National Library of Energy BETA

Sample records for moving parts pipeline

  1. Energy Department Moves Forward on Alaska Natural Gas Pipeline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program Energy Department Moves Forward on ... It would also fulfill the Bush Administration's policy to bring ...

  2. Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guarantee Program | Department of Energy Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program May 26, 2005 - 1:03pm Addthis WASHINGTON, DC - The Department of Energy tomorrow, Friday, May 27, will publish a Notice of Inquiry in the Federal Register seeking public comment on an $18 billion loan guarantee program to encourage the construction of a pipeline that will bring Alaskan natural gas to

  3. North West Shelf pipeline. Part 2 (conclusion). Laying Australia's North West Shelf pipeline

    SciTech Connect (OSTI)

    Seymour, E.V.; Craze, D.J.; Ruinen, W.

    1984-05-14

    Details of the construction of Australia's North West Shelf gas pipeline cover the pipelaying operation, trunkline-to-riser tie-in, posttrenching, backfilling, slugcatcher construction, connection with the shore terminal, and hydrostatic testing.

  4. Moving

    Broader source: Energy.gov [DOE]

    Moving Labor InformationOur team provides office relocations and reshuffles, office pre-renovation moves, furniture and equipment delivery and pick-up for turn-in, set-up of exhibits or venue for...

  5. Heat-driven acoustic cooling engine having no moving parts

    DOE Patents [OSTI]

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert; Hofler, Thomas J.

    1989-01-01

    A heat-driven acoustic cooling engine having no moving parts receives heat from a heat source. The acoustic cooling engine comprises an elongated resonant pressure vessel having first and second ends. A compressible fluid having a substantial thermal expansion coefficient and capable of supporting an acoustic standing wave is contained in the resonant pressure vessel. The heat source supplies heat to the first end of the vessel. A first heat exchanger in the vessel is spaced-apart from the first end and receives heat from the first end. A first thermodynamic element is adjacent to the first heat exchanger and converts some of the heat transmitted by the first heat exchanger into acoustic power. A second thermodynamic element has a first end located spaced-apart from the first thermodynamic element and a second end farther away from the first thermodynamic element than is its first end. The first end of the second thermodynamic element heats while its second end cools as a consequence of the acoustic power. A second heat exchanger is adjacent to and between the first and second thermodynamic elements. A heat sink outside of the vessel is thermally coupled to and receives heat from the second heat exchanger. The resonant pressure vessel can include a housing less than one-fourth wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir.

  6. Study of face-to-face moves for longwall equipment. Final report, Part 1

    SciTech Connect (OSTI)

    Pimentel, R.A.; Shoff, W.E.; Adam, R.F.J.

    1982-11-01

    This report documents a study with the objective to design and develop methods and techniques to reduce longwall equipment move time by 30 percent. A literature study was performed and general foreign and US longwall move practices were documented. Subsequently, four US longwall moves were studied using existing records and on-site time and method studies. These moves were analyzed to identify the positive and negative aspects with respect to time, manpower use, cost and safety. Recommendations are made for each of the four moves studied and a cost benefit analysis is performed to determine the economic feasibility of the recommendations. The actual results are compared with projected results determined by a Critical Path Model analysis of a move incorporating the recommendations. General recommendations are made for improving face-to-face move performance.

  7. Worldwide pipelines and contractors directory

    SciTech Connect (OSTI)

    1999-11-01

    This directory contains information on the following: pipeline contractors; US natural gas pipelines; US crude oil pipelines; US product pipelines; Canadian pipelines and foreign pipelines.

  8. MONTE CARLO SIMULATIONS OF PERIODIC PULSED REACTOR WITH MOVING GEOMETRY PARTS

    SciTech Connect (OSTI)

    Cao, Yan; Gohar, Yousry

    2015-11-01

    In a periodic pulsed reactor, the reactor state varies periodically from slightly subcritical to slightly prompt supercritical for producing periodic power pulses. Such periodic state change is accomplished by a periodic movement of specific reactor parts, such as control rods or reflector sections. The analysis of such reactor is difficult to perform with the current reactor physics computer programs. Based on past experience, the utilization of the point kinetics approximations gives considerable errors in predicting the magnitude and the shape of the power pulse if the reactor has significantly different neutron life times in different zones. To accurately simulate the dynamics of this type of reactor, a Monte Carlo procedure using the transfer function TRCL/TR of the MCNP/MCNPX computer programs is utilized to model the movable reactor parts. In this paper, two algorithms simulating the geometry part movements during a neutron history tracking have been developed. Several test cases have been developed to evaluate these procedures. The numerical test cases have shown that the developed algorithms can be utilized to simulate the reactor dynamics with movable geometry parts.

  9. Natural gas pipeline technology overview.

    SciTech Connect (OSTI)

    Folga, S. M.; Decision and Information Sciences

    2007-11-01

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

  10. Pipeline Expansions

    Reports and Publications (EIA)

    1999-01-01

    This appendix examines the nature and type of proposed pipeline projects announced or approved for construction during the next several years in the United States. It also includes those projects in Canada and Mexico that tie-in with the U.S. markets or projects.

  11. US pipelines report mixed results for 1993

    SciTech Connect (OSTI)

    True, W.R.

    1994-11-21

    US natural gas pipelines started 1994 in generally better conditions than a year earlier. These companies' operational and financial results for 1993 indicate modest but continuing improvement. Petroleum liquids pipelines, on the other hand, suffered reduced revenues and incomes last: increased deliveries and trunkline movement of liquid petroleum products failed fully to offset fewer barrels of crude oil moving through the companies' pipeline systems. Revenues, incomes, mileage operated, and other data are tracked in Oil and Gas Journal's exclusive Economics Report. Additionally, this report contains extensive data on actual costs of pipeline construction compared with what companies expected to spend at the time of projects' approvals. The paper also discusses the continuing shift of natural gas pipelines as merchants to role of transporter; what was spent; the US interstate network; pipeline mileage; deliveries; the top 10 companies; construction activities; cost trends; and cost components.

  12. Feasibility study of Northeast Thailand Gas Pipeline Project. Final report. Part 2. Compressed natural gas. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1989-09-01

    The volume is the second part of a three part study submitted to the Petroleum Authority of Thailand. Part II analyzes the potential use of compressed natural gas (CNG) as a transportation fuel for high mileage vehicles traveling the highway system of Thailand. The study provides an initial estimate of buses and trucks that are potential candidates for converting to natural gas vehicles (NGV). CNG technology is briefly reviewed. The types of refueling stations that may be sited along the highway are discussed. The estimated capital investments and typical layouts are presented. The report also discusses the issues involved in implementing a CNG program in Thailand, such as safety, user acceptability and the government's role.

  13. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31 Hydrogen ...

  14. Fusion, mechanical joining methods pros, cons--Part 2. [Natural gas pipelines use of mechanical and fusion joints

    SciTech Connect (OSTI)

    Gunther, K.M. )

    1993-10-01

    Two basic techniques accepted by gas distribution utility companies for joining polyethylene pipe underground are fusion methods and mechanical joining. Washington Gas Light Co., uses the fusion methods for the most part and uses mechanical joints for repair and final tie-ins where fusion methods are impractical or impossible to use. Fusion methods used by gas industry users of plastic pipe are: butt fusion; socket fusion; saddle fusion; electrofusion. Mechanical pipe joining techniques or procedures include: factory made mechanical joints such as meter risers and transition fittings; hydraulic compression couplings; bolted and screwed compression couplings; stab type compression couplings; interior seal couplings. Every joining method has strengths, weaknesses, pitfalls and ways they can fail in service. The key is making the best selection based on such factors as location, temperature, conditions, available equipment, personnel training level and cost. No one method will do it all or every company would be using that particular method. Part 2 focuses on strengths, weaknesses, pitfalls and failure possibilities of the five mechanical techniques.

  15. U.S. pipelines continue gains into 1996

    SciTech Connect (OSTI)

    True, W.R.

    1996-11-25

    US interstate natural gas, crude oil, and petroleum product pipelines turned in health performances for 1995, continuing impressive efficiency improvements that were evident in 1994. Revenues and incomes earned from operations along with volumes moved are among data annually submitted to FERC and tracked by Oil and Gas Journal year to year in this exclusive report. This year`s report expands coverage of plans for new construction and completed-cost figures by including Canadian activity for the same 12-month period: July 1, 1995, to June 30, 1996. The paper includes data on the following: pipeline revenues, incomes--1995; North American pipeline costs, estimated; US pipeline costs, estimated vs. actual; North American compressor-construction costs; US compressor costs, estimated vs. actual; Canadian pipeline construction costs, actual; US interstate mileage; investment in liquids pipelines; 10 years of land construction costs; to 10 interstate liquids lines; top 10 interstate gas lines; liquids pipeline companies; and gas pipeline companies.

  16. Hydrogen pipeline compressors annual progress report.

    SciTech Connect (OSTI)

    Fenske, G. R.; Erck, R. A.

    2011-07-15

    The objectives are: (1) develop advanced materials and coatings for hydrogen pipeline compressors; (2) achieve greater reliability, greater efficiency, and lower capital in vestment and maintenance costs in hydrogen pipeline compressors; and (3) research existing and novel hydrogen compression technologies that can improve reliability, eliminate contamination, and reduce cost. Compressors are critical components used in the production and delivery of hydrogen. Current reciprocating compressors used for pipeline delivery of hydrogen are costly, are subject to excessive wear, have poor reliability, and often require the use of lubricants that can contaminate the hydrogen (used in fuel cells). Duplicate compressors may be required to assure availability. The primary objective of this project is to identify, and develop as required, advanced materials and coatings that can achieve the friction, wear, and reliability requirements for dynamically loaded components (seal and bearings) in high-temperature, high-pressure hydrogen environments prototypical of pipeline and forecourt compressor systems. The DOE Strategic Directions for Hydrogen Delivery Workshop identified critical needs in the development of advanced hydrogen compressors - notably, the need to minimize moving parts and to address wear through new designs (centrifugal, linear, guided rotor, and electrochemical) and improved compressor materials. The DOE is supporting several compressor design studies on hydrogen pipeline compression specifically addressing oil-free designs that demonstrate compression in the 0-500 psig to 800-1200 psig range with significant improvements in efficiency, contamination, and reliability/durability. One of the designs by Mohawk Innovative Technologies Inc. (MiTi{reg_sign}) involves using oil-free foil bearings and seals in a centrifual compressor, and MiTi{reg_sign} identified the development of bearings, seals, and oil-free tribological coatings as crucial to the successful development of an advanced compressor. MiTi{reg_sign} and ANL have developed potential coatings for these rigorous applications; however, the performance of these coatings (as well as the nickel-alloy substrates) in high-temperature, high-speed hydrogen environments is unknown at this point.

  17. Rio Grande pipeline introduces LPG to Mexico

    SciTech Connect (OSTI)

    1997-06-01

    Rio Grande Pipeline, a joint venture between Mid-America Pipeline Co., Amoco Pipeline Co. and Navajo Pipeline Co., has broken new ground in the energy industry as the first LPG pipeline to cross the US-Mexico border. Plans for the project were announced in November 1995 and first deliveries started three months ago on March 21, 1997. The 8-inch, 265-mile pipeline originates near Odessa, TX, where it receives an 85-15 propane-butane mix via a connection to Mid-America Pipeline. From Odessa, product moves west through the Texas desert and crosses the Rio Grande River about 15 miles south of El Paso near Clint, TX and extends 20 miles into Mexico. Capacity of the line is 24,000 bpd and it has been averaging about 22,000 bpd since line-fill. All in all, it sounded like a reasonably feasible, routine project. But perceptions can be deceiving, or at least misleading. In other words, the project can be summarized as follows: one river, two cultures and a world of difference. The official border crossing for pipeline construction took place on Dec. 2, 1996, with a directional drill under the Rio Grande River, but in actuality, the joint venture partners were continually bridging differences in language, laws, customs and norms with Pemex and contracted workers from Mexico.

  18. Components in the Pipeline

    SciTech Connect (OSTI)

    Gorton, Ian; Wynne, Adam S.; Liu, Yan; Yin, Jian

    2011-02-24

    Scientists commonly describe their data processing systems metaphorically as software pipelines. These pipelines input one or more data sources and apply a sequence of processing steps to transform the data and create useful results. While conceptually simple, pipelines often adopt complex topologies and must meet stringent quality of service requirements that place stress on the software infrastructure used to construct the pipeline. In this paper we describe the MeDICi Integration Framework, which is a component-based framework for constructing complex software pipelines. The framework supports composing pipelines from distributed heterogeneous software components and provides mechanisms for controlling qualities of service to meet demanding performance, reliability and communication requirements.

  19. Keystone XL pipeline update

    Broader source: Energy.gov [DOE]

    Questions have been raised recently about the Keystone XL pipeline project, so we wanted to make some points clear.

  20. Fiber Reinforced Composite Pipelines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rawls Savannah River National Laboratory This presentation does not contain proprietary, confidential, or otherwise restricted information Fiber Reinforced Composite Pipelines ...

  1. EnSys Energy Report on Keystone XL Pipeline

    Broader source: Energy.gov [DOE]

    As part of ongoing analysis, the Department of Energy's Office of Policy and International Affairs commissioned a report on the proposed Keystone XL pipeline project.

  2. Pipeline in-service relocation engineering manual. Final report

    SciTech Connect (OSTI)

    Rosenfeld, M.J.

    1994-12-31

    When pipeline relocation is necessary, it is a common practice for pipeline operators to move the line while it contains gas or liquid product under pressure in order to avoid taking the line out of service. Reasons for this practice include lowering to accommodate a new crossing, raising for repair or recoating, or moving to avoid encroachment. Such operations increase the longitudinal stresses in the relocated section of pipeline. Usually, this has not caused significant problems. However, at least four pipeline failures have been associated with the movement of pipelines over the years. On October 22, 1991, the DOT Office of Pipeline Safety issued an `Alert Notice` to US pipeline operators urging them to conduct analyses prior to moving a pipeline, regardless of whether the line is in service during the operation or not; to determine the extent to which a pipeline may be safely moved, considering the material toughness as a factor; and specific procedures for the operation. The notice resulted from recommendations by the National Transportation Safety Board following their investigation of the North Blenheim failure. This document in intended to be a reasonably comprehensive manual for engineering a safe relocation of an operating pipeline in service. The major elements of the desired guidelines were perceived to already exist in various industry guidelines, standards, proceedings, and research reports. Those sources were compiled, compared and distilled into recommendations for designing a safe line relocation. This manual supplements existing guidelines such as API RP-1117 rather than superseding them; indeed, the user of this document would benefit by referring to them as well. Observance of recommendations made herein should satisfy the nominal requirements and concerns of regulators. However, this document could not possibly address every conceivable situation which might arise in line relocation, nor is it a substitute for independent engineering judgement.

  3. Subsea pipeline connection

    SciTech Connect (OSTI)

    Langner, C. G.

    1985-12-17

    A method and apparatus are provided for laying an offshore pipeline or flowline bundle to a deepwater subsea structure. The pipeline or flowline bundle is laid along a prescribed path, preferably U-shape, such that a pullhead at the terminus of the pipeline or flowline bundle falls just short of the subsea structure. A pull-in tool connected to the pipeline or flowline bundle by a short length of pull cable is then landed on and latched to the subsea structure, and the pipeline or flowline bundle is pulled up to the subsea structure by the pull-in tool and pull cable.

  4. No moving parts safe and arm apparatus and method with monitoring and built-in-test for optical firing of explosive systems

    SciTech Connect (OSTI)

    Hendrix, J.L.

    1994-12-31

    A laser initiated ordnance controller apparatus which provides a safe and arm scheme with no moving parts. The safe and arm apparatus provides isolation of firing energy to explosive devices using a combination of polarization isolation and control through acousto-optical deviation of laser energy pulses. The apparatus provides constant monitoring of the systems status and performs 100% built-in-test at any time prior to ordnance ignition without the risk of premature ignition or detonation. The apparatus has a computer controller, a solid state laser, an acousto-optic deflector and RF drive circuitry, built-in-test optics and electronics, and system monitoring capabilities. The optical system is completed from the laser beam power source to the pyrotechnic ordnance through fiber optic cabling, optical splitters and optical connectors. During operation of the apparatus, a command is provided by the computer controller and, simultaneous with laser flashlamp fire, the safe and arm device is opened for approximately 200 microseconds which allows the laser pulse to transmit through the device. The arm signal also energizes the laser power supply and activated the acousto-optical deflector. When the correct fire format command is received, the acousto-optic deflector moves to the selected event channel and the channel is verified to ensure the system is pointing to the correct position. Laser energy is transmitted through the fiber where an ignitor or detonator designed to be sensitive to optical pulses is fired at the end of the fiber channel.

  5. EIA - Natural Gas Pipeline Network - Intrastate Natural Gas Pipeline

    U.S. Energy Information Administration (EIA) Indexed Site

    Segment Intrastate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Intrastate Natural Gas Pipeline Segment Overview Intrastate natural gas pipelines operate within State borders and link natural gas producers to local markets and to the interstate pipeline network. Approximately 29 percent of the total miles of natural gas pipeline in the U.S. are intrastate pipelines. Although an intrastate

  6. Final EIS Keystone Pipeline Project Appendix E Pipeline Restrictive Layer

    Energy Savers [EERE]

    E Pipeline Restrictive Layer Areas Crossings Final EIS Keystone Pipeline Project Appendix F Soil Associations along the Keystone Pipeline Project Route Final EIS Keystone Pipeline Project Appendix F Soil Associations along the Keystone Pipeline Project Route Appendix G Public Water Supply Wells Within One Mile of the Proposed Keystone Pipeline Project Centerline (Note: This appendix is Table 3.5-6, taken directly from the Environmental Report for the Keystone Pipeline Project [TransCanada

  7. Comparing Existing Pipeline Networks with the Potential Scale of Future U.S. CO2 Pipeline Networks

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2008-02-29

    There is growing interest regarding the potential size of a future U.S. dedicated CO2 pipeline infrastructure if carbon dioxide capture and storage (CCS) technologies are commercially deployed on a large scale. In trying to understand the potential scale of a future national CO2 pipeline network, comparisons are often made to the existing pipeline networks used to deliver natural gas and liquid hydrocarbons to markets within the U.S. This paper assesses the potential scale of the CO2 pipeline system needed under two hypothetical climate policies and compares this to the extant U.S. pipeline infrastructures used to deliver CO2 for enhanced oil recovery (EOR), and to move natural gas and liquid hydrocarbons from areas of production and importation to markets. The data presented here suggest that the need to increase the size of the existing dedicated CO2 pipeline system should not be seen as a significant obstacle for the commercial deployment of CCS technologies.

  8. No moving parts safe & arm apparatus and method with monitoring and built-in-test for optical firing of explosive systems

    DOE Patents [OSTI]

    Hendrix, J.L.

    1995-04-11

    A laser initiated ordnance controller apparatus which provides a safe and arm scheme with no moving parts. The safe & arm apparatus provides isolation of firing energy to explosive devices using a combination of polarization isolation and control through acousto-optical deviation of laser energy pulses. The apparatus provides constant monitoring of the systems status and performs 100% built-in-test at any time prior to ordnance ignition without the risk of premature ignition or detonation. The apparatus has a computer controller, a solid state laser, an acousto-optic deflector and RF drive circuitry, built-in-test optics and electronics, and system monitoring capabilities. The optical system is completed from the laser beam power source to the pyrotechnic ordnance through fiber optic cabling, optical splitters and optical connectors. During operation of the apparatus, a command is provided by the computer controller and, simultaneous with laser flashlamp fire, the safe & arm device is opened for approximately 200 microseconds which allows the laser pulse to transmit through the device. The arm signal also energizes the laser power supply and activates the acousto-optical deflector. When the correct fire format command is received, the acousto-optic deflector moves to the selected event channel, and the channel is verified to ensure the system is pointing to the correct position. Laser energy is transmitted through the fiber where an ignitor or detonator designed to be sensitive to optical pulses is fired at the end of the fiber channel. Simultaneous event channels may also be utilized by optically splitting a single event channel. The built-in-test may be performed anytime prior to ordnance ignition. 6 figures.

  9. No moving parts safe & arm apparatus and method with monitoring and built-in-test for optical firing of explosive systems

    DOE Patents [OSTI]

    Hendrix, James L.

    1995-01-01

    A laser initiated ordnance controller apparatus which provides a safe and m scheme with no moving parts. The safe & arm apparatus provides isolation of firing energy to explosive devices using a combination of polarization isolation and control through acousto-optical deviation of laser energy pulses. The apparatus provides constant monitoring of the systems status and performs 100% built-in-test at any time prior to ordnance ignition without the risk of premature ignition or detonation. The apparatus has a computer controller, a solid state laser, an acousto-optic deflector and RF drive circuitry, built-in-test optics and electronics, and system monitoring capabilities. The optical system is completed from the laser beam power source to the pyrotechnic ordnance through fiber optic cabling, optical splitters and optical connectors. During operation of the apparatus, a command is provided by the computer controller and, simultaneous with laser flashlamp fire, the safe & arm device is opened for approximately 200 microseconds which allows the laser pulse to transmit through the device. The arm signal also energizes the laser power supply and activates the acousto-optical deflector. When the correct fire format command is received, the acousto-optic deflector moves to the selected event channel, and the channel is verified to ensure the system is pointing to the correct position. Laser energy is transmitted through the fiber where an ignitor or detonator designed to be sensitive to optical pulses is fired at the end of the fiber channel. Simultaneous event channels may also be utilized by optically splitting a single event channel. The built-in-test may be performed anytime prior to ordnance ignition.

  10. Product Pipeline Reports Tutorial

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum > Petroleum Survey Forms> Petroleum Survey Forms Tutorial Product Pipeline Reports Tutorial Content on this page requires a newer version of Adobe Flash Player. Get Adobe ...

  11. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Mileage...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mileage by State About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Estimated Natural Gas Pipeline Mileage in the ...

  12. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines

    Broader source: Energy.gov [DOE]

    Code for Hydrogen Piping and Pipelines. B31 Hydrogen Section Committee to develop a new code for H2 piping and pipelines.

  13. Hydrogen Pipelines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gaseous Hydrogen » Hydrogen Pipelines Hydrogen Pipelines Photo of a hydrogen pipeline. Gaseous hydrogen can be transported through pipelines much the way natural gas is today. Approximately 1,500 miles of hydrogen pipelines are currently operating in the United States. Owned by merchant hydrogen producers, these pipelines are located where large hydrogen users, such as petroleum refineries and chemical plants, are concentrated such as the Gulf Coast region. Transporting gaseous hydrogen via

  14. INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS

    SciTech Connect (OSTI)

    J. Bruce Nestleroth

    2004-11-05

    Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. The Applied Energy Systems Group at Battelle is concluding the first year of work on a projected three-year development effort. In this first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. This second semiannual report focuses on the development of a second inspection methodology, based on rotating permanent magnets. During this period, a rotating permanent magnet exciter was designed and built. The exciter unit produces strong eddy currents in the pipe wall. The tests have shown that at distances of a pipe diameter or more, the currents flow circumferentially, and that these circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall.

  15. Aspen Pipeline | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Aspen Pipeline Place: Houston, Texas Zip: 77057 Product: US firm which acquires, builds and owns pipelines, gathering systems and distribution systems....

  16. Subsea pipeline connection

    SciTech Connect (OSTI)

    Langner, C. G.

    1985-09-17

    A method and apparatus are provided for connecting an offshore pipeline or flowline bundle to a deepwater subsea structure and then laying away from said structure. The pipeline or flowline bundle is deployed vertically from a pipelay vessel to make a hinged connection with the subsea structure. The connection operation is facilitated by a flowline connection tool attached to the pipeline or flowline bundle and designed to be inserted into a funnel located either centrally or to one side of the subsea structure. The connection procedure consists of landing and securing the flowline connection tool onto the subsea structure, then hinging over and connecting the pipeline or flowline bundle to the subsea structure as the pipeline or flowline bundle is laid on the seafloor beginning at the subsea structure.

  17. New construction era reflected in East Texas LPG pipeline

    SciTech Connect (OSTI)

    Mittler, T.J. )

    1990-04-02

    Installation of 240 miles of 6, 10, and 12-in. LPG pipelines from Mont Belvieu to Tyler, Tex., has provided greater feedstock-supply flexibility to a petrochemical plant in Longview, Tex. The project, which took place over 18 months, included tie-ins with metering at four Mont Belvieu suppliers. The new 10 and 12-in. pipelines now transport propane while the new and existing parts of a 6-in. pipeline transport propylene.

  18. Overview of interstate hydrogen pipeline systems.

    SciTech Connect (OSTI)

    Gillette, J .L.; Kolpa, R. L

    2008-02-01

    The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines. The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines. Others count only those pipelines that transport hydrogen from a producer to a customer (e.g., those pipelines designed for in-plant transport of hydrogen for use as feedstock or fuel are not counted). Operational status and hydrogen purity levels are also factors in defining these ranges. Hydrogen pipelines in the United States are predominantly along the Gulf Coast and connect major hydrogen producers with well-established, long-term customers. These hydrogen transmission systems pall by comparison with the 180,000-mile natural gas transmission pipeline. Since 1939, Germany has had a 130-mile pipeline carrying 20,000 lb/hour of hydrogen in a 10-inch pipe at 290 psi gauge (psig). The longest hydrogen pipeline in Europe is owned by Air Liquide and extends 250 miles from Northern France to Belgium. In theory, a blend of up to 20% hydrogen in natural gas can be transported without modifying natural gas pipelines (Oney et al. 1994).

  19. GAS PIPELINE PIGABILITY

    SciTech Connect (OSTI)

    Ted Clark; Bruce Nestleroth

    2004-04-01

    In-line inspection equipment is commonly used to examine a large portion of the long distance transmission pipeline system that transports natural gas from well gathering points to local distribution companies. A piece of equipment that is inserted into a pipeline and driven by product flow is called a ''pig''. Using this term as a base, a set of terms has evolved. Pigs that are equipped with sensors and data recording devices are called ''intelligent pigs''. Pipelines that cannot be inspected using intelligent pigs are deemed ''unpigable''. But many factors affect the passage of a pig through a pipeline, or the ''pigability''. The pigability pipeline extend well beyond the basic need for a long round hole with a means to enter and exit. An accurate assessment of pigability includes consideration of pipeline length, attributes, pressure, flow rate, deformation, cleanliness, and other factors as well as the availability of inspection technology. All factors must be considered when assessing the appropriateness of ILI to assess specific pipeline threats.

  20. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Nancy Porter; Mike Sullivan; Chris Neary

    2003-05-01

    The two broad categories of deposited weld metal repair and fiber-reinforced composite repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repairs and for fiber-reinforced composite repair. To date, all of the experimental work pertaining to the evaluation of potential repair methods has focused on fiber-reinforced composite repairs. Hydrostatic testing was also conducted on four pipeline sections with simulated corrosion damage: two with composite liners and two without.

  1. EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline Systems

    U.S. Energy Information Administration (EIA) Indexed Site

    Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Thirty Largest U.S. Interstate Natural Gas Pipeline Systems, 2008 (Ranked by system capacity) Pipeline Name Market Regions Served Primary Supply Regions States in Which Pipeline Operates Transported in 2007 (million dekatherm)1 System Capacity (MMcf/d) 2 System Mileage Columbia Gas Transmission Co. Northeast Southwest, Appalachia DE, PA, MD, KY, NC, NJ, NY,

  2. EIA - Natural Gas Pipeline Network - Interstate Pipelines Segment

    U.S. Energy Information Administration (EIA) Indexed Site

    Interstate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Interstate Natural Gas Pipeline Segment Two-thirds of the lower 48 States are almost totally dependent upon the interstate pipeline system for their supplies of natural gas. On the interstate pipeline grid, the long-distance, wide-diameter (20-42 inch), high capacity trunklines carry most of the natural gas that is transported throughout the

  3. EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average

  4. Coal slurry pipelines: Blach Mesa and future projects

    SciTech Connect (OSTI)

    Brolick, H.J.

    1998-12-31

    Most people in the mining industry have some familiarity with pipelining of minerals in slurry form, however, many may not realize the extent that mineral slurry pipeline transport is used throughout the world. The author is referring to the shipment of the minerals in the raw or concentrate form, not tailings pipelines which are also commonplace in the minerals industry. There are over forty mineral pipelines around the world. The list covers a wide range of minerals, including copper ore concentrate, iron ore concentrate, limestone, phosphate concentrate, kaolin, Gilsonite and gold ore, with only eleven of the mineral pipelines located in the USA. It should be noted that one of the earliest slurry pipelines was a 108 mile coal slurry pipeline in Ohio, which started up in 1957. The pipeline only operated until 1963 when a railroad company literally bought out the transportation contract. This really was the beginning of the unit train concept. Each mineral has specific physical and chemical characteristics to be considered when evaluating transport by pipeline. The processing required at the pipeline origin, as well as at the pipeline termination, are also important factors in determining slurry pipeline feasibility. Transport distance, annual volume, and continuity of shipments are other important factors. One of the most difficult minerals to transport as a slurry is coal because the specific gravity is closer to water than most other minerals. Thus, the fine balance of creating enough fine particles to serve as a carrier for the coarser material, while at the same time having a material that can be economically dewatered is very sensitive and technical designs will vary with types of coal. Additionally, since coal is purchased for its thermal value, excess surface moisture can lower the value of the coal to the customer. One of the most successful slurry pipeline operations, and the only current operating long-distance coal slurry pipeline is the Black Mesa Pipeline System. The Black Mesa Pipeline is a 273 mile (439 km) long, 18-inch (457 mm) coal/water slurry pipeline, originating on the Black Mesa in the Northeastern part of Arizona, USA. The system delivers coal from the Peabody Coal Company`s Black Mesa open pit mine to the Mohave Generating Station which is a 1580 MW steam powered electric generating plant located in Laughlin, Nevada. Black Mesa Pipeline began commercial operation in November, 1970 and has transported in excess of 110,000,000 tons (99,800,000 metric tons) of coal with an availability factor of 99%.

  5. Rnnotator Assembly Pipeline

    SciTech Connect (OSTI)

    Martin, Jeff

    2010-06-03

    Jeff Martin of the DOE Joint Genome Institute discusses a de novo transcriptome assembly pipeline from short RNA-Seq reads on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  6. Hydrogen Pipeline Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pipeline Working Group Hydrogen Pipeline Working Group The Hydrogen Pipeline Working Group of research and industry experts focuses on issues related to the cost, safety, and ...

  7. Comparing Existing Pipeline Networks with the Potential Scale of Future U.S. CO2 Pipeline Networks

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2009-04-20

    There is growing interest regarding the potential size of a future U.S. dedicated carbon dioxide (CO2) pipeline infrastructure if carbon dioxide capture and storage (CCS) technologies are commercially deployed on a large scale within the United States. This paper assesses the potential scale of the CO2 pipeline system needed under two hypothetical climate policies (so called WRE450 and WRE550 stabilization scenarios) and compares this to the extant U.S. pipeline infrastructures used to deliver CO2 for enhanced oil recovery (EOR), and to move natural gas and liquid hydrocarbons from areas of production and importation to markets. The analysis reveals that between 11,000 and 23,000 additional miles of dedicated CO2 pipeline might be needed in the U.S. before 2050 across these two cases. While that is a significant increase over the 3,900 miles that comprise the existing national CO2 pipeline infrastructure, it is critically important to realize that the demand for additional CO2 pipeline capacity will unfold relatively slowly and in a geographically dispersed manner as new dedicated CCS-enabled power plants and industrial facilities are brought online. During the period 2010-2030, the growth in the CO2 pipeline system is on the order of a few hundred to less than a thousand miles per year. In comparison during the period 1950-2000, the U.S. natural gas pipeline distribution system grew at rates that far exceed these projections in growth in a future dedicated CO2 pipeline system. This analysis indicates that the need to increase the size of the existing dedicated CO2 pipeline system should not be seen as a major obstacle for the commercial deployment of CCS technologies in the U.S. Nevertheless, there will undoubtedly be some associated regulatory and siting issues to work through but these issues should not be unmanageable based on the size of infrastructure requirements alone.

  8. Pipeline issues shape southern FSU oil, gas development

    SciTech Connect (OSTI)

    1995-05-22

    To future production from southern republics of the former Soviet Union (FSU), construction and revitalization of pipelines are as important as the supply of capital. Export capacity will limit production and slow development activity in the region until new pipelines are in place. Plenty of pipeline proposals have come forward. The problem is politics, which for every proposal so far complicates routing or financing or both. Russia has made clear its intention to use pipeline route decisions to retain influence in the region. As a source of external pressure, it is not alone. Iran and Turkey also have made strong bids for the southern FSU`s oil and gas transport business. Diplomacy thus will say as much as commerce does about how transportation issues are settled and how quickly the southern republics move toward their potentials to produce oil and gas. The paper discusses possible routes and the problems with them, the most likely proposal, and future oil flows.

  9. EIA - Natural Gas Pipeline Network - Generalized Natural Gas Pipeline

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity Design Schematic Generalized Design Schematic About U.S. Natural Gas Pipelines- Transporting Natural Gas based on data through 2007/2008 with selected updates Generalized Natural Gas Pipeline Capacity Design Schematic Generalized Natural Gas Pipeline Capcity Design Schematic

  10. Department of Transportation Pipeline and Hazardous Materials...

    Office of Environmental Management (EM)

    Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities...

