for suppliers who wish to provide services to Service Disabled Veteran Owned Businesses. This event,...

  18. Estimate of the Sources of Plutonium-Containing Wastes Generated from MOX Fuel Production in Russia

    SciTech Connect (OSTI)

    Kudinov, K.G.; Tretyakov, A.A.; Sorokin, Y.P.; Bondin, V.V.; Manakova, L.F.; Jardine, L.J.

    2001-12-01

    In Russia, mixed oxide (MOX) fuel is produced in a pilot facility ''Paket'' at ''MAYAK'' Production Association. The Mining-Chemical Combine (MCC) has developed plans to design and build a dedicated industrial-scale plant to produce MOX fuel and fuel assemblies (FA) for VVER-1000 water reactors and the BN-600 fast-breeder reactor, which is pending an official Russian Federation (RF) site-selection decision. The design output of the plant is based on production capacity of 2.75 tons of weapons plutonium per year to produce the resulting fuel assemblies: 1.25 tons for the BN-600 reactor FAs and the remaining 1.5 tons for VVER-1000 FAs. It is likely the quantity of BN-600 FAs will be reduced in actual practice. The process of nuclear disarmament frees a significant amount of weapons plutonium for other uses, which, if unutilized, represents a constant general threat. In France, Great Britain, Belgium, Russia, and Japan, reactor-grade plutonium is used in MOX-fuel production. Making MOX-fuel for CANDU (Canada) and pressurized water reactors (PWR) (Europe) is under consideration Russia. If this latter production is added, as many as 5 tons of Pu per year might be processed into new FAs in Russia. Many years of work and experience are represented in the estimates of MOX fuel production wastes derived in this report. Prior engineering studies and sludge treatment investigations and comparisons have determined how best to treat Pu sludges and MOX fuel wastes. Based upon analyses of the production processes established by these efforts, we can estimate that there will be approximately 1200 kg of residual wastes subject to immobilization per MT of plutonium processed, of which approximately 6 to 7 kg is Pu in the residuals per MT of Pu processed. The wastes are various and complicated in composition. Because organic wastes constitute both the major portion of total waste and of the Pu to be immobilized, the recommended treatment of MOX-fuel production waste is incineration

  19. Hanford MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site (SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. Hanford has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 1 facility. In all, a total of three LA MOX fuel fabrication options were identified by Hanford that could accommodate the program. In every case, only minor modification would be required to ready any of the facilities to accept the equipment necessary to accomplish the LA program.

  20. Sandia National Laboratories: Working with Sandia: Prospective Suppliers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prospective Suppliers Doing Business with Sandia Sandia is dedicated to purchasing quality products and services required to meet our national security mission Sandia spends about $1 billion each year on purchases of quality products and services to meet its national security missions. The Labs are committed to buying from small businesses and partnering with companies that share its values of conducting business in an ethical and safe manner while providing products and services on time and

  1. Evaluation of Internal Criticality of the Plutonium Dispostion MOX SNF Waste Form

    SciTech Connect (OSTI)

    A.A. Alsaed

    1999-09-28

    The purpose of this calculation is to perform a parametric study to determine the effects of fission product leaching, assembly collapse, and iron oxide loss ({Delta}Fe{sub 2}O{sub 3}) on the reactivity of a waste package (WP) containing mixed oxide (MOX) spent nuclear fuel (SNF). Previous calculations (CRWMS M&O 1998a) have shown that the criticality control features of the WP are adequate to prevent criticality of a flooded WP for all the enrichment/burnup pairs expected for the MOX SNF. Therefore, the objective of this calculation is to determine the increase in reactivity that might result from possible degradation of the WP criticality control features. Specifically, this calculation tests the sensitivity of effective neutron multiplication factor (k{sub eff}) to loss (from the WP) of the following: (1) fission product neutron absorbers, or (2) moderator displacement material (principally, the iron oxide that results from the corrosion of carbon steel).

  2. LANL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    Fisher, S.E.; Holdaway, R.; Ludwig, S.B.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. LANL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within both Category 1 and 2 areas. Technical Area (TA) 55/Plutonium Facility 4 will be used to store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, assemble rods, and store fuel bundles. Bundles will be assembled at a separate facility, several of which have been identified as suitable for that activity. The Chemistry and Metallurgy Research Building (at TA-3) will be used for analytical chemistry support. Waste operations will be conducted in TA-50 and TA-54. Only very minor modifications will be needed to accommodate the LA program. These modifications consist mostly of minor equipment upgrades. A commercial reactor operator has not been identified for the LA irradiation. Postirradiation examination (PIE) of the irradiated fuel will take place at either Oak Ridge National Laboratory or ANL-W. The only modifications required at either PIE site would be to accommodate full-length irradiated fuel rods. Results from this program are critical to the overall plutonium distribution schedule.

  3. Weapons-Grade MOX Fuel Burnup Characteristics in Advanced Test Reactor Irradiation

    SciTech Connect (OSTI)

    G. S. Chang

    2006-07-01

    Mixed oxide (MOX) test capsules prepared with weapons-derived plutonium have been irradiated to a burnup of 50 GWd/t. The MOX fuel was fabricated at Los Alamos National Laboratory (LANL) by a master-mix process and has been irradiated in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). Previous withdrawals of the same fuel have occurred at 9, 21, 30, 40, and 50 GWd/t. Oak Ridge National Laboratory (ORNL) manages this test series for the Department of Energys Fissile Materials Disposition Program (FMDP). A UNIX BASH (Bourne Again SHell) script CMO has been written and validated at the Idaho National Laboratory (INL) to couple the Monte Carlo transport code MCNP with the depletion and buildup code ORIGEN-2 (CMO). The new Monte Carlo burnup analysis methodology in this paper consists of MCNP coupling through CMO with ORIGEN-2(MCWO). MCWO is a fully automated tool that links the Monte Carlo transport code MCNP with the radioactive decay and burnup code ORIGEN-2. The fuel burnup analyses presented in this study were performed using MCWO. MCWO analysis yields time-dependent and neutron-spectrum-dependent minor actinide and Pu concentrations for the ATR small I-irradiation test position. The purpose of this report is to validate both the Weapons-Grade Mixed Oxide (WG-MOX) test assembly model and the new fuel burnup analysis methodology by comparing the computed results against the neutron monitor measurements and the irradiated WG-MOX post irradiation examination (PIE) data.

  4. Application of wavelet scaling function expansion continuous-energy resonance calculation method to MOX fuel problem

    SciTech Connect (OSTI)

    Yang, W.; Wu, H.; Cao, L.

    2012-07-01

    More and more MOX fuels are used in all over the world in the past several decades. Compared with UO{sub 2} fuel, it contains some new features. For example, the neutron spectrum is harder and more resonance interference effects within the resonance energy range are introduced because of more resonant nuclides contained in the MOX fuel. In this paper, the wavelets scaling function expansion method is applied to study the resonance behavior of plutonium isotopes within MOX fuel. Wavelets scaling function expansion continuous-energy self-shielding method is developed recently. It has been validated and verified by comparison to Monte Carlo calculations. In this method, the continuous-energy cross-sections are utilized within resonance energy, which means that it's capable to solve problems with serious resonance interference effects without iteration calculations. Therefore, this method adapts to treat the MOX fuel resonance calculation problem natively. Furthermore, plutonium isotopes have fierce oscillations of total cross-section within thermal energy range, especially for {sup 240}Pu and {sup 242}Pu. To take thermal resonance effect of plutonium isotopes into consideration the wavelet scaling function expansion continuous-energy resonance calculation code WAVERESON is enhanced by applying the free gas scattering kernel to obtain the continuous-energy scattering source within thermal energy range (2.1 eV to 4.0 eV) contrasting against the resonance energy range in which the elastic scattering kernel is utilized. Finally, all of the calculation results of WAVERESON are compared with MCNP calculation. (authors)

  5. Sandia National Laboratories Supplier Quality Requirements for Build to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supplier Quality Requirements for Build to Print Hardware Purchases Subject: First Release:SNL-5-2002, Issue A, 05/16/02 Revised this 18th day'ofNovember, 2004 as F-42(QP-28)04* . Revised By: 11)' I(.~ 't:t' AntOnIO J. ~ora, 14133 14133 Manager ~ c-. m I ~~ <.:-, lL 10252 Manager? \"\\_- - II - 2.3 - 0 'i ~e~7 1 025 8 Manager$::~ R (/.tff7 J Frank A. Villareal Approved By: * The revision of the document in effect at tlte tinre of award of Purchase Order of Subcontract unless otherwise

  6. GOLD PLATING PROCESS

    DOE Patents [OSTI]

    Seegmiller, R.

    1957-08-01

    An improved bath is reported for plating gold on other metals. The composition of the plating bath is as follows: Gold cyanide from about 15 to about 50 grams, potassium cyanide from about 70 to about 125 grams, and sulfonated castor oil from about 0.1 to about 10 cc. The gold plate produced from this bath is smooth, semi-hard, and nonporous.

  7. Gold Awards - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Site Wide Programs DOE Human Resources Management Recognition and Awards Program Gold Awards About Us DOE Human Resources Management Division DOE Employment Recognition and Awards Program Gold Awards Silver Award Federal Employees Union (AFGE Local 788) Work Schedules / Pay and Leave Benefits and Services EEO & Diversity Gold Awards Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Recognition is provided through monetary, non-monetary, and honorary

  8. Suspect/Counterfeit Items Information Guide for Subcontractors/Suppliers

    SciTech Connect (OSTI)

    Tessmar, Nancy D.; Salazar, Michael J.

    2012-09-18

    Counterfeiting of industrial and commercial grade items is an international problem that places worker safety, program objectives, expensive equipment, and security at risk. In order to prevent the introduction of Suspect/Counterfeit Items (S/CI), this information sheet is being made available as a guide to assist in the implementation of S/CI awareness and controls, in conjunction with subcontractor's/supplier's quality assurance programs. When it comes to counterfeit goods, including industrial materials, items, and equipment, no market is immune. Some manufactures have been known to misrepresent their products and intentionally use inferior materials and processes to manufacture substandard items, whose properties can significantly cart from established standards and specifications. These substandard items termed by the Department of Energy (DOE) as S/CI, pose immediate and potential threats to the safety of DOE and contractor workers, the public, and the environment. Failure of certain systems and processes caused by an S/CI could also have national security implications at Los Alamos National Laboratory (LANL). Nuclear Safety Rules (federal Laws), DOE Orders, and other regulations set forth requirements for DOE contractors to implement effective controls to assure that items and services meet specified requirements. This includes techniques to implement and thereby minimizing the potential threat of entry of S/CI to LANL. As a qualified supplier of goods or services to the LANL, your company will be required to establish and maintain effective controls to prevent the introduction of S/CI to LANL. This will require that your company warrant that all items (including their subassemblies, components, and parts) sold to LANL are genuine (i.e. not counterfeit), new, and unused, and conform to the requirements of the LANL purchase orders/contracts unless otherwise approved in writing to the Los Alamos National Security (LANS) contract administrator

  9. Evaluation of codisposal viability of MOX (FFTF) DOE-owned fuel: Phase 1 -- Intact mode calculations

    SciTech Connect (OSTI)

    Goluoglu, S.; Davis, J.W.; Montierth, L.M.

    1999-07-01

    The authors provide the intact criticality information that supports the disposal of spent nuclear fuel (SNF) from the US Department of Energy's (DOE's) Fast Flux Test Facility (FFTF) in the potential Monitored Geologic Repository at Yucca Mountain. FFTF is one of more than 250 forms of DOE-owned SNF. Because of the variety of the DOE SNF, the National Spent Nuclear Fuel Program has designated nine representative fuel groups for disposal criticality analyses based on fuel matrix, primary fissile isotope, and enrichment. The FFTF fuel is representative of the mixed-oxide fuel (MOX) group.

  10. SRS MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site(SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. SRS has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 2 or 3 facility with storage of bulk PuO{sub 2} and assembly, storage, and shipping of fuel bundles in an S and S Category 1 facility. The total Category 1 approach, which is the recommended option, would be done in the 221-H Canyon Building. A facility that was never in service will be removed from one area, and a hardened wall will be constructed in another area to accommodate execution of the LA fuel fabrication. The non-Category 1 approach would require removal of process equipment in the FB-Line metal production and packaging glove boxes, which requires work in a contamination area. The Immobilization Hot Demonstration Program

  11. Neutronics and safety characteristics of a 100% MOX fueled PWR using weapons grade plutonium

    SciTech Connect (OSTI)

    Biswas, D.; Rathbun, R.; Lee, Si Young; Rosenthal, P.

    1993-12-31

    Preliminary neutronics and safety studies, pertaining to the feasibility of using 100% weapons grade mixed-oxide (MOX) fuel in an advanced PWR Westinghouse design are presented in this paper. The preliminary results include information on boron concentration, power distribution, reactivity coefficients and xenon and control rode worth for the initial and the equilibrium cycle. Important safety issues related to rod ejection and steam line break accidents and shutdown margin requirements are also discussed. No significant change from the commercial design is needed to denature weapons-grade plutonium under the current safety and licensing criteria.

  12. Going green earns Laboratory gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design...

  13. Noah Golding | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Noah Golding About Us Noah Golding - Communications Specialist, Wind and Water Power Technologies Office Most Recent Winning with Wind: Electric Co-ops Providing Clean Energy to ...

  14. Going green earns Laboratory gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design ...

  15. Strength Loss in MA-MOX Green Pellets from Radiation Damage to Binders

    SciTech Connect (OSTI)

    Paul A. Lessing; W.R. Cannon; Gerald W. Egeland; Larry D. Zuck; James K. Jewell; Douglas W. Akers; Gary S. Groenewold

    2013-06-01

    The fracture strength of green Minor Actinides (MA)-MOX pellets containing 75 wt.% DUO2, 20 wt. % PuO2, 3 wt. % AmO2 and 2 wt. % NpO2 was studied as a function of storage time, after mixing in the binder and before sintering, to test the effect of radiation damage on binders. Fracture strength degraded continuously over the 10 days of the study for all three binders studied: PEG binder (Carbowax 8000), microcrystalline wax (Mobilcer X) and Styrene-acrylic copolymer (Duramax B1022) but the fracture strength of Duramax B1022 degraded the least. For instance, for several hours after mixing Carbowax 8000 with MA MOX, the fracture strength of a pellet was reasonably high and pellets were easily handled without breaking but the pellets were too weak to handle after 10 days. Strength measured using diametral compression test showed strength degradation was more rapid in pellets containing 1.0 wt. % Carbowax PEG 8000 compared to those containing only 0.2 wt. %, suggesting that irradiation not only left the binder less effective but also reduced the pellet strength. In contrast the strength of pellets containing Duramax B1022 degraded very little over the 10 day period. It was suggested that the styrene portion of the Duramax B1022 copolymer provided the radiation resistance.

  16. LLNL Site plan for a MOX fuel lead assembly mission in support of surplus plutonium disposition

    SciTech Connect (OSTI)

    Bronson, M.C.

    1997-10-01

    The principal facilities that LLNL would use to support a MOX Fuel Lead Assembly Mission are Building 332 and Building 334. Both of these buildings are within the security boundary known as the LLNL Superblock. Building 332 is the LLNL Plutonium Facility. As an operational plutonium facility, it has all the infrastructure and support services required for plutonium operations. The LLNL Plutonium Facility routinely handles kilogram quantities of plutonium and uranium. Currently, the building is limited to a plutonium inventory of 700 kilograms and a uranium inventory of 300 kilograms. Process rooms (excluding the vaults) are limited to an inventory of 20 kilograms per room. Ongoing operations include: receiving SSTS, material receipt, storage, metal machining and casting, welding, metal-to-oxide conversion, purification, molten salt operations, chlorination, oxide calcination, cold pressing and sintering, vitrification, encapsulation, chemical analysis, metallography and microprobe analysis, waste material processing, material accountability measurements, packaging, and material shipping. Building 334 is the Hardened Engineering Test Building. This building supports environmental and radiation measurements on encapsulated plutonium and uranium components. Other existing facilities that would be used to support a MOX Fuel Lead Assembly Mission include Building 335 for hardware receiving and storage and TRU and LLW waste storage and shipping facilities, and Building 331 or Building 241 for storage of depleted uranium.

  17. 100% MOX BWR experimental program design using multi-parameter representative

    SciTech Connect (OSTI)

    Blaise, P.; Fougeras, P.; Cathalau, S.

    2012-07-01

    A new multiparameter representative approach for the design of Advanced full MOX BWR core physics experimental programs is developed. The approach is based on sensitivity analysis of integral parameters to nuclear data, and correlations among different integral parameters. The representativeness method is here used to extract a quantitative relationship between a particular integral response of an experimental mock-up and the same response in a reference project to be designed. The study is applied to the design of the 100% MOX BASALA ABWR experimental program in the EOLE facility. The adopted scheme proposes an original approach to the problem, going from the initial 'microscopic' pin-cells integral parameters to the whole 'macroscopic' assembly integral parameters. This approach enables to collect complementary information necessary to optimize the initial design and to meet target accuracy on the integral parameters to be measured. The study has demonstrated the necessity of new fuel pins fabrication, fulfilling minimal costs requirements, to meet acceptable representativeness on local power distribution. (authors)

  18. Irradiation performance of fast reactor MOX fuel pins with ferritic/martensitic cladding irradiated to high burnups

    SciTech Connect (OSTI)

    Tomoyuki Uwaba; Masahiro Ito; Kozo Katsuyama; Bruce J. Makenas; David W. Wootan; Jon Carmack

    2011-05-01

    The ACO-3 irradiation test, which attained extremely high burnups of about 232 GWd/t and resisted a high neutron fluence (E > 0.1 MeV) of about 39 × 1026 n/m2 as one of the lead tests of the Core Demonstration Experiment in the Fast Flux Test Facility, demonstrated that the fuel pin cladding made of ferritic/martensitic HT-9 alloy had superior void swelling resistance. The measured diameter profiles of the irradiated ACO-3 fuel pins showed axially extensive incremental strain in the MOX fuel column region and localized incremental strain near the interfaces between the MOX fuel and upper blanket columns. These incremental strains were as low as 1.5% despite the extremely high level of the fast neutron fluence. Evaluation of the pin diametral strain indicated that the incremental strain in the MOX fuel column region was substantially due to cladding void swelling and irradiation creep caused by internal fission gas pressure, while the localized strain near the MOX fuel/upper blanket interface was likely the result of the pellet/cladding mechanical interaction (PCMI) caused by cesium/fuel reactions. The evaluation also suggested that the PCMI was effectively mitigated by a large gap size between the cladding and blanket column.

  19. Irradiation performance of fast reactor MOX fuel pins with ferritic/martensitic cladding irradiated to high burnups

    SciTech Connect (OSTI)

    Uwaba, Tomoyuki; Ito, Masahiro; Mizuno, Tomoyasu; Katsuyama, Kozo; Makenas, Bruce J.; Wootan, David W.; Carmack, Jon

    2011-06-16

    The ACO-3 irradiation test, which attained extremely high burnups of about 232 GWd/t and resisted a high neutron fluence (E > 0.1 MeV) of about 39E26 n/m2 as one of the lead tests of the Core Demonstration Experiment in the Fast Flux Test Facility, demonstrated that the fuel pin cladding made of ferritic/martensitic HT-9 alloy had superior void swelling resistance. The measured diameter profiles of the irradiated ACO-3 fuel pins showed axially extensive incremental strain in the MOX fuel column region and localized incremental strain near the interfaces between the MOX fuel and upper blanket columns. These incremental strains were as low as 1.5% despite the extremely high level of the fast neutron fluence. Evaluation of the pin diametral strain indicated that the incremental strain in the MOX fuel column region was substantially due to cladding void swelling and irradiation creep caused by internal fission gas pressure, while the localized strain near the MOX fuel/upper blanket interface was likely the result of the pellet/cladding mechanical interaction (PCMI) caused by cesium/fuel reactions. The evaluation also suggested that the PCMI was effectively mitigated by a large gap size between the cladding and blanket column.

  20. ANL-W MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1997-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement (EIS). This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. The paper describes the following: Site map and the LA facility; process descriptions; resource needs; employment requirements; wastes, emissions, and exposures; accident analysis; transportation; qualitative decontamination and decommissioning; post-irradiation examination; LA fuel bundle fabrication; LA EIS data report assumptions; and LA EIS data report supplement.

  1. Greenhouse Gases into Gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turning Greenhouse Gases into Gold Greenhouse Gases into Gold NERSC simulations reveal reaction mechanism behind CO₂ conversion into carbon-neutral fuels and chemicals November 6, 2013 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov Environmentalists have long lamented the destructive effects of greenhouse gases, with carbon dioxide (CO2) often accused of being the primary instigator of global climate change. As a result, numerous efforts are under way to find ways to prevent,

  2. THERMAL EVALUATION OF THE USE OF BWR MOX SNF IN THE WASTE PACKAGE DESIGN (SCPB: N/A)

    SciTech Connect (OSTI)

    H. Wang

    1997-01-23

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) as specified in the Waste Package Implementation Plan (pp. 4-8,4-11,4-24, 5-1, and 5-13; Ref. 5.10) and Waste Package Plan (pp. 3-15,3-17, and 3-24; Ref. 5.9). The design data request addressed herein is: (1) Characterize the conceptual 40 BWR and 24 BWR Multi-Purpose Canister (MPC) Waste Package (WP) design to show that the design is feasible for use in the MGDS environment when loaded with BWR MOX SNF. (2) Characterize the conceptual 44 BWR and 24 BWR Uncanistered Fuel (UCF) Waste Package (WP) design to show that the design is feasible for use in the MGDS environment when loaded with BWR MOX SNF. The purpose of this analysis is to respond to a concern that the long-term disposal thermal issues for the WP Design, if used with SNF designed for a MOX fuel cycle, do not preclude WP compatibility with the MGDS. The objective of this analysis is to provide thermal parameter information for the conceptual WP design with disposal container which is loaded with BWR MOX SNF under nominal MGDS repository conditions. The results are intended to show that the design has a reasonable chance to meet the MGDS design requirements for normal MGDS operation, and to provide the required guidance to determining the major design issues for future design efforts, and to show that the BWR MOX SNF loaded WP performance is similar to an WP loaded with commercial BWR SNF.

  3. IMPACT OF FISSION PRODUCTS IMPURITY ON THE PLUTONIUM CONTENT IN PWR MOX FUELS

    SciTech Connect (OSTI)

    Gilles Youinou; Andrea Alfonsi

    2012-03-01

    This report presents the results of a neutronics analysis done in response to the charter IFCA-SAT-2 entitled 'Fuel impurity physics calculations'. This charter specifies that the separation of the fission products (FP) during the reprocessing of UOX spent nuclear fuel assemblies (UOX SNF) is not perfect and that, consequently, a certain amount of FP goes into the Pu stream used to fabricate PWR MOX fuel assemblies. Only non-gaseous FP have been considered (see the list of 176 isotopes considered in the calculations in Appendix 1). This mixture of Pu and FP is called PuFP. Note that, in this preliminary analysis, the FP losses are considered element-independent, i.e., for example, 1% of FP losses mean that 1% of all non-gaseous FP leak into the Pu stream.

  4. NREL Named Corporation of Year by the Rocky Mountain Minority Supplier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development Council - News Releases | NREL Named Corporation of Year by the Rocky Mountain Minority Supplier Development Council March 26, 2010 A minority business advocacy group has named the U.S. Department of Energy's National Renewable Energy Laboratory as its corporation of the year, citing NREL's contracts with minority-owned businesses and its outreach to them. The award was determined by heads of minority-owned businesses who are members of the Rocky Mountain Minority Supplier

  5. Development of an integrated, unattended assay system for LWR-MOX fuel pellet trays

    SciTech Connect (OSTI)

    Stewart, J.E.; Hatcher, C.R.; Pollat, L.L.

    1994-08-01

    Four identical unattended plutonium assay systems have been developed for use at the new light-water-reactor mixed oxide (LWR-MOX) fuel fabrication facility at Hanau, Germany. The systems provide quantitative plutonium verification for all MOX pellet trays entering or leaving a large, intermediate store. Pellet-tray transport and storage systems are highly automated. Data from the ``I-Point`` (information point) assay systems will be shared by the Euratom and International Atomic Energy Agency (IAEA) Inspectorates. The I-Point system integrates, for the first time, passive neutron coincidence counting (NCC) with electro-mechanical sensing (EMS) in unattended mode. Also, provisions have been made for adding high-resolution gamma spectroscopy. The system accumulates data for every tray entering or leaving the store between inspector visits. During an inspection, data are analyzed and compared with operator declarations for the previous inspection period, nominally one month. Specification of the I-point system resulted from a collaboration between the IAEA, Euratom, Siemens, and Los Alamos. Hardware was developed by Siemens and Los Alamos through a bilateral agreement between the German Federal Ministry of Research and Technology (BMFT) and the US DOE. Siemens also provided the EMS subsystem, including software. Through the USSupport Program to the IAEA, Los Alamos developed the NCC software (NCC COLLECT) and also the software for merging and reviewing the EMS and NCC data (MERGE/REVIEW). This paper describes the overall I-Point system, but emphasizes the NCC subsystem, along with the NCC COLLECT and MERGE/REVIEW codes. We also summarize comprehensive testing results that define the quality of assay performance.

  6. Derivatized gold clusters and antibody-gold cluster conjugates

    DOE Patents [OSTI]

    Hainfeld, J.F.; Furuya, F.R.

    1994-11-01

    Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be as small as 5.0 nm. Methods and reagents are disclosed in which antibodies, Fab' or F(ab')[sub 2] fragments are covalently bound to a stable cluster of gold atoms. The gold clusters may contain 6, 8, 9, 11, 13, 55 or 67 gold atoms in their inner core. The clusters may also contain radioactive gold. The antibody-cluster conjugates are useful in electron microscopy applications as well as in clinical applications that include imaging, diagnosis and therapy. 7 figs.

  7. Derivatized gold clusters and antibody-gold cluster conjugates

    DOE Patents [OSTI]

    Hainfeld, James F.; Furuya, Frederic R.

    1994-11-01

    Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be as small as 5.0 nm. Methods and reagents are disclosed in which antibodies, Fab' or F(ab').sub.2 fragments thereof are covalently bound to a stable cluster of gold atoms. The gold clusters may contain 6, 8, 9, 11, 13, 55 or 67 gold atoms in their inner core. The clusters may also contain radioactive gold. The antibody-cluster conjugates are useful in electron microscopy applications as well as in clinical applications that include imaging, diagnosis and therapy.

  8. Remote-controlled NDA (nondestructive assay) systems for feed and product storage at an automated MOX (mixed oxide) facility

    SciTech Connect (OSTI)

    Menlove, H.O.; Augustson, R.H.; Ohtani, T.; Seya, M.; Takahashi, S.; Abedin-Zadeh, R.; Hassan, B.; Napoli, S.

    1989-01-01

    Nondestructive assay (NDA) systems have been developed for use in an automated mixed oxide (MOX) fabrication facility. Unique features have been developed for the NDA systems to accommodate robotic sample handling and remote operation. In addition, the systems have been designed to obtain International Atomic Energy Agency inspection data without the need for an inspector at the facility at the time of the measurements. The equipment is being designed to operate continuously in an unattended mode with data storage for periods of up to one month. The two systems described in this paper include a canister counter for the assay of MOX powder at the input to the facility and a capsule counter for the assay of complete liquid-metal fast breeder reactor fuel assemblies at the output of the plant. The design, performance characteristics, and authentication of the two systems will be described. The data related to reliability, precision, and stability will be presented. 5 refs., 10 figs., 4 tabs.

  9. GOLD PRESSURE VESSEL SEAL

    DOE Patents [OSTI]

    Smith, A.E.

    1963-11-26

    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  10. Monte-Carlo Code (MCNP) Modeling of the Advanced Test Reactor Applicable to the Mixed Oxide (MOX) Test Irradiation

    SciTech Connect (OSTI)

    G. S. Chang; R. C. Pederson

    2005-07-01

    Mixed oxide (MOX) test capsules prepared with weapons-derived plutonium have been irradiated to a burnup of 50 GWd/t. The MOX fuel was fabricated at Los Alamos National Laboratory by a master-mix process and has been irradiated in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). Previous withdrawals of the same fuel have occurred at 9, 21, 30, and 40 GWd/t. Oak Ridge National Laboratory (ORNL) manages this test series for the Department of Energys Fissile Materials Disposition Program (FMDP). The fuel burnup analyses presented in this study were performed using MCWO, a welldeveloped tool that couples the Monte Carlo transport code MCNP with the isotope depletion and buildup code ORIGEN-2. MCWO analysis yields time-dependent and neutron-spectrum-dependent minor actinide and Pu concentrations for the ATR small I-irradiation test position. The purpose of this report is to validate both the Weapons-Grade Mixed Oxide (WG-MOX) test assembly model and the new fuel burnup analysis methodology by comparing the computed results against the neutron monitor measurements.

  11. Options for converting excess plutonium to feed for the MOX fuel fabrication facility

    SciTech Connect (OSTI)

    Watts, Joe A; Smith, Paul H; Psaras, John D; Jarvinen, Gordon D; Costa, David A; Joyce, Jr., Edward L

    2009-01-01

    The storage and safekeeping of excess plutonium in the United States represents a multibillion-dollar lifecycle cost to the taxpayers and poses challenges to National Security and Nuclear Non-Proliferation. Los Alamos National Laboratory is considering options for converting some portion of the 13 metric tons of excess plutonium that was previously destined for long-term waste disposition into feed for the MOX Fuel Fabrication Facility (MFFF). This approach could reduce storage costs and security ri sks, and produce fuel for nuclear energy at the same time. Over the course of 30 years of weapons related plutonium production, Los Alamos has developed a number of flow sheets aimed at separation and purification of plutonium. Flow sheets for converting metal to oxide and for removing chloride and fluoride from plutonium residues have been developed and withstood the test oftime. This presentation will address some potential options for utilizing processes and infrastructure developed by Defense Programs to transform a large variety of highly impure plutonium into feedstock for the MFFF.

  12. Time cycle analysis and simulation of material flow in MOX process layout

    SciTech Connect (OSTI)

    Chakraborty, S.; Saraswat, A.; Danny, K.M.; Somayajulu, P.S.; Kumar, A.

    2013-07-01

    The (U,Pu)O{sub 2} MOX fuel is the driver fuel for the upcoming PFBR (Prototype Fast Breeder Reactor). The fuel has around 30% PuO{sub 2}. The presence of high percentages of reprocessed PuO{sub 2} necessitates the design of optimized fuel fabrication process line which will address both production need as well as meet regulatory norms regarding radiological safety criteria. The powder pellet route has highly unbalanced time cycle. This difficulty can be overcome by optimizing process layout in terms of equipment redundancy and scheduling of input powder batches. Different schemes are tested before implementing in the process line with the help of a software. This software simulates the material movement through the optimized process layout. The different material processing schemes have been devised and validity of the schemes are tested with the software. Schemes in which production batches are meeting at any glove box location are considered invalid. A valid scheme ensures adequate spacing between the production batches and at the same time it meets the production target. This software can be further improved by accurately calculating material movement time through glove box train. One important factor is considering material handling time with automation systems in place.

  13. Evaluation of codisposal viability of MOX (FFTF) DOE-owned fuel: Phase 2 -- Degraded mode calculations

    SciTech Connect (OSTI)

    Goluoglu, S.; Angers, L.; Davis, J.W.; Stockman, H.; Gottlieb, P.; Montierth, L.M.

    1999-07-01

    The authors provide the degraded criticality information that supports the disposal of spent nuclear fuel (SNF) from the US Department of Energy's (DOE's) Fast Flux Test facility (FFTF) in the potential Monitored Geologic Repository (MGR) at Yucca Mountain. FFTF is one of more than 250 forms of DOE-owned SNF. Because of the variety of the SNF, the National Spent Nuclear Fuel Program has designated nine representative fuel groups for disposal criticality analyses based on fuel matrix, primary fissile isotope, and enrichment. The FFTF fuel is a mixture of uranium and plutonium oxides and is representative of the mixed-oxide fuel (MOX) group. The analyses were performed according to the disposal criticality analysis methodology that was documented in the topical report submitted to the US nuclear Regulatory Commission (YMP/TR-004Q). The methodology includes analyzing the geochemical and physical processes that can breach the waste package and degrade the waste forms. This paper summarizes the results of geochemistry degradation analysis and the criticality calculations using the degradation products.

  14. Release and disposal of materials during decommissioning of Siemens MOX fuel fabrication plant at Hanau, Germany

    SciTech Connect (OSTI)

    Koenig, Werner; Baumann, Roland

    2007-07-01

    In September 2006, decommissioning and dismantling of the Siemens MOX Fuel Fabrication Plant in Hanau were completed. The process equipment and the fabrication buildings were completely decommissioned and dismantled. The other buildings were emptied in whole or in part, although they were not demolished. Overall, the decommissioning process produced approximately 8500 Mg of radioactive waste (including inactive matrix material); clearance measurements were also performed for approximately 5400 Mg of material covering a wide range of types. All the equipment in which nuclear fuels had been handled was disposed of as radioactive waste. The radioactive waste was conditioned on the basis of the requirements specified for the projected German final disposal site 'Schachtanlage Konrad'. During the pre-conditioning, familiar processes such as incineration, compacting and melting were used. It has been shown that on account of consistently applied activity containment (barrier concept) during operation and dismantling, there has been no significant unexpected contamination of the plant. Therefore almost all the materials that were not a priori destined for radioactive waste were released without restriction on the basis of the applicable legal regulations (chap. 29 of the Radiation Protection Ordinance), along with the buildings and the plant site. (authors)

  15. PLUTONIUM LOADING CAPACITY OF REILLEX HPQ ANION EXCHANGE COLUMN - AFS-2 PLUTONIUM FLOWSHEET FOR MOX

    SciTech Connect (OSTI)

    Kyser, E.; King, W.; O'Rourke, P.

    2012-07-26

    Radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the dependence of column loading performance on the feed composition in the H-Canyon dissolution process for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). These loading experiments show that a representative feed solution containing {approx}5 g Pu/L can be loaded onto Reillex{trademark} HPQ resin from solutions containing 8 M total nitrate and 0.1 M KF provided that the F is complexed with Al to an [Al]/[F] molar ratio range of 1.5-2.0. Lower concentrations of total nitrate and [Al]/[F] molar ratios may still have acceptable performance but were not tested in this study. Loading and washing Pu losses should be relatively low (<1%) for resin loading of up to 60 g Pu/L. Loading above 60 g Pu/L resin is possible, but Pu wash losses will increase such that 10-20% of the additional Pu fed may not be retained by the resin as the resin loading approaches 80 g Pu/L resin.

  16. Two stroke homogenous charge compression ignition engine with pulsed air supplier

    DOE Patents [OSTI]

    Clarke, John M.

    2003-08-05

    A two stroke homogenous charge compression ignition engine includes a volume pulsed air supplier, such as a piston driven pump, for efficient scavenging. The usage of a homogenous charge tends to decrease emissions. The use of a volume pulsed air supplier in conjunction with conventional poppet type intake and exhaust valves results in a relatively efficient scavenging mode for the engine. The engine preferably includes features that permit valving event timing, air pulse event timing and injection event timing to be varied relative to engine crankshaft angle. The principle use of the invention lies in improving diesel engines.

  17. The New Gold Standard: Environmental Management Introduces the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The New Gold Standard: Environmental Management Introduces the First LEED Gold Industrial Facility The New Gold Standard: Environmental Management Introduces the First LEED Gold ...

  18. Gold Nanoparticles by Alfalfa Plants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jorge Gardea-Torresdey, University of Texas at El Paso In the well-known Greek legend the touch of King Midas would convert anything to metallic gold. Recently, a team working at SSRL lead by Professor Jorge Gardea-Torresdey from the University of Texas at El Paso have shown that ordinary alfalfa plants can accumulate very small particles (nanoparticles) of metallic gold (1). The best-known materials that contain nanoparticles of metallic gold are gold colloids. These lack the familiar metallic

  19. Surface-stabilized gold nanocatalysts

    DOE Patents [OSTI]

    Dai, Sheng [Knoxville, TN; Yan, Wenfu [Oak Ridge, TN

    2009-12-08

    A surface-stabilized gold nanocatalyst includes a solid support having stabilizing surfaces for supporting gold nanoparticles, and a plurality of gold nanoparticles having an average particle size of less than 8 nm disposed on the stabilizing surfaces. The surface-stabilized gold nanocatalyst provides enhanced stability, such as at high temperature under oxygen containing environments. In one embodiment, the solid support is a multi-layer support comprising at least a first layer having a second layer providing the stabilizing surfaces disposed thereon, the first and second layer being chemically distinct.

  20. HB-LINE ANION EXCHANGE PURIFICATION OF AFS-2 PLUTONIUM FOR MOX

    SciTech Connect (OSTI)

    Kyser, E. A.; King, W. D.

    2012-07-31

    Non-radioactive cerium (Ce) and radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the feasibility of using either gadolinium nitrate (Gd) or boric acid (B as H{sub 3}BO{sub 3}) as a neutron poison in the H-Canyon dissolution process. Expected typical concentrations of probable impurities were tested and the removal of these impurities by a decontamination wash was measured. Impurity concentrations are compared to two specifications - designated as Column A or Column B (most restrictive) - proposed for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). Use of Gd as a neutron poison requires a larger volume of wash for the proposed Column A specification. Since boron (B) has a higher proposed specification and is more easily removed by washing, it appears to be the better candidate for use in the H-Canyon dissolution process. Some difficulty was observed in achieving the Column A specification due to the limited effectiveness that the wash step has in removing the residual B after ~4 BV's wash. However a combination of the experimental 10 BV's wash results and a calculated DF from the oxalate precipitation process yields an overall DF sufficient to meet the Column A specification. For those impurities (other than B) not removed by 10 BV's of wash, the impurity is either not expected to be present in the feedstock or process, or recommendations have been provided for improvement in the analytical detection/method or validation of calculated results. In summary, boron is recommended as the appropriate neutron poison for H-Canyon dissolution and impurities are expected to meet the Column A specification limits for oxide production in HB-Line.

  1. HB-LINE ANION EXCHANGE PURIFICATION OF AFS-2 PLUTONIUM FOR MOX

    SciTech Connect (OSTI)

    Kyser, E.; King, W.

    2012-04-25

    Non-radioactive cerium (Ce) and radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the feasibility of using either gadolinium nitrate (Gd) or boric acid (B as H{sub 3}BO{sub 3}) as a neutron poison in the H-Canyon dissolution process. Expected typical concentrations of probable impurities were tested and the removal of these impurities by a decontamination wash was measured. Impurity concentrations are compared to two specifications - designated as Column A or Column B (most restrictive) - proposed for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). Use of Gd as a neutron poison requires a larger volume of wash for the proposed Column A specification. Since boron (B) has a higher proposed specification and is more easily removed by washing, it appears to be the better candidate for use in the H-Canyon dissolution process. Some difficulty was observed in achieving the Column A specification due to the limited effectiveness that the wash step has in removing the residual B after {approx}4 BV's wash. However a combination of the experimental 10 BV's wash results and a calculated DF from the oxalate precipitation process yields an overall DF sufficient to meet the Column A specification. For those impurities (other than B) not removed by 10 BV's of wash, the impurity is either not expected to be present in the feedstock or process, or recommendations have been provided for improvement in the analytical detection/method or validation of calculated results. In summary, boron is recommended as the appropriate neutron poison for H-Canyon dissolution and impurities are expected to meet the Column A specification limits for oxide production in HB-Line.

  2. Tracking Individual Gold Nanoparticles | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tracking Individual Gold Nanoparticles Researchers have developed a new way to track gold nanorods as they move around and re-orient themselves on metal surfaces, with ...

  3. Gold Standard Program Model | Open Energy Information

    Open Energy Info (EERE)

    Standard Program Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Gold Standard Program Model AgencyCompany Organization: The Gold Standard Foundation Sector:...

  4. BlackGold Biofuels | Open Energy Information

    Open Energy Info (EERE)

    BlackGold Biofuels Jump to: navigation, search Name: BlackGold Biofuels Place: Philadelphia, Pennsylvania Zip: 19107 Product: Philadelphia-based developer of a waste...

  5. Antibody-gold cluster conjugates

    DOE Patents [OSTI]

    Hainfeld, J.F.

    1988-06-28

    Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be about 5.0 nm. Methods and reagents are disclosed in which antibodies or Fab' fragments thereof are covalently bound to a stable cluster of gold atoms. 2 figs.