  11. New Materials for Hydrogen Pipelines

    Broader source: Energy.gov [DOE]

    Barriers to Hydrogen Delivery: Existing steel pipelines are subject to hydrogen embrittlement and are inadequate for widespread H2 distribution.

  12. Innovative Electromagnetic Sensors for Pipeline Crawlers

    SciTech Connect (OSTI)

    J. Bruce Nestleroth

    2006-05-04

    Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. Battelle is in the final year on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second semiannual report on this project reported on experimental and modeling results. The results showed that the rotating system was more adaptable to pipeline inspection and therefore only this system will be carried into the second year of the sensor development. In the third reporting period, the rotating system inspection was further developed. Since this is a new inspection modality without published fundamentals to build upon, basic analytical and experimental investigations were performed. A closed form equation for designing rotating exciters and positioning sensors was derived from fundamental principles. Also signal processing methods were investigated for detection and assessment of pipeline anomalies. A lock in amplifier approach was chosen as the method for detecting the signals. Finally, mechanical implementations for passing tight restrictions such as plug valves were investigated. This inspection concept is new and unique; a United States patent application has been submitted. In this reporting period, a general design of the rotating permanent magnet inspection system is presented. The rotating permanent magnet inspection system is feasible for pipes ranging in diameter from 8 to 18 inches using a two pole configuration. Experimental results and theoretical calculations provide the basis for selection of the critical design parameters. The parameters include a significant magnet to pipe separation that will facilitate the passage of pipeline features. With the basic values of critical components established, the next step is a detailed mechanical design of a pipeline ready inspection system.

  13. UQ Pipeline Lorenz Portlet

    Energy Science and Technology Software Center (OSTI)

    2012-08-31

    This is web client software that can help initiate UQ Pipeline jobs on LLNL's LC compute systems and visually shows the status of such jobs in a browser window. The web client interacts with LC's interactive compute nodes using (LLNL) Lorenz REST API to initiate action and obtain status data in JSON format.

  14. Instrumented Pipeline Initiative

    SciTech Connect (OSTI)

    Thomas Piro; Michael Ream

    2010-07-31

    This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

  15. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Compressor

    U.S. Energy Information Administration (EIA) Indexed Site

    Stations Compressor Stations Illustration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Compressor Stations Illustration, 2008 Map of U.S. Natural Gas Pipeline Compressor Stations Source: Energy Information Administration, Office of Oil & Gas, Natural Gas Division, Natural Gas Transportation Information System. The EIA has determined that the informational map displays here do not raise security

  16. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Development &

    U.S. Energy Information Administration (EIA) Indexed Site

    Expansion Pipelinesk > Development & Expansion About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Development and Expansion Timing | Determining Market Interest | Expansion Options | Obtaining Approval | Prefiling Process | Approval | Construction | Commissioning Timing and Steps for a New Project An interstate natural gas pipeline construction or expansion project takes an average of about three years

  17. Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen

    Broader source: Energy.gov [DOE]

    Pipping of GH2 Pipeline. Background: FG 64 built in 50ies, KP added in 70ies, active mining area over total length

  18. Survey of state water laws affecting coal slurry pipeline development

    SciTech Connect (OSTI)

    Rogozen, M.B.

    1980-11-01

    This report summarizes state water laws likely to affect the development of coal slurry pipelines. It was prepared as part of a project to analyze environmental issues related to energy transportation systems. Coal slurry pipelines have been proposed as a means to expand the existing transportation system to handle the increasing coal shipments that will be required in the future. The availability of water for use in coal slurry systems in the coal-producing states is an issue of major concern.

  19. The Black Mesa coal/water slurry pipeline system

    SciTech Connect (OSTI)

    Brolick, H.J.

    1994-12-31

    The Black Mesa Pipeline is a 273 mile (439 km) long, 18-inch (457 mm) coal/water slurry pipeline, originating on the Black Mesa in the Northeastern part of Arizona, USA. The system delivers coal from the Peabody Coal Company`s Black Mesa open pit mine to the Mohave Generating Station which is a 1580 mw steam powered electric generating plant located in Laughlin, Nevada.

  20. Workforce Pipeline | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Daily Herald True Romance: From walking opposite paths to following the same route Dallas Morning News Workforce Pipeline Argonne seeks to attract, hire and retain a diverse ...

  1. Hydrogen Embrittlement in Pipeline Steels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applied Chemicals & Materials Division Material Measurement Laboratory HYDROGEN EMBRITTLEMENT IN PIPELINE STEELS AJ Slifka, ES Drexler, RL Amaro, DS Lauria, JR Fekete Applied ...

  2. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Bill Bruce; Nancy Porter; George Ritter; Matt Boring; Mark Lozev; Ian Harris; Bill Mohr; Dennis Harwig; Robin Gordon; Chris Neary; Mike Sullivan

    2005-07-20

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. In lieu of a field installation on an abandoned pipeline, a preliminary nondestructive testing protocol is being developed to determine the success or failure of the fiber-reinforced liner pipeline repairs. Optimization and validation activities for carbon-fiber repair methods are ongoing.

  3. Moving | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moving We're always working on planes, trains and automobiles-and specialized ways to move people and products efficiently and sustainably. Home > Impact > Moving The Dirt on the...

  4. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-08-17

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.

  5. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-12-31

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. The first round of optimization and validation activities for carbon-fiber repairs are complete. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.

  6. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; Nancy Porter; Mike Sullivan; Chris Neary

    2004-04-12

    The two broad categories of deposited weld metal repair and fiber-reinforced composite liner repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repair and for fiber-reinforced composite liner repair. Evaluation trials have been conducted using a modified fiber-reinforced composite liner provided by RolaTube and pipe sections without liners. All pipe section specimens failed in areas of simulated damage. Pipe sections containing fiber-reinforced composite liners failed at pressures marginally greater than the pipe sections without liners. The next step is to evaluate a liner material with a modulus of elasticity approximately 95% of the modulus of elasticity for steel. Preliminary welding parameters were developed for deposited weld metal repair in preparation of the receipt of Pacific Gas & Electric's internal pipeline welding repair system (that was designed specifically for 559 mm (22 in.) diameter pipe) and the receipt of 559 mm (22 in.) pipe sections from Panhandle Eastern. The next steps are to transfer welding parameters to the PG&E system and to pressure test repaired pipe sections to failure. A survey of pipeline operators was conducted to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. Completed surveys contained the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) Pipe diameter sizes range from 50.8 mm (2 in.) through 1,219.2 mm (48 in.). The most common size range for 80% to 90% of operators surveyed is 508 mm to 762 mm (20 in. to 30 in.), with 95% using 558.8 mm (22 in.) pipe. An evaluation of potential repair methods clearly indicates that the project should continue to focus on the development of a repair process involving the use of GMAW welding and on the development of a repair process involving the use of fiber-reinforced composite liners.

  7. BP and Hydrogen Pipelines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BP and Hydrogen Pipelines BP and Hydrogen Pipelines BP Environmental Commitment: Green corporate philosophy and senior management commitment PDF icon hpwgw_bp_yoho.pdf More Documents & Publications Proceedings of the 2005 Hydrogen Pipeline Working Group Workshop EIS-0018: Final Environmental Impact Statement Hydrogen permeability and Integrity of hydrogen transfer pipelines

  8. New Materials for Hydrogen Pipelines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation by 08-Smith to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee.

  9. Fatigue analysis for submarine pipelines

    SciTech Connect (OSTI)

    Celant, M.; Re, G.; Venzi, S.

    1982-01-01

    The techniques used in fatigue life forecasts for a submarine pipeline, which have been worked out during the design of the Transmediterranean Pipeline, are presented. The stress level imposed by supports configuration, pipeline weight and weight-pressure-temperature of the internal fluid, is increased further by cyclic loads of sensible extent, resulting from hydroelastic phenomena of interaction between spanning pipe and seabottom current; the synchronization between the characteristic frequencies of vortex-shedding and the natural frequencies of the spans provokes cyclic loading which affect negatively the fatigue life of the pipeline. The results of this research have affected the design choices from the operations of route selection; in particular, they were aiming at the determination of the intervention works on the sea bottom before pipelaying, and the possible installation of overweights or pipe supports in order to avoid free spans of unacceptable length, and at the determination of the interval between periodic inspection.

  10. Pipelines programming paradigms: Prefab plumbing

    SciTech Connect (OSTI)

    Boeheim, C.

    1991-08-01

    Mastery of CMS Pipelines is a process of learning increasingly sophisticated tools and techniques that can be applied to your problem. This paper presents a compilation of techniques that can be used as a reference for solving similar problems

  11. Magnetic positioner having a single moving part

    DOE Patents [OSTI]

    Trumper, David L.; Kim, Won-Jong

    1999-01-01

    A magnetic positioner is provided which is capable of providing long travel in two dimension and short travel in the remaining four dimensions. The positioner has a movable stage and a stator oriented adjacent and substantially parallel to this stage. At least three sets of first magnetic elements, which for preferred embodiments are winding sets capable of generating forces in two directions, are on the portion of the stator adjacent to the stage at any given time, and at least two second magnetic elements, which are magnet arrays for the preferred embodiment, are on the stage adjacent to the stator. At least one of the second magnetic elements overlaps multiple first magnetic elements for all positions of the stage relative to the stator, with one magnet overlapping multiple windings for one preferred embodiment of the invention and two magnets on the stage overlapping multiple windings on the stator for a second embodiment. The windings form a linear motor providing forces in both a corresponding long travel dimension and in a dimension perpendicular to both long travel dimensions.

  12. About U.S. Natural Gas Pipelines

    Reports and Publications (EIA)

    2007-01-01

    This information product provides the interested reader with a broad and non-technical overview of how the U.S. natural gas pipeline network operates, along with some insights into the many individual pipeline systems that make up the network. While the focus of the presentation is the transportation of natural gas over the interstate and intrastate pipeline systems, information on subjects related to pipeline development, such as system design and pipeline expansion, are also included.

  13. Qualification of Innovative High Level Waste Pipeline Unplugging Technologies

    SciTech Connect (OSTI)

    McDaniel, D.; Gokaltun, S.; Varona, J.; Awwad, A.; Roelant, D.; Srivastava, R.

    2008-07-01

    In the past, some of the pipelines have plugged during high level waste (HLW) transfers resulting in schedule delays and increased costs. Furthermore, pipeline plugging has been cited by the 'best and brightest' technical review as one of the major issues that can result in unplanned outages at the Waste Treatment Plant causing inconsistent operation. As the DOE moves toward a more active high level waste retrieval, the site engineers will be faced with increasing cross-site pipeline waste slurry transfers that will result in increased probability of a pipeline getting plugged. Hence, availability of a pipeline unplugging tool/technology is crucial to ensure smooth operation of the waste transfers and in ensuring tank farm cleanup milestones are met. FIU had earlier tested and evaluated various unplugging technologies through an industry call. Based on mockup testing, two technologies were identified that could withstand the rigors of operation in a radioactive environment and with the ability to handle sharp 90 elbows. We present results of the second phase of detailed testing and evaluation of pipeline unplugging technologies and the objective is to qualify these pipeline unplugging technologies for subsequent deployment at a DOE facility. The current phase of testing and qualification comprises of a heavily instrumented 3-inch diameter (full-scale) pipeline facilitating extensive data acquisition for design optimization and performance evaluation, as it applies to three types of plugs atypical of the DOE HLW waste. Furthermore, the data from testing at three different lengths of pipe in conjunction with the physics of the process will assist in modeling the unplugging phenomenon that will then be used to scale-up process parameters and system variables for longer and site typical pipe lengths, which can extend as much as up to 19,000 ft. Detailed information resulting from the testing will provide the DOE end-user with sufficient data and understanding of the technology, and its limitations to aid in the benefit-cost analysis for management decision whether to deploy the technology or to abandon the pipeline as has been done in the past. In conclusion: The ultimate objective of this study is to qualify NuVision's unplugging technology for use at Hanford. Experimental testing has been conducted using three pipeline lengths and three types of blockages. Erosion rates have been obtained and pressure data is being analyzed. An amplification of the inlet pressure has been observed along the pipeline and is the key to determining up to what pipe lengths the technology can be used without surpassing the site pressure limit. In addition, we will attempt to establish what the expected unplugging rates will be at the longer pipe lengths for each of the three blockages tested. Detailed information resulting from the testing will provide the DOE end-user with sufficient data and understanding of the technology, and its limitations so that management decisions can be made whether the technology has a reasonable chance to successfully unplug a pipeline, such as a cross site transfer line or process transfer pipeline at the Waste Treatment Plant. (authors)

  14. Hydrogen permeability and Integrity of hydrogen transfer pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    permeability and Integrity of hydrogen transfer pipelines Hydrogen permeability and Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline ...

  15. Move to CRT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Move to CRT Move to CRT Beginning in Fall 2015, NERSC is in the process of moving from the Oakland Scientific Facility (OSF) in downtown Oakland to a brand new building: the Computational Research and Theory (CRT) facility, located on the main Lawrence Berkeley National Laboratory campus. Impact on NERSC users NERSC is making every effort to minimize the move's impact on its users. We do not expect to shut down the center completely at any point during the move and NERSC will always have at

  16. Mapco's NGL Rocky Mountain pipeline

    SciTech Connect (OSTI)

    Isaacs, S.F.

    1980-01-01

    The Rocky Mountain natural gas liquids (NGL) pipeline was born as a result of major producible gas finds in the Rocky Mountain area after gas deregulation. Gas discoveries in the overthurst area indicated considerable volumes of NGL would be available for transportation out of the area within the next 5 to 7 years. Mapco studied the need for a pipeline to the overthrust, but the volumes were not substantial at the time because there was little market and, consequently, little production for ethane. Since that time crude-based products for ethylene manufacture have become less competitive as a feed product on the world plastics market, and ethane demand has increased substantially. This change in the market has caused a major modification in the plans of the NGL producers and, consequently, the ethane content of the NGL stream for the overthrust area is expected to be 30% by volume at startup and is anticipated to be at 45% by 1985. These ethane volumes enhance the feasibility of the pipeline. The 1196-mile Rocky Mountain pipeline will be installed from the existing facility in W. Texas, near Seminole, to Rock Springs, Wyoming. A gathering system will connect the trunk line station to various plant locations. The pipeline development program calls for a capacity of 65,000 bpd by the end of 1981.

  17. Moving | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moving We're always working on planes, trains and automobiles-and specialized ways to move people and products efficiently and sustainably. Home > Impact > Moving Green Skies of Brazil Improves Airspace Efficiency It's not uncommon for planes approaching some of Brazil's busiest airports to travel miles out of the way while pilots wait... Read More » Reducing Emissions in the New Tier 4 Locomotive GE Global Research Internal Combustion lab manager Omowoleola "Wole" Akinyemi

  18. Method and system for pipeline communication

    DOE Patents [OSTI]

    Richardson; John G.

    2008-01-29

    A pipeline communication system and method includes a pipeline having a surface extending along at least a portion of the length of the pipeline. A conductive bus is formed to and extends along a portion of the surface of the pipeline. The conductive bus includes a first conductive trace and a second conductive trace with the first and second conductive traces being adapted to conformally couple with a pipeline at the surface extending along at least a portion of the length of the pipeline. A transmitter for sending information along the conductive bus on the pipeline is coupled thereto and a receiver for receiving the information from the conductive bus on the pipeline is also couple to the conductive bus.

  19. EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf South Pipeline Co. Southeast, Southwest Southwest AL, FL, LA, MS, TX, GM 676 6,260 6,886 El Paso Natural Gas Co. Western, Southwest Southwest AZ, CO, NM, TX 1,638 6,182 10,302 ...

  20. Kinder Morgan Central Florida Pipeline Ethanol Project

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    KINDER MORGAN CENTRAL FLORIDA PIPELINE ETHANOL PROJECT  In December 2008, Kinder Morgan began transporting commercial batches of denatured ethanol along with gasoline shipments in its 16-inch Central Florida Pipeline (CFPL) from Tampa to Orlando, making CFPL the first transmarket gasoline pipeline in the United States to do so. The 16-inch pipeline previously only transported regular and premium gasoline.  Kinder Morgan invested approximately $10 million to modify the line for ethanol

  1. California Natural Gas Pipelines: A Brief Guide

    SciTech Connect (OSTI)

    Neuscamman, Stephanie; Price, Don; Pezzola, Genny; Glascoe, Lee

    2013-01-22

    The purpose of this document is to familiarize the reader with the general configuration and operation of the natural gas pipelines in California and to discuss potential LLNL contributions that would support the Partnership for the 21st Century collaboration. First, pipeline infrastructure will be reviewed. Then, recent pipeline events will be examined. Selected current pipeline industry research will be summarized. Finally, industry acronyms are listed for reference.

  2. EIA - Natural Gas Pipeline System - Central Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Central Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Central Region Overview | Domestic Gas | Exports | Regional Pipeline Companies & Links Overview Twenty-two interstate and at least thirteen intrastate natural gas pipeline companies (see Table below) operate in the Central Region (Colorado, Iowa, Kansas, Missouri, Montana, Nebraska, North Dakota, South Dakota, Utah, and Wyoming). Twelve

  3. EIA - Natural Gas Pipeline System - Midwest Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Midwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Midwest Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty-six interstate and at least eight intrastate natural gas pipeline companies operate within the Midwest Region (Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin). The principal sources of natural gas supply for the

  4. EIA - Natural Gas Pipeline System - Northeast Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Northeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Northeast Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty interstate natural gas pipeline systems operate within the Northeast Region (Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, and West Virginia). These

  5. EIA - Natural Gas Pipeline System - Southeast Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Southeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southeast Region Overview | Transportation to Atlantic & Gulf States | Gulf of Mexico Transportation Corridor | Transportation to the Northern Tier | Regional Pipeline Companies & Links Overview Twenty-three interstate, and at least eight intrastate, natural gas pipeline companies operate within the Southeast Region (Alabama,

  6. EIA - Natural Gas Pipeline System - Southwest Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Southwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southwest Region Overview | Export Transportation | Intrastate | Connection to Gulf of Mexico | Regional Pipeline Companies & Links Overview Most of the major onshore interstate natural gas pipeline companies (see Table below) operating in the Southwest Region (Arkansas, Louisiana, New Mexico, Oklahoma, and Texas) are primarily

  7. EIA - Natural Gas Pipeline System - Western Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Western Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Western Region Overview | Transportation South | Transportation North | Regional Pipeline Companies & Links Overview Ten interstate and nine intrastate natural gas pipeline companies provide transportation services to and within the Western Region (Arizona, California, Idaho, Nevada, Oregon, and Washington), the fewest number serving

  8. OMAE 1993: Proceedings. Volume 5: Pipeline technology

    SciTech Connect (OSTI)

    Yoon, M.; Murray, A.; Thygesen, J.

    1993-01-01

    This volume of conference proceedings is volume five of a five volume series dealing with offshore and arctic pipeline, marine riser, platforms, and ship design and engineering. This volume is a result of increased use of pipeline transportation for oil, gas, and liquid products and the resultant need for lower design and operating costs. Papers in this conference cover topics on environmental considerations, pipeline automation, computer simulation techniques, materials testing, corrosion protection, permafrost problems, pipeline integrity, geotechnical concerns, and offshore engineering problems.

  9. move sheet master 20110513

    Energy Savers [EERE]

    Energy NAME: ORG: PHONE: MOVE FROM: CONTACT: PHONE: CHECK ALL ITEMS TO BE MOVED BELOW: ____ Executive Desk ____ Secretarial Desk ____ Credenza ____ Exec Swivel Chair ____ Secretarial Chair ____ Guest Chair ____ Sofa ____ Typing Table ____ Telephone Table ____ Conference Table ____ Conference Chair (s) ____ Bookcase (s) ____ Lateral Files ____ Vertical Files ____ Safe (s) SPECIAL INSTRUCTIONS: ** All times 2 cabinet relocations will be handled by Property Office 586-5201 ** Copier relocations

  10. Seismic assessment of buried pipelines

    SciTech Connect (OSTI)

    Al-Chaar, G.; Brady, P.; Fernandez, G.

    1995-12-31

    A structure and its lifelines are closely linked because the disruption of lifeline systems will obstruct emergency service functions that are vitally needed after an earthquake. As an example of the criticality of these systems, the Association of Bay Area Government (ABAG) recorded thousands of leaks in pipelines that resulted in more than twenty million gallons of hazardous materials being released in several recorded earthquakes. The cost of cleaning the spills from these materials was very high. This information supports the development of seismic protection of lifeline systems. The US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL) has, among its missions, the responsibility to develop seismic vulnerability assessment procedures for military installations. Within this mission, a preliminary research program to assess the seismic vulnerability of buried pipeline systems on military installations was initiated. Phase 1 of this research project resulted in two major studies. In the first, evaluating current procedures to seismically design or evaluate existing lifeline systems, the authors found several significant aspects that deserve special consideration and need to be addressed in future research. The second was focused on identifying parameters related to buried pipeline system vulnerability and developing a generalized analytical method to relate these parameters to the seismic vulnerability assessment of existing pipeline systems.

  11. Environmental assessment of the brine pipeline replacement for the Strategic Petroleum Reserve Bryan Mound Facility in Brazoria County, Texas

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0804, for the proposed replacement of a deteriorated brine disposal pipeline from the Strategic Petroleum Reserve (SPR) Bryan Mound storage facility in Brazoria County, Texas, into the Gulf of Mexico. In addition, the ocean discharge outfall would be moved shoreward by locating the brine diffuser at the end of the pipeline 3.5 miles offshore at a minimum depth of 30 feet. The action would occur in a floodplain and wetlands; therefore, a floodplain/wetlands assessment has been prepared in conjunction with this EA. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 USC. 4321, et seg.). Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and the Department is issuing this Finding of No Significant Impact (FONSI). This FONSI also includes a Floodplain Statement of Findings in accordance with 10 CFR Part 1022.

  12. Edison's move has completed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    completed January 8, 2016 by Richard Gerber We're pleased to announce that Edison is once again available to all NERSC users. The move from the NERSC Oakland Scientific Facility...

  13. Capsule injection system for a hydraulic capsule pipelining system

    DOE Patents [OSTI]

    Liu, Henry

    1982-01-01

    An injection system for injecting capsules into a hydraulic capsule pipelining system, the pipelining system comprising a pipeline adapted for flow of a carrier liquid therethrough, and capsules adapted to be transported through the pipeline by the carrier liquid flowing through the pipeline. The injection system comprises a reservoir of carrier liquid, the pipeline extending within the reservoir and extending downstream out of the reservoir, and a magazine in the reservoir for holding capsules in a series, one above another, for injection into the pipeline in the reservoir. The magazine has a lower end in communication with the pipeline in the reservoir for delivery of capsules from the magazine into the pipeline.

  14. Buried pipelines in large fault movements

    SciTech Connect (OSTI)

    Wang, L.J.; Wang, L.R.L.

    1995-12-31

    Responses of buried pipelines in large fault movements are examined based upon a non-linear cantilever beam analogy. This analogy assumes that the pipeline in a large deflection zone behaves like a cantilever beam under a transverse-concentrated shear at the inflection point with a uniformly distributed soil pressure along the entire span. The tangent modulus approach is adopted to analyze the coupled axial force-bending moment interaction on pipeline deformations in the inelastic range. The buckling load of compressive pipeline is computed by the modified Newmark`s numerical integration scheme. Parametric studies of both tensile and compressive pipeline responses to various fault movements, pipeline/fault crossing angles, soil/pipe friction angles, buried depths, pipe diameters and thickness are investigated. It is shown by the comparisons that previous findings were unconservative.

  15. Pipeline Safety Research, Development and Technology

    Energy Savers [EERE]

    Transportation Pipeline and Hazardous Materials Safety Administration Pipeline Safety Research, Development and Technology Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Nov 2014 U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration Thank You! * We appreciate the opportunity to share! * Much to share about DOT natural gas infrastructure R&D * Many facets to the fugitive methane issue * DOT/DOE - We would like to restart the

  16. Acoustic system for communication in pipelines

    DOE Patents [OSTI]

    Martin, II, Louis Peter; Cooper, John F.

    2008-09-09

    A system for communication in a pipe, or pipeline, or network of pipes containing a fluid. The system includes an encoding and transmitting sub-system connected to the pipe, or pipeline, or network of pipes that transmits a signal in the frequency range of 3-100 kHz into the pipe, or pipeline, or network of pipes containing a fluid, and a receiver and processor sub-system connected to the pipe, or pipeline, or network of pipes containing a fluid that receives said signal and uses said signal for a desired application.

  17. Composites Technology for Hydrogen Pipelines | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investigate application of composite, fiber-reinforced polymer pipeline technology for hydrogen transmission and distribution PDF icon pipelinegroupsmithms.pdf More Documents & ...

  18. Department of Transportation Pipeline and Hazardous Materials...

    Office of Environmental Management (EM)

    Bulk Packaging Placarding Requirements - Placarding of Packages vs. Placarding Vehicle * LSASCO Scenarios - 7 - U.S. Department of Transportation Pipeline and Hazardous Materials...

  19. Colonial Pipeline Company Timothy C. Felt

    Broader source: Energy.gov (indexed) [DOE]

    United States - a 370 million dollar pipeline that would deliver gasoline and other ... Those words remain true to this day - infrastructure projects that are designed to serve ...

  20. Computer Science and Information Technology Student Pipeline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Information Technology Student Pipeline Program Description Los Alamos ... Students are provided a mentor and challenging projects to demonstrate their capabilities ...

  1. GLAST (FERMI) Data-Processing Pipeline

    SciTech Connect (OSTI)

    Flath, Daniel L.; Johnson, Tony S.; Turri, Massimiliano; Heidenreich, Karen A.; /SLAC

    2011-08-12

    The Data Processing Pipeline ('Pipeline') has been developed for the Gamma-Ray Large Area Space Telescope (GLAST) which launched June 11, 2008. It generically processes graphs of dependent tasks, maintaining a full record of its state, history and data products. The Pipeline is used to automatically process the data down-linked from the satellite and to deliver science products to the GLAST collaboration and the Science Support Center and has been in continuous use since launch with great success. The pipeline handles up to 2000 concurrent jobs and in reconstructing science data produces approximately 750GB of data products using 1/2 CPU-year of processing time per day.

  2. Clean Development Mechanism Pipeline | Open Energy Information

    Open Energy Info (EERE)

    Clean Development Mechanism Pipeline AgencyCompany Organization: UNEP-Risoe Centre, United Nations Environment Programme Sector: Energy, Land Topics: Finance, Implementation,...

  3. Addressing the workforce pipeline challenge

    SciTech Connect (OSTI)

    Leonard Bond; Kevin Kostelnik; Richard Holman

    2006-11-01

    A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundations to enable future economic growth. To meet this goal the next generation energy workforce in the U.S., in particular those needed to support instrumentation, controls and advanced operations and maintenance, is a critical element. The workforce is aging and a new workforce pipeline, to support both current generation and new build has yet to be established. The paper reviews the challenges and some actions being taken to address this need.

  4. FERC approves Northwest pipeline expansion

    SciTech Connect (OSTI)

    Not Available

    1992-06-15

    Northwest Pipeline Co., Salt Lake City, Utah, received a final permit from the Federal Energy Regulatory Commission for a $373.4 million main gas line expansion. This paper reports that it plans to begin construction of the 443 MMcfd expansion in mid-July after obtaining further federal, state, and local permits. The expanded system is to be fully operational by second quarter 1993. When the expansion is complete, total Northwest system mileage will be 3,936 miles and system capacity about 2.49 bcfd.

  5. 2007 Hydrogen Pipeline Working Group Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 Hydrogen Pipeline Working Group Workshop 2007 Hydrogen Pipeline Working Group Workshop The Department of Energy (DOE) Hydrogen Pipeline Working Group met Sept. 25-26, 2007, to review the progress and results of DOE-sponsored pipeline research and development (R&D) projects. More than 30 researchers and industry representatives shared their research results and discussed the current challenges and future goals for hydrogen pipeline R&D. One of the Pipeline Working Group's near-term

  6. EIA - Natural Gas Pipeline System - Links to U.S. Natural Gas Pipeline

    U.S. Energy Information Administration (EIA) Indexed Site

    Systems Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Links to U.S. Natural Gas Pipeline Information - The links below will either direct the user to a narrative describing the system, a pipeline system map, a FERC prescribed "Informational Postings" page, or a FERC Tariff Sheet. Pipeline Name Type of System Regions of Operations Acadian Gas Pipeline System Intrastate Southwest Algonquin Gas Transmission Co

  7. The evaluation and restoration of a deteriorated buried gas pipeline

    SciTech Connect (OSTI)

    Dovico, R.; Montero, E.

    1996-12-31

    Historically, the Argentine gas transmission and distribution industry was owned and operated by the State. In 1992, by government decree, this entire industry was transferred to private owners and operators, and divided into two Gas Transmission Companies (TGN and TGS) and eight Gas Distribution Companies. The pipelines and related facilities had been left in an operating condition, however major capital investments were required to assure that the integrity, reliability and operability of the facilities were intact. These capital expenditures were mandatory in many areas as part of the privatization. Maintenance and rehabilitation tasks were developed for the entire transmission system, with the intent to reduce the number of unscheduled outages, optimize system maintenance costs, increase operation safety, and upgrade the pipeline to ensure compliance with the international code. Transportadora de Gas del Norte (TGN), operated by Nova Gas International of Calgary, Canada, consists of two major pipeline transmission systems. The North Line, which transports gas from Northern Argentina and Bolivia to markets south to Buenos Aires is a 24 inch, 3,000 Km system constructed in 1960. It was constructed using a field applied asphalt coating system. The Center West Line, which transports gas from central Argentina (Neuquen) to markets in the western part of the country and also the Buenos Aires area, is a 30 inch, 1,400 Km system constructed in 1981. It was constructed using a field applied polyethylene tape coating system.

  8. Changes in the Pipeline Transportation Market

    Reports and Publications (EIA)

    1999-01-01

    This analysis assesses the amount of capacity that may be turned back to pipeline companies, based on shippers' actions over the past several years and the profile of contracts in place as of July 1, 1998. It also examines changes in the characteristics of contracts between shippers and pipeline companies.

  9. Algeria LPG pipeline is build by Bechtel

    SciTech Connect (OSTI)

    Horner, C.

    1984-08-01

    The construction of the 313 mile long, 24 in. LPG pipeline from Hassi R'Mel to Arzew, Algeria is described. The pipeline was designed to deliver 6 million tons of LPG annually using one pumping station. Eventually an additional pumping station will be added to raise the system capacity to 9 million tons annually.

  10. Natural Gas Pipeline and System Expansions

    Reports and Publications (EIA)

    1997-01-01

    This special report examines recent expansions to the North American natural gas pipeline network and the nature and type of proposed pipeline projects announced or approved for construction during the next several years in the United States. It includes those projects in Canada and Mexico that tie in with U.S. markets or projects.

  11. The Sloan Digital Sky Survey Monitor Telescope Pipeline (Journal...

    Office of Scientific and Technical Information (OSTI)

    The Sloan Digital Sky Survey Monitor Telescope Pipeline Citation Details In-Document Search Title: The Sloan Digital Sky Survey Monitor Telescope Pipeline You are accessing a...

  12. Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  13. Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  14. Minnesota Natural Gas Pipeline and Distribution Use (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Minnesota Natural Gas Pipeline and Distribution Use (Million Cubic ... Natural Gas Pipeline & Distribution Use Minnesota Natural Gas Consumption by End Use ...

  15. Minnesota Natural Gas Pipeline and Distribution Use Price (Dollars...

    Gasoline and Diesel Fuel Update (EIA)

    Price (Dollars per Thousand Cubic Feet) Minnesota Natural Gas Pipeline and Distribution ... Price for Natural Gas Pipeline and Distribution Use Minnesota Natural Gas Prices Price for ...

  16. DOE Hydrogen Pipeline Working Group Workshop | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pipeline Working Group Workshop DOE Hydrogen Pipeline Working Group Workshop Only those systems that are regulated by DOT in the US, DOT delegated state agency, or other federal ...

  17. December 4, 2007: NETL's Robotic Pipeline Inspection Tool

    Broader source: Energy.gov [DOE]

    December 4, 2007The Department's National Energy Technology Laboratory announces the development of a new robotic pipeline inspection tool that could revolutionize the pipeline inspection process....

  18. Assessing Steel Pipeline and Weld Susceptibility to Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessing Steel Pipeline and Weld Susceptibility to Hydrogen Embrittlement Webinar Assessing Steel Pipeline and Weld Susceptibility to Hydrogen Embrittlement Webinar Access the ...

  19. Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the ...

  20. Evalutation of Natural Gas Pipeline Materials and Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evalutation of Natural Gas Pipeline Materials and Infrastructure for HydrogenMixed Gas Service Evalutation of Natural Gas Pipeline Materials and Infrastructure for HydrogenMixed ...

  1. EIA - Natural Gas Pipeline Network - Regional Overview and Links

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Interstate - Pipeline systems that cross one or more States Intrastate - Pipeline systems that operate only within State boundaries Network Design - Basic concepts and parameters ...

  2. EIS-0501: Golden Pass LNG Export and Pipeline Project, Texas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Golden Pass LNG Export and Pipeline Project, Texas and Louisiana EIS-0501: Golden Pass LNG Export and Pipeline Project, Texas and Louisiana Summary The Federal Energy Regulatory ...

  3. Panel 2, Hydrogen Delivery in the Natural Gas Pipeline Network

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    30 years) > Transmission Pipelines 6-10 billion per year Over 10 million hp of installed compression capacity > Local Distribution Pipelines 12 billion year > 8.2 ...

  4. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Permeability and Integrity of Hydrogen Delivery Pipelines Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Project Objectives: To gain basic understanding of ...

  5. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers: Hydrogen embrittlement of pipelines and remediation (mixing with water vapor?) ... Causes and Remediation Hydrogen permeability and Integrity of hydrogen transfer pipelines

  6. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation by 09-Sofronis to DOE Hydrogen Pipeline R&D Project Review Meeting held ... More Documents & Publications Hydrogen Embrittlement of Pipeline Steels: Causes and ...

  7. Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

  8. Failure modes for pipelines in landslide areas

    SciTech Connect (OSTI)

    Bruschi, R.; Spinazze, M.; Tomassini, D.; Cuscuna, S.; Venzi, S.

    1995-12-31

    In recent years a number of incidences of pipelines affected by slow soil movements have been reported in the relevant literature. Further related issues such as soil-pipe interaction have been studied both theoretically and through experimental surveys, along with the environmental conditions which are responsible for hazard to the pipeline integrity. A suitable design criteria under these circumstances has been discussed by several authors, in particular in relation to a limit state approach and hence a strain based criteria. The scope of this paper is to describe the failure mechanisms which may affect the pipeline in the presence of slow soil movements impacting on the pipeline, both in the longitudinal and transverse direction. Particular attention is paid to environmental, geometric and structural parameters which steer the process towards one or other failure mechanism. Criteria for deciding upon remedial measures required to guarantee the structural integrity of the pipeline, both in the short and in the long term, are discussed.

  9. Electrostatics of moving plasma

    SciTech Connect (OSTI)

    Ignatov, A. M.

    2013-07-15

    The stability of charge distribution over the surface of a conducting body in moving plasma is analyzed. Using a finite-width plate streamlined by a cold neutralized electron flow as an example, it is shown that an electrically neutral body can be unstable against the development of spontaneous polarization. The plasma parameters at which such instability takes place, as well as the frequency and growth rate of the fundamental mode of instability, are determined.

  10. U.S. interstate pipelines ran more efficiently in 1994

    SciTech Connect (OSTI)

    True, W.R.

    1995-11-27

    Regulated US interstate pipelines began 1995 under the momentum of impressive efficiency improvements in 1994. Annual reports filed with the US Federal Energy Regulatory Commission (FERC) show that both natural-gas and petroleum liquids pipeline companies increased their net incomes last year despite declining operating revenues. This article discusses trends in the pipeline industry and gives data on the following: pipeline revenues, incomes--1994; current pipeline costs; pipeline costs--estimated vs. actual; current compressor construction costs; compressor costs--estimated vs. actual; US interstate mileage; investment in liquids pipelines; 10-years of land construction costs; top 10 interstate liquids pipelines; top 10 interstate gas pipelines; liquids pipeline companies; and gas pipeline companies.

  11. Pipeline Decommissioning Trial AWE Berkshire UK - 13619

    SciTech Connect (OSTI)

    Agnew, Kieran

    2013-07-01

    This Paper details the implementation of a 'Decommissioning Trial' to assess the feasibility of decommissioning the redundant pipeline operated by AWE located in Berkshire UK. The paper also presents the tool box of decommissioning techniques that were developed during the decommissioning trial. Constructed in the 1950's and operated until 2005, AWE used a pipeline for the authorised discharge of treated effluent. Now redundant, the pipeline is under a care and surveillance regime awaiting decommissioning. The pipeline is some 18.5 km in length and extends from AWE site to the River Thames. Along its route the pipeline passes along and under several major roads, railway lines and rivers as well as travelling through woodland, agricultural land and residential areas. Currently under care and surveillance AWE is considering a number of options for decommissioning the pipeline. One option is to remove the pipeline. In order to assist option evaluation and assess the feasibility of removing the pipeline a decommissioning trial was undertaken and sections of the pipeline were removed within the AWE site. The objectives of the decommissioning trial were to: - Demonstrate to stakeholders that the pipeline can be removed safely, securely and cleanly - Develop a 'tool box' of methods that could be deployed to remove the pipeline - Replicate the conditions and environments encountered along the route of the pipeline The onsite trial was also designed to replicate the physical prevailing conditions and constraints encountered along the remainder of its route i.e. working along a narrow corridor, working in close proximity to roads, working in proximity to above ground and underground services (e.g. Gas, Water, Electricity). By undertaking the decommissioning trial AWE have successfully demonstrated the pipeline can be decommissioned in a safe, secure and clean manor and have developed a tool box of decommissioning techniques. The tool box of includes; - Hot tapping - a method of breaching the pipe while maintaining containment to remove residual liquids, - Crimp and shear - remote crimping, cutting and handling of pipe using the excavator - Pipe jacking - a way of removing pipes avoiding excavations and causing minimal disturbance and disruption. The details of the decommissioning trial design, the techniques employed, their application and effectiveness are discussed and evaluated here in. (authors)

  12. Rapid Threat Organism Recognition Pipeline

    Energy Science and Technology Software Center (OSTI)

    2013-05-07

    The RAPTOR computational pipeline identifies microbial nucleic acid sequences present in sequence data from clinical samples. It takes as input raw short-read genomic sequence data (in particular, the type generated by the Illumina sequencing platforms) and outputs taxonomic evaluation of detected microbes in various human-readable formats. This software was designed to assist in the diagnosis or characterization of infectious disease, by detecting pathogen sequences in nucleic acid sequence data from clinical samples. It has alsomore » been applied in the detection of algal pathogens, when algal biofuel ponds became unproductive. RAPTOR first trims and filters genomic sequence reads based on quality and related considerations, then performs a quick alignment to the human (or other host) genome to filter out host sequences, then performs a deeper search against microbial genomes. Alignment to a protein sequence database is optional. Alignment results are summarized and placed in a taxonomic framework using the Lowest Common Ancestor algorithm.« less

  13. EIS-0433: Keystone XL Pipeline

    Broader source: Energy.gov [DOE]

    The proposed Keystone XL project consists of a 1,700-mile crude oil pipeline and related facilities that would primarily be used to transport Western Canadian Sedimentary Basin crude oil from an oil supply hub in Alberta, Canada to delivery points in Oklahoma and Texas. This EIS, prepared by the Department of State, evaluates the environmental impacts of the proposed Keystone XL project. DOE’s Western Area Power Administration, a cooperating agency, has jurisdiction over certain proposed transmission facilities (construction and operation of a short 230-kv transmission line and construction of a new substation). The State Department published a notice in the Federal Register on February 3, 2012, regarding the denial of the Keystone XL presidential permit (77 FR 5614).

  14. Design method addresses subsea pipeline thermal stresses

    SciTech Connect (OSTI)

    Suman, J.C.; Karpathy, S.A. )

    1993-08-30

    Managing thermal stresses in subsea pipelines carrying heated petroleum requires extensive thermal-stress analysis to predict trouble spots and to ensure a design flexible enough to anticipate stresses and expansions. Explored here are various methods for resolving predicaments posed by thermal loads and resulting deformations by keeping the stresses and deformations in the pipeline system within allowable limits. The problems posed by thermal stresses are not unique; the solutions proposed here are. These methods are based on recent work performed for a major Asian subsea pipeline project currently under construction.

  15. Pipeline transportation of heavy crude oil

    SciTech Connect (OSTI)

    Kessick, M.A.; St. Denis, C.E.

    1982-08-10

    Heavy crude oils are transported by pipeline from deposit location to a remote upgrading location by emulsifying the crude oil using deaerated sodium hydroxide solution, conveying the oilin-water emulsion through the pipeline, and recovery of the oil from the oil-in-water emulsion by inverting the emulsion and dewatering the resulting water-in-oil emulsion. The emulsion inversion may be effected using slaked lime, resulting in recovery of a substantial proportion of the sodium hydroxide used in the initial emulsification. The sodium hydroxide solution may be recycled by a separate pipeline for reuse or treated for discharge.

  16. Middleware for Astronomical Data Analysis Pipelines

    SciTech Connect (OSTI)

    Abdulla, G; Liu, D; Garlick, J; Miller, M; Nikolaev, S; Cook, K; Brase, J

    2005-01-26

    In this paper the authors describe the approach to research, develop, and evaluate prototype middleware tools and architectures. The developed tools can be used by scientists to compose astronomical data analysis pipelines easily. They use the SuperMacho data pipelines as example applications to test the framework. they describe their experience from scheduling and running these analysis pipelines on massive parallel processing machines. they use MCR a Linux cluster machine with 1152 nodes and Luster parallel file system as the hardware test-bed to test and enhance the scalability of the tools.

  17. Otay Mesa, CA Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    0 0 1,717 0 0 0 2007-2014 Pipeline Prices -- -- 3.55 -- --

  18. Pipeline Structural Health Monitoring Using Macro-fiber Composite Active Sensors

    SciTech Connect (OSTI)

    A.B. Thien

    2006-03-01

    The United States economy is heavily dependent upon a vast network of pipeline systems to transport and distribute the nation's energy resources. As this network of pipelines continues to age, monitoring and maintaining its structural integrity remains essential to the nation's energy interests. Numerous pipeline accidents over the past several years have resulted in hundreds of fatalities and billions of dollars in property damages. These accidents show that the current monitoring methods are not sufficient and leave a considerable margin for improvement. To avoid such catastrophes, more thorough methods are needed. As a solution, the research of this thesis proposes a structural health monitoring (SHM) system for pipeline networks. By implementing a SHM system with pipelines, their structural integrity can be continuously monitored, reducing the overall risks and costs associated with current methods. The proposed SHM system relies upon the deployment of macro-fiber composite (MFC) patches for the sensor array. Because MFC patches are flexible and resilient, they can be permanently mounted to the curved surface of a pipeline's main body. From this location, the MFC patches are used to monitor the structural integrity of the entire pipeline. Two damage detection techniques, guided wave and impedance methods, were implemented as part of the proposed SHM system. However, both techniques utilize the same MFC patches. This dual use of the MFC patches enables the proposed SHM system to require only a single sensor array. The presented Lamb wave methods demonstrated the ability to correctly identify and locate the presence of damage in the main body of the pipeline system, including simulated cracks and actual corrosion damage. The presented impedance methods demonstrated the ability to correctly identify and locate the presence of damage in the flanged joints of the pipeline system, including the loosening of bolts on the flanges. In addition to damage to the actual pipeline itself, the proposed methods were used to demonstrate the capability of detecting deposits inside of pipelines. Monitoring these deposits can prevent clogging and other hazardous situations. Finally, suggestions are made regarding future research issues which are needed to advance this research. Because the research of this thesis has only demonstrated the feasibility of the techniques for such a SHM system, these issues require attention before any commercial applications can be realized.

  19. Overview of the design, construction, and operation of interstate liquid petroleum pipelines.

    SciTech Connect (OSTI)

    Pharris, T. C.; Kolpa, R. L.

    2008-01-31

    The U.S. liquid petroleum pipeline industry is large, diverse, and vital to the nation's economy. Comprised of approximately 200,000 miles of pipe in all fifty states, liquid petroleum pipelines carried more than 40 million barrels per day, or 4 trillion barrel-miles, of crude oil and refined products during 2001. That represents about 17% of all freight transported in the United States, yet the cost of doing so amounted to only 2% of the nation's freight bill. Approximately 66% of domestic petroleum transport (by ton-mile) occurs by pipeline, with marine movements accounting for 28% and rail and truck transport making up the balance. In 2004, the movement of crude petroleum by domestic federally regulated pipelines amounted to 599.6 billion tonmiles, while that of petroleum products amounted to 315.9 billion ton-miles (AOPL 2006). As an illustration of the low cost of pipeline transportation, the cost to move a barrel of gasoline from Houston, Texas, to New York Harbor is only 3 cents per gallon, which is a small fraction of the cost of gasoline to consumers. Pipelines may be small or large, up to 48 inches in diameter. Nearly all of the mainline pipe is buried, but other pipeline components such as pump stations are above ground. Some lines are as short as a mile, while others may extend 1,000 miles or more. Some are very simple, connecting a single source to a single destination, while others are very complex, having many sources, destinations, and interconnections. Many pipelines cross one or more state boundaries (interstate), while some are located within a single state (intrastate), and still others operate on the Outer Continental Shelf and may or may not extend into one or more states. U.S. pipelines are located in coastal plains, deserts, Arctic tundra, mountains, and more than a mile beneath the water's surface of the Gulf of Mexico (Rabinow 2004; AOPL 2006). The network of crude oil pipelines in the United States is extensive. There are approximately 55,000 miles of crude oil trunk lines (usually 8 to 24 inches in diameter) in the United States that connect regional markets. The United States also has an estimated 30,000 to 40,000 miles of small gathering lines (usually 2 to 6 inches in diameter) located primarily in Texas, Oklahoma, Louisiana, and Wyoming, with small systems in a number of other oil producing states. These small lines gather the oil from many wells, both onshore and offshore, and connect to larger trunk lines measuring 8 to 24 inches in diameter. There are approximately 95,000 miles of refined products pipelines nationwide. Refined products pipelines are found in almost every state in the United States, with the exception of some New England states. These refined product pipelines vary in size from relatively small, 8- to 12-inch-diameter lines, to up to 42 inches in diameter. The overview of pipeline design, installation, and operation provided in the following sections is only a cursory treatment. Readers interested in more detailed discussions are invited to consult the myriad engineering publications available that provide such details. The two primary publications on which the following discussions are based are: Oil and Gas Pipeline Fundamentals (Kennedy 1993) and the Pipeline Rules of Thumb Handbook (McAllister 2002). Both are recommended references for additional reading for those requiring additional details. Websites maintained by various pipeline operators also can provide much useful information, as well as links to other sources of information. In particular, the website maintained by the U.S. Department of Energy's Energy Information Administration (EIA) (http://www.eia.doe.gov) is recommended. An excellent bibliography on pipeline standards and practices, including special considerations for pipelines in Arctic climates, has been published jointly by librarians for the Alyeska Pipeline Service Company (operators of the Trans-Alaska Pipeline System [TAPS]) and the Geophysical Institute/International Arctic Research Center, both located in Fairbanks (Barboza and Trebelhorn 2001), available electronically at http://www.gi.alaska.edu/services/library/pipeline.html codes. The Association of Oil Pipe Lines (AOPL) and the American Petroleum Institute (API) jointly provide an overview covering the life cycle of design, construction, operations, maintenance, economic regulation, and deactivation of liquid pipelines (AOPL/API 2007).

  20. EIA - Natural Gas Pipeline Network - U.S. Natural Gas Pipeline Network Map

    U.S. Energy Information Administration (EIA) Indexed Site

    Network Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Network, 2009 U.S. Natural Gas Pipeline Network Map The EIA has determined that the informational map displays here do not raise security concerns, based on the application of the Federal Geographic Data Committee's Guidelines for Providing Appropriate Access to Geospatial Data in Response to Security Concerns

  1. Florida products pipeline set to double capacity

    SciTech Connect (OSTI)

    True, W.R.

    1995-11-13

    Directional drilling has begun this fall for a $68.5 million, approximately 110,000 b/d expansion of Central Florida Pipeline Co.`s refined products line from Tampa to Orlando. The drilling started in August and is scheduled to conclude this month, crossing under seven water bodies in Hillsborough, Polk, and Osceola counties. The current 6 and 10-in. system provides more than 90% of the petroleum products used in Central Florida, according to Central Florida Pipeline. Its additional capacity will meet the growing region`s demand for gasoline, diesel, and jet fuel. The new pipeline, along with the existing 10-in. system, will increase total annual capacity from 30 million bbl (82,192 b/d) to approximately 70 million bbl (191,781 b/d). The older 6-in. line will be shutdown when the new line is operating fully. The steps of pipeline installation are described.

  2. Microsoft Word - EOC Activation - Pipeline Overpressurization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (EOC) has been activated as a precautionary measure after an over-pressurized pipeline vented about 100 gallons of liquid natural gas approximately two miles from the WIPP...

  3. Pump packages for Colombian crude oil pipeline

    SciTech Connect (OSTI)

    1994-05-01

    The Caterpillar Large Engine Center recently packaged ten engine-driven centrifugal pump packages for British Petroleum Exploration`s crude oil pipeline in South America. The ten sets, which use Ingersoll-Dresser centrifugal pumps, are designed to increase significantly the output of BP`s Central LLanos pipeline located in a remote region near Bogota, Colombia. BP anticipates that the addition of the new pump packages will increase daily volume from the current 100000 barrels to approximately 210000 barrels when the upgrade of the pipeline is completed in September. The ten sets are installed at three separate pumping stations. The stations are designed to operate continuously while unmanned, with only periodic maintenance required. The pump packages are powered by Caterpillar 3612 engines rated 3040 kW at 1000 r/min. The 12-cylinder engines are turbocharged and charge-air cooled and use the pipeline oil as both fuel and a cooling medium for the fuel injectors.

  4. Method and apparatus for constructing buried pipeline systems

    SciTech Connect (OSTI)

    Heuer, C.E.; Hsu, H.; Jahns, H.O.

    1982-11-09

    A method and apparatus for mitigating or eliminating the frost heave of refrigerated pipelines buried in frost-susceptible soil are provided. A blanket of heat absorbent material is placed over the pipeline on the surface of the soil to increase the flow of heat into the region surrounding the pipeline. This technique may be used in combination with other frost heave mitigation techniques, such as insulating the pipeline and supporting the pipeline with a heave resistant bedding material.

  5. Moving Industry Forward: Finding the Environmental Opportunity in Biochar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moving Industry Forward: Finding the Environmental Opportunity in Biochar Moving Industry Forward: Finding the Environmental Opportunity in Biochar Print Thursday, 12 September 2013 08:41 The Environmental Protection Agency (EPA) has been investigating biofuels for several years now as part of its mission of moving the nation toward a cleaner energy future. Recently, EPA scientists have refocused their research on a promising biofuel byproduct-biochar, which is the solid material that's left

  6. Seadrift/UCAR pipelines achieve ISO registration

    SciTech Connect (OSTI)

    Arrieta, J.R.; Byrom, J.A.; Gasko, H.M. )

    1992-10-01

    Proper meter station design using gas orifice meters must include consideration of a number of factors to obtain the best accuracy available. This paper reports that Union Carbide's Seadrift/UCAR Pipelines has become the world's first cross-country pipelines to comply with the International Standards Organization's quality criteria for transportation and distribution of ethylene. Carbide's organization in North America and Europe, with 22 of the corporation's businesses having the internationally accepted quality system accredited by a third-party registrar.

  7. Machinist Pipeline/Apprentice Program Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Machinist Pipeline/Apprentice Program Program Description The Machinist Pipeline Program was created by the Prototype Fabrication Division to fill a critical need for skilled journeyworker machinists. It is based on a program developed by the National Institute for Metalworking Skills (NIMS) in conjunction with metalworking trade associations to develop and maintain a globally competitive U.S. workforce. The goal is to develop and implement apprenticeship programs that are aligned with

  8. Are shorted pipeline casings a problem

    SciTech Connect (OSTI)

    Gibson, W.F. )

    1994-11-01

    The pipeline industry has many road and railroad crossings with casings which have been in service for more than 50 years without exhibiting any major problems, regardless of whether the casing is shorted to or isolated from the carrier pipe. The use of smart pigging and continual visual inspection when retrieving a cased pipeline segment have shown that whether shorted or isolated, casings have no significant bearing on the presence or absence of corrosion on the carrier pipe.

  9. World pipeline work set for rapid growth

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    This paper reports on international pipeline construction which has entered a fast-growth period, accelerated by the new political and economic realities around the world and increasing demand for natural gas, crude oil and refined petroleum products. Many projects are under way or in planning for completion in the mid- to late 1990s in Europe, South America, Asia and the Middle East. Pipeline And Gas Journal's projection calls for construction or other work on 30,700 miles of new natural gas, crude oil and refined products pipelines in the 1992-93 period outside Canada and the U.S. These projects will cost an estimated $30 billion-plus. Natural gas pipelines will comprise most of the mileage, accounting for almost 23,000 miles at an estimated cost of $26.3 billion. Products pipelines, planned or under construction, will add another 5,800 miles at a cost of $2.8 billion. Crude oil pipelines, at a minimum, will total 1,900 new miles at a cost of slightly under $1 billion.

  10. Bayou pipeline crossing requires helical pilings

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This paper discusses a routine inspection by Transcontinental Gas Pipe Line Corp. which revealed the approximately 100 ft of its 30-in gas pipeline in St. Landry Parish, La., had become suspended. The situation occurred in the West Atchafalaya Floodway after periods of heavy rain produced strong currents that scoured the soil from around and below the pipeline. To protect the pipeline from possible damage from overstressing, Transco awarded a lump-sum contract to Energy Structures Inc., Houston, to design and install pipeline supports. The pipeline supports engineered by ESI used helical-screw pilings instead of conventional driven pilings. The helical piles were manufactured by A.B. Chance Co., Centralia, Mo. Typically, helical pilings consist of steel pipe ranging from 3.5- to 8-in. diameter pipe with one or more helixes welded onto the pipe. Selection of the proper piling cross-section was based on design loads and soil conditions at the project locations. length was determined by the amount of pipeline suspension and on-site soil conditions.

  11. The 14th Pipeline and Gas Journal 500 report. [Statistical dimensions of leading US pipeline companies

    SciTech Connect (OSTI)

    Congram, G.E.

    1994-09-01

    This article presents compiled data on oil and gas pipeline systems in the US and includes specific information on mileage, volume of transported fluids, and cost information. It lists the rankings based on miles of pipeline, units of gas sold, number of customers, units of petroleum sold, and utility by production sales. Information is also presented in alphabetical format.

  12. INVESTIGATION OF PIPELINES INTEGRITY ASSOCIATED WITH PUMP MODULES VIBRATION FOR PUMPING STATION 9 OF ALYESKA PIPELINE SERVICE COMPANY

    SciTech Connect (OSTI)

    Wang, Jy-An John

    2009-09-01

    Since the operation of PS09 SR module in 2007, it has been observed that there is vibration in various parts of the structures, on various segments of piping, and on appurtenance items. At DOT Pipeline and Hazardous Materials Safety Administration (PHMSA) request, ORNL Subject Matter Experts support PHMSA in its review and analysis of the observed vibration phenomenon. The review and analysis consider possible effects of pipeline design features, vibration characteristics, machinery configuration, and operating practices on the structural capacity and leak tight integrity of the pipeline. Emphasis is placed on protection of welded joints and machinery against failure from cyclic loading. A series of vibration measurements were carried out by the author during the site visit to PS09, the power of the operating pump during the data collection is at about 2970KW, which is less than that of APSC's vibration data collected at 3900KW. Thus, a first order proportional factor of 4900/2970 was used to project the measured velocity data to that of APSC's measurement of the velocity data. It is also noted here that the average or the peak-hold value of the measured velocity data was used in the author's reported data, and only the maximum peak-hold data was used in APSC's reported data. Therefore, in some cases APSC's data is higher than the author's projective estimates that using the average data. In general the projected velocity data are consistent with APSC's measurements; the examples of comparison at various locations are illustrated in the Table 1. This exercise validates and confirms the report vibration data stated in APSC's summary report. After the reinforcement project for PS09 Station, a significant reduction of vibration intensity was observed for the associated pipelines at the SR Modules. EDI Co. provided a detailed vibration intensity investigation for the newly reinforced Pump Module structures and the associated pipelines. A follow-up review of EDI's report was carried out by the author. The comments and questions regarding the EDI report are categorized into four subjects, namely (1) piping vibration severity, (2) pulsation and its impact on the PS09 structure and piping, (3) strain-gage stress history profiles, and (4) the cavitation potential investigation, where the questions are stated at the end of the comments for further follow-on investigations.

  13. Subsea pipeline isolation systems: Reliability and costs

    SciTech Connect (OSTI)

    Masheder, R.R.

    1996-08-01

    Since the Piper Alpha disaster, more than 80 subsea isolation systems (SSIS) have been installed in subsea gas and oil pipelines in the U.K. continental shelf at an estimated cost in the region of {Brit_pounds}500 million. The reliability and costs of these installations have now been assessed between Dec. 1992 and Oct. 1993. This assessment was based upon comprehensive reliability and cost databases which were established so that the studies could be based upon factual information in order to obtain a current status as required by the sponsoring group. The study consultants report findings have now been consolidated into a report by the UKOOA Pipeline Valve Work Group. Probabilities of failure for different types of valves and systems have been assessed and expenditures broken down and compared. The results of the studies and the conclusions drawn by UKOOA Pipeline Valve Group and the HSE Offshore Safety Division are presented in this paper.

  14. Caspian pipeline combine awards construction contract

    SciTech Connect (OSTI)

    Not Available

    1992-11-02

    This paper reports that the Caspian Pipeline Consortium (CPC) has let contract to Overseas Bechtel Inc. for a 500 mile crude oil export pipeline in Russia. Bechtel will provide engineering, procurement, financing, and construction services and serve as project manager for the 42 inc. line that will extend west from Grozny, near the Caspian Sea, to Novorossiisk, on the Black Sea. Estimated cost is more than $850 million. At Grozny, the new line will tie into 800 miles of existing pipeline that runs along the north shore of the Caspian Sea from supergiant Tengiz field in Kazakhstan. Together, the two segments will form a 1,300 mile system capable of shipping crude oil from the Tengiz region and from Baku, Azerbaijan, to a new terminal and port facilities at Novorossiisk for shipment to world markets, ultimately reaching open oceans via the Mediterranean Sea.

  15. Sasabe, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sasabe, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Sasabe, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug ...

  16. U.S. Natural Gas Imports by Pipeline from Mexico

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline Volumes 83 83 72 64 59 70 1973-2016 Pipeline Prices 1.65 1.55 1.08 1.22 1.50 1.22 1993

  17. Evaluation of Natural Gas Pipeline Materials for Hydrogen Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Presentation by 04-Adams to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge ...

  18. Blending Hydrogen into Natural Gas Pipeline Networks: A Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues The United States has 11 ...

  19. Marine pipeline dynamic response to waves from directional wave spectra

    SciTech Connect (OSTI)

    Lambrakos, K.F.

    1982-07-01

    A methodology has been developed to calculate the dynamic probabilistic movement and resulting stresses for marine pipelines subjected to storm waves. A directional wave spectrum is used with a Fourier series expansion to simulate short-crested waves and calculate their loads on the pipeline. The pipeline displacements resulting from these loads are solutions to the time-dependent beam-column equation which also includes the soil resistance as external loading. The statistics of the displacements for individual waves are combined with the wave statistics for a given period of time, e.g. pipeline lifetime, to generate probabilistic estimates for net pipeline movement. On the basis of displacements for specified probability levels the pipeline configuration is obtained from which pipeline stresses can be estimated using structural considerations, e.g. pipeline stiffness, end restraints, etc.

  20. Weather, construction inflation could squeeze North American pipelines

    SciTech Connect (OSTI)

    True, W.R.

    1998-08-31

    Major North American interstate and interprovincial pipeline companies appear headed for a squeeze near-term: 1997 earnings from operations were down for the second straight year even as the companies expected new construction to begin this year or later to cost more. The effects of warmer-than-normal weather during 1997 in North America made a showing in annual reports filed by US regulated interstate oil and gas pipeline companies with the US Federal Energy Regulatory Commission (FERC). This paper contains data on the following: pipeline revenues, incomes--1997; North American pipeline costs; North American pipeline costs (estimated vs. actual); North American compressor construction costs; US compressor costs (estimated vs. actual); US interstate mileage; investment in liquids pipelines; 10 years of land construction costs; top 10 interstate liquids lines; top 10 interstate gas lines; liquids pipeline companies; and gas pipeline companies.

  1. ,"U.S. Natural Gas Pipeline Imports From Canada (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    1: U.S. Natural Gas Pipeline Imports From Canada (MMcf)" "Sourcekey","N9102CN2" "Date","U.S. Natural Gas Pipeline Imports From Canada (MMcf)" 26845,1027883 27210,959063 ...

  2. Proceedings of the 2005 Hydrogen Pipeline Working Group Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Hydrogen Pipeline Working Group Workshop included more than 45 researchers and industry experts. The workshop provided an overview of hydrogen pipeline projects.

  3. Webinar January 12: Assessing Steel Pipeline and Weld Susceptibility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen pipelines in the United States are built in compliance with the ASME B31.12 Code for Hydrogen Piping and Pipelines. The Code is based on decades of research and in-field ...

  4. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines

    Broader source: Energy.gov [DOE]

    Project Objectives: To gain basic understanding of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to hydrogen gas transmission pipeline

  5. Detroit, MI Natural Gas Pipeline Imports From Canada (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    data. Release Date: 09302015 Next Release Date: 10302015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry Detroit, MI Natural Gas Imports by Pipeline from...

  6. Detroit, MI Natural Gas Pipeline Imports From Canada (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Date: 09302015 Next Release Date: 10302015 Referring Pages: U.S. Price of Natural Gas Pipeline Imports by Point of Entry Detroit, MI Natural Gas Imports by Pipeline from...

  7. EIA - Natural Gas Pipeline Network - Natural Gas Imports/Exports Pipelines

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipelines About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Import/Export Pipelines As of the close of 2008 the United States has 58 locations where natural gas can be exported or imported. 24 locations are for imports only 18 locations are for exports only 13 locations are for both imports and exports 8 locations are liquefied natural gas (LNG) import facilities Imported natural gas in 2007 represented almost 16 percent

  8. Evaluation of Natural Gas Pipeline Materials for Hydrogen Science |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Natural Gas Pipeline Materials for Hydrogen Science Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Presentation by 04-Adams to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee. PDF icon 04_adams_nat_gas.pdf More Documents & Publications Evalutation of Natural Gas Pipeline Materials and Infrastructure for Hydrogen/Mixed Gas Service Hydrogen Compatibility of Materials

  9. 2005 Hydrogen Pipeline Working Group Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Hydrogen Pipeline Working Group Workshop 2005 Hydrogen Pipeline Working Group Workshop DOE held a Hydrogen Pipeline Working Group Workshop August 30-31, 2005 in Augusta, Ga. The workshop provided the opportunity for researchers to hear from industry experts about their field experiences with current in-service hydrogen pipelines (both new construction and converted). The group also explored research or other activities needed to improve costs and operability. Issues addressed by industry

  10. Deliverability on the Interstate Natural Gas Pipeline System

    Reports and Publications (EIA)

    1998-01-01

    Examines the capability of the national pipeline grid to transport natural gas to various U.S. markets.

  11. EIA - Natural Gas Pipeline Network - Regional Overview and Links

    U.S. Energy Information Administration (EIA) Indexed Site

    Overview and Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Overviews and Links to Pipeline Companies Through a series of interconnecting interstate and intrastate pipelines the transportation of natural gas from one location to another within the United States has become a relatively seamless operation. While intrastate pipeline systems often transports natural gas from production areas directly to consumers in

  12. EIA - Natural Gas Pipeline Network - States Dependent on Interstate

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipelines Map States Dependent on Interstate Pipelines About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates States in grey which are at least 85% dependent on the interstate pipeline network for their natural gas supply are: New England - Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont Southeast - Florida, Georgia, North Carolina, South Carolina, Tennessee Northeast - Delaware, Maryland, New Jersey, New

  13. EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three

  14. Sensor and transmitter system for communication in pipelines

    DOE Patents [OSTI]

    Cooper, John F.; Burnham, Alan K.

    2013-01-29

    A system for sensing and communicating in a pipeline that contains a fluid. An acoustic signal containing information about a property of the fluid is produced in the pipeline. The signal is transmitted through the pipeline. The signal is received with the information and used by a control.

  15. Expansion of the U.S. Natural Gas Pipeline Network

    Reports and Publications (EIA)

    2009-01-01

    Additions in 2008 and Projects through 2011. This report examines new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2008. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2009 and 2011, and the market factors supporting these initiatives.

  16. Cathodic protection of pipelines in discontinuous permafrost

    SciTech Connect (OSTI)

    Mitchell, C.J.; Wright, M.D.; Waslen, D.W.

    1997-10-01

    There are many unknowns and challenges in providing cathodic protection (CP) for a pipeline located in discontinuous permafrost areas. Preliminary pipe-to-soil data indicates that CP coverage was achieved in these regions without needing local anodes. Work is required to verify whether this conclusion can be extended over the course of an annual freeze-thaw cycle.

  17. New system pinpoints leaks in ethylene pipeline

    SciTech Connect (OSTI)

    Hamande, A.; Condacse, V.; Modisette, J.