  6. Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1-xTe2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chang, Tay-Rong; Xu, Su-Yang; Chang, Guoqing; Lee, Chi-Cheng; Huang, Shin-Ming; Wang, BaoKai; Bian, Guang; Zheng, Hao; Sanchez, Daniel S.; Belopolski, Ilya; et al

    2016-02-15

    A Weyl semimetal is a new state of matter that hosts Weyl fermions as emergent quasiparticles. The Weyl fermions correspond to isolated points of bulk band degeneracy, Weyl nodes, which are connected only through the crystal’s boundary by exotic Fermi arcs. The length of the Fermi arc gives a measure of the topological strength, because the only way to destroy the Weyl nodes is to annihilate them in pairs in the reciprocal space. To date, Weyl semimetals are only realized in the TaAs class. Here, we propose a tunable Weyl state in MoxW1₋xTe2 where Weyl nodes are formed by touchingmore » points between metallic pockets. We show that the Fermi arc length can be changed as a function of Mo concentration, thus tuning the topological strength. Lastly,our results provide an experimentally feasible route to realizing Weyl physics in the layered compound MoxW1₋xTe2, where non-saturating magneto-resistance and pressure-driven superconductivity have been observed.« less

  7. Accident source terms for light-water nuclear power plants using high-burnup or MOX fuel.

    SciTech Connect (OSTI)

    Salay, Michael; Gauntt, Randall O.; Lee, Richard Y.; Powers, Dana Auburn; Leonard, Mark Thomas

    2011-01-01

    Representative accident source terms patterned after the NUREG-1465 Source Term have been developed for high burnup fuel in BWRs and PWRs and for MOX fuel in a PWR with an ice-condenser containment. These source terms have been derived using nonparametric order statistics to develop distributions for the timing of radionuclide release during four accident phases and for release fractions of nine chemical classes of radionuclides as calculated with the MELCOR 1.8.5 accident analysis computer code. The accident phases are those defined in the NUREG-1465 Source Term - gap release, in-vessel release, ex-vessel release, and late in-vessel release. Important differences among the accident source terms derived here and the NUREG-1465 Source Term are not attributable to either fuel burnup or use of MOX fuel. Rather, differences among the source terms are due predominantly to improved understanding of the physics of core meltdown accidents. Heat losses from the degrading reactor core prolong the process of in-vessel release of radionuclides. Improved understanding of the chemistries of tellurium and cesium under reactor accidents changes the predicted behavior characteristics of these radioactive elements relative to what was assumed in the derivation of the NUREG-1465 Source Term. An additional radionuclide chemical class has been defined to account for release of cesium as cesium molybdate which enhances molybdenum release relative to other metallic fission products.

  8. " by Type of Supplier, Census Region, Census Division, Industry Group,"

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Average Prices of Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, Industry Group," " and Selected Industries, 1994" " (Estimates in Dollars per Physical Units)" ,," Electricity",," Steam" ,," (kWh)",," (million Btu)" ,,,,,,"RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Row"

  9. GOLD: The Genomes Online Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kyrpides, Nikos; Liolios, Dinos; Chen, Amy; Tavernarakis, Nektarios; Hugenholtz, Philip; Markowitz, Victor; Bernal, Alex

    Since its inception in 1997, GOLD has continuously monitored genome sequencing projects worldwide and has provided the community with a unique centralized resource that integrates diverse information related to Archaea, Bacteria, Eukaryotic and more recently Metagenomic sequencing projects. As of September 2007, GOLD recorded 639 completed genome projects. These projects have their complete sequence deposited into the public archival sequence databases such as GenBank EMBL,and DDBJ. From the total of 639 complete and published genome projects as of 9/2007, 527 were bacterial, 47 were archaeal and 65 were eukaryotic. In addition to the complete projects, there were 2158 ongoing sequencing projects. 1328 of those were bacterial, 59 archaeal and 771 eukaryotic projects. Two types of metadata are provided by GOLD: (i) project metadata and (ii) organism/environment metadata. GOLD CARD pages for every project are available from the link of every GOLD_STAMP ID. The information in every one of these pages is organized into three tables: (a) Organism information, (b) Genome project information and (c) External links. [The Genomes On Line Database (GOLD) in 2007: Status of genomic and metagenomic projects and their associated metadata, Konstantinos Liolios, Konstantinos Mavromatis, Nektarios Tavernarakis and Nikos C. Kyrpides, Nucleic Acids Research Advance Access published online on November 2, 2007, Nucleic Acids Research, doi:10.1093/nar/gkm884]

    The basic tables in the GOLD database that can be browsed or searched include the following information:

    • Gold Stamp ID
    • Organism name
    • Domain
    • Links to information sources
    • Size and link to a map, when available
    • Chromosome number, Plas number, and GC content
    • A link for downloading the actual genome data
    • Institution that did the sequencing
    • Funding source
    • Database where information resides
    • Publication status and information

    • Evaluation of existing United States` facilities for use as a mixed-oxide (MOX) fuel fabrication facility for plutonium disposition

      SciTech Connect (OSTI)

      Beard, C.A.; Buksa, J.J.; Chidester, K.; Eaton, S.L.; Motley, F.E.; Siebe, D.A.

      1995-12-31

      A number of existing US facilities were evaluated for use as a mixed-oxide fuel fabrication facility for plutonium disposition. These facilities include the Fuels Material Examination Facility (FMEF) at Hanford, the Washington Power Supply Unit 1 (WNP-1) facility at Hanford, the Barnwell Nuclear Fuel Plant (BNFP) at Barnwell, SC, the Fuel Processing Facility (FPF) at Idaho National Engineering Laboratory (INEL), the Device Assembly Facility (DAF) at the Nevada Test Site (NTS), and the P-reactor at the Savannah River Site (SRS). The study consisted of evaluating each facility in terms of available process space, available building support systems (i.e., HVAC, security systems, existing process equipment, etc.), available regional infrastructure (i.e., emergency response teams, protective force teams, available transportation routes, etc.), and ability to integrate the MOX fabrication process into the facility in an operationally-sound manner that requires a minimum amount of structural modifications.

    • DOSE RATES FOR WESTINGHOUSE 17X17 MOX PWR SNF IN A WASTE PACKAGE (SCPB: N/A)

      SciTech Connect (OSTI)

      T.L. Lotz

      1997-01-29

      This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to estimate the dose rate on and near the surface a Multi-Purpose Canister (MPC) PWR waste package (WP) which is loaded with Westinghouse 17 x 17 mixed oxide (MOX) PWR fuel. The 21 PWR MPC WP is used to provide an upper bound for waste package designs since the 12 PWR MPC WP will have a smaller source term and an equivalent amount of shielding. the objectives of this evaluation are to calculate the requested dose rate(s) and document the calculation in a fashion to allow comparisons to other waste forms and WP designs at a future time.

    • Advantages of customer/supplier involvement in the upgrade of River Bend`s IST program

      SciTech Connect (OSTI)

      Womack, R.L.; Addison, J.A.

      1996-12-01

      At River Bend Station, IST testing had problems. Operations could not perform the test with the required repeatability; engineering could not reliably trend test data to detect degradation; licensing was heavily burdened with regulatory concerns; and maintenance could not do preventative maintenance because of poor prediction of system health status. Using Energy`s Total Quality principles, it was determined that the causes were: lack of ownership, inadequate test equipment usage, lack of adequate procedures, and lack of program maintenance. After identifying the customers and suppliers of the IST program data, Energy management put together an upgrade team to address these concerns. These customers and suppliers made up the IST upgrade team. The team`s mission was to supply River Bend with a reliable, functional, industry correct and user friendly IST program. The IST program in place went through a verification process that identified and corrected over 400 individual program discrepancies. Over 200 components were identified for improved testing methods. An IST basis document was developed. The operations department was trained on ASME Section XI testing. All IST tests have been simplified and shortened, due to heavy involvement by operations in the procedure development process. This significantly reduced testing time, resulting in lower cost, less dose and greater system availability.

    • Reactivity-worth estimates of the OSMOSE samples in the MINERVE reactor R1-MOX, R2-UO2 and MORGANE/R configurations.

      SciTech Connect (OSTI)

      Zhong, Z.; Klann, R. T.; Nuclear Engineering Division

      2007-08-03

      An initial series of calculations of the reactivity-worth of the OSMOSE samples in the MINERVE reactor with the R2-UO2 and MORGANE/R core configuration were completed. The calculation model was generated using the lattice physics code DRAGON. In addition, an initial comparison of calculated values to experimental measurements was performed based on preliminary results for the R1-MOX configuration.

    • Overall Plan for Physics Outlining Steps Necessary for Insertion of the LTA and Operation Using a 1/3 MOX Loaded Core

      SciTech Connect (OSTI)

      Pavlovichev, A.M.

      2001-04-09

      Document issued according to Work Release KI-WR04RTP. P. 00-1 describes physics tasks that are included in the current version of ''Roadmap.Level 2'' concerning Reactor tasks of Weapon-grade plutonium disposition problem for VVER-1000. On this base the objective is to identify the physical tasks in FY2000 and in future as a part of global activities on weapon-grade MOX fuel introduction into VVER-1000.

    • Procedure for matching synfuel users with potential suppliers. Appendix B. Proposed and ongoing synthetic fuel production projects

      SciTech Connect (OSTI)

      1981-08-07

      To assist the Department of Energy, Office of Fuels Conversion (OFC), in implementing the synthetic fuel exemption under the Powerplant and Industrial Fuel Use Act (FUA) of 1978, Resource Consulting Group, Inc. (RCG), has developed a procedure for matching prospective users and producers of synthetic fuel. The matching procedure, which involves a hierarchical screening process, is designed to assist OFC in: locating a supplier for a firm that wishes to obtain a synthetic fuel exemption; determining whether the fuel supplier proposed by a petitioner is technically and economically capable of meeting the petitioner's needs; and assisting the Synthetic Fuels Corporation or a synthetic fuel supplier in evaluating potential markets for synthetic fuel production. A data base is provided in this appendix on proposed and ongoing synthetic fuel production projects to be used in applying the screening procedure. The data base encompasses a total of 212 projects in the seven production technologies.

    • A National Tracking Center for Monitoring Shipments of HEU, MOX, and Spent Nuclear Fuel: How do we implement?

      SciTech Connect (OSTI)

      Mark Schanfein

      2009-07-01

      Nuclear material safeguards specialists and instrument developers at US Department of Energy (USDOE) National Laboratories in the United States, sponsored by the National Nuclear Security Administration (NNSA) Office of NA-24, have been developing devices to monitor shipments of UF6 cylinders and other radioactive materials , . Tracking devices are being developed that are capable of monitoring shipments of valuable radioactive materials in real time, using the Global Positioning System (GPS). We envision that such devices will be extremely useful, if not essential, for monitoring the shipment of these important cargoes of nuclear material, including highly-enriched uranium (HEU), mixed plutonium/uranium oxide (MOX), spent nuclear fuel, and, potentially, other large radioactive sources. To ensure nuclear material security and safeguards, it is extremely important to track these materials because they contain so-called “direct-use material” which is material that if diverted and processed could potentially be used to develop clandestine nuclear weapons . Large sources could be used for a dirty bomb also known as a radioactive dispersal device (RDD). For that matter, any interdiction by an adversary regardless of intent demands a rapid response. To make the fullest use of such tracking devices, we propose a National Tracking Center. This paper describes what the attributes of such a center would be and how it could ultimately be the prototype for an International Tracking Center, possibly to be based in Vienna, at the International Atomic Energy Agency (IAEA).

    • A global approach of the representativity concept: Application on a high-conversion light water reactor MOX lattice case

      SciTech Connect (OSTI)

      Santos, N. D.; Blaise, P.; Santamarina, A.

      2013-07-01

      The development of new types of reactor and the increase in the safety specifications and requirements induce an enhancement in both nuclear data knowledge and a better understanding of the neutronic properties of the new systems. This enhancement is made possible using ad hoc critical mock-up experiments. The main difficulty is to design these experiments in order to obtain the most valuable information. Its quantification is usually made by using representativity and transposition concepts. These theories enable to extract some information about a quantity of interest (an integral parameter) on a configuration, but generally a posteriori. This paper presents a more global approach of this theory, with the idea of optimizing the representativity of a new experiment, and its transposition a priori, based on a multiparametric approach. Using a quadratic sum, we show the possibility to define a global representativity which permits to take into account several quantities of interest at the same time. The maximization of this factor gives information about all quantities of interest. An optimization method of this value in relation to technological parameters (over-clad diameter, atom concentration) is illustrated on a high-conversion light water reactor MOX lattice case. This example tackles the problematic of plutonium experiment for the plutonium aging and a solution through the optimization of both the over-clad and the plutonium content. (authors)

    • An Assessment of the Attractiveness of Material Associated with a MOX Fuel Cycle from a Safeguards Perspective

      SciTech Connect (OSTI)

      Bathke, Charles G; Wallace, Richard K; Ireland, John R; Johnson, M W; Hase, Kevin R; Jarvinen, Gordon D; Ebbinghaus, Bartley B; Sleaford, Brad W; Collins, Brian A; Robel, Martin; Bradley, Keith S; Prichard, Andrew W; Smith, Brian W

      2009-01-01

      This paper is an extension to earlier studies that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, coextraction, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant State and sub-national group capabilities. This study also considers those materials that will be recycled and burned, possibly multiple times, in LWRs [e.g., plutonium in the form of mixed oxide (MOX) fuel]. The primary conclusion of this study is that all fissile material needs to be rigorously safeguarded to detect diversion by a State and provided the highest levels of physical protection to prevent theft by sub-national groups; no 'silver bullet' has been found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities. The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.

    • Environmental Stewardship: How Semiconductor Suppliers Help toMeet Energy-Efficiency Regulations and Voluntary Specifications inChina

      SciTech Connect (OSTI)

      Aizhen, Li; Fanara, Andrew; Fridley, David; Merriman, Louise; Ju,Jeff

      2007-01-15

      Recognizing the role that semiconductor suppliers can playin meeting energy-efficiency regulations and voluntary specifications,this paper provides an overview of Chinese policies and implementingbodies; a discussion of current programs, their goals, and effectiveness;and possible steps that can be taken tomeet these energy-efficiencyrequirements while also meeting products' high performance and costgoals.

    • Biomolecular Assembly of Gold Nanocrystals

      SciTech Connect (OSTI)

      Micheel, Christine Marya

      2005-05-20

      Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.

  1. Functionalized Gold Nanoparticles for Rapid, Ultra- sensitive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The new ORNL method for surface enhanced Raman spectroscopy (SERS) involves synthesizing gold metal nanoparticles that are modified with specific amine groups. The method can be ...

  2. Gold ink coating of thermocouple sheaths

    DOE Patents [OSTI]

    Ruhl, H. Kenneth

    1992-01-01

    A method is provided for applying a gold ink coating to a thermocouple sheath which includes the steps of electropolishing and oxidizing the surface of the thermocouple sheath, then dipping the sheath into liquid gold ink, and finally heat curing the coating. The gold coating applied in this manner is highly reflective and does not degrade when used for an extended period of time in an environment having a temperature over 1000.degree. F. Depending on the application, a portion of the gold coating covering the tip of the thermocouple sheath is removed by abrasion.

  3. Gold Country Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Gold Country Energy Place: Alaska Phone Number: (907) 520-5681 Website: goldcountryenrgy.com Facebook: https:www.facebook.compages...

  4. An improved characterization method for international accountancy measurements of fresh and irradiated mixed oxide (MOX) fuel: helping achieve continual monitoring and safeguards through the fuel cycle

    SciTech Connect (OSTI)

    Evans, Louise G; Croft, Stephen; Swinhoe, Martyn T; Tobin, S. J.; Boyer, B. D.; Menlove, H. O.; Schear, M. A.; Worrall, Andrew

    2010-11-24

    Nuclear fuel accountancy measurements are conducted at several points through the nuclear fuel cycle to ensure continuity of knowledge (CofK) of special nuclear material (SNM). Non-destructive assay (NDA) measurements are performed on fresh fuel (prior to irradiation in a reactor) and spent nuclear fuel (SNF) post-irradiation. We have developed a fuel assembly characterization system, based on the novel concept of 'neutron fingerprinting' with multiplicity signatures to ensure detailed CofK of nuclear fuel through the entire fuel cycle. The neutron fingerprint in this case is determined by the measurement of the various correlated neutron signatures, specific to fuel isotopic composition, and therefore offers greater sensitivity to variations in fissile content among fuel assemblies than other techniques such as gross neutron counting. This neutron fingerprint could be measured at the point of fuel dispatch (e.g. from a fuel fabrication plant prior to irradiation, or from a reactor site post-irradiation), monitored during transportation of the fuel assembly, and measured at a subsequent receiving site (e.g. at the reactor site prior to irradiation, or reprocessing facility post-irradiation); this would confirm that no unexpected changes to the fuel composition or amount have taken place during transportation and/or reactor operations. Changes may indicate an attempt to divert material for example. Here, we present the current state of the practice of fuel measurements for both fresh mixed oxide (MOX) fuel and SNF (both MOX and uranium dioxide). This is presented in the framework of international safeguards perspectives from the US and UK. We also postulate as to how the neutron fingerprinting concept could lead to improved fuel characterization (both fresh MOX and SNF) resulting in: (a) assured CofK of fuel across the nuclear fuel cycle, (b) improved detection of SNM diversion, and (c) greater confidence in safeguards of SNF transportation.

  5. An improved characterization method for international accountancy measurements of fresh and irradiated mixed oxide (MOX) fuel: helping achieve continual monitoring and safeguards through the fuel cycle

    SciTech Connect (OSTI)

    Evans, Louise G; Croft, Stephen; Swinhoe, Martyn T; Tobin, S. J.; Menlove, H. O.; Schear, M. A.; Worrall, Andrew

    2011-01-13

    Nuclear fuel accountancy measurements are conducted at several points through the nuclear fuel cycle to ensure continuity of knowledge (CofK) of special nuclear material (SNM). Non-destructive assay (NDA) measurements are performed on fresh fuel (prior to irradiation in a reactor) and spent nuclear fuel (SNF) post-irradiation. We have developed a fuel assembly characterization system, based on the novel concept of 'neutron fingerprinting' with multiplicity signatures to ensure detailed CofK of nuclear fuel through the entire fuel cycle. The neutron fingerprint in this case is determined by the measurement of the various correlated neutron signatures, specific to fuel isotopic composition, and therefore offers greater sensitivity to variations in fissile content among fuel assemblies than other techniques such as gross neutron counting. This neutron fingerprint could be measured at the point of fuel dispatch (e.g. from a fuel fabrication plant prior to irradiation, or from a reactor site post-irradiation), monitored during transportation of the fuel assembly, and measured at a subsequent receiving site (e.g. at the reactor site prior to irradiation, or reprocessing facility post-irradiation); this would confirm that no unexpected changes to the fuel composition or amount have taken place during transportation and/ or reactor operations. Changes may indicate an attempt to divert material for example. Here, we present the current state of the practice of fuel measurements for both fresh mixed oxide (MOX) fuel and SNF (both MOX and uranium dioxide). This is presented in the framework of international safeguards perspectives from the US and UK. We also postulate as to how the neutron fingerprinting concept could lead to improved fuel characterization (both fresh MOX and SNF) resulting in: (a) assured CofK of fuel across the nuclear fuel cycle, (b) improved detection of SNM diversion, and (c) greater confidence in safeguards of SNF transportation.

  6. Maintaining safety class electrical and electronic equipment in the absence of support from original suppliers

    SciTech Connect (OSTI)

    Gantt, D.A.

    1991-05-01

    In the absence of a large market for nuclear-qualified equipment, many manufactures no longer provide the level of support necessary to maintain equipment, which they originally manufactured to nuclear qualification standards. As a result, the nuclear facility operator either must purchase commercial grade items and perform necessary conditioning and dedication, or purchase replacement equipment from a limited number of manufacturers of nuclear-qualified equipment. Westinghouse Hanford Company, in operating the Fast Flux Test Facility (FFTF), is using both of these approaches. Instrumentation power supplies and signal conditioners used in the FFTF Reactor Shutdown System of the Plant Protection System (PPS) are standard commercial devices that were qualified for PPS use through tests performed for the original system supplier. The US Department of Energy (DOE) Order 5700.6B mandates that all DOE facilities have a quality assurance program conforming to an appropriate national standard and recommends Quality Assurance Program Requirements for Nuclear Facilities, American National Standards Institute/American Society of Mechanical Engineers (ANSI/ASME) NQA-1, as the standard to implement for reactor facilities. Following the requirements of ANSI/ASME NQA-1 and the guidance in Electric Power Research Institute (EPRI) Report NP-5652, safety system parts can be purchased either as qualified items or as commercial grade items. This document discusses the process of procuring qualified replacement parts. 6 refs., 1 tab.

  7. Water and Gold: A Promising Mix for Future Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water and Gold: A Promising Mix for Future Batteries Water and Gold: A Promising Mix for Future Batteries Berkeley Lab Study Reveals Molecular Structure of Water at Gold Electrodes ...

  8. Ultra-stable Gold Nanocatalysts - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Ultra-stable Gold Nanocatalysts Oak Ridge National ... ORNL researchers successfully deposited and stabilized gold nanoparticles on surfaces of ...

  9. Abrikosov receives Ukrainian Gold Medal | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abrikosov receives Ukrainian Gold Medal By Lynn Tefft Hoff * July 28, 2015 Tweet ... Abrikosov has received the Gold Medal of Vernadsky of the National Academy of Sciences of ...

  10. Newest Los Alamos facility receives LEED® Gold certification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Newest facility receives LEED Gold certification Newest Los Alamos facility receives LEED Gold certification The Radiological Laboratory Utility Office Building is first to ...

  11. World's largest single crystal of gold verified by Los Alamos...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos verifies largest single gold crystal World's largest single crystal of gold verified by Los Alamos instruments Using Lujan Center's HIPPO instrument, researchers probed ...

  12. Waltzer Receives NNSA Gold Medal Award | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Gold Medal Award June 26, 2014 AMARILLO, Texas--Karl Waltzer, Acting Deputy Manager of the National Nuclear Security Administration's Production Office, has received the NNSA Gold ...

  13. The Structure of Interfacial Water on Gold Electrodes Studied...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Structure of Interfacial Water on Gold Electrodes Studied by X-ray Absorption Spectroscopy Schematic representation of X-ray absorption measurements at the biased gold water ...

  14. Prediction of the thermodynamic properties of gold, arsenic,...

    Office of Scientific and Technical Information (OSTI)

    The Hydrothermal Chemistry of Gold, Arsenic, Antimony, Mercury and Silver Brad Bessinger ... The HKF equation of state parameters for gold, arsenic, antimony, mercury, and silver ...

  15. Structure of a Thiol Monolayer-Protected Gold Nanoparticle at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thiol Monolayer-protected Gold Nanoparticle at 1.1 Resolution Nanometer-size metal ... Historically gold nanoparticles are the best studied, dating back to ancient Rome where ...

  16. For Spitzer building, green is gold | Princeton Plasma Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For Spitzer building, green is gold By Patti Wieser May 26, 2011 Tweet Widget Google Plus ... Laboratory (PPPL), has been certified LEED gold, one of the highest environmental ...

  17. Abraham Presents Secretary's Gold Award to Edward Teller

    Office of Scientific and Technical Information (OSTI)

    November 26, 2002 Abraham Presents Secretary's Gold Award to Edward Teller LIVERMORE, ... National Laboratory, with the Secretary's Gold Award in recognition of his outstanding ...

  18. Reactivity of the Gold/Water Interface During Selective Oxidation...

    Office of Scientific and Technical Information (OSTI)

    the GoldWater Interface During Selective Oxidation Catalysis Citation Details In-Document Search Title: Reactivity of the GoldWater Interface During Selective Oxidation Catalysis ...

  19. gold medal | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    gold medal NNSA Administrator honors nonproliferation research leader Last week DOE Under Secretary for Nuclear Security and NNSA Administrator Lt. Gen. Frank G. Klotz (Ret.) presented the agency's Assistant Deputy Administrator for Nonproliferation Research and Development (R&D) Dr. Rhys Williams with the Distinguished Service Gold Medal Award at a

  20. Gold-nickel-titanium brazing alloy

    DOE Patents [OSTI]

    Mizuhara, Howard

    1990-07-03

    A brazing alloy in accordance with this invention has the following composition, by weight: 91 to 99% gold, 0.5 to 7% nickel; 0.10 to 2% titanium. Alternatively, with palladium present, the composition is as follows, by weight: 83 to 96% gold; 3 to 10% palladium; 0.5 to 5% nickel; 0.10 to 2% titanium.

  1. Gold-nickel-titanium brazing alloy

    DOE Patents [OSTI]

    Mizuhara, Howard

    1995-01-03

    A brazing alloy in accordance with this invention has the following composition, by weight: 91 to 99 gold, 0.5 to 7% nickel; 0.10 to 2% titanium. Alternatively, with palladium present, the composition is as follows, by weight: 83 to 96% gold; 3 to 10% palladium; 0.5 to 5% nickel; 0.10 to 2% titanium.

  2. " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Establishment Counts." ,,,"Electricity","Components",,,"Natural","Gas","Components",,"Steam","Components"

  3. Coal-gold agglomeration: an alternative separation process in gold recovery

    SciTech Connect (OSTI)

    Akcil, A.; Wu, X.Q.; Aksay, E.K.

    2009-07-01

    Considering the increasing environmental concerns and the potential for small gold deposits to be exploited in the future, the uses of environmentally friendly processes are essential. Recent developments point to the potential for greatly increased plant performance through a separation process that combines the cyanide and flotation processes. In addition, this kind of alternative treatment processes to the traditional gold recovery processes may reduce the environmental risks of present small-scale gold mining. Gold recovery processes that applied to different types of gold bearing ore deposits show that the type of deposits plays an important role for the selection of mineral processing technologies in the production of gold and other precious metals. In the last 25 years, different alternative processes have been investigated on gold deposits located in areas where environmental issues are a great concern. In 1988, gold particles were first recovered by successful pilot trial of coal-gold agglomeration (CGA) process in Australia. The current paper reviews the importance of CGA in the production of gold ore and identifies areas for further development work.

  4. Gel Electrophoresis of Gold-DNA Nanoconjugates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pellegrino, T.; Sperling, R. A.; Alivisatos, A. P.; Parak, W. J.

    2007-01-01

    Gold-DNA conjugates were investigated in detail by a comprehensive gel electrophoresis study based on 1200 gels. A controlled number of single-stranded DNA of different length was attached specifically via thiol-Au bonds to phosphine-stabilized colloidal gold nanoparticles. Alternatively, the surface of the gold particles was saturated with single stranded DNA of different length either specifically via thiol-Au bonds or by nonspecific adsorption. From the experimentally determined electrophoretic mobilities, estimates for the effective diameters of the gold-DNA conjugates were derived by applying two different data treatment approaches. The first method is based on making a calibration curve for the relation between effectivemore » diameters and mobilities with gold nanoparticles of known diameter. The second method is based on Ferguson analysis which uses gold nanoparticles of known diameter as reference database. Our study shows that effective diameters derived from gel electrophoresis measurements are affected with a high error bar as the determined values strongly depend on the method of evaluation, though relative changes in size upon binding of molecules can be detected with high precision. Furthermore, in this study, the specific attachment of DNA via gold-thiol bonds to Au nanoparticles is compared to nonspecific adsorption of DNA. Also, the maximum number of DNA molecules that can be bound per particle was determined.« less

  5. Colloidal-gold electrosensor measuring device

    DOE Patents [OSTI]

    Wegner, Steven; Harpold, Michael A.; McCaffrey, Terence M.; Morris, Susan E.; Wojciechowski, Marek; Zhao, Junguo; Henkens, Robert W.; Naser, Najih; O'Daly, John P.

    1995-01-01

    The present invention provides a new device for use in measuring lead levels in biological and environmental samples. Using square wave coulometry and colloidal gold particles impregnated on carbon electrodes, the present invention provides a rapid, reliable, portable and inexpensive means of detecting low lead levels. The colloidal gold modified electrodes have microelectrode array characteristics and produce significantly higher stripping detection signals for lead than are produced at bulk gold electrode surfaces. The method is effective in determining levels of lead down to at least 5 .mu.g/dL in blood samples as small as 10 .mu.L.

  6. Colloidal-gold electrosensor measuring device

    DOE Patents [OSTI]

    Wegner, S.; Harpold, M.A.; McCaffrey, T.M.; Morris, S.E.; Wojciechowski, M.; Zhao, J.; Henkens, R.W.; Naser, N.; O`Daly, J.P.

    1995-11-21

    The present invention provides a new device for use in measuring lead levels in biological and environmental samples. Using square wave coulometry and colloidal gold particles impregnated on carbon electrodes, the present invention provides a rapid, reliable, portable and inexpensive means of detecting low lead levels. The colloidal gold modified electrodes have microelectrode array characteristics and produce significantly higher stripping detection signals for lead than are produced at bulk gold electrode surfaces. The method is effective in determining levels of lead down to at least 5 {micro}g/dL in blood samples as small as 10 {micro}L. 9 figs.

  7. Electrochemical control of creep in nanoporous gold

    SciTech Connect (OSTI)

    Ye, Xing-Long; Jin, Hai-Jun

    2013-11-11

    We have investigated the mechanical stability of nanoporous gold (npg) in an electrochemical environment, using in situ dilatometry and compression experiments. It is demonstrated that the gold nano-ligaments creep under the action of surface stress which leads to spontaneous volume contractions in macroscopic npg samples. The creep of npg, under or without external forces, can be controlled electrochemically. The creep rate increases with increasing potential in double-layer potential region, and deceases to almost zero when the gold surface is adsorbed with oxygen. Surprisingly, we also noticed a correlation between creep and surface diffusivity, which links the deformation of nanocrystals to mobility of surface atoms.

  8. MOX Fabrication Isolation Considerations

    SciTech Connect (OSTI)

    Eric L. Shaber; Bradley J Schrader

    2005-08-01

    This document provides a technical position on the preferred level of isolation to fabricate demonstration quantities of mixed oxide transmutation fuels. The Advanced Fuel Cycle Initiative should design and construct automated glovebox fabrication lines for this purpose. This level of isolation adequately protects the health and safety of workers and the general public for all mixed oxide (and other transmutation fuel) manufacturing efforts while retaining flexibility, allowing parallel development and setup, and minimizing capital expense. The basis regulations, issues, and advantages/disadvantages of five potential forms of isolation are summarized here as justification for selection of the preferred technical position.

  9. The New Gold Standard: Environmental Management Introduces the First LEED

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gold Industrial Facility | Department of Energy The New Gold Standard: Environmental Management Introduces the First LEED Gold Industrial Facility The New Gold Standard: Environmental Management Introduces the First LEED Gold Industrial Facility September 13, 2012 - 1:02pm Addthis The 200 West Groundwater Treatment Facility is shown here after completion of construction this summer. | Photo courtesy of Zachary Carter with Mission Support Alliance (MSA) at Hanford. The 200 West Groundwater

  10. Gold nanorod melting | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gold nanorod melting Share Topic Programs Materials science Materials simulation & theory Nanoscience Surface & interface studies Mathematics, computing, & computer science Modeling, simulation, & visualization Supercomputing & high-performance computing

  11. Interconnecting gold islands with DNA origami

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interconnecting gold islands with DNA origami Authors: Ding, B., Wu, H., Xu, W., Zhao, Z., Liu, Y., Yu, H., and Yan, H. Title: Interconnecting gold islands with DNA origami Source: Nano Lett. Year: 2010 Volume: 10 Pages: 5065-5069 ABSTRACT: Scaffolded DNA origami has recently emerged as a versatile, programmable method to fold DNA into arbitrarily shaped nanostructures that are spatially addressable, with sub-10-nm resolution. Toward functional DNA nanotechnology, one of the key challenges is to

  12. ENDF/B-VII.0, ENDF/B-VI, JEFF-3.1, AND JENDL-3.3 RESULTS FOR UNREFLECTED PLUTONIUM SOLUTIONS AND MOX LATTICES (U)

    SciTech Connect (OSTI)

    MOSTELLER, RUSSELL D.

    2007-02-09

    Previous studies have indicated that ENDF/B-VII preliminary releases {beta}-2 and {beta}-3, predecessors to the recent initial release of ENDF/B-VII.0, produce significantly better overall agreement with criticality benchmarks than does ENDF/B-VI. However, one of those studies also suggests that improvements still may be needed for thermal plutonium cross sections. The current study substantiates that concern by examining criticality benchmarks for unreflected spheres of plutonium-nitrate solutions and for slightly and heavily borated mixed-oxide (MOX) lattices. Results are presented for the JEFF-3.1 and JENDL-3.3 nuclear data libraries as well as ENDF/B-VII.0 and ENDF/B-VI. It is shown that ENDF/B-VII.0 tends to overpredict reactivity for thermal plutonium benchmarks over at least a portion of the thermal range. In addition, it is found that additional benchmark data are needed for the deep thermal range.

  13. From a fuel supplier to an active participant: Shell's view of the opportunities offered by a changing power market

    SciTech Connect (OSTI)

    Nyhan, J.

    1998-07-01

    In the last 10 years, the power generation market has seen radical changes. The coming years will see yet more change. Although the pace of change may be uneven across Europe, it is clear that the old reference points for the power generation market are no longer valid. Along with other market players, Shell has re-evaluated the role it wishes to play in the power generation market. Although it has long operated large generation capacity on its own sites, Shell's role has been that of a fuel supplier to monopoly power generation and distribution organizations, which were largely state controlled . Privatization and liberalization have been followed by changing market structures tending to push risk towards the producer. This evolution presents challenges for the normal IPP structure, where market risk is transferred and offers an opportunity for the active participation of the fuel supplier in meeting these challenges. In 1996, Shell decided to embrace the changes in power generation market. Already, significant steps have been taken in markets in Asia, Latin America and in Europe. The differing requirements of each of these markets means there are no standard solutions and requires Shell to devise flexible frameworks which meet the customer's needs. Shell is bringing its significant strengths to the power generation market and looks forward to participating on a world wide scale in the industry at this exciting phase in its development.

  14. Controlling Gold Nanoclusters by Diphospine Ligands

    SciTech Connect (OSTI)

    Chen, Jing; Zhang, Qianfan; Bonaccorso, Timary A.; Williard, Paul G.; Wang, Lai S.

    2014-01-08

    We report the synthesis and structure determination of a new Au22 nanocluster coordinated by six bidentate diphosphine ligands: 1,8-bis(diphenylphosphino) octane (L8 for short). Single crystal x-ray crystallography and electrospray ionization mass spectrometry show that the cluster assembly is neutral and can be formulated as Au22(L8)6. The Au22 core consists of two Au11 units clipped together by four L8 ligands, while the additional two ligands coordinate to each Au11 unit in a bidentate fashion. Eight gold atoms at the interface of the two Au11 units are not coordinated by any ligands. Four short gold-gold distances (2.64?2.65 Å) are observed at the interface of the two Au11 clusters as a result of the clamping force of the four clipping ligands and strong electronic interactions. The eight uncoordinated surface gold atoms in the Au22(L8)6 nanocluster are unprecedented in atom-precise gold nanoparticles and can be considered as potential in-situ active sites for catalysis.

  15. Fresh Air That's as Good as Gold | Department of Energy

    Energy Savers [EERE]

    Fresh Air That's as Good as Gold Fresh Air That's as Good as Gold July 8, 2013 - 5:25pm Addthis Brookhaven Lab physicists Peter Sutter, Eli Sutter,and Xiao Tong (left to right) ...

  16. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique ... films from highly ordered one--, two- and three-dimensional arrays of gold nanoparticles. ...

  17. Gold Medal Approaches for Obtaining and Using Energy Efficiency...

    Office of Environmental Management (EM)

    Gold Medal Approaches for Obtaining and Using Energy Efficiency Data (101) Gold Medal Approaches for Obtaining and Using Energy Efficiency Data (101) August 11, 2016 1:00PM to ...

  18. Scientists Can Recycle CO2 Using Gold | Department of Energy

    Office of Environmental Management (EM)

    Can Recycle CO2 Using Gold Scientists Can Recycle CO2 Using Gold May 27, 2016 - 9:57am Addthis A new chemical process has the potential to reduce atmospheric CO2 emissions by ...

  19. Going for the Gold (Computer) | Department of Energy

    Energy Savers [EERE]

    Going for the Gold (Computer) March 3, 2009 - 4:00am Addthis John Lippert Last summer I ... EPEAT products are identified as EPEAT-Bronze, EPEAT-Silver, or EPEAT-Gold depending on ...

  20. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Guided Self-Assembly of Gold Thin Films Print Wednesday, 21 November 2012 12:18 Nanoparticles-man-made atoms with unique optical, ...

  1. Electronic Structure of Thiol-Covered Gold Nanoparticles: Au102...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure of Thiol-Covered Gold Nanoparticles: Au102(MBA)44 Authors: Li, Y., Galli, G., ... properties of thiolate-protected gold nanoparticles Au102(MBA)44 that have ...

  2. World's largest single crystal of gold verified at Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    World's largest single crystal of gold verified at Los Alamos World's largest single crystal of gold verified at Los Alamos The SCD instrument is used to determine the periodic ...

  3. Rainbows and Leprechauns: Finding Gold in Partnerships (101)...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rainbows and Leprechauns: Finding Gold in Partnerships (101) Rainbows and Leprechauns: Finding Gold in Partnerships (101) March 17, 2016 1:00PM to 2:30PM EDT

  4. Electrocatalyst Having Gold Monolayers on Platinum Nanoparticle Cores and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uses Thereof - Energy Innovation Portal Having Gold Monolayers on Platinum Nanoparticle Cores and Uses Thereof Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters (263 KB) <p> Scanning electron micrograph of gold clusters on platinum nanoparticles</p> Scanning electron micrograph of gold clusters on platinum nanoparticles Technology Marketing Summary

  5. Waltzer Receives NNSA Gold Medal Award | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Waltzer Receives NNSA Gold Medal Award June 26, 2014 Karl Waltzer, Acting Deputy Manager of the National Nuclear Security Administration's Production Office, has received the NNSA Gold Medal Award in recognition of his distinguished achievements in support of national security programs. File Waltzer Receives NNSA Gold Medal Award

  6. Gold-coated nanoparticles for use in biotechnology applications

    DOE Patents [OSTI]

    Berning, Douglas E.; Kraus, Jr., Robert H.; Atcher, Robert W.; Schmidt, Jurgen G.

    2009-07-07

    A process of preparing gold-coated magnetic nanoparticles is disclosed and includes forming a suspension of magnetic nanoparticles within a suitable liquid, adding an amount of a reducible gold compound and a reducing agent to the suspension, and, maintaining the suspension for time sufficient to form gold-coated magnetic nanoparticles.

  7. Gold-coated nanoparticles for use in biotechnology applications

    DOE Patents [OSTI]

    Berning, Douglas E.; Kraus, Jr., Robert H.; Atcher, Robert W.; Schmidt, Jurgen G.

    2007-06-05

    A process of preparing gold-coated magnetic nanoparticles is disclosed and includes forming a suspension of magnetic nanoparticles within a suitable liquid, adding an amount of a reducible gold compound and a reducing agent to the suspension, and, maintaining the suspension for time sufficient to form gold-coated magnetic nanoparticles.

  8. High Strength Gold Wire for Microelectronics Miniaturization - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal High Strength Gold Wire for Microelectronics Miniaturization Ames Laboratory Contact AMES About This Technology Technology Marketing Summary ISU and Ames Laboratory researchers have developed a high strength gold wire for use in microelectronics that can maintain its electrical and mechanical properties while permitting miniaturization of microelectronics design. Description Gold alloy wires currently used in microelectronics have limited electrical and mechanical

  9. X-ray laser driven gold targets

    SciTech Connect (OSTI)

    Petrova, Tz. B. Whitney, K. G.; Davis, J.

    2014-03-15

    The femtosecond population dynamics of gold irradiated by a coherent high-intensity (>10{sup 17} W/cm{sup 2}) x-ray laser pulse is investigated theoretically. There are two aspects to the assembled model. One is the construction of a detailed model of platinum-like gold inclusive of all inner-shell states that are created by photoionization of atomic gold and decay either by radiative or Auger processes. Second is the computation of the population dynamics that ensues when an x-ray pulse is absorbed in gold. The hole state generation depends on the intensity and wavelength of the driving x-ray pulse. The excited state populations reached during a few femtosecond timescales are high enough to generate population inversions, whose gain coefficients are calculated. These amplified lines in the emitted x-ray spectrum provide important diagnostics of the radiation dynamics and also suggest a nonlinear way to increase the frequency of the coherent output x-ray pulses relative to the frequency of the driver input x-ray pulse.

  10. APPLICATION OF COLUMN EXTRACTION METHOD FOR IMPURITIES ANALYSIS ON HB-LINE PLUTONIUM OXIDE IN SUPPORT OF MOX FEED PRODUCT SPECIFICATIONS

    SciTech Connect (OSTI)

    Jones, M.; Diprete, D.; Wiedenman, B.