    1995-04-01

    A model-based leak detection, PLDS, developed by Modisette Associates, Inc., Houston has been operating on the Solvay et Cie ethylene pipeline since 1989. The 6-in. pipeline extends from Antwerp to Jemeppe sur Sambre, a distance of 73.5 miles and is buried at a depth of 3 ft. with no insulation. Except for outlets to flares, located every 6 miles for test purposes, there are no injections or deliveries along the pipeline. Also, there are block valves, which are normally open, at each flare location. This paper reviews the design and testing procedures used to determine the system performance. These tests showed that the leak system was fully operational and no false alarms were caused by abrupt changes in inlet/outlet flows of the pipeline. It was confirmed that leaks larger than 2 tonnes/hr. (40 bbl/hr) are quickly detected and accurately located. Also, maximum leak detection sensitivity is 1 tonne/hr. (20 bbl/hr) with a detection time of one hour. Significant operational, configuration, and programming issues also were found during the testing program. Data showed that temperature simulations needed re-examining for improvement since accurate temperature measurements are important. This is especially true for ethylene since its density depends largely on temperature. Another finding showed the averaging period of 4 hrs. was too long and a 1 to 2 hr. interval was better.

  18. Computer Science and Information Technology Student Pipeline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Information Technology Student Pipeline Program Description Los Alamos National Laboratory's High Performance Computing and Information Technology Divisions recruit and hire promising undergraduate and graduate students in the areas of Computer Science, Information Technology, Management Information Systems, Computer Security, Software Engineering, Computer Engineering, and Electrical Engineering. Students are provided a mentor and challenging projects to demonstrate their

  19. Analysis of gas chilling alternatives for Arctic pipelines

    SciTech Connect (OSTI)

    Dvoiris, A.; McMillan, D.K.; Taksa, B.

    1994-12-31

    The operation of buried natural gas pipelines in Arctic regions requires installation of gas chilling facilities at compressor stations. These facilities are required in order to cool compressed pipeline gases to temperatures below that of permanently frozen surrounding soil. If these pipeline gas temperatures are too high, the frozen ground around the pipelines will eventually thaw. This is undesirable for many reasons amongst which are ground settlement and possible catastrophic failure of the pipeline. This paper presents the results of a study which compared several alternative methods of gas chilling for possible application at one of the compressor stations on the proposed new Yamal-Center gas pipeline system in the Russian Arctic. This technical and economic study was performed by Gulf Interstate Engineering (GIE) for GAZPROM, the gas company in Russia that will own and operate this new pipeline system. Geotechnical, climatical and other information provided by GAZPROM, coupled with information developed by GIE, formed the basis for this study.

  20. Capsule Pipeline Research Center. 3-year Progress report, September 1, 1993--August 31, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The Capsule Pipeline Research Center is devoted to performing research in capsule pipelines so that this emerging technology can be developed for early use to transport solids including coal, grain, other agricultural products, solid wastes, etc. Important research findings and accomplishments during the first-three years include: success in making durable binderless coal logs by compaction, success in underwater extrusion of binderless coal logs, success in compacting and extruding coal logs with less than 3% hydrophobic binder at room temperature, improvement in the injection system and the pump-bypass scheme, advancement in the state-of-the-art of predicting the energy loss (pressure drop) along both stationary and moving capsules, demonstrated the effectiveness of using polymer for drag reduction in CLP, demonstrated the influence of zeta potential on coal log fabrication, improved understanding of the water absorption properties of coal logs, better understanding of the mechanism of coal log abrasion (wear), completed a detailed economic evaluation of the CLP technology and compared coal transportation cost by CLP to that by rail, truck and slurry pipelines, and completion of several areas of legal research. The Center also conducted important technology transfer activities including workshops, work sessions, company seminars, involvement of companies in CLP research, issuance of newsletters, completion of a video tape on CLP, and presentation of research findings at numerous national and international meetings.

  1. Machinist Pipeline/Apprentice Program Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cost effective than previous time-based programs Moves apprentices to journeyworker status more quickly Program Coordinator: Heidi Hahn Email: hahn@lanl.gov Phone number:...

  2. Remaining Sites Verification Package for the 100-B-22:1 Pipelines and Associated Soils, Waste Site Reclassification Form 2005-042

    SciTech Connect (OSTI)

    L. M. Dittmer

    2006-09-12

    The 100-B-22:1 pipelines and associated soils were part of the 100-B Area water treatment facilities. The 100-B-22:1 waste site is limited to those pipelines that interconnected the 185-B Filter House, the 126-B-2 Clearwells, the 185-B Deaeration Plant, and the 190-B Process Pumphouse. None of the 100-B-22:1 pipelines carried environmentally significant contamination. In accordance with the historical information and field observations of this evaluation, the results support a reclassification of this site to No Action required to meet future rural-residential uses and be protective of groundwater and the Columbia River.

  3. A bubble detection system for propellant filling pipeline

    SciTech Connect (OSTI)

    Wen, Wen; Zong, Guanghua; Bi, Shusheng

    2014-06-15

    This paper proposes a bubble detection system based on the ultrasound transmission method, mainly for probing high-speed bubbles in the satellite propellant filling pipeline. First, three common ultrasonic detection methods are compared and the ultrasound transmission method is used in this paper. Then, the ultrasound beam in a vertical pipe is investigated, suggesting that the width of the beam used for detection is usually smaller than the internal diameter of the pipe, which means that when bubbles move close to the pipe wall, they may escape from being detected. A special device is designed to solve this problem. It can generate the spiral flow to force all the bubbles to ascend along the central line of the pipe. In the end, experiments are implemented to evaluate the performance of this system. Bubbles of five different sizes are generated and detected. Experiment results show that the sizes and quantity of bubbles can be estimated by this system. Also, the bubbles of different radii can be distinguished from each other. The numerical relationship between the ultrasound attenuation and the bubble radius is acquired and it can be utilized for estimating the unknown bubble size and measuring the total bubble volume.

  4. Template:Move | Open Energy Information

    Open Energy Info (EERE)

    the move proposal prior to carrying out a move, by using this template. Place it at the top of the article in question. See also Help:Moving a page - Note that this help page is...

  5. Natural Gas Pipeline Network: Changing and Growing

    Reports and Publications (EIA)

    1996-01-01

    This chapter focuses upon the capabilities of the national natural gas pipeline network, examining how it has expanded during this decade and how it may expand further over the coming years. It also looks at some of the costs of this expansion, including the environmental costs which may be extensive. Changes in the network as a result of recent regional market shifts are also discussed.

  6. EIA - Natural Gas Pipeline Network - Regional Definitions

    U.S. Energy Information Administration (EIA) Indexed Site

    Definitions Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Definitions The regions defined in the above map are based upon the 10 Federal Regions of the U.S. Bureau of Labor Statistics. The State groupings are as follows: Northeast Region - Federal Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont. Federal Region 2: New Jersey, and New York. Federal Region 3:Delaware, District of

  7. EIA - Natural Gas Pipeline Network - Regulatory Authorities

    U.S. Energy Information Administration (EIA) Indexed Site

    Regulatory Authorities About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Regulatory Authorities Beginning | Regulations Today | Coordinating Agencies | Regulation of Mergers and Acquisitions Beginning of Industry Restructuring In April 1992, the Federal Energy Regulatory Commission (FERC) issued its Order 636 and transformed the interstate natural gas transportation segment of the industry forever. Under it,

  8. Crossing Active Faults on the Sakhalin II Onshore Pipeline Route: Pipeline Design and Risk Analysis

    SciTech Connect (OSTI)

    Mattiozzi, Pierpaolo; Strom, Alexander

    2008-07-08

    Twin oil (20 and 24 inch) and gas (20 and 48 inch) pipeline systems stretching 800 km are being constructed to connect offshore hydrocarbon deposits from the Sakhalin II concession in the North to an LNG plant and oil export terminal in the South of Sakhalin island. The onshore pipeline route follows a regional fault zone and crosses individual active faults at 19 locations. Sakhalin Energy, Design and Construction companies took significant care to ensure the integrity of the pipelines, should large seismic induced ground movements occur during the Operational life of the facilities. Complex investigations including the identification of the active faults, their precise location, their particular displacement values and assessment of the fault kinematics were carried out to provide input data for unique design solutions. Lateral and reverse offset displacements of 5.5 and 4.5 m respectively were determined as the single-event values for the design level earthquake (DLE) - the 1000-year return period event. Within the constraints of a pipeline route largely fixed, the underground pipeline fault crossing design was developed to define the optimum routing which would minimize stresses and strain using linepipe materials which had been ordered prior to the completion of detailed design, and to specify requirements for pipe trenching shape, materials, drainage system, etc. Detailed Design was performed with due regard to actual topography and to avoid the possibility of the trenches freezing in winter, the implementation of specific drainage solutions and thermal protection measures.

  9. Structural monitoring helps assess deformations in Arctic pipelines

    SciTech Connect (OSTI)

    Nyman, K.J.; Lara, P.F.

    1986-11-10

    Advanced structural monitoring systems can play an important role in the evaluation of arctic pipeline distortions along the alignment. These systems can influence pipeline design requirements, reduce capital costs, and improve operating reliability. Differential soil movements resulting from terrain instabilities are the main features which threaten a pipeline's structural integrity and affect the design of buried pipeline systems in the Arctic. Economic, aesthetic, and safety concerns make conventional buried construction an optimum design choice for an arctic crude-oil or gas-pipeline transportation system. However, variable frozen and thawed soil conditions underlying the pipeline along a discontinuous permafrost corridor pose a challenge to the design and operation of such systems. Crude-oil pipelines which must operate at elevated temperatures can be installed in unfrozen soils or in permafrost soils where initially frozen segments will exhibit limited settlement under the thawed conditions imposed by pipeline construction and operation. Ice-rich portions of the frozen alignment may have an unacceptable settlement potential for a warm buried pipeline. In contrast, natural-gas pipelines can be operated cold to increase throughput capability and to prevent the problems associated with thawing permafrost.

  10. CFPL installs products pipeline with directional drilling

    SciTech Connect (OSTI)

    1996-01-01

    Central Florida Pipeline Company (CFPL), a subsidiary of GATX Terminals Corp., Tampa, FL, has used directional drilling under seven water bodies in Hillsborough, Polk and Osceola Counties in constructing its new pipeline from Tampa to Orlando. Primary reason for using directional drilling is to protect the environment by minimizing water turbidity while the 16-inch diameter, 109-mile refined petroleum products pipeline is being installed. Total cost of the project is pegged at $68.5 million. Directional drilling enabled the pipe to be placed about 20 feet below the bottom of: The Alafia River in Riverview with 999 feet drilled; Port Sutton Channel near the Port of Tampa with 2,756 feet drilled; Reedy Creek Swamp at the intersection of Interstate 4 and Highway 192 which had 1,111 feet drilled; Wetland {number_sign}70 southwest of Lake Wales with 1,575 feet drilled; Peace River south of Bartow had 2,470 feet drilled; Bonnet Creek west of Kissimmee had 693 feet drilled. Shingle Creek near the borders of Osceola and Orange Counties with 1,700 feet drilled. This paper reviews the design plans for construction and the emergency response plans should a rupture occur in the line.

  11. Drag reduction in coal log pipelines

    SciTech Connect (OSTI)

    Marrero, T.R.; Liu, H.

    1996-12-31

    It is well-known that solutions of dissolved long-chain macromolecules produce lower friction or drag losses than with the solvent alone. In coal log pipeline (CLP), water is the conveying medium. Synthetic polymers such as poly(ethylene oxide) have been dissolved in water and tested for their extent of drag reduction as a function of concentration and other variables. Lab-scale experimental results for CLP indicate substantial drag reduction at low concentration levels of polymer. But, the macromolecules exhibit degradation under mechanical shear stresses. The large molecules break into smaller units. This degradation effect causes a loss of drag reduction. However, high levels of drag reduction can be maintained as follows: (1) by injecting polymer into the CLP at several locations along the pipeline, (2) by injecting polymer of different particle sizes, (3) by using more robust types of polymers, or (4) by using polymer-fiber mixtures. This report presents the value of drag-reducing agents in terms of pumping power net cost savings. In addition, this report outlines the environmental impact of drag reduction polymers, and end-of-pipeline water treatment processes. For an operating CLP, hundreds of miles in length, the use of poly(ethylene oxide) as a drag reducing agent provides significant pumping power cost savings at a minimal materials cost.

  12. MONITORING TECHNOLOGY FOR EARLY DETECTION OF INTERNAL CORROSION FOR PIPELINE INTEGRITY

    SciTech Connect (OSTI)

    Glenn M. Light; Sang Y. Kim; Robert L. Spinks; Hegeon Kwun; Patrick C. Porter

    2003-09-01

    Transmission gas pipelines are an important part of energy-transportation infrastructure vital to the national economy. The prevention of failures and continued safe operation of these pipelines are therefore of national interest. These lines, mostly buried, are protected and maintained by protective coating and cathodic protection systems, supplemented by periodic inspection equipped with sensors for inspection. The primary method for inspection is ''smart pigging'' with an internal inspection device that traverses the pipeline. However, some transmission lines are however not suitable for ''pigging'' operation. Because inspection of these ''unpiggable'' lines requires excavation, it is cost-prohibitive, and the development of a methodology for cost-effectively assessing the structural integrity of ''unpiggable'' lines is needed. This report describes the laboratory and field evaluation of a technology called ''magnetostrictive sensor (MsS)'' for monitoring and early detection of internal corrosion in known susceptible sections of transmission pipelines. With the MsS technology, developed by Southwest Research Institute{reg_sign} (SwRI{reg_sign}), a pulse of a relatively low frequency (typically under 100-kHz) mechanical wave (called guided wave) is launched along the pipeline and signals reflected from defects or welds are detected at the launch location in the pulse-echo mode. This technology can quickly examine a long length of piping for defects, such as corrosion wastage and cracking in circumferential direction, from a single test location, and has been in commercial use for inspection of above-ground piping in refineries and chemical plants. The MsS technology is operated primarily in torsional guided waves using a probe consisting of a thin ferromagnetic strip (typically nickel) bonded to a pipe and a number of coil-turns (typically twenty or so turns) wound over the strip. The MsS probe is relatively inexpensive compared to other guided wave approaches, and can be permanently mounted and buried on a pipe at a modest cost to allow long-term periodic data collection and comparison for accurate tracking of condition changes for cost-effective assessment of the integrity of the susceptible sections of pipeline. The results of work conducted in this project, with the collaboration from Clock Spring{reg_sign} and cooperation with El Paso Corporation, showed that the MsS probe indeed can be permanently installed on a pipe and buried for long-term monitoring of pipe condition changes. It was found however that the application of the MsS to monitoring of bitumen-coated pipelines is presently limited because of very high wave attenuation caused by the bitumen-coating and surrounding soil and resulting loss in defect detection sensitivity and reduction in monitoring range. Based on these results, it is recommended that the MsS monitoring methodology be used in benign, relatively low-attenuation sections of pipelines (for example, sleeved sections of pipeline frequently found at road crossings and pipelines with fusion epoxy coating). For bitumen-coated pipeline applications, the MsS methodology needs to increase its power to overcome the high wave attenuation problem and to achieve reasonable inspection and monitoring capability.

  13. U.S., Canada pipeline work shows gain in 1994

    SciTech Connect (OSTI)

    Watts, J.

    1994-01-01

    Pipeline construction activity in the US and Canada is expected to be down slightly during 1994 from 1993 mileage, even though natural gas pipeline work remains steady on both sides of the border. Pipeline and Gas Journal and Pipeline and Utilities Construction estimate that a total of 3.638 miles of new gas, crude oil and refined products pipeline will be installed during 1994 in the US, down from a total of 4.278 miles built in 1993. Canadian 1994 work remains essentially unchanged in 1994, with 1,094 new miles compared to 1,091 miles in 1993. This paper reviews the proposed construction by region and company. It includes information on mileage, type pipeline, and estimated completion date.

  14. Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System

    SciTech Connect (OSTI)

    Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

    2005-06-01

    The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

  15. World`s developing regions provide spark for pipeline construction

    SciTech Connect (OSTI)

    Koen, A.D.; True, W.R.

    1996-02-05

    This paper reviews the proposed construction of oil and gas pipelines which are underway or proposed to be started in 1996. It breaks down the projects by region of the world, type of product to be carried, and diameter of pipeline. It also provides mileage for each category of pipeline. Major projects in each region are more thoroughly discussed giving details on construction expenditures, construction problems, and political issues.

  16. DOE - Office of Legacy Management -- Los Alamos Underground Med Pipelines -

    Office of Legacy Management (LM)

    NM 02 Los Alamos Underground Med Pipelines - NM 02 FUSRAP Considered Sites Site: Los Alamos Underground Med Pipelines ( NM.02 ) Eliminated - Remedial action being performed by the Los Alamos Area Office of the DOE Albuquerque Operations Office Designated Name: Not Designated Alternate Name: Los Alamos County Industrial Waste Lines NM.02-1 Location: Los Alamos , New Mexico NM.02-1 Evaluation Year: 1986 NM.02-1 Site Operations: From 1952 to 1965, underground pipelines or industrial waste lines

  17. EIS-0410: Keystone Oil Pipeline Project | Department of Energy

    Energy Savers [EERE]

    0: Keystone Oil Pipeline Project EIS-0410: Keystone Oil Pipeline Project SUMMARY This environmental impact statement (EIS) analyzes the environmental impacts of the TransCanada Keystone Oil Pipeline Project. The U.S. Department of State (DOS) was the lead agency. The U.S. Department of Energy's (DOE's) Western Power Administration (Western) participated as a cooperating agency in the preparation of this EIS in order to address Western's proposed response to interconnection requests from Minnkota

  18. EIA - Natural Gas Pipeline Network - Region To Region System Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Levels Interregional Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Interregional Natural Gas Transmission Pipeline Capacity, Close of 2008 (Million cubic feet per day) Map of Interregional Natural Gas Transmission Pipeline Capacity in 2008 The EIA has determined that the informational map displays here do not raise security concerns, based on the application of the Federal Geographic Data Committee's Guidelines for

  19. Advanced Manufacturing pipeline brings NSC and Minority Serving...

    National Nuclear Security Administration (NNSA)

    aligns with the broad interests of DOE sites and emphasizes the entire career pipeline. ... Kansas to collaborate on NNSA technology projects Amarillo Students Win Regional National ...

  20. EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage...

    U.S. Energy Information Administration (EIA) Indexed Site

    Depleted Reservoir Storage Configuration About U.S. Natural Gas Pipelines - Transporting ... Depleted Production Reservoir Underground Natural Gas Storage Well Configuration Depleted ...

  1. EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir...

    U.S. Energy Information Administration (EIA) Indexed Site

    Aquifer Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting ... Aquifer Underground Natural Gas Storage Reservoir Configuration Aquifer Underground ...

  2. EIA - Natural Gas Pipeline Network - Regional/State Underground...

    U.S. Energy Information Administration (EIA) Indexed Site

    RegionalState Underground Natural Gas Storage Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Regional ...

  3. EIA - Natural Gas Pipeline Network - Natural Gas Transmission...

    U.S. Energy Information Administration (EIA) Indexed Site

    Transmission Path Diagram About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Natural Gas Transmission Path Natural ...

  4. ,"Rhode Island Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    ies","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  5. ,"New Jersey Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    eries","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  6. ,"North Carolina Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    s","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  7. ,"North Dakota Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    ies","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  8. ,"New Hampshire Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    es","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  9. ,"New Mexico Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    eries","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  10. ,"New York Natural Gas Pipeline and Distribution Use Price (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  11. EIS-0517: Port Arthur Liquefaction Project and Port Arthur Pipeline...

    Energy Savers [EERE]

    Counties, Texas, and Cameron Parish, Louisiana EIS-0517: Port Arthur Liquefaction Project and Port Arthur Pipeline Project; Jefferson and Orange Counties, Texas, and Cameron ...

  12. ,"Total Crude Oil and Petroleum Products Net Receipts by Pipeline...

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Receipts by Pipeline, Tanker, Barge and Rail between PAD Districts" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

  13. Enter the Post-Doc: The Untapped Sourcing Pipeline

    SciTech Connect (OSTI)

    Boscow, Ryan B.

    2011-07-30

    This article addresses the potential formulation and utilization of an industry-based Post-Doc program in order to create workforce candidate pipelines with targeted universities.

  14. Report to Congress: Dedicated Ethanol Pipeline Feasability Study...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Independence and Security Act of 2007 (EISA). Section 243 directs DOE to study the feasibility of constructing and using pipelines dedicated to the transportation of ethanol. ...

  15. Refiners react to changes in the pipeline infrastructure

    SciTech Connect (OSTI)

    Giles, K.A.

    1997-06-01

    Petroleum pipelines have long been a critical component in the distribution of crude and refined products in the U.S. Pipelines are typically the most cost efficient mode of transportation for reasonably consistent flow rates. For obvious reasons, inland refineries and consumers are much more dependent on petroleum pipelines to provide supplies of crude and refined products than refineries and consumers located on the coasts. Significant changes in U.S. distribution patterns for crude and refined products are reshaping the pipeline infrastructure and presenting challenges and opportunities for domestic refiners. These changes are discussed.

  16. EIA - Analysis of Natural Gas Imports/Exports & Pipelines

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    trends, offshore production shut-ins caused by infrastructure problems and hurricanes, imports and exports of pipeline and liquefied natural gas, and the above-average...

  17. EIS-0517: Port Arthur Liquefaction Project and Port Arthur Pipeline...

    Broader source: Energy.gov (indexed) [DOE]

    natural gas marine terminal along the Sabine-Neches ship channel (Jefferson County, Texas), about 35 miles of new pipeline, and associated facilities. DOE, Office of Fossil...

  18. ,"Alamo, TX Natural Gas Pipeline Imports From Mexico (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Alamo, TX Natural Gas Pipeline Imports From Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

  19. Renewable Energy Pipeline Development Terms of Reference | Open...

    Open Energy Info (EERE)

    Development Terms of Reference Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Pipeline Development Terms of Reference AgencyCompany Organization:...

  20. ,"Detroit, MI Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Detroit, MI Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2014 ,"Release...

  1. Evaluation of Trenchless Technologies for Installation of Pipelines...

    Office of Scientific and Technical Information (OSTI)

    Title: Evaluation of Trenchless Technologies for Installation of Pipelines in Radioactive Environments - 10249 No abstract prepared. Authors: Jubin, Robert Thomas 1 ; Patton, ...

  2. Materials Solutions for Hydrogen Delivery in Pipelines

    SciTech Connect (OSTI)

    Ningileri, Shridas T.; Boggess, Todd A; Stalheim, Douglas

    2013-01-02

    The main objective of the study is as follows: Identify steel compositions/microstructures suitable for construction of new pipeline infrastructure and evaluate the potential use of the existing steel pipeline infrastructure in high pressure gaseous hydrogen applications. The microstructures of four pipeline steels were characterized and tensile testing was conducted in gaseous hydrogen and helium at pressures of 5.5 MPa (800 psi), 11 MPa (1600 psi) and 20.7 MPa (3000 psi). Based on reduction of area, two of the four steels that performed the best across the pressure range were selected for evaluation of fracture and fatigue performance in gaseous hydrogen at 5.5 MPa (800 psi) and 20.7 MPa (3000 psi). The basic format for this phase of the study is as follows: Microstructural characterization of volume fraction of phases in each alloy; Tensile testing of all four alloys in He and H{sub 2} at 5.5 MPa (800 psi), 11 MPa (1600 psi), and 20.7 MPa (3000 psi). RA performance was used to choose the two best performers for further mechanical property evaluation; Fracture testing (ASTM E1820) of two best tensile test performers in H{sub 2} at 5.5 MPa (800 psi) and 20.7 MPa (3000 psi); Fatigue testing (ASTM E647) of two best tensile test performers in H2 at 5.5 MPa (800 psi) and 20.7 MPa (3000 psi) with frequency =1.0 Hz and R-ratio=0.5 and 0.1.

  3. Pipeline bottoming cycle study. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The technical and economic feasibility of applying bottoming cycles to the prime movers that drive the compressors of natural gas pipelines was studied. These bottoming cycles convert some of the waste heat from the exhaust gas of the prime movers into shaft power and conserve gas. Three typical compressor station sites were selected, each on a different pipeline. Although the prime movers were different, they were similar enough in exhaust gas flow rate and temperature that a single bottoming cycle system could be designed, with some modifications, for all three sites. Preliminary design included selection of the bottoming cycle working fluid, optimization of the cycle, and design of the components, such as turbine, vapor generator and condensers. Installation drawings were made and hardware and installation costs were estimated. The results of the economic assessment of retrofitting bottoming cycle systems on the three selected sites indicated that profitability was strongly dependent upon the site-specific installation costs, how the energy was used and the yearly utilization of the apparatus. The study indicated that the bottoming cycles are a competitive investment alternative for certain applications for the pipeline industry. Bottoming cycles are technically feasible. It was concluded that proper design and operating practices would reduce the environmental and safety hazards to acceptable levels. The amount of gas that could be saved through the year 2000 by the adoption of bottoming cycles for two different supply projections was estimated as from 0.296 trillion ft/sup 3/ for a low supply projection to 0.734 trillion ft/sup 3/ for a high supply projection. The potential market for bottoming cycle equipment for the two supply projections varied from 170 to 500 units of varying size. Finally, a demonstration program plan was developed.

  4. Praxair extending hydrogen pipeline in Southeast Texas

    SciTech Connect (OSTI)

    Not Available

    1992-08-24

    This paper reports that Praxair Inc., an independent corporation created by the spinoff of Union Carbide Corp.'s Linde division, is extending its high purity hydrogen pipeline system from Channelview, Tex., to Port Arthur, Tex. The 70 mile, 10 in. extension begins at a new pressure swing adsorption (PSA) purification unit next to Lyondell Petrochemical Co.'s Channelview plant. The PSA unit will upgrade hydrogen offgas from Lyondell's methanol plant to 99.99% purity hydrogen. The new line, advancing at a rate of about 1 mile/day, will reach its first customer, Star Enterprise's 250,000 b/d Port Arthur refinery, in September.

  5. Cathodic protection of pipelines in discontinuous permafrost

    SciTech Connect (OSTI)

    Mitchell, C.J.; Wright, M.D.; Waslen, D.W.

    1997-08-01

    This paper discusses the challenges in providing cathodic protection for a pipeline located in an area with discontinuous permafrost. Specific challenges included: unknown time for the permafrost to melt out, unpredictable current distribution characteristics and wet, inaccessible terrain. Based on preliminary pipe-to-soil data, it appears that cathodic protection coverage was achieved in discontinuous permafrost regions without the need of local anodes. Future work is required to verify whether this conclusion can be extended over the course of an annual freeze-thaw cycle.

  6. Natural Gas Imports by Pipeline into the U.S. Form | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Pipeline into the U.S. Form Natural Gas Imports by Pipeline into the U.S. Form File Excel Version of Natural Gas Imports by Pipeline into the U.S. Form.xlsx PDF icon PDF Version ...

  7. Leak detection on an ethylene pipeline

    SciTech Connect (OSTI)

    Hamande, A.; Condacse, V.; Modisette, J.

    1995-12-31

    A model-based leak detection system has been in operation on the Solvay et Cie ethylene pipeline from Antwerp to Jemeppe on Sambre since 1989. The leak detection system, which is the commercial product PLDS of Modisette Associations, Inc., was originally installed by the supplier. Since 1991, all system maintenance and configuration changes have been done by Solvay et Cie personnel. Many leak tests have been performed, and adjustments have been made in the configuration and the automatic tuning parameters. The leak detection system is currently able to detect leaks of 2 tonnes/hour in 11 minutes with accurate location. Larger leaks are detected in about 2 minutes. Leaks between 0.5 and 1 tonne per hour are detected after several hours. (The nominal mass flow in the pipeline is 15 tonnes/hour, with large fluctuations.) Leaks smaller than 0.5 tonnes per hour are not detected, with the alarm thresholds set at levels to avoid false alarms. The major inaccuracies of the leak detection system appear to be associated with the ethylene temperatures.

  8. EIA - Natural Gas Pipeline Network - Expansion Process Flow Diagram

    U.S. Energy Information Administration (EIA) Indexed Site

    Development & Expansion > Development and Expansion Process Figure About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Development and Expansion Process For Natural Gas Pipeline Projects Figure showing the expansion process

  9. Alamo, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 13,279 4,685 0 0 0 0 1998-2014 Pipeline Prices 4.10 4.30 -- -- -- -- 1998-2014

  10. El Paso, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 1998 1999 2000 2001 2002 View History Pipeline Volumes 996 NA NA NA NA 1998-2002 Pipeline Prices 2.09 1998-1998

  11. Penitas, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 1996 1998 1999 2000 2001 2002 View History Pipeline Volumes 253 40 NA NA NA NA 1996-2002 Pipeline Prices 1.72 2.04 1996-1998

  12. UNEP-Risoe CDM/JI Pipeline Analysis and Database | Open Energy...

    Open Energy Info (EERE)

    Risoe CDMJI Pipeline Analysis and Database (Redirected from UNEP Risoe CDMJI Pipeline Analysis and Database) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNEP Risoe...

  13. UNEP-Risoe CDM/JI Pipeline Analysis and Database | Open Energy...

    Open Energy Info (EERE)

    UNEP-Risoe CDMJI Pipeline Analysis and Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNEP Risoe CDMJI Pipeline Analysis and Database AgencyCompany...

  14. Gulf of Mexico pipelines heading into deeper waters

    SciTech Connect (OSTI)

    True, W.R.

    1987-06-08

    Pipeline construction for Gulf of Mexico federal waters is following drilling and production operations into deeper waters, according to U.S. Department of Interior (DOI) Minerals Management Service (MMS) records. Review of MMS 5-year data for three water depth categories (0-300 ft, 300-600 ft, and deeper than 600 ft) reveals this trend in Gulf of Mexico pipeline construction. Comparisons are shown between pipeline construction applications that were approved by the MMS during this period and projects that have been reported to the MMS as completed. This article is the first of annual updates of MMS gulf pipeline data. Future installments will track construction patterns in water depths, diameter classifications, and mileage. These figures will also be evaluated in terms of pipeline-construction cost data.

  15. Use of look-ahead modeling in pipeline operations

    SciTech Connect (OSTI)

    Wray, B.; O`Leary, C.

    1995-12-31

    Amoco Canada Petroleum Company, Ltd. operates the Cochin pipeline system. Cochin pumps batched liquid ethane, propane, ethylene, butane, and NGL. Operating and scheduling this pipeline is very complex. There are safety considerations, especially for ethylene, which cannot be allowed to drop below vapor pressure. Amoco Canada needs to know where batches are in the line, what pressure profiles will look like into the future, and when batches arrive at various locations along the line. In addition to traditional instrumentation and SCADA, Amoco Canada uses modeling software to help monitor and operate the Cochin pipeline. Two important components of the modeling system are the Estimated Time of Arrival (ETA) and Predictive Model (PM) modules. These modules perform look ahead modeling to assist in operating the Cochin pipeline. The modeling software was first installed for the Cochin system in February of 1994, and was commissioned on August 1, 1994. This paper will discuss how the look ahead modules are used for the Cochin pipeline.

  16. Combined methods reveal how water moves in trees

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April » Combined methods reveal how water moves in trees Combined methods reveal how water moves in trees Water use by trees is a key part of the hydrological process linking soil to climate and local weather June 7, 2015 Photograph of the ULF-NMR and neutron imaging experiment. Photograph of the ULF-NMR and neutron imaging experiment: the experiment is conducted under a special growth lamp to induce stomatal opening. An LED lamp (no magnetic noise and heat produced) provides a high density of

  17. Hopper has retired. NERSC is moving!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hopper has retired. NERSC is moving! Hopper has retired. NERSC is moving! December 16, 2015 by Katie Antypas NERSC's Hopper system has retired and NERSC (people and remaining systems) are moving to our new facility on the hill. We thank all our users for your patience during our move! Regards, Katie Antypas Department Head for Scientific Computing and Data Services Subscribe via RSS Subscribe Browse by Date May 2016 April 2016 January 2016 December 2015 November 2015 October 2015 September 2015

  18. Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use (Million Cubic Feet) Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2 2 3 2 2 2010's 2 2 3 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Pipeline & Distribution Use Hawaii Natural Gas

  19. Illinois user sues pipeline on refusal to transport gas

    SciTech Connect (OSTI)

    Barber, J.

    1985-12-02

    An Illinois steel company filed suit against Panhandle Eastern Pipeline Co. for refusing to transport natural gas after its gas transportation program ended on November 1. The company is asking for three times the amount it is losing, which is $7,000 per day, since being forced to purchase from a higher priced distribution company. The suit claims that Panhandle's refusal violates federal and state anti-trust laws and threatens the plant's continued operation. This is the first legal action by a single industrial user, but consumer groups have named over 20 major interstate pipelines for the same allegation when pipelines declined to participate in open access transportation under Order 436.

  20. Technoeconomic Analysis of Biomethane Production from Biogas and Pipeline Delivery (Presentation)

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A.

    2010-10-18

    This presentation summarizes "A Technoeconomic Analysis of Biomethane Production from Biogas and Pipeline Delivery".

  1. Finite-Element Modeling of Electrostatic Sensors for the Flow Measurement of Particles in Pneumatic Pipelines

    SciTech Connect (OSTI)

    Krabicka, J.; Yan, Y.

    2009-08-15

    Electrostatic sensors are used in certain industries for the flow measurement of pneumatically conveyed solids. However, despite various advances that have been made in recent years, relatively little information is known about the exact nature of the electrostatic charge induced onto the sensor electrode due to moving particles, which is dependent on electrode geometry, particle distribution, and particle velocity. This paper presents a novel approach to the study of the charge induced onto electrostatic sensors based on fitting a Lorentzian curve to the results of a finite-element model of the electrostatic sensor and pipeline. The modeling method is validated by comparing the modeling results of a nonintrusive circular electrode with an established analytical solution. The modeling results are used for in-depth analysis and informed design of a particular sensor configuration.

  2. Calexico, CA Natural Gas Pipeline Exports to Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Calexico, CA Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 565 544 592 557 600 586 592 ...

  3. Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 252 1,324 824 1,017 871 770 ...

  4. Ogilby Mesa, CA Natural Gas Pipeline Imports From Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Ogilby Mesa, CA Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 78 376 2013 16 7 - No ...

  5. Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 159 155 151 135 135 127 118 ...

  6. Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 12 40 77 59 55 47 43 41 ...

  7. Nogales, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Nogales, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 39 24 19 15 18 16 15 16 16 18 ...

  8. Otay Mesa, CA Natural Gas Pipeline Imports from Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    from Mexico (Million Cubic Feet) Otay Mesa, CA Natural Gas Pipeline Imports from Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 236 86 93 110 ...

  9. EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins...

    U.S. Energy Information Administration (EIA) Indexed Site

    Corridors About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates U.S. Natural Gas Supply Basins Relative to Major Natural ...

  10. EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir

    U.S. Energy Information Administration (EIA) Indexed Site

    Configuration Aquifer Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Aquifer Underground Natural Gas Storage Reservoir Configuration Aquifer Underground Natural Gas Well

  11. EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    Configuration Depleted Reservoir Storage Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Depleted Production Reservoir Underground Natural Gas Storage Well Configuration Depleted Production Reservoir Storage

  12. Iowa Natural Gas Pipeline and Distribution Use (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Iowa Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 11,309...

  13. Illinois Natural Gas Pipeline and Distribution Use (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Illinois Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

  14. Assessing Steel Pipeline and Weld Susceptibility to Hydrogen Embrittlement Webinar

    Broader source: Energy.gov [DOE]

    Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Assessing Steel Pipeline and Weld Susceptibility to Hydrogen Embrittlement" held on January 12, 2016.

  15. Hydrogen permeability and Integrity of hydrogen transfer pipelines

    Broader source: Energy.gov [DOE]

    Presentation by 03-Babu for the DOE Hydrogen Pipeline R&D Project Review Meeting held January 5th and 6th, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee.

  16. Galvan Ranch, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    225 501 314 1,046 1,426 933 2007-2015 Pipeline Prices 3.52 3.12 1.87 2.66 3.45 1.71 2007

  17. U.S. Natural Gas Pipeline Imports (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Release Date: 4292016 Next Release Date: 5312016 Referring Pages: U.S. Natural Gas Imports by Country U.S. Natural Gas Pipeline Imports by Point of Entry U.S. Total LNG Export ...

  18. Pipelines following exploration in deeper Gulf of Mexico

    SciTech Connect (OSTI)

    True, W.R.

    1988-07-04

    Gulf of Mexico pipeline construction has been falling of sharply to shallow-water (less than 300 ft) areas, while construction for middle depth (300 - 600 ft) and deepwater (600 + ft) areas as been holding steady. These trends are evident from analyses of 5-year data compiled by the U.S. Department of Interior (DOI) Minerals Management Service (MMS). This article continues a series of updates based on MMS gulf pipeline data (OGJ, June 8, 1987, p. 50). These installments track construction patterns in water depths, diameter classifications, and mileage. The figures are also evaluated in terms of pipeline-construction cost data published in Oil and Gas Journal's annual Pipeline Economics Reports.

  19. ,"U.S. Natural Gas Pipeline Imports From Mexico (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"01292016 9:45:31 AM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Imports From Mexico (MMcf)" "Sourcekey","N9102MX2" "Date","U.S. Natural Gas...

  20. U.S. LPG pipeline begins deliveries to Pemex terminal

    SciTech Connect (OSTI)

    Bodenhamer, K.C.

    1997-08-11

    LPG deliveries began this spring to the new Mendez LPG receiving terminal near Juarez, State of Chihuahua, Mexico. Supplying the terminal is the 265-mile, 8-in. Rio Grande Pipeline that includes a reconditioned 217-mile, 8-in. former refined-products pipeline from near Odessa, Texas, and a new 48-mile, 8-in. line beginning in Hudspeth County and crossing the US-Mexico border near San Elizario, Texas. Capacity of the pipeline is 24,000 b/d. The LPG supplied to Mexico is a blend of approximately 85% propane and 15% butane. Before construction and operation of the pipeline, PGPB blended the propane-butane mix at a truck dock during loading. Demand for LPG in northern Mexico is strong. Less than 5% of the homes in Juarez have natural gas, making LPG the predominant energy source for cooking and heating in a city of more than 1 million. LPG also is widely used as a motor fuel.

  1. Slurry Retrieval, Pipeline Transport & Plugging and Mixing Workshop

    Office of Environmental Management (EM)

    Gary L. Smith - Office of Waste Processing (EM-21) Slurry Retrieval, Pipeline Transport & Plugging and Mixing Workshop 1 Dr. Gary L. Smith - Office of Waste Processing (EM-21) Dr. ...

  2. Alamo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    individual company data. Release Date: 09302015 Next Release Date: 10302015 Referring Pages: U.S. Natural Gas Pipeline Exports by Point of Exit Alamo, TX Natural Gas Exports to...

  3. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation

    Broader source: Energy.gov [DOE]

    Presentation by 09-Sofronis to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee.

  4. Natural Gas Exports by Pipeline out of the U.S. Form | Department of Energy

    Energy Savers [EERE]

    Exports by Pipeline out of the U.S. Form Natural Gas Exports by Pipeline out of the U.S. Form File Excel Version of Natural Gas Exports by Pipeline out of the U.S. Form.xlsx PDF icon PDF Version of Natural Gas Exports by Pipeline out of the U.S. Form More Documents & Publications In-Transit Natural Gas Form Natural Gas Imports by Pipeline into the U.S. Form Idaho Operations AMWTP Fact Sheet

  5. Method and apparatus for a combination moving bed thermal treatment reactor and moving bed filter

    DOE Patents [OSTI]

    Badger, Phillip C.; Dunn, Jr., Kenneth J.

    2015-09-01

    A moving bed gasification/thermal treatment reactor includes a geometry in which moving bed reactor particles serve as both a moving bed filter and a heat carrier to provide thermal energy for thermal treatment reactions, such that the moving bed filter and the heat carrier are one and the same to remove solid particulates or droplets generated by thermal treatment processes or injected into the moving bed filter from other sources.

  6. Evaluation of Trenchless Technologies for Installation of Pipelines in

    Office of Scientific and Technical Information (OSTI)

    Radioactive Environments - 10249 (Conference) | SciTech Connect Evaluation of Trenchless Technologies for Installation of Pipelines in Radioactive Environments - 10249 Citation Details In-Document Search Title: Evaluation of Trenchless Technologies for Installation of Pipelines in Radioactive Environments - 10249 No abstract prepared. Authors: Jubin, Robert Thomas [1] ; Patton, Bradley D [1] ; Robinson, Sharon M [1] ; Sullivan, Nicholas M [1] ; Bugbee, Kathy P [1] + Show Author Affiliations

  7. Deliverability on the interstate natural gas pipeline system

    SciTech Connect (OSTI)

    1998-05-01

    Deliverability on the Interstate Natural Gas Pipeline System examines the capability of the national pipeline grid to transport natural gas to various US markets. The report quantifies the capacity levels and utilization rates of major interstate pipeline companies in 1996 and the changes since 1990, as well as changes in markets and end-use consumption patterns. It also discusses the effects of proposed capacity expansions on capacity levels. The report consists of five chapters, several appendices, and a glossary. Chapter 1 discusses some of the operational and regulatory features of the US interstate pipeline system and how they affect overall system design, system utilization, and capacity expansions. Chapter 2 looks at how the exploration, development, and production of natural gas within North America is linked to the national pipeline grid. Chapter 3 examines the capability of the interstate natural gas pipeline network to link production areas to market areas, on the basis of capacity and usage levels along 10 corridors. The chapter also examines capacity expansions that have occurred since 1990 along each corridor and the potential impact of proposed new capacity. Chapter 4 discusses the last step in the transportation chain, that is, deliverability to the ultimate end user. Flow patterns into and out of each market region are discussed, as well as the movement of natural gas between States in each region. Chapter 5 examines how shippers reserve interstate pipeline capacity in the current transportation marketplace and how pipeline companies are handling the secondary market for short-term unused capacity. Four appendices provide supporting data and additional detail on the methodology used to estimate capacity. 32 figs., 15 tabs.

  8. EIA - Natural Gas Pipeline Network - Network Configuration & System Design

    U.S. Energy Information Administration (EIA) Indexed Site

    Network Configuration & System Design About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Network Configuration and System Design Overview | Transmission/Storage | Design Criteria | Importance of Storage| Overall Pipeline System Configuration Overview A principal requirement of the natural gas transmission system is that it be capable of meeting the peak demand of its shippers who have contracts for firm service. To meet this

  9. DEX: Increasing the Capability of Scientific Data Analysis Pipelines by

    Office of Scientific and Technical Information (OSTI)

    Using Efficient Bitmap Indices to Accelerate Scientific Visualization (Technical Report) | SciTech Connect DEX: Increasing the Capability of Scientific Data Analysis Pipelines by Using Efficient Bitmap Indices to Accelerate Scientific Visualization Citation Details In-Document Search Title: DEX: Increasing the Capability of Scientific Data Analysis Pipelines by Using Efficient Bitmap Indices to Accelerate Scientific Visualization We describe a new approach to scalable data analysis that

  10. EIS-0152: Iroquois/Tennessee Phase I Pipeline Project

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission prepared this statement to asses the environmental impacts of constructing and operating an interstate natural gas pipeline and associated infrastructure to transport gas from Canada and domestic sources to the New England Market, as proposed by the Iroquois Gas Transmission System and the Tennessee Gas Pipeline Company. The U.S. Department of Energy Office of Fossil Energy was a cooperating agency during statement development and adopted the statement on 9/1/1990.

  11. Advanced Manufacturing pipeline brings NSC and Minority Serving

    National Nuclear Security Administration (NNSA)

    Institutions together | National Nuclear Security Administration Advanced Manufacturing pipeline brings NSC and Minority Serving Institutions together Thursday, August 27, 2015 - 4:41pm In an ongoing effort to build a sustainable STEM pipeline between DOE's sites/labs and historically black colleges and universities, the National Security Campus (NSC) helped form the Advanced Manufacturing Consortium under the Minority Serving Institutes Partnership Program (MSIPP). This year MSIPP funded

  12. EIA - Natural Gas Pipeline Network - Transportation Process & Flow

    U.S. Energy Information Administration (EIA) Indexed Site

    Process and Flow About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Transportation Process and Flow Overview | Gathering System | Processing Plant | Transmission Grid | Market Centers/Hubs | Underground Storage | Peak Shaving Overview Transporting natural gas from the wellhead to the final customer involves several physical transfers of custody and multiple processing steps. A natural gas pipeline system begins at the natural gas

  13. The unusual construction aspects of China`s Yacheng 13-1 gas pipeline -- The world`s second longest subsea pipeline

    SciTech Connect (OSTI)

    Woolgar, A.F.; Wilburn, J.S.; Zhao, X.

    1996-12-31

    There are many unusual construction aspects relating to China`s Yacheng 13-1 Pipeline. Initially planned as an onshore pipeline it was later to become Asia`s longest subsea pipeline. The route chosen resulted in an offshore pipeline requiring many unique and innovative construction techniques as well as unusual pipeline installation constraints. The pipeline was installed in two phases. The first phase of 707 km was to be the longest pipeline ever constructed within one lay season and with one lay vessel in a continuous program. Upon completion of the second phase of pipelay works, the world`s longest ever subsea pipeline flooding in one run of 778 kms was to follow. The Yacheng 13-1 construction requirements for pipelay and post installation works, including testing and commissioning were extremely demanding. This paper details how these requirements were met. It covers route selection constraints, construction techniques utilized and the demanding pigging and pre-commissioning operations performed.

  14. Pipeline integrity design for differential settlement in discontinuous permafrost areas

    SciTech Connect (OSTI)

    Zhou, Z.J.; Boivin, R.P.; Glover, A.G.; Kormann, P.J.

    1996-12-31

    The NOVA Gas Transmission Ltd. (NGTL) gas pipeline system is expanding northwards as the producers search for and find new gas reserves. This growth has taken the system into the discontinuous permafrost zone, and also into new design problems. One such problem is the structural integrity of a pipeline subjected to the settlement differentials that occur between frozen and unfrozen soils. Adequate integrity design for differential settlement is required by design codes, such as CSA Z662, but the procedures and criteria must be established by the pipeline designers. This paper presents the methodology of pipeline integrity design for differential settlements used on a number of pipeline projects in Northwest Alberta. Outlined in the paper are the procedures, rationales and models used to: (a) locate discontinuous permafrost; (b) quantify the potential differential settlement; (c) predict pipeline stresses and strains; (d) establish strain limits; and (e) determine the pipe wall thickness to withstand those potential differential settlements. Several design options are available and are briefly discussed. For the projects mentioned, the heavy wall pipe option was identified as a cost effective design for medium to large differential settlements.

  15. INTERNAL REPAIR OF PIPELINES REVIEW & EVALUATION OF INTERNAL PIPELINE REPAIR TRIALS REPORT

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-09-01

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is generally ineffective at restoring the pressure containing capabilities of pipelines. Failure pressure for pipe repaired with carbon fiber-reinforced composite liner was greater than that of the un-repaired pipe section with damage, indicating that this type of liner is effective at restoring the pressure containing capability of pipe. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. Development of a comprehensive test plan for this process is recommended for use in the next phase of this project.

  16. Relocation Travel FAQs Travel/Moving FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Relocation Travel FAQs Travel/Moving FAQs When may I begin making travel and moving arrangements? No arrangements should be made prior to receiving a written offer of employment from Human Resources (HR) Division. The written offer letter is the official offer. The offer of employment must be accepted in writing (a signature on the offer letter) and returned to the Laboratory before making any travel or moving arrangements. How will I receive the relocation information? The relocation

  17. Multiple moving wall dry coal extrusion pump

    SciTech Connect (OSTI)

    Fitzsimmons, Mark Andrew

    2013-05-14

    A pump for transporting particulate material includes a passageway defined on each side between an inlet and an outlet by a moving wall.

  18. FEMP Website Moves Into Energy.gov

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program in January moved its Web pages into Energy.gov, the U.S. Department of Energy's website.

  19. Public Transport: Moving towards Sustainable Mobility | Open...

    Open Energy Info (EERE)

    to: navigation, search Tool Summary LAUNCH TOOL Name: Public Transport: Moving towards Sustainable Mobility AgencyCompany Organization: United Nations Environment Programme...

  20. Power line fault current coupling to nearby natural gas pipelines: Volume 3, Analysis of pipeline coating impedance: Final report

    SciTech Connect (OSTI)

    Dabkowski, J.; Frazier, M. J.

    1988-08-01

    This report is a compilation of results obtained from two research programs. The response of a pipeline and coating at the higher voltage excitation levels encountered under power line fault conditions appears to be dominated by conduction at holiday sites in the coating. A simple analytical model was developed for predicting the resistance of a pipeline coating holiday as a function of the voltage produced across the pipeline coating by a nearby faulted power transmission line. The model was initially validated using coated pipeline samples stressed by a capacitive discharge voltage. Additional validation tests were then performed at the Pacific Gas and Electric Company's High Voltage Engineering Research Facility using high voltage ac waveforms for fault simulation. The principle program objective was to develop, both by laboratory and controlled field testing, an electrical resistance characterization for the pipeline coating as a function of the applied voltage level. The development of this model will allow a more accurate prediction of coupled voltage levels to a pipeline during fault current conditions. 54 figs, 3 tabs.

  1. Moving core beam energy absorber and converter

    DOE Patents [OSTI]

    Degtiarenko, Pavel V.

    2012-12-18

    A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.

  2. REMOTE DETECTION OF INTERNAL PIPELINE CORROSION USING FLUIDIZED SENSORS

    SciTech Connect (OSTI)

    Narasi Sridhar; Garth Tormoen; Ashok Sabata

    2005-10-31

    Pipelines present a unique challenge to monitoring because of the great geographical distances they cover, their burial depth, their age, and the need to keep the product flowing without much interruption. Most other engineering structures that require monitoring do not pose such combined challenges. In this regard, a pipeline system can be considered analogous to the blood vessels in the human body. The human body has an extensive ''pipeline'' through which blood and other fluids are transported. The brain can generally sense damage to the system at any location and alert the body to provide temporary repair, unless the damage is severe. This is accomplished through a vast network of fixed and floating sensors combined with a vast and extremely complex communication/decision making system. The project described in this report mimics the distributed sensor system of our body, albeit in a much more rudimentary fashion. Internal corrosion is an important factor in pipeline integrity management. At present, the methods to assess internal corrosion in pipelines all have certain limitations. In-line inspection tools are costly and cannot be used in all pipelines. Because there is a significant time interval between inspections, any impact due to upsets in pipeline operations can be missed. Internal Corrosion Direct Assessment (ICDA) is a procedure that can be used to identify locations of possible internal corrosion. However, the uncertainties in the procedure require excavation and location of damage using more detailed inspection tools. Non-intrusive monitoring techniques can be used to monitor internal corrosion, but these tools also require pipeline excavation and are limited in the spatial extent of corrosion they can examine. Therefore, a floating sensor system that can deposit at locations of water accumulation and communicate the corrosion information to an external location is needed. To accomplish this, the project is divided into four main tasks related to wireless data transmission, corrosion sensor development, sensor system motion and delivery, and consideration of other pipeline operations issues. In the first year of the program, focus was on sensor development and wireless data transmission. The second year of the program, which was discontinued due to funding shortfall, would have focused on further wireless transmission development, packaging of sensor on wireless, and other operational issues. Because, the second year funding has been discontinued, recommendations are made for future studies.

  3. Complexity analysis of pipeline mapping problems in distributed heterogeneous networks

    SciTech Connect (OSTI)

    Lin, Ying; Wu, Qishi; Zhu, Mengxia; Rao, Nageswara S

    2009-04-01

    Largescale scientific applications require using various system resources to execute complex computing pipelines in distributed networks to support collaborative research. System resources are typically shared in the Internet or over dedicated connections based on their location, availability, capability, and capacity. Optimizing the network performance of computing pipelines in such distributed environments is critical to the success of these applications. We consider two types of largescale distributed applications: (1) interactive applications where a single dataset is sequentially processed along a pipeline; and (2) streaming applications where a series of datasets continuously flow through a pipeline. The computing pipelines of these applications consist of a number of modules executed in a linear order in network environments with heterogeneous resources under different constraints. Our goal is to find an efficient mapping scheme that allocates the modules of a pipeline to network nodes for minimum endtoend delay or maximum frame rate. We formulate the pipeline mappings in distributed environments as optimization problems and categorize them into six classes with different optimization goals and mapping constraints: (1) Minimum Endtoend Delay with No Node Reuse (MEDNNR), (2) Minimum Endtoend Delay with Contiguous Node Reuse (MEDCNR), (3) Minimum Endtoend Delay with Arbitrary Node Reuse (MEDANR), (4) Maximum Frame Rate with No Node Reuse or Share (MFRNNRS), (5) Maximum Frame Rate with Contiguous Node Reuse and Share (MFRCNRS), and (6) Maximum Frame Rate with Arbitrary Node Reuse and Share (MFRANRS). Here, 'contiguous node reuse' means that multiple contiguous modules along the pipeline may run on the same node and 'arbitrary node reuse' imposes no restriction on node reuse. Note that in interactive applications, a node can be reused but its resource is not shared. We prove that MEDANR is polynomially solvable and the rest are NP-complete. MEDANR, where either contiguous or noncontiguous modules in the pipeline can be mapped onto the same node, is essentially the Maximum n-hop Shortest Path problem, and can be solved using a dynamic programming method. In MEDNNR and MFRNNRS, any network node can be used only once, which requires selecting the same number of nodes for onetoone onto mapping. We show its NP-completeness by reducing from the Hamiltonian Path problem. Node reuse is allowed in MEDCNR, MFRCNRS and MFRANRS, which are similar to the Maximum n-hop Shortest Path problem that considers resource sharing. We prove their NP-completeness by reducing from the Disjoint-Connecting-Path Problem and Widest path with the Linear Capacity Constraints problem, respectively.

  4. REALTIME MONITORING OF PIPELINES FOR THIRD-PARTY CONTACT

    SciTech Connect (OSTI)

    Gary L. Burkhardt

    2005-12-31

    Third-party contact with pipelines (typically caused by contact with a digging or drilling device) can result in mechanical damage to the pipe, in addition to coating damage that can initiate corrosion. Because this type of damage often goes unreported and can lead to eventual catastrophic failure of the pipe, a reliable, cost-effective method is needed for monitoring the pipeline and reporting third-party contact events. The impressed alternating cycle current (IACC) pipeline monitoring method developed by Southwest Research Institute (SwRI) consists of impressing electrical signals on the pipe by generating a time-varying voltage between the pipe and the soil. The signal voltage between the pipe and ground is monitored continuously at receiving stations located some distance away. Third-party contact to the pipe that breaks through the coating (thus resulting in a signal path to ground) changes the signal received at the receiving stations. The IACC method was shown to be a viable method that can be used to continuously monitor pipelines for third-party contact. Electrical connections to the pipeline can be made through existing cathodic protection (CP) test points without the need to dig up the pipe. The instrumentation is relatively simple, consisting of (1) a transmitting station with a frequency-stable oscillator and amplifier and (2) a receiving station with a filter, lock-in amplifier, frequency-stable oscillator, and remote reporting device (e.g. cell phone system). Maximum distances between the transmitting and receiving stations are approximately 1.61 km (1 mile), although the length of pipeline monitored can be twice this using a single transmitter and one receiver on each side (since the signal travels in both directions). Certain conditions such as poor pipeline coatings or strong induced 60-Hz signals on the pipeline can degrade IACC performance, so localized testing should be performed to determine the suitability for an IACC installation at a given location. The method can be used with pipelines having active CP systems in place without causing interference with operation of the CP system. The most appropriate use of IACC is monitoring of localized high-consequence areas where there is a significant risk of third-party contact (e.g. construction activity). The method also lends itself to temporary, low-cost installation where there is a short-term need for monitoring.

  5. World pipeline construction to slip for 1994 and beyond

    SciTech Connect (OSTI)

    Koen, A.D.; True, W.R.

    1994-02-07

    World pipeline construction planned in 1994 and beyond has fallen in the past year, reflecting uncertainties in energy markets. Still, significant expansions are under way or planned for Latin America, Asia and the Pacific regions, and Europe. Latest Oil and Gas Journal data, derived from its survey of world pipeline operators, industry sources, and published information, show more than 55,000 miles of crude oil, product, and natural gas pipeline planned for 1994 and beyond. The data include projections for pipeline construction in Russia and former republics of the Soviet Union. Western Russia and all countries west of the Ural Mountains are included under totals for Europe, eastern Russia and countries east of the Urals under totals for the Asia-Pacific region. The paper discusses the following: European gas lines; North Sea projects; Gulf of Thailand; Yacheng subsea pipeline; Australian gas lines; other Asian lines; Russian activity; Algeria-Europe gas lines; Southeast US; Gulf gathering systems; Western US; South America; Trans-Ecuadorian expansion; Chilean gas network; and Bolivia-Brazil gas line.

  6. China has 6,000-mile pipeline system

    SciTech Connect (OSTI)

    Ming, S.

    1983-08-01

    A dramatic change has taken place in China's oil transport system, with pipelines replacing tank-cars as the most important means of transport for crude oil and petroleum products. According to Petroleum Ministry officials, the volume of crude oil carried by China's pipeline system increased from 23.2 percent in 1971 to 65.6 percent in 1981, while the volume delivered by tank-cars declined from 61.11 percent to 8.4 percent. The remainder was transported by tankers. China's 9,700 km (6,000-mile) pipeline network includes 5,600 km (3,500 miles) designed to carry crude oil and more than 600 km (375 miles) for petroleum products, plus 3,400 km (2,100 miles), mostly in Sichuan province, for natural gas.

  7. Development Of A Centrifugal Hydrogen Pipeline Gas Compressor

    SciTech Connect (OSTI)

    Di Bella, Francis A.

    2015-04-16

    Concepts NREC (CN) has completed a Department of Energy (DOE) sponsored project to analyze, design, and fabricate a pipeline capacity hydrogen compressor. The pipeline compressor is a critical component in the DOE strategy to provide sufficient quantities of hydrogen to support the expected shift in transportation fuels from liquid and natural gas to hydrogen. The hydrogen would be generated by renewable energy (solar, wind, and perhaps even tidal or ocean), and would be electrolyzed from water. The hydrogen would then be transported to the population centers in the U.S., where fuel-cell vehicles are expected to become popular and necessary to relieve dependency on fossil fuels. The specifications for the required pipeline hydrogen compressor indicates a need for a small package that is efficient, less costly, and more reliable than what is available in the form of a multi-cylinder, reciprocating (positive displacement) compressor for compressing hydrogen in the gas industry.

  8. Alaskan Natural Gas Pipeline Developments (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    The Annual Energy Outlook 2007 reference case projects that an Alaska natural gas pipeline will go into operation in 2018, based on the Energy Information Administration's current understanding of the projects time line and economics. There is continuing debate, however, about the physical configuration and the ownership of the pipeline. In addition, the issue of Alaskas oil and natural gas production taxes has been raised, in the context of a current market environment characterized by rising construction costs and falling natural gas prices. If rates of return on investment by producers are reduced to unacceptable levels, or if the project faces significant delays, other sources of natural gas, such as unconventional natural gas production and liquefied natural gas imports, could fulfill the demand that otherwise would be served by an Alaska pipeline.

  9. Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Pipeline Exports to Canada (Million Cubic Feet) Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 2 2013 3 5 4 6 9 8 5 8 7 5 7 5 2014 8 11 10 8 8 5 6 6 6 6 6 7 2015 5 4 5 5 5 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied

  10. Vermont Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Vermont Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 9 8 8 2000's 15 14 14 14 14 14 15 16 15 17 2010's 16 53 114 89 124 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Pipeline & Distribution Use Vermont Natural

  11. Delaware Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Delaware Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 13 15 45 2000's 62 23 49 34 39 40 18 16 18 22 2010's 140 464 1,045 970 1,040 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Pipeline & Distribution Use

  12. New Hampshire Natural Gas Pipeline and Distribution Use (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) (Million Cubic Feet) New Hampshire Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 24 22 2 2000's 32 24 60 24 22 22 20 17 9 13 2010's 247 202 27 67 81 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Pipeline & Distribution Use

  13. Maine Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Maine Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 0 0 2000's 808 1,164 877 859 658 585 494 753 943 837 2010's 1,753 2,399 762 844 1,300 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Pipeline & Distribution Use

  14. Asia to see major pipelines in near future

    SciTech Connect (OSTI)

    Friedman, D.R.

    1987-11-30

    Recent discoveries of crude oil and natural gas in Asia and the Far East have spawned a number of major pipeline projects. Many of these are underway or likely to be started in the next few years. The author reviews what is being done in Taiwan, South Korea, Thailand, Malaysia, Indonesia, Papua New Guinea, and China. He says all of the countries discussed are undergoing an overall improvement in the quality of life, demonstrated by changing life styles, and an overall advancement in economic activity as a result of the discovery of oil and the need for pipelines.

  15. Method for preventing thaw settlement along offshore arctic pipelines

    SciTech Connect (OSTI)

    Duthweiler, F.C.

    1987-06-30

    A method is described for installing a warm fluid-bearing pipeline across an arctic seafloor, the method comprising: (1) drilling a series of boreholes along the seafloor through a thawed zone of subsea soil to penetrate a distance into a zone of permafrost; (2) circulating a warm circulation fluid through the boreholes to create a slump trough on the surface of the seafloor by creating a prethawing zone in the permafrost zone; and (3) installing a pipeline bearing a warm fluid along the bottom of the slump trough without causing further substantial slumping along the seafloor.

  16. Recent Gulf of Mexico pipeline activity reflects industry's recovery

    SciTech Connect (OSTI)

    True, W.R.

    1990-08-27

    Pipeline construction in the U.S. Gulf of Mexico has improved considerably in recent years, especially activity in shallow water (less than 300 ft). Construction for middle depths (300-600 ft) has been flat, while deepwater (600+ ft) projects have held firm or increased slightly. Overall pipeline mileage constructed in federal waters 1985-89 period showed a strengthening industry, especially during the 1988-89 period. These trends are evident from analyses of 5-year data. The author tracks comparisons between applications that were approved by the MMS during this period and projects that have been reported to the MMS as completed.

  17. EIS-0140: Ocean State Power Project, Tennessee Gas Pipeline Company

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission prepared this statement to evaluate potential impacts of construction and operation of a new natural gas-fired, combined-cycle power plant which would be located on a 40.6-acre parcel in the town of Burrillville, Rhode Island, as well as construction of a 10-mile pipeline to transport process and cooling water to the plant from the Blackstone River and a 7.5-mile pipeline to deliver No. 2 fuel oil to the site for emergency use when natural gas may not be available. The Economic Regulatory Administration adopted the EIS on 7/15/1988.

  18. McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  19. Price of San Elizario, TX Natural Gas Pipeline Exports to Mexico...

    Gasoline and Diesel Fuel Update (EIA)

    Price of San Elizario, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand Cubic Feet) Price of San Elizario, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

  20. ,"Price of U.S. Natural Gas Pipeline Imports From Canada (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet)" "Sourcekey","N9102CN3" "Date","Price of U.S. Natural Gas Pipeline Imports From Canada (Dollars per Thousand ...

  1. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues

    Fuel Cell Technologies Publication and Product Library (EERE)

    This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipeline

  2. Y-12 moves toward the COLEX process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    moves toward the COLEX process In the chronology An Overview of the History of Y-12, 1942-1992 by Bill Wilcox, Forrest Waldrop is credited with the original idea that ultimately...

  3. Pipeline transportation and underground storage are vital and complementary components of the U

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions to Capacity on the U.S. Natural Gas Pipeline Network: 2005 This report examines the amount of new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2005 and the areas of the country where those additions were concentrated. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2006 and 2008 and the market factors supporting these initiatives. Questions or comments on the contents of this article

  4. Natural Gas Compressor Stations on the Interstate Pipeline Network: Developments Since 1996

    U.S. Energy Information Administration (EIA) Indexed Site

    Compressor Stations on the Interstate Pipeline Network: Developments Since 1996 This special report looks at the use of natural gas pipeline compressor stations on the interstate natural gas pipeline network that serves the lower 48 States. It examines the compression facilities added over the past 10 years and how the expansions have supported pipeline capacity growth intended to meet the increasing demand for natural gas. Questions or comments on the contents of this article may be directed to

  5. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues | Department of Energy Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest, four deliver natural gas from Canada, and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and

  6. Moving Memristor and Neuristor Research Forward

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moving Memristor and Neuristor Research Forward Moving Memristor and Neuristor Research Forward Print Thursday, 21 March 2013 10:01 HP Labs researchers have tackled a decades-old mystery relying on powerful ALS microscopy techniques to better understand the fourth basic circuit element: the memristor. The memristor (short for "memory resistor") joins the other passive elements-the capacitor, the resistor, and the inductor-to create a device with the ability to "remember"

  7. Natural Gas Compressor Stations on the Interstate Pipeline Network: Developments Since 1996

    Reports and Publications (EIA)

    2007-01-01

    This special report looks at the use of natural gas pipeline compressor stations on the interstate natural gas pipeline network that serves the lower 48 states. It examines the compression facilities added over the past 10 years and how the expansions have supported pipeline capacity growth intended to meet the increasing demand for natural gas.

  8. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues

    SciTech Connect (OSTI)

    Melaina, M. W.; Antonia, O.; Penev, M.

    2013-03-01

    The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest, four deliver natural gas from Canada, and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines.

  9. Blending Hydrogen into Natural Gas Pipeline Networks. A Review of Key Issues

    SciTech Connect (OSTI)

    Melaina, M. W.; Antonia, O.; Penev, M.

    2013-03-01

    This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines. Blending hydrogen into the existing natural gas pipeline network has also been proposed as a means of increasing the output of renewable energy systems such as large wind farms.

  10. EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins Relative to

    U.S. Energy Information Administration (EIA) Indexed Site

    Major Natural Gas Pipeline Transportation Corridors Corridors About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Supply Basins Relative to Major Natural Gas Pipeline Transportation Corridors, 2008 U.S. Natural Gas Transporation Corridors out of Major Supply Basins

  11. Douglas, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Douglas, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,165 2,613 2,982 2,580 3,630 ...

  12. Clint, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Clint, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 8,088 6,402 7,296 6,783 8,836 ...

  13. Ogilby, CA Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Ogilby, CA Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,249 5,761 5,912 5,065 6,188 ...

  14. Role of microbial induced corrosion in subsea water pipeline failure

    SciTech Connect (OSTI)

    Samant, A.K.; Singh, S.K.