    2012-03-20

    The current mission at H-Canyon involves the dissolution of an Alternate Feedstocks 2 (AFS-2) inventory that contains plutonium metal. Once dissolved, HB-Line is tasked with purifying the plutonium solution via anion exchange, precipitating the Pu as oxalate, and calcining to form plutonium oxide (PuO{sub 2}). The PuO{sub 2} will provide feed product for the Mixed Oxide (MOX) Fuel Fabrication Facility, and the anion exchange raffinate will be transferred to H-Canyon. The results presented in this report document the potential success of the RE resin column extraction application on highly concentrated Pu samples to meet MOX feed product specifications. The original 'Hearts Cut' sample required a 10000x dilution to limit instrument drift on the ICP-MS method. The instrument dilution factors improved to 125x and 250x for the sample raffinate and sample eluent, respectively. As noted in the introduction, the significantly lower dilutions help to drop the total MRL for the analyte. Although the spike recoveries were half of expected in the eluent for several key elements, they were between 94-98% after Nd tracer correction. It is seen that the lower ICD limit requirements for the rare earths are attainable because of less dilution. Especially important is the extremely low Ga limit at 0.12 {mu}g/g Pu; an ICP-MS method is now available to accomplish this task on the sample raffinate. While B and V meet the column A limits, further development is needed to meet the column B limits. Even though V remained on the RE resin column, an analysis method is ready for investigation on the ICP-MS, but it does not mean that V cannot be measured on the ICP-ES at a low dilution to meet the column B limits. Furthermore, this column method can be applicable for ICP-ES as shown in Table 3-2, in that it trims the sample of Pu, decreasing and sometimes eliminating Pu spectral interferences.

  11. Detailed energy distributions in laser-produced plasmas of solid gold and foam gold planar targets

    SciTech Connect (OSTI)

    Dong, Yunsong; Zhang, Lu; Yang, Jiamin; Shang, Wanli

    2013-12-15

    Foam gold was proposed to increase the laser to x-ray conversion efficiency due to its important applications. To understand the mechanism of x-ray enhancement, the detailed energy distributions and plasma profiles for laser-irradiated solid gold and foam gold targets were studied comparatively by hydrodynamic simulations using the code Multi-1D. It is confirmed that the radiation heat wave is subsonic for the normal solid gold target, while supersonic for the foam gold target. The shock wave, which is behind the supersonic radiation heat wave for the foam gold target, generates a plasma temperature gradient with high temperature near the shock wave front to produce an additional net outward radiation for enhancement of the x-ray emission. Much larger inward plasma velocity is also driven by the shock wave as an initial plasma velocity for the laser deposition and electron thermal conduct zone, which decreases the expanding plasma kinetic energy loss and helps to increase the x-ray radiation.

  12. Antifungal activity of gold nanoparticles prepared by solvothermal method

    SciTech Connect (OSTI)

    Ahmad, Tokeer; Wani, Irshad A.; Lone, Irfan H.; Ganguly, Aparna; Manzoor, Nikhat; Ahmad, Aijaz; Ahmed, Jahangeer; Al-Shihri, Ayed S.

    2013-01-15

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m{sup 2}/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m{sup 2/}g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl{sub 2} and NaBH{sub 4} as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl{sub 2}, however, NaBH{sub 4} produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m{sup 2}/g for 7 nm and 269 m{sup 2}/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H{sup +} efflux of the Candida species than 15 nm sized gold nanoparticles.

  13. COMMISSIONING OF RHIC DEUTERON - GOLD COLLISIONS.

    SciTech Connect (OSTI)

    SATOGATA,T.AHRENS,L.BAI,M.BEEBE-WANG,J.

    2003-05-12

    Deuteron and gold beams have been accelerated to a collision energy of {radical}s = 200 GeV/u in the Relativistic Heavy Ion Collider (RHIC), providing the first asymmetric-species collisions of this complex. Necessary changes for this mode of operation include new ramping software and asymmetric crossing angle geometries. This paper reviews machine performance, problem encountered and their solutions, and accomplishments during the 16 weeks of ramp-up and operations.

  14. Update: US oil-import market. 1982 top 7 suppliers to US import market: how their shares changed since 1973

    SciTech Connect (OSTI)

    Not Available

    1983-03-09

    This issue updates the Energy Detente 7/09/82, which tracked US oil imports since the Arab Oil Embargo. Since then, the phrase oil glut became common even among cautious market analysts as many exporters, hard-pressed for petrodollars, produced much more than the market was prepared to absorb. To examine how the US import market has adjusted to this continued buyers market, the top seven suppliers of 1982 are tracked backwards through time. A graph shows the 1982 reversal of Mexico's and Saudi Arabia's positions in this market. The three main reasons for Mexico's strong present position in the US market are: crude costs and corresponding refined value; proximity to US refining centers; and strategic importance of Mexico's economic stability through oil sales. Interviews with various US refiners and other market observers confirm that these elements will persist during 1983, regardless of significant price cuts among OPEC and other producers. It is believed that the profitability of running heavy Maya crude in sophisticated plants will continue to look optimistic, and that Mexican crude sales to the Strategic Petroleum Reserve implies US government interest in Mexico's economic recovery, and in its stability in the light of civil wars being waged in Central America. This issue presents the Energy Detente (1) fuel price/tax series and (2) industrial fuel prices for March 1983 for countries of the Eastern Hemisphere. 6 figures, 8 tables.

  15. Another Gold for PPPL: Laboratory Wins 2nd Gold GreenBuy Award | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab Another Gold for PPPL: Laboratory Wins 2nd Gold GreenBuy Award By Jeanne Jackson DeVoe September 23, 2013 Tweet Widget Google Plus One Share on Facebook Teodora Todorova cleans a restroom with green products like HydroxiPro, which is 100 percent bio-based. The hand soap in PPPL's rest rooms is made mostly of vegetable-based glycerin and aloe. The paper products are made from 70 to 100 percent recycled products and the hand towels are composted at PPPL. Teodora Todorova

  16. World's largest single crystal of gold verified at Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    World's largest single crystal of gold verified at Los Alamos World's largest single crystal of gold verified at Los Alamos The SCD instrument is used to determine the periodic atomic arrangement or crystal structure of single crystals, both natural and synthetic. April 7, 2014 Neutron diffraction data collected on the single-crystal diffraction (SCD) instrument at the Lujan Center, from the Venezuelan gold sample, indicate that the sample is a single crystal. Neutron diffraction data collected

  17. Synthesis of porous gold nanoshells by controlled transmetallation reaction

    SciTech Connect (OSTI)

    Pattabi, Manjunatha M, Krishnaprabha

    2015-06-24

    Aqueous synthesis of porous gold nanoshells in one step is carried out through controlled transmetallation (TM) reaction using a naturally available egg shell membrane (ESM) as a barrier between the sacrificial silver particles (AgNPs) and the gold precursor solution (HAuCl{sub 4}). The formation of porous gold nanoshells via TM reaction is inferred from UV-Vis spectroscopy and the scanning electron microscopic (SEM) studies.

  18. Molecular Structure of Water at Gold Electrodes Revealed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Structure of Water at Gold Electrodes Revealed Molecular Structure of Water at Gold Electrodes Revealed Print Wednesday, 25 March 2015 00:00 The structure of liquid water has been intensely studied, but until recently, it has not been clear what happens to it when a surface is introduced. ALS researchers have now made a first-ever observation of the molecular structure of liquid water at a gold surface under different charging conditions. This marks the first time that the scientific

  19. Los Alamos explores hybrid ultrasmall gold nanocluster for enzymatic fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cells Hybrid ultrasmall gold nanocluster for enzymatic fuel cells Los Alamos explores hybrid ultrasmall gold nanocluster for enzymatic fuel cells With fossil-fuel sources dwindling, better biofuel cell design is a strong candidate in the energy field. September 24, 2015 Gold nanoclusters (~1 nm) are efficient mediators of electron transfer between co-self-assembled enzymes and carbon nanotubes in an enzyme fuel cell. The efficient electron transfer from this quantized nano material minimizes

  20. Earned Value Management System Gold Card | Department of Energy

    Energy Savers [EERE]

    Gold Card Earned Value Management System Gold Card Earned Value Management (EVM) is a systematic approach to the integration and measurement of cost, schedule, and technical (scope) accomplishments on a project or task. It provides both the government and contractors the ability to examine detailed schedule information, critical program and technical milestones, and cost data. Formulas and Terminology "Gold Card" -- September 2011 (92.71 KB) Key Resources PMCDP EVMS PARS IIe FPD

  1. Newest Los Alamos facility receives LEED® Gold certification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Newest facility receives LEED® Gold certification Newest Los Alamos facility receives LEED® Gold certification The Radiological Laboratory Utility Office Building is first to achieve both the Leadership in Energy and Environmental Design status and LEED Gold certification. June 13, 2012 Radiological Laboratory Utility Office Building Radiological Laboratory Utility Office Building Contact Kim Powell Communications Office (505) 695-6159 Email LOS ALAMOS, New Mexico, June 13, 2012-Los Alamos

  2. Laminin receptor specific therapeutic gold nanoparticles (198AuNP...

    Office of Scientific and Technical Information (OSTI)

    prostate cancer Citation Details In-Document Search Title: Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer ...

  3. Los Alamos explores hybrid ultrasmall gold nanocluster for enzymatic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos explores hybrid ultrasmall gold nanocluster for enzymatic fuel cells With fossil-fuel sources dwindling, better biofuel cell design is a strong candidate in the energy ...

  4. Understanding Interactions between Manganese Oxide and Gold That...

    Office of Scientific and Technical Information (OSTI)

    Water Oxidation Prev Next Title: Understanding Interactions between Manganese Oxide and Gold That Lead to Enhanced Activity for Electrocatalytic Water Oxidation ...

  5. Argonne APCF achieves LEED Gold rating | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory's Advanced Protein Characterization Facility (APCF) has received the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED) Gold...

  6. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... It does not require chemical modification to any of the components in the composite system ... of many materials besides gold, making it well suited for scalable manufacturing. ...

  7. Microsoft PowerPoint - Marion Gold.Providence.Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Quadrennial Energy Review Providence, Rhode Island Monday, April 21, 2014 Marion S. Gold, Ph.D. Commissioner Rhode Island Office of Energy Resources RI Office of Energy ...

  8. Rainbows and Leprechauns: Finding Gold in Partnerships (101)...

    Broader source: Energy.gov (indexed) [DOE]

    Peer Exchange Call Series: Rainbows and Leprechauns: Finding Gold in Partnerships (101), March 17, 2016, call slides and discussion summary. Call Slides and Discussion Summary ...

  9. Active Geothermal Systems And Associated Gold Deposits In The...

    Open Energy Info (EERE)

    Geothermal Systems And Associated Gold Deposits In The Great Basin Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Active Geothermal Systems...

  10. Charles E. Messick receives the Administrator's Gold Award |...

    National Nuclear Security Administration (NNSA)

    E. Messick receives the Administrator's Gold Award | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  11. Gold River, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    (Redirected from Gold River, CA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.6262937, -121.2466156 Show Map Loading map... "minzoom":false,"mappingservic...

  12. NNSA Nevada Support Facility Receives LEED Gold Certificate ...

    National Nuclear Security Administration (NNSA)

    Nevada Support Facility as Leadership in Energy and Environmental Design (LEED) Gold ... The LEED rating system, developed by the U.S. Green Building Council, is the foremost ...

  13. BioGold Fuels Corporation | Open Energy Information

    Open Energy Info (EERE)

    through joint ventures a lower-cost, higher-output system for the production of diesel fuel derived from Municipal Solid Waste ("MSW"). References: BioGold Fuels...

  14. Rainbows and Leprechauns: Finding Gold in Partnerships (101)

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Rainbows and Leprechauns: Finding Gold in Partnerships (101), March 17, 2016, call slides and discussion summary.

  15. Federal Electronics Challenge Gold Award | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    On June 18th, DOE Headquarters was presented the Federal Electronics Challenge Gold Award for exemplary performance in Green Computing, including green procurement, energy ...

  16. Gold nanoparticle formation in diamond-like carbon using two different methods: Gold ion implantation and co-deposition of gold and carbon

    SciTech Connect (OSTI)

    Salvadori, M. C.; Teixeira, F. S.; Araujo, W. W. R.; Sgubin, L. G.; Cattani, M.; Spirin, R. E.; Brown, I. G.

    2012-10-01

    We describe work in which gold nanoparticles were formed in diamond-like carbon (DLC), thereby generating a Au-DLC nanocomposite. A high-quality, hydrogen-free DLC thin film was formed by filtered vacuum arc plasma deposition, into which gold nanoparticles were introduced using two different methods. The first method was gold ion implantation into the DLC film at a number of decreasing ion energies, distributing the gold over a controllable depth range within the DLC. The second method was co-deposition of gold and carbon, using two separate vacuum arc plasma guns with suitably interleaved repetitive pulsing. Transmission electron microscope images show that the size of the gold nanoparticles obtained by ion implantation is 3-5 nm. For the Au-DLC composite obtained by co-deposition, there were two different nanoparticle sizes, most about 2 nm with some 6-7 nm. Raman spectroscopy indicates that the implanted sample contains a smaller fraction of sp{sup 3} bonding for the DLC, demonstrating that some sp{sup 3} bonds are destroyed by the gold implantation.

  17. Prime Supplier Report

    Reports and Publications (EIA)

    2016-01-01

    Measures primary petroleum product deliveries into the states where they are locally marketed and consumed.

  18. Prime Supplier Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    47,959.1 11,050.9 67,812.0 226,822.0 21,260.7 1,818.7 15,161.7 38,241.1 February ... 154,899.9 10,617.6 70,698.9 236,216.5 22,197.4 1,690.4 15,506.0...

  19. Prime Supplier Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 33,392.4 470.2 21,307.9 55,170.5 232,813.4 4,156.4 108,849.1 345,818.8 June ... 34,545.7 496.8 22,352.4 57,394.8...

  20. Prime Supplier Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    - 5,035.0 12,682.6 September ... 57,075.9 - 34,030.7 91,106.6 7,194.8 - 4,922.6 12,117.4 October ... 58,271.3 -...

  1. Prime Supplier Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 168,286.2 12,993.4 79,830.4 261,110.0 20,869.6 1,997.4 13,951.7 36,818.8 December ... 177,468.1 14,403.3 85,758.4 277,629.8...

  2. Prime Supplier Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    180.4 - 1,565.8 1,746.2 December ... 1,672.1 - 10,357.9 12,030.0 182.5 - 1,583.4 1,765.9 1998 Average ... 1,692.9 - 10,184.7...

  3. Prime Supplier Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    - 52,118.5 135,620.8 September ... 10,627.5 - 9,403.4 20,030.9 76,222.0 - 49,285.1 125,507.2 October ... 11,834.2 -...

  4. Prime Supplier Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    1,515.4 24,168.6 49,958.8 205,642.8 21,325.8 3,583.5 13,512.4 38,421.7 February ... 150,955.0 13,660.5 51,987.1 216,602.6 25,038.0 1,397.6 14,426.9...

  5. Supplier, Vendor Forms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL seeks to do business with qualified companies that offer value and high quality products and services. Contact Small Business Office (505) 667-4419 Email Form No. Name...

  6. Prime Supplier Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    68,630.0 13,240.0 86,640.3 268,510.4 16,445.7 1,775.8 10,716.9 28,938.4 February ... 176,320.8 12,607.6 89,733.9 278,662.3 17,600.5 1,816.9 11,099.4...

  7. Method for aqueous gold thiosulfate extraction using copper-cyanide pretreated carbon adsorption

    SciTech Connect (OSTI)

    Young, Courtney; Melashvili, Mariam; Gow, Nicholas V

    2013-08-06

    A gold thiosulfate leaching process uses carbon to remove gold from the leach liquor. The activated carbon is pretreated with copper cyanide. A copper (on the carbon) to gold (in solution) ratio of at least 1.5 optimizes gold recovery from solution. To recover the gold from the carbon, conventional elution technology works but is dependent on the copper to gold ratio on the carbon.

  8. Gold-catalyzed synthesis of carbonates and carbamates from carbon monoxide

    SciTech Connect (OSTI)

    Friend, Cynthia M; Madix, Robert J; Xu, Bingjun

    2015-01-20

    The invention provides a method for producing organic carbonates via the reaction of alcohols and carbon monoxide with oxygen adsorbed on a metallic gold or gold alloy catalyst.

  9. Argonne/EPA system captures mercury from air in gold shops |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Typical gold shop hood used to purify gold by superheating the goldmercury amalgam until the mercury vaporizes. The vaporized mercury is directed outside the shop into the open...

  10. Seeing Gold Nanoparticles Self-Assemble with in situ Liquid Transmissi...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seeing Gold Nanoparticles Self-Assemble with in situ Liquid Transmission Electron Microscopy December 15, 2014 Tweet EmailPrint Scientific Achievement The self-assembly of gold...

  11. Department of Energy - Gold Award Press Release 9/10/2003

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Francis Collins and Ari Patrinos Receive Energy Secretary's Gold Award for Human Genome ... the Secretary's Gold Award for their leadership of the government's Human Genome Project. ...

  12. Exhaust system having a gold-platinum group metal catalyst

    DOE Patents [OSTI]

    Ragle, Christie Susan; Silver, Ronald G.; Zemskova, Svetlana Mikhailovna; Eckstein, Colleen J.

    2011-12-06

    A method of providing an exhaust treatment device is disclosed. The method includes applying a catalyst including gold and a platinum group metal to a particulate filter. The concentration of the gold and the platinum group metal is sufficient to enable oxidation of carbon monoxide and nitric oxide.

  13. Exhaust system having a gold-platinum group metal catalyst

    DOE Patents [OSTI]

    Ragle, Christie Susan; Silver, Ronald G.; Zemskova, Svetlana Mikhailovna; Eckstein, Colleen J.

    2012-08-07

    A method of providing an exhaust treatment device is disclosed. The method includes applying a catalyst including gold and a platinum group metal to a particulate filter. The concentration of the gold and the platinum group metal is sufficient to enable oxidation of carbon monoxide and nitric oxide.

  14. Reducing wall plasma expansion with gold foam irradiated by laser

    SciTech Connect (OSTI)

    Zhang, Lu; Ding, Yongkun Jiang, Shaoen Yang, Jiamin; Li, Hang; Kuang, Longyu; Lin, Zhiwei; Jing, Longfei; Li, Liling; Deng, Bo; Yuan, Zheng; Chen, Tao; Yuan, Guanghui; Tan, Xiulan; Li, Ping

    2015-11-15

    The experimental study on the expanding plasma movement of low-density gold foam (∼1% solid density) irradiated by a high power laser is reported in this paper. Experiments were conducted using the SG-III prototype laser. Compared to solid gold with 19.3 g/cc density, the velocities of X-ray emission fronts moving off the wall are much smaller for gold foam with 0.3 g/cc density. Theoretical analysis and MULTI 1D simulation results also show less plasma blow-off, and that the density contour movement velocities of gold foam are smaller than those of solid gold, agreeing with experimental results. These results indicate that foam walls have advantages in symmetry control and lowering plasma fill when used in ignition hohlraum.

  15. Sets of Reports and Articles Regarding Cement Wastes Forms Containing Alpha Emitters that are Potentially Useful for Development of Russian Federation Waste Treatment Processes for Solidification of Weapons Plutonium MOX Fuel Fabrication Wastes for

    SciTech Connect (OSTI)

    Jardine, L J

    2003-06-12

    This is a set of nine reports and articles that were kindly provided by Dr. Christine A. Langton from the Savannah River Site (SRS) to L. J. Jardine LLNL in June 2003. The reports discuss cement waste forms and primarily focus on gas generation in cement waste forms from alpha particle decays. However other items such as various cement compositions, cement product performance test results and some cement process parameters are also included. This set of documents was put into this Lawrence Livermore National Laboratory (LLNL) releasable report for the sole purpose to provide a set of documents to Russian technical experts now beginning to study cement waste treatment processes for wastes from an excess weapons plutonium MOX fuel fabrication facility. The intent is to provide these reports for use at a US RF Experts Technical Meeting on: the Management of Wastes from MOX Fuel Fabrication Facilities, in Moscow July 9-11, 2003. The Russian experts should find these reports to be very useful for their technical and economic feasibility studies and the supporting R&D activities required to develop acceptable waste treatment processes for use in Russia as part of the ongoing Joint US RF Plutonium Disposition Activities.

  16. LAB-SCALE DEMONSTRATION OF PLUTONIUM PURIFICATION BY ANION EXCHANGE, PLUTONIUM (IV) OXALATE PRECIPITATION, AND CALCINATION TO PLUTONIUM OXIDE TO SUPPORT THE MOX FEED MISSION

    SciTech Connect (OSTI)

    Crowder, M.; Pierce, R.

    2012-08-22

    H-Canyon and HB-Line are tasked with the production of PuO{sub 2} from a feed of plutonium metal. The PuO{sub 2} will provide feed material for the MOX Fuel Fabrication Facility. After dissolution of the Pu metal in H-Canyon, the solution will be transferred to HB-Line for purification by anion exchange. Subsequent unit operations include Pu(IV) oxalate precipitation, filtration and calcination to form PuO{sub 2}. This report details the results from SRNL anion exchange, precipitation, filtration, calcination, and characterization tests, as requested by HB-Line1 and described in the task plan. This study involved an 80-g batch of Pu and employed test conditions prototypical of HB-Line conditions, wherever feasible. In addition, this study integrated lessons learned from earlier anion exchange and precipitation and calcination studies. H-Area Engineering selected direct strike Pu(IV) oxalate precipitation to produce a more dense PuO{sub 2} product than expected from Pu(III) oxalate precipitation. One benefit of the Pu(IV) approach is that it eliminates the need for reduction by ascorbic acid. The proposed HB-Line precipitation process involves a digestion time of 5 minutes after the time (44 min) required for oxalic acid addition. These were the conditions during HB-line production of neptunium oxide (NpO{sub 2}). In addition, a series of small Pu(IV) oxalate precipitation tests with different digestion times were conducted to better understand the effect of digestion time on particle size, filtration efficiency and other factors. To test the recommended process conditions, researchers performed two nearly-identical larger-scale precipitation and calcination tests. The calcined batches of PuO{sub 2} were characterized for density, specific surface area (SSA), particle size, moisture content, and impurities. Because the 3013 Standard requires that the calcination (or stabilization) process eliminate organics, characterization of PuO{sub 2} batches monitored the

  17. 1 mil gold bond wire study.

    SciTech Connect (OSTI)

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.; Rutherford, Brian Milne

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.

  18. Hoteliers Strike Gold with Geothermal Alaskan Resort | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hoteliers Strike Gold with Geothermal Alaskan Resort Hoteliers Strike Gold with Geothermal Alaskan Resort November 23, 2009 - 6:31pm Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy What are the key facts? Bernie estimates he saves anywhere from $300,000 to $400,000 in electricity costs alone each year using geothermal power generators rather than diesel. Bernie Karl knows a gold mine when he sees one. In the 1970s, Bernie and his wife

  19. Synthesis of gold nanoparticles with different atomistic structural characteristics

    SciTech Connect (OSTI)

    Esparza, R. . E-mail: roesparza@gmail.com; Rosas, G.; Lopez Fuentes, M.; Sanchez Ramirez, J.F.; Pal, U.; Ascencio, J.A.; Perez, R.

    2007-08-15

    A chemical reduction method was used to produce nanometric gold particles. Depending on the concentration of the main reactant compound different nanometric sizes and consequently different atomic structural configurations of the particles are obtained. Insights on the structural nature of the gold nanoparticles are obtained through a comparison between digitally-processed experimental high-resolution electron microscopy images and theoretically-simulated images obtained with a multislice approach of the dynamical theory of electron diffraction. Quantum molecular mechanical calculations, based on density functional theory, are carried out to explain the relationships between the stability of the gold nanoparticles, the atomic structural configurations and the size of nanoparticles.

  20. Water and Gold: A Promising Mix for Future Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water and Gold: A Promising Mix for Future Batteries Water and Gold: A Promising Mix for Future Batteries Berkeley Lab Study Reveals Molecular Structure of Water at Gold Electrodes October 23, 2014 Contact: Rachel Berkowitz, 510-486-7254, rberkowitz@lbl.gov When a solid material is immersed in a liquid, the liquid immediately next to its surface differs from that of the bulk liquid at the molecular level. This interfacial layer is critical to our understanding of a diverse set of phenomena from

  1. Gold interconnectors for solar generators in low earth orbits

    SciTech Connect (OSTI)

    La Roche, G.J.; Oxynos-Lauschke, C.; Wehner, K.H.

    1994-12-31

    For Low Earth Orbit applications gold based electrical connections have been developed consisting of 12.5 {micro}m thin gold solar cell interconnectors with stress relief loop, 50 {micro}m thick gold string terminations and gauge AWG 24 stranded gold wires. Modules with typical 4 cm by 6 cm Silicon solar cells mounted on a lightweight carbon fiber reinforced honeycomb substrate were manufactured including the new components applied by resistance welding. A long duration thermal cycling test was started cycling two coupons at between {minus}110 C and +110 C. As of November 1994, 27,500 cycles have been completed, and the test is continuing. Evaluation of module integrity at periodic intervals yielded no measurable degradation up to date.

  2. Impedimetric investigation of gold nanoparticles - guanine modified electrode

    SciTech Connect (OSTI)

    Vulcu, A.; Pruneanu, S.; Berghian-Grosan, C.; Olenic, L.; Muresan, L. M.; Barbu-Tudoran, L.

    2013-11-13

    In this paper we report the preparation of a modified electrode with gold nanoparticles and guanine. The colloidal suspension of gold nanoparticles was obtained by Turkevich method and was next analyzed by UV-Vis spectroscopy and Transmission Electron Microscopy (TEM). The gold electrode was modified by self-assembling the gold nanoparticles with guanine, the organic molecule playing also the role of linker. The electrochemical characteristics of the bare and modified electrode were investigated by Electrochemical Impedance Spectroscopy (EIS). A theoretical model was developed based on an electrical equivalent circuit which contain solution resistance (R{sub s}), charge transfer resistance (R{sub ct}), Warburg impedance (Z{sub W}) and double layer capacitance (C{sub dl})

  3. Molecular Structure of Water at Gold Electrodes Revealed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Structure of Water at Gold Electrodes Revealed Print The structure of liquid water has been intensely studied, but until recently, it has not been clear what happens to ...

  4. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of...

  5. Gold SolarWind GmbH | Open Energy Information

    Open Energy Info (EERE)

    SolarWind GmbH Jump to: navigation, search Name: Gold SolarWind GmbH Place: Aiterhofen, Germany Zip: 94330 Sector: Wind energy Product: German project developer of PV and wind...

  6. Gold Camp, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Gold Camp is a census-designated place in Pinal County, Arizona.1 References US Census...

  7. Gold Hill, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Gold Hill is a census-designated place in Boulder County, Colorado.1 References US...

  8. Gold River, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Gold River is a census-designated place in Sacramento County, California.1 References ...

  9. Gold Hill, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Gold Hill is a city in Jackson County, Oregon. It falls under Oregon's 2nd congressional...

  10. Geology of the Florida Canyon gold deposit, Pershing County,...

    Open Energy Info (EERE)

    Pershing County, Nevada, in: Gold and Silver Deposits of Western Nevada Authors Hastings, J.S., Burkhart, T.H., and Richardson and R.E. Published Geological Society of Nevada 1993...

  11. Encapsulation of Gold Nanoparticles in a DNA Origami Cage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Encapsulation of Gold Nanoparticles in a DNA Origami Cage Authors: Zhao, Z., Jacovetty, E. L., Liu, Y., and Yan, H. Title: Encapsulation of Gold Nanoparticles in a DNA Origami Cage Source: Angewandte Chemie International Edition Year: 2011 Volume: 50 Pages: 2041-2044 ABSTRACT: A critical challenge in nanoparticle (NP) surface functionalization is to label the NP surface with a single copy of a functional group or to display multiple, unique molecules on the NP surface with control of the

  12. Doug Dearolph receives NNSA's Gold Medal of Excellence | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Doug Dearolph receives NNSA's Gold Medal of Excellence Tuesday, September 30, 2014 - 11:31am DOE Undersecretary for Nuclear Security and NNSA Administrator Frank Klotz recently presented the Gold Medal of Excellence for Distinguished Service to Doug Dearolph, manager of the Savannah River Field Office. The medal is the highest honorary award granted by NNSA and was presented to Dearolph in recognition his dedication and commitment to public service and the

  13. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Guided Self-Assembly of Gold Thin Films Print Wednesday, 21 November 2012 12:18 Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of science. If nanoparticles could be coaxed into routinely assembling themselves into predictable complex structures and hierarchical patterns, devices could be mass-produced that are one thousand times smaller than today's microtechnologies.

  14. Scott Samuelson receives NNSA's Gold Medal of Excellence | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Scott Samuelson receives NNSA's Gold Medal of Excellence Thursday, November 20, 2014 - 2:22pm Bob Raines, NNSA Associate Administrator for Acquisition and Project Management (APM), recently presented the Gold Medal of Excellence to Scott Samuelson, Senior Advisor for APM. The medal is the highest honorary award granted by NNSA and was presented to Samuelson in recognition to his dedication and commitment to NNSA. Samuelson will retire at the end of November

  15. Michael Lempke receives NNSA's Gold Medal of Excellence | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Michael Lempke receives NNSA's Gold Medal of Excellence Monday, June 16, 2014 - 4:25pm DOE Undersecretary for Nuclear Security and NNSA Administrator Frank Klotz recently presented the Gold Medal of Excellence for Distinguished Service to Michael Lempke, former Acting Chief and Associate Administrator for Defense Nuclear Security. The medal is the highest honorary award granted by NNSA and was presented to Lempke in recognition of his outstanding

  16. Transparent Gold as a Platform for Adsorbed Protein

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectroelectrochemistry: Investigation of Cytochrome c and Azurin Transparent Gold as a Platform for Adsorbed Protein Spectroelectrochemistry: Investigation of Cytochrome c and Azurin Authors: Ashur, I., Schulz, O., McIntosh, C. L., Pinkas, I., Ros, R., and Jones, A. K. Title: Transparent Gold as a Platform for Adsorbed Protein Spectroelectrochemistry: Investigation of Cytochrome c and Azurin Source: Langmuir Year: 2012 Volume: 28 Pages: 5861-5871 ABSTRACT: The majority of protein

  17. Molecular Structure of Water at Gold Electrodes Revealed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Structure of Water at Gold Electrodes Revealed Print The structure of liquid water has been intensely studied, but until recently, it has not been clear what happens to it when a surface is introduced. ALS researchers have now made a first-ever observation of the molecular structure of liquid water at a gold surface under different charging conditions. This marks the first time that the scientific community has shown such high sensitivity in an in-situ environment under working

  18. Molecular Structure of Water at Gold Electrodes Revealed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Structure of Water at Gold Electrodes Revealed Print The structure of liquid water has been intensely studied, but until recently, it has not been clear what happens to it when a surface is introduced. ALS researchers have now made a first-ever observation of the molecular structure of liquid water at a gold surface under different charging conditions. This marks the first time that the scientific community has shown such high sensitivity in an in-situ environment under working

  19. Molecular Structure of Water at Gold Electrodes Revealed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Structure of Water at Gold Electrodes Revealed Print The structure of liquid water has been intensely studied, but until recently, it has not been clear what happens to it when a surface is introduced. ALS researchers have now made a first-ever observation of the molecular structure of liquid water at a gold surface under different charging conditions. This marks the first time that the scientific community has shown such high sensitivity in an in-situ environment under working

  20. Molecular Structure of Water at Gold Electrodes Revealed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Structure of Water at Gold Electrodes Revealed Print The structure of liquid water has been intensely studied, but until recently, it has not been clear what happens to it when a surface is introduced. ALS researchers have now made a first-ever observation of the molecular structure of liquid water at a gold surface under different charging conditions. This marks the first time that the scientific community has shown such high sensitivity in an in-situ environment under working

  1. Molecular Structure of Water at Gold Electrodes Revealed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Structure of Water at Gold Electrodes Revealed Print The structure of liquid water has been intensely studied, but until recently, it has not been clear what happens to it when a surface is introduced. ALS researchers have now made a first-ever observation of the molecular structure of liquid water at a gold surface under different charging conditions. This marks the first time that the scientific community has shown such high sensitivity in an in-situ environment under working

  2. UV laser ablation of parylene films from gold substrates

    SciTech Connect (OSTI)

    O. R. Musaev, P. Scott, J. M. Wrobel, and M. B. Kruger

    2009-11-19

    Parylene films, coating gold substrates, were removed by laser ablation using 248 nm light from an excimer laser. Each sample was processed by a different number of pulses in one of three different environments: air at atmospheric pressure, nitrogen at atmospheric pressure, and vacuum. The laser-induced craters were analyzed by optical microscopy and x-ray photoelectron spectroscopy. Multi-pulse ablation thresholds of gold and parylene were estimated.

  3. Molecular Structure of Water at Gold Electrodes Revealed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Structure of Water at Gold Electrodes Revealed Print The structure of liquid water has been intensely studied, but until recently, it has not been clear what happens to it when a surface is introduced. ALS researchers have now made a first-ever observation of the molecular structure of liquid water at a gold surface under different charging conditions. This marks the first time that the scientific community has shown such high sensitivity in an in-situ environment under working

  4. Molecular Structure of Water at Gold Electrodes Revealed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Structure of Water at Gold Electrodes Revealed Print The structure of liquid water has been intensely studied, but until recently, it has not been clear what happens to it when a surface is introduced. ALS researchers have now made a first-ever observation of the molecular structure of liquid water at a gold surface under different charging conditions. This marks the first time that the scientific community has shown such high sensitivity in an in-situ environment under working

  5. Gold-rich R3Au7Sn3: Establishing the interdependence between...

    Office of Scientific and Technical Information (OSTI)

    Gold-rich R3Au7Sn3: Establishing the interdependence between electronic features and physical properties Citation Details In-Document Search Title: Gold-rich R3Au7Sn3: Establishing ...

  6. Go for the Gold in Energy-Efficient Home Heating | Department...

    Broader source: Energy.gov (indexed) [DOE]

    in the crowd and the athletes as they vie for the coveted gold, silver, and bronze metals. ... Energy Department Resources Go for the Gold and Save Energy at Home 15 Blog Posts to ...

  7. OSTIblog Articles in the gold mine Topic | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    gold mine Topic Mining for Gold, Neutrinos and the Neutrinoless Double Beta Decay by Kathy Chambers 23 Sep, 2014 in Deep within the caverns of Lead, South Dakota is one of the ...

  8. Time-dependent Protein-directed Growth of Gold Nanoparticles within a Single Crystal of Lysozyme

    SciTech Connect (OSTI)

    H Wei; Z Wang; J Zhang; S House; Y Gao; L Yang; H Robinson; L Tan; H Xing; C Hou

    2011-12-31

    Gold nanoparticles are useful in biomedical applications due to their distinct optical properties and high chemical stability. Reports of the biogenic formation of gold colloids from gold complexes has also led to an increased level of interest in the biomineralization of gold. However, the mechanism responsible for biomolecule-directed gold nanoparticle formation remains unclear due to the lack of structural information about biological systems and the fast kinetics of biomimetic chemical systems in solution. Here we show that intact single crystals of lysozyme can be used to study the time-dependent, protein-directed growth of gold nanoparticles. The protein crystals slow down the growth of the gold nanoparticles, allowing detailed kinetic studies to be carried out, and permit a three-dimensional structural characterization that would be difficult to achieve in solution. Furthermore, we show that additional chemical species can be used to fine-tune the growth rate of the gold nanoparticles.

  9. Prof. Héctor Abruña wins Electrochimica Acta Gold Medal award...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hctor Abrua wins Electrochimica Acta Gold Medal award June 30th, 2016 Dr. Hctor Abrua is the most recent winner of the Electrochimica Acta Gold Medal, which is given ...

  10. Method for forming gold-containing catalyst with porous structure

    DOE Patents [OSTI]

    Biener, Juergen; Hamza, Alex V; Baeumer, Marcus; Schulz, Christian; Jurgens, Birte; Biener, Monika M.

    2014-07-22

    A method for forming a gold-containing catalyst with porous structure according to one embodiment of the present invention includes producing a starting alloy by melting together of gold and at least one less noble metal that is selected from the group consisting of silver, copper, rhodium, palladium, and platinum; and a dealloying step comprising at least partial removal of the less noble metal by dissolving the at least one less noble metal out of the starting alloy. Additional methods and products thereof are also presented.

  11. DOE - Office of Legacy Management -- Humphreys Gold Co - FL 08

    Office of Legacy Management (LM)

    Humphreys Gold Co - FL 08 FUSRAP Considered Sites Site: Humphreys Gold Co. (FL.08 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Jacksonville , Florida FL.08-1 Evaluation Year: 1987 FL.08-2 FL.08-3 Site Operations: Processed monazite ore in the 1950s. FL.08-3 Site Disposition: Eliminated - No Authority - No AEC involvement at the site FL.08-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Thorium FL.08-1

  12. World's largest single crystal of gold verified by Los Alamos instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos verifies largest single gold crystal World's largest single crystal of gold verified by Los Alamos instruments Using Lujan Center's HIPPO instrument, researchers probed the specimen with neutrons to gather critical information December 22, 2014 World's largest single crystal of gold verified by Los Alamos instruments Neutron diffraction data collected on the single-crystal diffraction (SCD) instrument at the Lujan Center, from the Venezuelan gold sample, indicate that the sample is a

  13. Coated Gold Nanoparticles Found to be Speedy Electron Sponges | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Coated Gold Nanoparticles Found to be Speedy Electron Sponges Gold-coated nanoparticles capture electrons at an unprecedented rate in solution. Gold nanoparticles demonstrate the potential to quench radiation-induced electrons, indicating potential applications ranging from heterogeneous catalysis to conversion of the radiation into electricity. Green chemistry methods were used to coat the gold nanoparticles in a chloride compound known as bac-14. The coat does not stick to the

  14. Alignment of gold nanorods by angular photothermal depletion

    SciTech Connect (OSTI)

    Taylor, Adam B.; Chow, Timothy T. Y.; Chon, James W. M.

    2014-02-24

    In this paper, we demonstrate that a high degree of alignment can be imposed upon randomly oriented gold nanorod films by angular photothermal depletion with linearly polarized laser irradiation. The photothermal reshaping of gold nanorods is observed to follow quadratic melting model rather than the threshold melting model, which distorts the angular and spectral hole created on 2D distribution map of nanorods to be an open crater shape. We have accounted these observations to the alignment procedures and demonstrated good agreement between experiment and simulations. The use of multiple laser depletion wavelengths allowed alignment criteria over a large range of aspect ratios, achieving 80% of the rods in the target angular range. We extend the technique to demonstrate post-alignment in a multilayer of randomly oriented gold nanorod films, with arbitrary control of alignment shown across the layers. Photothermal angular depletion alignment of gold nanorods is a simple, promising post-alignment method for creating future 3D or multilayer plasmonic nanorod based devices and structures.

  15. Structures of 38-atom gold-platinum nanoalloy clusters

    SciTech Connect (OSTI)

    Ong, Yee Pin; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    Bimetallic nanoclusters, such as gold-platinum nanoclusters, are nanomaterials promising wide range of applications. We perform a numerical study of 38-atom gold-platinum nanoalloy clusters, Au{sub n}Pt{sub 38−n} (0 ≤ n ≤ 38), to elucidate the geometrical structures of these clusters. The lowest-energy structures of these bimetallic nanoclusters at the semi-empirical level are obtained via a global-minimum search algorithm known as parallel tempering multi-canonical basin hopping plus genetic algorithm (PTMBHGA), in which empirical Gupta many-body potential is used to describe the inter-atomic interactions among the constituent atoms. The structures of gold-platinum nanoalloy clusters are predicted to be core-shell segregated nanoclusters. Gold atoms are observed to preferentially occupy the surface of the clusters, while platinum atoms tend to occupy the core due to the slightly smaller atomic radius of platinum as compared to gold’s. The evolution of the geometrical structure of 38-atom Au-Pt clusters displays striking similarity with that of 38-atom Au-Cu nanoalloy clusters as reported in the literature.

  16. PROCESS FOR THE CONCENTRATION OF ORES CONTAINING GOLD AND URANIUM

    DOE Patents [OSTI]

    Gaudin, A.M.; Dasher, J.

    1958-06-10

    ABS>A process is described for concentrating certain low grade uranium and gold bearing ores, in which the gangue is mainly quartz. The production of the concentrate is accomplished by subjecting the crushed ore to a froth floatation process using a fatty acid as a collector in conjunction with a potassium amyl xanthate collector. Pine oil is used as the frothing agent.