    1998-12-31

    Premature failure of subsea water injection pipelines due to rupture was observed in Indian offshore facilities. In this connection various contributing factors like metallurgy of pipeline, operating conditions and corrosion related parameters have been examined. Material defects that can lead to premature failure of pipelines like microstructural anomalies, variation in hardness and elemental composition and tensile strength etc. have been found within the specified limits of material specification. Analysis of various operating parameters and water quality data indicated failure due to microbial induced internal corrosion. Due to low flow velocities, suspended insoluble corrosion products, bacteria and other microbes, present in the water, accumulated inside the pipeline surface mostly in low areas. Deposit provided hiding place for bacteria and shielded them from effective treatment by bactericide. Deposits also resulted in the formation of oxygen concentration cells resulting in localized corrosion. Non-pigging of pipe lines, even after long shut down, also resulted in accumulation of deposits. During this period, microbial activities dominated resulting in the formation of acidic metabolizes which ultimately led to internal corrosion. In this paper, all above aspects have been examined with special reference to the role of microbiologically induced corrosion for failure of subsea water injection pipe lines.

  15. Subsea pipeline gets welded branch without halting flow

    SciTech Connect (OSTI)

    West, A.; Hutt, G.; Starsmore, R.

    1995-12-11

    In October 1994, a 16 in. welded branch was installed without interruption to production onto Wintershall Noordzee BV`s 36-in. gas pipeline from the K13-A platform in the Dutch sector of the North Sea to Den helder, The Netherlands. The procedure is the first successfully to combine hyperbaric welding and subsea hot tapping without interruption to production. Developers of new fields can now consider exporting product without interrupting existing production and through existing infrastructure even if no convenient tie-in locations exist. Unocal evaluated export options and established that the most attractive alternative was to export gas into the Wintershall 36-in. K13-A to Den Helder pipeline. Various options for installing a branch included the following: flooding the pipeline and installing a conventional tee; stopping production and installing a welded branch followed by hot tapping; and continuing production and installing a welded branch followed by hot tapping. The chosen scheme was to retrofit a subsea side-tap assembly. This was achieved by installation of a welded branch followed by hot tapping into the 36-in. pipeline. The paper describes location determination, schedules, onshore preparation, and offshore work.

  16. Pittsburg, NH Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    18,297 19,826 47,451 63,446 52,160 77,866 1998-2015 Pipeline Prices 5.48 5.45 4.08 6.63 10.55 5.18 1998

  17. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir

    U.S. Energy Information Administration (EIA) Indexed Site

    Configuration Salt Cavern Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Salt Cavern Underground Natural Gas Storage Reservoir Configuration Salt Cavern Underground Natural Gas Storage Reservoir Configuration Source: PB Energy Storage Services Inc.

  18. Grand Island, NY Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    63,548 47,616 23,000 5,758 1,413 4,940 1996-2015 Pipeline Prices 5.20 4.68 3.01 3.92 9.80 4.23

  19. Pipelines and laterally loaded piles in elastoplastic medium

    SciTech Connect (OSTI)

    Rajani, B. . Inst. for Research in Construction)

    1993-09-01

    The uplift behavior of a shallow pipeline embedded in an elastoplastic medium is examined. An analytical solution for a beam on elastoplastic foundation is developed and a characteristic nondimensional load-displacement and stress-displacement relationship are presented. An approximate three-dimensional (3D) solution is proposed that accounts for embedment and breakaway condition behind the pipeline making use of the load-displacement curves developed for rigid anchors by Rowe and Davis in 1982. A comparison of these results with those obtained by 3D finite-element analysis indicates that the simplified solution of a beam on elastoplastic foundation is a practical alternative for analyzing the uplift behavior of shallow pipelines. The approximate solution is also used to compare the behavior of a laterally loaded pile for which no separation or separation between the surrounding soil and the back of the pile is permitted as the load is monotonically increased. The results are presented in the form of nondimensional charts that permit hand calculations and rapid verification of structural design of the pipeline and piles.

  20. The RNA-Seq Analysis pipeline on Galaxy

    SciTech Connect (OSTI)

    Meng, Xiandong; Martin, Jeffrey; Wang, Zhong

    2011-05-31

    Q: How do I know my RNA-Seq experiments worked well A: RNA-Seq QC PipelineQ: How do I detect transcripts which are over expressed or under expressed in my samples A: Counting and Statistic AnalysisQ: What do I do if I don't have a reference genome A: Rnnotator de novo Assembly.

  1. Gas supplies of interstate/natural gas pipeline companies 1989

    SciTech Connect (OSTI)

    Not Available

    1990-12-18

    This publication provides information on the interstate pipeline companies' supply of natural gas during calendar year 1989, for use by the FERC for regulatory purposes. It also provides information to other Government agencies, the natural gas industry, as well as policy makers, analysts, and consumers interested in current levels of interstate supplies of natural gas and trends over recent years. 5 figs., 18 tabs.

  2. Social cost impact assessment of pipeline infrastructure projects

    SciTech Connect (OSTI)

    Matthews, John C.; Allouche, Erez N.; Sterling, Raymond L.

    2015-01-15

    A key advantage of trenchless construction methods compared with traditional open-cut methods is their ability to install or rehabilitate underground utility systems with limited disruption to the surrounding built and natural environments. The equivalent monetary values of these disruptions are commonly called social costs. Social costs are often ignored by engineers or project managers during project planning and design phases, partially because they cannot be calculated using standard estimating methods. In recent years some approaches for estimating social costs were presented. Nevertheless, the cost data needed for validation of these estimating methods is lacking. Development of such social cost databases can be accomplished by compiling relevant information reported in various case histories. This paper identifies eight most important social cost categories, presents mathematical methods for calculating them, and summarizes the social cost impacts for two pipeline construction projects. The case histories are analyzed in order to identify trends for the various social cost categories. The effectiveness of the methods used to estimate these values is also discussed. These findings are valuable for pipeline infrastructure engineers making renewal technology selection decisions by providing a more accurate process for the assessment of social costs and impacts. - Highlights: • Identified the eight most important social cost factors for pipeline construction • Presented mathematical methods for calculating those social cost factors • Summarized social cost impacts for two pipeline construction projects • Analyzed those projects to identify trends for the social cost factors.

  3. Pipeline failure: The roles played by corrosion, flow and metallurgy

    SciTech Connect (OSTI)

    Paisley, D.; Barrett, N.; Wilson, O.

    1999-11-01

    Carbon dioxide corrosion has been widely studied in the field and laboratory. It is recognized that flow regime and metallurgy are important factors that influence in-situ corrosion rates but there are relatively few documented case studies that are able to separate the individual contributions of corrosion, flow regime and metallurgy on the observed corrosion damage. This paper deals with failure of a pipeline where high quality inspection data together with comprehensive as-built records and stable production conditions allowed the separate influences of flow and metallurgy on corrosion to be studied. The flow regimes in the pipeline ranged from low velocity, stratified flow to high velocity, slug flow. The inspection data showed that the affect of turbulent flow was to increase the frequency of corrosion pits and, in the case of weld corrosion, the mean corrosion rate. The pipeline was constructed from two grades of steel and welded using two types of welding consumable. One grade of pipeline steel corroded at a significantly higher rate and with a higher frequency of corrosion pits than another, apparently similar steel. However, no significant relationship was found between weld metallurgy and corrosion rate or frequency.

  4. Alamo, TX Natural Gas Imports by Pipeline from Mexico

    U.S. Energy Information Administration (EIA) Indexed Site

    3,678 27,479 48,850 72,039 76,111 78,866 1998-2014 Pipeline Prices 3.95 4.50 4.10 2.86 3.81 4.63 1998...

  5. EIA - Natural Gas Pipeline Network - Natural Gas Transportation Corridors

    U.S. Energy Information Administration (EIA) Indexed Site

    Map Corridors > Major U.S. Natural Gas Transportation Corridors Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Major U.S. Natural Gas Transportation Corridors, 2008

  6. 49 CFR Parts 171-177: Hazardous Materials Regulations (DOT)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration regulates the transport of hazardous materials through Title 49 of the Code of Federal Regulations (49 CFR), Subchapter C, "Hazardous Materials Regulations." Parts 171-177 provide general information on hazardous materials and regulation for their packaging and their shipment by rail, air, vessel, and public highway.

  7. ELECTROMAGNETIC APPARATUS FOR MOVING A ROD

    DOE Patents [OSTI]

    Young, J.N.

    1957-08-20

    An electromagnetic device for moving an object in a linear path by increments is described. The device is specifically adapted for moving a neutron absorbing control rod into and out of the core of a reactor and consists essentially of an extension member made of magnetic material connected to one end of the control rod and mechanically flexible to grip the walls of a sleeve member when flexed, a magnetic sleeve member coaxial with and slidable between limit stops along the flexible extension, electromagnetic coils substantially centrally located with respect to the flexible extension to flex the extension member into gripping engagement with the sleeve member when ener gized, moving electromagnets at each end of the sleeve to attract the sleeve when energized, and a second gripping electromagnet positioned along the flexible extension at a distance from the previously mentioned electromagnets for gripping the extension member when energized. In use, the second gripping electromagnet is deenergized, the first gripping electromagnet is energized to fix the extension member in the sleeve, and one of the moving electromagnets is energized to attract the sleeve member toward it, thereby moving the control rod.

  8. Motor Vehicle Emission Simulator (MOVES) 2010: User Guide (EPA...

    National Nuclear Security Administration (NNSA)

    ... MOVES2010 is intended for official use. Please see the MOVES2010 policy statement available on the EPA's MOVES web site http:www.epa.govotaqmodelsmovesindex.htm for EPA's ...

  9. ELECTROMAGNETIC APPARATUS FOR MOVING A ROD

    DOE Patents [OSTI]

    Young, J.N.

    1958-04-22

    An electromagnetic apparatus for moving a rod-like member in small steps in either direction is described. The invention has particular application in the reactor field where the reactor control rods must be moved only a small distance and where the use of mechanical couplings is impractical due to the high- pressure seals required. A neutron-absorbing rod is mounted in a housing with gripping uaits that engage the rod, and coils for magnetizing the gripping units to make them grip, shift, and release the rod are located outside the housing.

  10. Moving toward a commercial market for hydrogen fuel cell vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations PDF icon ...

  11. Webinar: Science Magazine Highlight: Moving Towards Near Zero...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar: Science Magazine Highlight: Moving Towards Near Zero Platinum Fuel Cells Above is the video recording for the webinar, "Science Magazine Highlight: Moving Towards Near ...

  12. Edison moving, Hopper retiring in December. Use your allocations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    moving, Hopper retiring in December. Use your allocations now Edison moving, Hopper retiring in December. Use your allocations now November 10, 2015 by Katie Antypas Dear NERSC...

  13. Ethanol-to-Hydrocarbon Technology Moves Closer to Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ethanol-to-Hydrocarbon Technology Moves Closer to Commercialization Ethanol-to-Hydrocarbon Technology Moves Closer to Commercialization December 16, 2015 - 2:23pm Addthis Dr. ...

  14. Science Magazine Highlight: Moving Towards Near Zero Platinum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Magazine Highlight: Moving Towards Near Zero Platinum Fuel Cells Science Magazine Highlight: Moving Towards Near Zero Platinum Fuel Cells Presentation slides and speaker ...

  15. Nevada Plant Adds Jobs, Moves America Forward in Solar Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nevada Plant Adds Jobs, Moves America Forward in Solar ... It's always exciting when efforts to move new energy ... 188 Million for Small Business Technology Commercialization

  16. LETTER TEMPLATE TO PROJECTS MOVING FORWARD IN 1705 PROCESS |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MOVING FORWARD IN 1705 PROCESS LETTER TEMPLATE TO PROJECTS MOVING FORWARD IN 1705 PROCESS PDF icon LPOLetter1.pdf More Documents & Publications LPO1.pdf LETTER TEMPLATE TO...

  17. Part 4

    Office of Environmental Management (EM)

    Part 2, Clauses Prescribed in DEAR Parts 952 and 970 Part 2, Clauses Prescribed in DEAR Parts 952 and 970 PDF icon M_O_ClauseMatrix.pdf More Documents & Publications Microsoft Word - Matrixpart2.doc AcqGuide70.52Matrixpart2Redo-OPAM Microsoft Word - AcqGuide70pt52Matrixpart2Redo

    4 Page 4-1 of 15 PART 4 - GEOLOGIC REPOSITORY DISPOSAL 4.1. DESIGNATED DISPOSAL UNITS This Part authorizes the management and disposal of contact-handled (CH) and remote-handled (RH) transuranic (TRU) mixed waste

  18. John Rice Irwin, part 1 | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hide Chapters Show Transcript John Rice IrwinPart 1 | Part 2 The Irwin family was moved from Norris in the 1930's to make room for TVA's Norris Dam and then from Robertsville in ...

  19. Magnetic multipole redirector of moving plasmas

    DOE Patents [OSTI]

    Crow, James T.; Mowrer, Gary R.

    1999-01-01

    A method and apparatus for redirecting moving plasma streams using a multiple array of magnetic field generators (e.g., permanent magnets or current bearing wires). Alternate rows of the array have opposite magnetic field directions. A fine wire mesh may be employed to focus as well as redirect the plasma.

  20. U.S. Natural Gas Imports by Pipeline from Canada

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline Volumes 203,066 217,493 210,632 221,550 260,708 241,205 1973-2016 Pipeline Prices 2.49 2.37 2.19 2.13 2.42 2.12 1989-2016 Liquefied Natural Gas Volumes 45 43 45 59 97 116 2013-2016 Liquefied Natural Gas Prices 8.36 8.40 8.21 8.12 8.21 8.58 2013-2016 Compressed Natural Gas Volumes 15 21 23 26 30 29 2014-2016 Compressed Natural Gas Prices 1.14 1.99 3.02 3.78 5.41 3.27 2014

  1. Nevada Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Nevada Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 656 782 801 2000's 876 863 851 1,689 2,256 2,224 2,737 2,976 3,013 2,921 2010's 2,992 4,161 6,256 4,954 4,912 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Pipeline

  2. Mathematical model of testing of pipeline integrity by thermal fields

    SciTech Connect (OSTI)

    Vaganova, Nataliia

    2014-11-18

    Thermal fields testing at the ground surface above a pipeline are considered. One method to obtain and investigate an ideal thermal field in different environments is a direct numerical simulation of heat transfer processes taking into account the most important physical factors. In the paper a mathematical model of heat propagation from an underground source is described with accounting of physical factors such as filtration of water in soil and solar radiation. Thermal processes are considered in 3D origin where the heat source is a pipeline with constant temperature and non-uniform isolated shell (with 'damages'). This problem leads to solution of heat diffusivity equation with nonlinear boundary conditions. Approaches to analysis of thermal fields are considered to detect damages.

  3. Factors affecting ductile fracture in offshore gas pipelines

    SciTech Connect (OSTI)

    Maxey, W.A.

    1982-01-01

    The results are presented of experimental research conducted during the past 3 year with the objective of understanding ductile fracture propagation in the offshore environment. Experiments have been conducted to examine decompression phenomenon inside the carrier pipe when the exhausting gas is in a simulated deep-water environment. Ductile fracture experiments of 12-inch pipe in a simulated deep offshore environment also have been examined. The most current research is designed to examine the pressure waves in the water surrounding the pipeline that are caused by the sudden release of gas from a rupture and the resulting lower differential pressure across the pipe wall thickness. The research to date suggests that long running ductile fracture propagation in an offshore pipline is less probable than in an onshore pipeline. Future research is planned with a full-scale experiment in a water-filled quarry and in the real offshore environment.

  4. Method and device for detecting leaks from pipelines

    SciTech Connect (OSTI)

    Murphy, R.J.

    1983-05-31

    To detect leaks from pipelines carrying fluids, especially oil, light is transmitted through a fibre-optic held in proximity with the pipeline. The fibre-optic is surrounded by a medium of which the refractive index is altered by the influence of the leaked fluid. In a preferred embodiment the medium is a silicone rubber (4) of which the refractive index is normally lower than that of a quartz fibre optic (3), but of which the index increases to that of the quartz or above when oil (7) soaks into it through a permeable cladding (1) and elastomeric protective layer (2), thus rendering the fibre optic non-internally-reflective so that light (6) is absorbed. Control means linked to a light receiver detect that change and the position of the leak is located to within the length of the optic. In another embodiment the medium is a liquid which is expelled from around the optic by the action of leaked fluid.

  5. Sumas, WA Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    332,358 313,922 312,236 333,050 359,343 429,642 1996-2015 Pipeline Prices 4.22 3.96 2.72 3.62 4.32 2.36 1996-2015 Liquefied Natural Gas Volumes 0 5 11 2013-2015 Liquefied Natural Gas Prices -- 8.42 6.22 2013

  6. FEASIBILITY STUDY OF PRESSURE PULSING PIPELINE UNPLUGGING TECHNOLOGIES FOR HANFORD

    SciTech Connect (OSTI)

    Servin, M. A.; Garfield, J. S.; Golcar, G. R.

    2012-12-20

    The ability to unplug key waste transfer routes is generally essential for successful tank farms operations. All transfer lines run the risk of plugging but the cross site transfer line poses increased risk due to its longer length. The loss of a transfer route needed to support the waste feed delivery mission impacts the cost and schedule of the Hanford clean up mission. This report addresses the engineering feasibility for two pressure pulse technologies, which are similar in concept, for pipeline unplugging.

  7. QER- Comment of Plains All American Pipeline, L.P.

    Broader source: Energy.gov [DOE]

    To: Members of the Quadrennial Energy Review Task Force Secretariat and Energy Policy and Systems Analysis Staff, U.S. Department of Energy Enclosed please find comments submitted on behalf of Plains All American Pipeline, L.P. for the record of the QER’s August 21, 2014 Infrastructure Siting and Permitting Meeting in Cheyenne, WY. Feel free to contact me if you need anything further regarding this communication.

  8. EIA - Natural Gas Pipeline Network - Major Natural Gas Transportation

    U.S. Energy Information Administration (EIA) Indexed Site

    Corridors Natural Gas Transportation Corridors About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Major Natural Gas Transportation Corridors Corridors from the Southwest | From Canada | From Rocky Mountain Area | Details about Transportation Corridors The national natural gas delivery network is intricate and expansive, but most of the major transportation routes can be broadly categorized into 11 distinct corridors or flow

  9. EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    Facilities Map LNG Peak Shaving and Import Facilities Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. LNG Peaking Shaving and Import Facilities, 2008 U.S. LNG Peak Shaving and Import Facilities, 2008 The EIA has determined that the informational map displays here do not raise security concerns, based on the application of the Federal Geographic Data Committee's Guidelines for Providing Appropriate Access to Geospatial

  10. EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    Facilities Map U.S. Underground Natural Gas Storage Facilities Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Underground Natural Gas Storage Facilities, Close of 2007 more recent map U.S. Underground Natural Gas Storage Facilities, 2008 The EIA has determined that the informational map displays here do not raise security concerns, based on the application of the Federal Geographic Data Committee's Guidelines for

  11. Magnetic levitation system for moving objects

    DOE Patents [OSTI]

    Post, Richard F.

    1998-01-01

    Repelling magnetic forces are produced by the interaction of a flux-concentrated magnetic field (produced by permanent magnets or electromagnets) with an inductively loaded closed electric circuit. When one such element moves with respect to the other, a current is induced in the circuit. This current then interacts back on the field to produce a repelling force. These repelling magnetic forces are applied to magnetically levitate a moving object such as a train car. The power required to levitate a train of such cars is drawn from the motional energy of the train itself, and typically represents only a percent or two of the several megawatts of power required to overcome aerodynamic drag at high speeds.

  12. Magnetic levitation system for moving objects

    DOE Patents [OSTI]

    Post, R.F.

    1998-03-03

    Repelling magnetic forces are produced by the interaction of a flux-concentrated magnetic field (produced by permanent magnets or electromagnets) with an inductively loaded closed electric circuit. When one such element moves with respect to the other, a current is induced in the circuit. This current then interacts back on the field to produce a repelling force. These repelling magnetic forces are applied to magnetically levitate a moving object such as a train car. The power required to levitate a train of such cars is drawn from the motional energy of the train itself, and typically represents only a percent or two of the several megawatts of power required to overcome aerodynamic drag at high speeds. 7 figs.

  13. Part II

    Office of Environmental Management (EM)

    I, DAA Overview ; AODR Role-Based Training Part I, DAA Overview ; AODR Role-Based Training AODR Role-Based Training PDF icon Part I, DAA Overview ; AODR Role-Based Training More Documents & Publications AO Role-Based Training Part I, DAA Overview DOE CYBER SECURITY EBK: MINIMUM CORE COMPETENCY TRAINING REQUIREMENTS Audit Report: IG-0752

    Vol. 81 Monday, No. 94 May 16, 2016 Part II Department of Defense General Services Administration National Aeronautics and Space Administration 48 CFR

  14. Permafrost problems as they affect gas pipelines (the frost heave problem)

    SciTech Connect (OSTI)

    Lipsett, G.B.

    1980-01-01

    The major problems associated with the construction of a large diameter gas pipeline in a permafrost region are outlined in this presentation. Data pertains to the design and construction of the Alaska Highway Gas Pipeline Project. One of the main problems is maintaining the permafrost in its frozen state. Large diameter pipelines operating at high capacity are heat generators. Therefore, it is necessary to refrigerate the gas to ensure that it remains below 0/sup 0/C at all points in the pipeline system. The pipeline also passes through unfrozen ground where the potential for frost heave exists. The conditions under which frost heave occurs are listed. The extent and location of potential frost heave problem areas must be determined and a frost heave prediction method must be established before construction begins. Another task involves development of design criteria for the pipeline/soil interaction analysis. Remedial methods for use during the operational phase are also discussed. (DMC)

  15. Engineering High Performance Service-Oriented Pipeline Applications with MeDICi

    SciTech Connect (OSTI)

    Gorton, Ian; Wynne, Adam S.; Liu, Yan

    2011-01-07

    The pipeline software architecture pattern is commonly used in many application domains to structure a software system. A pipeline comprises a sequence of processing steps that progressively transform data to some desired outputs. As pipeline-based systems are required to handle increasingly large volumes of data and provide high throughput services, simple scripting-based technologies that have traditionally been used for constructing pipelines do not scale. In this paper we describe the MeDICI Integration Framework (MIF), which is specifically designed for building flexible, efficient and scalable pipelines that exploit distributed services as elements of the pipeline. We explain the core runtime and development infrastructures that MIF provides, and demonstrate how MIF has been used in two complex applications to improve performance and modifiability.

  16. New perspectives on the damage estimation for buried pipeline systems due to seismic wave propagation

    SciTech Connect (OSTI)

    Pineda Porras, Omar Andrey

    2009-01-01

    Over the past three decades, seismic fragility fonnulations for buried pipeline systems have been developed following two tendencies: the use of earthquake damage scenarios from several pipeline systems to create general pipeline fragility functions; and, the use of damage scenarios from one pipeline system to create specific-system fragility functions. In this paper, the advantages and disadvantages of both tendencies are analyzed and discussed; in addition, a summary of what can be considered the new challenges for developing better pipeline seismic fragility formulations is discussed. The most important conclusion of this paper states that more efforts are needed to improve the estimation of transient ground strain -the main cause of pipeline damage due to seismic wave propagation; with relevant advances in that research field, new and better fragility formulations could be developed.

  17. Seismic damage estimation for buried pipelines - challenges after three decades of progress

    SciTech Connect (OSTI)

    Pineda-porras, Omar Andrey; Najafi, Mohammand

    2009-01-01

    This paper analyzes the evolution over the past three decades of seismic damage estimation for buried pipelines and identifies some challenges for future research studies on the subject. The first section of this paper presents a chronological description of the evolution since the mid-1970s of pipeline fragility relations - the most common tool for pipeline damage estimation - and follows with a careful analysis of the use of several ground motion parameters as pipeline damage indicators. In the second section of the paper, four gaps on the subject are identified and proposed as challenges for future research studies. The main conclusion of this work is that enhanced fragility relations must be developed for improving pipeline damage estimation, which must consider relevant parameters that could influence the seismic response of pipelines.

  18. MicroBooNE Detector Move

    ScienceCinema (OSTI)

    Flemming, Bonnie; Rameika, Gina

    2014-07-15

    On Monday, June 23, 2014 the MicroBooNE detector -- a 30-ton vessel that will be used to study ghostly particles called neutrinos -- was transported three miles across the Fermilab site and gently lowered into the laboratory's Liquid-Argon Test Facility. This video documents that move, some taken with time-lapse camerad, and shows the process of getting the MicroBooNE detector to its new home.

  19. High-Speed Biomass Recalcitrance Pipeline Speeds Up Bio-Mass Analysis -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal High-Speed Biomass Recalcitrance Pipeline Speeds Up Bio-Mass Analysis Robotic pipeline allows for rapid analysis of optimal substrate/enzyme combination for efficient bio-fuel production. National Renewable Energy Laboratory Ames Laboratory Contact NREL About This Technology Technology Marketing SummaryPipeline analysis speeds up the process for the selection of plant species with the lowest natural recalcitrance (resistance to sugar conversion) as well as the

  20. DOE Hydrogen Pipeline R&D Project Review Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pipeline R&D Project Review Meeting DOE Hydrogen Pipeline R&D Project Review Meeting On January 5th and 6th, 2005, the FreedomCAR and Fuels Partnership Hydrogen Delivery Tech Team hosted a project review meeting at Oak Ridge National Laboratory in Oak Ridge, Tennessee. The invitees included industry, university and national laboratory representatives involved in DOE-funded research related to hydrogen distribution via pipelines. Representatives also attended from the NATURALHY project to

  1. Additions to Capacity on the U.S. Natural Gas Pipeline Network: 2007

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information Administration, Office of Oil and Gas, July 2008 1 U.S. natural gas pipeline construction activity accelerated in 2007 with capacity additions to the grid totaling nearly 14.9 billion cubic feet (Bcf) of daily deliverability (Figure 1). These additions were the largest of any year in the Energy Information Administration's (EIA) 10-year database of pipeline construction activity. The increased level of natural gas pipeline construction activity in 2007 conformed to a growth

  2. Webinar January 12: Assessing Steel Pipeline and Weld Susceptibility to Hydrogen Embrittlement

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Assessing Steel Pipeline and Weld Susceptibility to Hydrogen Embrittlement” on Tuesday, January 12, from 12 to 1 p.m. EST. This webinar will discuss the breadth of testing performed at Sandia National Laboratories focused on the effects of hydrogen gas on steel pipelines and welds, and demonstrate how measured fatigue crack growth laws can be applied to calculate minimum wall thickness needed for steel hydrogen pipelines.

  3. Use of Technical Standards in Regulation of Oil and Gas Pipelines

    Office of Environmental Management (EM)

    ... RCRMS assists in complying with the Pipeline and Hazardous Materials Safety ... the implementation of the hazmat safety permit program. * Strengthening Enforcement - - ...

  4. Bibliography on northern pipelines in the former Soviet Union. Special report

    SciTech Connect (OSTI)

    Smallidge, E.R.

    1997-08-01

    In 1993 a pilot project between the Defense Technical Information Center and the U.S. Army Cold Regions Research and Engineering Laboratory resulted in a proposal to conduct a state-of-the-art review of technology and techniques for building, operating, and maintaining arctic natural gas and liquid petroleum pipelines in the former Soviet Union. The objectives of the pipeline review were to (1) Review the design, construction, operation, and maintenance procedures of oil and gas pipelines in the permafrost areas of eastern and western Siberia. (2) Assemble data on the evolution of Siberian pipelines, reflecting changes in size, modes of construction, and age. (3) Assemble data on maintenance procedures and practices, including inspection techniques with respect to corrosion, pipe wrinkling, and metal fatigue. (4) Assemble data on pipeline failures and attempt to predict life expectancy of different pipelines under the harsh arctic environment. (5) Evaluate the environmental impact of different pipeline construction techniques and relate it to ruptures and breaks. In conjunction with the study objectives, a literature search was conducted on northern pipelines in the former Soviet Union. References were compiled on dates of construction, location, route conditions, design, construction, maintenance, environmental impact, accidents, production management, and other pertinent facts. In the resulting bibliography, references are separated into three categories: Oil and Gas Pipelines, Construction, and Accidents. There is some repetition of references between the categories because some are relevant to more than one of the subject categories.

  5. Expansion and Change on the U.S. Natural Gas Pipeline Network 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    Expansion and Change on the U.S. Natural Gas Pipeline Network 2002 EIA Home > Natural Gas > Natural Gas Analysis Publications Expansion and Change on the U.S. Natural Gas Pipeline Network 2002 Printer-Friendly Version Expansion and Change on the U.S. Natural Gas Pipeline Network - 2002 Text Box: This special report looks at the level of new capacity added to the national natural gas pipeline network in 2002 and the current capability of that network to transport supplies from production

  6. Microsoft Word - 2012-01-27 JAD Natural Gas Pipeline.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gas pipeline extension to support facilities at its Hanford Site. JAD Environmental is a joint venture of three environmental consulting firms - Jason Associates Corporation...

  7. Automation and optimization of the design parameters in tactical military pipeline systems. Master's thesis

    SciTech Connect (OSTI)

    Frick, R.M.

    1988-12-01

    Tactical military petroleum pipeline systems will play a vital role in any future conflict due to an increased consumption of petroleum products by our combined Armed Forces. The tactical pipeline must be rapidly constructed and highly mobile to keep pace with the constantly changing battle zone. Currently, the design of these pipeline system is time consuming and inefficient, which may cause shortages of fuel and pipeline components at the front lines. Therefore, a need for a computer program that will both automate and optimize the pipeline design process is quite apparent. These design needs are satisfied by developing a software package using Advance Basic (IBM DOS) programming language and made to run on an IBM-compatible personal computer. The program affords the user the options of either finding the optimum pump station locations for a proposed pipeline or calculating the maximum operating pressures for an existing pipeline. By automating the design procedure, a field engineer can vary the pipeline length, diameter, roughness, viscosity, gravity, flow rate, pump station pressure, or terrain profile and see how it affects the other parameters in just a few seconds. The design process was optimized by implementing a weighting scheme based on the volume percent of each fuel in the pipeline at any given time.

  8. EIS-0433-S1: Keystone XL Pipeline SEIS (Montana, South Dakota...

    Broader source: Energy.gov (indexed) [DOE]

    of a revised proposal for the Keystone XL pipeline and related facilities. The proposed facilities would transport crude oil from the Western Canadian Sedimentary Basin and the...

  9. Part 1

    Office of Environmental Management (EM)

    1 Page 1-1 of 20 PART 1 - GENERAL PERMIT CONDITIONS 1.1. AUTHORITY This Permit is issued pursuant to the authority of the Secretary of the New Mexico Environment Department (Secretary) under the New Mexico Hazardous Waste Act (HWA), NMSA 1978, §§74- 4-1 through 74-4-14, in accordance with the New Mexico Hazardous Waste Management Regulations (HWMR), 20.4.1 NMAC. Pursuant to the Resource Conservation and Recovery Act (RCRA), 42 U.S.C. §§6901 to 6992k, and 40 CFR Part 271 and Part 272

  10. Part 5

    Office of Environmental Management (EM)

    May 8, 2012 PERMIT PART 5 Page 5-1 of 11 PART 5 - GROUNDWATER DETECTION MONITORING 5.1. DETECTION MONITORING PROGRAM This Part specifies the requirements of the Detection Monitoring Program (DMP). The DMP shall establish background groundwater quality and monitor indicator parameters and waste constituents that provide a reliable indication of the presence of hazardous constituents in the groundwater, as required by 20.4.1.500 NMAC (incorporating 40 CFR §§264.97 and 264.98). The DMP consists

  11. Danish sour-gas pipeline has subsea safety system

    SciTech Connect (OSTI)

    Thygesen, J.E. )

    1990-06-04

    Dansk Olie og Gasproduktion A/S has gained valuable experience installing a subsea safety system on a 30-in., 215-km (134-mile) subsea sour-gas pipeline. The system is designed to reduce the risk of explosion or suffocation of personnel aboard a nearby platform. It consists of a subsea check valve and a fullbore ball valve. Experience from operation of the system has been gained in pigging through the check valve, scour around the installation, repairs, and function tests. This is the basis for recommendations for operators intending to install subsea safety systems of the same or similar type.

  12. District of Columbia Natural Gas Pipeline and Distribution Use (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) (Million Cubic Feet) District of Columbia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 246 256 244 2000's 243 236 242 470 466 487 464 238 203 177 2010's 213 1,703 1,068 1,434 1,305 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  13. International Falls, MN Natural Gas Pipeline Imports From Canada (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Dollars per Thousand Cubic Feet) International Falls, MN Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.71 2.03 2.00 2.33 2000's 2.77 4.85 3.01 -- -- 11.20 -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S.

  14. International Falls, MN Natural Gas Pipeline Imports From Canada (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Million Cubic Feet) International Falls, MN Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6,373 6,544 6,103 4,857 2000's 3,022 617 602 0 0 22 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S.

  15. APPE forms task force to look at pipelines

    SciTech Connect (OSTI)

    1994-06-29

    The Association of Petrochemicals Producers in Europe (APPE; Brussels) is embarking on an initiative to help with restructuring. Speaking at the recent meeting of the European Chemical Industry Council in Cernobbio, Italy, Jukka Viinanen, president of APPE, said that although the initial ethylene restructuring plan collapsed, {open_quotes}it was not a complete failure.{close_quotes} The association Viinanen says, is continuing to find ways and means to improve the situation. {open_quotes}One of the things that APPE is now doing is to study carefully the [ethylene] pipeline system.{close_quotes}

  16. Garden Banks 388 pipeline jumper testing and installation

    SciTech Connect (OSTI)

    Hale, J.R.; Davis, S.W.; Prescott, C.N.