  17. Solving the Unsovlable: The Nanostructure of Gold at 1.1 Å Resolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solving the Unsovlable: The Nanostructure of Gold at 1.1 Å Resolution Print For the first time, a team of scientists led by Roger Kornberg has synthesized thiol-covered gold nanoparticles and, using ALS Beamlines 5.0.2 and 8.2.2 and SSRL Beamlines 11-1 and 11-3, conclusively ascertained their atomic structure (at 1.1 Å resolution). The gold-thiol nanoparticle consists of 102 gold atoms surrounded by 44 molecules of a thiol compound (para-mercaptobenzoic acid, or p-MBA). The central gold atoms

  18. Solving the Unsovlable: The Nanostructure of Gold at 1.1 Å Resolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solving the Unsovlable: The Nanostructure of Gold at 1.1 Å Resolution Print For the first time, a team of scientists led by Roger Kornberg has synthesized thiol-covered gold nanoparticles and, using ALS Beamlines 5.0.2 and 8.2.2 and SSRL Beamlines 11-1 and 11-3, conclusively ascertained their atomic structure (at 1.1 Å resolution). The gold-thiol nanoparticle consists of 102 gold atoms surrounded by 44 molecules of a thiol compound (para-mercaptobenzoic acid, or p-MBA). The central gold atoms

  19. Solving the Unsovlable: The Nanostructure of Gold at 1.1 Å Resolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solving the Unsovlable: The Nanostructure of Gold at 1.1 Å Resolution Print For the first time, a team of scientists led by Roger Kornberg has synthesized thiol-covered gold nanoparticles and, using ALS Beamlines 5.0.2 and 8.2.2 and SSRL Beamlines 11-1 and 11-3, conclusively ascertained their atomic structure (at 1.1 Å resolution). The gold-thiol nanoparticle consists of 102 gold atoms surrounded by 44 molecules of a thiol compound (para-mercaptobenzoic acid, or p-MBA). The central gold atoms

  20. Solving the Unsovlable: The Nanostructure of Gold at 1.1 Å Resolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solving the Unsovlable: The Nanostructure of Gold at 1.1 Å Resolution Print For the first time, a team of scientists led by Roger Kornberg has synthesized thiol-covered gold nanoparticles and, using ALS Beamlines 5.0.2 and 8.2.2 and SSRL Beamlines 11-1 and 11-3, conclusively ascertained their atomic structure (at 1.1 Å resolution). The gold-thiol nanoparticle consists of 102 gold atoms surrounded by 44 molecules of a thiol compound (para-mercaptobenzoic acid, or p-MBA). The central gold atoms

  1. Solving the Unsovlable: The Nanostructure of Gold at 1.1 Å Resolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solving the Unsovlable: The Nanostructure of Gold at 1.1 Å Resolution Print For the first time, a team of scientists led by Roger Kornberg has synthesized thiol-covered gold nanoparticles and, using ALS Beamlines 5.0.2 and 8.2.2 and SSRL Beamlines 11-1 and 11-3, conclusively ascertained their atomic structure (at 1.1 Å resolution). The gold-thiol nanoparticle consists of 102 gold atoms surrounded by 44 molecules of a thiol compound (para-mercaptobenzoic acid, or p-MBA). The central gold atoms

  2. Solving the Unsovlable: The Nanostructure of Gold at 1.1 Å Resolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solving the Unsovlable: The Nanostructure of Gold at 1.1 Å Resolution Solving the Unsovlable: The Nanostructure of Gold at 1.1 Å Resolution Print Wednesday, 28 May 2008 00:00 For the first time, a team of scientists led by Roger Kornberg has synthesized thiol-covered gold nanoparticles and, using ALS Beamlines 5.0.2 and 8.2.2 and SSRL Beamlines 11-1 and 11-3, conclusively ascertained their atomic structure (at 1.1 Å resolution). The gold-thiol nanoparticle consists of 102 gold atoms

  3. Nanoporous Gold as a Platform for a Building Block Catalyst

    SciTech Connect (OSTI)

    Wittstock, Arne; Wichmann, Andre; Baeumer, Marcus

    2012-09-25

    The porous bulk materials are of great interest in catalysis because they can be employed in heterogeneous gas and liquid phase catalysis, electrocatalysis, and in electrocatalytic sensing. Nanoporous gold gained considerable attraction in this context because it is the prime example of a corrosion-derived nanoporous bulk metal. Moreover, the material was shown to be a very active and selective Au type catalyst for a variety of oxidation reactions. In leveraging the functionalization of the surface of the material with various additives, its catalytic applications can be extended and tuned. In this review, we will summarize recent developments in using nanoporous gold as the platform for the development of high performance catalytic materials by adding metals, metal oxides, and molecular functionalities as building blocks.

  4. Method of making gold thiolate and photochemically functionalized microcantilevers

    DOE Patents [OSTI]

    Boiadjiev, Vassil I [Knoxville, TN; Brown, Gilbert M [Knoxville, TN; Pinnaduwage, Lal A [Knoxville, TN; Thundat, Thomas G [Knoxville, TN; Bonnesen, Peter V [Knoxville, TN; Goretzki, Gudrun [Nottingham, GB

    2009-08-25

    Highly sensitive sensor platforms for the detection of specific reagents, such as chromate, gasoline and biological species, using microcantilevers and other microelectromechanical systems (MEMS) whose surfaces have been modified with photochemically attached organic monolayers, such as self-assembled monolayers (SAM), or gold-thiol surface linkage are taught. The microcantilever sensors use photochemical hydrosilylation to modify silicon surfaces and gold-thiol chemistry to modify metallic surfaces thereby enabling individual microcantilevers in multicantilever array chips to be modified separately. Terminal vinyl substituted hydrocarbons with a variety of molecular recognition sites can be attached to the surface of silicon via the photochemical hydrosilylation process. By focusing the activating UV light sequentially on selected silicon or silicon nitride hydrogen terminated surfaces and soaking or spotting selected metallic surfaces with organic thiols, sulfides, or disulfides, the microcantilevers are functionalized. The device and photochemical method are intended to be integrated into systems for detecting specific agents including chromate groundwater contamination, gasoline, and biological species.

  5. Gold-based electrical interconnections for microelectronic devices

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Garrett, Stephen E.; Reber, Cathleen A.; Watson, Robert D.

    2002-01-01

    A method of making an electrical interconnection from a microelectronic device to a package, comprising ball or wedge compression bonding a gold-based conductor directly to a silicon surface, such as a polysilicon bonding pad in a MEMS or IMEMS device, without using layers of aluminum or titanium disposed in-between the conductor and the silicon surface. After compression bonding, optional heating of the bond above 363 C. allows formation of a liquid gold-silicon eutectic phase containing approximately 3% (by weight) silicon, which significantly improves the bond strength by reforming and enhancing the initial compression bond. The same process can be used for improving the bond strength of Au--Ge bonds by forming a liquid Au-12Ge eutectic phase.

  6. Electron energy loss spectroscopy of gold nanoparticles on graphene

    SciTech Connect (OSTI)

    DeJarnette, Drew; Roper, D. Keith

    2014-08-07

    Plasmon excitation decay by absorption, scattering, and hot electron transfer has been distinguished from effects induced by incident photons for gold nanoparticles on graphene monolayer using electron energy loss spectroscopy (EELS). Gold nano-ellipses were evaporated onto lithographed graphene, which was transferred onto a silicon nitride transmission electron microscopy grid. Plasmon decay from lithographed nanoparticles measured with EELS was compared in the absence and presence of the graphene monolayer. Measured decay values compared favorably with estimated radiative and non-radiative contributions to decay in the absence of graphene. Graphene significantly enhanced low-energy plasmon decay, increasing mode width 38%, but did not affect higher energy plasmon or dark mode decay. This decay beyond expected radiative and non-radiative mechanisms was attributed to hot electron transfer, and had quantum efficiency of 20%, consistent with previous reports.

  7. Nanoporous Gold as a Platform for a Building Block Catalyst

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wittstock, Arne; Wichmann, Andre; Baeumer, Marcus

    2012-09-25

    The porous bulk materials are of great interest in catalysis because they can be employed in heterogeneous gas and liquid phase catalysis, electrocatalysis, and in electrocatalytic sensing. Nanoporous gold gained considerable attraction in this context because it is the prime example of a corrosion-derived nanoporous bulk metal. Moreover, the material was shown to be a very active and selective Au type catalyst for a variety of oxidation reactions. In leveraging the functionalization of the surface of the material with various additives, its catalytic applications can be extended and tuned. In this review, we will summarize recent developments in using nanoporousmore » gold as the platform for the development of high performance catalytic materials by adding metals, metal oxides, and molecular functionalities as building blocks.« less

  8. Michael Hickman receives NNSA Gold Medal, announces retirement | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Michael Hickman receives NNSA Gold Medal, announces retirement Thursday, May 28, 2015 - 9:21am NNSA's Director of the Office of Enterprise Project Management Michael Hickman has announced that he will be retiring effective May 29, 2015 after 34 years distinguished federal service. As a member of the Senior Executive Service, he has spent approximately 25 of those years in senior leadership positions across DOE and NNSA. In his current capacity,

  9. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of science. If nanoparticles could be coaxed into routinely assembling themselves into predictable complex structures and hierarchical patterns, devices could be mass-produced that are one thousand times smaller than today's microtechnologies. Berkeley Lab and UC Berkeley scientists have made progress toward this goal,

  10. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of science. If nanoparticles could be coaxed into routinely assembling themselves into predictable complex structures and hierarchical patterns, devices could be mass-produced that are one thousand times smaller than today's microtechnologies. Berkeley Lab and UC Berkeley scientists have made progress toward this goal,

  11. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of science. If nanoparticles could be coaxed into routinely assembling themselves into predictable complex structures and hierarchical patterns, devices could be mass-produced that are one thousand times smaller than today's microtechnologies. Berkeley Lab and UC Berkeley scientists have made progress toward this goal,

  12. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of science. If nanoparticles could be coaxed into routinely assembling themselves into predictable complex structures and hierarchical patterns, devices could be mass-produced that are one thousand times smaller than today's microtechnologies. Berkeley Lab and UC Berkeley scientists have made progress toward this goal,

  13. Idaho National Engineering and Environmental Laboratory Awarded VPP Gold Star

    Broader source: Energy.gov [DOE]

    Our journey to safety excellence began some six (6) years ago. The task seemed ominous with 6000 plus employees ranging from administrative assistants and craftsman to research scientists and engineers. Another challenge was the geographic dispersion of work areas being as much as 50 miles apart. A core group of employees caught the vision and knew that it could be done, and it is that perseverance that has lead the INEEL to the DOE-VPP Gold Star.

  14. Gold Binding by Native and Chemically Modified Hops Biomasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    López, M. Laura; Gardea-Torresdey, J. L.; Peralta-Videa, J. R.; de la Rosa, G.; Armendáriz, V.; Herrera, I.; Troiani, H.; Henning, J.

    2005-01-01

    Heavy metals from mining, smelting operations and other industrial processing facilities pollute wastewaters worldwide. Extraction of metals from industrial effluents has been widely studied due to the economic advantages and the relative ease of technical implementation. Consequently, the search for new and improved methodologies for the recovery of gold has increased. In this particular research, the use of cone hops biomass ( Humulus lupulus ) was investigated as a new option for gold recovery. The results showed that the gold binding to native hops biomass was pH dependent from pH 2 to pH 6, with a maximum percentage bindingmore » at pH 3. Time dependency studies demonstrated that Au(III) binding to native and modified cone hops biomasses was found to be time independent at pH 2 while at pH 5, it was time dependent. Capacity experiments demonstrated that at pH 2, esterified hops biomass bound 33.4 mg Au/g of biomass, while native and hydrolyzed hops biomasses bound 28.2 and 12.0 mg Au/g of biomass, respectively. However, at pH 5 the binding capacities were 38.9, 37.8 and 11.4 mg of Au per gram of native, esterified and hydrolyzed hops biomasses, respectively.« less

  15. Field effect on digestive ripening of thiol-capped gold nanoparticles

    SciTech Connect (OSTI)

    Lin, Meng-Lin; Peng, J. S.; Lee, Sanboh; Yang, Fuqian

    2014-02-07

    We studied the digestive ripening of thiol-capped gold nanoparticles under simultaneous action of electric field and reflux heating in a silicone oil bath at 130 °C, using transmission electron microscopy. Observation revealed that a polydispersed gold nanoparticle system reached the state of nearly monodispersity under the action of an electric field and the thiol-capped gold nanoparticles carried negative charges. The electric field caused the increase of the particle size for the nearly monodispersed gold nanoparticle system. The self-assembly of the nearly monodisperse gold nanoparticles under the action of an electric field of a high field intensity was observed. The gold nanoparticles tended to form self-assembled nanostructures of six-fold symmetry. This study provides a new route for system engineering to control the particle size of metallic nanoparticles by electric field and digestive ripening.

  16. " of Supplier, Census Region, Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Value of Shipments and Receipts" "(million dollars)" " Under 20",20816,165,2514,1952,17.7 " 20-49"," W "," W ",1630,4453,12.6 " 50-99",14937," W "," W ",5411,11.3 " ...

  17. The Structure of Interfacial Water on Gold Electrodes Studied by X-ray

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Absorption Spectroscopy - Joint Center for Energy Storage Research October 23, 2014, Research Highlights The Structure of Interfacial Water on Gold Electrodes Studied by X-ray Absorption Spectroscopy Schematic representation of X-ray absorption measurements at the biased gold water interface. X-rays arrive from the left and transmit through a thin silicon nitride window plated with gold. Fluorescence provides information far from the interface while it was discovered that electron yield is

  18. Electrocatalysts having gold monolayers on platinum nanoparticle cores, and uses thereof

    DOE Patents [OSTI]

    Adzic, Radoslav; Zhang, Junliang

    2010-04-27

    The invention relates to gold-coated particles useful as fuel cell electrocatalysts. The particles are composed of an electrocatalytically active core at least partially encapsulated by an outer shell of gold or gold alloy. The invention more particularly relates to such particles having a noble metal-containing core, and more particularly, a platinum or platinum alloy core. In other embodiments, the invention relates to fuel cells containing these electrocatalysts and methods for generating electrical energy therefrom.

  19. Spectroscopic study of gold nanoparticle formation through high intensity laser irradiation of solution

    SciTech Connect (OSTI)

    Nakamura, Takahiro Sato, Shunichi; Herbani, Yuliati; Ursescu, Daniel; Banici, Romeo; Dabu, Razvan Victor

    2013-08-15

    A spectroscopic study of the gold nanoparticle (NP) formation by high-intensity femtosecond laser irradiation of a gold ion solution was reported. The effect of varying energy density of the laser on the formation of gold NPs was also investigated. The surface plasmon resonance (SPR) peak of the gold nanocolloid in real-time UV-visible absorption spectra during laser irradiation showed a distinctive progress; the SPR absorption peak intensity increased after a certain irradiation time, reached a maximum and then gradually decreased. During this absorption variation, at the same time, the peak wavelength changed from 530 to 507 nm. According to an empirical equation derived from a large volume of experimental data, the estimated mean size of the gold NPs varied from 43.4 to 3.2 nm during the laser irradiation. The mean size of gold NPs formed at specific irradiation times by transmission electron microscopy showed the similar trend as that obtained in the spectroscopic analysis. From these observations, the formation mechanism of gold NPs during laser irradiation was considered to have two steps. The first is a reduction of gold ions by reactive species produced through a non-linear reaction during high intensity laser irradiation of the solution; the second is the laser fragmentation of produced gold particles into smaller pieces. The gold nanocolloid produced after the fragmentation by excess irradiation showed high stability for at least a week without the addition of any dispersant because of the negative charge on the surface of the nanoparticles probably due to the surface oxidation of gold nanoparticles. A higher laser intensity resulted in a higher efficiency of gold NPs fabrication, which was attributed to a larger effective volume of the reaction.

  20. Department of Energy - Gold Award Press Release 9/10/2003

    Office of Scientific and Technical Information (OSTI)

    Francis Collins and Ari Patrinos Receive Energy Secretary's Gold Award for Human Genome Project Leadership September 10, 2003 WASHINGTON, DC -- Secretary of Energy Spencer Abraham ...

  1. Growth of solid and hollow gold particles through the thermal annealing of nanoscale patterned thin films

    SciTech Connect (OSTI)

    Lin, Junhao; He, Weidong; Vilayur Ganapathy, Subramanian; Peppernick, Samuel J.; Wang, Bin; Palepu, Sandeep; Remec, Miroslav; Hess, Wayne P.; Hmelo, Anthony B.; Pantelides, Sokrates T.; Dickerson, James

    2013-11-27

    Through thermally annealing well-arrayed, circular, nanoscale thin films of gold, deposited onto [111] silicon/silicon dioxide substrates, both solid and hollow gold particles of different morphologies with controllable sizes were obtained. The thin film could form individual particle or clusters of particles by tuning the diameter of it. Hollow gold particles were featured by their large size whose diameter was larger than 500 nm and confirmed by a cross-section view. Hollow gold particles show greater plasmonic field enhancement under photoemission electron microscopy. Potential growth mechanisms for these structures are explored

  2. High pressure melting curves of silver, gold and copper

    SciTech Connect (OSTI)

    Hieu, Ho Khac

    2013-11-15

    In this work, based on the Lindemann's formula of melting and the pressure-dependent Grüneisen parameter, we have investigated the pressure effect on melting temperature of silver, gold and copper metals. The analytical expression of melting temperature as a function of volume compression has been derived. Our results are compared with available experimental data as well as with previous theoretical studies and the good and reasonable agreements are found. We also proposed the potential of this approach on predicting melting of copper at very high pressure.

  3. Synthesis and characterization of mixed monolayer protected gold nanorods and their Raman activities

    SciTech Connect (OSTI)

    Mlambo, Mbuso; Mdluli, Phumlani S.; Shumbula, Poslet; Mpelane, Siyasanga; Moloto, Nosipho; Skepu, Amanda; Tshikhudo, Robert

    2013-10-15

    Graphical abstract: Gold nanorods surface functionalization. - Highlights: • Mixed monolayer protected gold nanorods. • Surface enhanced Raman spectroscopy. • HS-(CH{sub 2}){sub 11}-NHCO-coumarin as a Raman active compound. - Abstract: The cetyltrimethylammonium bromide (CTAB) gold nanorods (AuNRs) were prepared by seed-mediated route followed by the addition of a Raman active compound (HS-(CH{sub 2}){sub 11}-NHCO-coumarin) on the gold nanorods surfaces. Different stoichiometric mixtures of HS-(CH{sub 2}){sub 11}-NHCO-coumarin and HS-PEG-(CH{sub 2}){sub 11}COOH were evaluated for their Raman activities. The lowest stoichiometric ratio HS-(CH{sub 2}){sub 11}-NHCO-coumarin adsorbed on gold nanorods surface was detected and enhanced by Raman spectroscopy. The produced mixed monolayer protected gold nanorods were characterized by UV-vis spectrometer for optical properties, transmission electron microscope (TEM) for structural properties (shape and aspect ratio) and their zeta potentials (charges) were obtained from ZetaSizer to determine the stability of the produced mixed monolayer protected gold nanorods. The Raman results showed a surface enhanced Raman scattering (SERS) enhancement at the lowest stoichiometric ratio of 1% HS-(CH{sub 2}){sub 11}-NHCO-coumarin compared to high ratio of 50% HS-(CH{sub 2}){sub 11}-NHCO-coumarin on the surface of gold nanorods.

  4. Hydroxyalkyl phosphine gold complexes for use as diagnostic and therapeutic pharmaceuticals and method of making same

    DOE Patents [OSTI]

    Katti, K.V.; Berning, D.E.; Volkert, W.A.; Ketring, A.R.

    1998-12-01

    A complex and method for making a diagnostic or therapeutic pharmaceutical includes a ligand comprising at least one hydroxyalkyl phosphine donor group bound to a gold atom to form a gold-ligand complex that is stable in aqueous solutions containing oxygen, serum and other body fluids. 20 figs.

  5. Hydroxyalkyl phosphine gold complexes for use as diagnostic and therapeutic pharmaceuticals and method of making same

    DOE Patents [OSTI]

    Katti, Kattesh V.; Berning, Douglas E.; Volkert, Wynn A.; Ketring, Alan R.

    1998-01-01

    A complex and method for making same for use as a diagnostic or therapeutic pharmaceutical includes a ligand comprising at least one hydroxyalkyl phosphine donor group bound to a gold atom to form a gold-ligand complex that is stable in aqueous solutions containing oxygen, serum and other body fluids.

  6. Gold Medal Approaches for Obtaining and Using Energy Efficiency Data (101)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Gold Medal Approaches for Obtaining and Using Energy Efficiency Data (101) Gold Medal Approaches for Obtaining and Using Energy Efficiency Data (101) August 11, 2016 1:00PM to 2:30PM EDT Learn more and register.

  7. Synthesis and characterization of polyaniline coated gold nanocomposites

    SciTech Connect (OSTI)

    Zuber, Siti Nurzulaiha Mohd; Kamarun, Dzaraini; Zaki, Hamizah; Kamarudin, Mohamad Shukri; Thomas, Sabu; Kalarikkal, Nandakumar

    2015-08-28

    Considerable attention has been drawn during the last two decades to prepare nanocomposites consists of conducting polymer and noble metal due to their potential ability to generate a new class of material with novel optical, chemical, electronic or mechanical properties for various applications. In this work, an attempt has been made to synthesize nanocomposite of polyaniline (PANI) coated with gold nanoparticles (AuNPs) chemically with various types of surfactants such as polyvinylpyrrolidone (PVP), and sodium dodecyl sulphate (SDS) which act as stabilizing agents to help in stabilization of the PANI/Gold nanocomposites system. The synthesized nanocomposites were characterized by UV-Visible, field emission scanning electron microscope (FESEM) and particle size analyzer (PSA). The formation of finger like structure can be seen in the FESEM images when the AuNPs were incorporated into the polymer matrix. The EDX data showed that 18.66% and 12.67% of AuNPs atoms were present in the composite system thus proved the incorporation of AuNPs into the polymer matrix. A small red shift of the absorption peak in the UV-Vis of both PANI/AuNPs composites system may be due to the incorporation of AuNPs in the PANI matrix.

  8. Ultrafast Imaging of Surface Plasmons Propagating on a Gold Surface

    SciTech Connect (OSTI)

    Gong, Yu; Joly, Alan G.; Hu, Dehong; El-Khoury, Patrick Z.; Hess, Wayne P.

    2015-05-13

    We record time-resolved nonlinear photoemission electron microscopy (tr-PEEM) images of propagating surface plasmons (PSPs) launched from a lithographically patterned rectangular trench on a flat gold surface. Our tr-PEEM scheme involves a pair of identical, spatially separated, and interferometrically-locked femtosecond laser pulses. Power dependent PEEM images provide experimental evidence for a sequential coherent nonlinear photoemission process, in which one laser source creates a PSP polarization state through a linear interaction, and the second subsequently probes the prepared state via two photon photoemission. The recorded time-resolved movies of a PSP allow us to directly measure various properties of the surface-bound wave packet, including its carrier wavelength (785 nm) and group velocity (0.95c). In addition, tr-PEEM in concert with finite-difference time domain simulations together allow us to set a lower limit of 75 μm for the decay length of the PSP on a 100 nm thick gold film.

  9. Decoupling of epitaxial graphene via gold intercalation probed by dispersive Raman spectroscopy

    SciTech Connect (OSTI)

    Pillai, P. B. E-mail: m.desouza@sheffield.ac.uk; DeSouza, M. E-mail: m.desouza@sheffield.ac.uk; Narula, R.; Reich, S.; Wong, L. Y.; Batten, T.; Pokorny, J.

    2015-05-14

    Signatures of a superlattice structure composed of a quasi periodic arrangement of atomic gold clusters below an epitaxied graphene (EG) layer are examined using dispersive Raman spectroscopy. The gold-graphene system exhibits a laser excitation energy dependant red shift of the 2D mode as compared to pristine epitaxial graphene. The phonon dispersions in both the systems are mapped using the experimentally observed Raman signatures and a third-nearest neighbour tight binding electronic band structure model. Our results reveal that the observed excitation dependent Raman red shift in gold EG primarily arise from the modifications of the phonon dispersion in gold-graphene and shows that the extent of decoupling of graphene from the underlying SiC substrate can be monitored from the dispersive nature of the Raman 2D modes. The intercalated gold atoms restore the phonon band structure of epitaxial graphene towards free standing graphene.

  10. Probing the thiol-gold planar interface by spin polarized tunneling

    SciTech Connect (OSTI)

    Zhang, Xiaohang; McGill, Stephen A.; Xiong, Peng; Wang, Xiaolei; Zhao, Jianhua

    2014-04-14

    Reports of induced magnetism at thiol-gold interface have generated considerable recent interest. In these studies, the sample magnetization was generally measured by superconducting quantum interference device magnetometry which has limitation in determining surface and interface magnetism. In this work, we have fabricated planar tunnel junctions incorporating a thiol-gold interface. An observed room temperature humidity effect together with low temperature inelastic electron tunneling spectroscopy confirmed the existence of a thiol-gold interface in the organic-inorganic hybrid heterostructure. Spin polarized tunneling measurements were performed to probe the spin polarization at the thiol-gold interface; however, the obtained spin polarized tunneling spectra indicate no measurable spin polarization at the thiol-gold interface.

  11. Thermal properties of holmium-implanted gold films for a neutrino mass experiment with cryogenic microcalorimeters

    SciTech Connect (OSTI)

    Prasai, K.; Yanardag, S. Basak; Galeazzi, M.; Uprety, Y.; Alves, E.; Rocha, J.; Bagliani, D.; Biasotti, M.; Gatti, F.; Gomes, M. Ribeiro

    2013-08-15

    In a microcalorimetric neutrino mass experiment using the radioactive decay of {sup 163}Ho, the radioactive material must be fully embedded in the microcalorimeter absorber. One option that is being investigated is to implant the radioactive isotope into a gold absorber, as gold is successfully used in other applications. However, knowing the thermal properties at the working temperature of microcalorimeters is critical for choosing the absorber material and for optimizing the detector performance. In particular, it is paramount to understand if implanting the radioactive material in gold changes its heat capacity. We used a bolometric technique to measure the heat capacity of gold films, implanted with various concentrations of holmium and erbium (a byproduct of the {sup 163}Ho fabrication), in the temperature range 70 mK–300 mK. Our results show that the specific heat capacity of the gold films is not affected by the implant, making this a viable option for a future microcalorimeter holmium experiment.

  12. Modeling pore corrosion in normally open gold- plated copper connectors.

    SciTech Connect (OSTI)

    Battaile, Corbett Chandler; Moffat, Harry K.; Sun, Amy Cha-Tien; Enos, David George; Serna, Lysle M.; Sorensen, Neil Robert

    2008-09-01

    The goal of this study is to model the electrical response of gold plated copper electrical contacts exposed to a mixed flowing gas stream consisting of air containing 10 ppb H{sub 2}S at 30 C and a relative humidity of 70%. This environment accelerates the attack normally observed in a light industrial environment (essentially a simplified version of the Battelle Class 2 environment). Corrosion rates were quantified by measuring the corrosion site density, size distribution, and the macroscopic electrical resistance of the aged surface as a function of exposure time. A pore corrosion numerical model was used to predict both the growth of copper sulfide corrosion product which blooms through defects in the gold layer and the resulting electrical contact resistance of the aged surface. Assumptions about the distribution of defects in the noble metal plating and the mechanism for how corrosion blooms affect electrical contact resistance were needed to complete the numerical model. Comparisons are made to the experimentally observed number density of corrosion sites, the size distribution of corrosion product blooms, and the cumulative probability distribution of the electrical contact resistance. Experimentally, the bloom site density increases as a function of time, whereas the bloom size distribution remains relatively independent of time. These two effects are included in the numerical model by adding a corrosion initiation probability proportional to the surface area along with a probability for bloom-growth extinction proportional to the corrosion product bloom volume. The cumulative probability distribution of electrical resistance becomes skewed as exposure time increases. While the electrical contact resistance increases as a function of time for a fraction of the bloom population, the median value remains relatively unchanged. In order to model this behavior, the resistance calculated for large blooms has been weighted more heavily.

  13. Platinum atomic wire encapsulated in gold nanotubes: A first principle study

    SciTech Connect (OSTI)

    Nigam, Sandeep Majumder, Chiranjib; Sahoo, Suman K.; Sarkar, Pranab

    2014-04-24

    The nanotubes of gold incorporated with platinum atomic wire have been investigated by means of firstprinciples density functional theory with plane wave pseudopotential approximation. The structure with zig-zag chain of Pt atoms in side gold is found to be 0.73 eV lower in energy in comparison to straight chain of platinum atoms. The Fermi level of the composite tube was consisting of d-orbitals of Pt atoms. Further interaction of oxygen with these tubes reveals that while tube with zig-zag Pt prefers dissociative adsorption of oxygen molecule, the gold tube with linear Pt wire favors molecular adsorption.

  14. Seeded Growth of Monodisperse Gold Nanorods Using Bromide-Free Surfactant Mixtures

    SciTech Connect (OSTI)

    Ye, XC; Gao, YZ; Chen, J; Reifsnyder, DC; Zheng, C; Murray, CB

    2013-05-01

    We demonstrate for the first time that monodisperse gold nanorods (NRs) with broadly tunable dimensions and longitudinal surface plasmon resonances can be synthesized using a bromide-free surfactant mixture composed of alkyltrimethylammonium chloride and sodium oleate. It is found that uniform gold NRs can be obtained even with an iodide concentration approaching 100 mu M in the growth solution. In contrast to conventional wisdom, our results provide conclusive evidence that neither bromide as the surfactant counterion nor a high concentration of bromide ions in the growth solution is essential for gold NR formation. Correlated electron microscopy study of three-dimensional structures of gold NRs reveals a previously unprecedented octagonal prismatic structure enclosed predominantly by high index {310} crystal planes. These findings should have profound implications for a comprehensive mechanistic understanding of seeded growth of anisotropic metal nanocrystals.

  15. Polarization sensitivity of light diffraction for periodic array of anisotropic gold nanoparticles

    SciTech Connect (OSTI)

    Tsai, Ming-shan Liu, Tung-kai; Tsen, Chun-yu; Ting, Chen-ching

    2015-06-15

    This article aims to analyze the first order diffraction intensity of the incident polarized light which is diffracted by the gold nanoparticles array in terms of the surface plasmon effect. The inspected gold nanoparticles array films are built in grating pattern with stripe thickness of 4 μm and diameters of gold nanoparticles ca. 10–56 nm, which are formed by annealing at temperatures of 400, 450, 500, and 550 °C, respectively. The probing light is linearly polarized with wavelengths of 450–800 nm and counterclockwise turns its polarization direction from 0° to 90° during measurements. The results show that the diffraction intensity depends on the anisotropic configuration samples which gold nanoparticles are orientated by analyzing the scanning electron microscope images. It results that the localized surface plasmon effect induced by incident field depends on orientation and causes the sample polarization-sensitive.

  16. A gold hybrid structure as optical coupler for quantum well infrared photodetector

    SciTech Connect (OSTI)

    Ding, Jiayi; Li, Qian; Jing, Youliang; Chen, Xiaoshuang Li, Zhifeng; Li, Ning; Lu, Wei

    2014-08-28

    A hybrid structure consisting of a square lattice of gold disk arrays and an overlaying gold film is proposed as an optical coupler for a backside-illuminated quantum well infrared photodetector (QWIP). Finite difference time-domain method is used to numerically simulate the reflection spectra and the field distributions of the hybrid structure combined with the QWIP device. The results show that the electric field component perpendicular to the quantum well is strongly enhanced when the plasmonic resonant wavelength of the hybrid structure coincides with the response one of the quantum well infrared photodetector regardless of the polarization of the incident light. The effect of the diameter and thickness of an individual gold disk on the resonant wavelength is also investigated, which indicates that the localized surface plasmon also plays a role in the light coupling with the hybrid structure. The coupling efficiency can exceed 50 if the structural parameters of the gold disk arrays are well optimized.

  17. Imaging Isolated Gold Atom Catalytic Sites in Zeolite NaY

    SciTech Connect (OSTI)

    Lu, Jing; Aydin, C.; Browning, Nigel D.; Gates, Bruce C.

    2012-06-11

    Gold, the most stable metallic element, attracted wide attention as a catalyst only after the discovery that gold nanoclusters on oxide supports are highly active and selective for reactions including numerous oxidation,[1–8] hydrogenation,[9–11] hydroamination,[12, 13] ring expansion,[14, 15] and coupling[16, 17] reactions. The catalytic properties of supported gold strongly dependent on the gold–support interactions and the size of the active species, which must be small—typically clusters with diameters of the order of 1 nm.[18–20] Frequent discoveries of new gold-catalyzed reactions are leading the science; understanding has been slow to emerge.[21] Major challenges are to identify the catalytically active species and to characterize gold–support interactions.

  18. A New Gold Pan For The West- Discovering Blind Geothermal Systems...

    Open Energy Info (EERE)

    Gold Pan For The West- Discovering Blind Geothermal Systems With Shallow Temperature Surveys Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: A...

  19. Solving the Unsovlable: The Nanostructure of Gold at 1.1 Å Resolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Is it amorphous or composed of discrete atomic arrangements of uniform size and structure? ... The structure was then determined by x-ray diffraction. A gold-thiol megamolecule was ...

  20. Apex Gold discussion fosters international cooperation in run-up to 2016

    National Nuclear Security Administration (NNSA)

    Nuclear Security Summit | National Nuclear Security Administration | (NNSA) Apex Gold discussion fosters international cooperation in run-up to 2016 Nuclear Security Summit Monday, February 1, 2016 - 1:16pm NNSA Blog Participants in Apex Gold at Lawrence Livermore National Laboratory. What would national leaders do in the face of a transnational nuclear terrorism threat? Last week, ministers and other senior delegates from 37 nations, along with representatives from the International Atomic

  1. REEcyle Takes the Gold in the 2014 National Clean Energy Business Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Competition | Department of Energy REEcyle Takes the Gold in the 2014 National Clean Energy Business Plan Competition REEcyle Takes the Gold in the 2014 National Clean Energy Business Plan Competition June 12, 2014 - 5:53pm Addthis The student startup, REEcycle, from the University of Houston swept this year's National Clean Energy Business Plan Competition, taking home all three awards for its innovative method of reclaiming rare earth elements from magnets in electronics. | Photo courtesy

  2. Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods

    SciTech Connect (OSTI)

    N'Gom, Moussa; Li Shuzhou; Schatz, George; Erni, Rolf; Agarwal, Ashish; Kotov, Nicholas; Norris, Theodore B.

    2009-09-15

    Electron energy-loss spectroscopy and energy-filtered transmission electron-microscope imaging are used to characterize the energy distribution of the surface plasmon of isolated and coupled gold nanorods. Local-field enhancement and spectral shift of the plasmon modes are observed for two interacting nanoparticles. The spatial modes measured by energy loss are shown to share qualitative similarities with the electromagnetic field distribution around gold nanorods induced by optical excitation as simulated using the discrete dipole-approximation method.

  3. Substrate decomposition in galvanic displacement reaction: Contrast between gold and silver nanoparticle formation

    SciTech Connect (OSTI)

    Ghosh, Tapas; Satpati, Biswarup

    2015-06-24

    We have investigated substrate decomposition during formation of silver and gold nanoparticles in galvanic displacement reaction on germanium surfaces. Silver and gold nanoparticles were synthesized by electroless deposition on sputter coated germanium thin film (∼ 200 nm) grown initially on silicon substrate. The nanoparticles formation and the substrate corrosion were studied using scanning transmission electron microscopy (STEM) and the energy dispersive X-ray (EDX) spectroscopy.

  4. Experimental and theoretical realization of enhanced light scattering spectroscopy of gold nanorods

    SciTech Connect (OSTI)

    Li, Yunbo; Song, Linlin; Qiao, Yisha

    2015-01-12

    Assisted with transmission electron microscopy and extinction spectra, the enhanced light scattering (ELS) experiments were performed with gold nanoparticles. Although both the nanospheres and nanorods can enhance light scattering in study aggregation, the spectral characteristics of gold nanorods is relatively simple compared to that of nanospheres. This will further extend the application range of ELS method to determinate the amounts of inorganic ions in analytical field and investigate on the macromolecular aggregation in polymeric research due to its simplicity, rapidity, and sensitivity.

  5. Gold Nanoparticles Self-Similar Chain Structure Organized by DNA Origami

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gold Nanoparticles Self-Similar Chain Structure Organized by DNA Origami Authors: Ding, B., Deng, Z., Yan, H., Cabrini, S., Zukerman, R., and Boker, J. Title: Gold Nanoparticles Self-Similar Chain Structure Organized by DNA Origami Source: Journal of the American Chemical Society Year: 2010 Volume: 132 Pages: 3248-3249 ABSTRACT: Here we demonstrate Au nanoparticle self-similar chain structure organized by triangle DNA origami with well-controlled orientation and <10 nm spacing. We show for

  6. Improved thermal stability of oxide-supported naked gold nanoparticles by ligand-assisted pinning

    SciTech Connect (OSTI)

    Moreno, C; Divins, N. J.; Gazquez, Jaume; Varela, Maria; Angurell, I; Llorca, J

    2012-01-01

    We report a method to improve the thermal stability, up to 900 C, of bare-metal (naked) gold nanoparticles supported on top of SiO{sub 2} and SrTiO{sub 3} substrates via ligand-assisted pinning. This approach leads to monodisperse naked gold nanoparticles without significant sintering after thermal annealing in air at 900 C. The ligand-assisted pinning mechanism is described.

  7. Electronic Structure of Thiol-Covered Gold Nanoparticles: Au102(MBA)44 |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Structure of Thiol-Covered Gold Nanoparticles: Au102(MBA)44 Authors: Li, Y., Galli, G., and Gygi, F. We present first principles, density functional theory (DFT) calculations of the structural and electronic properties of thiolate-protected gold nanoparticles [Au102(MBA)44 ] that have been recently crystallized and measured by X-ray diffraction. Our calculations yield structural properties in very good agreement with experiment and reveal the impact of

  8. Measurement of gold nanofilm dose enhancement using unlaminated radiochromic film

    SciTech Connect (OSTI)

    Rakowski, Joseph T. Snyder, Michael G.; Hillman, Yair; Laha, Suvra S.; Lawes, Gavin; Buczek, Matthew G.; Tucker, Mark A.; Liu, Fangchao; Mao, Guangzhao

    2015-10-15

    Purpose: Bombarding high-Z material with x-ray radiation releases Auger electrons and Coster–Kronig electrons, along with deeper penetrating fluorescent x-rays and photoelectrons. The Auger and Coster–Kronig electron penetration distance is on the order of nanometers to micrometers in water or tissue, creating a large dose enhancement accompanied by a RBE greater than 1 at the cellular level. The authors’ aim is to measure the gold nanofilm dose enhancement factor (DEF) at the cellular level with unlaminated radiochromic film via primary 50 kVp tungsten x-ray spectrum interaction, similar to an electronic brachytherapy spectrum. Methods: Unlaminated Gafchromic{sup ®} EBT2 film and Monte Carlo modeling were combined to derive DEF models. Gold film of thickness 23.1 ±  4.3 nm and surface roughness of 1.2 ± 0.2 nm was placed in contact with unlaminated radiochromic film in a downstream orientation and exposed to a 50 kVp tungsten bremsstrahlung, mean energy 19.2 keV. Film response correction factors were derived by Monte Carlo modeling of electron energy deposition in the film’s active layer, and by measuring film energy dependence from 4.5 keV to 50 kVp. Results: The measured DEF within a 13.6 μm thick water layer was 0.29 with a mean dose of 94 ± 9.4 cGy from Au emissions and 324 ± 32.4 cGy from the 50 kVp primary beam. Monte Carlo derived correction factors allowed determination of Au contributed dose in shallower depths at 0.25 μm intervals. Maximum DEF of 18.31 was found in the first 0.25 μm water depth. Conclusions: Dose enhancement from Au nanofilm can be measured at the cellular level using unlaminated radiochromic film. Complementing the measured dose value with Monte Carlo calculations allows estimation of dose enhancement at depth increments within the cellular range.

  9. Enhancing the Properties of Carbon and Gold Substrates by Surface Modification

    SciTech Connect (OSTI)

    Jennifer Anne Harnisch

    2002-06-27

    The properties of both carbon and gold substrates are easily affected by the judicious choice of a surface modification protocol. Several such processes for altering surface composition have been published in literature. The research presented in this thesis primarily focuses on the development of on-column methods to modify carbon stationary phases used in electrochemically modulated liquid chromatography (EMLC). To this end, both porous graphitic carbon (PGC) and glassy carbon (GC) particles have been modified on-column by the electroreduction of arenediazonium salts and the oxidation of arylacetate anions (the Kolbe reaction). Once modified, the carbon stationary phases show enhanced chromatographic performance both in conventional liquid chromatographic columns and EMLC columns. Additionally, one may also exploit the creation of aryl films to by electroreduction of arenediazonium salts in the creation of nanostructured materials. The formation of mercaptobenzene film on the surface of a GC electrode provides a linking platform for the chemisorption of gold nanoparticles. After deposition of nanoparticles, the surface chemistry of the gold can be further altered by self-assembled monolayer (SAM) formation via the chemisorption of a second thiol species. Finally, the properties of gold films can be altered such that they display carbon-like behavior through the formation of benzenehexathiol (BHT) SAMs. BHT chemisorbs to the gold surface in a previously unprecedented planar fashion. Carbon and gold substrates can be chemically altered by several methodologies resulting in new surface properties. The development of modification protocols and their application in the analytical arena is considered herein.

  10. Transformation of thiolated chitosan-templated gold nanoparticles to huge microcubes

    SciTech Connect (OSTI)

    Sun, Yudie; Liu, Honglin; Yang, Liangbao; Sun, Bai; Liu, Jinhuai

    2014-05-01

    Graphical abstract: - Highlights: • Mercapto groups were grafted to chitosan molecule by a reactive amine reduction. • Functional polymer with well-defined monomer units controls AuNPs assembly. • Assembled morphologies depend on the ratio of AuNPs to thiolate groups. • Microcubes with side length of ∼20 μm was synthesized through a dialysis step. • A edge-to-middle growth mechanism of gold microcubes was observed. - Abstract: The L-cysteine molecules were successfully grafted to the 2-amino group of chitosan by a reactive amine reduction, and the as-synthesized thiolated chitosan (TC) molecules were used as the templates to direct the self-assembly of gold nanoparticles and induce the transformation of these assemblies to gold microcubes through a deep-going dialysis. We found that the ratio of gold nanoparticles to TC molecules could greatly affect the shape of the assembled clusters. Different stages of these clusters and microstructures during the dialysis process were characterized by scanning electron microscope (SEM), and the microcubes with average side length of about 20 μm were successfully synthesized. According to the morphology evolution of the assembly, it could be concluded that the microcubes were formed from external to internal. The SERS area mapping images of microcubes and some clusters were also collected to study the formation mechanism of gold microcubes. Our work demonstrates a simple and highly effective way to assemble gold nanoparticles into microcubes with unique properties.

  11. World's Largest Gold Crystal Studied at Los Alamos

    ScienceCinema (OSTI)

    Vogel, Sven; Nakotte, Heinz

    2015-01-07

    When geologist John Rakovan needed better tools to investigate whether a dazzling 217.78-gram piece of gold was in fact the world's largest single-crystal specimen - a distinguishing factor that would not only drastically increase its market value but also provide a unique research opportunity - he traveled to Los Alamos National Laboratory's Lujan Neutron Scattering Center to peer deep inside the mineral using neutron diffractometry. Neutrons, different from other probes such as X-rays and electrons, are able to penetrate many centimeters deep into most materials. Revealing the inner structure of a crystal without destroying the sample - imperative, as this one is worth an estimated $1.5 million - would allow Rakovan and Lujan Center collaborators Sven Vogel and Heinz Nakotte to prove that this exquisite nugget, which seemed almost too perfect and too big to be real, was a single crystal and hence a creation of nature. Its owner, who lives in the United States, provided the samples to Rakovan to assess the crystallinity of four specimens, all of which had been found decades ago in Venezuela.

  12. Structure and Function Evolution of Thiolate Monolayers on Gold

    SciTech Connect (OSTI)

    Grant Alvin Edwards

    2006-05-01

    The use of n-alkanethiolate self-assembled monolayers on gold has blossomed in the past few years. These systems have functioned as models for common interfaces. Thiolate monolayers are ideal because they are easily modified before or after deposition. The works contained within this dissertation include interfacial characterization (inbred reflection absorption spectroscopy, ellipsometry, contact angle, scanning probe microscopy, and heterogeneous electron-transfer kinetics) and various modeling scenarios. The results of these characterizations present ground-breaking insights into the structure, function, and reproducible preparation of these monolayers. Surprisingly, three interfacial properties (electron-transfer, contact angle, and ellipsometry) were discovered to depend directly on the odd-even character of the monolayer components. Molecular modeling was utilized to investigate adlayer orientation, and suggests that these effects are adlayer structure specific. Finally, the electric force microscopy and theoretical modeling investigations of monolayer samples are presented, which show that the film dielectric constant, thickness, and dipole moment directly affect image contrast. In addition, the prospects for utilization of this emerging technique are outlined.

  13. Effect of particle size on the thermo-optic properties of gold nanofluids – A thermal lens study

    SciTech Connect (OSTI)

    Kumar, B. Rajesh; Basheer, N. Shemeena; Kurian, Achamma; George, Sajan D.

    2014-01-28

    Spherical gold nanoparticles having particle size in the range 30 to 50 nm are prepared using citrate reduction of gold chloride trihydrate in water. The influence of particle size on the thermal diffusivity value of gold nanofluid is measured using dual beam thermal lens technique. The present study shows that the particle size influences the effective thermal diffusivity value of the nanofluid substantially and the value decreases with decrease in particle size for the investigated samples.

  14. Synthesis and Characterization of Gold Clusters Ligated with 1,3-Bis(dicyclohexylphosphino)propane

    SciTech Connect (OSTI)

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2013-09-01

    In this multidisciplinary study we combine chemical reduction synthesis of novel gold clusters in solution with high-resolution analytical mass spectrometry (MS) to gain insight into the composition of the gold clusters and how their size, ionic charge state and ligand substitution influences their gas-phase fragmentation pathways. Ultra small cationic gold clusters ligated with 1,3-bis(dicyclohexylphosphino)propane (DCPP) were synthesized for the first time and introduced into the gas phase using electrospray ionization (ESI). Mass-selected cluster ions were fragmented employing collision induced dissociation (CID) and the product ions were analysed using MS. The solutions were found to contain the multiply charged cationic gold clusters Au9L43+, Au13L53+, Au6L32+, Au8L32+ and Au10L42+ (L = DCPP). The gas-phase fragmentation pathways of these cluster ions were examined systematically employing CID combined with MS. In addition, CID experiments were performed on related gold clusters of the same size and ionic charge state but capped with 1,3-bis(diphenylphosphino)propane (DPPP) ligands containing phenyl functional groups at the two phosphine centers instead of cyclohexane rings. It is shown that this relatively small change in the molecular substitution of the two phosphine centers in diphosphine ligands (C6H11 versus C6H5) exerts a pronounced influence on the size of the species that are preferentially formed in solution during reduction synthesis as well as the gas-phase fragmentation channels of otherwise identical gold cluster ions. The mass spectrometry results indicate that in addition to the length of the alkyl chain between the two phosphine centers, the substituents at the phosphine centers also play a crucial role in determining the composition, size and stability of diphosphine ligated gold clusters synthesized in solution.

  15. SU-C-207-06: In Vivo Quantification of Gold Nanoparticles Using K-Edge Imaging Via Spectrum Shaping by Gold Filter

    SciTech Connect (OSTI)

    Chen, H; Cormack, R; Bhagwat, M; Berbeco, R

    2015-06-15

    Purpose: Gold nanoparticles (AuNP) are multifunctional platforms ideal for drug delivery, targeted imaging and radiosensitization. We have investigated quantitative imaging of AuNPs using on board imager (OBI) cone beam computed tomography (CBCT). To this end, we also present, for the first time, a novel method for k-edge imaging of AuNP by filter-based spectral shaping. Methods: We used a digital 25 cm diameter water phantom, embedded with 3 cm spheres filled with AuNPs of different concentrations (0 mg/ml – 16 mg/ml). A poly-energetic X-ray spectrum of 140 kVp from a conventional X-ray tube is shaped by balanced K-edge filters to create an excess of photons right above the K-edge of gold at 80.7 keV. The filters consist of gold, tin, copper and aluminum foils. The phantom with appropriately assigned attenuation coefficients is forward projected onto a detector for each energy bin and then integrated. FKD reconstruction is performed on the integrated projections. Scatter, detector efficiency and noise are included. Results: We found that subtracting the results of two filter sets (Filter A:127 µm gold foil with 254 µm tin, 330 µm copper and 1 mm aluminum, and Filter B: 635 µm tin with 264 µm copper and 1 mm aluminum), provides substantial image contrast. The resulting filtered spectra match well below 80.7 keV, while maintaining sufficient X-ray quanta just above that. Voxel intensities of AuNP containing spheres increase linearly with AuNP concentration. K-edge imaging provides 18% more sensitivity than the tin filter alone, and 38% more sensitivity than the gold filter alone. Conclusion: We have shown that it is feasible to quantitatively detect AuNP distributions in a patient-sized phantom using clinical CBCT and K-edge spectral shaping.

  16. The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata

    SciTech Connect (OSTI)

    Liolios, Konstantinos; Chen, Amy; Mavromatis, Konstantinos; Tavernarakis, Nektarios; Hugenholtz, Phil; Markowitz, Victor; Kyrpides, Nikos C.

    2009-09-01

    The Genomes On Line Database (GOLD) is a comprehensive resource for centralized monitoring of genome and metagenome projects worldwide. Both complete and ongoing projects, along with their associated metadata, can be accessed in GOLD through precomputed tables and a search page. As of September 2009, GOLD contains information for more than 5800 sequencing projects, of which 1100 have been completed and their sequence data deposited in a public repository. GOLD continues to expand, moving toward the goal of providing the most comprehensive repository of metadata information related to the projects and their organisms/environments in accordance with the Minimum Information about a (Meta)Genome Sequence (MIGS/MIMS) specification.

  17. Size-dependent stability toward dissociation and ligand binding energies of phosphine-ligated gold cluster ions

    SciTech Connect (OSTI)

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2014-01-01

    The stability of sub-nanometer size gold clusters ligated with organic molecules is of paramount importance to the scalable synthesis of monodisperse size-selected metal clusters with highly tunable chemical and physical properties. For the first time, a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS) equipped with surface induced dissociation (SID) has been employed to investigate the time and collision energy resolved fragmentation behavior of cationic doubly charged gold clusters containing 7-9 gold atoms and 6-7 triphenylphosphine (TPP) ligands prepared by reduction synthesis in solution. The TPP ligated gold clusters are demonstrated to fragment through three primary dissociation pathways: (1) Loss of a neutral TPP ligand from the precursor gold cluster, (2) asymmetric fission and (3) symmetric fission and charge separation of the gold core resulting in formation of complementary pairs of singly charged fragment ions. Threshold energies and activation entropies of these fragmentation pathways have been determined employing Rice-Ramsperger-Kassel-Marcus (RRKM) modeling of the experimental SID data. It is demonstrated that the doubly charged cluster ion containing eight gold atoms and six TPP ligands, (8,6)2+, exhibits exceptional stability compared to the other cationic gold clusters examined in this study due to its large ligand binding energy of 1.76 eV. Our findings demonstrate the dramatic effect of the size and extent of ligation on the gas-phase stability and preferred fragmentation pathways of small TPP-ligated gold clusters.

  18. Electrochemical and scanning probe microscopic characterization of spontaneously adsorbed organothiolate monolayers at gold

    SciTech Connect (OSTI)

    Wong, Sze-Shun Season

    1999-12-10

    This dissertation presented several results which add to the general knowledge base regarding organothiolates monolayer spontaneously adsorbed at gold films. Common to the body of this work is the use of voltammetric reductive resorption and variants of scanning probe microscopy to gain insight into the nature of the monolayer formation process as well as the resulting interface. The most significant result from this work is the success of using friction force microscopy to discriminate the end group orientation of monolayer chemisorbed at smooth gold surfaces with micrometer resolution (Chapter 4). The ability to detect the differences in the orientational disposition is demonstrated by the use PDMS polymer stamp to microcontact print an adlayer of n-alkanethiolate of length n in a predefine pattern onto a gold surface, followed by the solution deposition of a n-alkanethiol of n {+-} 1 to fill in the areas on the gold surface intentionally not coated by the stamping process. These two-component monolayers can be discriminated by using friction force microscopy which detects differences in friction contributed by the differences in the orientation of the terminal groups at surfaces. This success has recently led to the detection of the orientation differences at nanometer scale. Although the substrates examined in this work consisted entirely of smooth gold films, the same test can be performed on other smooth substrates and monolayer materials.

  19. Gold deposits in the late Archaean Nzega-Igunga greenstone belt, central plateau of tanzania

    SciTech Connect (OSTI)

    Feiss, P.G.; Siyomana, S.

    1985-01-01

    2.2 m oz of gold have been produced, since 1935, from late Archaean (2480-2740 Ma) greenstone belts of the Central Plateau, Tanzania. North and east of Nzega (4/sup 0/12'S, 3/sup 0/11'E), 18% of the exposed basement, mainly Dodoman schists and granites, consists of metavolcanics and metasediments of the Nyanzian and Kavirondian Series. Four styles of mineralization are observed. 1. Stratabound quartz-gold veins with minor sulfides. Host rocks are quartz porphyry, banded iron formation (BIF), magnetite quartzite, and dense, cherty jasperite at the Sekenke and Canuck mines. The Canuck veins are on strike from BIF's in quartz-eye porphyry of the Igusule Hills. 2. Stratabound, disseminated gold in coarse-grained, crowded feldspar porphyry with lithic fragments and minor pyrite. At Bulangamilwa, the porphyry is conformable with Nyanzian-aged submarine (.) greenstone, volcanic sediment, felsic volcanics, and sericite phyllite. The deposits are on strike with BIF of the Wella Hills, which contains massive sulfide with up to 15% Pb+Zn. 3. Disseminated gold in quartz-albite metasomes in Nyanzian greenstones. At Kirondatal, alteration is associated with alaskites and feldspar porphyry dikes traceable several hundred meters into post-Dodoman diorite porphyry. Gold is with pyrite, arsenopyrite, pyrrhotite, minor chalcopyrite, and sphalerite as well as tourmalinite and silica-cemented breccias. 4. Basal Kavirondian placers in metaconglomerates containing cobbles and boulders of Dodoman and Nyanzian rocks several hundred meters up-section from the stratabound, disseminated mineralization at Bulangamilwa.

  20. Modifying the chemistry of graphene with substrate selection: A study of gold nanoparticle formation

    SciTech Connect (OSTI)

    Zaniewski, Anna M.; Trimble, Christie J.; Nemanich, Robert J.

    2015-03-23

    Graphene and metal nanoparticle composites are a promising class of materials with unique electronic, optical, and chemical properties. In this work, graphene is used as a reducing surface to grow gold nanoparticles out of solution-based metal precursors. The nanoparticle formation is found to strongly depend upon the graphene substrate selection. The studied substrates include diamond, p-type silicon, aluminum oxide, lithium niobate, and copper. Our results indicate that the chemical properties of graphene depend upon this selection. For example, for the same reaction times and concentration, the reduction of gold chloride to gold nanoparticles on graphene/lithium niobate results in 3% nanoparticle coverage compared to 20% coverage on graphene/silicon and 60% on graphene/copper. On insulators, nanoparticles preferentially form on folds and edges. Energy dispersive X-ray analysis is used to confirm the nanoparticle elemental makeup.

  1. Melting behaviour of gold-platinum nanoalloy clusters by molecular dynamics simulations

    SciTech Connect (OSTI)

    Ong, Yee Pin; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    The melting behavior of bimetallic gold-platinum nanoclusters is studied by applying Brownian-type isothermal molecular dynamics (MD) simulation, a program modified from the cubic coupling scheme (CCS). The process begins with the ground-state structures obtained from global minimum search algorithm and proceeds with the investigation of the effect of temperature on the thermal properties of gold-platinum nanoalloy clusters. N-body Gupta potential has been employed in order to account for the interactions between gold and platinum atoms. The ground states of the nanoalloy clusters, which are core-shell segregated, are heated until they become thermally segregated. The detailed melting mechanism of the nanoalloy clusters is studied via this approach to provide insight into the thermal stability of the nanoalloy clusters.

  2. Application of Gold Electrodes for the Study of Nickel Based Homogeneous Catalysts for Hydrogen Oxidation

    SciTech Connect (OSTI)

    Nepomnyashchii, Alexander B.; Liu, Fei; Roberts, John A.; Parkinson, Bruce A.

    2013-08-12

    Gold and glassy carbon working electrode materials are compared as suitable substrates for the hydrogen oxidation reaction with Ni(PCy2Nt-Bu2)2(BF4)2 used as a catalyst. Voltammetric responses showing electrocatalytic hydrogen oxidation mediated by the homogeneous electrocatalyst Ni(PCy2Nt-Bu2)2(BF4)2 are identical at glassy carbon and gold electrodes, which shows that gold electrode can be used for hydrogen oxidation reaction. This work is supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under FWP 56073.

  3. Charge Retention by Gold Clusters on Surfaces Prepared Using Soft Landing of Mass Selected Ions

    SciTech Connect (OSTI)

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2012-01-24

    Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Ligand-stabilized gold clusters were prepared in methanol solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine complex in the presence of 1,3-bis(diphenylphosphino)propane. Electrospray ionization was used to introduce the clusters into the gas-phase and mass-selection was employed to isolate a single ionic cluster species (Au11L53+, L = 1,3-bis(diphenylphosphino)propane) which was delivered to surfaces at well controlled kinetic energies. Using in-situ time of flight secondary ion mass spectrometry (TOF-SIMS) it is demonstrated that the Au11L53+ cluster retains its 3+ charge state when soft landed onto the surface of a 1H,1H,2H,2H-

  4. Gold-titania interface toughening and thermal conductance enhancement using an organophosphonate nanolayer

    SciTech Connect (OSTI)

    Chow, Philippe K.; O'Brien, Peter; Ramanath, Ganpati; Cardona Quintero, Y.; Ramprasad, R.; Hubert Mutin, P.; Lane, Michael

    2013-05-20

    We demonstrate that a mercaptan-terminated organophosphonate nanolayer at gold-titania interfaces can give rise to two- to three-fold enhancement in the interfacial fracture toughness and thermal conductance. Electron spectroscopy reveals that interfacial delamination occurs at the metal-molecule interface near the gold-sulfur bonds, consistent with density functional theory calculations of bond energies. Qualitative correlation between interfacial fracture toughness and bond energies suggest that organophosphonate nanolayers are resilient to humidity-induced degradation. These results, and the versatility of organophosphonates as surface functionalization agents for technologically relevant materials, unlock uncharted avenues for molecular engineering of interfaces in materials and devices for a variety of applications.

  5. Experimental demonstration of laser to x-ray conversion enhancements with low density gold targets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shang, Wanli; Yang, Jiamin; Zhang, Wenhai; Li, Zhichao; Deng, Bo; Dong, Yunsong; Zhu, Tuo; Huang, Chengwu; Zhan, Xiayu; Mei, Yu; et al

    2016-02-12

    The enhancement of laser to x-ray conversion efficiencies using low density gold targets [W. L. Shang, J. M. Yang, and Y. S. Dong, Appl. Phys. Lett. 102, 094105 (2013)] is demonstrated. Laser to x-ray conversion efficiencies with 6.3% and 12% increases are achieved with target densities of 1 and 0.25 g/cm3, when compared with that of a solid gold target (19.3 g/cm3). Experimental data and numerical simulations are in good agreement. Lastly, the enhancement is caused by larger x-ray emission zone lengths formed in low density targets, which is in agreement with the simulation results.

  6. Anomalous complete opaqueness in a sparse array of gold nanoparticle chains

    SciTech Connect (OSTI)

    Bai Benfeng; Li Xiaowei; Vartiainen, Ismo; Lehmuskero, Anni; Turunen, Jari; Kuittinen, Markku; Vahimaa, Pasi; Kang Guoguo

    2011-08-22

    We report on an anomalous polarization-switching extinction effect in a sparse array of gold nanoparticle chains: under normal incidence of light, the array is almost transparent for one polarization; whereas it is fully opaque (with nearly zero transmittance) for the orthogonal polarization within a narrow band, even though the nanoparticles cover only a tiny fraction (say, 3.5%) of the transparent substrate surface. We reveal that the strong polarization-dependent short-range dipolar coupling and long-range radiative coupling of gold nanoparticles in this highly asymmetric array is responsible for this extraordinary effect.

  7. Plasmonic behavior of gold nanorod heterodimers with free-electron feed

    SciTech Connect (OSTI)

    Maiti, Arpan; Maity, Achyut; Chini, Tapas Kumar

    2015-06-24

    The plasmon coupling between metal nanostructures can lead to huge local electric field enhancement and new plasmon modes. Here, we study the effect of the close proximity of two gold nanorod particles on the modification of localized surface plasmon (LSP) modes of the individual on gold nanorod in spectral and spatial domain using cathodoluminescence (CL) spectroscopy and imaging in a high resolution scanning electron microscope (SEM). Significantly enhanced resonant emission is observed from the nanorod dimers when the electron beam is injected around the junction between the rods, where the local density of electromagnetic states is raised.

  8. Calculation of the extinction cross section and lifetime of a gold nanoparticle using FDTD simulations

    SciTech Connect (OSTI)

    Radhakrishnan, Archana; Murugesan, Dr V.

    2014-10-15

    The electromagnetic theory of light explains the behavior of light in most of the domains quite accurately. The problem arises when the exact solution of the Maxwell's equation is not present, in case of objects with arbitrary geometry. To find the extinction cross-section and lifetime of the gold nanoparticle, the software FDTD solutions 8.6 by Lumerical is employed. The extinction cross-sections and lifetimes of Gold nanospheres of different sizes and arrangements are studied using pulse lengths of the order of femtoseconds. The decay constant and other properties are compared. Further, the lifetimes are calculated using frequency and time domain calculations.

  9. Three-dimensional x-ray fluorescence mapping of a gold nanoparticle-loaded phantom

    SciTech Connect (OSTI)

    Ren, Liqiang; Wu, Di; Li, Yuhua; Liu, Hong; Wang, Ge; Wu, Xizeng

    2014-03-15

    Purpose : X-ray fluorescence (XRF) is a promising technique with sufficient specificity and sensitivity for identifying and quantifying features in small samples containing high atomic number (Z) materials such as iodine, gadolinium, and gold. In this study, the feasibility of applying XRF to early breast cancer diagnosis and treatment is studied using a novel approach for three-dimensional (3D) x-ray fluorescence mapping (XFM) of gold nanoparticle (GNP)-loaded objects in a physical phantom at the technical level. Methods : All the theoretical analysis and experiments are conducted under the condition of using x-ray pencil beam and a compactly integrated x-ray spectrometer. The penetrability of the fluorescence x-rays from GNPs is first investigated by adopting a combination of BR12 with 70 mm/50 mm in thickness on the excitation/emission path to mimic the possible position of tumor goldin vivo. Then, a physical phantom made of BR12 is designed to translate in 3D space with three precise linear stages and subsequently the step by step XFM scanning is performed. The experimental technique named as background subtraction is applied to isolate the gold fluorescence from each spectrum obtained by the spectrometer. Afterwards, the attenuations of both the incident primary x-ray beam with energies beyond the gold K-edge energy (80.725 keV) and the isolated gold K{sub α} fluorescence x-rays (65.99 –69.80 keV) acquired after background subtraction are well calibrated, and finally the unattenuated K{sub α} fluorescence counts are used to realize mapping reconstruction and to describe the linear relationship between gold fluorescence counts and corresponding concentration of gold solutions. Results : The penetration results show that the goldK{sub α} fluorescence x-rays have sufficient penetrability for this phantom study, and the reconstructed mapping results indicate that both the spatial distribution and relative concentration of GNPs within the designed BR12 phantom

  10. Efficient Coupling and Transport of a Surface Plasmon at 780 nm in a Gold Nanostructure

    SciTech Connect (OSTI)

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

    2015-08-28

    We studied plasmonic nanostructures in single-crystal gold with scanning electron and femtosecond photoemission electron microscopies. We designed an integrated laser coupling and nanowire waveguide structure by focused ion beam lithography in single-crystal gold flakes. The photoemission results show that the laser field is efficiently coupled into a propagating surface plasmon by a simple hole structure and propagates efficiently in an adjacent nano-bar waveguide. A strong local field is created by the propagating surface plasmon at the nano-bar tip. A similar structure, with a decreased waveguide width and thickness, displayed significantly more intense photoemission indicating enhanced local electric field at the sharper tip.

  11. Solar Companies Go for the Gold with SunShot Incubator | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Companies Go for the Gold with SunShot Incubator Solar Companies Go for the Gold with SunShot Incubator July 26, 2012 - 9:45am Addthis William Parish from Solar Mosaic, one of nine solar startups chosen for the latest round of SunShot Incubator funding, discusses his company’s project with Energy Secretary Steven Chu at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by John De La Rosa. William Parish from Solar Mosaic, one of nine solar startups chosen for the

  12. FY2014 Parameters for Gold Ions in Booster, AGS, and RHIC

    SciTech Connect (OSTI)

    Gardner, C. J.

    2014-07-30

    The nominal parameters for gold ions in Booster, AGS, and RHIC are given for the FY2014 running period. The parameters are worked out using various formulas to derive mass, kinetic parameters, RF parameters, ring parameters, etc.. The ''standard setup'', ''medium-energy'', and ''low-energy'' parameters are summarized in separate sections.

  13. FY2014 Parameters for Helions and Gold Ions in Booster, AGS, and RHIC

    SciTech Connect (OSTI)

    Gardner, C. J.

    2014-08-15

    The nominal parameters for helions (helion is the bound state of two protons and one neutron, the nucleus of a helium-3 atom) and gold ions in Booster, AGS, and RHIC are given for the FY2014 running period. The parameters are found using various formulas to derive mass, helion anomalous g-factor, kinetic parameters, RF parameters, ring parameters, etc..

  14. Silicone oil contamination and electrical contact resistance degradation of low-force gold contacts.

    SciTech Connect (OSTI)

    Dugger, Michael Thomas; Dickrell, Daniel John, III

    2006-02-01

    Hot-switched low-force gold electrical contact testing was performed using a nanomechanical test apparatus to ascertain the sensitivity of simulated microelectromechanical systems (MEMS) contact to silicone oil contamination. The observed cyclic contact resistance degradation was dependent on both closure rate and noncontact applied voltage. The decomposition of silicone oil from electrical arcing was hypothesized as the degradation mechanism.

  15. Near IR Scanning Angle Total Internal Reflection Raman Spectroscopy at Smooth Gold Films

    SciTech Connect (OSTI)

    McKee, Kristopher; Meyer, Matthew; Smith, Emily

    2012-04-13

    Total internal reflection (TIR) Raman and reflectivity spectra were collected for nonresonant analytes as a function of incident angle at sapphire or sapphire/smooth 50 nm gold interfaces using 785 nm excitation. For both interfaces, the Raman signal as a function of incident angle is well-modeled by the calculated interfacial mean square electric field (MSEF) relative to the incident field times the thickness of the layer being probed in the Raman measurement (D{sub RS}). The Raman scatter was reproducibly enhanced at the interface containing a gold film relative to the sapphire interface by a factor of 4.34.6 for aqueous pyridine or 2.23.7 for neat nitrobenzene, depending on the analyzed vibrational mode. The mechanism for the increased Raman signal is the enhanced MSEF at incident angles where propagating surface plasmons are excited in the metal film. The background from the TIR prism was reduced by 8995% with the addition of the gold film, and the percent relative uncertainty in peak area was reduced from 15 to 1.7% for the 1347 cm1 mode of nitrobenzene. Single monolayers of benzenethiol (S/N = 6.8) and 4-mercaptopyridine (S/N = 16.5) on gold films were measured by TIR Raman spectroscopy with 785 nm excitation (210 mW) without resonant enhancement in 1 min.

  16. Noble reactions for the actinides: safe gold-based access to organouranium and azide complexes

    SciTech Connect (OSTI)

    Thomson, Robert K; Graves, Christopher R; Scott, Brian L; Kiplinger, Jaqueline L

    2008-01-01

    Gold has had a profound impact on organic chemistry; its compounds are spectacular catalysts for many organic transformations involving the formation of C-C, C-O, C-N and CoS bonds, and have enabled unprecedented pathways for the functionalization of C-H and C-C bonds. In general, gold complexes have not been exploited as reagents in organometallic or inorganic chemistry, although a few gold(l) aryl and alkynyl compounds have been reported to undergo transmetalation with transition metal complexes. We have been developing methods for functionalizing uranium complexes and have shown that Cu(l)-X reagents effect the oxidation of uranium with formation of U-X bonds, providing easy chemical control over uranium in oxidation states ranging from U{sup III}{yields}U{sup VI}. Although a logical approach for the direct generation of U-carbon and U-azide bonds, this Cu-based platform is limited in scope as it only works for pure and isolable copper compounds. This is problematic given the instability of organocuprates and copper azides, which can detonate violently as isolated solids. As such, this route has been confined to the synthesis of select uranium phenylacetylide complexes. Over the past few years, a variety of stable gold(l) alkyl, alkenyl, aryl, alkynyl, and azide complexes have been reported, propelling us to investigate their potential as reagents within the oxidative functionalization platform. Unlike the related CU{sup I} systems, Au{sup I} reagents are easily derivatized, and are safe to handle and isolate. Herein, we report that gold(l)-phosphine compounds can undergo a new class of reaction, and are excellent reagents for the oxidative functionalization of uranium with azide and carbon anions.

  17. The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata

    SciTech Connect (OSTI)

    Fenner, Marsha W; Liolios, Konstantinos; Mavromatis, Konstantinos; Tavernarakis, Nektarios; Kyrpides, Nikos C.

    2007-12-31

    The Genomes On Line Database (GOLD) is a comprehensive resource of information for genome and metagenome projects world-wide. GOLD provides access to complete and ongoing projects and their associated metadata through pre-computed lists and a search page. The database currently incorporates information for more than 2900 sequencing projects, of which 639 have been completed and the data deposited in the public databases. GOLD is constantly expanding to provide metadata information related to the project and the organism and is compliant with the Minimum Information about a Genome Sequence (MIGS) specifications.

  18. Cationic Gold Clusters Ligated with Differently Substituted Phosphines: Effect of Substitution on Ligand Reactivity and Binding

    SciTech Connect (OSTI)

    Johnson, Grant E.; Olivares, Astrid M.; Hill, David E.; Laskin, Julia

    2015-01-01

    We present a systematic study of the effect of the number of methyl (Me) and cyclohexyl (Cy) functional groups in monodentate phosphine ligands on the solution-phase synthesis of ligated sub-nanometer gold clusters and their gas-phase fragmentation pathways. Small mixed ligand cationic gold clusters were synthesized using ligand exchange reactions between pre-formed triphenylphosphine ligated (PPh3) gold clusters and monodentate Me- and Cy-substituted ligands in solution and characterized using electrospray ionization mass spectrometry (ESI-MS) and collision-induced dissociation (CID) experiments. Under the same experimental conditions, larger gold-PPh3 clusters undergo efficient exchange of unsubstituted PPh3 ligands for singly Me- and Cy-substituted PPh2Me and PPh2Cy ligands. The efficiency of ligand exchange decreases with an increasing number of Me or Cy groups in the substituted phosphine ligands. CID experiments performed for a series of ligand-exchanged gold clusters indicate that loss of a neutral Me-substituted ligand is preferred over loss of a neutral PPh¬3 ligand while the opposite trend is observed for Cy-substituted ligands. The branching ratio of the competing ligand loss channels is strongly correlated with the electron donating ability of the phosphorous lone pair as determined by the relative proton affinity of the ligand. The results indicate that the relative ligand binding energies increase in the order PMe3 < PPhMe2 < PPh2Me < PPh3< PPh2Cy < PPhCy2< PCy3. Furthermore, the difference in relative ligand binding energies increases with the number of substituted PPh3-mMem or PPh3-mCym ligands (L) exchanged onto each cluster. This study provides the first experimental determination of the relative binding energies of ligated gold clusters containing differently substituted monophosphine ligands, which are important to controlling their synthesis and reactivity in solution. The results also indicate that ligand substitution is an important

  19. Prime Supplier Sales Volumes of Motor Gasoline

    Gasoline and Diesel Fuel Update (EIA)

    348,657.3 346,707.6 361,056.3 1983-2015 East Coast (PADD 1) 128,893.5 125,252.4 119,021.3 117,031.7 115,225.0 121,544.4 1983-2015 New England (PADD 1A) 17,270.6 17,000.4 ...

  20. Nuclear Suppliers Group & Regimes | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency ...

  1. Supplier Information Form Date: New Revision

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Address 2: City: State: Zip Code: Country: Registered with System for Award Management (SAM.gov)? Yes No If yes, valid thru: Type of Organization: ( Check all that are applicable)...

  2. Prime Supplier Report - Energy Information Administration

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    April 27, 2016 MEDIA ADVISORY: EIA to Release International Energy Outlook WHO: Adam Sieminski, Administrator U.S. Energy Information Administration (EIA) WHAT: EIA presents updated projections of world energy supply and demand through 2040 with the release of International Energy Outlook 2016. WHEN: Wednesday May 11, 2016 9:30 a.m. Eastern Time WHERE: Center for Strategic and International Studies (CSIS) 1616 Rhode Island Avenue, NW Washington, DC 20036 EIA PRESS CONTACT: Jonathan Cogan,

  3. Sandia National Laboratories Supplier Quality Requirements for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Note 118-QC-l Certification Note 119: ANSINSCL Z540-1-1994 Note 120: Control by Item Serial Numbers Other Quality Notes: (as needed) Note 121: ISO 10012-1 Note 122: Seller...

  4. Lab suppliers receive Department of Energy awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services of Santa Fe received DOE's Small Business of the Year award. Eberline conducted environmental drilling services at the Lab as well as gamma-ray spectroscopy analysis. The...

  5. QA/QC QUESTIONNAIRE for SUPPLIERS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 (Released January 12, 1998) Energy Information Administration DOE/EIA-0202(98/1Q) Distribution Category UC-950 Short-Term Energy Outlook Quarterly Projections First Quarter 1998 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be

  6. Prime Supplier Sales Volumes of Motor Gasoline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maine 1,771.2 1,785.3 1,763.6 1,857.0 1,960.6 2,085.4 1983-2016 Massachusetts 6,563.6 6,678.8 6,871.9 7,083.4 7,011.9 7,487.9 1983-2016 New Hampshire 1,531.1 1,572.9 1,517.3 ...

  7. Excitons in a mirror: Formation of “optical bilayers” using MoS{sub 2} monolayers on gold substrates

    SciTech Connect (OSTI)

    Mertens, Jan; Baumberg, Jeremy J.; Shi, Yumeng; Yang, Hui Ying; Molina-Sánchez, Alejandro; Wirtz, Ludger

    2014-05-12

    We report coupling of excitons in monolayers of molybdenum disulphide to their mirror image in an underlying gold substrate. Excitons at the direct band gap are little affected by the substrate whereas strongly bound C-excitons associated with a van-Hove singularity change drastically. On quartz substrates only one C-exciton is visible (in the blue) but on gold substrates a strong red-shifted extra resonance in the green is seen. Exciton coupling to its image leads to formation of a “mirror biexciton” with enhanced binding energy. Estimates of this energy shift in an emitter-gold system match experiments well. The absorption spectrum of MoS{sub 2} on gold thus resembles a bilayer of MoS{sub 2} which has been created by optical coupling. Additional top-mirrors produce an “optical bulk.”.

  8. Room temperature reaction of oxygen with gold: an in situ ambient-pressure X-ray photoelectron spectroscopy investigation

    SciTech Connect (OSTI)

    Jiang, Peng; Porsgaard, Soeren; Borondics, Ferenc; Kober, Mariana; Caballero, Alfonso; Bluhm, Hendrik; Besenbacher, Flemming; Salmeron, Miquel

    2010-02-01

    Gold is commonly regarded as the most inert element.1 However, the discovery of the exceptional catalytic properties of gold nanoparticles (NPs) for low temperature CO oxidation2 initiated great interest due to its promising applications and spawned a large number of studies devoted to the understanding of the reaction mechanism.3-6 Nevertheless, no consistent and conclusive picture has arisen.7-13

  9. Goldpromoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction

    SciTech Connect (OSTI)

    Kuttiyiel, Kurian A.; Sasaki, Kotaro; Su, Dong; Wu, Lijun; Zhu, Yimei; Adzic, Radoslav R.

    2014-11-06

    Considerable efforts to make palladium and palladium alloys active catalysts and a possible replacement for platinum have had a marginal success. Here, we report on a structurally ordered Au??Pd??Co?? catalyst that exhibits comparable activity to conventional platinum catalysts in both acid and alkaline media. Electron microscopic techniques demonstrate that via addition of gold atoms PdCo nanoparticles undergo at elevated temperatures an atomic structural transition from core-shell to a rare intermetallic ordered structure with twin boundaries forming stable {111}, {110} and {100} facets. The superior stability of this catalyst compared to platinum after 10,000 potential cycles in alkaline media is attributed to the atomic structural order of PdCo nanoparticles along with protective effect of clusters of gold atoms on the surface. This strategy of making ordered palladium intermetallic alloy nanoparticles can be used in diverse heterogeneous catalysis where particle size and structural stability matters.

  10. Single pass electron beam cooling of gold ions between EBIS LINAC and booster is theoretically possible!

    SciTech Connect (OSTI)

    Hershcovitch, A.

    2011-01-01

    Electron beam cooling is examined as an option to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster. Electron beam parameters are based on experimental data (obtained at BNL) of electron beams extracted from a plasma cathode. Many issues, regarding a low energy high current electron beam that is needed for electron beam cooling to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster, were examined. Computations and some experimental data indicate that none of these issues is a show stopper. Preliminary calculations indicate that single pass cooling is feasible; momentum spread can be reduced by more than an order of magnitude in about one meter. Hence, this option cooling deserves further more serious considerations.

  11. Surface plasmon polaritons in a composite system of porous silicon and gold

    SciTech Connect (OSTI)

    Vainshtein, J. S.; Goryachev, D. N.; Ken, O. S. Sreseli, O. M.

    2015-04-15

    A composite system of silicon quantum dots and gold particles with properties periodically changing along the surface (i.e., a system exhibiting the properties of a diffraction grating) is obtained by a one-step metal-assisted chemical etching. The spectral and angular dependences of the photoresponse for the composite system on single-crystal silicon are studied. The photoresponse peaks were observed, which behavior (the dependence on the parameters of the diffraction grating, wavelength and incidence angles of light) is attributed to the excitation of plasmon-polariton modes at the surface of the composite system with the diffraction grating. At the same time, the obtained values of the wave vectors for these modes are smaller than those calculated for plasmon polaritons excited at the interface between air and metal (gold) diffraction grating.

  12. High resolution transmission electron microscopic in-situ observations of plastic deformation of compressed nanocrystalline gold

    SciTech Connect (OSTI)

    Wang, Guoyong; Lian, Jianshe; Jiang, Qing; Sun, Sheng; Zhang, Tong-Yi

    2014-09-14

    Nanocrystalline (nc) metals possess extremely high strength, while their capability to deform plastically has been debated for decades. Low ductility has hitherto been considered an intrinsic behavior for most nc metals, due to the lack of five independent slip systems actively operating during deformation in each nanograin. Here we report in situ high resolution transmission electron microscopic (HRTEM) observations of deformation process of nc gold under compression, showing the excellent ductility of individual and aggregate nanograins. Compression causes permanent change in the profile of individual nanograins, which is mediated by dislocation slip and grain rotation. The high rate of grain boundary sliding and large extent of widely exited grain rotation may meet the boundary compatibility requirements during plastic deformation. The in situ HRTEM observations suggest that nc gold is not intrinsically brittle under compressive loading.

  13. Benchmark Measurements of the Ionization Balance of Non-LTE Gold

    SciTech Connect (OSTI)

    Heeter, R F; Hansen, S B; Fournier, K B; Foord, M E; Froula, D H; Mackinnon, A J; May, M J; Schneider, M B; Young, B F

    2007-04-20

    The authors present a series of benchmark measurements of the ionization balance of well characterized gold plasmas with and without external radiation fields at electron densities near 10{sup 21} cm{sup -3} and various electron temperatures spanning the range 0.8 to 2.4 keV. They have analyzed time- and space-resolved M-shell gold emission spectra using a sophisticated collisional-radiative model with hybrid level structure, finding average ion changes ranging from 42 to 50. At the lower temperatures, the spectra exhibit significant sensitivity to external radiation fields and include emission features from complex N-shell ions not previously studied at these densities. The measured spectra and inferred provide a stringent test for non-local thermodynamic equilibrium (non-LTE) models of complex high-Z ions.

  14. Gold and palladium adsorption from leached electronic scrap using ordered mesoporous carbon nanoscaffolds

    SciTech Connect (OSTI)

    McDowell, Rocklan; Dutech, Guy

    2014-09-01

    Ordered mesoporous carbon (OMC) nanoscaffolds are engineered agglomerates of carbon nanotubes held together by small carbon nanofibers with uniform pore sizes, high pore volume, and high channel permeability. These materials exhibit very high affinity for the adsorption of gold from aqueous acidic mixtures. The efficiency of gold recovery is comparable to those typically accomplished using biopolymer-based adsorbents. The adsorption efficiency for other precious metals such as palladium and platinum is lower. Studies on the precious metal (Au, Pd) adsorption on OMC materials from actual liquors of leached electronics will be presented. Adsorption properties will be compared for several different sorbents used for the recovery of precious metals. The leach liquor compositions for three different types of electronic scrap materials (personal computer board, cell phone and tv input/output board) will be presented. The sorption efficiencies for Au, Pd, together with a spectrum of competing and non-competing metals, from such leach mixtures will be compared.

  15. Dynamic microscale temperature gradient in a gold nanorod solution measured by diffraction-limited nanothermometry

    SciTech Connect (OSTI)

    Li, Chengmingyue; Gan, Xiaosong; Li, Xiangping; Gu, Min

    2015-09-21

    We quantify the dynamic microscale temperature gradient in a gold nanorod solution using quantum-dot-based microscopic fluorescence nanothermometry. By incorporating CdSe quantum dots into the solution as a nanothermometer, precise temperature mapping with diffraction-limited spatial resolution and sub-degree temperature resolution is achieved. The acquired data on heat generation and dissipation show an excellent agreement with theoretical simulations. This work reveals an effective approach for noninvasive temperature regulation with localized nanoheaters in microfluidic environment.