    1995-12-31

    This paper describes practical aspects of the diverless jumper connection system used to connect Enserch`s two 12-inch pipelines to the subsea template in 2,110 feet water depth. The paper is a follow-on paper to OTC 7543 which describes engineering aspects of the same jumper system. Project costs, schedule, and details of the jumper testing and installation are discussed. Testing was performed to verify jumper design and installation operations. Offshore installation used two measurement methods for verification of jumper geometry.

  17. Conductive polymeric cable anodes for pipelines with deteriorating coatings

    SciTech Connect (OSTI)

    Gibson, W.F.; Pikas, J.L. )

    1993-03-01

    Deteriorating pipeline coating systems have been a dilemma in the industry for many years. The interaction between coatings and cathodic protection (CP) is based on the type of coating and the amount of deterioration. There are two primary strategies to approach the problem: recoat, which is very expensive and may require taking the line out of service and cause loss of revenue; or install additional conventional CP groundbed systems. This article presents a state-of-the-art groundbed system using close-coupled conductive polymeric cable anodes that eliminate the problems of conventional groundbeds.

  18. Part III

    Energy Savers [EERE]

    Liaison | Department of Energy II - Managerial Competencies: Organizational Representation and Liaison Part II - Managerial Competencies: Organizational Representation and Liaison Form for the SES program emphasizes the range of communications and public relations aspects of executive positions as found in official correspondence and documentation, as well as, formal and informal verbal communications, and it describes the major competencies within this activity PDF icon Part II - Managerial

  19. Design Optimization of Innovative High-Level Waste Pipeline Unplugging Technologies - 13341

    SciTech Connect (OSTI)

    Pribanic, T.; Awwad, A.; Varona, J.; McDaniel, D.; Gokaltun, S.; Crespo, J.

    2013-07-01

    Florida International University (FIU) is currently working on the development and optimization of two innovative pipeline unplugging methods: the asynchronous pulsing system (APS) and the peristaltic crawler system (PCS). Experiments were conducted on the APS to determine how air in the pipeline influences the system's performance as well as determine the effectiveness of air mitigation techniques in a pipeline. The results obtained during the experimental phase of the project, including data from pipeline pressure pulse tests along with air bubble compression tests are presented. Single-cycle pulse amplification caused by a fast-acting cylinder piston pump in 21.8, 30.5, and 43.6 m pipelines were evaluated. Experiments were conducted on fully flooded pipelines as well as pipelines that contained various amounts of air to evaluate the system's performance when air is present in the pipeline. Also presented are details of the improvements implemented to the third generation crawler system (PCS). The improvements include the redesign of the rims of the unit to accommodate a camera system that provides visual feedback of the conditions inside the pipeline. Visual feedback allows the crawler to be used as a pipeline unplugging and inspection tool. Tests conducted previously demonstrated a significant reduction of the crawler speed with increasing length of tether. Current improvements include the positioning of a pneumatic valve manifold system that is located in close proximity to the crawler, rendering tether length independent of crawler speed. Additional improvements to increase the crawler's speed were also investigated and presented. Descriptions of the test beds, which were designed to emulate possible scenarios present on the Department of Energy (DOE) pipelines, are presented. Finally, conclusions and recommendations for the systems are provided. (authors)

  20. Moving Energy (Program Document) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Moving Energy Citation Details In-Document Search Title: Moving Energy You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product ...

  1. Moving Forward in Protecting the Nation's Electric Grid | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moving Forward in Protecting the Nation's Electric Grid Moving Forward in Protecting the Nation's Electric Grid January 16, 2015 - 2:10pm Addthis Patricia A. Hoffman Patricia A....

  2. Moving Forward to Address Nuclear Waste Storage and Disposal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moving Forward to Address Nuclear Waste Storage and Disposal Moving Forward to Address Nuclear Waste Storage and Disposal March 24, 2015 - 2:15pm Addthis Three trucks transport ...

  3. Help:Moving a page | Open Energy Information

    Open Energy Info (EERE)

    (renaming) a page means giving it another name. This is done by using "Move" tab at the top. Then simply enter the new name and click "Move page". Normally you would want to leave...

  4. FLUID TRANSIENTS IN A PIPELINE WITH ONE END OPEN

    SciTech Connect (OSTI)

    Leishear, R

    2008-06-09

    Water hammer during multi-phase flow is rather complex, but in some cases an upper limit to the pressure surge magnitude during water hammer can be estimated. In the case considered here, a two mile long pipeline with a single high point was permitted to partially drain. Due to gravitational effects, air bubbles up through the pipe line to its highest point, but the time required for air to reach the top of the pipe is rather long. Consequently, some transients caused by valve operations are affected by air entrapment and some are not. The intent of this research was to investigate the complex interactions between air, water vapor, and liquid during water hammer in a long pipe with one end of the pipe open to atmospheric conditions. To understand the system dynamics, experimental data was obtained from a long pipeline with an open end and also from a short, transparent tube. Transient calculations were performed for valve closures and pump operations as applicable. The limitations of available calculation techniques were considered in detail.

  5. Illinois Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Illinois Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.21 0.20 0.20 1970's 0.21 0.22 0.23 0.27 0.29 0.54 0.58 0.83 0.98 1.11 1980's 1.78 2.12 2.56 3.07 2.88 2.97 2.73 2.68 2.53 2.17 1990's 2.06 2.29 2.44 1.97 1.88 1.66 2.63 2.68 2.27 2.48 2000's 3.12 3.94 NA -- -- -- - = No Data

  6. Pipeline coating impedance effects on powerline fault current coupling

    SciTech Connect (OSTI)

    Dabkowski, J.

    1989-12-01

    Prior research leading to the development of predictive electromagnetic coupling computer codes has shown that the coating conductance is the principal factor in determining the response of a pipeline to magnetic induction from an overhead power transmission line. Under power line fault conditions, a high voltage may stress the coating causing a significant change in its conductance, and hence, the coupling response. Based upon laboratory experimentation and analysis, a model has been developed which allows prediction of the modified coating characteristics when subjected to high voltage during fault situations. Another program objective was the investigation of a method to determine the high voltage behavior of an existing coating from low voltage in situ field measurements. Such a method appeared conceptually feasible for non-porous coatings whose conductance is primarily a result of current leakage through existing holidays. However, limited testing has shown that difficulties in determining the steel-electrolyte capacitance limit the application of the method Methods for field measurement of the pipeline coating conductance were also studied for both dc ad ac signal excitation. Ac techniques offer the advantage that cathodic protection current interruption is not required, thus eliminating depolarization effects. However, ac field measurement techniques need additional refinement before these methods can be generally applied. 53 figs.

  7. Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States- November 2013

    Broader source: Energy.gov [DOE]

    In 2013, OE conducted an assessment to determine how changes to the Northeast gass market may have affected the ability of the interstate pipeline system to meet natural gas demand for “essential human needs” in the event of a disruption in pipeline capacity.

  8. McAllen, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 12,535 2,520 0 0 0 0 1998-2014 Pipeline Prices 3.89 4.20 -- -- -- -- 1998-2014

  9. 1982 worldwide pipeline construction will top 21,900 miles, $9. 5 billion

    SciTech Connect (OSTI)

    Hall, D.

    1982-07-01

    Reports that pipeline construction slowed slightly in 1982 because of lowered economic activity worldwide, with an upturn forecast for 1983. Explains that need for new pipelines to transport increasing amounts of oil and gas energy now being discovered, plus use of pipelines to transport other commodities in increasing amounts, has created a backlog of demand for facilities. Indicates that commodities suited for pipeline transport and getting consideration include crude oil; refined products; natural gas liquids; LPG; coal slurries; carbon dioxide (used for enhanced oil recovery); chemicals such as ammonia, ethane, ethylene, and similar petrochemical feedstocks; industrial gases such as oxygen, nitrogen; and solids slurries such as ores, wood chips, and other non-soluble minerals, even items such as wood chips and wood pulp for paper-making. Reveals that there are 10,396 miles of coal slurry pipeline planned for the US and 500 miles in Canada. Major US projects underway in the gas pipeline field include the 797-mile, 36-in. Trailblazer system in Nebraska, Wyoming, Colorado, and Utah. Products/ LPG/NGL pipelines underway include 105 miles of dual 4 and 6-in. line in Kansas. Crude pipeline activity includes 100 miles of 12-in. in California and 80 miles of 4 thru 40-in. in Alaska on the North Slope. Updates plans in Canada, Scotland, Denmark, Ireland, France, the Middle East, Australia, Southeast Asia, Mexico, South America and the USSR.

  10. Look at Western Natural Gas Infrastructure During the Recent El Paso Pipeline Disruption, A

    Reports and Publications (EIA)

    2000-01-01

    This special report looks at the capabilities of the national natural gas pipeline network in 2000 and provides an assessment of the current levels of available capacity to transport supplies from production areas to markets throughout the United States during the upcoming heating season. It also examines how completion of currently planned expansion projects and proposed new pipelines would affect the network.

  11. Status of Natural Gas Pipeline System Capacity Entering the 2000-2001 Heating Season

    Reports and Publications (EIA)

    2000-01-01

    This special report looks at the capabilities of the national natural gas pipeline network in 2000 and provides an assessment of the current levels of available capacity to transport supplies from production areas to markets throughout the United States during the upcoming heating season. It also examines how completion of currently planned expansion projects and proposed new pipelines would affect the network.

  12. Nonlinear dynamic response of submarine pipelines in contact with the ocean floor

    SciTech Connect (OSTI)

    Chung, C.K.

    1986-01-01

    The nonlinear dynamic response of a submarine pipeline to wave and current excitation is investigated by the finite-element method. The pipeline, in contact with soft clay on the ocean floor, is modeled as a continuous beam. Small-deflection theory with geometric stiffening is employed. Pipeline tension, used in the geometric stiffness matrix, is calculated using pipeline stretch. The hydrodynamic forces are calculated using the modified Morison equation. The excitation involves a long-crested regular wave propagating perpendicular to the pipeline axis with or with out the current. The distributed drag and lift forces are converted into multisegment concentrated forces by means of the beam shape functions, and the inertia force is treated as a uniformly distributed force on each element. The soil-resistance forces due to lateral sliding on a plane surface are calculated using either an elasto-plastic or a hysteretic pipeline-soil interaction model. The Newmark Method is used to integrate the nonlinear equations of dynamic equilibrium using an iterative scheme within each time step. It is found from this study that the use of geometric stiffness is necessary for pipelines in a marine environment. The significant effect of geometric stiffening on pipeline responses for cases involving current is demonstrated.

  13. Science Magazine Highlight: Moving Towards Near Zero Platinum Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Science Magazine Highlight: Moving Towards Near Zero Platinum Fuel Cells Science Magazine Highlight: Moving Towards Near Zero Platinum Fuel Cells Presentation slides and speaker biography from the Fuel Cell Technologies Office webinar "Science Magazine Highlight: Moving Towards Near Zero Platinum Fuel Cells" held on April 25, 2011. PDF icon Science Magazine Highlight: Moving Towards Near Zero Platinum Fuel Cells Webinar Slides PDF icon Professional Biography

  14. PART I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modification No. 0171 Section B i PART I SECTION B SUPPLIES OR SERVICES AND PRICES/COSTS TABLE OF CONTENTS PAGE NO. B.1 - SERVICE BEING ACQUIRED B-1 B.2 - OBLIGATION OF FUNDS AND FINANCIAL LIMITATIONS B-1 B.3 - PERFORMANCE AND OTHER INCENTIVE FEES B-1 B.4 - ALLOWABILITY OF SUBCONTRACTOR FEE B-3 B.5 - PROVISIONAL PAYMENT OF PERFORMANCE FEE B-3 Contract No. DE-AC02-07CH11358 Modification No. 0171 Section B B-1 PART I SECTION B - SUPPLIES OR SERVICES AND PRICES/COSTS B.1 - SERVICE BEING ACQUIRED

  15. PART I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C PART I SECTION C DESCRIPTION/SPECS./WORK STATEMENT TABLE OF CONTENTS PAGE NO. C.1 - INTRODUCTION C-1 C.2 - IMPLEMENTATION OF DOE'S MISSION FOR AMES C-2 C.3 - PERFORMANCE EXPECTATIONS, OBJECTIVES, AND MEASURES C-3 C.4 - STATEMENT OF WORK C-8 C.5 - PLANS AND REPORTS C-17 i Contract No. DE-AC02-07CH11358 Section C PART I SECTION C - DESCRIPTION/SPECS./WORK STATEMENT C.1 - INTRODUCTION This Performance-Based Management Contract (PBMC) is for the management and operation of the AMES Laboratory

  16. PART I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D PART I SECTION D PACKAGING AND MARKING TABLE OF CONTENTS PAGE NO. D.1 - PACKAGING D-1 D.2 - MARKING D-1 i Contract No. DE-AC02-07CH11358 Section D PART I SECTION D - PACKAGING AND MARKING D.1 - PACKAGING Preservation, packaging, and packing for shipment or mailing of all work delivered hereunder shall be in accordance with good commercial practice and adequate to ensure acceptance by common carrier and safe transportation at the most economical rates. D.2 - MARKING Each package, report or

  17. PART I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    G Contract Modification No. 133 i PART I SECTION G CONTRACT ADMINISTRATION DATA TABLE OF CONTENTS PAGE NO. G.1- DOE CONTRACTING OFFICER G-1 G.2 - DOE CONTRACTING OFFICER'S REPRESENTATIVE (COR) G-1 G.3 - CONTRACT ADMINISTRATION G-1 G.4 - COST REPORTING PROCEDURES G-2 G.5 - INDIRECT CHARGES G-2 Contract No. DE-AC02-07CH11358 Section G Contract Modification No. 133 G-1 PART I SECTION G - CONTRACT ADMINISTRATION DATA G.1 - DOE CONTRACTING OFFICER For the definition of Contracting Officer see Federal

  18. PART I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B i PART I SECTION B SUPPLIES OR SERVICES AND PRICES/COSTS TABLE OF CONTENTS PAGE NO. B.1 - SERVICE BEING ACQUIRED B-1 B.2 - OBLIGATION OF FUNDS AND FINANCIAL LIMITATIONS B-1 B.3 - PERFORMANCE AND OTHER INCENTIVE FEES B-1 B.4 - ALLOWABILITY OF SUBCONTRACTOR FEE B-3 B.5 - PROVISIONAL PAYMENT OF PERFORMANCE FEE B-3 Contract No. DE-AC02-09CH11466 Section B B-1 PART I SECTION B - SUPPLIES OR SERVICES AND PRICES/COSTS B.1 - SERVICE BEING ACQUIRED The Contractor shall provide the personnel,

  19. Part 2

    Office of Environmental Management (EM)

    March 13, 2013 PERMIT PART 2 Page 2-1 of 21 PART 2 - GENERAL FACILITY CONDITIONS 2.1. DESIGN AND OPERATION OF FACILITY The Permittees shall design, construct, maintain, and operate WIPP to minimize the possibility of a fire, explosion, or any unplanned sudden or non-sudden release of transuranic (TRU) mixed waste or mixed waste constituents to air, soil, groundwater, or surface water which could threaten human health or the environment, as required by 20.4.1.500 NMAC (incorporating 40 CFR

  20. Troll Phase I pipelines: Tie-ins to the subsea tunnel

    SciTech Connect (OSTI)

    Hove, F.; Kuhlmann, H.

    1995-12-31

    Subsea approaches to the Norwegian coast are characterized by very rugged topography. Landfall of offshore pipelines therefore often require dedicated subsea tunnel and pipeline tie in concepts. To land the 36 inch and 40 inch offshore pipelines associated with the Troll Phase 1 development, a 4 km long landfall tunnel was constructed terminating at a water depth of 165 m with vertical shaft connections to the seabed. This paper describes the design of the Troll Phase 1 tie-ins of offshore to tunnel pipeline sections. These comprise two main elements, i.e. 180 Te tie-in spools -- which are installed between the offshore pipelines and the piercing shafts -- and prefabricated 450 Te riser bundles -- which are installed into the vertical tunnel piercing shafts.

  1. Development of Protective Coatings for Co-Sequestration Processes and Pipelines

    SciTech Connect (OSTI)

    Gordon Bierwagen; Yaping Huang

    2011-11-30

    The program, entitled “Development of Protective Coatings for Co-Sequestration Processes and Pipelines”, examined the sensitivity of existing coating systems to supercritical carbon dioxide (SCCO2) exposure and developed new coating system to protect pipelines from their corrosion under SCCO2 exposure. A literature review was also conducted regarding pipeline corrosion sensors to monitor pipes used in handling co-sequestration fluids. Research was to ensure safety and reliability for a pipeline involving transport of SCCO2 from the power plant to the sequestration site to mitigate the greenhouse gas effect. Results showed that one commercial coating and one designed formulation can both be supplied as potential candidates for internal pipeline coating to transport SCCO2.

  2. Magnetic flux leakage inspection of gas pipelines: Experience with a collapsible tool. Final report, July 1996

    SciTech Connect (OSTI)

    Scrivner, R.W.

    1996-07-01

    The Magnetic Flux Leakage (MFL) technique is the most commonly used method to inspect transmission pipelines for corrosion. A typical MFL tool operates in pipelines which have no restrictions. Reduced size valves, a 24 inch valve in a 30 inch pipeline, are one such restriction. A collapsible MFL tool was developed to allow pipelines with reduced size valves to be inspected without expensive valve replacement. The first use, in 1995, of a 30 inch tool succeeded in passing through the valves and inspecting the pipeline. The first use of a 36 inch tool railed due to a partially closed valve, damaging the tool. The tool was ultimately run after some repairs to the tool and most of the reduced size valves were replaced with full size valves. The results of the final run were very good. Additional use of the tools in 1996 has provided excellent results.

  3. PART I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DE-AC02-09CH11466 Section D i PART I SECTION D PACKAGING AND MARKING TABLE OF CONTENTS PAGE NO. D.1 - PACKAGING D-1 D.2 - MARKING D-1 Contract No. DE-AC02-09CH11466 Section D D-1...

  4. NERSC is moving!! And what it means for you.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is moving!! And what it means for you. NERSC is moving!! And what it means for you. August 4, 2015 by Katie Antypas NERSC Users, As a reminder, NERSC is moving this fall to a new home back on the main Berkeley Lab campus! We are incredibly excited to be moving into our beautiful new facility that can accommodate future systems and is closer to colleagues from other Berkeley Lab divisions. What the NERSC move means for users is that there will be system outages and downtimes towards the end of

  5. PART III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J TOC PART III List of Documents, Exhibits and Other Attachments Section J - List of Attachments Table of Contents Attachment No: Attachment: J.1 Appendix A - Advance Understandings on Human Resources J.2 Appendix B - Performance Evaluation and Measurement Plan J.3 Appendix C - Special Financial Institution Account Agreement J.4 Appendix D - Budget Program J.5 Appendix E - AMES Laboratory DOE (Lessee) Ingrants J.6 Appendix F - Contractor's Commitments J.7 Appendix G - Purchasing System

  6. PART III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contract No. DE-AC02-09CH11466 Section J TOC i PART III List of Documents, Exhibits and Other Attachments Section J - List of Attachments Table of Contents Attachment No: Attachment: J.1 Appendix A - Advance Understandings on Human Resources J.2 Appendix B - Performance and Evaluation Measurement Plan J.3 Appendix C - Special Financial Institution Account Agreement J.4 Appendix D - Budget Program J.5 Appendix E - PPPL DOE (Lessee) Ingrants J.6 Appendix F - Contractor Resources, Commitments and

  7. South Carolina Natural Gas Pipeline and Distribution Use (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) (Million Cubic Feet) South Carolina Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,940 3,163 3,589 2000's 3,461 2,919 3,156 2,807 2,503 2,427 2,292 2,609 2,604 2,847 2010's 3,452 3,408 3,416 2,529 2,409 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  8. Tennessee Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Tennessee Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 22,559 16,440 15,208 2000's 13,808 13,757 11,480 12,785 10,486 9,182 8,696 9,988 10,238 11,720 2010's 10,081 11,655 9,880 6,660 5,913 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring

  9. Texas Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Texas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 82,115 65,800 70,397 2000's 62,014 69,598 88,973 56,197 55,587 81,263 85,262 89,666 109,488 117,219 2010's 79,817 85,549 138,429 294,316 274,451 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  10. Utah Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Utah Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,935 2,788 2,561 2000's 2,674 4,161 5,984 7,347 8,278 8,859 11,156 11,970 11,532 10,239 2010's 10,347 11,374 12,902 13,441 14,061 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  11. Vermont Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Vermont Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5.25 4.00 4.17 4.00 2.80 2.64 1990's 2.85 2.86 2.96 2.89 2.89 1.05 1.09 1.09 1.40 1.86 2000's 4.39 5.09 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  12. Virginia Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Virginia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7,387 6,856 8,005 2000's 7,975 7,542 7,851 6,854 5,452 4,954 5,412 6,905 8,461 8,829 2010's 10,091 13,957 9,443 8,475 7,424 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  13. Washington Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Washington Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 8,836 9,087 7,645 2000's 6,036 9,053 6,356 6,527 8,822 8,174 6,554 7,402 6,605 7,497 2010's 7,587 6,644 9,184 10,144 8,933 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  14. West Virginia Natural Gas Pipeline and Distribution Use (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) (Million Cubic Feet) West Virginia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 32,318 30,868 29,829 2000's 32,572 30,254 33,731 18,177 18,742 19,690 18,923 20,864 18,289 22,131 2010's 21,589 21,447 31,913 29,578 29,160 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  15. Wisconsin Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Wisconsin Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,544 4,284 4,151 2000's 4,058 2,869 3,812 3,526 3,302 3,700 3,109 2,851 2,654 1,648 2010's 2,973 2,606 1,780 2,803 3,629 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  16. Whitlash, MT Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's -23,206 -28,616 82,844 18,423 -49,929 20,650 2000's 87,535 -108,544 6,061 16,905 -33,411 -6,052 -9,935 -2,132 -3,731 -65,419 2010's -19,131 -8,535 -74,234 119,255 -40,011

    7,707 7,062 6,571 5,387 5,128 4,651 1996-2015 Pipeline Prices 3.88 3.65 2.35 3.07 4.04 2.13

  17. Arizona Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Arizona Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 18,597 19,585 18,570 2000's 20,657 22,158 20,183 18,183 15,850 17,558 20,617 20,397 22,207 20,846 2010's 15,447 13,158 12,372 12,619 13,484 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  18. Arkansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Arkansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 11,591 10,192 8,979 2000's 8,749 8,676 7,854 8,369 7,791 8,943 10,630 10,235 9,927 9,125 2010's 9,544 11,286 10,606 11,437 11,580 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring

  19. California Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) California Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 22,493 8,587 9,341 2000's 9,698 10,913 9,610 8,670 12,969 10,775 7,023 8,994 7,744 6,386 2010's 9,741 10,276 12,906 10,471 22,897 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring

  20. Champlain, NY Natural Gas Pipeline Imports From Canada (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.29 3.40 3.53 3.68 2000's 3.86 4.03 4.17 4.34 4.53 4.81 5.04 5.23 5.63 5.21 2010's 6.02 6.11 4.50 7.22 13.60 5.57 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Price of Natural Gas Pipeline Imports by Point of Entry Champlain, NY Natural

  1. Colorado Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Colorado Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 12,371 9,240 8,380 2000's 9,282 10,187 10,912 9,647 10,213 13,305 12,945 13,850 15,906 17,065 2010's 14,095 13,952 10,797 9,107 8,451 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring

  2. Connecticut Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Connecticut Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,492 833 2,943 2000's 3,020 2,948 2,515 3,382 3,383 3,327 3,178 4,361 4,225 5,831 2010's 6,739 6,302 4,747 4,381 4,698 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  3. Delaware Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Delaware Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2.00 1.33 1980's 3.67 3.68 3.91 3.80 4.00 3.75 2.71 2.95 3.10 1990's 3.10 2.88 3.01 3.19 3.02 3.02 3.51 2.98 2.40 2.22 2000's 4.29 3.58 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  4. District of Columbia Natural Gas Pipeline and Distribution Use Price

    U.S. Energy Information Administration (EIA) Indexed Site

    (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) District of Columbia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3.94 4.73 4.37 4.16 3.61 3.02 2.94 3.03 1990's 2.99 2.78 2.95 2.58 2.13 1.97 3.02 2.97 2.52 2.39 2000's 4.63 5.36 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  5. Florida Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Florida Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5,644 3,830 6,822 2000's 7,087 6,531 11,096 9,562 10,572 9,370 11,942 10,092 9,547 10,374 2010's 22,798 13,546 16,359 12,494 3,468 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring

  6. Georgia Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Georgia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7,973 7,606 8,846 2000's 5,636 7,411 7,979 7,268 6,235 5,708 6,092 5,188 5,986 6,717 2010's 8,473 10,432 10,509 7,973 6,977 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  7. Idaho Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Idaho Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5,186 5,496 4,512 2000's 5,939 6,556 5,970 4,538 5,763 5,339 6,507 7,542 6,869 7,031 2010's 7,679 5,201 5,730 5,940 3,867 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural

  8. Indiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Indiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 10,773 7,327 7,274 2000's 5,617 6,979 5,229 6,647 6,842 6,599 6,313 7,039 7,060 6,597 2010's 8,679 10,259 7,206 7,428 7,025 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  9. Kansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Kansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 39,109 32,902 31,753 2000's 29,330 25,606 36,127 33,343 28,608 28,752 25,050 24,773 23,589 26,479 2010's 24,305 23,225 19,842 22,586 22,588 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  10. North Carolina Natural Gas Pipeline and Distribution Use (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) (Million Cubic Feet) North Carolina Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7,265 6,666 6,553 2000's 7,171 6,567 6,038 6,108 4,982 4,292 4,653 4,980 5,301 7,906 2010's 7,978 7,322 5,436 4,029 3,877 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  11. Ohio Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Ohio Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 19,453 17,641 17,441 2000's 18,490 15,502 16,215 14,872 12,757 13,356 12,233 13,740 11,219 16,575 2010's 15,816 14,258 9,559 10,035 12,661 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring

  12. Oklahoma Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Oklahoma Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 26,130 24,242 23,833 2000's 21,001 23,537 23,340 30,396 30,370 31,444 31,333 28,463 27,581 28,876 2010's 30,611 30,948 32,838 41,813 45,391 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  13. Oregon Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Oregon Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 12,481 13,345 10,242 2000's 11,775 10,990 9,117 7,098 9,707 7,264 8,238 9,532 7,354 8,073 2010's 6,394 5,044 4,554 4,098 3,686 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  14. Pennsylvania Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Pennsylvania Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 39,173 32,532 36,597 2000's 38,486 33,013 37,143 33,556 28,989 30,669 27,406 34,849 37,223 41,417 2010's 47,470 51,220 37,176 37,825 36,323 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  15. Pittsburg, NH Natural Gas Pipeline Imports From Canada (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2.61 2000's 4.07 4.01 3.37 6.08 6.44 10.88 7.26 7.52 9.72 5.04 2010's 5.48 5.45 4.08 6.63 10.55 5.18 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Price of Natural Gas Pipeline Imports by Point of Entry Pittsburg, NH Natural Gas

  16. Kentucky Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Kentucky Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 22,854 15,750 16,632 2000's 13,826 14,912 11,993 14,279 10,143 8,254 6,510 11,885 12,957 12,558 2010's 13,708 12,451 8,604 7,157 8,426 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring

  17. Louisiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Louisiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 71,523 60,400 48,214 2000's 50,647 48,257 50,711 47,019 44,963 41,812 47,979 52,244 53,412 49,937 2010's 46,892 51,897 49,235 36,737 45,762 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  18. Maryland Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Maryland Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3,124 2,968 3,207 2000's 3,239 2,765 2,511 2,743 2,483 2,173 2,346 2,339 2,454 2,521 2010's 6,332 6,065 7,397 4,125 6,327 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  19. Massachusetts Natural Gas Pipeline and Distribution Use (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) (Million Cubic Feet) Massachusetts Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,356 1,903 2,655 2000's 2,391 3,187 4,222 1,988 1,755 1,810 1,499 1,737 1,157 1,093 2010's 3,827 4,657 3,712 2,759 6,258 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  20. Michigan Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Michigan Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 23,776 20,733 22,355 2000's 26,359 22,036 26,685 27,129 27,198 27,742 25,532 25,961 23,518 23,468 2010's 24,904 23,537 20,496 18,713 19,347 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  1. Mississippi Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Mississippi Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 44,979 36,329 31,594 2000's 30,895 30,267 26,997 26,003 21,869 21,496 22,131 27,316 28,677 28,951 2010's 28,117 28,828 48,497 23,667 19,787 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  2. Missouri Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Missouri Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7,456 5,495 6,744 2000's 7,558 1,918 2,555 3,003 3,237 2,556 2,407 2,711 7,211 3,892 2010's 5,820 7,049 4,973 5,626 6,184 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  3. Montana Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Montana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3,436 3,746 5,968 2000's 7,652 7,483 7,719 8,344 8,224 7,956 7,592 7,810 7,328 5,047 2010's 7,442 6,888 6,979 6,769 4,126 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural

  4. Nebraska Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Nebraska Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,084 2,853 2,922 2000's 3,140 3,021 2,611 5,316 3,983 4,432 4,507 5,373 9,924 6,954 2010's 7,329 9,270 7,602 6,949 7,066 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  5. Nevada Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Nevada Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.46 1980's 3.26 3.73 4.32 4.53 4.35 3.88 3.20 2.16 2.14 2.14 1990's 1.70 1.74 1.77 1.79 1.87 1.79 1.35 2.09 1.98 2.22 2000's 3.65 3.66 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  6. Highgate Springs, VT Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Dollars per Thousand Cubic Feet) Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.26 2.31 2.03 2.09 2000's 5.85 4.61 2.26 -- -- 8.10 5.53 6.23 5.55 4.40 2010's 4.21 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  7. Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 20,689 19,948 22,109 2000's 22,626 19,978 21,760 18,917 15,911 14,982 14,879 15,690 16,413 18,849 2010's 22,124 23,091 25,349 22,166 18,688 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  8. Alaska Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Alaska Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,938 5,564 7,250 2000's 7,365 5,070 4,363 4,064 3,798 2,617 2,825 2,115 2,047 2,318 2010's 3,284 3,409 3,974 544 309 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas

  9. Alaska Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Alaska Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0.26 0.27 0.28 0.28 0.30 0.35 0.57 0.58 0.50 0.14 1980's 0.73 1.13 0.60 0.86 0.61 0.63 0.61 0.65 1.01 1.13 1990's 1.08 1.32 1.12 1.11 1.11 1.24 1.17 1.34 1.23 0.82 2000's 1.34 1.84 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  10. Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 10,461 11,535 13,736 2000's 14,092 13,161 13,103 14,312 12,545 14,143 13,847 14,633 17,090 19,446 2010's 20,807 17,898 16,660 15,283 14,990 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  11. Remote laser detection of natural gas leakages from pipelines

    SciTech Connect (OSTI)

    Petukhov, V O; Gorobets, V A; Andreev, Yu M; Lanskii, G V

    2010-02-28

    A differential absorption lidar based on a tunable TEA CO{sub 2} laser emitting at 42 lines of the 'hot' 01{sup 1}1 - 11{sup 1}0 band in the range from 10.9 to 11.4 {mu}m is developed for detecting natural gas leakages from oil pipelines by measuring the ethane content in the atmosphere. The ethane detection sensitivity is 0.9 ppm km. The presence of methane does not distort the measurement results. The developed lidar can detect the natural gas leakage from kilometre heights at the flying velocities up to 200 km h{sup -1} and a probe pulse repetition rate of 5 Hz. (laser applications and other topics in quantum electronics)

  12. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation

    SciTech Connect (OSTI)

    Sofronis, Petros; Robertson, Ian M

    2013-08-01

    Fundamental studies of hydrogen embrittlement of materials using both experimental observations and numerical simulations of the hydrogen/deformation interactions have been conducted. Our approach integrates mechanical property testing at the macro-scale, microstructural analyses and TEM observations of the deformation processes at the micro- and nano-scale, first-principles calculations of interfacial cohesion at the atomic scale, and finite element simulation and modeling at the micro- and macro-level. Focused Ion Beam machining in conjunction with Transmission Electron Microscopy were used to identify the salient micro-mechanisms of failure in the presence of hydrogen. Our analysis of low strength ferritic steels led to the discovery that “quasi-cleavage” is a dislocation plasticity controlled failure mode in agreement with the hydrogen enhanced plasticity mechanism. The microstructure underneath the fracture surface of 304 and 316 stainless steels was found to be significantly more complex than would have been predicted by the traditional models of fatigue. The general refinement of the microstructure that occurred near the fracture surface in the presence of hydrogen was such that one may argue that hydrogen stabilizes microstructural configurations to an extent not achievable in its absence. Finite element studies of hydrogen and deformation field similitude for cracks in real-life pipelines and laboratory fracture specimens yielded that the Single Edge Notch Tension specimen can be used to reliably study hydrogen material compatibility for pipeline structures. In addition, simulation of onset of crack propagation in low strength ferritic systems by void growth indicated that hydrogen can reduce the fracture toughness of the material by as much as 30%. Both experimental observations and numerical studies of hydrogen transport on hydrogen accumulations ahead of a crack tip yielded that dislocation transport can markedly enhance hydrogen populations which in turn can trigger fracture initiation.