  16. Modeled Neutron Induced Nuclear Reaction Cross Sections for Radiochemistry in the region of Iriduim and Gold

    SciTech Connect (OSTI)

    Hoffman, R D; Dietrich, F S; Kelley, K; Escher, J; Bauer, R; Mustafa, M

    2008-02-26

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron induced nuclear reaction cross sections for targets ranging from osmium (Z = 76) to gold (Z = 79). Of particular interest are the cross sections on Ir and Au including reactions on isomeric targets.

  17. Electrochemical method of controlling thiolate coverage on a conductive substrate such as gold

    DOE Patents [OSTI]

    Porter, Marc D.; Weisshaar, Duane E.

    1998-10-27

    An electrochemical method for forming a partial monomolecular layer of a predetermined extent of coverage of a thiolate of the formula, XRS--, therein R can be a linear or branched chain hydrocarbon or an aromatic or the like and X can be any compatible end group, e.g., OH, COOH, CH.sub.3 or the like, upon a substrate such as gold, which involves applying in an electrochemical system a constant voltage preselected to yield the desired predetermined extent of coverage.

  18. Optical field emission from resonant gold nanorods driven by femtosecond mid-infrared pulses

    SciTech Connect (OSTI)

    Kusa, F.; Echternkamp, K. E.; Herink, G.; Ropers, C.; Ashihara, S.

    2015-07-15

    We demonstrate strong-field photoelectron emission from gold nanorods driven by femtosecond mid-infrared optical pulses. The maximum photoelectron yield is reached at the localized surface plasmon resonance, indicating that the photoemission is governed by the resonantly-enhanced optical near-field. The wavelength- and field-dependent photoemission yield allows for a noninvasive determination of local field enhancements, and we obtain intensity enhancement factors close to 1300, in good agreement with finite-difference time domain computations.

  19. Nanoporous ionic organic networks: stablizing and supporting gold nanoparticles for catalysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Pengfei; Qiao, Zhen-An; Jiang, Xueguang; Veith, Gabriel M.; Dai, Sheng

    2015-01-27

    In this article, nanoporous ionic organic networks (PIONs) with a high ionic density (three cation–anion pairs per unit) have been synthesized by a facile SN2 nucleophilic substitution reaction. Owing to the electrostatic and steric effect, those ionic networks with porous channels can stabilize and support gold (Au) nanoparticles (NPs) in 1–2 nm. We find the Au@PION hybrid materials used as a heterogeneous catalyst are highly active, selective, and stable in the aerobic oxidation of saturated alcohols.

  20. Mineral evaluation of part of the Gold Butte district, Clark County, Nevada. National Uranium Resource Evaluation

    SciTech Connect (OSTI)

    Dexter, J.J.; Goodknight, C.S.; Dayvault, R.D.; Dickson, R.E.

    1983-03-01

    The mineral potential of part of the Gold Butte district, Clark County, Nevada, was investigated to supplement the evaluation of granitic rocks in the area as a probable geologic environment for uranium mineralization. This project is a part of the National Uranium Resource Evaluation (NURE) program conducted by Bendix Field Engineering Corporation for the US Department of Energy. A total of 41 stream-sediment samples and 149 rock samples were collected; the stream-sediment samples were analyzed chemically, and most f the rock samples were analyzed chemically and petrographically. The project area was restricted to Precambrian rocks, which comprise a metamorphic complex of early Proterozoic age, charnockitic rocks of early or middle Proterozoic age and ultramafic rocks and the Gold Butte Granite of middle Proterozoic age. Although the project area is not favorable for uranium deposits according to NURE criteria, an area of low resource potential for uranium, thorium, rare-earth elements and yttrium, and niobium-tantalum was assigned to the contact zone of the Gold Butte Granite. Pegmatites and aplites in the zone contain high concentrations of these elements. Two areas of moderate potential for gold and silver in quartz veins are within the project area; small-scale operations may recover these elements profitably. Titanium has a low-to-moderate resource potential, although the deposits are currently subeconomic. The titanium concentrations occur as titaniferous magnetite- and ilmenite-bearing placer sands. One small area has been assigned a low-to-moderate resource potential for vermiculite in altered ultramafic rocks. Tungsten has been assigned a low resource potential in two places within the project area; scheelite-bearing ultramafic bodies are small and scattered. Platinum-group metals and copper have no resource potential in the project area.

  1. Sulfur-bonded thiophenes in organometallic rhenium complexes and adsorption of isocyanides on gold

    SciTech Connect (OSTI)

    Robertson, M.J.

    1993-08-01

    This dissertation contains results of research conducted in two different areas: (1) organometallic synthesis and reactivity, and (2) organometallic surface chemistry. In the synthesis and reactivity studies, sulfur coordination of thiophene and benzo[b]thiophene to the metal center in organometallic rhenium complexes is examined. In the surface chemistry studies, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) is used to analyze the adsorption of several isocyanides on the surface of gold powder. Results are compared and contrasted to known organometallic chemistry.

  2. Pyramidal and Chiral Groupings of Gold Nanocrystals Assembled Using DNA Scaffolds

    SciTech Connect (OSTI)

    Mastroianni, Alexander; Claridge, Shelley; Alivisatos, A. Paul

    2009-03-30

    Nanostructures constructed from metal and semiconductor nanocrystals conjugated to, and organized by DNA are an emerging class of material with collective optical properties. We created discrete pyramids of DNA with gold nanocrystals at the tips. By taking small angle X-ray scattering (SAXS) measurments from solutions of these pyramids we confirmed that this pyramidal geometry creates structures which are more rigid in solution than linear DNA. We then took advantage of the tetrahedral symmetry to demonstrate construction of chiral nanostructures.

  3. Fluorescence enhancement in large-scale self-assembled gold nanoparticle double arrays

    SciTech Connect (OSTI)

    Chekini, M.; Bierwagen, J.; Cunningham, A.; Bürgi, T.; Filter, R.; Rockstuhl, C.

    2015-12-21

    Localized surface plasmon resonances excited in metallic nanoparticles confine and enhance electromagnetic fields at the nanoscale. This is particularly pronounced in dimers made from two closely spaced nanoparticles. When quantum emitters, such as dyes, are placed in the gap of those dimers, their absorption and emission characteristics can be modified. Both processes have to be considered when aiming to enhance the fluorescence from the quantum emitters. This is particularly challenging for dimers, since the electromagnetic properties and the enhanced fluorescence sensitively depend on the distance between the nanoparticles. Here, we use a layer-by-layer method to precisely control the distances in such systems. We consider a dye layer deposited on top of an array of gold nanoparticles or integrated into a central position of a double array of gold nanoparticles. We study the effect of the spatial arrangement and the average distance on the plasmon-enhanced fluorescence. We found a maximum of a 99-fold increase in the fluorescence intensity of the dye layer sandwiched between two gold nanoparticle arrays. The interaction of the dye layer with the plasmonic system also causes a spectral shift in the emission wavelengths and a shortening of the fluorescence life times. Our work paves the way for large-scale, high throughput, and low-cost self-assembled functionalized plasmonic systems that can be used as efficient light sources.

  4. Atomistic simulations of nanowelding of single-crystal and amorphous gold nanowires

    SciTech Connect (OSTI)

    Wu, Cheng-Da; Fang, Te-Hua Wu, Chung-Chin

    2015-01-07

    The mechanism and quality of the welding of single-crystal (SC) and amorphous gold nanowires (NWs) with head-to-head contact are studied using molecular dynamics simulations based on the second-moment approximation of the many-body tight-binding potential. The results are discussed in terms of atomic trajectories, slip vectors, stress, and radial distribution function. Simulation results show that the alignment for the amorphous NWs during welding is easier than that for the SC NWs due to the former's relatively stable geometry. A few dislocations nucleate and propagate on the (111) close-packed plane (slip plane) inside the SC NWs during the welding and stretching processes. During welding, an incomplete jointing area first forms through the interactions of the van der Waals attractive force, and the jointing area increases with increasing extent of contact between the two NWs. A crystallization transition region forms in the jointing area for the welding of SC-amorphous or amorphous-SC NWs. With increasing interference, an amorphous gold NW shortens more than does a SC gold NW due to the former's relatively poor strength. The pressure required for welding decreases with increasing temperature.

  5. Controlled epitaxial growth of mesoporous silica/gold nanorod nanolollipops and nanodumb-bells

    SciTech Connect (OSTI)

    Huang, Ching-Mao; Chung, Ming-Fang; Lo, Leu-Wei; Souris, Jeffrey S.

    2014-11-01

    In this work, we describe the controlled synthesis of novel heterogeneous nanostructures comprised of mesoporous silica-coated gold nanorods (MSGNRs) in the form of core–shell nanolollipops and nanodumb-bells, using a seed-mediated sol–gel method. Although MSGNR core–shell (θ-MSGNR) structures have been reported previously by us and others, we herein discuss the first ever fabrication of MSGNR nanolollipops (φ-MSGNR) and nanodumb-bells (β-MSGNR), achieved by simply controlling the aging time of gold nanorods (GNRs), the residual cetyltrimethylammonium bromide (CTAB) coating of GNRs, and the addition of dimethyl formamide during incubation, centrifugation, and sonication, respectively. Transmission electron microscopy revealed two bare GNR isoforms, with aspect ratios of approximately 4 and 6, while scanning electron microscopy was used to further elucidate the morphology of φ-MSGNR and β-MSGNR heterostructures. In agreement with the smaller dielectric constants afforded by incomplete silica encasement, spectroscopic studies of φ-MSGNR and β-MSGNR, surface plasmon resonance (SPR) bands revealed 20-40 nm blue shifts relative to the SPR of θ-MSGNR. On the basis of the attributes and applications of more conventional θ-MSGNRs, φ-MSGNRs and β-MSGNRs are anticipated to provide most of the utility of θ-MSGNRs, but with the additional functionalities that accompany their incorporation of both bare gold and mesoporous silica encased tips; with significant/unique implications for biomedical and catalytic applications.

  6. Structural characterization of electric-field assisted dip-coating of gold nanoparticles on silicon

    SciTech Connect (OSTI)

    Dushaq, Ghada H.; Alkhatib, Amro; Rasras, Mahmoud S.; Nayfeh, Ammar M.

    2015-09-15

    We report the effect of applying an electric field on the surface coverage of 40nm gold colloidal nanoparticles on silicon wafer using dip-coating and electrochemical cell set up. By applying electric field during the dip-coating of silicon wafer in a solution of gold nano particles (GNP) the surface coverage increased by 10% when the electric field varied from 5V/cm to 25V/cm at fixed deposition time of 90s. Ultra High Resolution Scanning Electron Microscopy (HRSEM) images shows that the particle agglomeration becomes more noticeable at higher electric field and as the deposition time increases from 90 s to 20 min a thin film of gold is achieved. Moreover, the results are discussed in terms of chemical bonding, electrostatic force and electrophoretic mobility of Au nano particles during the electric field enhanced deposition on the Si surface. Applied voltage, time of dipping, concentration of the aqueous solution, and particles zeta potential are all can be controlled to enhance the uniformity and particles profile on the silicon surface.

  7. Fluctuation-driven anisotropy in effective pair interactions between nanoparticles: Thiolated gold nanoparticles in ethane

    SciTech Connect (OSTI)

    Jabes, B. Shadrack; Yadav, Hari O. S.; Chakravarty, Charusita; Kumar, Sanat K.

    2014-10-21

    Fluctuations within the ligand shell of a nanoparticle give rise to a significant degree of anisotropy in effective pair interactions for low grafting densities [B. Bozorgui, D. Meng, S. K. Kumar, C. Chakravarty, and A. Cacciuto, Nano Lett. 13, 2732 (2013)]. Here, we examine the corresponding fluctuation-driven anisotropy for gold nanocrystals densely passivated with short ligands. In particular, we consider gold nanocrystals capped by alkylthiols, both in vacuum and in ethane solvent at high density. As in the preceding study, we show that the anisotropy in the nanoparticle pair potential can be quantified by an angle-dependent correction term to the isotropic potential of mean force (PMF). We find that the anisotropy of the ligand shells is distance dependent, and strongly influenced by ligand interdigitation effects as well as expulsion of ligand chains from the interparticle region at short distances. Such fluctuation-driven anisotropy can be significant for alkylthiol-coated gold nanoparticles, specially for longer chain lengths, under good solvent conditions. The consequences of such anisotropy for self-assembly, specially as a function of grafting density, solvent quality and at interfaces, should provide some interesting insights in future work. Our results clearly show that an isotropic two-body PMF cannot adequately describe the thermodynamics and assembly behavior of nanoparticles in this dense grafting regime and inclusion of anisotropic effects, as well as possibly many-body interactions, is necessary. Extensions of this approach to other passivated nanoparticle systems and implications for self-assembly are considered.

  8. Insights on proximity effect and multiphoton induced luminescence from gold nanospheres in far field optical microscopy

    SciTech Connect (OSTI)

    Borglin, Johan; Guldbrand, Stina; Evenbratt, Hanne; Kirejev, Vladimir; Ericson, Marica B.; Grönbeck, Henrik

    2015-12-07

    Gold nanoparticles can be visualized in far-field multiphoton laser-scanning microscopy (MPM) based on the phenomena of multiphoton induced luminescence (MIL). This is of interest for biomedical applications, e.g., for cancer diagnostics, as MPM allows for working in the near-infrared (NIR) optical window of tissue. It is well known that the aggregation of particles causes a redshift of the plasmon resonance, but its implications for MIL applying far-field MPM should be further exploited. Here, we explore MIL from 10 nm gold nanospheres that are chemically deposited on glass substrates in controlled coverage gradients using MPM operating in NIR range. The substrates enable studies of MIL as a function of inter-particle distance and clustering. It was shown that MIL was only detected from areas on the substrates where the particle spacing was less than one particle diameter, or where the particles have aggregated. The results are interpreted in the context that the underlying physical phenomenon of MIL is a sequential two-photon absorption process, where the first event is driven by the plasmon resonance. It is evident that gold nanospheres in this size range have to be closely spaced or clustered to exhibit detectable MIL using far-field MPM operating in the NIR region.

  9. Millifluidics for time-resolved mapping of the growth of gold nanostructures

    SciTech Connect (OSTI)

    Sai Krishna, Katla; Navin, Chelliah; Biswas, Sanchita; Singh, Varshni; Ham, Kyungmin; Bovencamp, L. S.; Theegala, Chandra; Miller, Jeffrey T; Spivey, James J.; Kumar, Challa S.S.R.

    2013-04-10

    Innovative in situ characterization tools are essential for understanding the reaction mechanisms leading to the growth of nanoscale materials. Though techniques, such as in situ transmission X-ray microscopy, fast single-particle spectroscopy, small-angle X-ray scattering, etc., are currently being developed, these tools are complex, not easily accessible, and do not necessarily provide the temporal resolution required to follow the formation of nanomaterials in real time. Here, we demonstrate for the first time the utility of a simple millifluidic chip for an in situ real time analysis of morphology and dimension-controlled growth of gold nano- and microstructures with a time resolution of 5 ms. The structures formed were characterized using synchrotron radiation-based in situ X-ray absorption spectroscopy, 3-D X-ray tomography, and high-resolution electron microscopy. These gold nanostructures were found to be catalytically active for conversion of 4-nitrophenol into 4-aminophenol, providing an example of the potential opportunities for time-resolved analysis of catalytic reactions. While the investigations reported here are focused on gold nanostructures, the technique can be applied to analyze the time-resolved growth of other types of nanostructured metals and metal oxides. With the ability to probe at least a 10-fold higher concentrations, in comparison with traditional microfluidics, the tool has potential to revolutionize a broad range of fields from catalysis, molecular analysis, biodefense, and molecular biology.

  10. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    SciTech Connect (OSTI)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Cordoba, M. A. Santiago; Hamilton, C. E.; Fernández, J. C.

    2015-09-22

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.

  11. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Cordoba, M. A. Santiago; Hamilton, C. E.; Fernández, J. C.

    2015-09-22

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has beenmore » unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.« less

  12. SU-E-J-247: A Simulation of X-Ray Emission with Gold Nanoparticle Irradiated by Energetic Proton Beam

    SciTech Connect (OSTI)

    Newpower, M; Ahmad, S; Chen, Y

    2014-06-01

    Purpose: To investigate the proton induced X-ray emissions in gold-water mixture materials. Methods: In this study a Monte Carlo simulation was created using the GEANT4 toolkit (version 4.9.6). The geometry in this setup includes a 2 cm × 2 cm × 2 cm target, a scoring sphere (radius = 10 cm) and a 65 MeV planar proton source (2 cm × 2 cm). Four concentrations of a gold-water solution were irradiated with 5×10{sup 5} incident protons at a distance of 0.5 cm perpendicular to the surface of the target. The solutions of gold-water mixture had 10%, 5%, 1% and 0.5% of gold by mass, respectively. The number of photon emitting for the target was counted in the scoring sphere for the energy range of 0-86.0 keV in 0.1 keV bins. For this study the reference physics list PhysListEmStandard was used together with the x-ray fluorescence, Auger electron and PIXE (particle induced xray emission) options enabled. The range cuts for photons and electrons were set at 0.5 mm and 1.0 mm, respectively. Results: In the energy spectra of emitting X-ray fluorescence, peaks from gold K shell characteristic x-rays (68.8 and 66.9 keV) were observed. The number of counts under the peaks of Ka1 and Ka2 was found to increase with the increasing of the gold concentrations in the mixture materials. The X-ray yields (for both Ka1 and Ka2) when fitted with least-square method as a function of gold concentration demonstrate a linear dependency with R{sup 2} > 0.96. The Ka1yield per incident proton was found to be 0.0016 for 10% gold-water mixture solutions. Conclusion: This preliminary study with PIXE technique with gold nanoparticle has demonstrated potentials for its utilization in the development of range and dose verification methodology that is currently of great interest in the field of proton radiation therapy.

  13. Heat capacity of quantum adsorbates: Hydrogen and helium on evaporated gold films

    SciTech Connect (OSTI)

    Birmingham, J.T. |

    1996-06-01

    The author has constructed an apparatus to make specific heat measurements of quantum gases adsorbed on metallic films at temperatures between 0.3 and 4 K. He has used this apparatus to study quench-condensed hydrogen films between 4 and 923 layers thick with J = 1 concentrations between 0.28 and 0.75 deposited on an evaporated gold surface. He has observed that the orientational ordering of the J = 1 molecules depends on the substrate temperature during deposition of the hydrogen film. He has inferred that the density of the films condensed at the lowest temperatures is 25% higher than in bulk H{sub 2} crystals and have observed that the structure of those films is affected by annealing at 3.4 K. The author has measured the J = 1 to J = 0 conversion rate to be comparable to that of the bulk for thick films; however, he found evidence that the gold surface catalyzes conversion in the first two to four layers. He has also used this apparatus to study films of {sup 4}He less than one layer thick adsorbed on an evaporated gold surface. He shows that the phase diagram of the system is similar to that for {sup 4}He/graphite although not as rich in structure, and the phase boundaries occur at different coverages and temperatures. At coverages below about half a layer and at sufficiently high temperatures, the {sup 4}He behaves like a two-dimensional noninteracting Bose gas. At lower temperatures and higher coverages, liquidlike and solidlike behavior is observed. The Appendix shows measurements of the far-infrared absorptivity of the high-{Tc} superconductor La{sub 1.87}Sr{sub 0.13}CuO{sub 4}.

  14. Direct Probes of 4 nm Diameter Gold Nanoparticles Interacting with Supported Lipid Bylayers

    SciTech Connect (OSTI)

    Troiano, Julianne; Olenick, Laura L.; Kuech, Thomas R.; Melby, Eric S.; Hu, Dehong; Lohse, Samuel E.; Mensch, Arielle C.; Dogangun, Merve; Vartanian, Arlane M.; Torelli, Marco; Ehimiaghe, Eseohi; Walter, Stephanie R.; Fu, Li; Anderton, Christopher R.; Zhu, Zihua; Wang, Hongfei; Orr, Galya; Murphy, Catherine; Hamers, Robert J.; Pedersen, Joel A.; Geiger, Franz M.

    2015-01-08

    Interfacial charge densities and potentials are determined for silica-supported phospholipid bilayers formed from lipids having zwitterionic, negatively charged, and positively charged headgroups. Quartz crystal microbalance with dissipation (QCM-D), fluorescence recovery after photobleaching (FRAP), and atomic force microscopy demonstrate the presence of well-formed supported lipid bilayers, which, as probed by vibrational sum frequency generation (SFG), undergo negligible structural changes along their alkyl chains when NaCl concentration is raised from 0.001 to 0.1 M. From second harmonic generation (SHG) measurements we estimate that each zwitterionic headgroup of the bilayer formed from pure DOPC is associated with an apparent charge of -0.028(+0.008/-0.007)×10-¹⁹C, corresponding to 1.8 ± 0.5 % of an elementary negative charge. Moreover, we show that a supported lipid bilayer carrying an apparent negative interfacial potential may interact with not just positively charged 4-nm diameter gold nanoparticles but also negatively charged gold nanoparticles. In this latter case, charge-charge repulsion does not appear to inhibit particle-bilayer interactions and is likely overcome by multivalent interactions that are estimated to involve 3-5 hydrogen-bond equivalents. FRAP, QCM-D, and SFG measurements indicate that the bilayers remain intact under the conditions of the experiments. SHG charge screening experiments are consistent with an apparent zero net charge density associated with the positively charged gold nanoparticles when they are attached to a supported lipid bilayer carrying an apparent negative potential. The results presented here serve to benchmark experimental and computational studies of the nano-bio interface.

  15. Green synthesis of gold nanoparticles using aqueous ethanol extract of Curcuma mangga rhizomes as reducing agent

    SciTech Connect (OSTI)

    Yee, Foo Yiing; Malek, Sri Nurestri Abd; Periasamy, Vengadesh

    2015-04-24

    Green synthesis of gold nanoparticles (AuNPs) had been developed as an alternative to chemical and physical methods due to its simplicity, cost effectiveness and eco-friendliness. The high biocompatibility and biostability features of AuNPs have found importance in biomedical applications in recent years. In this study, aqueous ethanol extract of Curcuma mangga rhizomes which acts as reducing and stabilizing agent was used to synthesize stable AuNPs by bioreduction of chloroauric acid. The formation of AuNPs was highlighted by the color change of the suspension from light yellow to reddish purple. Time-evolution was monitored by UV-visible spectroscopy, while surface plasmon (SP) absorption band of the AuNPs suspension was observed at a maximum absorption of 540 nm. Hydrodynamic radii and size distribution of the AuNPs in the suspension were evaluated using dynamic light scattering (DLS) and zeta potential measurement demonstrated negative surface charge. The particle size was calculated in the range of 2-30 nm using High Resolution Transmission Electron Microscopy (HRTEM). The morphology and elemental composition were further determined by Field Effect Scanning Electron Microscopy (FESEM) and Energy Dispersive X-ray (EDX) spectroscopy. Fourier transform infrared (FTIR) spectroscopy meanwhile was used to confirm the presence of AuNPs and functional groups involved in the gold bio-reduction process. Influence of the volume of extract and concentration of gold (III) chloride trihydrate (HAuCl{sub 4}.3H{sub 2}O) on the synthesis of AuNPs were also investigated. The results obtained indicate potential optimization and functionalization of AuNPs for future applications in bionanotechnology especially in the field of medicine.

  16. Thermal emission of electrons under irradiation of a gold target by a femtosecond laser pulse

    SciTech Connect (OSTI)

    Bezhanov, S G; Kanavin, Andrey P; Uryupin, Sergey A

    2012-05-31

    We study the effect of d-electrons on heating of a gold target upon absorption of a femtosecond laser pulse as well as on subsequent thermal emission of hot electrons. It is shown that neglecting the effect of d-electrons leads to a significant overestimation of the number of the emitted electrons. It is found that the approximate description of the heating field in the skin layer without the inhomogeneity of the dielectric constant taken into account does not cause a significant change in the maximum temperature of the electrons at the metal surface, and has virtually no effect on the process of thermal emission.

  17. Quantum optics with single nanodiamonds flying over gold films: Towards a Robust quantum plasmonics

    SciTech Connect (OSTI)

    Mollet, O.; Drezet, A.; Huant, S.

    2013-12-04

    A nanodiamond (ND) hosting nitrogen-vacancy (NV) color centers is attached on the apex of an optical tip for near-field microscopy. Its fluorescence is used to launch surface plasmon-polaritons (SPPs) in a thin polycrystalline gold film. It is shown that the quantum nature of the initial source of light is preserved after conversion to SPPs. This opens the way to a deterministic quantum plasmonics, where single SPPs can be injected at well-defined positions in a plasmonic device produced by top-down approaches.

  18. Nanoporous ionic organic networks: stablizing and supporting gold nanoparticles for catalysis

    SciTech Connect (OSTI)

    Zhang, Pengfei; Qiao, Zhen-An; Jiang, Xueguang; Veith, Gabriel M.; Dai, Sheng

    2015-01-27

    In this article, nanoporous ionic organic networks (PIONs) with a high ionic density (three cation–anion pairs per unit) have been synthesized by a facile SN2 nucleophilic substitution reaction. Owing to the electrostatic and steric effect, those ionic networks with porous channels can stabilize and support gold (Au) nanoparticles (NPs) in 1–2 nm. We find the Au@PION hybrid materials used as a heterogeneous catalyst are highly active, selective, and stable in the aerobic oxidation of saturated alcohols.

  19. Electrochemical method of controlling thiolate coverage on a conductive substrate such as gold

    DOE Patents [OSTI]

    Porter, Marc D.; Weisshaar, Duane E.

    1997-06-03

    An electrochemical method for forming a partial monomolecular layer of a predetermined extent of coverage of a thiolate of the formula, XRS.sup.-, wherein R can be a linear or branched chain hydrocarbon or an aromatic or the like and X can be any compatible end group, e.g., OH, COOH, CH.sub.3 or the like, upon a substrate such as gold, which involves applying in an electrochemical system a constant voltage preselected to yield the desired predetermined extent of coverage.

  20. Utilizing dynamic laser speckle to probe nanoscale morphology evolution in nanoporous gold thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chapman, Christopher A. R.; Ly, Sonny; Wang, Ling; Seker, Erkin; Matthews, Manyalibo J.

    2016-03-02

    Here we show the use of dynamic laser speckle autocorrelation spectroscopy in conjunction with the photothermal treatment of nanoporous gold (np-Au) thin films to probe nanoscale morphology changes during the photothermal treatment. Utilizing this spectroscopy method, backscattered speckle from the incident laser is tracked during photothermal treatment and both the characteristic feature size and annealing time of the film are determined. These results demonstrate that this method can successfully be used to monitor laser-based surface modification processes without the use of ex-situ characterization.

  1. Longitudinal emittance measurements in the Booster and AGS during the 2014 RHIC gold run

    SciTech Connect (OSTI)

    Zeno, K.

    2014-08-18

    This note describes longitudinal emittance measurements that were made in the Booster and AGS during the 2014 RHIC Gold run. It also contains an overview of the longitudinal aspects of their setup during this run. Each bunch intended for RHIC is composed of beam from 4 Booster cycles, and there are two of them per AGS cycle. For each of the 8 Booster cycles required to produce the 2 bunches in the AGS, a beam pulse from EVIS is injected into the Booster and captured in four h=4 buckets. Then those bunches are accelerated to a porch where they are merged into 2 bunches and then into 1 bunch.

  2. TH-E-BRD-01: Innovation in (gold) Nanoparticle-Enhanced Therapy

    SciTech Connect (OSTI)

    Krishnan, S; Chithrani, B; Berbeco, R

    2014-06-15

    Radiation therapy relies on the concept of delivering high dose to tumor volumes whilst simultaneously aiming to minimize irradiation of healthy tissue. Gold and other metallic nanoparticles (GNPs) have the potential to greatly enhance dose depositions in their close proximity. While it was originally thought that this effect would only be significant for kV photon beams, it has been shown that GNPs also enhance dose and increase cell killing and survival fraction for MV photons as well as protons. GNPs have been shown to be preferentially taken up in tumors, depending on the GNP properties either internalized in the tumor cells or clustering in the tumor vasculature. Therefore GNPs offer an intriguing additional option to target the tumor while sparing healthy tissue. While a growing amount of research shows GNP induced enhancement factors in the order of 1.5 and higher, GNPs have not yet entered into clinical routine. In this symposium we will have three presentations discussing the current status of GNP based research, the potential to include GNPs in radiation therapy and the limitations and problems to use GNPs in the clinic. Physical and biological underpinnings of radiosensitization with gold nano particles An evolving body of recent literature alludes to the potential to sensitize tumors to radiation therapy using metallic nanoparticles. In preclinical studies, the techniques that hold promise for eventual clinical deployment are nanoparticle-assisted radiation dose enhancement and hyperthermic radiosensitization. To understand the underlying nanoparticle-radiation interactions, computational techniques offer an explanation for and predict the biophysical consequences at a nano-/meso-scopic scale. Nonetheless, there are persisting gaps in knowledge relating to the molecular mechanism of action of these radiosensitization approaches — some of these issues will be addressed. Since the literature relating to the diverse disciplines involved in these efforts

  3. Electrochemical method of controlling thiolate coverage on a conductive substrate such as gold

    DOE Patents [OSTI]

    Porter, M.D.; Weisshaar, D.E.

    1998-10-27

    An electrochemical method is described for forming a partial monomolecular layer of a predetermined extent of coverage of a thiolate of the formula, XRS-, therein R can be a linear or branched chain hydrocarbon or an aromatic or the like and X can be any compatible end group, e.g., OH, COOH, CH{sub 3} or the like, upon a substrate such as gold, which involves applying in an electrochemical system a constant voltage preselected to yield the desired predetermined extent of coverage. 13 figs.

  4. Strongly enhanced Raman scattering of graphene by a single gold nanorod

    SciTech Connect (OSTI)

    He, Yingbo; Shen, Hongming; Cheng, Yuqing; Lu, Guowei Gong, Qihuang

    2015-08-03

    Individual gold nanorods (AuNRs) and monolayer graphene hybrid system is investigated experimentally. Surface enhanced Raman scattering (SERS) signal of the graphene is observed due to a single AuNR with enhancement factor up to ∼1000-fold. The SERS intensity is strongly polarization dependent and the enhancement effect varies with the detuning between the excitation laser and the AuNR resonance. The SERS effect is highest when the resonant wavelength of the AuNRs matches well with the excitation light. By correlating the scattering and photoluminescence, it is demonstrated that the conventional background in SERS ascribes to the photon emission of metallic nanostructures.

  5. Optical Manipulation of Shape-Morphing Elastomeric Liquid Crystal Microparticles Doped with Gold Nanocrystals

    SciTech Connect (OSTI)

    Sun, Y. R.; Evans, J. S.; Lee, T.; Senyuk, B.; Keller, P.; He, S. L.; Smalyukh, I. I.

    2012-06-11

    We demonstrate facile optical manipulation of shape of birefringent colloidal microparticles made from liquid crystal elastomers. Using soft lithography and polymerization, we fabricate elastomeric microcylinders with weakly undulating director oriented on average along their long axes. These particles are infiltrated with gold nanospheres acting as heat transducers that allow for an efficient localized transfer of heat from a focused infrared laser beam to a submicrometer region within a microparticle. Photothermal control of ordering in the liquid crystal elastomer using scanned beams allows for a robust control of colloidal particles, enabling both reversible and irreversible changes of shape. Possible applications include optomechanics, microfluidics, and reconfigurable colloidal composites with shape-dependent self-assembly.

  6. Influence of the pH value of a colloidal gold solution on the absorption spectra of an LSPR-assisted sensor

    SciTech Connect (OSTI)

    Zhu, Jin; Li, Wenbin; Zhu, Mao; Zhang, Wei; Niu, Wencheng; Liu, Guohua

    2014-03-15

    The localized surface plasmon resonances (LSPRs) of gold particles assembled on a crystal plate are a powerful tool for biological sensors. Here, we prepare gold colloids in different pH solutions. We monitor the effects of the particle radius and particle coverage on the absorption spectra of AT-cut (r-face dihedral angle of about 3°) crystal plates supporting gold nanoparticles. The surface morphologies were monitored on silicon dioxide substrates using ultraviolet and visible (UV-vis) spectroscopy, and atomic force microscopy (AFM). The results showed that the gold particle coverage decreases with increasing pH value of the gold colloid solution. This phenomenon demonstrates that self-assembled gold surfaces were formed via the electrostatic adsorption of gold particles on the positively charged, ionized amino groups on the crystal plates in the acidic solution. The spectrum of gold nanoparticles with different coverage degree on the crystal plates showed that the LSPR properties are highly dependent on pH.

  7. Prof. Héctor Abruña wins Electrochimica Acta Gold Medal award > EMC2 News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    > The Energy Materials Center at Cornell Prof. Héctor Abruña wins Electrochimica Acta Gold Medal award June 30th, 2016 › Dr. Héctor Abruña is the most recent winner of the Electrochimica Acta Gold Medal, which is given out by the International Society of Electrochemistry and may be awarded every two years to the person judged to have made the most significant contribution to electrochemistry in recent years. It is in recognition of his sustained excellent multidisciplinary studies

  8. A hybrid DNA-templated gold nanocluster for enhanced enzymatic reduction of oxygen

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chakraborty, Saumen; Babanova, Sofia; Rocha, Reginaldo C.; Desireddy, Anil; Artyushkova, Kateryna; Boncella, Amy E.; Atanassov, Plamen; Martinez, Jennifer S.

    2015-08-19

    We report the synthesis and characterization of a new DNA-templated gold nanocluster (AuNC) of ~1 nm in diameter and possessing ~7 Au atoms. When integrated with bilirubin oxidase (BOD) and single walled carbon nanotubes (SWNTs), the AuNC acts as an enhancer of electron transfer (ET) and lowers the overpotential of electrocatalytic oxygen reduction reaction (ORR) by ~15 mV as compared to the enzyme alone. In addition, the presence of AuNC causes significant enhancements in the electrocatalytic current densities at the electrode. Control experiments show that such enhancement of ORR by the AuNC is specific to nanoclusters and not to plasmonicmore » gold particles. Rotating ring disk electrode (RRDE) measurements confirm 4e– reduction of O2 to H2O with minimal production of H2O2, suggesting that the presence of AuNC does not perturb the mechanism of ORR catalyzed by the enzyme. This unique role of the AuNC as enhancer of ET at the enzyme-electrode interface makes it a potential candidate for the development of cathodes in enzymatic fuel cells, which often suffer from poor electronic communication between the electrode surface and the enzyme active site. In conclusion, the AuNC displays phosphorescence with large Stokes shift and microsecond lifetime.« less

  9. A hybrid DNA-templated gold nanocluster for enhanced enzymatic reduction of oxygen

    SciTech Connect (OSTI)

    Chakraborty, Saumen; Babanova, Sofia; Rocha, Reginaldo C.; Desireddy, Anil; Artyushkova, Kateryna; Boncella, Amy E.; Atanassov, Plamen; Martinez, Jennifer S.

    2015-08-19

    We report the synthesis and characterization of a new DNA-templated gold nanocluster (AuNC) of ~1 nm in diameter and possessing ~7 Au atoms. When integrated with bilirubin oxidase (BOD) and single walled carbon nanotubes (SWNTs), the AuNC acts as an enhancer of electron transfer (ET) and lowers the overpotential of electrocatalytic oxygen reduction reaction (ORR) by ~15 mV as compared to the enzyme alone. In addition, the presence of AuNC causes significant enhancements in the electrocatalytic current densities at the electrode. Control experiments show that such enhancement of ORR by the AuNC is specific to nanoclusters and not to plasmonic gold particles. Rotating ring disk electrode (RRDE) measurements confirm 4e– reduction of O2 to H2O with minimal production of H2O2, suggesting that the presence of AuNC does not perturb the mechanism of ORR catalyzed by the enzyme. This unique role of the AuNC as enhancer of ET at the enzyme-electrode interface makes it a potential candidate for the development of cathodes in enzymatic fuel cells, which often suffer from poor electronic communication between the electrode surface and the enzyme active site. In conclusion, the AuNC displays phosphorescence with large Stokes shift and microsecond lifetime.

  10. The adsorption of gold, palladium and platinum from acidic chloride solutions on mesoporous carbons.

    SciTech Connect (OSTI)

    Peter Zalupski; Rocklan McDowell; Guy Dutech

    2014-10-01

    Studies on the adsorption characteristics of gold, palladium and platinum on mesoporous carbon (CMK-3) and sulfur-impregnated mesoporous carbon (CMK-3/S) evaluated the benefits/drawbacks of the presence of a layer of elemental sulfur inside mesoporous carbon structures. Adsorption isotherms collected for Au(III), Pd(II) and Pt(IV) on those materials suggest that sulfur does enhance the adsorption of those metal ions in mildly acidic environment (pH 3). The isotherms collected in 1 M HCl show that the benefit of sulfur disappears due to the competing influence of large concentration of hydrogen ions on the ion-exchanging mechanism of metal ions sorption on mesoporous carbon surfaces. The collected acid dependencies illustrate similar adsorption characteristics for CMK-3 and CMK-3/S in 1-5 M HCl concentration range. Sorption of metal ions from diluted aqueous acidic mixtures of actual leached electronic waste demonstrated the feasibility of recovery of gold from such liquors.

  11. Elevated gold ellipse nanoantenna dimers as sensitive and tunable surface enhanced Raman spectroscopy substrates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jubb, A. M.; Jiao, Y.; Eres, Gyula; Retterer, Scott T.; Gu, Baohua

    2016-02-15

    Here we demonstrate large area arrays of elevated gold ellipse dimers with precisely controlled gaps for use as sensitive and highly controllable surface enhanced Raman scattering (SERS) substrates. The significantly enhanced Raman signal observed with SERS arises from both localized and long range plasmonic effects. By controlling the geometry of a SERS substrate, in this case the size and aspect ratio of individual ellipses, the plasmon resonance can be tuned in a broad wavelength range, providing a method for designing the response of SERS substrates at different excitation wavelengths. Plasmon effects exhibited by the elevated gold ellipse dimer substrates aremore » also demonstrated and confirmed through finite difference time domain (FDTD) simulations. A plasmon resonance red shift with an increase of the ellipse aspect ratio is observed, allowing systematic control of the resulting SERS signal intensity. Optimized elevated ellipse dimer substrates with 10±2 nm gaps exhibit uniform SERS enhancement factors on the order of 109 for adsorbed p-mercaptoaniline molecules.« less

  12. Spall strength and ejecta production of gold under explosively driven shock wave compression

    SciTech Connect (OSTI)

    La Lone, B. M.; Stevens, G. D.; Turley, W. D.; Veeser, L. R.; Holtkamp, D. B.

    2013-12-16

    Explosively driven shock wave experiments were conducted to characterize the spall strength and ejecta production of high-purity cast gold samples. The samples were from 0.75 to 1.84 mm thick and 30 mm in diameter. Peak stresses up to 44 GPa in gold were generated using PBX-9501 high explosive. Sample free surface and ejecta velocities were recorded using photonic Doppler velocimetry techniques. Lithium niobate pins were used to quantify the time dependence of the ejecta density and the total ejected mass. An optical framing camera for time-resolved imaging and a single-image x-ray radiograph were used for additional characterization. Free surface velocities exhibited a range of spall strengths from 1.7 to 2.4 GPa (mean: 2.0 ±0.3 GPa). The pullback signals were faint, minimal ringing was observed in the velocity records, and the spall layer continued to decelerate after first pull back. These results suggest finite tensile strength was present for some time after the initial void formation. Ejecta were observed for every sample with a roughened free surface, and the ejecta density increased with increased surface roughness, which was different in every experiment. The total ejected mass is consistent with the missing mass model.

  13. Near-Edge X-Ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    SciTech Connect (OSTI)

    Willey, T.M.; Fabbri, J.D.; Lee, J.R.I.; Schreiner, P.R.; Fokin, A.A.; Tkachenko, B.A.; Fokina, N.A.; Dahl, J.E.P.; Carlson, R.M.K.; Vance, A.L.; Yang, W.; Terminello, L.J.; Buuren, T.van; Melosh, N.A.

    2009-05-26

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 and 0.16 {+-} 0.04 eV, respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different degrees of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond nanoparticles.

  14. Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    SciTech Connect (OSTI)

    Willey, T M; Fabbri, J; Lee, J I; Schreiner, P; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J; Carlson, B; Vance, A L; Yang, W; Terminello, L J; van Buuren, T; Melosh, N

    2007-11-27

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface-modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 eV and 0.16 {+-} 0.04 eV respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different amounts of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond clusters.

  15. Controllable synthesis of hollow mesoporous silica spheres and application as support of nano-gold

    SciTech Connect (OSTI)

    Wang, Tao; Ma, Weihua Shangguan, Junnan; Jiang, Wei; Zhong, Qin

    2014-07-01

    Hollow silica spheres with mesoporous structure were synthesized by sol–gel/emulsion method. In the process, the surfactant, cetyltrimethylammonium bromide (CTAB) was used to stabilize the oil droplet and also used as structure direct agent. The diameter of the hollow silica spheres, ranging from 895 nm to 157 nm, can be controlled by changing the ratio of ethanol to water and the concentration of the surfactant as well. The shell thickness of the spheres decreased when the ratio of ethanol to water decreased. The proposed mechanism of the formation of silica spheres could elucidate the experimental results well. Furthermore, the resultant hollow mesoporous silica spheres were then employed as support of nano-gold which was used to catalyze the isomerization reaction of propylene oxide to produce allyl alcohol. - Graphical abstract: It is the schematic mechanism for the formation of hollow mesoporous silica spheres. - Highlights: • The formation mechanism of the hollow spheres is proposed. • The isomerization of propylene oxide can be catalyzed by the nano-gold/SiO{sub 2}. • The hollow silica spheres can be prepared controllably.

  16. Thar`s gold in them thar notebooks: benefits of laboratory notebooks in the government archive

    SciTech Connect (OSTI)

    O`Canna, M.

    1996-01-01

    As Archive Coordinator for Sandia National Laboratories Corporate Archives, I am responsible for promoting the preservation and value of Sandia`s history. Today I will talk about one important part of Sandia`s historical record--the laboratory notebook. I will start with some brief background on Sandia National Laboratories, including the Laboratories` mission and an example of how the gold in one lab notebook helped to give a picture of Sandia`s early history. Next, I will talk about the use of notebooks at Sandia Labs, how they represent technology developed at Sandia, and include noteworthy examples of how patent information has been collected, used, and released to the public. Then, I will discuss how the National Competitiveness Technology Transfer Act of 1989 authorized technology transfer initiatives and the exclusive use of patented information, resulting in many golden opportunities for the national laboratories to work with private industry to further technology. I will briefly discuss laboratory notebook retention schedules and mention a new initiative to better utilize Laboratory notebooks. And, finally, I will summarize how the `gold` in laboratory notebooks in government archives are a reflection of the valuable and extensive research authorized and funded by the government to benefit the public.

  17. Technology demonstration for reducing mercury emissions from small-scale gold refining facilities.

    SciTech Connect (OSTI)

    Habegger, L. J.; Fernandez, L. E.; Engle, M.; Bailey, J. L.; Peterson, D. P.; MacDonell, M. M.; U.S. Environmental Protection Agency

    2008-06-30

    Gold that is brought from artisanal and small-scale gold mining areas to gold shops for processing and sale typically contains 5-40% mercury. The uncontrolled removal of the residual mercury in gold shops by using high-temperature evaporation can be a significant source of mercury emissions in urban areas where the shops are located. Emissions from gold shop hoods during a burn can exceed 1,000 mg/m{sup 3}. Because the saturation concentration of mercury vapor at operating temperatures at the hood exhaust is less than 100 mg/m{sup 3}, the dominant component of the exhaust is in the form of aerosol or liquid particles. The U.S. Environmental Protection Agency (EPA), with technical support from Argonne National Laboratory (Argonne), has completed a project to design and test a technology to remove the dominant aerosol component in the emissions from gold shops. The objective was to demonstrate a technology that could be manufactured at low cost and by using locally available materials and manufacturing capabilities. Six prototypes designed by Argonne were locally manufactured, installed, and tested in gold shops in Itaituba and Creporizao, Brazil. The initial prototype design incorporated a pebble bed as the media for collecting the mercury aerosols, and a mercury collection efficiency of over 90% was demonstrated. Though achieving high efficiencies, the initial prototype was determined to have practical disadvantages such as excessive weight, a somewhat complex construction, and high costs (>US$1,000). To further simplify the construction, operation, and associated costs, a second prototype design was developed in which the pebble bed was replaced with slotted steel baffle plates. The system was designed to have flexibility for installation in various hood configurations. The second prototype with the baffle plate design was installed and tested in several different hood/exhaust systems to determine the optimal installation configuration. The significance of

  18. Thermal tuning of infrared resonant absorbers based on hybrid gold-VO{sub 2} nanostructures

    SciTech Connect (OSTI)

    Kocer, Hasan; Butun, Serkan; Aydin, Koray; Banar, Berker; Wang, Kevin; Wu, Junqiao; Tongay, Sefaatttin

    2015-04-20

    Resonant absorbers based on plasmonic materials, metamaterials, and thin films enable spectrally selective absorption filters, where absorption is maximized at the resonance wavelength. By controlling the geometrical parameters of nano/microstructures and materials' refractive indices, resonant absorbers are designed to operate at wide range of wavelengths for applications including absorption filters, thermal emitters, thermophotovoltaic devices, and sensors. However, once resonant absorbers are fabricated, it is rather challenging to control and tune the spectral absorption response. Here, we propose and demonstrate thermally tunable infrared resonant absorbers using hybrid gold-vanadium dioxide (VO{sub 2}) nanostructure arrays. Absorption intensity is tuned from 90% to 20% and 96% to 32% using hybrid gold-VO{sub 2} nanowire and nanodisc arrays, respectively, by heating up the absorbers above the phase transition temperature of VO{sub 2} (68 °C). Phase change materials such as VO{sub 2} deliver useful means of altering optical properties as a function of temperature. Absorbers with tunable spectral response can find applications in sensor and detector applications, in which external stimulus such as heat, electrical signal, or light results in a change in the absorption spectrum and intensity.

  19. Nano-gold corking and enzymatic uncorking of carbon nanotube cups

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhao, Yong; Burkert, Seth C.; Tang, Yifan; Sorescu, Dan C.; Kapralov, Alexandr A.; Shurin, Galina V.; Shurin, Michael R.; Kagan, Valerian E.; Star, Alexander

    2014-12-21

    Because of their unique stacked, cup-shaped, hollow compartments, nitrogen-doped carbon nanotube cups (NCNCs) have promising potential as nanoscale containers. Individual NCNCs are isolated from their stacked structure through acid oxidation and subsequent probe-tip sonication. The NCNCs are then effectively corked with gold nanoparticles (GNPs) by sodium citrate reduction with chloroauric acid, forming graphitic nanocapsules with significant surface-enhanced Raman signature. Mechanistically, the growth of the GNP corks starts from the nucleation and welding of gold seeds on the open rims of NCNCs enriched with nitrogen functionalities, as confirmed by density functional theory calculations. A potent oxidizing enzyme of neutrophils, myeloperoxidase (MPO),more » can effectively open the corked NCNCs through GNP detachment, with subsequent complete enzymatic degradation of the graphitic shells. Lastly, this controlled opening and degradation was further carried out in vitro with human neutrophils. In addition, the GNP-corked NCNCs were demonstrated to function as novel drug delivery carriers, capable of effective (i) delivery of paclitaxel to tumor-associated myeloid-derived suppressor cells (MDSC), (ii) MPO-regulated release, and (iii) blockade of MDSC immunosuppressive potential.« less

  20. Super-Stable, Highly Monodisperse Plasmonic Nanocrystals with 500 Gold Atoms: Au~500(SR)~120

    SciTech Connect (OSTI)

    Kumara, Chanaka; Zuo, Xiaobing; Ilavsky, Dr. Jan; Chapman, Karena; Cullen, David A; Dass, Amala

    2014-01-01

    Determining the composition of plasmonic nanoparticles is challenging due to a deficiency in tools capable of accurately evaluating the number of atoms. Mass spectrometry plays a significant role in determining nanoparticle composition at the atomic level. Significant progress has been made in understanding ultra-small gold nanoparticles, like Au25(SR)18 and Au38(SR)24, with a Au core diameter of 0.97 and 1.3 nm, respectively. However, progress in small plasmonic nanoparticles (2 - 5 nm) is currently challenging, due in part to limitations in synthesizing monodisperse nanoparticles. Here, we report a plasmonic nanocrystal that is highly monodisperse, with an unprecedented variation of less than 20 gold atoms. The composition of the super-stable plasmonic nanocrystals at 115 kDa was determined to contain Au500 10SR120 3. The Au~500 system, named Faraduarate-500, is the largest size to be characterized using high resolution ESI mass spectrometry. Atomic pair distribution function (PDF) data shows that the local atomic structure is consistent with a face-centered cubic (fcc) or Marks decahedral arrangement. High resolution scanning transmission electron microscopy images show that the diameter is 2.4 0.1 nm. The radius of gyration measured by small angle X-ray scattering (SAXS), is 1.05 0.05 nm, and the size and the shape of SAXS molecular envelope are in agreement with TEM and PDF measurements.

  1. A method of measuring gold nanoparticle concentrations by x-ray fluorescence for biomedical applications

    SciTech Connect (OSTI)

    Wu Di; Li Yuhua; Wong, Molly D.; Liu Hong

    2013-05-15

    Purpose: This paper reports a technique that enables the quantitative determination of the concentration of gold nanoparticles (GNPs) through the accurate detection of their fluorescence radiation in the diagnostic x-ray spectrum. Methods: Experimentally, x-ray fluorescence spectra of 1.9 and 15 nm GNP solutions are measured using an x-ray spectrometer, individually and within chicken breast tissue samples. An optimal combination of excitation and emission filters is determined to segregate the fluorescence spectra at 66.99 and 68.80 keV from the background scattering. A roadmap method is developed that subtracts the scattered radiation (acquired before the insertion of GNP solutions) from the signal radiation acquired after the GNP solutions are inserted. Results: The methods effectively minimize the background scattering in the spectrum measurements, showing linear relationships between GNP solutions from 0.1% to 10% weight concentration and from 0.1% to 1.0% weight concentration inside a chicken breast tissue sample. Conclusions: The investigation demonstrated the potential of imaging gold nanoparticles quantitatively in vivo for in-tissue studies, but future studies will be needed to investigate the ability to apply this method to clinical applications.

  2. The adsorption of gold, palladium and platinum from acidic chloride solutions on mesoporous carbons.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zalupski, Peter R.; McDowell, Rocklan; Dutech, Guy

    2014-08-05

    Studies on the adsorption characteristics of gold, palladium and platinum on mesoporous carbon (CMK-3) and sulfur-impregnated mesoporous carbon (CMK-3/S) evaluated the benefits/drawbacks of the presence of a layer of elemental sulfur inside mesoporous carbon structures. Adsorption isotherms collected for Au(III), Pd(II) and Pt(IV) on those materials suggest that sulfur does enhance the adsorption of those metal ions in mildly acidic environment (pH 3). The isotherms collected in 1 M HCl show that the benefit of sulfur disappears due to the competing influence of large concentration of hydrogen ions on the ion-exchanging mechanism of metal ions sorption on mesoporous carbon surfaces.more » The collected acid dependencies illustrate similar adsorption characteristics for CMK-3 and CMK-3/S in 1-5 M HCl concentration range. Sorption of metal ions from diluted aqueous acidic mixtures of actual leached electronic waste demonstrated the feasibility of recovery of gold from such liquors.« less

  3. The adsorption of gold, palladium and platinum from acidic chloride solutions on mesoporous carbons.

    SciTech Connect (OSTI)

    Zalupski, Peter R.; McDowell, Rocklan; Dutech, Guy

    2014-08-05

    Studies on the adsorption characteristics of gold, palladium and platinum on mesoporous carbon (CMK-3) and sulfur-impregnated mesoporous carbon (CMK-3/S) evaluated the benefits/drawbacks of the presence of a layer of elemental sulfur inside mesoporous carbon structures. Adsorption isotherms collected for Au(III), Pd(II) and Pt(IV) on those materials suggest that sulfur does enhance the adsorption of those metal ions in mildly acidic environment (pH 3). The isotherms collected in 1 M HCl show that the benefit of sulfur disappears due to the competing influence of large concentration of hydrogen ions on the ion-exchanging mechanism of metal ions sorption on mesoporous carbon surfaces. The collected acid dependencies illustrate similar adsorption characteristics for CMK-3 and CMK-3/S in 1-5 M HCl concentration range. Sorption of metal ions from diluted aqueous acidic mixtures of actual leached electronic waste demonstrated the feasibility of recovery of gold from such liquors.

  4. The surface structure of silver-coated gold nanocrystals and its influence on shape control

    SciTech Connect (OSTI)

    Padmos, J. Daniel; Personick, Michelle L.; Tang, Qing; Duchesne, Paul N.; Jiang, De-en; Mirkin, Chad A.; Zhang, Peng

    2015-07-08

    Understanding the surface structure of metal nanocrystals with specific facet indices is important due to its impact on controlling nanocrystal shape and functionality. However, this is particularly challenging for halide-adsorbed nanocrystals due to the difficulty in analysing interactions between metals and light halides (for example, chloride). Here we uncover the surface structures of chloride-adsorbed, silver-coated gold nanocrystals with {111}, {110}, {310} and {720} indexed facets by X-ray absorption spectroscopy and density functional theory modelling. The silver–chloride, silver–silver and silver–gold bonding structures are markedly different between the nanocrystal surfaces, and are sensitive to their formation mechanism and facet type. A unique approach of combining the density functional theory and experimental/simulated X-ray spectroscopy further verifies the surface structure models and identifies the previously indistinguishable valence state of silver atoms on the nanocrystal surfaces. Overall, this work elucidates the thus-far unknown chloride–metal nanocrystal surface structures and sheds light onto the halide-induced growth mechanism of anisotropic nanocrystals.

  5. The surface structure of silver-coated gold nanocrystals and its influence on shape control

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Padmos, J. Daniel; Personick, Michelle L.; Tang, Qing; Duchesne, Paul N.; Jiang, De-en; Mirkin, Chad A.; Zhang, Peng

    2015-07-08

    Understanding the surface structure of metal nanocrystals with specific facet indices is important due to its impact on controlling nanocrystal shape and functionality. However, this is particularly challenging for halide-adsorbed nanocrystals due to the difficulty in analysing interactions between metals and light halides (for example, chloride). Here we uncover the surface structures of chloride-adsorbed, silver-coated gold nanocrystals with {111}, {110}, {310} and {720} indexed facets by X-ray absorption spectroscopy and density functional theory modelling. The silver–chloride, silver–silver and silver–gold bonding structures are markedly different between the nanocrystal surfaces, and are sensitive to their formation mechanism and facet type. A uniquemore » approach of combining the density functional theory and experimental/simulated X-ray spectroscopy further verifies the surface structure models and identifies the previously indistinguishable valence state of silver atoms on the nanocrystal surfaces. Overall, this work elucidates the thus-far unknown chloride–metal nanocrystal surface structures and sheds light onto the halide-induced growth mechanism of anisotropic nanocrystals.« less

  6. Adhesion and Atomic Structures of Gold on Ceria Nanostructures:The Role of Surface Structure and Oxidation State of Ceria Supports

    SciTech Connect (OSTI)

    Lin, Yuyuan; Wu, Zili; Wen, Jianguo; Poeppelmeier, Kenneth R; Marks, Laurence D

    2015-01-01

    Recent advances in heterogeneous catalysis have demonstrated that oxides supports with the same material but different shapes can result in metal catalysts with distinct catalytic properties. The shape-dependent catalysis was not well-understood owing to the lack of direct visualization of the atomic structures at metal-oxide interface. Herein, we utilized aberration-corrected electron microscopy and revealed the atomic structures of gold particles deposited on ceria nanocubes and nanorods with {100} or {111} facets exposed. For the ceria nanocube support, gold nanoparticles have extended atom layers at the metal-support interface. In contrast, regular gold nanoparticles and rafts are present on the ceria nanorod support. After hours of water gas shift reaction, the extended gold atom layers and rafts vanish, which is associated with the decrease of the catalytic activities. By understanding the atomic structures of the support surfaces, metal-support interfaces, and morphologies of the gold particles, a direct structure-property relationship is established.

  7. Electron backscatter diffraction analysis of gold nanoparticles on Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7−δ}

    SciTech Connect (OSTI)

    Bochmann, A.; Teichert, S.; Katzer, C.; Schmidl, F.

    2015-06-07

    It has been shown recently that the incorporation of gold nanoparticles into Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7−δ} enhances the superconducting properties of this material in a significant way. Previous XRD and TEM investigations suggest different crystallographic relations of the gold nanoparticles with respect to the epitaxial Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7−δ}. Here, detailed investigations of the crystal orientations for a large ensemble of gold nanoparticles with electron backscatter diffraction are reported. The average size of the gold nanoparticles is in the range of 60 nm–80 nm. We identified five different types of heteroepitaxial relationships between the gold nanoparticles and the superconductor film, resulting in complex pole figures. The observed different types of crystallographic orientations are discussed based on good lattice matching and the formation of low energy interfaces.

  8. Arsenic microdistribution and speciation in toenail clippings of children living in a historic gold mining area

    SciTech Connect (OSTI)

    Pearce, Dora C.; Dowling, Kim; Gerson, Andrea R.; Sim, Malcolm R.; Sutton, Stephen R.; Newville, Matthew; Russell, Robert; McOrist, Gordon

    2010-05-04

    Arsenic is naturally associated with gold mineralization and elevated in some soils and mine waste around historical gold mining activity in Victoria, Australia. To explore uptake, arsenic concentrations in children's toenail clippings and household soils were measured, and the microdistribution and speciation of arsenic in situ in toenail clipping thin sections investigated using synchrotron-based X-ray microprobe techniques. The ability to differentiate exogenous arsenic was explored by investigating surface contamination on cleaned clippings using depth profiling, and direct diffusion of arsenic into incubated clippings. Total arsenic concentrations ranged from 0.15 to 2.1 {micro}g/g (n = 29) in clipping samples and from 3.3 to 130 {micro}g/g (n = 22) in household soils, with significant correlation between transformed arsenic concentrations (Pearson's r = 0.42, P = 0.023) when household soil was treated as independent. In clipping thin sections (n = 2), X-ray fluorescence (XRF) mapping showed discrete layering of arsenic consistent with nail structure, and irregular arsenic incorporation along the nail growth axis. Arsenic concentrations were heterogeneous at 10 x 10 {micro}m microprobe spot locations investigated (< 0.1 to 13.3 {micro}g/g). X-ray absorption near-edge structure (XANES) spectra suggested the presence of two distinct arsenic species: a lower oxidation state species, possibly with mixed sulphur and methyl coordination (denoted As{sub (-S, -ch3)}{sup {approx}III}); and a higher oxidation state species (denoted As{sub (-O)}{sup {approx}V}). Depth profiling suggested that surface contamination was unlikely (n = 4), and XRF and XANES analyses of thin sections of clippings incubated in dry or wet mine waste, or untreated, suggested direct diffusion of arsenic occurred under moist conditions. These findings suggest that arsenic in soil contributes to some systemic absorption associated with periodic exposures among children resident in areas of historic

  9. Polarization and spectral characteristics of the two-photon luminescence from colloidal gold nanoparticles excited by tunable laser radiation

    SciTech Connect (OSTI)

    Yashunin, D. A. Korytin, A. I.; Stepanov, A. N.

    2015-12-15

    We have experimentally studied two-photon luminescence from a colloidal solution of spherical gold nanoparticles by tuning the wavelength of the exciting radiation. The measured polarization and spectral characteristics of the two-photon luminescence signal show that the observed nonlinear optical response is determined by the dimers present in the solution with a concentration of a few percent of total nanoparticle number.

  10. Tunable trimers: Using temperature and pressure to control luminescent emission in gold(I) pyrazolate-based trimers

    SciTech Connect (OSTI)

    Woodall, Christopher H.; Fuertes, Sara; Beavers, Christine M.; Hatcher, Lauren E.; Parlett, Andrew; Shepherd, Helena J.; Christensen, Jeppe; Teat, Simon J.; Intissar, Mourad; Rodrigue-Witchel, Alexandre; Suffren, Yan; Reber, Christian; Hendon, Christopher H.; Tiana, Davide; Walsh, Aron; Raithby, Paul R.

    2014-10-21

    A systematic investigation into the relationship between the solid-state luminescence and the intermolecular Au∙∙∙Au interactions in a series of pyrazolate-based gold(I) trimers; tris(μ2-pyrazolato-N,N')-tri-gold(I) (1), tris(μ2-3,4,5-trimethylpyrazolato-N,N')-tri-gold(I) (2), tris(μ2-3-methyl-5-phenylpyrazolato-N,N')-tri-gold(I) (3) and tris(μ2-3,5-diphenylpyrazolato-N,N')-tri-gold(I) (4) has been carried out using variable temperature and high pressure X-ray crystallography, solid-state emission spectroscopy, Raman spectroscopy and computational techniques. Single-crystal X-ray studies show that there is a significant reduction in the intertrimer Au∙∙∙Au distances both with decreasing temperature and increasing pressure. In the four complexes, the reduction in temperature from 293 to 100 K is accompanied by a reduction in the shortest intermolecular Au∙∙∙Au contacts of between 0.04 and 0.08 Å. The solid-state luminescent emission spectra of 1 and 2 display a red shift with decreasing temperature or increasing pressure. Compound 3 does not emit under ambient conditions but displays increasingly red-shifted luminescence upon cooling or compression. Compound 4 remains emissionless, consistent with the absence of intermolecular Au∙∙∙Au interactions. The largest pressure induced shift in emission is observed in 2 with a red shift of approximately 630 cm-1 per GPa between ambient and 3.80 GPa. The shifts in all the complexes can be correlated with changes in Au∙∙∙Au distance observed by diffraction.

  11. Tunable trimers: Using temperature and pressure to control luminescent emission in gold(I) pyrazolate-based trimers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Woodall, Christopher H.; Fuertes, Sara; Beavers, Christine M.; Hatcher, Lauren E.; Parlett, Andrew; Shepherd, Helena J.; Christensen, Jeppe; Teat, Simon J.; Intissar, Mourad; Rodrigue-Witchel, Alexandre; et al

    2014-10-21

    A systematic investigation into the relationship between the solid-state luminescence and the intermolecular Au∙∙∙Au interactions in a series of pyrazolate-based gold(I) trimers; tris(μ2-pyrazolato-N,N')-tri-gold(I) (1), tris(μ2-3,4,5-trimethylpyrazolato-N,N')-tri-gold(I) (2), tris(μ2-3-methyl-5-phenylpyrazolato-N,N')-tri-gold(I) (3) and tris(μ2-3,5-diphenylpyrazolato-N,N')-tri-gold(I) (4) has been carried out using variable temperature and high pressure X-ray crystallography, solid-state emission spectroscopy, Raman spectroscopy and computational techniques. Single-crystal X-ray studies show that there is a significant reduction in the intertrimer Au∙∙∙Au distances both with decreasing temperature and increasing pressure. In the four complexes, the reduction in temperature from 293 to 100 K is accompanied by a reduction in the shortest intermolecular Au∙∙∙Au contacts of between 0.04more » and 0.08 Å. The solid-state luminescent emission spectra of 1 and 2 display a red shift with decreasing temperature or increasing pressure. Compound 3 does not emit under ambient conditions but displays increasingly red-shifted luminescence upon cooling or compression. Compound 4 remains emissionless, consistent with the absence of intermolecular Au∙∙∙Au interactions. The largest pressure induced shift in emission is observed in 2 with a red shift of approximately 630 cm-1 per GPa between ambient and 3.80 GPa. The shifts in all the complexes can be correlated with changes in Au∙∙∙Au distance observed by diffraction.« less

  12. ALD Functionalized Nanoporous Gold: Thermal Stability, Mechanical Properties, and Catalytic Activity

    SciTech Connect (OSTI)

    Biener, M M; Biener, J; Wichmann, A; Wittstock, A; Baumann, T F; Baeumer, M; Hamza, A V

    2011-03-24

    Nanoporous metals have many technologically promising applications but their tendency to coarsen limits their long-term stability and excludes high temperature applications. Here, we demonstrate that atomic layer deposition (ALD) can be used to stabilize and functionalize nanoporous metals. Specifically, we studied the effect of nanometer-thick alumina and titania ALD films on thermal stability, mechanical properties, and catalytic activity of nanoporous gold (np-Au). Our results demonstrate that even only one-nm-thick oxide films can stabilize the nanoscale morphology of np-Au up to 1000 C, while simultaneously making the material stronger and stiffer. The catalytic activity of np-Au can be drastically increased by TiO{sub 2} ALD coatings. Our results open the door to high temperature sensor, actuator, and catalysis applications and functionalized electrodes for energy storage and harvesting applications.

  13. Nonlinear electron dynamics of gold ultrathin films induced by intense terahertz waves

    SciTech Connect (OSTI)

    Minami, Yasuo Takeda, Jun; Katayama, Ikufumi; Dao, Thang Duy; Nagao, Tadaaki; Kitajima, Masahiro

    2014-12-15

    Linear and nonlinear electron dynamics of polycrystalline gold (Au) ultrathin films with thicknesses ranging from 1.4 to 5.8?nm were investigated via transmittance terahertz (THz) spectroscopy with intense electric field transients. We prepared ultrathin films with low surface roughness formed on a Si(7??7) reconstructed surface, leading to the observation of monotonic decrease in THz transmittance with respect to film thickness. Furthermore, at all tested thicknesses, the transmittance decreased nonlinearly by 10%30% with the application if high-intensity THz electric fields. Based on a Drude-model analysis, we found a significant decrease in the damping constant induced by the THz electric field, indicating that electrons are driven beyond the polycrystalline grain boundaries in Au thin films, and consequently leading to the suppression of the electronboundary scattering rate.

  14. Dynamics of charge clouds ejected from laser-induced warm dense gold nanofilms

    SciTech Connect (OSTI)

    Zhou, Jun; Li, Junjie; Correa, Alfredo A.; Tang, Shao; Ping, Yuan; Ogitsu, Tadashi; Li, Dong; Zhou, Qiong; Cao, Jianming

    2014-10-24

    We report the first systematic study of the ejected charge dynamics surrounding laser-produced 30-nm warm dense gold films using single-shot femtosecond electron shadow imaging and deflectometry. The results reveal a two-step dynamical process of the ejected electrons under the high pump fluence conditions: an initial emission and accumulation of a large amount of electrons near the pumped surface region followed by the formation of hemispherical clouds of electrons on both sides of the film, which are escaping into the vacuum at a nearly isotropic and constant velocity with an unusually high kinetic energy of more than 300 eV. We also developed a model of the escaping charge distribution that not only reproduces the main features of the observed charge expansion dynamics but also allows us to extract the number of ejected electrons remaining in the cloud.

  15. Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions

    SciTech Connect (OSTI)

    Wei, Chen-wei; Lombardo, Michael; Larson-Smith, Kjersta; Perez, Camilo; Xia, Jinjun; Matula, Thomas; Pozzo, Danilo; O'Donnell, Matthew; Pelivanov, Ivan

    2014-01-20

    A composite contrast agent, a nanoemulsion bead with assembled gold nanospheres at the interface, is proposed to improve the specific contrast of photoacoustic molecular imaging. A phase transition in the bead's core is induced by absorption of a nanosecond laser pulse with a fairly low laser fluence (∼3.5 mJ/cm{sup 2}), creating a transient microbubble through dramatically enhanced thermal expansion. This generates nonlinear photoacoustic signals with more than 10 times larger amplitude compared to that of a linear agent with the same optical absorption. By applying a differential scheme similar to ultrasound pulse inversion, more than 40 dB contrast enhancement is demonstrated with suppression of background signals.

  16. Kondo decoherence : finding the right spin model for iron impurities in gold and silver.

    SciTech Connect (OSTI)

    Costi, T. A.; Bergqvist, L.; Weichselbaum, A.; von Delft, J.; Micklitz, T.; Rosch, A.; Mavropoulos, P.; Dederichs, P. H.; Mallet, F.; Saminadayar, L.; Bauerle, C.

    2009-02-01

    We exploit the decoherence of electrons due to magnetic impurities, studied via weak localization, to resolve a long-standing question concerning the classic Kondo systems of Fe impurities in the noble metals gold and silver: which Kondo-type model yields a realistic description of the relevant multiple bands, spin, and orbital degrees of freedom? Previous studies suggest a fully screened spin S Kondo model, but the value of S remained ambiguous. We perform density functional theory calculations that suggest S=3/2. We also compare previous and new measurements of both the resistivity and decoherence rate in quasi-one-dimensional wires to numerical renormalization group predictions for S=1/2, 1, and 3/2, finding excellent agreement for S=3/2.

  17. Moving metal artifact reduction in cone-beam CT scans with implanted cylindrical gold markers

    SciTech Connect (OSTI)

    Toftegaard, Jakob Fledelius, Walther; Worm, Esben S.; Poulsen, Per R.; Seghers, Dieter; Huber, Michael; Brehm, Marcus; Elstrøm, Ulrik V.

    2014-12-15

    Purpose: Implanted gold markers for image-guided radiotherapy lead to streaking artifacts in cone-beam CT (CBCT) scans. Several methods for metal artifact reduction (MAR) have been published, but they all fail in scans with large motion. Here the authors propose and investigate a method for automatic moving metal artifact reduction (MMAR) in CBCT scans with cylindrical gold markers. Methods: The MMAR CBCT reconstruction method has six steps. (1) Automatic segmentation of the cylindrical markers in the CBCT projections. (2) Removal of each marker in the projections by replacing the pixels within a masked area with interpolated values. (3) Reconstruction of a marker-free CBCT volume from the manipulated CBCT projections. (4) Reconstruction of a standard CBCT volume with metal artifacts from the original CBCT projections. (5) Estimation of the three-dimensional (3D) trajectory during CBCT acquisition for each marker based on the segmentation in Step 1, and identification of the smallest ellipsoidal volume that encompasses 95% of the visited 3D positions. (6) Generation of the final MMAR CBCT reconstruction from the marker-free CBCT volume of Step 3 by replacing the voxels in the 95% ellipsoid with the corresponding voxels of the standard CBCT volume of Step 4. The MMAR reconstruction was performed retrospectively using a half-fan CBCT scan for 29 consecutive stereotactic body radiation therapy patients with 2–3 gold markers implanted in the liver. The metal artifacts of the MMAR reconstructions were scored and compared with a standard MAR reconstruction by counting the streaks and by calculating the standard deviation of the Hounsfield units in a region around each marker. Results: The markers were found with the same autosegmentation settings in 27 CBCT scans, while two scans needed slightly changed settings to find all markers automatically in Step 1 of the MMAR method. MMAR resulted in 15 scans with no streaking artifacts, 11 scans with 1–4 streaks, and 3 scans

  18. Dynamics of charge clouds ejected from laser-induced warm dense gold nanofilms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Jun; Li, Junjie; Correa, Alfredo A.; Tang, Shao; Ping, Yuan; Ogitsu, Tadashi; Li, Dong; Zhou, Qiong; Cao, Jianming

    2014-10-24

    We report the first systematic study of the ejected charge dynamics surrounding laser-produced 30-nm warm dense gold films using single-shot femtosecond electron shadow imaging and deflectometry. The results reveal a two-step dynamical process of the ejected electrons under the high pump fluence conditions: an initial emission and accumulation of a large amount of electrons near the pumped surface region followed by the formation of hemispherical clouds of electrons on both sides of the film, which are escaping into the vacuum at a nearly isotropic and constant velocity with an unusually high kinetic energy of more than 300 eV. We alsomore » developed a model of the escaping charge distribution that not only reproduces the main features of the observed charge expansion dynamics but also allows us to extract the number of ejected electrons remaining in the cloud.« less

  19. Two-step fabrication technique of gold tips for use in point-contact spectroscopy

    SciTech Connect (OSTI)

    Narasiwodeyar, S.; Dwyer, M.; Liu, M.; Park, W. K. Greene, L. H.

    2015-03-15

    For a successful point-contact spectroscopy (PCS) measurement, metallic tips of proper shape and smoothness are essential to ensure the ballistic nature of a point-contact junction. Until recently, the fabrication of Au tips suitable for use in point-contact spectroscopy has remained more of an art involving a trial and error method rather than an automated scientific process. To address these issues, we have developed a technique with which one can prepare high quality Au tips reproducibly and systematically. It involves an electronic control of the driving voltages used for an electrochemical etching of a gold wire in a HCl-glycerol mixture or a HCl solution. We find that a stopping current, below which the circuit is set to shut off, is a single very important parameter to produce an Au tip of desired shape. We present detailed descriptions for a two-step etching process for Au tips and also test results from PCS measurements using them.

  20. Dynamics of charge clouds ejected from laser-induced warm dense gold nanofilms

    SciTech Connect (OSTI)

    Zhou, Jun; Li, Junjie; Correa, Alfredo A.; Tang, Shao; Ping, Yuan; Ogitsu, Tadashi; Li, Dong; Zhou, Qiong; Cao, Jianming

    2014-10-24

    We report the first systematic study of the ejected charge dynamics surrounding laser-produced 30- nm warm dense gold films using single-shot femtosecond electron shadow imaging and deflectometry. The results reveal a two-step dynamical process of the ejected electrons under the high pump fluence conditions: an initial emission and accumulation of a large amount of electrons near the pumped surface region followed by the formation of hemispherical clouds of electrons on both sides of the film, which are escaping into the vacuum at a nearly isotropic and constant velocity with an unusually high kinetic energy of more than 300 eV. We also developed a model of the escaping charge distribution that not only reproduces the main features of the observed charge expansion dynamics but also allows us to extract the number of ejected electrons remaining in the cloud.

  1. Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser

    SciTech Connect (OSTI)

    Wang, Xu-De; Luo, Zhi-Chao; Liu, Hao; Liu, Meng; Luo, Ai-Ping Xu, Wen-Cheng

    2014-10-20

    We reported on the femtosecond pulse generation from an erbium-doped fiber (EDF) laser by using microfiber-based gold nanorods (GNRs) as saturable absorber (SA). By virtue of the geometric characteristic of microfiber-based GNRs, the optical damage threshold of GNRs-SA could be greatly enhanced. The microfiber-based GNRs-SA shows a modulation depth of 4.9% and a nonsaturable loss of 21.1%. With the proposed GNRs-SA, the fiber laser emitted a mode-locked pulse train with duration of ∼887 fs. The obtained results demonstrated that the GNRs deposited microfiber could indeed serve as a high-performance SA towards the practical applications in the field of ultrafast photonics.

  2. Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition

    SciTech Connect (OSTI)

    Castro, Hemerson P. S.; Alencar, Márcio A. R. C.; Hickmann, Jandir M.; Wender, Heberton; Department of Physics, Universidade Federal do Mato Grosso do Sul, 79070-900, Campo Grande ; Teixeira, Sergio R.; Dupont, Jairton

    2013-11-14

    The nonlinear optical responses of gold nanoparticles dispersed in castor oil produced by sputtering deposition were investigated, using the thermally managed Z-scan technique. Particles with spherical shape and 2.6 nm of average diameter were obtained and characterized by transmission electron microscopy and small angle X-ray scattering. This colloid was highly stable, without the presence of chemical impurities, neither stabilizers. It was observed that this system presents a large refractive third-order nonlinear response and a negligible nonlinear absorption. Moreover, the evaluation of the all-optical switching figures of merit demonstrated that the colloidal nanoparticles prepared by sputtering deposition have a good potential for the development of ultrafast photonic devices.

  3. Probing the photoluminescence properties of gold nanoclusters by fluorescence lifetime correlation spectroscopy

    SciTech Connect (OSTI)

    Yuan, C. T. Lin, T. N.; Shen, J. L.; Center for Biomedical Technology, Chung Yuan Christian University, Taiwan ; Lin, C. A.; Chang, W. H.; Department of Biomedical Engineering, Chung Yuan Christian University, Taiwan ; Cheng, H. W.; Tang, J.

    2013-12-21

    Gold nanoclusters (Au NCs) have attracted much attention for promising applications in biological imaging owing to their tiny sizes and biocompatibility. So far, most efforts have been focused on the strategies for fabricating high-quality Au NCs and then characterized by conventional ensemble measurement. Here, a fusion single-molecule technique combining fluorescence correlation spectroscopy and time-correlated single-photon counting can be successfully applied to probe the photoluminescence (PL) properties for sparse Au NCs. In this case, the triplet-state dynamics and diffusion process can be observed simultaneously and the relevant time constants can be derived. This work provides a complementary insight into the PL mechanism at the molecular levels for Au NCs in solution.

  4. Nanoscale Laser-Induced Spallation in SiO2 Films Containing Gold Nanoparticles

    SciTech Connect (OSTI)

    Kudryashov, S.I.; Allen, S.D.; Papernov, S.; Schmid, A.W.

    2006-02-16

    A phenomenological theory of ultraviolet pulsed-laser-induced spallation is proposed to interpret crater formation in SiO2 thin films containing absorbing 18.5-nm gold particles. The theory considers a spherical thermoacoustic stress wave propagating from a thermal source produced by laser-energy absorption inside the particle and surrounding ionized volume. Calculations show that the tensile stress associated with such an acoustic wave may exceed the local strength of the material and cause fracture and spallation of the top film portion. The theory provides an explanation of the experimentally observed complex (two-cone) shape of craters formed in the film with particle-lodging depth exceeding 110 nm. Theoretical estimates for the threshold stress amplitude and peak temperature in the thermal source are in qualitative agreement with the experimental observations.

  5. NA-03-03 MOX amended ROD2.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NNSA SD 452.2 Approved: 11-17-14 Nuclear Explosive Safety Evaluation Processes NATIONAL NUCLEAR SECURITY ADMINISTRATION Office of Safety and Health CONTROLLED DOCUMENT OFFICE OF PRIMARY INTEREST (OPI): AVAILABLE ONLINE AT: Office of Safety and Health http://nnsa.energy.gov printed copies are uncontrolled THIS PAGE INTENTIONALLY LEFT BLANK NNSA SD 452.2 i 11-17-14 Nuclear Explosive Safety Evaluation Processes 1. PURPOSE. This Supplemental Directive (SD) provides supplemental details to support

  6. MOX Services Unclassified Information System PIA, National Nuclear...

    Energy Savers [EERE]

    Services Administration (378.48 KB) More Documents & Publications TRAIN-PIA.pdf Occupational Medicine - Assistant PIA, Idaho National Laboratory Manchester Software 1099 Reporting

  7. MOxST Magnesium Recycling Concept Definition Project Final Report

    Office of Scientific and Technical Information (OSTI)

    favoring by the United States Government or any agency thereof." ... Compound Annual Growth Rate CFD: Computational Fluid ... to bridge the "valley of death" between research and ...

  8. Mixed Oxide (MOX) Fuel Fabrication Facility | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Assessment Phase 2 Report, August 20, 2015 Final Report of the Plutonium Disposition Red Team, August 13, 2015 Commentary on Report by High Bridge Associates, Inc., Feb. 12, ...

  9. MOX Services Unclassified Information System PIA, National Nuclear...

    Energy Savers [EERE]

    Services Administration More Documents & Publications TRAIN-PIA.pdf Occupational Medicine - Assistant PIA, Idaho National Laboratory Manchester Software 1099 Reporting PIA,...

  10. An investigation into the interactions of gold nanoparticles and anti-arthritic drugs with macrophages, and their reactivity towards thioredoxin reductase

    SciTech Connect (OSTI)

    James, Lloyd R.A.; Xu, Zhi-Qiang; Sluyter, Ronald; Hawksworth, Emma L.; Kelso, Celine; Lai, Barry; Paterson, David J.; de Jonge, Martin D.; Dixon, Nicholas E.; Beck, Jennnifer L.; Ralph, Stephen F.; Dillon, Carolyn T.

    2014-01-01

    Gold(I) complexes are an important tool in the arsenal of established approaches for treating rheumatoid arthritis (RA), while some recent studies have suggested that gold nanoparticles (Au NPs) may also be therapeutically efficacious. These observations prompted the current biological studies involving gold(I) anti-RA agents and Au NPs, which are aimed towards improving our knowledge of how they work. The cytotoxicity of auranofin, aurothiomalate, aurothiosulfate and Au NPs towards RAW264.7 macrophages was evaluated using the MTT assay, with the former compound proving to be the most toxic. The extent of cellular uptake of the various gold agents was determined using graphite furnace atomic absorption spectrometry, while their distribution within macrophages was examined using microprobe synchrotron radiation X-ray fluorescence spectroscopy. The latter technique showed accumulation of gold in discrete regions of the cell, and co-localisation with sulfur in the case of cells treated with aurothiomalate or auranofin. Electrospray ionization mass spectrometry was used to characterize thioredoxin reductase (TrxR) in which the penultimate selenocysteine residue was replaced by cysteine. Mass spectra of solutions of TrxR and aurothiomalate, aurothiosulfate or auranofin showed complexes containing bare gold atoms bound to the protein, or protein adducts containing gold atoms retaining some of their initial ligands. These results support TrxR being an important target of gold(I) drugs used to treat RA, while the finding that Au NPs are incorporated into macrophages, but elicit little toxicity, indicates further exploration of their potential for treatment of RA is warranted.

  11. SU-E-T-645: Dose Enhancement to Cell Nucleus Due to Hard Collisions of Protons with Electrons in Gold Nanospheres

    SciTech Connect (OSTI)

    Eley, J; Krishnan, S

    2014-06-15

    Purpose: The purpose of this study was to investigate the theoretical dose enhancement to a cell nucleus due to increased fluence of secondary electrons when gold nanospheres are present in the cytoplasm during proton therapy. Methods: We modeled the irradiation of prostate cancer cells using protons of variable energies when 10,000 gold nanoparticles, each with radius of 10 nm, were randomly distributed in the cytoplasm. Using simple analytical equations, we calculated the increased mean dose to the cell nucleus due to secondary electrons produced by hard collisions of 0.1, 1, 10, and 100 MeV protons with orbital electrons in gold. We only counted electrons with kinetic energy higher than 1 keV. In addition to calculating the increase in the mean dose to the cell nucleus, we also calculated the increase in local dose in the “shadow,” i.e., the umbra, of individual gold nanospheres due to forward scattered electrons. Results: For proton energies of 0.1, 1, 10, and 100 MeV, we calculated increases to the mean nuclear dose of 0.15, 0.09, 0.05, and 0.04%, respectively. When we considered local dose increases in the shadows of individual gold spheres, we calculated local dose increases of 5.5, 3.2, 1.9, and 1.3%, respectively. Conclusion: We found negligible, less than 0.2%, increases in the mean dose to the cell nucleus due to electrons produced by hard collisions of protons with electrons in gold nanospheres. However, we observed increases up to 5.5% in the local dose in the shadow of gold nanospheres. Considering the shadow radius of 10 nm, these local dose enhancements may have implications for slightly increased probability of clustered DNA damage when gold nanoparticles are close to the nuclear membrane.

  12. Structural Modification of Single Wall and Multiwalled Carbon Nanotubes under Carbon, Nickel and Gold Ion Beam Irradiation

    SciTech Connect (OSTI)

    Jeet, Kiran; Jindal, V. K.; Dharamvir, Keya; Bharadwaj, L. M.

    2011-12-12

    Thin film samples of carbon nanotubes were irradiated with ion beam of carbon, nickel and gold. The irradiation results were characterized using Raman Spectroscopy. Modifications of the disorder mode (D mode) and the tangential mode (G mode) under different irradiation fluences were studied in detail. Raman results of carbon ion beam indicate the interesting phenomenon of ordering of the system under irradiation. Under the effect of nickel and gold ion irradiation, the structural evolution of CNTs occurs in three different stages. At lower fluences the process of healing occurs; at intermediate fluences damages on the surface of CNTs occurs and finally at very high fluences of the order of 1x10{sup 14} ions/cm{sup 2} the system gets amorphised.

  13. Coverage Dependent Charge Reduction of Cationic Gold Clusters on Surfaces Prepared Using Soft Landing of Mass-selected Ions

    SciTech Connect (OSTI)

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2012-11-29

    The ionic charge state of monodisperse cationic gold clusters on surfaces may be controlled by selecting the coverage of mass-selected ions soft landed onto a substrate. Polydisperse diphosphine-capped gold clusters were synthesized in solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine in the presence of 1,3-bis(diphenylphosphino)propane. The polydisperse gold clusters were introduced into the gas phase by electrospray ionization and mass selection was employed to select a multiply charged cationic cluster species (Au11L53+, m/z = 1409, L = 1,3-bis(diphenylphosphino)propane) which was delivered to the surfaces of four different self-assembled monolayers on gold (SAMs) at coverages of 1011 and 1012 clusters/mm2. Employing the spatial profiling capabilities of in-situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) it is shown that, in addition to the chemical functionality of the monolayer (as demonstrated previously: ACS Nano, 2012, 6, 573) the coverage of cationic gold clusters on the surface may be used to control the distribution of ionic charge states of the soft-landed multiply charged clusters. In the case of a 1H,1H,2H,2H-perfluorodecanethiol SAM (FSAM) almost complete retention of charge by the deposited Au11L53+ clusters was observed at a lower coverage of 1011 clusters/mm2. In contrast, at a higher coverage of 1012 clusters/mm2, pronounced reduction of charge to Au11L52+ and Au11L5+ was observed on the FSAM. When soft landed onto 16- and 11-mercaptohexadecanoic acid surfaces on gold (16,11-COOH-SAMs), the mass-selected Au11L53+ clusters exhibited partial reduction of charge to Au11L52+ at lower coverage and additional reduction of charge to both Au11L52+ and Au11L5+ at higher coverage. The reduction of charge was found to be more pronounced on the surface of the shorter (thinner) C11 than the longer (thicker) C16-COOH-SAM. On the surface of the 1-dodecanethiol (HSAM) monolayer, the most abundant charge state

  14. Periodicity, Electronic Structures, and Bonding of Gold Tetrahalides [AuX4](-) (X = F, CI, Br, I, At, Uus)

    SciTech Connect (OSTI)

    Li, Wan-Lu; Li, Yong; Xu, Congqiao; Wang, Xue B.; Vorpagel, Erich R.; Li, Jun

    2015-12-07

    Systematic theoretical and experimental investigations have been performed to understand the periodicity and electronic structures of trivalent-gold halides using gold tetrahalides [AuX4]⁻ anions (X = F, Cl, Br, I, At, Uus). The [AuX4]⁻ (X = Cl, Br, I) anions were produced in gas phase and their negative-ion photoelectron spectra were obtained, which exhibited rich and well-resolved spectral peaks. We calculated the adiabatic as well as vertical electron detachment energies using density functional methods with scalar and spin-orbit coupling relativistic effects. The simulated photoelectron spectra based on these calculations are in good agreement with the experimental spectra. Our results show that the trivalent Au(III) oxidation state becomes progressively less stable while Au(I) is preferred when the halides become heavier along the Period Table. This trend reveals that the oxidation state of metals in complexes can be manipulated through ligand design

  15. Gold in the layered structures of R3Au7Sn3: From relativity to versatility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Provino, Alessia; Steinberg, Simon Alexander; Smetana, Volodymyr; Paramanik, Uday; Manfrinetti, Pietro; Dhar, Sudesh Kumar; Mudring, Anja -Verena

    2016-07-11

    A new isotypic series of ternary rare earth element-gold-tetrel intermetallic compounds has been synthesized and their structures and properties have been characterized. R3Au7Sn3 (R = Y, La-Nd, Sm, Gd-Tm, Lu) crystallize with the hexagonal Gd3Au7Sn3 prototype (Pearson symbol hP26; P63/m, a = 8.110-8.372 Å, c = 9.351-9.609 Å, Vcell = 532.7-583.3 Å3, Z = 2), an ordered variant of the Cu10Sn3-type. Their structure is built up by GdPt2Sn-type layers, which feature edge-sharing Sn@Au6 trigonal antiprisms connected by trigonal R3 groups. Additional insertion of gold atoms leads to the formation of new homoatomic Au clusters, Au@Au6; alternatively, the structure can bemore » considered as a superstructural polyhedral packing of the ZrBeSi-type. The magnetization, heat ca-pacity and electrical resistivity have been measured for R3Au7Sn3 (R = Ce, Pr, Nd and Tb). All four compounds order antiferromagnetically with the highest TN of 13 K for Tb3Au7Sn3. In Ce3Au7Sn3, which has a TN of 2.9 K, the heat capacity and electrical resistivity data in zero and applied fields indicate the presence of Kondo interactions. The coefficient of the linear term in the electronic heat capacity, γ, derived from the heat capacity data below 0.5 K is 211 mJ/Ce mol K2 suggesting strong electronic correlations due to the Kondo interaction. The electronic structure calculations based on the projector augmented wave method for particular representatives of the series suggest different tendencies of the localized R-4f AOs to hybridize with the valence states. LMTO-based bonding analysis on the non-magnetic La3Au7Sn3 indicates that the integrated crystal orbital Hamilton popu-lations (COHPs) are dominated by the heteroatomic Au–Sn contacts; however, contributions from La–Au and La–Sn separations are significant, both together exceeding 40 % in the overall bonding. Furthermore, homoatomic Au–Au interactions are evident for the Au@Au6 units but, despite of the high atomic concentration of

  16. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: Structure-activity relationship

    SciTech Connect (OSTI)

    Guo, Yu; Senanayake, Sanjaya; Gu, Dong; Jin, Zhao; Du, Pei -Pei; Si, Rui; Xu, Wen -Qian; Huang, Yu -Ying; Tao, Jing; Song, Qi -Sheng; Jia, Chun -Jia; Schueth, Ferdi

    2015-01-12

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5–0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) described the high homogeneity in the supported Au nanoparticles. The ex-situ and in-situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in-situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reduction by hydrogen (H₂-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeOx catalysts with very similar structural characteristics in CO oxidation.

  17. Electrocatalysts having platium monolayers on palladium, palladium alloy, and gold alloy core-shell nanoparticles, and uses thereof

    DOE Patents [OSTI]

    Adzic, Radoslav; Mo, Yibo; Vukmirovic, Miomir; Zhang, Junliang

    2010-12-21

    The invention relates to platinum-coated particles useful as fuel cell electrocatalysts. The particles are composed of a noble metal or metal alloy core at least partially encapsulated by an atomically thin surface layer of platinum atoms. The invention particularly relates to such particles having a palladium, palladium alloy, gold alloy, or rhenium alloy core encapsulated by an atomic monolayer of platinum. In other embodiments, the invention relates to fuel cells containing these electrocatalysts and methods for generating electrical energy therefrom.

  18. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: Structure-activity relationship

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Yu; Senanayake, Sanjaya; Gu, Dong; Jin, Zhao; Du, Pei -Pei; Si, Rui; Xu, Wen -Qian; Huang, Yu -Ying; Tao, Jing; Song, Qi -Sheng; et al

    2015-01-12

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5–0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) described the high homogeneity in the supported Au nanoparticles. The ex-situ and in-situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in-situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reductionmore » by hydrogen (H₂-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeOx catalysts with very similar structural characteristics in CO oxidation.« less

  19. Adsorption Mechanisms of Trivalent Gold onto Iron Oxy-Hydroxides: From the Molecular Scale to the Model

    SciTech Connect (OSTI)

    Cances, Benjamin; Benedetti, Marc; Farges, Francois; Brown, Gordon E. Jr.

    2007-02-02

    Gold is a highly valuable metal that can concentrate in iron-rich exogenetic horizons such as laterites. An improved knowledge of the retention mechanisms of gold onto highly reactive soil components such as iron oxy-hydroxides is therefore needed to better understand and predict the geochemical behavior of this element. In this study, we use EXAFS information and titration experiments to provide a realistic thermochemical description of the sorption of trivalent gold onto iron oxy-hydroxides. Analysis of Au LIII-edge XAFS spectra shows that aqueous Au(III) adsorbs from chloride solutions onto goethite surfaces as inner-sphere square-planar complexes (Au(III)(OH,Cl)4), with dominantly OH ligands at pH > 6 and mixed OH/Cl ligands at lower pH values. In combination with these spectroscopic results, Reverse Monte Carlo simulations were used to constraint the possible sorption sites on the surface of goethite. Based on this structural information, we calculated sorption isotherms of Au(III) on Fe oxy-hydroxides surfaces, using the CD-MUSIC (Charge Distribution - MUlti SIte Complexation) model. The various Au(III)-sorbed species were identified as a function of pH, and the results of these EXAFS+CD-MUSIC models are compared with titration experiments. The overall good agreement between the predicted and measured structural models shows the potential of this combined approach to better model sorption processes of transition elements onto highly reactive solid surfaces such as goethite and ferrihydrite.

  20. Tuning of colossal dielectric constant in gold-polypyrrole composite nanotubes using in-situ x-ray diffraction techniques

    SciTech Connect (OSTI)

    Sarma, Abhisakh; Sanyal, Milan K.

    2014-09-15

    In-situ x-ray diffraction technique has been used to study the growth process of gold incorporated polypyrrole nanotubes that exhibit colossal dielectric constant due to existence of quasi-one-dimensional charge density wave state. These composite nanotubes were formed within nanopores of a polycarbonate membrane by flowing pyrrole monomer from one side and mixture of ferric chloride and chloroauric acid from other side in a sample cell that allows collection of x-ray data during the reaction. The size of the gold nanoparticle embedded in the walls of the nanotubes was found to be dependent on chloroauric acid concentration for nanowires having diameter more than 100 nm. For lower diameter nanotubes the nanoparticle size become independent of chloroauric acid concentration and depends on the diameter of nanotubes only. The result of this study also shows that for 50 nm gold-polypyrrole composite nanotubes obtained with 5.3 mM chloroauric acid gives colossal dielectric constant of about 10{sup 7}. This value remain almost constant over a frequency range from 1Hz to 10{sup 6} Hz even at 80 K temperature.

  1. Real time nanoscale structural evaluation of gold structures on Si (100) surface using in-situ transmission electron microscopy

    SciTech Connect (OSTI)

    Rath, A. E-mail: ashutosh.phy@gmail.com E-mail: pvsatyam22@gmail.com; Juluri, R. R.; Satyam, P. V. E-mail: ashutosh.phy@gmail.com E-mail: pvsatyam22@gmail.com

    2014-05-14

    Transport behavior of gold nanostructures on Si(100) substrate during annealing under high vacuum has been investigated using in-situ real time transmission electron microscopy (TEM). A comparative study has been done on the morphological changes due to annealing under different vacuum environments. Au thin films of thickness ∼2.0 nm were deposited on native oxide covered silicon substrate by using thermal evaporation system. In-situ real time TEM measurements at 850 °C showed the isotropic growth of rectangular/square shaped gold-silicon alloy structures. During the growth, it is observed that the alloying occurs in liquid phase followed by transformation into the rectangular shapes. For similar system, ex-situ annealing in low vacuum (10{sup −2} millibars) at 850 °C showed the spherical gold nanostructures with no Au-Si alloy formation. Under low vacuum annealing conditions, the rate of formation of the oxide layer dominates the oxide desorption rate, resulting in the creation of a barrier layer between Au and Si, which restricts the inter diffusion of Au in to Si. This work demonstrates the important role of interfacial oxide layer on the growth of nanoscale Au-Si alloy structures during the initial growth. The time dependent TEM images are presented to offer a direct insight into the fundamental dynamics of the sintering process at the nanoscale.

  2. Structural analysis of palladium-decorated gold nanoparticles as colloidal bimetallic catalysts.

    SciTech Connect (OSTI)

    Fang, Y. L.; Miller, J. T.; Guo, N.; Heck, K. N.; Alvarez, P. J. J.; Wong, M. S. (Chemical Sciences and Engineering Division); (Rice Univ.)

    2011-02-02

    Bimetallic palladium-decorated gold nanoparticle (Pd/Au NP) catalysts are significantly more active than palladium-only catalysts, but the mechanism for enhancement is not completely clear for most reactions, like the aqueous-phase hydrodechlorination of trichloroethene. In this study, we conducted X-ray absorption spectroscopy on carbon-supported Pd/Au NPs to obtain information about the local atomic environment (i.e., oxidation states, coordination numbers, and bond distances) of the two metals under different treatment conditions. The as-synthesized NPs were confirmed to have a Pd-shell/Au-core nanostructure, in which the Pd was found as surface ensembles. Upon exposure to room temperature in air, a portion of the Pd, but not the Au, was oxidized. In comparison, nearly the entire surface of monometallic Pd NPs was oxidized, suggesting that Au in Pd/Au NPs imparts oxidation resistance to Pd atoms. The surface Pd was found randomly distributed, presumably as a PdAu surface alloy, after reduction at 300 C. X-ray absorption spectroscopy provides direct evidence for the Pd-shell/Au-core structure of Pd/Au NPs, and suggests that metallic Pd in the Pd/Au NPs is a source for higher catalytic activity for aqueous-phase trichloroethene hydrodechlorination.

  3. Measurements of Aerosol Charge and Size Distribution for Graphite, Gold, Palladium, and Silver Nanoparticles

    SciTech Connect (OSTI)

    Simones, Matthew P.; Gutti, Veera R.; Meyer, Ryan M.; Loyalka, Sudarshan K.

    2011-11-01

    The role of charge on aerosol evolution and hence the nuclear source term has been an issue of interest, and there is a need for both experimental techniques and modeling for quantifying this role. Our focus here is on further exploration of a tandem differential mobility analyzer (TDMA) technique to simultaneously measure both the size and charge (positive, negative and neutral) dependent aerosol distributions. We have generated graphite, gold, silver, and palladium nanoparticles (aerosol) using a spark generator. We measure the electrical mobility-size distributions for these aerosols using a TDMA, and from these data we deduce the full charge-size distributions. We observe asymmetry in the particle size distributions for negative and positive charges. This asymmetry could have a bearing on the dynamics of charged aerosols, indicating that the assumption of symmetry for size distributions of negatively and positively charged particles in source term simulations may not be always appropriate. Also, the experimental technique should find applications in measurements of aerosol rate processes that are affected by both particle charge and size (e.g. coagulation, deposition, resuspension), and hence in modeling and simulation of the nuclear source term.

  4. Nanoporous Gold as a Neural Interface Coating: Effects of Topography, Surface Chemistry, and Feature Size

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chapman, Christopher A. R.; Chen, Hao; Stamou, Marianna; Biener, Juergen; Biener, Monika M.; Lein, Pamela J.; Seker, Erkin

    2015-02-23

    We report that designing neural interfaces that maintain close physical coupling of neurons to an electrode surface remains a major challenge for both implantable and in vitro neural recording electrode arrays. Typically, low-impedance nanostructured electrode coatings rely on chemical cues from pharmaceuticals or surface-immobilized peptides to suppress glial scar tissue formation over the electrode surface (astrogliosis), which is an obstacle to reliable neuron–electrode coupling. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a promising candidate to reduce astrogliosis solely through topography by taking advantage of its tunable length scale. In the present in vitro study on np-Au’s interactionmore » with cortical neuron–glia co-cultures, we demonstrate that the nanostructure of np-Au achieves close physical coupling of neurons by maintaining a high neuron-to-astrocyte surface coverage ratio. Atomic layer deposition-based surface modification was employed to decouple the effect of morphology from surface chemistry. Additionally, length scale effects were systematically studied by controlling the characteristic feature size of np-Au through variations in the dealloying conditions. In conclusion, our results show that np-Au nanotopography, not surface chemistry, reduces astrocyte surface coverage while maintaining high neuronal coverage and may enhance neuron–electrode coupling through nanostructure-mediated suppression of scar tissue formation.« less

  5. Gold nanoparticles formed directly on a membrane by ultraviolet light irradiation

    SciTech Connect (OSTI)

    Qian, Hui Chen, Jian; Shen, Wei-Zheng; Kawasaki, Masahiro; Egerton, Ray F.

    2015-06-08

    There have been numerous research efforts directed towards the synthesis of gold (Au) nanoparticles (NPs) and the understanding of their formation, so that their size, shape, and stability can be well controlled for desired applications. Here, we report a dry photo-reduced method of Au NP formation directly on a membrane, such as a carbon thin film or a quartz slide. The evolution of Au NP formation was revealed by ex-situ experiments in an aberration-corrected scanning transmission electron microscope. The membranes were immersed in Au{sup 3+} solution before being taken out and quickly dried in ambient air at room temperature, then irradiated with ultraviolet (UV) light with wavelengths of 189 nm and 254 nm in a low-pressure chamber. The results show that Au{sup 3+} ions and ion clusters self-assembled on the membrane surface before UV irradiation and that solid Au NPs with sizes of 3 nm–12 nm were formed after UV irradiation. Annealing at 40 °C for about 30 min helped to further stabilize the nanoparticles. The Au NPs were uniform and well dispersed, and should find applications in the electron microscopy field, for example.

  6. Physical response of gold nanoparticles to single self-ion bombardment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bufford, Daniel C.; Hattar, Khalid

    2014-09-23

    The reliability of nanomaterials depends on maintaining their specific sizes and structures. However, the stability of many nanomaterials in radiation environments remains uncertain due to the lack of a fully developed fundamental understanding of the radiation response on the nanoscale. To provide an insight into the dynamic aspects of single ion effects in nanomaterials, gold nanoparticles (NPs) with nominal diameters of 5, 20, and 60 nm were subjected to self-ion irradiation at energies of 46 keV, 2.8 MeV, and 10 MeV in situ inside of a transmission electron microscope. Ion interactions created a variety of far-from-equilibrium structures including small (~1more » nm) sputtered nanoclusters from the parent NPs of all sizes. Single ions created surface bumps and elongated nanofilaments in the 60 nm NPs. As a result, similar shape changes were observed in the 20 nm nanoparticles, while the 5 nm nanoparticles were transiently melted or explosively broken apart.« less

  7. Substrate doping: A strategy for enhancing reactivity on gold nanocatalysts by tuning sp bands

    SciTech Connect (OSTI)

    Mammen, Nisha; Narasimhan, Shobhana; Gironcoli, Stefano de

    2015-10-14

    We suggest that the reactivity of Au nanocatalysts can be greatly increased by doping the oxide substrate on which they are placed with an electron donor. To demonstrate this, we perform density functional theory calculations on a model system consisting of a 20-atom gold cluster placed on a MgO substrate doped with Al atoms. We show that not only does such substrate doping switch the morphology of the nanoparticles from the three-dimensional tetrahedral form to the two-dimensional planar form, but it also significantly lowers the barrier for oxygen dissociation by an amount proportional to the dopant concentration. At a doping level of 2.78%, the dissociation barrier is reduced by more than half, which corresponds to a speeding up of the oxygen dissociation rate by five orders of magnitude at room temperature. This arises from a lowering in energy of the s and p states of Au. The d states are also lowered in energy, however, this by itself would have tended to reduce reactivity. We propose that a suitable measure of the reactivity of Au nanoparticles is the difference in energy of sp and d states.

  8. The perturbation energy: A missing key to understand the “nobleness” of bulk gold

    SciTech Connect (OSTI)

    Alcántara Ortigoza, Marisol Stolbov, Sergey

    2015-05-21

    The nobleness of gold surfaces has been appreciated since long before the beginning of recorded history. Yet, the origin of this phenomenon remains open because the so far existing explanations either incorrectly imply that silver should be the noblest metal or would fail to predict the dissolution of Au in aqua regia. Here, based on our analyses of oxygen adsorption, we advance that bulk gold’s unique resistance to oxidation is traced to the large energy cost associated with the perturbation its surfaces undergo upon adsorption of highly electronegative species. This fact is related to the almost totally filled d-band of Au and relativistic effects, but does not imply that the strength of the adsorbate-Au bond is weak. The magnitude of the structural and charge-density perturbation energy upon adsorption of atomic oxygen—which is largest for Au—is assessed from first-principles calculations and confirmed via a multiple regression analysis of the binding energy of oxygen on metal surfaces.

  9. Physical response of gold nanoparticles to single self-ion bombardment

    SciTech Connect (OSTI)

    Bufford, Daniel C.; Hattar, Khalid

    2014-09-23

    The reliability of nanomaterials depends on maintaining their specific sizes and structures. However, the stability of many nanomaterials in radiation environments remains uncertain due to the lack of a fully developed fundamental understanding of the radiation response on the nanoscale. To provide an insight into the dynamic aspects of single ion effects in nanomaterials, gold nanoparticles (NPs) with nominal diameters of 5, 20, and 60 nm were subjected to self-ion irradiation at energies of 46 keV, 2.8 MeV, and 10 MeV in situ inside of a transmission electron microscope. Ion interactions created a variety of far-from-equilibrium structures including small (~1 nm) sputtered nanoclusters from the parent NPs of all sizes. Single ions created surface bumps and elongated nanofilaments in the 60 nm NPs. As a result, similar shape changes were observed in the 20 nm nanoparticles, while the 5 nm nanoparticles were transiently melted or explosively broken apart.

  10. Nanoporous Gold as a Neural Interface Coating: Effects of Topography, Surface Chemistry, and Feature Size

    SciTech Connect (OSTI)

    Chapman, Christopher A. R.; Chen, Hao; Stamou, Marianna; Biener, Juergen; Biener, Monika M.; Lein, Pamela J.; Seker, Erkin

    2015-02-23

    We report that designing neural interfaces that maintain close physical coupling of neurons to an electrode surface remains a major challenge for both implantable and in vitro neural recording electrode arrays. Typically, low-impedance nanostructured electrode coatings rely on chemical cues from pharmaceuticals or surface-immobilized peptides to suppress glial scar tissue formation over the electrode surface (astrogliosis), which is an obstacle to reliable neuron–electrode coupling. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a promising candidate to reduce astrogliosis solely through topography by taking advantage of its tunable length scale. In the present in vitro study on np-Au’s interaction with cortical neuron–glia co-cultures, we demonstrate that the nanostructure of np-Au achieves close physical coupling of neurons by maintaining a high neuron-to-astrocyte surface coverage ratio. Atomic layer deposition-based surface modification was employed to decouple the effect of morphology from surface chemistry. Additionally, length scale effects were systematically studied by controlling the characteristic feature size of np-Au through variations in the dealloying conditions. In conclusion, our results show that np-Au nanotopography, not surface chemistry, reduces astrocyte surface coverage while maintaining high neuronal coverage and may enhance neuron–electrode coupling through nanostructure-mediated suppression of scar tissue formation.

  11. Gold-doped graphene: A highly stable and active electrocatalysts for the oxygen reduction reaction

    SciTech Connect (OSTI)

    Stolbov, Sergey Alcntara Ortigoza, Marisol

    2015-04-21

    In addressing the growing need of renewable and sustainable energy resources, hydrogen-fuel-cells stand as one of the most promising routes to transform the current energy paradigm into one that integrally fulfills environmental sustainability. Nevertheless, accomplishing this technology at a large scale demands to surpass the efficiency and enhance the cost-effectiveness of platinum-based cathodes, which catalyze the oxygen reduction reaction (ORR). In this work, our first-principles calculations show that Au atoms incorporated into graphene di-vacancies form a highly stable and cost-effective electrocatalyst that is, at the same time, as or more (dependently of the dopant concentration) active toward ORR than the best-known Pt-based electrocatalysts. We reveal that partial passivation of defected-graphene by gold atoms reduces the reactivity of C dangling bonds and increases that of Au, thus optimizing them for catalyzing the ORR and yielding a system of high thermodynamic and electrochemical stabilities. We also demonstrate that the linear relation among the binding energies of the reaction intermediates assumed in computational high-throughput material screening does not hold, at least for this non-purely transition-metal material. We expect Au-doped graphene to finally overcome the cathode-related challenge hindering the realization of hydrogen-fuel cells as the leading means of powering transportation and portable devices.

  12. Design of an Yb-169 source optimized for gold nanoparticle-aided radiation therapy

    SciTech Connect (OSTI)

    Reynoso, Francisco J.; Manohar, Nivedh; Cho, Sang Hyun

    2014-10-15

    Purpose: To find an optimum design of a new high-dose rate ytterbium (Yb)-169 brachytherapy source that would maximize the dose enhancement during gold nanoparticle-aided radiation therapy (GNRT), while meeting practical constraints for manufacturing a clinically relevant brachytherapy source. Methods: Four different Yb-169 source designs were considered in this investigation. The first three source models had a single encapsulation made of one of the following materials: aluminum, titanium, and stainless steel. The last source model adopted a dual encapsulation design with an inner aluminum capsule surrounding the Yb-core and an outer titanium capsule. Monte Carlo (MC) simulations using the Monte Carlo N-Particle code version 5 (MCNP5) were conducted initially to investigate the spectral changes caused by these four source designs and the associated variations in macroscopic dose enhancement across the tumor loaded with gold nanoparticles (GNPs) at 0.7% by weight. Subsequent MC simulations were performed using the EGSnrc and NOREC codes to determine the secondary electron spectra and microscopic dose enhancement as a result of irradiating the GNP-loaded tumor with the MCNP-calculated source spectra. Results: Effects of the source filter design were apparent in the current MC results. The intensity-weighted average energy of the Yb-169 source varied from 108.9 to 122.9 keV, as the source encapsulation material changed from aluminum to stainless steel. Accordingly, the macroscopic dose enhancement calculated at 1 cm away from the source changed from 51.0% to 45.3%. The sources encapsulated by titanium and aluminum/titanium combination showed similar levels of dose enhancement, 49.3% at 1 cm, and average energies of 113.0 and 112.3 keV, respectively. While the secondary electron spectra due to the investigated source designs appeared to look similar in general, some differences were noted especially in the low energy region (<50 keV) of the spectra suggesting the

  13. An improved DNA force field for ssDNA interactions with gold nanoparticles

    SciTech Connect (OSTI)

    Jiang, Xiankai; Huai, Ping; Fan, Chunhai; Song, Bo E-mail: bosong@sinap.ac.cn; Gao, Jun; Huynh, Tien; Zhou, Ruhong E-mail: bosong@sinap.ac.cn

    2014-06-21

    The widespread applications of single-stranded DNA (ssDNA) conjugated gold nanoparticles (AuNPs) have spurred an increasing interest in the interactions between ssDNA and AuNPs. Despite extensive studies using the most sophisticated experimental techniques, the detailed molecular mechanisms still remain largely unknown. Large scale molecular dynamics (MD) simulations can thus be used to supplement experiments by providing complementary information about ssDNA-AuNP interactions. However, up to now, all modern force fields for DNA were developed based on the properties of double-stranded DNA (dsDNA) molecules, which have hydrophilic outer backbones protecting hydrophobic inner nucleobases from water. Without the double-helix structure of dsDNA and thus the protection by the outer backbone, the nucleobases of ssDNA are directly exposed to solvent, and their behavior in water is very different from that of dsDNA, especially at the interface with nanoparticles. In this work, we have improved the force field of ssDNA for use with nanoparticles, such as AuNPs, based on recent experimental results and quantum mechanics calculations. With the new improved force field, we demonstrated that a poly(A) sequence adsorbed on a AuNP surface is much more stable than a poly(T) sequence, which is consistent with recent experimental observations. On the contrary, the current standard force fields, including AMBER03, CHARMM27, and OPLSAA, all gave erroneous results as compared to experiments. The current improved force field is expected to have wide applications in the study of ssDNA with nanomaterials including AuNPs, which might help promote the development of ssDNA-based biosensors and other bionano-devices.

  14. Low-Z linac targets for low-MV gold nanoparticle radiation therapy

    SciTech Connect (OSTI)

    Tsiamas, P.; Mishra, P.; Berbeco, R. I.; Marcus, K.; Zygmanski, P. E-mail: Erno-Sajo@uml.edu; Cifter, F.; Sajo, E. E-mail: Erno-Sajo@uml.edu

    2014-02-15

    Purpose: To investigate the potential of low-Z/low-MV (low-Z) linac targets for gold nanoparticle radiotherapy (GNPT) and to determine the microscopic dose enhancement ratio (DER) due to GNP for the alternative beamlines. In addition, to evaluate the degradation of dose enhancement arising from the increased attenuation of x rays and larger skin dose in water for the low-MV beams compared to the standard linac. Methods: Monte Carlo simulations were used to compute dose and DER for various flattening-filter-free beams (2.5, 4, 6.5 MV). Target materials were beryllium, diamond, and tungsten-copper high-Z target. Target thicknesses were selected based on 20%, 60%, 70%, and 80% of the continuous slowing down approximation electron ranges for a given target material and energy. Evaluation of the microscopic DER was carried out for 100 nm GNP including the degradation factors due to beam attenuation. Results: The greatest increase in DER compared to the standard 6.5 MV linac was for a 2.5 MV Be-target (factor of ?2). Skin dose ranged from ?10% (Be, 6.5 MV-80%) to ?85% (Be, 2.5 MV-20%) depending on the target case. Attenuation of 2.5 MV beams at 22 cm was higher by ?75% compared with the standard beam. Taking into account the attenuation at 22 cm depth, the effective dose enhancement was up to ?60% above the DER of the high-Z target. For these cases the effective DER ranged between ?1.6 and 6 compared with the standard linac. Conclusions: Low-Z (2.5 MV) GNPT is possible even after accounting for greater beam attenuation for deep-seated tumors (22 cm) and the increased skin dose. Further, it can lead to significant sparing of normal tissue while simultaneously escalating the dose in the tumor cells.

  15. SciThur AM: YIS - 04: Gold Nanoparticle Enhanced Arc Radiotherapy: A Monte Carlo Feasibility Study

    SciTech Connect (OSTI)

    Koger, B; Kirkby, C

    2014-08-15

    Introduction: The use of gold nanoparticles (GNPs) in radiotherapy has shown promise for therapeutic enhancement. In this study, we explore the feasibility of enhancing radiotherapy with GNPs in an arc-therapy context. We use Monte Carlo simulations to quantify the macroscopic dose-enhancement ratio (DER) and tumour to normal tissue ratio (TNTR) as functions of photon energy over various tumour and body geometries. Methods: GNP-enhanced arc radiotherapy (GEART) was simulated using the PENELOPE Monte Carlo code and penEasy main program. We simulated 360 arc-therapy with monoenergetic photon energies 50 1000 keV and several clinical spectra used to treat a spherical tumour containing uniformly distributed GNPs in a cylindrical tissue phantom. Various geometries were used to simulate different tumour sizes and depths. Voxel dose was used to calculate DERs and TNTRs. Inhomogeneity effects were examined through skull dose in brain tumour treatment simulations. Results: Below 100 keV, DERs greater than 2.0 were observed. Compared to 6 MV, tumour dose at low energies was more conformai, with lower normal tissue dose and higher TNTRs. Both the DER and TNTR increased with increasing cylinder radius and decreasing tumour radius. The inclusion of bone showed excellent tumour conformality at low energies, though with an increase in skull dose (40% of tumour dose with 100 keV compared to 25% with 6 MV). Conclusions: Even in the presence of inhomogeneities, our results show promise for the treatment of deep-seated tumours with low-energy GEART, with greater tumour dose conformality and lower normal tissue dose than 6 MV.

  16. The Genomes OnLine Database (GOLD) v.5: a metadata management system based on a four level (meta)genome project classifications

    SciTech Connect (OSTI)

    Thomas, Alex D.; Stamatis, Dimitri; Bertsch, Jon; Isbandi, Michelle; Jansson, Jakob; Mallajosyula, Jyothi; Pagani, Ioanna; Lobos, Elizabeth A.; Kyrpides, Nikos C.; Reddy, Tatiparthi

    2014-10-29

    The Genomes OnLine Database (GOLD, http://www.genomesonline.org) is a comprehensive online resource to catalogue and monitor genetic studies worldwide. GOLD provides up-to-date status on complete and ongoing sequencing projects along with a broad array of curated metadata. Here we report version 5 (v.5) of the database. The newly designed database schema and web user interface supports several new features including the implementation of a four level (meta)genome project classification system and a simplified intuitive web interface to access reports and launch search tools. The database currently hosts information for about 19,200 studies, 56,000 Biosamples, 56,000 sequencing projects, and 39,400 analysis projects. More than just a catalogue of worldwide genome projects, GOLD is a manually curated, quality controlled metadata warehouse. The problems encountered in integrating disparate and varying quality data into GOLD are briefly highlighted. GOLD fully supports and follows the Genomic Standards Consortium (GSC) Minimum Information standards.

  17. Benchmarking the New RESRAD-OFFSITE Source Term Model with DUST-MS and GoldSim - 13377

    SciTech Connect (OSTI)

    Cheng, J.J.; Kamboj, S.; Gnanapragasam, E.; Yu, C.

    2013-07-01

    RESRAD-OFFSITE is a computer code developed by Argonne National Laboratory under the sponsorship of U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC). It is designed on the basis of RESRAD (onsite) code, a computer code designated by DOE and NRC for evaluating soil-contaminated sites for compliance with human health protection requirements pertaining to license termination or environmental remediation. RESRAD-OFFSITE has enhanced capabilities of modeling radionuclide transport to offsite locations and calculating potential radiation exposure to offsite receptors. Recently, a new source term model was incorporated into RESRAD-OFFSITE to enhance its capability further. This new source term model allows simulation of radionuclide releases from different waste forms, in addition to the soil sources originally considered in RESRAD (onsite) and RESRAD-OFFSITE codes. With this new source term model, a variety of applications can be achieved by using RESRAD-OFFSITE, including but not limited to, assessing the performance of radioactive waste disposal facilities. This paper presents the comparison of radionuclide release rates calculated by the new source term model of RESRAD-OFFSITE versus those calculated by DUST-MS and GoldSim, respectively. The focus of comparison is on the release rates of radionuclides from the bottom of the contaminated zone that was assumed to contain radioactive source materials buried in soil. The transport of released contaminants outside of the primary contaminated zone is beyond the scope of this paper. Overall, the agreement between the RESRAD-OFFSITE results and the DUST-MS and GoldSim results is fairly good, with all three codes predicting identical or similar radionuclide release profiles over time. Numerical dispersion in the DUST-MS and GoldSim results was identified as potentially contributing to the disagreement in the release rates. In general, greater discrepancy in the release rates was found for short

  18. Adsorption Mechanisms of Trivalent Gold onto Iron Oxy-Hydroxides: From the Molecular Scale to the Model

    SciTech Connect (OSTI)

    Cances, Benjamin; Benedetti, Marc; Farges, Francois; Brown, Gordon E.., Jr.; /Stanford U., Geo. Environ. Sci. /SLAC, SSRL

    2006-12-13

    Gold is a highly valuable metal that can concentrate in iron-rich exogenetic horizons such as laterites. An improved knowledge of the retention mechanisms of gold onto highly reactive soil components such as iron oxyhydroxides is therefore needed to better understand and predict the geochemical behavior of this element. In this study, we use EXAFS information and titration experiments to provide a realistic thermochemical description of the sorption of trivalent gold onto iron oxy-hydroxides. Analysis of Au L{sub III}-edge XAFS spectra shows that aqueous Au(III) adsorbs from chloride solutions onto goethite surfaces as inner-sphere square-planar complexes (Au(III)(OH,Cl){sub 4}), with dominantly OH ligands at pH > 6 and mixed OH/Cl ligands at lower pH values. In combination with these spectroscopic results, Reverse Monte Carlo simulations were used to constraint the possible sorption sites on the surface of goethite. Based on this structural information, we calculated sorption isotherms of Au(III) on Fe oxy-hydroxides surfaces, using the CD-MUSIC (Charge Distribution--Multi Site Complexation) model. The various Au(III)-sorbed species were identified as a function of pH, and the results of these EXAFS+CD-MUSIC models are compared with titration experiments. The overall good agreement between the predicted and measured structural models shows the potential of this combined approach to better model sorption processes of transition elements onto highly reactive solid surfaces such as goethite and ferrihydrite.

  19. X-ray Spectral Measurements and Collisional Radiative Modeling of Hot, Gold Plasmas at the Omega Laser

    SciTech Connect (OSTI)

    May, M J; Schneider, M B; Hansen, S B; Chung, H; Hinkel, D E; Baldis, H A; Constantin, C

    2008-07-02

    M-Band and L-Band Gold spectra between 3 to 5 keV and 8 to 13 keV, respectively, have been recorded by a photometrically calibrated crystal spectrometer. The spectra were emitted from the plasma in the laser deposition region of a 'hot hohlraum'. This is a reduced-scale hohlraum heated with {approx} 9 kJ of 351 nm light in a 1 ns square pulse at the OMEGA laser. The space- and time-integrated spectra included L-Band line emission from Co-like to Ne-like gold. The three L-Band line features were identified to be the 3s {yields} 2p, 3d{sub 5/2} {yields} 2p{sub 3/2} and 3d{sub 3/2} {yields} 2p{sub 1/2} transitions at {approx}9 keV, {approx}10 keV and {approx}13 keV, respectively. M-Band 5f {yields} 3d, 4d {yields} 3p, and 4p {yields} 3s transition features from Fe-like to P-like gold were also recorded between 3 to 5 keV. Modeling from the radiation-hydrodynamics code LASNEX, the collisional-radiative codes FLYCHK and SCRAM, and the atomic structure code FAC were used to model the plasma and generate simulated spectra for comparison with the recorded spectra. Through these comparisons, we have determined the average electron temperature of the emitting plasma to be between 6.0 and 6.5 keV. The electron temperatures predicted by LASNEX appear to be too large by a factor of about 1.5.

  20. Study of Inhibition, Reactivation and Aging Processes of Pesticides Using Graphene Nanosheets/Gold Nanoparticles-Based Acetylcholinesterase Biosensor

    SciTech Connect (OSTI)

    Zhang, Lin; Long, Linjuan; Zhang, Weiying; Du, Dan; Lin, Yuehe

    2012-09-10

    Organophosphate (OP) and carbamate pesticides exert their toxicity via attacking the hydroxyl moiety of serine in the 'active site' of acetylcholinesterase (AChE). In this paper we developed a stable AChE biosensor based on self-assembling AChE to graphene nanosheet (GN)-gold nanoparticles (AuNPs) nanocomposite electrode for investigation of inhibition, reactivation and aging processes of different pesticides. It is confirmed that pesticides can inhibit AChE in a short time. OPs poisoning is treatable with oximes while carbarmates exposure is insensitive to oximes. The proposed electrochemical approach thus provides a new simple tool for comparison of pesticide sensitivity and guide of therapeutic intervention.