  13. REMOTE FIELD EDDY CURRENT INSPECTION OF UNPIGGABLE PIPELINES

    SciTech Connect (OSTI)

    Albert Teitsma

    2004-03-01

    The Remote Field Eddy Current (RFEC) technique is ideal for inspecting unpiggable pipelines because all its components can be made much smaller than the diameter of the pipe to be inspected. We reviewed the technique, and used demonstrations from prior work by others in presentations on the technique and how we plan to develop it. Coils were wound; a jig for pulling the coils through the pipe was manufactured; defects were machined in one six-inch diameter, ten-foot long pipe; and the equipment was assembled. After completing first crude pullout test to show that RFEC inspection would work, we repeated the experiment with a proper jig and got excellent results. The test showed the expected behavior, with the direct field dominating the signal to about two pipe diameters from the drive coil, and the remote field dominating for greater separations between the drive coil and the sensing coils. Response of RFEC to a typical defect was measured, as was the sensitivity to defect size. Before manufacturing defects in the pipe, we measured the effect of defect separation and concluded that defects separated by 18 inches or 1/3rd of the pipe diameter did not interfere with each other. We manufactured a set of 13 defects, and measured the RFEC signals. We found a background variation that was eventually attributed to permeability variations in the seamless pipe. We scanned all thirteen defects and got satisfactory results. The two smallest defects did not show a signal, but these were much too small to be reported in a pipeline inspection. We acquired a ten-foot seam welded pipe that has much less background variation. We are measuring the sensitivity of RFEC signals to mechanical variations between the exciter and sensing coils.

  14. CIRCULATING MOVING BED COMBUSTION PROOF OF CONCEPT

    SciTech Connect (OSTI)

    Jukkola, Glen

    2010-06-30

    Circulating Moving Bed (CMB) combustion technology has its roots in traditional circulating fluidized bed technology and involves a novel method of solid fuel combustion and heat transfer. CMB technology represents a step change in improved performance and cost relative to conventional PC and FBC boilers. The CMB heat exchanger preheats the energy cycle working fluid, steam or air, to the high temperature levels required in systems for advanced power generation. Unique features of the CMB are the reduction of the heat transfer surfaces by about 60% as a result of the enhanced heat transfer rates, flexibility of operation, and about 30% lower cost over existing technology. The CMB Phase I project ran from July 2001 through March 2003. Its objective was to continue development of the CMB technology with a series of proof of concept tests. The tests were conducted at a scale that provided design data for scale up to a demonstration plant. These objectives were met by conducting a series of experiments in ALSTOM Power’s Multi-use Test Facility (MTF). The MTF was modified to operate under CMB conditions of commercial interest. The objective of the tests were to evaluate gas-to-solids heat transfer in the upper furnace, assess agglomeration in the high temperature CMB bubbling bed, and evaluate solids-to-tube heat transfer in the moving bed heat exchanger. The Phase I program results showed that there are still some significant technical uncertainties that needed to be resolved before the technology can be confidently scaled up for a successful demonstration plant design. Work remained in three primary areas: • scale up of gas to solid heat transfer • high temperature finned surface design • the overall requirements of mechanical and process design. The CMB Phase II workscope built upon the results of Phase I and specifically addressed the remaining technical uncertainties. It included a scaled MTF heat transfer test to provide the necessary data to scale up gas-to-solids heat transfer. A stress test rig was built and tested to provide validation data for a stress model needed to support high temperature finned surface design. Additional cold flow model tests and MTF tests were conducted to address mechanical and process design issues. This information was then used to design and cost a commercial CMB design concept. Finally, the MBHE was reconfigured into a slice arrangement and tested for an extended duration at a commercial CFB plant.

  15. Liuhua 11-1 development -- New pipeline technologies for diverless connections

    SciTech Connect (OSTI)

    Bludworth, C.K.; Ming, C.; Paull, B.M.; Gates, S.; Manuel, W.S.; Hervey, D.G.

    1996-12-31

    This paper provides an overview of the Liuhua infield production and test pipelines, focuses on new technologies used to tie the pipelines into a subsea manifold, and reviews the basis for selection of flexible pipe in reference to steel pipelines. The infield pipelines consist of two 13.5-in.-ID flexible pipes for production and one 6.0-in.-ID flexible pipe for well test. Each pipeline/riser is approximately 10,300 ft long and runs from the subsea manifold below the FPS, Nanhai Tiao Zhan, to the FPSO tanker, Nanhai Sheng Li. The technologies used to tie the pipelines into the subsea manifold involved: a transition tie-in base into which the flexible pipe was pulled using ROV-assisted tooling to make up the first-end connector; a rigid pipe long jumper from the manifold to the tie-in base; and the surveying and measurement tools to set up the jumper welding jigs. Each new pipeline tie-in technology was proven through field tests of actual components before completion of manufacturing and installation.

  16. Critical length for upheaval buckling of straight pipelines buried in ice rich soils

    SciTech Connect (OSTI)

    Quimby, T.B.

    1996-12-01

    Upheaval buckling, a phenomena receiving attention in offshore pipelines, has also been found to be a problem for onshore arctic pipelines buried in ice rich soils. While anticipated in overbend situations, it is also being found in pipelines designed to be straight. Understanding the mechanics and parameters affecting this behavior are essential to properly designing a buried arctic pipeline. This paper introduces the parameters that have led to upheaval buckling in at least one pipeline and describes the operation of a program that computes the critical buckling loads at various pipe lengths for the inception of upheaval buckling in a buried pipeline. The method uses finite elements to solve the eigenvalue problem for the axial stability of a column with flexible lateral restraints. This program can be used to predict critical lengths for straight pipelines that lose some or all of the lateral restraint of soil through erosion or thermal degradation. The results are used to make decisions concerning backfill and restrain design. The effects of soils stiffness are considered. Additional research needs are also discussed.

  17. Seismic fragility formulations for segmented buried pipeline systems including the impact of differential ground subsidence

    SciTech Connect (OSTI)

    Pineda Porras, Omar Andrey; Ordaz, Mario

    2009-01-01

    Though Differential Ground Subsidence (DGS) impacts the seismic response of segmented buried pipelines augmenting their vulnerability, fragility formulations to estimate repair rates under such condition are not available in the literature. Physical models to estimate pipeline seismic damage considering other cases of permanent ground subsidence (e.g. faulting, tectonic uplift, liquefaction, and landslides) have been extensively reported, not being the case of DGS. The refinement of the study of two important phenomena in Mexico City - the 1985 Michoacan earthquake scenario and the sinking of the city due to ground subsidence - has contributed to the analysis of the interrelation of pipeline damage, ground motion intensity, and DGS; from the analysis of the 48-inch pipeline network of the Mexico City's Water System, fragility formulations for segmented buried pipeline systems for two DGS levels are proposed. The novel parameter PGV{sup 2}/PGA, being PGV peak ground velocity and PGA peak ground acceleration, has been used as seismic parameter in these formulations, since it has shown better correlation to pipeline damage than PGV alone according to previous studies. By comparing the proposed fragilities, it is concluded that a change in the DGS level (from Low-Medium to High) could increase the pipeline repair rates (number of repairs per kilometer) by factors ranging from 1.3 to 2.0; being the higher the seismic intensity the lower the factor.

  18. Part II

    Energy Savers [EERE]

    Friday, No. 233 December 4, 2015 Part II Department of Defense General Services Administration National Aeronautics and Space Administration 48 CFR Chapter 1 Federal Acquisition Regulations; Rules VerDate Sep<11>2014 15:22 Dec 03, 2015 Jkt 238001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\04DER2.SGM 04DER2 wgreen on DSK2VPTVN1PROD with RULES2 75902 Federal Register / Vol. 80, No. 233 / Friday, December 4, 2015 / Rules and Regulations DEPARTMENT OF DEFENSE GENERAL SERVICES

  19. Part II

    Energy Savers [EERE]

    251 December 31, 2015 Part II Department of Defense General Services Administration National Aeronautics and Space Administration 48 CFR Chapter 1 Federal Acquisition Regulations; Final Rules VerDate Sep<11>2014 17:22 Dec 30, 2015 Jkt 238001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\31DER2.SGM 31DER2 tkelley on DSK3SPTVN1PROD with RULES2 81886 Federal Register / Vol. 80, No. 251 / Thursday, December 31, 2015 / Rules and Regulations DEPARTMENT OF DEFENSE GENERAL SERVICES ADMINISTRATION

  20. 49 CFR Subchapter C, Parts 171-177: Hazardous Materials Regulations

    Broader source: Energy.gov [DOE]

    The U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration regulates the transport of hazardous materials through Title 49 of the Code of Federal Regulations (49 CFR), Subchapter C, "Hazardous Materials Regulations." Parts 171-177 provide general information on hazardous materials and regulation for their packaging and their shipment by rail, air, vessel, and public highway.

  1. The development of a subsea high integrity pipeline protection system (HIPPS)

    SciTech Connect (OSTI)

    Frafjord, P.; Corneliussen, S.; Adriaansen, L.A.

    1995-12-31

    This paper considers the design criteria for a subsea High Integrity Pipeline pressure Protection System (HIPPS), which enables subsea pipelines to be designed for the operating, rather than the shut in wellhead pressure. Such systems will save considerable investment cost in the development of high pressure offshore oil and gas fields, particularly where the distance to the processing infrastructure is long. The conceptual design of a HIPPS which comprises two rapidly closing valves to protect the pipeline from over-pressure, is described. The reliability of the system is assessed and dynamic simulation of the valve and process flow are discussed.

  2. Pipeline transportation and underground storage are vital and complementary components of the U

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Underground Storage Expansions in 2003 Energy Information Administration, Office of Oil and Gas, September 2004 1 Figure 1. Source: Energy Information Administration, Office of Oil and Gas, Natural Gas Pipeline Capacity and Construction Databases. 8,460 10,423 6,787 6,517 6,983 9,262 12,848 0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 1998 1999 2000 2,001 2002 2003 2004 (Scheduled) Million Cubic Feet per Day Natural Gas Pipeline Capacity Additions, 1998-2004 Figure 1. Source:

  3. State Regulatory Framework Will Most Likely Result in Robust CO2 Pipeline

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System, New Study Says | Department of Energy State Regulatory Framework Will Most Likely Result in Robust CO2 Pipeline System, New Study Says State Regulatory Framework Will Most Likely Result in Robust CO2 Pipeline System, New Study Says February 1, 2011 - 12:00pm Addthis Washington, DC - A private sector model with a state rather than Federal-based regulatory framework is the approach that will "most likely result in a robust CO2 [carbon dioxide] pipeline system" in the United

  4. World pipeline construction patterns shifting away from big North American gas lines

    SciTech Connect (OSTI)

    Koen, A.D.; True, W.R.

    1992-02-10

    The pattern of world pipeline construction has begun to shift away from large diameter gas lines in North America. Total miles of gas pipelines planned this year and beyond have registered big increases in Europe and Asia- Pacific regions, more than offsetting decreased mileage of planned U.S. and Canadian gas projects. World products pipeline construction planned in 1992 and beyond shows the largest year to year gain, paced by projects in Latin America. Those are among highlights of this article. Many projects only under study or unlikely to be built are excluded from final mileage tallies.

  5. CNS/UT partnership, who's in the pipeline? | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complex CNS/UT partnership, who's ... CNS/UT partnership, who's in the pipeline? Posted: January 13, 2016 - 4:44pm Dustin Giltnane, a University of Tennessee graduate student, is in the CNS pipeline and will become a full time employee in May 2016, upon completion of dual master's degrees. CNS invests in people - sometimes before they join the payroll as full-time employees. Dustin Giltnane is a prime example of that healthy pipeline at work. He graduated from the University of Tennessee

  6. Transportation of the MOAB Uranium Mill Tailings to White Mesa Mill by Slurry Pipeline

    SciTech Connect (OSTI)

    Hochstein, R. F.; Warner, R.; Wetz, T. V.

    2003-02-26

    The Moab uranium mill tailings pile, located at the former Atlas Minerals Corporation site approximately three miles north of Moab, Utah, is now under the control of the US Department of Energy (''DOE''). The location of the tailings pile adjacent to the Colorado River, and the ongoing contamination of groundwater and seepage of pollutants into the river, have lead to the investigation, as part of the final site remediation program, of alternatives to relocate the tailings to a qualified permanent disposal site. This paper will describe the approach being taken by the team formed between International Uranium (USA) Corporation (''IUC'') and Washington Group International (''WGINT'') to develop an innovative technical proposal to relocate the Moab tailings to IUC's White Mesa Mill south of Blanding, Utah. The proposed approach for relocating the tailings involves using a slurry pipeline to transport the tailings to the White Mesa Mill. The White Mesa Mill is a fully licensed, active uranium mill site that is uniquely suited for permanent disposal of the Moab tailings. The tailings slurry would be dewatered at the White Mesa Mill, the slurry water would be recycled to the Moab site for reuse in slurry makeup, and the ''dry'' tailings would be permanently disposed of in an approved below grade cell at the mill site.

  7. Influence of entrapped air pockets on hydraulic transients in water pipelines

    SciTech Connect (OSTI)

    Zhou, Ling; Liu, Prof. Deyou; Karney, Professor Byran W.; Zhang, Qin Fen

    2011-01-01

    The pressure variations associated with a filling undulating pipeline containing an entrapped air pocket are investigated both experimentally and numerically. The influence of entrapped air on abnormal transient pressures is often ambiguous since the compressibility of the air pocket permits the liquid flow to accelerate but also partly cushions the system, with the balance of these tendencies being associated with the initial void fraction of the air pocket. Earlier experimental research involved systems with an initial void fraction greater than 5.8%; this paper focuses on initial void fractions ranging from 0% to 10%, in order to more completely characterize the transient response. Experimental results show that the maximum pressure increases and then decreases as the initial void fraction decreases. A simplified model is developed by neglecting the liquid inertia and energy loss of a short water column near the air-water interface. Comparisons of the calculated and observed results show the model is able to accurately predict peak pressures as a function of void fraction and filling conditions. Rigid water column models, however, perform poorly with small void fractions.

  8. Webinar: Science Magazine Highlight: Moving Towards Near Zero Platinum Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells | Department of Energy Science Magazine Highlight: Moving Towards Near Zero Platinum Fuel Cells Webinar: Science Magazine Highlight: Moving Towards Near Zero Platinum Fuel Cells Above is the video recording for the webinar, "Science Magazine Highlight: Moving Towards Near Zero Platinum Fuel Cells," originally held on April 25, 2011. In addition to this recording, you can access the presentation slides

  9. Moving Multifamily Buildings From Assessments to Upgrades | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Moving Multifamily Buildings From Assessments to Upgrades Moving Multifamily Buildings From Assessments to Upgrades Better Buildings Neighborhood Program Multifamily Peer Exchange Call: Moving Multifamily Buildings from Assessments to Upgrades, call slides and discussion summary, January 24, 2013. PDF icon Call Slides and Discussion Summary More Documents & Publications Commercial and Multifamily Building Benchmarking and Disclosure Assessing Revenue Streams: What Is Right for

  10. INL's Move to Google Apps Enables Flexibility, Scalability | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy INL's Move to Google Apps Enables Flexibility, Scalability INL's Move to Google Apps Enables Flexibility, Scalability December 7, 2011 - 1:42pm Addthis Brent Stacey, Chief Information Officer and Information Management Director at Energy's Idaho National Laboratory (INL) recently stated, "INL is moving to what we call a high performance workplace." How is INL doing this, you may ask? First INL (with lab-wide participation) has identified 10 improvement themes over 5 years.

  11. Evaluating Moving Target Defense with PLADD

    SciTech Connect (OSTI)

    Jones, Stephen T.; Outkin, Alexander V.; Gearhart, Jared Lee; Hobbs, Jacob Aaron; Siirola, John Daniel; Phillips, Cynthia A.; Verzi, Stephen Joseph; Tauritz, Daniel; Mulder, Samuel A.; Naugle, Asmeret Bier

    2015-09-15

    This project evaluates the effectiveness of moving target defense (MTD) techniques using a new game we have designed, called PLADD, inspired by the game FlipIt [28]. PLADD extends FlipIt by incorporating what we believe are key MTD concepts. We have analyzed PLADD and proven the existence of a defender strategy that pushes a rational attacker out of the game, demonstrated how limited the strategies available to an attacker are in PLADD, and derived analytic expressions for the expected utility of the game’s players in multiple game variants. We have created an algorithm for finding a defender’s optimal PLADD strategy. We show that in the special case of achieving deterrence in PLADD, MTD is not always cost effective and that its optimal deployment may shift abruptly from not using MTD at all to using it as aggressively as possible. We believe our effort provides basic, fundamental insights into the use of MTD, but conclude that a truly practical analysis requires model selection and calibration based on real scenarios and empirical data. We propose several avenues for further inquiry, including (1) agents with adaptive capabilities more reflective of real world adversaries, (2) the presence of multiple, heterogeneous adversaries, (3) computational game theory-based approaches such as coevolution to allow scaling to the real world beyond the limitations of analytical analysis and classical game theory, (4) mapping the game to real-world scenarios, (5) taking player risk into account when designing a strategy (in addition to expected payoff), (6) improving our understanding of the dynamic nature of MTD-inspired games by using a martingale representation, defensive forecasting, and techniques from signal processing, and (7) using adversarial games to develop inherently resilient cyber systems.

  12. Moving toward a commercial market for hydrogen fuel cell vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Promoting fuel cell vehicle commercialization as a means of moving towards a sustainable energy future, increasing energy efficiency and reducing or eliminating air pollution and ...

  13. Edison moving, Hopper retiring in December. Use your allocations now!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    moving, Hopper retiring in December. Use your allocations now! Edison moving, Hopper retiring in December. Use your allocations now! November 10, 2015 by Katie Antypas Dear NERSC Users, This year is full of changes for NERSC. We are moving to a new facility and bringing a new system, Cori online. Edison will be taken offline to move to our new home on November 30th and Hopper will be retired on December 15th. While Cori Phase 1 is coming online now, with Edison, our largest system offline, the

  14. Detecting and Analyzing Multiple Moving Objects in a Crowd -...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    unison *Requires no complex shape or appearance models to select objectsApplications and Industries* Detecting and counting any type of moving object * Estimating crowd size for...

  15. A Case for Climate Neutrality: Case Studies on Moving Towards...

    Open Energy Info (EERE)

    TOOL Name: A Case for Climate Neutrality: Case Studies on Moving Towards a Low Carbon Economy AgencyCompany Organization: United Nations Environment Programme (UNEP) Sector:...

  16. NREL Leads Effort to Get Traffic Moving in Right Direction -...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Leads Effort to Get Traffic Moving in Right Direction Connected Traveler project will guide travelers in energy-efficient manner August 17, 2015 The Energy Department's...

  17. Handbook for face-to-face moves of longwall equipment

    SciTech Connect (OSTI)

    Adam, R.F.J.; Pimentel, R.A.; Shoff, W.E.

    1982-10-01

    The problem of moving the equipment of a longwall face from one (the finished) panel to the next has always been an issue critical to any longwall operation. In the United States, moving longwall equipment from panel to panel takes an average of 20 days, and moves as long as 30 days are no exception. With $8 million invested and a 20% return on investment, a longwall move of four weeks represents a $135,000 opportunity loss, in addition to the $200,000 labor required to perform the move and the interest and depreciation related to the equipment. A four to six week move each year will decrease the longwall yearly production by 10% to 15%. For the average US longwall, move time reduction is second only to increasing the system availability in its production improvement potential. The reduction of move time can only be achieved through careful planning, optimal method development, and effective and efficient operational procedures. This handbook has been developed to provide the US coal mining industry with a comprehensive background for and guidance in performing safe and efficient face-to-face moves.

  18. ,"U.S. Natural Gas Pipeline Imports Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"01292016 9:45:32 AM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Imports Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N9102US3"...

  19. A probe for in situ, remote, detection of defects in buried plastic natural gas pipelines

    SciTech Connect (OSTI)

    Mathur, M.P.; Spenik, J.L.; Condon, C.M.; Monazam, E.R.; Fincham, W.L.

    2007-12-18

    Several techniques are available to determine the integrity of in situ metal pipeline but very little is available in the literature to determine the integrity of plastic pipelines. Since the decade of the 1970s much of the newly installed gas distribution and transmission lines in the United States are fabricated from polyethylene or other plastic. A probe has been developed to determine the in situ integrity of plastic natural gas pipelines that can be installed on a traversing mechanism (pig) to detect abnormalities in the walls of the plastic natural gas pipeline from the interior. This probe has its own internal power source and can be deployed into existing natural gas supply lines. Utilizing the capacitance parameter, the probe inspects the pipe for flaws and records the data internally which can be retrieved later for analysis.

  20. ,"Price of U.S. Natural Gas Pipeline Imports From Canada (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Price of U.S. Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet)" "Sourcekey","N9102CN3" "Date","Price of U.S....

  1. Moving baseline for evaluation of advanced coal-extraction systems

    SciTech Connect (OSTI)

    Bickerton, C.R.; Westerfield, M.D.

    1981-04-15

    This document reports results from the initial effort to establish baseline economic performance comparators for a program whose intent is to define, develop, and demonstrate advanced systems suitable for coal resource extraction beyond the year 2000. Systems used in this study were selected from contemporary coal mining technology and from conservative conjectures of year 2000 technology. The analysis was also based on a seam thickness of 6 ft. Therefore, the results are specific to the study systems and the selected seam thickness. To be more beneficial to the program, the effort should be extended to other seam thicknesses. This document is one of a series which describe systems level requirements for advanced underground coal mining equipment. Five areas of performance are discussed: production cost, miner safety, miner health, environmental impact, and recovery efficiency. The projections for cost and production capability comprise a so-called moving baseline which will be used to assess compliance with the systems requirement for production cost. Separate projections were prepared for room and pillar, longwall, and shortwall technology all operating under comparable sets of mining conditions. This work is part of an effort to define and develop innovative coal extraction systems suitable for the significant resources remaining in the year 2000.

  2. Impact of Regulatory Change to Coordinate Gas Pipelines and Power Systems

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Impact of Regulatory Change to Coordinate Gas Pipelines and Power Systems Citation Details In-Document Search Title: Impact of Regulatory Change to Coordinate Gas Pipelines and Power Systems Authors: Carter, Richard [1] ; Zlotnik, Anatoly V. [2] ; Backhaus, Scott N. [2] ; Chertkov, Michael [2] ; Daniels, Andrew [1] ; Hollis, Alex [1] ; Giacomoni, Anthony [3] + Show Author Affiliations DNV-GL Los Alamos National Laboratory ISO New England Publication

  3. DOE Launches Natural Gas Infrastructure R&D Program Enhancing Pipeline and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distribution System Operational Efficiency, Reducing Methane Emissions | Department of Energy Launches Natural Gas Infrastructure R&D Program Enhancing Pipeline and Distribution System Operational Efficiency, Reducing Methane Emissions DOE Launches Natural Gas Infrastructure R&D Program Enhancing Pipeline and Distribution System Operational Efficiency, Reducing Methane Emissions September 8, 2014 - 1:04pm Addthis Following the White House and the Department of Energy Capstone Methane

  4. A Review of the CO2 Pipeline Infrastructure in the U.S.

    Broader source: Energy.gov [DOE]

    This paper provides summary descriptions of the U.S. carbon dioxide (CO2) pipeline system and future scenarios for expansion. Spanning across more than a dozen U.S. states and into Canada, a safe and regionally extensive network of pipelines has been constructed over the past four decades. These pipelines represent an essential building block for linking the capture of CO2 from electric power plants and other industrial sources with its productive use in oilfields and its safe storage in saline formations. The vast majority of the CO2 pipeline system is dedicated to CO2- Enhanced Oil Recovery (EOR), connecting natural and industrial sources of CO2 with EOR projects in oil fields. Roughly 80 percent of CO2 traveling through U.S. pipelines is from natural (geologic) sources; however, if currently planned industrial CO2 capture facilities and new pipelines are built, by 2020 the portion of CO2 from industrial sources could nearly match the portion from natural sources. A national carbon policy could significantly increase the scale of CO2 infrastructure by creating incentives for electric power plants and other industrial facilities to reduce CO2 emissions through carbon capture technologies and improving the economics for oil production through EOR. Low-carbon cases modeled for this report project that construction through 2030 could more than triple the size of current U.S. CO2 pipeline infrastructure. The development of an expanded national CO2 pipeline network capable of meeting U.S. GHG emission goals may require regulatory changes, incentives and a more concerted federal policy, involving closer cooperation among federal, state, and local governments.

  5. A statistical approach to designing mitigation for induced AC voltages on pipelines

    SciTech Connect (OSTI)

    Dabkowski, J. [Electro Sciences Inc., Crystal Lake, IL (United States)

    1996-08-01

    Induced voltage levels on buried pipelines co-located with overhead electric power transmission lines are usually mitigated by grounding the pipeline. Maximum effectiveness is obtained when grounds are placed where the peak induced voltages occur. Mitigation depends on the local soil resistivity. It may be necessary to employ an extensive distributed grounding system. Over long distances, however, the soil resistivity generally varies as a log-normally distributed random variable. The effect of this variability is examined.

  6. A probabilistic approach to calculating AC induction levels on power line collocated pipelines

    SciTech Connect (OSTI)

    Dabkowski, J. [Electro Sciences, Inc., Crystal Lake, IL (United States)

    1995-12-01

    For calculating induced voltage levels on pipelines paralleling overhead power lines available computational methods assume that the line circuit currents are balanced, i.e., equal. In this paper probabilistic computational methods are used to calculate induction levels for the more realistic assumption that the line currents carry a small randomly fluctuating component, and therefore, are unbalanced. Results show that limiting consideration to the balanced currents case can result in substantially underestimated induced voltage levels on the pipeline.

  7. Efforts to Harmonize Gas Pipeline Operations with the Demands of the Electricity Sector

    SciTech Connect (OSTI)

    Costello, Ken

    2006-12-15

    A possible future course of action is for pipelines to continue their efforts to provide new services with FERC approval. Over time, pipelines could satisfy power generators by giving them the flexibility and services they desire and for which they are willing to pay. Another possibility is that FERC will enact new rules governing regional electricity markets that would function similarly to nationwide business practices. (author)

  8. EIA - Natural Gas Pipeline Network - Natural Gas Market Centers and Hubs

    U.S. Energy Information Administration (EIA) Indexed Site

    Market Centers and Hubs About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Market Centers and Hubs in Relation to Major Natural Gas Transportation Corridors, 2009 Natural Gas Market Centers and Hubs in Relation to Major Natural Gas Transportation Corridors, 2009 DCP = DCP Midstream Partners LP; EPGT = Enterprise Products Texas Pipeline Company. Note: The relative widths of the various transportation corridors are based

  9. Detection of Unauthorized Construction Equipment in Pipeline Right-of-Ways

    SciTech Connect (OSTI)

    Maurice Givens; James E. Huebler

    2004-09-30

    The leading cause of incidents on transmission pipelines is damage by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline is hit. Currently there is no method for continuously monitoring a pipeline right-of-way. Instead, companies periodically walk or fly over the pipeline to find unauthorized construction activities. Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber buried above the pipeline as a distributed sensor. A custom optical time domain reflectometer (OTDR) is used to interrogate the fiber. Key issues in the development of this technology are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. Advantages of the reflectometry technique are the ability to accurately pinpoint the location of the construction activity and the ability to separately monitor simultaneously occurring events. The basic concept of using OTDR with an optical fiber buried above the pipeline to detect encroachment of construction equipment into the right of way works. Sufficiently rapid time response is possible; permitting discrimination between encroachment types. Additional work is required to improve the system into a practical device.

  10. A case study of pipeline route selection and design through discontinuous permafrost terrain in northwestern Alberta

    SciTech Connect (OSTI)

    Wiechnik, C.; Boivin, R.; Henderson, J.; Bowman, M.

    1996-12-31

    As the natural gas pipeline system in Western Canada expands northward, it traverses the discontinuous permafrost zone. As the ground temperature of the frozen soil in this zone is just below freezing, it can be expected that within the design life of a pipeline the permafrost adjacent to it will melt due to the disturbance of the insulating cover by construction activities. Differential settlement at the thawing frozen/unfrozen soil interfaces gives rise to pipeline strain. Based on the calculated settlement and resulting strain level, a cost effective mechanical or civil design solution can be selected to mitigate the differential settlement problem. Since these design solutions can be costly, it is desirable to combine them with a pipeline route that traverses the least amount of discontinuous permafrost terrain while minimizing the overall length of the pipeline. This paper will detail the framework utilized to select the routing for a package of pipeline projects in northwestern Alberta. It is believed that the increased front end effort will result in lower operating costs and an overall reduced life-cycle cost. This basic design methodology can be applied to any project that traverses discontinuous permafrost terrain.

  11. Tennessee Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Tennessee Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.20 1970's 0.20 0.22 0.23 0.24 0.28 0.36 0.49 0.73 0.89 1.26 1980's 1.73 2.25 2.96 3.19 2.94 3.01 2.29 1.85 1.78 1.97 1990's 1.94 2.61 2.44 2.23 1.88 1.59 2.57 2.52 2.17 2.04 2000's 3.44 4.13 NA -- -- -- - = No Data Reported; -- = Not Applicable;

  12. Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.20 1970's 0.20 0.22 0.27 0.28 0.31 0.38 0.53 0.81 1.49 1.40 1980's 2.09 2.81 3.33 3.59 3.49 3.35 3.37 2.68 2.59 2.63 1990's 2.05 1.86 1.93 2.27 2.14 1.83 2.60 3.22 2.59 2.20 2000's 2.66 5.05 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  13. Washington Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Washington Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.22 0.21 0.22 1970's 0.22 0.24 0.28 0.33 0.44 0.65 0.78 1.67 1.92 2.38 1980's 3.92 4.34 4.72 3.98 3.72 3.12 2.52 2.11 1.99 2.06 1990's 2.04 1.98 1.89 1.37 1.84 1.78 1.77 1.89 1.76 2.03 2000's 3.07 2.82 NA -- -- -- - = No Data Reported; -- = Not Applicable;

  14. Wisconsin Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Wisconsin Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.26 0.23 0.23 1970's 0.25 0.25 0.26 0.27 0.30 0.44 0.54 1.74 2.09 1.61 1980's 4.50 2.83 3.53 3.52 3.52 3.30 2.79 2.29 2.12 2.04 1990's 2.14 1.31 1.26 0.96 1.36 0.36 1.20 1.16 0.95 2.56 2000's 3.32 3.67 NA -- -- -- - = No Data Reported; -- = Not Applicable;

  15. Arizona Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Arizona Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 0.15 1970's 0.17 0.17 0.19 0.22 0.28 0.36 0.44 0.64 0.75 1.29 1980's 1.62 2.22 2.86 3.16 2.83 2.79 2.22 1.49 1.79 1.50 1990's 1.65 1.26 1.25 1.68 1.28 1.19 1.80 2.20 1.90 2.08 2000's 3.61 3.96 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  16. Arkansas Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Arkansas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.18 0.18 0.18 1970's 0.19 0.22 0.24 0.26 0.30 0.43 0.52 0.71 0.86 1.12 1980's 1.78 2.12 2.63 2.94 2.97 2.78 2.46 2.64 2.07 2.30 1990's 2.17 2.06 1.78 1.64 1.61 1.45 2.41 2.42 1.58 1.38 2000's 2.41 4.09 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  17. California Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) California Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.24 0.30 1970's 0.29 0.35 0.35 0.39 0.45 0.47 0.69 0.73 0.85 1.75 1980's 2.16 2.90 3.30 4.14 4.13 3.70 3.56 3.02 2.55 2.39 1990's 2.40 2.19 1.40 0.53 0.33 1.01 1.63 1.47 1.93 2.08 2000's 3.62 4.70 NA -- -- -- - = No Data Reported; -- = Not Applicable;

  18. Colorado Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Colorado Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.17 0.17 0.17 1970's 0.18 0.19 0.21 0.22 0.27 0.49 0.72 1.00 1.31 1.53 1980's 2.17 2.58 2.78 2.78 2.81 2.62 2.71 2.57 2.24 1.75 1990's 1.75 1.79 1.89 1.86 1.78 1.45 1.97 2.44 1.98 1.66 2000's 3.89 3.86 NA -- -- - = No Data Reported; -- = Not Applicable; NA =

  19. Connecticut Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Connecticut Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.35 0.68 0.30 1970's 0.32 0.32 0.35 0.40 0.50 0.58 0.59 1.50 2.60 2.53 1980's 2.76 2.94 3.53 3.30 3.18 3.71 2.53 2.52 2.13 2.97 1990's 3.68 3.08 2.95 3.53 2.62 2.20 3.50 1.54 3.00 0.59 2000's 4.82 4.93 NA -- -- -- - = No Data Reported; -- = Not Applicable;

  20. Florida Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Florida Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.18 0.20 1970's 1.98 0.21 0.24 0.30 0.34 0.36 0.49 0.72 0.85 1.35 1980's 1.77 2.38 2.58 2.65 2.90 2.80 1.79 2.11 1.85 2.00 1990's 2.17 2.11 2.06 2.85 1.50 1.55 2.37 2.38 2.38 2.33 2000's 3.81 3.45 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA