National Library of Energy BETA

Sample records for mountains southern idaho

  1. Aboriginal Residential Structures in Southern Idaho

    E-Print Network [OSTI]

    Green, Thomas J

    1993-01-01

    Locales of the Westem Snake River Plain. North AmericanPoints from the Snake River Plain. In: Clovis; Origins andstudy includes the Snake River Plain in southern Idaho, and

  2. The LGBT Divide: A Data Portrait of LGBT People in the Midwestern, Mountain & Southern States

    E-Print Network [OSTI]

    Hasenbush, Amira; Flores, Andrew; Kastanis, Angeliki; Sears, Brad; Gates, Gary

    2014-01-01

    the South, Midwest and Mountain states in more depth mayin the Midwestern, Mountain & Southern States By Amirain the Midwest, South and Mountain states with limited legal

  3. Atmospheric Mercury near Salmon Falls Creek Reservoir in Southern Idaho

    SciTech Connect (OSTI)

    Michael L. Abbott; Jeffrey J. Einerson

    2007-12-01

    Gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) were measured over two-week seasonal field campaigns near Salmon Falls Creek Reservoir in south-central Idaho from the summer of 2005 through the fall of 2006 and over the entire summer of 2006 using automated Tekran mercury analyzers. GEM, RGM, and particulate mercury (HgP) were also measured at a secondary site 90 km to the west in southwestern Idaho during the summer of 2006. The study was performed to characterize mercury air concentrations in the southern Idaho area for the first time, estimate mercury dry deposition rates, and investigate the source of observed elevated concentrations. High seasonal variability was observed with the highest GEM (1.91 ± 0.9 ng m-3) and RGM (8.1 ± 5.6 pg m-3) concentrations occurring in the summer and lower values in the winter (1.32 ± 0.3 ng m-3, 3.2 ± 2.9 pg m-3 for GEM, RGM respectively). The summer-average HgP concentrations were generally below detection limit (0.6 ± 1 pg m-3). Seasonally-averaged deposition velocities calculated using a resistance model were 0.034 ± 0.032, 0.043 ± 0.040, 0.00084 ± 0.0017 and 0.00036 ± 0.0011 cm s-1 for GEM (spring, summer, fall, and winter, respectively) and 0.50 ± 0.39, 0.40 ± 0.31, 0.51 ± 0.43 and 0.76 ± 0.57 cm s-1 for RGM. The total annual RGM + GEM dry deposition estimate was calculated to be 11.9 ± 3.3 µg m-2, or about 2/3 of the total (wet + dry) deposition estimate for the area. Periodic elevated short-term GEM (2.2 – 12 ng m-3) and RGM (50 - 150 pg m-3) events were observed primarily during the warm seasons. Back-trajectory modeling and PSCF analysis indicated predominant source directions from the southeast (western Utah, northeastern Nevada) through the southwest (north-central Nevada) with fewer inputs from the northwest (southeastern Oregon and southwestern Idaho).

  4. Atmospheric mercury near Salmon Falls Creek Reservoir in southern Idaho

    SciTech Connect (OSTI)

    Michael L. Abbott; Jeffrey J. Einerson

    2008-03-01

    Gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) were measured over 2-week seasonal field campaigns near Salmon Falls Creek Reservoir in south-central Idaho from the summer of 2005 through the fall of 2006 and over the entire summer of 2006 using automated Tekran Hg analyzers. GEM, RGM, and particulate Hg (HgP) were also measured at a secondary site 90 km to the west in southwestern Idaho during the summer of 2006. The study was performed to characterize Hg air concentrations in the southern Idaho area for the first time, estimate Hg dry deposition rates, and investigate the source of observed elevated concentrations. High seasonal variability was observed with the highest GEM (1.91 ± 0.9 ng m-3) and RGM (8.1 ± 5.6 pg m-3) concentrations occurring in the summer and lower values in the winter (1.32 ± 0.3 ng m-3, 3.2 ± 2.9 pg m-3 for GEM, RGM, respectively). The summer-average HgP concentrations were generally below detection limit (0.6 ± 1 pg m-3). Seasonally averaged deposition velocities calculated using a resistance model were 0.034 ± 0.032, 0.043 ± 0.040, 0.00084 ± 0.0017 and 0.00036 ± 0.0011 cm s-1 for GEM (spring, summer, fall and winter, respectively) and 0.50 ± 0.39, 0.40 ± 0.31, 0.51 ± 0.43 and 0.76 ± 0.57 cm s-1 for RGM. The total annual RGM + GEM dry deposition estimate was calculated to be 11.9 ± 3.3 µg m-2, or about 2/3 of the total (wet + dry) deposition estimate for the area. Periodic elevated short-term GEM (2.2–12 ng m-3) and RGM (50–150 pg m-3) events were observed primarily during the warm seasons. Back-trajectory modeling and PSCF analysis indicate predominant source directions to the SE (western Utah, northeastern Nevada) and SW (north-central Nevada) with fewer inputs from the NW (southeastern Oregon and southwestern Idaho).

  5. CLIMATE-FIRE RELATIONSHIPS IN THE SOUTHERN APPALACHIAN MOUNTAINS 

    E-Print Network [OSTI]

    Baker, Ralph C.

    2011-01-11

    This study is meant to explain the fire regime of the southern Appalachian Mountain Range of the southeastern United States by analyzing spatial statistics and climate-fire relationships. The spatial statistics were created by obtaining...

  6. Morphological taxonomy, DNA barcoding, and species diversity in southern Rocky Mountain headwater streams

    E-Print Network [OSTI]

    Zamudio, Kelly R.

    Morphological taxonomy, DNA barcoding, and species diversity in southern Rocky Mountain headwater and Conditions #12;MOLECULAR APPROACHES IN FRESHWATER ECOLOGY Morphological taxonomy, DNA barcoding, and species: diversity, elevation, DNA barcoding, taxonomy, aquatic insect, EPT, southern Rocky Mountain Elevation

  7. Climatological lightning characteristics of the Southern Rocky and Appalachian Mountain chains, a comparison of two distinct mountain effects 

    E-Print Network [OSTI]

    Phillips, Stephen Edward

    2001-01-01

    This study presents a high-resolution lightning climatology for southern portions of both the Rocky Mountains and the Appalachian Mountains. Data from the National Lightning Detection Network (NLDN) are analyzed to produce maps of average annual...

  8. AEROSOL-PRECIPITATION INTERACTIONS IN THE SOUTHERN APPALACHIAN MOUNTAINS

    E-Print Network [OSTI]

    AEROSOL-PRECIPITATION INTERACTIONS IN THE SOUTHERN APPALACHIAN MOUNTAINS A Thesis by GINGER MARIE of the requirements for the degree of MASTER OF ARTS May 2011 Department of Geography and Planning #12;AEROSOL-PRECIPITATION and Graduate Studies #12;Copyright by Ginger Marie Kelly 2011 All Rights Reserved #12;iv ABSTRACT AEROSOL-PRECIPITATION

  9. Vegetation Description, Rare Plant Inventory, and Vegetation Monitoring for Craig Mountain, Idaho.

    SciTech Connect (OSTI)

    Mancuso, Michael; Moseley, Robert

    1994-12-01

    The Craig Mountain Wildlife Mitigation Area was purchased by Bonneville Power Administration (BPA) as partial mitigation for wildlife losses incurred with the inundation of Dworshak Reservoir on the North Fork Clearwater River. Upon completion of the National Environmental Protection Act (NEPA) process, it is proposed that title to mitigation lands will be given to the Idaho Department of Fish and Game (IDFG). Craig Mountain is located at the northern end of the Hells Canyon Ecosystem. It encompasses the plateau and steep canyon slopes extending from the confluence of the Snake and Salmon rivers, northward to near Waha, south of Lewiston, Idaho. The forested summit of Craig Mountain is characterized by gently rolling terrain. The highlands dramatically break into the canyons of the Snake and Salmon rivers at approximately the 4,700 foot contour. The highly dissected canyons are dominated by grassland slopes containing a mosaic of shrubfield, riparian, and woodland habitats. During the 1993 and 1994 field seasons, wildlife, habitat/vegetation, timber, and other resources were systematically inventoried at Craig Mountain to provide Fish and Game managers with information needed to draft an ecologically-based management plan. The results of the habitat/vegetation portion of the inventory are contained in this report. The responsibilities for the Craig Mountain project included: (1) vegetation data collection, and vegetation classification, to help produce a GIS-generated Craig Mountain vegetation map, (2) to determine the distribution and abundance of rare plants populations and make recommendations concerning their management, and (3) to establish a vegetation monitoring program to evaluate the effects of Fish and Game management actions, and to assess progress towards meeting habitat mitigation goals.

  10. A Compendium of Radiocarbon Dates for Southern Idaho Archaeological Sites

    E-Print Network [OSTI]

    Plew, Mark G; Pavesic, Max G

    1982-01-01

    Wasden Site, Eastern Snake River Plain, Idaho. In: Early Manfeatures on the westem Snake River Plain. With the exceptionPlains Anthropologist 24: 1981a Archaeological Test Excavations at Four Prehistoric Sites in the Western Snake River

  11. Exploration and Resource Assessment at Mountain Home Air Force Base, Idaho Using an Integrated Team Approach

    SciTech Connect (OSTI)

    Joseph C. Armstrong; Robert P. Breckenridge; Dennis L. Nielson; John W. Shervais; Thomas R. Wood

    2012-10-01

    The U.S. Air Force is facing a number of challenges as it moves into the future, one of the biggest being how to provide safe and secure energy to support base operations. A team of scientists and engineers met at Mountain Home Air Force Base near Boise, Idaho, to discuss the possibility of exploring for geothermal resources under the base. The team identified that there was a reasonable potential for geothermal resources based on data from an existing well. In addition, a regional gravity map helped identify several possible locations for drilling a new well. The team identified several possible sources of funding for this well—the most logical being to use U.S. Department of Energy funds to drill the upper half of the well and U.S. Air Force funds to drill the bottom half of the well. The well was designed as a slimhole well in accordance with State of Idaho Department of Water Resources rules and regulations. Drilling operations commenced at the Mountain Home site in July of 2011 and were completed in January of 2012. Temperatures increased gradually, especially below a depth of 2000 ft. Temperatures increased more rapidly below a depth of 5500 ft. The bottom of the well is at 5976 ft, where a temperature of about 140°C was recorded. The well flowed artesian from a depth below 5600 ft, until it was plugged off with drilling mud. Core samples were collected from the well and are being analyzed to help understand permeability at depth. Additional tests using a televiewer system will be run to evaluate orientation and directions at fractures, especially in the production zone. A final report on the well exploitation will be forthcoming later this year. The Air Force will use it to evaluate the geothermal resource potential for future private development options at Mountain Home AFB.

  12. Mountain Home Air Force Base, Idaho Geothermal Resource Assessment and Future Recommendations

    SciTech Connect (OSTI)

    Joseph C. Armstrong; Robert P. Breckenridge; Dennis L. Nielson; John W. Shervais; Thomas R. Wood

    2013-03-01

    The U.S. Air Force is facing a number of challenges as it moves into the future, one of the biggest being how to provide safe and secure energy to support base operations. A team of scientists and engineers met at Mountain Home Air Force Base in early 2011 near Boise, Idaho, to discuss the possibility of exploring for geothermal resources under the base. The team identified that there was a reasonable potential for geothermal resources based on data from an existing well. In addition, a regional gravity map helped identify several possible locations for drilling a new well. The team identified several possible sources of funding for this well—the most logical being to use U.S. Department of Energy funds to drill the upper half of the well and U.S. Air Force funds to drill the bottom half of the well. The well was designed as a slimhole well in accordance with State of Idaho Department of Water Resources rules and regulations. Drilling operations commenced at the Mountain Home site in July of 2011 and were completed in January of 2012. Temperatures increased gradually, especially below a depth of 2000 ft. Temperatures increased more rapidly below a depth of 5500 ft. The bottom of the well is at 5976 ft, where a temperature of about 140°C was recorded. The well flowed artesian from a depth below 5600 ft, until it was plugged off with drilling mud. Core samples were collected from the well and are being analyzed to help understand permeability at depth. Additional tests using a televiewer system will be run to evaluate orientation and directions at fractures, especially in the production zone. A final report on the well exploitation will be forthcoming later this year. The Air Force will use it to evaluate the geothermal resource potential for future private development options at Mountain Home Air Force Base. In conclusion, Recommendation for follow-up efforts include the following:

  13. Late Quaternary geomorphology and soils in Crater Flat, Yucca Mountain area, southern Nevada

    E-Print Network [OSTI]

    Dorn, Ron

    Late Quaternary geomorphology and soils in Crater Flat, Yucca Mountain area, southern Nevada for a Crater Flat cation-leaching curve. This curve differs somewhat from a previous Yucca Mountain curve­10 from a previous ``surficial deposits'' stratigraphy used in the Yucca Mountain area. Although

  14. Fire Regimes of the Southern Appalachian Mountains: Temporal and Spatial Variability and Implications for Vegetation Dynamics 

    E-Print Network [OSTI]

    Flatley, William 1977-

    2012-08-31

    Ecologists continue to debate the role of fire in forests of the southern Appalachian Mountains. How does climate influence fire in these humid, temperate forests? Did fire regimes change during the transition from Native American settlement to Euro...

  15. Post-fire recovery and successional dynamics of an old growth red spruce forest in the southern Appalachian Mountains 

    E-Print Network [OSTI]

    Krustchinsky, Adam R.

    2009-05-15

    of fire in a mesic ecosystem, specifically a high-elevation red spruce (Picea rubens Sarg.) forest on Whitetop Mountain in the southern Appalachian Mountains. Six plots were established in a high elevation red spruce stand to characterize the stand...

  16. A revised Litostragraphic Framework for the Southern Yucca Mountain Area, Nye County, Nevada

    SciTech Connect (OSTI)

    R.W. Spengler; F.M. Byers; R.P. Dickerson

    2006-03-24

    An informal, revised lithostratigraphic framework for the southern Yucca Mountain area, Nevada has been developed to accommodate new information derived from subsurface investigations of the Nye County Early Warning Drilling Program. Lithologies penetrated by recently drilled boreholes at locations between Stagecoach Road and Highway 95 in southern Nye County include Quaternary and Pliocene alluvium and alluvial breccia, Miocene pyroclastic flow deposits and intercalated lacustrine siltstone and claystone sequences, early Miocene to Oligocene pre-volcanic sedimentary rocks, and Paleozoic strata. Of the 37 boreholes currently drilled, 21 boreholes have sufficient depth, spatial distribution, or traceable pyroclastic flow, pyroclastic fall, and reworked tuff deposits to aid in the lateral correlation of lithostrata. Medial and distal parts of regional pyroclastic flow deposits of Miocene age can be correlated with the Timber Mountain, Paintbrush, Crater Flat, and Tram Ridge Groups. Rocks intercalated between these regional pyroclastic flow deposits are substantially thicker than in the central part of Yucca Mountain, particularly near the downthrown side of major faults and along the southern extent of exposures at Yucca Mountain.

  17. Idaho Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    in Idaho's Eastern Snake River Plain in southern Idaho; the impacts that climate change may have on the Snake River Plain's surface & ground water resources in southern Idaho; ; and the sinks for metaloids

  18. Idaho/Transmission | Open Energy Information

    Open Energy Info (EERE)

    for the grid that links all of these service territories. Idaho Power, Bonneville Power Administration, Rocky Mountain Power, and Avista are the investor owned utilities in...

  19. Radionuclides, inorganic constituents, organic compounds, and bacteria in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1990

    SciTech Connect (OSTI)

    Bartholomay, R.C.; Edwards, D.D. [Geological Survey, Idaho Falls, ID (United States); Campbell, L.J. [State of Idaho, Dept. of Water Resources (United States)

    1992-03-01

    The US Geological Survey and the Idaho Department of Water Resources, in response to a request from the US Department of Energy, sampled 19 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for manmade pollutants and naturally occurring constituents. The samples were collected from seven irrigation wells, five domestic wells, two springs, one stock well, two dairy wells, one observation well, and one commercial well. Two quality assurance samples also were collected and analyzed. The water samples were analyzed for selected radionuclides, inorganic constituents, organic compounds, and bacteria. None of the radionuclides, inorganic constituents, or organic compounds exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concentrations exceeded their respective reporting levels. All samples analyzed for surfactants and dissolved organic carbon had concentrations that exceeded their reporting level. Toluene concentrations exceeded the reporting level in one water sample. Two samples contained fecal coliform bacteria counts that exceeded established maximum contaminant levels for drinking water.

  20. Major results of geophysical investigations at Yucca Mountain and vicinity, southern Nevada

    SciTech Connect (OSTI)

    Oliver, H.W.; Ponce, D.A. [eds.] [Geological Survey, Menlo Park, CA (United States); Hunter, W.C. [ed.] [Geological Survey, Denver, CO (United States). Yucca Mountain Project Branch

    1995-12-31

    In the consideration of Yucca Mountain as a possible site for storing high level nuclear waste, a number of geologic concerns have been suggested for study by the National Academy of Sciences which include: (1) natural geologic and geochemical barriers, (2) possible future fluctuations in the water table that might flood a mined underground repository, (3) tectonic stability, and (4) considerations of shaking such as might be caused by nearby earthquakes or possible volcanic eruptions. This volume represents the third part of an overall plan of geophysical investigation of Yucca Mountain, preceded by the Site Characterization Plan (SCP; dated 1988) and the report referred to as the Geophysical White Paper, Phase 1, entitled Status of Data, Major Results, and Plans for Geophysical Activities, Yucca Mountain Project (Oliver and others, 1990). The SCP necessarily contained uncertainty about applicability and accuracy of methods then untried in the Yucca Mountain volcano-tectonic setting, and the White Paper, Phase 1, focused on summarization of survey coverage, data quality, and applicability of results. For the most part, it did not present data or interpretation. The important distinction of the current volume lies in presentation of data, results, and interpretations of selected geophysical methods used in characterization activities at Yucca Mountain. Chapters are included on the following: gravity investigations; magnetic investigations; regional magnetotelluric investigations; seismic refraction investigations; seismic reflection investigations; teleseismic investigations; regional thermal setting; stress measurements; and integration of methods and conclusions. 8 refs., 60 figs., 2 tabs.

  1. Morphological and sedimentological responses of streams to human impact in the southern Blue Ridge Mountains, USA

    E-Print Network [OSTI]

    Teskey, Robert O.

    Morphological and sedimentological responses of streams to human impact in the southern Blue Ridge Morphological and sedimentological responses of streams to basin-scale impact have been well documented forest cover as the primary driver of any detected differences in morphology and sedimentology. A suite

  2. Wildlife Inventory, Craig Mountain, Idaho.

    SciTech Connect (OSTI)

    Cassirer, E. Frances

    1995-06-01

    Wildlife distribution/abundance were studied at this location during 1993 and 1994 to establish the baseline as part of the wildlife mitigation agreement for construction of Dworshak reservoir. Inventory efforts were designed to (1) document distribution/abundance of 4 target species: pileated woodpecker, yellow warbler, black-capped chickadee, and river otter, (2) determine distribution/abundance of rare animals, and (3) determine presence and relative abundance of all other species except deer and elk. 201 wildlife species were observed during the survey period; most were residents or used the area seasonally for breeding or wintering. New distribution or breeding records were established for at least 6 species. Pileated woodpeckers were found at 35% of 134 survey points in upland forests; estimated densities were 0-0.08 birds/ha, averaging 0.02 birds/ha. Yellow warblers were found in riparian areas and shrubby draws below 3500 ft elev., and were most abundant in white alder plant communities (ave. est. densities 0.2-2. 1 birds/ha). Black-capped chickadees were found in riparian and mixed tall shrub vegetation at all elevations (ave. est. densities 0-0.7 birds/ha). River otters and suitable otter denning and foraging habitat were observed along the Snake and Salmon rivers. 15 special status animals (threatened, endangered, sensitive, state species of special concern) were observed at Craig Mt: 3 amphibians, 1 reptile, 8 birds, 3 mammals. Another 5 special status species potentially occur (not documented). Ecosystem-based wildlife management issues are identified. A monitoring plant is presented for assessing effects of mitigation activities.

  3. 9 M.y. record of southern Nevada climate from Yucca Mountain secondary minerals

    SciTech Connect (OSTI)

    Whelan, J.F.; Moscati, R.J.

    1998-12-01

    Yucca Mountain, Nevada, is presently the object of intense study as a potential permanent repository for the Nation`s high-level radioactive wastes. The mountain consists of a thick sequence of volcanic tuffs within which the depth to water table ranges from 500 to 700 meters below the land surface. This thick unsaturated zone (UZ), which would host the projected repository, coupled with the present day arid to semi-arid climate, is considered a favorable attribute of the site. Evaluation of the site includes defining the relation between climate variability, as the input function or driver of site- and regional-scale ground-water flow, and the possible future transport and release of radionuclides to the accessible environment. Secondary calcite and opal have been deposited in the UZ by meteoric waters that infiltrated through overlying soils and percolated through the tuffs. The oxygen isotopic composition ({delta}{sup 18}O values) of these minerals reflect contemporaneous meteoric waters and the {delta}{sup 13}C values reflect soil organic matter, and hence the resident plant community, at the time of infiltration. Recent U/Pb age determinations of opal in these occurrences, coupled with the {delta}{sup 13}C values of associated calcite, allow broadbrush reconstructions of climate patterns during the past 9 M.y.

  4. Rocky Mountain Power- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power provides incentives for residential customers in Idaho to install energy efficient equipment in participating homes. Rebates are available for qualified appliances,...

  5. Neoproterozoic strata of southeastern Idaho and Utah: record of Cryogenian rifting and glaciation

    E-Print Network [OSTI]

    Christie-Blick, Nicholas

    part of a westward-thickening rift to passive- margin succession that initiated c. 720 Ma. The latter Idaho is recog- nized near House Mountain, east of Boise at c. 725 + 5 Ma, in the Pioneer Mountains Core

  6. Evaluating Wildlife Corridor Linkages: Do Freeway Underpasses Connect the Peninsular and Transverse Mountain Ranges?

    E-Print Network [OSTI]

    Murphy, Michelle L.

    2011-01-01

    some lessons from mountain lions in Southern California.and J.L. Doherty. 1985. Managing mountain goats at a highwaythe Peninsular and Transverse Mountain Ranges? A Thesis

  7. A preliminary investigation of the structure of southern Yucca Flat, Massachusetts Mountain, and CP basin, Nevada Test Site, Nevada, based on geophysical modeling.

    SciTech Connect (OSTI)

    Geoffrey A. Phelps; Leigh Justet; Barry C. Moring, and Carter W. Roberts

    2006-03-17

    New gravity and magnetic data collected in the vicinity of Massachusetts Mountain and CP basin (Nevada Test Site, NV) provides a more complex view of the structural relationships present in the vicinity of CP basin than previous geologic models, helps define the position and extent of structures in southern Yucca Flat and CP basin, and better constrains the configuration of the basement structure separating CP basin and Frenchman Flat. The density and gravity modeling indicates that CP basin is a shallow, oval-shaped basin which trends north-northeast and contains ~800 m of basin-filling rocks and sediment at its deepest point in the northeast. CP basin is separated from the deeper Frenchman Flat basin by a subsurface ridge that may represent a Tertiary erosion surface at the top of the Paleozoic strata. The magnetic modeling indicates that the Cane Spring fault appears to merge with faults in northwest Massachusetts Mountain, rather than cut through to Yucca Flat basin and that the basin is downed-dropped relative to Massachusetts Mountain. The magnetic modeling indicates volcanic units within Yucca Flat basin are down-dropped on the west and supports the interpretations of Phelps and KcKee (1999). The magnetic data indicate that the only faults that appear to be through-going from Yucca Flat into either Frenchman Flat or CP basin are the faults that bound the CP hogback. In general, the north-trending faults present along the length of Yucca Flat bend, merge, and disappear before reaching CP hogback and Massachusetts Mountain or French Peak.

  8. Idaho's Energy Options

    SciTech Connect (OSTI)

    Robert M. Neilson

    2006-03-01

    This report, developed by the Idaho National Laboratory, is provided as an introduction to and an update of the status of technologies for the generation and use of energy. Its purpose is to provide information useful for identifying and evaluating Idaho’s energy options, and for developing and implementing Idaho’s energy direction and policies.

  9. Winter in Sacramento Mountains 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    Beginning in the late 1930s, fire exclusion has drastically altered the vegetation dynamics of the southern Appalachian Mountains. Extremely low fire frequency has allowed for more shade-tolerant species to invade once predominantly open forests...

  10. Integrated Vulnerability and Impacts Assessment for Natural and Engineered Water-Energy Systems in the Southwest and Southern Rocky Mountain Region

    SciTech Connect (OSTI)

    Tidwell, Vincent C.; Wolfsberg, Andrew; Macknick, Jordan; Middleton, Richard

    2015-01-01

    In the Southwest and Southern Rocky Mountains (SWSRM), energy production, energy resource extraction, and other high volume uses depend on water supply from systems that are highly vulnerable to extreme, coupled hydro-ecosystem-climate events including prolonged drought, flooding, degrading snow cover, forest die off, and wildfire. These vulnerabilities, which increase under climate change, present a challenge for energy and resource planners in the region with the highest population growth rate in the nation. Currently, analytical tools are designed to address individual aspects of these regional energy and water vulnerabilities. Further, these tools are not linked, severely limiting the effectiveness of each individual tool. Linking established tools, which have varying degrees of spatial and temporal resolution as well as modeling objectives, and developing next-generation capabilities where needed would provide a unique and replicable platform for regional analyses of climate-water-ecosystem-energy interactions, while leveraging prior investments and current expertise (both within DOE and across other Federal agencies).

  11. Idaho_Wind_Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Bryans Run Cell Tower Site Wilson Peak Eckert Site Loertscher Boise State's Wind Data Link Wind Power Idaho Wind Data See also: Idaho Energy Resources - Wind, American...

  12. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, January 2000-December 2002

    SciTech Connect (OSTI)

    Locke, Glenn L. [US Geological Survey, Carson City, NV (United States); La Camera, Richard J. [US Geological Survey, Carson City, NV (United States)

    2003-12-31

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 35 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are tabulated from January 2000 through December 2002. Historical data on water levels, discharges, and withdrawals are graphically presented to indicate variations through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented for 1992–2002 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements, maximum, minimum, and median water-level altitudes, and average deviation of measured water-level altitudes compared to selected baseline periods. Baseline periods varied for 1985–93. At six of the seven wells in Jackass Flats, the median water levels for 2002 were slightly higher (0.3–2.4 feet) than for their respective baseline periods. At the remaining well, data for 2002 was not summarized statistically but median water-level altitude in 2001 was 0.7 foot higher than that in its baseline period.

  13. McGuire and Garfinkel: Archaeological Investigations in the Southern Sierra Nevada: The Bear Mountain Segment of the Pacific Crest Trail

    E-Print Network [OSTI]

    Moratto, Michael J

    1982-01-01

    along the 29-km. Bear Mountain segment of the Pacific CrestSierra Nevada: The Bear Mountain Seg- ment of the Pacifichistoric times. In the Bear Mountain vicinity, the Sierran

  14. Variation of surficial soil hydraulic properties across land uses in the southern Blue Ridge Mountains, North Carolina, USA

    E-Print Network [OSTI]

    Teskey, Robert O.

    distribution, in situ saturated hydraulic conductivity (measured using an Amoozemeter com- pact constant headVariation of surficial soil hydraulic properties across land uses in the southern Blue Ridge of Geography, 204 GG Building, The University of Georgia, Athens, GA 30602-2502, United States b Ecosystems

  15. USING HYPERSPECTRAL IMAGERY TO ASSIST FEDERAL FOREST MONITORING AND RESTORATION PROJECTS IN THE SOUTHERN ROCKY MOUNTAINS, COLORADO

    E-Print Network [OSTI]

    Wamser, William Kyle

    2012-12-31

    of this research were to improve the use of ARCHER hyperspectral imagery to classify sub-canopy and open-area vegetation in coniferous forests located in the Southern Rockies and to determine how much fidelity might be lost from a baseline of 1 meter spatial...

  16. Mountain Home Well - Photos

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    2012-01-11

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  17. Mountain Home Well - Photos

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  18. Idaho_Amsterdam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Idaho Data Amsterdam 1109 Wind Power - Idaho Wind Anemometer Loan Program Amsterdam Site 1109 Latitude: N. 42 deg. 17.34' Longitude: W. 114 deg. 42.6' Elevation: 5122' Anemometer...

  19. Occupational Medicine - Assistant PIA, Idaho National Laboratory...

    Energy Savers [EERE]

    Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho...

  20. Cultural Geography of Early Chinese Americans in Idaho and Montana, 1865-1900

    E-Print Network [OSTI]

    Chang, Woojin

    2010-04-26

    63 Bibliography 65 vi LIST OF MAPS 1. Territorial Establishment in the Northern Rocky Mountain Region. 2 2. Physical Features of Idaho and Montana. 3 3. Early Gold Strikes in Idaho... 48 Methodist Episcopal Church in 1904. 15. Chinese Placer Miners in Rocky Bar, Elmore County, circa 1900. 53 16. Zee Tai Chung Co., a Chinese Dry Goods Store on Idaho Street, Boise, in 59 1900. 1 Chapter 1...

  1. EA-0907: Idaho National Engineering Laboratory Sewer System Upgrade Project, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to upgrade the Sewer System at the U.S. Department of Energy's Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho.  The...

  2. Mission Need Statement: Idaho Spent Fuel Facility Project

    SciTech Connect (OSTI)

    Barbara Beller

    2007-09-01

    Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

  3. IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER

    Broader source: Energy.gov [DOE]

    Idaho Falls, ID – The Department of Energy Idaho Operations Office today announced that James Cooper has been named deputy manager of its highly-successful Idaho Cleanup Project, which oversees the environmental cleanup and waste management mission at DOE’s Idaho site.

  4. Idaho/Transmission/Agency Links | Open Energy Information

    Open Energy Info (EERE)

    State Agency Links Idaho Department of Fish and Game Idaho State Historical Society Idaho Department of Environmental Quality Idaho Transportation Department Idaho Department of...

  5. Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho

    SciTech Connect (OSTI)

    Glaspey, Douglas J.

    2008-01-30

    Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

  6. Evaluation of Bias in Roadside Point Count Surveys of Passerines in Shrubsteppe and Grassland Habitats in Southwestern Idaho1

    E-Print Network [OSTI]

    the Snake River Birds of Prey Area (SRBOPA) in southwestern Idaho. We asked if abundances of species River Plains of southwestern Idaho, contains a mosaic of native shrubsteppe and grassland habitat types. Methods Study Area The 195,325-ha SRBOPA, located south of Boise and west of Mountain Home on the Snake

  7. Idaho | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelBConservation Standards and TestEquipment:Ian Kalin AboutIdahoIdahoIdaho

  8. DOE-Idaho's Packaging and Transportation Perspective

    Office of Environmental Management (EM)

    Idaho's Packaging and T t ti P ti Transportation Perspective Richard Provencher Manager DOE Idaho Operations Office DOE Idaho Operations Office Presented to the DOE National...

  9. Idaho_Laven

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power- Idaho Wind Anemometer Loan Program Kurt Laven Site 0793 Latitude: N. 46 deg. 36.284' Longitude: W. 116 deg. 29.934' Elevation: 2887' Anemometer Height: 20 Meters Placed in...

  10. Idaho_SmithPhillips

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Smith Phillips Site - Idaho Wind Anemometer Loan Program Latitude: N. 42 deg. 23.34' Longitude: W. 112 deg. 12.6' Elevation: 4967' Placed in service: December 14, 2005...

  11. Mountains

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    of Guadalupe Mountains National Park (GUMO) as a reintroduction area for desert bighorn sheep. The study used landscape metrics to compare GUMO to a nearby mountain range that is currently supporting an estimated population of 400 bighorn sheep. This study...

  12. YUCCA MOUNTAIN SITE DESCRIPTION

    SciTech Connect (OSTI)

    A.M. Simmons

    2004-04-16

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

  13. Analysis Activities at Idaho National Engineering & Environmental...

    Energy Savers [EERE]

    Analysis Activities at Idaho National Engineering & Environmental Laboratory Analysis Activities at Idaho National Engineering & Environmental Laboratory Presentation on INEENL's...

  14. EA-0845: Expansion of the Idaho National Engineering Laboratory Research Center, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to expand and upgrade facilities at the U.S. Department of Energy's Idaho National Engineering Laboratory Research Center, located in Idaho...

  15. Mountain Home Well - Borehole Geophysics Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    2012-11-11

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  16. Mountain Home Well - Borehole Geophysics Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  17. Structural analysis of the Sheep Mountain anticline, Bighorn Basin, Wyoming 

    E-Print Network [OSTI]

    Hennier, Jeffrey Hugh

    1984-01-01

    in the Phosphoria Formation at the northwest plunge of Sheep Mountain. 38 10 Pi diagram plot of bedding attitudes in the Mowry Shale at the extreme northwest plunge of Sheep Mountain . 40 A. Photograph of flatirons formed in weathered Phosphoria beds along... sedimentalogical transition zone or hinge line extended from Mexico through the western U. S. to Canada, separating the deeply subsiding Cordilleran geosynclinal trough to the west in Idaho and Utah from stable cratonic shelf to the east in Wyoming (Thomas...

  18. Piegan Mountains 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    mountain bikers and hikers focus in the environment and to identify the key environmental elements and cognitive processes relevant to creating the mode of experience and underlying conflict, Visitor Employed Photography, VEP, and follow-up interviews were...

  19. Idaho Power- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Idaho Power offers a variety of incentives for the installation of heating and cooling systems for residential customers living in both Oregon and Idaho

  20. Integrated Safety Management Workshop Registration, PIA, Idaho...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho National Laboratory More Documents & Publications TRAIN-PIA.pdf Occupational Medicine - Assistant PIA, Idaho National Laboratory PIA - INL Education Programs Business...

  1. Idaho National Laboratory April

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.FoodHydropower,PrincipalIdaho National Laboratory

  2. Idaho Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.FoodHydropower,PrincipalIdaho NationalA p r i l 12,

  3. Idaho Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.FoodHydropower,PrincipalIdaho NationalA p r i l

  4. Idaho Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.FoodHydropower,PrincipalIdaho NationalA p r i lMarch

  5. Idaho Cleanup Contractor Surpasses Significant Safety Milestones

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – For the second time in a little over a year, employees with DOE contractor CH2M-WG Idaho (CWI) supporting EM at the Idaho site have achieved 1 million hours without a recordable injury. They also worked more than 1.7 million hours without a lost work-time injury.

  6. Idaho Geological Survey and University of Idaho Explore for Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of China Hat, a 60,000-year-old region of volcanic rock near Soda Springs, Idaho. The wells allow researchers to precisely measure heat coming out of the Earth, which will help...

  7. Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – An innovative idea for cleaning up sodium in a decommissioned nuclear reactor at EM’s Idaho site grew from a carpool discussion.

  8. DOE-Idaho's Packaging and Transportation Perspective | Department...

    Office of Environmental Management (EM)

    DOE-Idaho's Packaging and Transportation Perspective DOE-Idaho's Packaging and Transportation Perspective Presented by Richard Provencher, Manager for the DOE Idaho Operations...

  9. Raft River Idaho Magnetotelluric Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gregory Nash

    2015-05-13

    Raw magnetotelluric (MT) data covering the geothermal system at Raft River, Idaho. The data was acquired by Quantec Geoscience. This is a zipped file containing .edi raw MT data files.

  10. Idaho_AmericanFallsRockland

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power - Idaho Wind Anemometer Loan Program American FallsRockland Site 106 Latitude: N. 42 deg. 40.682' Longitude: W. 112 deg. 46.325' Elevation: 6579' Anemometer Height: 20...

  11. EA-0843: Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to (1) reduce the volume of the U.S. Department of Energy's Idaho National Engineering Laboratory's (INEL) generated low-level waste (LLW)...

  12. LANDSLIDE-DRIVEN EROSION AND TOPOGRAPHIC EVOLUTION OF ACTIVE MOUNTAIN BELTS

    E-Print Network [OSTI]

    Weissel, Jeffrey K.

    LANDSLIDE-DRIVEN EROSION AND TOPOGRAPHIC EVOLUTION OF ACTIVE MOUNTAIN BELTS N. HOVIUS* Department a crucial role in the erosion and topographic evolution of active mountain belts. They drive the expansion from active mountain belts. Here, we illustrate these points with observations from the Southern Alps

  13. GRC Transactions, Vol. 32, 2008 Blue Mountain, Nevada, structural control, normal fault,

    E-Print Network [OSTI]

    Faulds, James E.

    GRC Transactions, Vol. 32, 2008 273 Keywords Blue Mountain, Nevada, structural control, normal fault, oblique slip, dilatant zone, Great Basin AbstrAct The Blue Mountain geothermal field is a blind geothermal prospect (i.e., no surface hot springs) along the west flank of Blue Mountain in southern Humboldt

  14. Momentum flux estimates for South Georgia Island mountain waves in the stratosphere observed via satellite

    E-Print Network [OSTI]

    Alexander, M. Joan

    Momentum flux estimates for South Georgia Island mountain waves in the stratosphere observed via observations of mountain wave events in the stratosphere above South Georgia Island in the remote southern important drag forces on the circulation. Small island orography is generally neglected in mountain wave

  15. Proximity and Provenance: A Lesson from the Sterling Cache, Idaho

    E-Print Network [OSTI]

    Hughes, Richard E.; Pavesic, Max G.

    2005-01-01

    Volcanic Field, Eastern Snake River Plain, Eastern Idaho andHeise Volcanic Field, Snake River Plain, Idaho, Western USA.

  16. Occupational Medical Surveillance System (OMSS) PIA, Idaho National...

    Energy Savers [EERE]

    (OMSS) PIA, Idaho National Laboratory More Documents & Publications Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Injury & Illness System...

  17. Idaho National Engineering & Environmental Laboratory Consent...

    Office of Environmental Management (EM)

    Third Modification to Consent Order Idaho Code 39-44-13 State Idaho Agreement Type Consent Order Legal Driver(s) RCRA Scope Summary Modify the language of Section 6.20.E.1 of...

  18. Idaho National Engineering & Environmental Laboratory Consent...

    Office of Environmental Management (EM)

    Consent Order Idaho Code 39-4413 State Idaho Agreement Type Consent Order Legal Driver(s) RCRA Scope Summary Resolve the alleged violation listed in the Notice of Violation...

  19. In the Weeds: Idaho’s Invasive Species Laws and Biofuel Research and Development

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pope, April Lea

    2015-05-01

    Federal laws, policies, and programs that incentivize and mandate the development of biofuels have local effects on both Idaho’s environment and on research supporting biofuels. The passage of a new energy crop rule in Idaho, effective as of March 20, 2014, follows an increased interest in growing, possessing, and transporting energy crops comprised of invasive plant species that are regulated under Idaho’s Invasive Species Act. Idaho’s new energy crop rule is an example of how a state can take measures to protect against unintended consequences of federal laws, policies, and programs while also taking advantage of the benefits of suchmore »policies and programs.« less

  20. IDAHO WATER USER RECOMMENDATIONS MAINSTEM PLAN

    E-Print Network [OSTI]

    IDAHO WATER USER RECOMMENDATIONS ON THE MAINSTEM PLAN COLUMBIA RIVER BASIN FISH AND WILDLIFE PROGRAM SUBMITTED ON BEHALF OF THE COMMITTEE OF NINE AND THE IDAHO WATER USERS ASSOCIATION JUNE 15, 2001 and Flow Augmentation Policy in the Columbia River Basin #12;1 IDAHO WATER USER RECOMMENDATIONS

  1. Idaho Site Contractor Achieves Treatment Project Milestone

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – The Idaho site’s main cleanup contractor recently achieved a major performance milestone by successfully passing an operational readiness review for a first-of-a-kind facility that will treat the remaining 900,000 gallons of liquid radioactive waste generated by the site’s legacy cleanup mission.

  2. CURRICULUM VITAE University of Idaho

    E-Print Network [OSTI]

    : Professor of Fish and Wildlife Resources DEPARTMENT AND CAMPUS ZIP: Fish and Wildlife Resources, 1136 OFFICE and Research Appointments: July 1998-present, Professor, Department of Fish and Wildlife Resources, University of Idaho 1990-June 1998, Associate Professor, Department of Fish and Wildlife Resources, University

  3. Geothermal features of Snake River plain, Idaho

    SciTech Connect (OSTI)

    Blackwell, D.D.

    1987-08-01

    The Snake River plain is the track of a hot spot beneath the continental lithosphere. The track has passed through southern Idaho as the continental plate has moved over the hot spot at a rate of about 3.5 cm/yr. The present site of the hot spot is Yellowstone Park. As a consequence of the passage, a systematic sequence of geologic and tectonic events illustrates the response of the continental lithosphere to this hotspot event. The three areas that represent various time slices in the evolution are the Yellowstone Plateau, the Eastern Snake River plain downwarp, and the Western Snake River plain basin/Owhyee Plateau. In addition to the age of silicic volcanic activity, the topographic profile of the Snake River plain shows a systematic variation from the high elevations in the east to lowest elevations on the west. The change in elevation follows the form of an oceanic lithosphere cooling curve, suggesting that temperature change is the dominant effect on the elevation.

  4. 213 WILDLIFE BIOLOGY 9:3 (2003) The population dynamics of mountain goats Oreamnos

    E-Print Network [OSTI]

    Festa-Bianchet, Marco

    2003-01-01

    ), but not for native populations (Hebert & Turnbull 1977, Kuck 1977, Smith 1988b). In native populations, mountain & Turnbull 1977, Kuck 1977), and most management agencies use more con- servative harvest goals for native herds. An average harvest of 4% was allowed in Idaho, USA (Kuck 1977). During 1973-1985, some herds in

  5. Kuuchamaa: The Kumeyaay Sacred Mountain

    E-Print Network [OSTI]

    Shipek, Florence C

    1985-01-01

    The Kumeyaay Sacred Mountain^ FLORENCE C. SHIPEK ASSAGE ofthe importance of the mountain and its relation- ship toin order to have the mountain preserved by nomination to the

  6. Idaho Site | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelBConservation Standards and TestEquipment:Ian Kalin AboutIdaho Site

  7. Mountaineer Creed As a Mountaineer, I will

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Mountaineer Creed As a Mountaineer, I will: · practice academic and personal integrity, · value standards of academic integrity; · to live and work according to the laws of man and the highest standards of professional conduct; · to place before profit, the honor and standing of the profession before person

  8. Idaho National Laboratory (INL) Seismic Initiative | Department...

    Office of Environmental Management (EM)

    Initiative Idaho National Laboratory (INL) Seismic Initiative Presentation from the May 2015 Seismic Lessons-Learned Panel Meeting. INL Seismic Initiative More Documents &...

  9. ,"Idaho Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  10. ,"Idaho Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  11. Idaho Power- Irrigation Efficiency Rewards Rebate Program

    Broader source: Energy.gov [DOE]

    Through Idaho Power's Irrigation Efficiency Rewards program, agricultural irrigation customers qualify to receive an incentive for a portion of the cost to install a new, more efficient irrigation...

  12. Idaho National Engineering Laboratory Consent Order, November...

    Office of Environmental Management (EM)

    Consent Order, November 1, 1995 State Idaho Agreement Type Consent Order Legal Driver(s) FFCAct Scope Summary Resolve LDR storage violations. Approve the modified "INEL Site...

  13. Independent Oversight Focused Safety Management Evaluation, Idaho...

    Broader source: Energy.gov (indexed) [DOE]

    January 2001 Focused Safety Management Evaluation of the Idaho National Engineering and Environmental Laboratory This report provides the results of an evaluation of the integrated...

  14. Idaho National Engineering Laboratory Federal Facility Agreement...

    Office of Environmental Management (EM)

    Federal Facility Agreement and Consent Order State Idaho Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA Scope Summary Ensure that the environmental impacts...

  15. Enforcement Letter, Lockheed Martin Idaho Technologies Company...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Company related to a Repetitive Problem with Instrument Operability at the Idaho National Engineering and Environmental Laboratory On August 4, 1998, the U.S. Department of Energy...

  16. Idaho Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

  17. MOUNTAIN LAKE USER HANDBOOK

    E-Print Network [OSTI]

    Huang, Wei

    MOUNTAIN LAKE BIOLOGICAL STATION USER HANDBOOK Updated: 02 June 2015 #12;2 #12;3 Fundamental Code, and Purchases ------------------------------------------------------------ 14 The Mountain Lake Lodge;4 #12;5 Welcome Welcome to the Mountain Lake Biological Station! MLBS was established in 1929

  18. GREEN MOUNTAIN MORRIS DANCERS

    E-Print Network [OSTI]

    GREEN MOUNTAIN MORRIS DANCERS A young men's team performing Morris & Sword dances from England Mountain (boys) and Maple Leaf (girls) will be recruiting new members in January 2009, typically 6th grade, but as a springtime dance, to awaken the earth. The Green Mountain Morris and Maple Leaf Morris are based in Norwich

  19. Department of Energy Designates the Idaho National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Designates the Idaho National Laboratory Advanced Test Reactor as a National Scientific User Facility Department of Energy Designates the Idaho National Laboratory Advanced...

  20. Section 3116 Determination for Idaho Nuclear Technology and Engineerin...

    Office of Environmental Management (EM)

    3116 Determination for Idaho Nuclear Technology and Engineering Center Tank Farm Facility, signed by Secretary Samuel W. Bodman Section 3116 Determination for Idaho Nuclear...

  1. Idaho National Engineering Laboratory Consent Order, June 14...

    Office of Environmental Management (EM)

    Idaho National Engineering & Environmental Laboratory Consent Order 39-4413 State Idaho Agreement Type Consent Order Legal Driver(s) RCRA Scope Summary Resolve situations which...

  2. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    11 Preliminary Notice of Violation, Lockheed Martin Idaho Technologies Company - EA-98-11 September 21, 1998 Issued to Lockheed Martin Idaho Technologies Company, related to...

  3. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    June 4, 1998 Preliminary Notice of Violation issued to Lockheed Martin Idaho Technologies Company, related to a Radioactive Material Release at the Idaho National Engineering and...

  4. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Company related to Work Process Deficiencies at the Test Reactor Area and Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory,...

  5. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Idaho Technologies Company related to Unplanned Internal Radiation Exposures at the Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory,...

  6. AVTA: Idaho National Laboratory Experimental Hybrid Shuttle Bus Testing Results

    Broader source: Energy.gov [DOE]

    The following report describes testing results of the Idaho National Laboratory's demonstration hybrid shuttle bus. This research was conducted by Idaho National Laboratory.

  7. AVTA: Idaho National Laboratory Experimental Hybrid Shuttle Bus...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho National Laboratory Experimental Hybrid Shuttle Bus Testing Results AVTA: Idaho National Laboratory Experimental Hybrid Shuttle Bus Testing Results The Vehicle Technologies...

  8. Idaho Public Utilities Commission Approves Neal Hot Springs Power...

    Open Energy Info (EERE)

    Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Idaho Public...

  9. Voluntary Protection Program Onsite Review, Idaho Cleanup Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cleanup Project- June 2007 Voluntary Protection Program Onsite Review, Idaho Cleanup Project- June 2007 June 2007 Evaluation to determine whether the Idaho Cleanup Project is...

  10. Idaho Waste Treatment Facility Improves Worker Safety and Efficiency...

    Office of Environmental Management (EM)

    Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer...

  11. Voluntary Protection Program Onsite Review, IDAHO NATIONAL LABORATORY...

    Office of Environmental Management (EM)

    IDAHO NATIONAL LABORATORY Battelle Energy Alliance, LLC May 2006 Voluntary Protection Program Onsite Review, IDAHO NATIONAL LABORATORY Battelle Energy Alliance, LLC May 2006 May...

  12. MAJOR CONFORMED CONTRACTS LINKS Site/Project Contract Link Idaho

    Office of Environmental Management (EM)

    MAJOR CONFORMED CONTRACTS LINKS SiteProject Contract Link Idaho Idaho Cleanup Project http:www.id.doe.govdoeidICPContractICPContract.htm Advance Mixed Waste Treatment http:...

  13. DOE's Idaho National Lab Issues Request for Proposals for Engineering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE's Idaho National Lab Issues Request for Proposals for Engineering and Design on NGNP DOE's Idaho National Lab Issues Request for Proposals for Engineering and Design on NGNP...

  14. Secretary Moniz Announces Travel to Alaska, Idaho, Wyoming, Missouri...

    Office of Environmental Management (EM)

    to Alaska, Idaho, Wyoming, Missouri to Discuss Energy Opportunities and Attend Dedication of Kansas City Plant Secretary Moniz Announces Travel to Alaska, Idaho, Wyoming,...

  15. Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...

    Energy Savers [EERE]

    Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition Strategy Lessons Learned Report, NNSA, Feb 2010 Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...

  16. City of Idaho Falls, Idaho (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtdEllsworth,Hoisington, KansasHunnewell, Missouri (UtilityIdaho

  17. Rekindling the flame: reconstructing a fire history for Peters Mountain, Giles County, Virginia 

    E-Print Network [OSTI]

    Hoss, Jennifer Ann

    2009-05-15

    Beginning in the late 1930s, fire exclusion has drastically altered the vegetation dynamics of the southern Appalachian Mountains. Extremely low fire frequency has allowed for more shade-tolerant species to invade once predominantly open forests...

  18. Hydrologic control of nitrogen removal, storage, and export in a mountain stream Robert O. Hall, Jr.,a,* Michelle A. Baker,b Christopher D. Arp,b,1 and Benjamin J. Kocha,c

    E-Print Network [OSTI]

    Hall Jr., Robert O.

    Hydrologic control of nitrogen removal, storage, and export in a mountain stream Robert O. Hall, Jr and export in streams and rivers should vary with flow regime, yet most studies of stream nutrient) to measure nitrate (NO { 3 ) uptake, storage, and export in a mountain stream, Spring Creek, Idaho, U.S.A. We

  19. Idaho Science, Technology, Engineering and Mathematics Overview

    ScienceCinema (OSTI)

    None

    2013-05-28

    Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  20. Idaho Code | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei | Open Energy2010)Texas) Jump to:Icecap LtdIdaho

  1. Air pollution, precipitation chemistry and forest health in the Retezat Mountains,

    E-Print Network [OSTI]

    Air pollution, precipitation chemistry and forest health in the Retezat Mountains, Southern Station, 4955 Canyon Crest Drive, Riverside, CA, USA b Forest Research and Management Institute, Bucharest, Romania c Forest Research and Management Institute, Simeria, Romania d USDA Forest Service, Rocky Mountain

  2. FOREST LIGHT AND STRUCTURE IN RELATION TO DISTURBANCES: COMPARING MOUNTAIN PINE

    E-Print Network [OSTI]

    FOREST LIGHT AND STRUCTURE IN RELATION TO DISTURBANCES: COMPARING MOUNTAIN PINE BEETLE, WILDFIRE of Thesis: Forest light and structure in relation to disturbances: comparing mountain pine beetle, wildfire light environment and structure of lodgepole pine forests in the southern interior of British Columbia

  3. ACULEATA HYMENOPTERA OF SAND MOUNTAIN AND BLOW SAND MOUNTAINS, NEVADA

    E-Print Network [OSTI]

    Hanks, Lawrence M.

    ACULEATA HYMENOPTERA OF SAND MOUNTAIN AND BLOW SAND MOUNTAINS, NEVADA R. W. Rust1, L. !\\1. Hanks collected from Sand !\\1ountain and Blow Sand Mountains, Nevada. Four species are considered new to science and none are considered endemic to ei ther dune area. Sand Mountain and Blow Sand Mountains were visited 19

  4. Independent Oversight Inspection, Idaho National Laboratory- August 2007

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Programs at the Idaho National Laboratory's Materials and Fuels Complex

  5. Independent Oversight Inspection, Idaho National Laboratory- June 2005

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Programs at the Idaho National Laboratory Advanced Test Reactor

  6. Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presenter: Bentley Harwood, Advanced Test Reactor Nuclear Safety Engineer Battelle Energy Alliance Idaho National Laboratory

  7. ALLUVIAL SCRUB VEGETATION IN COASTAL SOUTHERN CALIFORNIA1 Ted L. Hanes, Richard D. Friesen, and Kathy Keane2

    E-Print Network [OSTI]

    ALLUVIAL SCRUB VEGETATION IN COASTAL SOUTHERN CALIFORNIA1 Ted L. Hanes, Richard D. Friesen deposits along the coastal side of major mountains of southern California. This vegetation type is adapted coastal and desert dunes, coastal val- leys and foothills, interior mountains and desert flats. Holland

  8. Idaho National Engineering & Environmental Laboratory Consent...

    Office of Environmental Management (EM)

    Consent Order 39-4413 State Idaho Agreement Type Consent Order Legal Driver(s) RCRA Scope Summary Resolve the Notice of Noncompliance (NON), Docket No. 1090-1-24-6601, issued...

  9. Preliminary Notice of Violation, International Isotopes Idaho...

    Broader source: Energy.gov (indexed) [DOE]

    Ventilation Filters at the Test Reactor Area Hot Cell Facility at the Idaho National Engineering and Environmental Laboratory, On May 19, 2000, the U.S. Department of Energy...

  10. Idaho Power- Irrigation Efficiency Rewards Program

    Broader source: Energy.gov [DOE]

    Idaho Power provides incentives for energy-efficient equipment and design in irrigation systems. Incentives are available for a wide variety of specific equipment types as well as custom projects....

  11. Retrofitting the Streetlights in Boise, Idaho

    ScienceCinema (OSTI)

    Young, Clay; Oliver, LeAnn; Bieter, David; Johnson, Michael; Oldemeyer, Neal

    2013-05-29

    Boise, Idaho is using an energy efficiency grant to retrofit hundreds of streetlights throughout the downtown area with energy-efficient LED bulbs, which will save money and improve safety and local quality of life.

  12. Idaho Falls Power- Residential Weatherization Loan Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Residential customers with permanently installed electric heat who receive service from the City of Idaho Falls, are eligible for 0% weatherization loans. City Energy Service will conduct an energy...

  13. Contractor Fee Payments- Idaho Operations Office

    Broader source: Energy.gov [DOE]

    See the amount of fees earned on EM's major contracts for each evaluated fee period and the total contract to date at the Idaho Operations Office on these charts.

  14. Retrofitting the Streetlights in Boise, Idaho

    Broader source: Energy.gov [DOE]

    Boise, Idaho is using an energy efficiency grant to retrofit hundreds of streetlights throughout the downtown area with energy-efficient LED bulbs, which will save money and improve safety and...

  15. METEOROLOGYMETEOROLOGYMETEOROLOGYMETEOROLOGY 280280280280 Intro to Mountain MeteorologyIntro to Mountain MeteorologyIntro to Mountain MeteorologyIntro to Mountain Meteorology

    E-Print Network [OSTI]

    Clements, Craig

    1 METEOROLOGYMETEOROLOGYMETEOROLOGYMETEOROLOGY 280280280280 Intro to Mountain MeteorologyIntro to Mountain MeteorologyIntro to Mountain MeteorologyIntro to Mountain Meteorology Course Description This course will introduce the student to meteorological phenomena associated with mountain environments

  16. THE FALLACY OF UPPER SNAKE FLOW AUGMENTATION THERE IS NO NEED TO DRAIN IDAHO FOR SALMON

    E-Print Network [OSTI]

    PREPARED BY IDAHO WATER USERS THE IDAHO WATER USERS ARE COMPOSED OF: THE COMMITTEE OF NINE AND THE IDAHO WATER USERS ASSOCIATION 410 S. ORCHARD, SUITE 144 BOISE, IDAHO 83705 JUNE 2001 #12;i CONTENTS...................................................................................... 7 Water Conservation

  17. March 2005 Page 1 of 2 CDCResearchInvolvingRadiationReleasesfromtheIdahoNational

    E-Print Network [OSTI]

    is the Idaho National Laboratory? The Idaho National Laboratory (INL) is on the upper Snake River Plain

  18. EA-1857: Wind Turbine Power Generation Complex at Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    This EA would evaluate the environmental impacts of the proposed wind turbine power generation complex at Idaho National Laboratory, Idaho.

  19. Origami DNA model Mountain fold

    E-Print Network [OSTI]

    Csürös, Miklós

    Origami DNA model Mountain fold Solid lines are "mountains" and are to be folded away from you with the peak pointing towards you. 1. Fold all solid lines going lengthwise down the page into "mountain folds fold 2. Fold all dashed lines going lengthwise down the page into "valley folds". Mountain folds along

  20. Gaglardi Way Burnaby Mountain Parkway

    E-Print Network [OSTI]

    Kavanagh, Karen L.

    Mountain Parkway To Hastings Street University Drive East Gaglardi Way University Drive East Tower Road

  1. Enterprise Assessments Targeted Review, Idaho Site AMWTP Report...

    Energy Savers [EERE]

    Targeted Review, Idaho Site AMWTP Report - January 2015 January, 2015 Review of the Fire Protection Program at the Idaho Site Advanced Mixed Waste Treatment Project The U.S....

  2. Innovative Idaho Site Crews Find Ways to Make Waste Retrieval...

    Energy Savers [EERE]

    out of Idaho." Most of the waste was sent to the Idaho site from the now-closed Rocky Flats site near Denver from the late 1960s through the early 1970s. Located in a...

  3. Idaho Site Completes Cleanup with Help from Workers who Shipped...

    Office of Environmental Management (EM)

    Ago IDAHO FALLS, Idaho - From the 1950s until the 1980s, workers at the former Rocky Flats Plant near Denver, Colo., sent hundreds of thousands of barrels and boxes of...

  4. Idaho Power- Rebate Advantage for New Manufactured Homes

    Broader source: Energy.gov [DOE]

    Idaho Power is offering a $1000 sales rebate to customers who purchase a new ENERGY STAR all-electric manufactured home and connect that home to an Idaho Power residential account. In addition, the...

  5. Idaho Right-of-Way Encroachment Application and Permit - Other...

    Open Energy Info (EERE)

    Idaho Right-of-Way Encroachment Application and Permit - Other Encroachments Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Idaho Right-of-Way...

  6. Distributed Wind Energy in Idaho

    SciTech Connect (OSTI)

    Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

    2009-01-31

    Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. � Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. � Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. � Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind�s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

  7. 2013 Annual Planning Summary for the Idaho Operations Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Idaho Operations Office.

  8. Exploring the Raft River geothermal area, Idaho, with the dc...

    Open Energy Info (EERE)

    the dc resistivity method (Abstract) Abstract GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; ELECTRICAL SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; ELECTRIC CONDUCTIVITY;...

  9. Voluntary Protection Program Onsite Review, Idaho Cleanup Project- October 2010

    Office of Energy Efficiency and Renewable Energy (EERE)

    Evaluation to determine whether Idaho Cleanup Project is continuing to perform at a level deserving DOE-VPP Star recognition.

  10. DOE Chooses Idaho Treatment Group, LLC to Disposition Waste at the Advanced Mixed Waste Treatment Project: Contract will continue cleanup and waste operations at the Idaho Site

    Broader source: Energy.gov [DOE]

    Idaho Falls – In order to further meet the U.S. Department of Energy’s commitments to the citizens of the state of Idaho, the DOE today announced that it has selected Idaho Treatment Group, LLC (ITG) to perform waste processing at the Advanced Mixed Waste Treatment Project (AMWTP) at DOE’s Idaho Site near Idaho Falls.

  11. Idaho Site Launches Corrective Actions Before Restarting Waste Treatment Facility

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – The Idaho site and its cleanup contractor have launched a series of corrective actions they will complete before safely resuming startup operations at the Integrated Waste Treatment Unit (IWTU) following an incident in June that caused the new waste treatment facility to shut down.

  12. WATERFOWL USE OF WASTEWATER PONDS ON THE IDAHO NATIONAL

    E-Print Network [OSTI]

    WATERFOWL USE OF WASTEWATER PONDS ON THE IDAHO NATIONAL ENGINEERING LABORATORY Lester D. Flake, SD 57007~1696 ABSTRACT Wastewater ponds attract a variety of waterfowl to the Idaho National Engineering Laboratory (INEL) in southeastern Idaho. We censused waterfowl on INEL ponds monthly from August

  13. Seismic Reflection Results: Stewart Gulch Region, Boise, Idaho

    E-Print Network [OSTI]

    Barrash, Warren

    Seismic Reflection Results: Stewart Gulch Region, Boise, Idaho Report Prepared for The Terteling) Boise State University Boise, Idaho 83725 Technical Report BSU CGISS 96-04 1 December 1996 #12;SEISMIC REFLECTION RESULTS: STEWART GULCH REGION, BOISE, IDAHO 1 SEISMIC REFLECTION RESULTS: STEWART GULCH REGION

  14. Idaho National Laboratory Cultural Resource Management Plan

    SciTech Connect (OSTI)

    Julie Braun Williams

    2013-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at Idaho National Laboratory in southeastern Idaho. The Idaho National Laboratory is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through regular reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

  15. Mountain View, California: Fiat Res Publica

    E-Print Network [OSTI]

    Tung, Gregory

    1989-01-01

    Mountain View, California: Fiat Res Publica Gregory Tungundifferen­ tiated. In Mountain View, California (populationtoward San Francisco. Mountain View is avoiding a "just say

  16. Rocky Mountain Futures: An Ecological Perspective

    E-Print Network [OSTI]

    Aguero, Tania

    2003-01-01

    changes in the Rocky Mountains, global warming, and severalReview: Rocky Mountain Futures: An Ecological Perspective ByJill S. Baron (Ed. ). Rocky Mountain Futures: An Ecological

  17. EA-1050: Test Area North Pool Stabilization Project, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the U.S. Department of Energy's Idaho National Engineering Laboratory's proposal to remove 344 canisters of Three Mile Island core debris and...

  18. Idaho is the nation's largest producer, packer, and processor of potatoes. Idaho has been the number one potato-producing state for the past 50 years. The

    E-Print Network [OSTI]

    O'Laughlin, Jay

    processing, and frozen processing--in 2002. Idaho's potato industry is concen- trated along the Snake River Plain, extending from eastern Idaho through the Magic Valley to western Idaho's Treasure Valley

  19. Idaho farmers' opinions and preferences on

    E-Print Network [OSTI]

    O'Laughlin, Jay

    Programs and Budget Priorities...8 Commodity Programs and Risk Management Policy...10 Conservation...16 Related Policy Issues: Expenditure of Research Funds...17 Related Policy Issues: Labor...17 for spec- ified programs...9 4: Idaho farmers' opinions on potential changes in commodity and risk

  20. Idaho National Laboratory Cultural Resource Management Plan

    SciTech Connect (OSTI)

    Lowrey, Diana Lee

    2009-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

  1. Idaho National Laboratory Cultural Resource Management Plan

    SciTech Connect (OSTI)

    Lowrey, Diana Lee

    2011-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

  2. Moving Beyond the Yucca Mountain

    E-Print Network [OSTI]

    Moving Beyond the Yucca Mountain Viability Assessment U.S. Nuclear Waste Technical Review Board the Yucca Mountain site in Nevada as the sole location to be studied for possi- ble development of the Yucca Mountain site. The U.S. Department of Energy (DOE) recently published Viability As- sessment

  3. Depositional and diagenetic characteristics of Waulsortian-type buildups in the Lodgepole formation: Big Snowy Mountains, Montana, and Dickinson Field, North Dakota 

    E-Print Network [OSTI]

    Adams, Andrea Suzanne

    1999-01-01

    Three distinct lower Mississippian (Kinderhookian) carbonate buildups are found at the mouth of Swimming Woman Canyon, located on the southern flank of the Big Snowy Mountains, in central Montana. These buildups are composed ...

  4. Fission-track tectonic studies of the Transantarctic Mountains, Beardmore Glacier area

    SciTech Connect (OSTI)

    Fitzgerald, P.G.

    1986-01-01

    The Transantarctic Mountains are a major transcontinental range stretching for some 4000 kilometers, varying from 200-400 kilometers in width, and having elevations up to 4500 meters. The uplift and formation of the Transantarctic Mountains have always been something of an enigma, but recent apatite fission-track analysis is providing important new information not only about their uplift history but also about the implications of that uplift history for the glacial history of Antarctica as a whole. The main field objective of this project was to collect samples for fission-track analysis to determine the timing and rate of uplift of the Transantarctic Mountains and measure relative vertical displacements across faults within the range. Results from southern Victoria Land indicate that uplift of the Transantarctic Mountains was initiated at about 50 million years ago and since that time the mountains have undergone some 5 kilometers of uplift at an average rate of 100 meters per million years. It is important to realize, however, that this is an average rate and may well conceal pulses of faster and slower uplift or even periods of subsidence. The amount of uplift across the mountain range is differential; from the axis of maximum uplift about 30 kilometers inland of the Victoria Land coast, the mountains dip gently westward under the polar ice cap. The study was extended to the Beardmore Glacier area to see whether the uplift history and tectonics varies from that observed in southern Victoria Land.

  5. State geothermal commercialization programs in ten Rocky Mountain states. Semi-annual progress report, July-December 1979

    SciTech Connect (OSTI)

    Griffith, J.L. (comp.)

    1980-08-01

    The activities and findings of the ten state teams participating in the Rocky Mountain Basin and Range Regional Hydrothermal Commercialization Program for the period are described. A summary of the state projects, compilation of project accomplishments, summary of findings, and a description of the major conclusions and recommendations are presented. Also included are chapters on the commercialization activities carried out by individual teams in each state: Arizona, Colorado, Idaho, Montana, Nevada, New-Mexico, North Dakota, South Dakota, Utah, and Wyoming. (MHR)

  6. Modeling studies of mountain-scale radionuclide transport in the unsaturated zone at Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Moridis, George J.; Seol, Yongkoo; Wu, Yu-Shu

    2003-01-01

    Investigations at Yucca Mountain - The Potential Repositoryin the Unsaturated Zone, Yucca Mountain, Nevada, ResourcesMODELING STUDIES OF MOUNTAIN-SCALE RADIONUCLIDE TRANSPORT IN

  7. A Mountain-Scale Monitoring Network for Yucca Mountain Performance Confirmation

    E-Print Network [OSTI]

    Freifeld, Barry; Tsang, Yvonne

    2006-01-01

    A Mountain-Scale MonitoringNetwork for Yucca Mountain Performance Confirmation Barrythe performance of Yucca Mountain is required by 10 CFR Part

  8. Field trip guide to selected outcrops, Arbuckle Mountains, Oklahoma

    SciTech Connect (OSTI)

    1991-11-17

    The Arbuckle Mountains, named for Brigadier General Matthew Arbuckle, are located in south-central Oklahoma. The formations that comprise the Arbuckle Mountains have been extensively studied for hydrocarbon source rock and reservoir rock characteristics that can be applied to the subsurface in the adjacent Anadarko and Ardmore basins. Numerous reports and guidebooks have been written concerning the Arbuckle Mountains. A few important general publications are provided in the list of selected references. The purpose of this handout is to provide general information on the geology of the Arbuckle Mountains and specific information on the four field trip stops, adapted from the literature. The four stops were at: (1) Sooner Rock and Sand Quarry; (2) Woodford Shale; (3) Hunton Anticline and Hunton Quarry; and (4) Tar Sands of Sulfur Area. As part of this report, two papers are included for more detail: Paleomagnetic dating of basinal fluid migration, base-metal mineralization, and hydrocarbon maturation in the Arbuckle Mountains, Oklahoma and Laminated black shale-bedded chert cyclicity in the Woodford Formation, southern Oklahoma.

  9. Energy Incentive Programs, Idaho | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication3-EDepartment ofArizona Energy Incentive Programs,Georgia EnergyIdaho

  10. Tectonic-sedimentary evolution of the northern margin of Gondwana during Late Palaeozoic – Early Cenozoic time in the Eastern Mediterranean region: evidence from the Central Taurus Mountains, Turkey. 

    E-Print Network [OSTI]

    Mackintosh, Peter W

    2008-01-01

    The Taurus Mountains are an E-W trending mountain range in southern Turkey, with an elevation of up to 3500 m. In the south central Taurides, the Beysehir-Hoyran-Hadim nappes, a series of thrust sheets of Palaeozoic to ...

  11. Evolution of the unsaturated zone testing at Yucca Mountain

    E-Print Network [OSTI]

    Wang, J.S.Y.; Bodvarsson, G.S.

    2002-01-01

    INTO DRIFTS AT YUCCA MOUNTAIN." JOURNAL OF CONTAMINANTFRACTURES AT YUCCA MOUNTAIN." JOURNAL OF CONTAMINANTPneumatic Testing at Yucca Mountain." International Journal

  12. Mountainous | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformationOliver, Pennsylvania: EnergyPark,Mountainous Jump to:

  13. Idaho Falls Power- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Idaho Falls Power offers rebates to eligible customers for installing energy efficient equipment and pursuing whole building efficiency measures.  Rebates rebates are available for air source and...

  14. Reconnaissance geothermal exploration at Raft River, Idaho from...

    Open Energy Info (EERE)

    library Journal Article: Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Abstract GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; INFRARED SURVEYS;...

  15. Idaho Operations Office: American Recovery and Reinvestment Act Update

    ScienceCinema (OSTI)

    Provencher, Rick

    2012-06-14

    An update from Idaho National Laboratory, Rick Provencher addresses the progress that has been made due to the American Recovery and Reinvestment Act.

  16. Idaho Site Closes Out Decontamination and Decommissioning Project...

    Office of Environmental Management (EM)

    demolish CPP-601, a building used during used nuclear fuel reprocessing at the Idaho Nuclear Technology and Engineering Center. The Engineering Test Reactor vessel is shown...

  17. Geothermal investigations in Idaho. Part 1. Geochemistry and...

    Open Energy Info (EERE)

    Geothermal investigations in Idaho. Part 1. Geochemistry and geologic setting of selected thermal waters Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  18. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Assurance, Emergency Communications, and other issues at the Idaho National Engineering and Environmental laboratory, (EA-1999-07) On August 18, 1999, the U.S....

  19. DOE's Idaho National Lab Issues Request for Proposals for Engineering...

    Broader source: Energy.gov (indexed) [DOE]

    of Energy's Idaho National Laboratory today issued a Request for Proposals (RFP) for engineering services in support of development of NGNP. This RFP is for pre-conceptual...

  20. EIS-0290: Idaho National Engineering and Environmental Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    of a proposed waste treatment facility at the Idaho National Environmental and Engineering Laboratory (INEEL). PUBLIC COMMENT OPPORTUNITIES None available at this time....

  1. Idaho High-Level Waste & Facilities Disposition, Final Environmental...

    Office of Environmental Management (EM)

    must prepare an Environmental Impact Statement (EIS). Copies of the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement are available at the...

  2. Idaho National Laboratory - WAG-1 | Department of Energy

    Office of Environmental Management (EM)

    Laboratory - WAG-1 January 1, 2014 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report Installation Name, State: Idaho National...

  3. Idaho National Laboratory (INL) Seismic Risk Assessment Project...

    Office of Environmental Management (EM)

    Risk Assessment Project: Implementation of Proposed Methodology at INL and Associated Risk Studies Idaho National Laboratory (INL) Seismic Risk Assessment Project: Implementation...

  4. Occupational Injury & Illness System (01&15) PIA, Idaho National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tracking Database, INL Energy Employees' Occupational Illness Compensation Program Occupational Medicine - Assistant PIA, Idaho National Laboratory VisitDosimBadgeTrckg-PIA.pdf...

  5. Freedom of Information and Privacy Act Database PIA, Idaho Operations...

    Broader source: Energy.gov (indexed) [DOE]

    Office More Documents & Publications PIA - Security Clearance Work Tracking and Budget System TRAIN-PIA.pdf Occupational Medicine - Assistant PIA, Idaho National Laboratory...

  6. Once nearly extinct, Idaho sockeye regaining fitness advantage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the wild once more. A newly published analysis by the Idaho Department of Fish and Game and the Northwest Fisheries Science Center shows endangered Snake River...

  7. ,"Idaho Natural Gas Imports Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2014 ,"Release Date:","9...

  8. ,"Idaho Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  9. Saturated Zone Plumes in Volcanic Rock: Implications for Yucca Mountain

    SciTech Connect (OSTI)

    S. Kelkar; R. Roback; B. Robinson; G. Srinivasan; C. Jones; P. Reimus

    2006-02-14

    This paper presents a literature survey of the occurrences of radionuclide plumes in saturated, fractured rocks. Three sites, Idaho National laboratory, Hanford, and Oak Ridge are discussed in detail. Results of a modeling study are also presented showing that the length to width ratio of a plume starting within the repository footprint at the Yucca Mountain Project site, decreases from about 20:1 for the base case to about 4:1 for a higher value of transverse dispersivity, indicating enhanced lateral spreading of the plume. Due to the definition of regulatory requirements, this lateral spreading does not directly impact breakthrough curves at the 18 km compliance boundary, however it increases the potential that a plume will encounter reducing conditions, thus significantly retarding the transport of sorbing radionuclides.

  10. Dendrochronology-based fire history of mixed-conifer forests in the San Jacinto Mountains, California

    E-Print Network [OSTI]

    Stephens, Scott L.

    Dendrochronology-based fire history of mixed-conifer forests in the San Jacinto Mountains. Introduction Characterizing fire regimes and fire seasonality in Californian mixed-conifer forests is difficult, 2003). Fire regimes in mixed-conifer forests in southern California have yet to be characterised using

  11. Yucca Mountain - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentatabout Who Works for NIFYucca Mountain In 2009, the

  12. THE IDAHO NATIONAL LABORATORY BERYLLIUM TECHNOLOGY UPDATE

    SciTech Connect (OSTI)

    Glen R. Longhurst

    2007-12-01

    A Beryllium Technology Update meeting was held at the Idaho National Laboratory on July 18, 2007. Participants came from the U.S., Japan, and Russia. There were two main objectives of this meeting. One was a discussion of current technologies for beryllium in fission reactors, particularly the Advanced Test Reactor and the Japan Materials Test Reactor, and prospects for material availability in the coming years. The second objective of the meeting was a discussion of a project of the International Science and Technology Center regarding treatment of irradiated beryllium for disposal. This paper highlights discussions held during that meeting and major conclusions reached

  13. Panther Creek, Idaho, Habitat Rehabilitation, Final Report.

    SciTech Connect (OSTI)

    Reiser, Dudley W.

    1986-01-01

    The purpose of the project was to achieve full chinook salmon and steelhead trout production in the Panther Creek, Idaho, basin. Plans were developed to eliminate the sources of toxic effluent entering Panther Creek. Operation of a cobalt-copper mine since the 1930's has resulted in acid, metal-bearing drainage entering the watershed from underground workings and tailings piles. The report discusses plans for eliminating and/or treating the effluent to rehabilitate the water quality of Panther Creek and allow the reestablishment of salmon and trout spawning runs. (ACR)

  14. Kamiah, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,New York:Just HotKahaluu,CompositesKamiah, Idaho:

  15. Kooskia, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrderInformationKizildereTexas: EnergyEnergyKooskia, Idaho:

  16. Buhl, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick, Maine: Energy ResourcesBuhl, Idaho: Energy

  17. PacifiCorp (Idaho) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC Jump to:3 of Mason County JumpPVA TePlaIdaho

  18. Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen RiverScoringUtilitiesRenov veis do BrasilIcsaCoIdaho:

  19. Tetonia, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarketMemberITerraPower Jump to:Tetonia, Idaho:

  20. Cottonwood, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)|Alabama: Energy Resources Jump to: navigation,Idaho: Energy

  1. Idaho Meeting #2 | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei | Open Energy2010)Texas) JumpFish &IS 61Idaho

  2. Aberdeen, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan)data bookresult9)ATS Lighting IncAbener GhenovaIdaho:

  3. Categorical Exclusion Determinations: Idaho | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectric powerMeasures to reduce| DepartmentHawaii.ofIdaho.

  4. Idaho National Laboratory Technology Marketing Summaries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.FoodHydropower,PrincipalIdaho National

  5. Native Americans and Yucca Mountain: A revised and updated summary report on research undertaken between 1987 and 1991; Volume 2

    SciTech Connect (OSTI)

    Fowler, C.S.

    1991-10-15

    This report consists of Yucca Mountain Project bibliographies. It is the appendix to a report that summarizes data collected between September 1986 and September 1988 relative to Native American concerns involving the potential siting of a high-level nuclear waste repository at Yucca Mountain, Nevada. The data were collected from Western Shoshone and Southern Paiute people upon whose aboriginal lands the repository potentially is to be located. Western Shoshone people involved in the study were those resident or affiliated with reservation communities at Yomba and Duckwater, Nevada, and Death Valley, California. Southern Paiute people were at reservation communities at Moapa and Las Vegas. Additional persons of Western Shoshone and Southern Paiute descent were interviewed at Beatty, Tonopah, Caliente, Pahrump, and Las Vegas, Nevada. The work was part of a larger project of socioeconomic studies for the State of Nevada`s Nuclear Waste Projects office, conducted by Mountain West of Phoenix, Arizona.

  6. Yucca Mountain Waste Package Closure System Robotic Welding and Inspection System

    SciTech Connect (OSTI)

    C. I. Nichol; D. P. Pace; E. D. Larsen; T. R. McJunkin; D. E. Clark; M. L. Clark; K. L. Skinner; A. D. Watkins; H. B. Smartt

    2011-10-01

    The Waste Package Closure System (WPCS), for the closure of radioactive waste in canisters for permanent storage of spent nuclear fuel (SNF) and high-level waste in the Yucca Mountain Repository was designed, fabricated, and successfully demonstrated at the Idaho National Laboratory (INL). This article focuses on the robotic hardware and tools necessary to remotely weld and inspect the closure lid welds. The system was operated remotely and designed for use in a radiation field, due to the SNF contained in the waste packages being closed.

  7. EA-1954: Resumption of Transient Testing of Nuclear Fuels and Materials at the Idaho National Laboratory, Idaho

    Broader source: Energy.gov [DOE]

    This Environmental Assessment (EA) evaluates U.S. Department of Energy (DOE) activities associated with its proposal to resume testing of nuclear fuels and materials under transient high-power test conditions at the Transient Reactor Test (TREAT) Facility at the Idaho National Laboratory. The State of Idaho and Shoshone-Bannock Tribes are cooperating agencies.

  8. YUCCA MOUNTAIN PROJECT - A BRIEFING --

    SciTech Connect (OSTI)

    NA

    2003-08-05

    This report has the following articles: Nuclear waste--a long-term national problem; Spent nuclear fuel; High-level radioactive waste; Radioactivity and the environment; Current storage methods; Disposal options; U.S. policy on nuclear waste; The focus on Yucca Mountain; The purpose and scope of the Yucca Mountain Project; The approach for permanently disposing of waste; The scientific studies at Yucca Mountain; The proposed design for a repository at Yucca Mountain; Natural and engineered barriers would work together to isolate waste; Meticulous science and technology to protect people and the environment; Licensing a repository; Transporting waste to a permanent repository; The Environmental Impact Statement for a repository; Current status of the Yucca Mountain Project; and Further information available on the Internet.

  9. EIS-0074: Long-Term Management of Defense High-Level Radioactive Wastes Idaho Chemical Processing Plant, Idaho National Engineering Lab, Idaho

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this statement to analyze the environmental implications of the proposed selection of a strategy for long-term management of the high-level radioactive wastes generated as part of the national defense effort at the Department's Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. The project was cancelled after the Draft Environmental Impact Statement was produced.

  10. Evidence for Gropun-Water Stratification Near Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    K. Futa; B.D. Marshall; Z.E. Peterman

    2006-03-24

    Major- and trace-element concentrations and strontium isotope ratios (strontium-87/strontium-86) in samples of ground water potentially can be useful in delineating flow paths in the complex ground-water system in the vicinity of Yucca Mountain, Nevada. Water samples were collected from boreholes to characterize the lateral and vertical variability in the composition of water in the saturated zone. Discrete sampling of water-producing intervals in the saturated zone includes isolating borehole sections with packers and extracting pore water from core obtained by sonic drilling. Chemical and isotopic stratification was identified in the saturated zone beneath southern Fortymile Wash.

  11. Idaho National Engineering Laboratory Waste Management Operations Roadmap Document

    SciTech Connect (OSTI)

    Bullock, M.

    1992-04-01

    At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER&WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG&G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL`s roadmapping efforts.

  12. KV04: Baxter Mountain This route visits

    E-Print Network [OSTI]

    Reiter, Clifford A.

    11 KV04: Baxter Mountain General This route visits Baxter Mountain which is a short hike that has between Hurricane and Green Mountains. The hike is relatively short although there is a good elevation Description The trail begins on Rt9N directly across from Hurricane Mountain Road. From Keene Valley, go north

  13. Rocky Mountain Research Station 20142017 Strategic Framework

    E-Print Network [OSTI]

    Rocky Mountain Research Station 2014­2017 Strategic Framework #12;Rocky Mountain Research Station 240 West Prospect Fort Collins, CO 80526 (970) 498-1100 www.fs.fed.us/rmrs High mountain lake at GLEES (Glacier Lakes Ecosystem Experiments Site) #12;1ROCKY MOUNTAIN RESEARCH STATION -- 2014­2017 STRATEg

  14. Trans Mountain Response to SFU IR No. 2 Trans Mountain Pipeline ULC

    E-Print Network [OSTI]

    Kavanagh, Karen L.

    Trans Mountain Response to SFU IR No. 2 Trans Mountain Pipeline ULC Trans Mountain Expansion Terminal as well as key civil tasks. Request: (1) Please advise whether Trans Mountain has investigated Way and Burnaby Mountain Parkway either during normal operation of the tank farm, or in the event

  15. Santa Monica Mountain Steelhead Assessment Santa Monica Mountains Steelhead Habitat Assessment

    E-Print Network [OSTI]

    Keller, Ed

    Santa Monica Mountain Steelhead Assessment 1 Santa Monica Mountains Steelhead Habitat Assessment identify which basins in the Santa Monica Mountains (SMM) are most capable of supporting steelhead trout watersheds within the SMM. Field Setting Geology of the Santa Monica Mountains The Santa Monica Mountains

  16. Carbon monoxide (CO) maximum over the Zagros mountains in the Middle East: Signature of mountain venting?

    E-Print Network [OSTI]

    Jones, Dylan

    Carbon monoxide (CO) maximum over the Zagros mountains in the Middle East: Signature of mountain- posphere (MOPITT) satellite instrument. Enhanced CO is observed over the Zagros mountains of Iran), Carbon monoxide (CO) maximum over the Zagros mountains in the Middle East: Signature of mountain venting

  17. Idaho National Laboratory Quarterly Performance Analysis

    SciTech Connect (OSTI)

    Lisbeth Mitchell

    2014-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 60 reportable events (23 from the 4th Qtr FY14 and 37 from the prior three reporting quarters) as well as 58 other issue reports (including not reportable events and Significant Category A and B conditions) identified at INL from July 2013 through October 2014. Battelle Energy Alliance (BEA) operates the INL under contract DE AC07 051D14517.

  18. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2012-08-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  19. Idaho National Laboratory Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2008-04-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  20. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2010-10-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  1. Idaho National Laboratory Research & Development Impacts

    SciTech Connect (OSTI)

    Stricker, Nicole

    2015-01-01

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.

  2. Idaho National Engineering Laboratory: Annual report, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    The INEL underwent a year of transition in 1986. Success with new business initiatives, the prospects of even better things to come, and increased national recognition provided the INEL with a glimpse of its promising and exciting future. Among the highlights were: selection of the INEL as the preferred site for the Special Isotope Separation Facility (SIS); the first shipments of core debris from the Three Mile Island Unit 2 reactor to the INEL; dedication of three new facilities - the Fluorinel Dissolution Process, the Remote Analytical Laboratory, and the Stored Waste Experimental Pilot Plant; groundbreaking for the Fuel Processing Restoration Facility; and the first IR-100 award won by the INEL, given for an innovative machine vision system. The INEL has been assigned project management responsibility for the SDI Office-sponsored Multimegawatt Space Reactor and the Air Force-sponsored Multimegawatt Terrestrial Power Plant Project. New Department of Defense initiatives have been realized in projects involving development of prototype defense electronics systems, materials research, and hazardous waste technology. While some of our major reactor safety research programs have been completed, the INEL continues as a leader in advanced reactor technologies development. In April, successful tests were conducted for the development of the Integral Fast Reactor. Other 1986 highlights included the INEL's increased support to the Office of Civilian Radioactive Waste Management for complying with the Nuclear Waste Policy Act of 1982. Major INEL activities included managing a cask procurement program, demonstrating fuel assembly consolidation, and testing spent fuel storage casks. In addition, the INEL supplied the Tennessee Valley Authority with management and personnel experienced in reactor technology, increased basic research programs at the Idaho Research Center, and made numerous outreach efforts to assist the economies of Idaho communities.

  3. Preparing to Submit a License Application for Yucca Mountain

    SciTech Connect (OSTI)

    W.J. Arthur; M.D. Voegele

    2005-03-14

    In 1982, the U.S. Congress passed the Nuclear Waste Policy Act, a Federal law that established U.S. policy for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Congress amended the Act in 1987, directing the Department of Energy to study only Yucca Mountain, Nevada as the site for a permanent geologic repository. As the law mandated, the Department evaluated Yucca Mountain to determine its suitability as the site for a permanent geologic repository. Decades of scientific studies demonstrated that Yucca Mountain would protect workers, the public, and the environment during the time that a repository would be operating and for tens of thousands of years after closure of the repository. A repository at this remote site would also: preserve the quality of the environment; allow the environmental cleanup of Cold War weapons facilities; provide the nation with additional protection from acts of terrorism; and support a sound energy policy. Throughout the scientific evaluation of Yucca Mountain, there has been no evidence to disqualify Yucca Mountain as a suitable site for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Upon completion of site characterization, the Secretary of Energy considered the results and concluded that a repository at Yucca Mountain would perform in a manner that protects public health and safety. The Secretary recommended the site to the President in February 2002; the President agreed and recommended to Congress that the site be approved. The Governor of Nevada submitted a notice of disapproval, and both houses of Congress acted to override the disapproval. In July 2002, the President's approval allowed the Department to begin the process of submittal of a license application for Yucca Mountain as the site for the nation's first repository for spent nuclear fuel and high-level radioactive waste. Yucca Mountain is located on federal land in Nye County in southern Nevada, an arid region of the United States, approximately 100 miles (160 kilometers) northwest of Las Vegas (Figure 1). The location is remote from population centers, and there are no permanent residents within approximately 14 miles (23 km) of the site. Overall, Nye County has a population density of about two persons per square mile (two persons per 2.5 square km); in the vicinity of Yucca Mountain, it is significantly less. Yucca Mountain is a series of north-south-trending ridges extending approximately 25 miles (40 km), and consists of successive layers of fine-grained volcanic tuffs, millions of years old, underlain by older carbonate rocks. The alternating layers of welded and nonwelded volcanic tuffs have differing hydrologic properties that significantly impact the manner in which water moves through the mountain. The repository horizon will be in welded tuff located in the unsaturated zone, more than 1,000 feet (300 meters) above the water table in the present-day climate, and is expected to remain well above the water table during wetter future climate conditions. Future meteorology and climatology at Yucca Mountain are important elements in understanding the amount of water available to potentially interact with the waste.

  4. Ergonomic assessments of three Idaho National Engineering Laboratory cafeterias

    SciTech Connect (OSTI)

    Ostrom, L.T.; Romero, H.A.; Gilbert, B.G.; Wilhelmsen, C.A.

    1993-05-01

    The Idaho National Engineering Laboratory is a Department of Energy facility that performs a variety of engineering and research projects. EG&G Idaho is the prime contractor for the laboratory and, as such, performs the support functions in addition to technical, research, and development functions. As a part of the EG&G Idaho Industrial Hygiene Initiative, ergonomic assessments were conducted at three Idaho National Engineering Laboratory Cafeterias. The purposes of the assessments were to determine whether ergonomic problems existed in the work places and, if so, to make recommendations to improve the work place and task designs. The study showed there were ergonomic problems in all three cafeterias assessed. The primary ergonomic stresses observed included wrist and shoulder stress in the dish washing task, postural stress in the dish washing and food preparation tasks, and back stress in the food handling tasks.

  5. Idaho - IC 61-516 - Priority Designation for Electric Transmission...

    Open Energy Info (EERE)

    Idaho - IC 61-516 - Priority Designation for Electric Transmission Projects Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation:...

  6. Idaho's Advanced Mixed Waste Treatment Project Details 2013Accomplish...

    Broader source: Energy.gov (indexed) [DOE]

    Articles A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Innovative Technique Accelerates Waste Disposal at Idaho Site Only the...

  7. Idaho Site Advances Recovery Act Cleanup after Inventing Effective Treatment

    Broader source: Energy.gov [DOE]

    For the first time in history, workers at the Idaho site achieved success in the initial cleanup of potentially dangerous sodium in a decommissioned nuclear reactor using an innovative treatment...

  8. Idaho Falls Power- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Idaho Falls Power's Energy Efficiency Loan Program offers zero interest loans for qualifying customers to purchase and install efficient electric appliances. The program will loan up to 100% of the...

  9. Idaho National Laboratory FY12 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Kimberly Frerichs

    2013-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2012 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho.

  10. Idaho National Laboratory's FY11 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Kimberly Frerichs

    2012-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2011 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho.

  11. Gravity interpretation of the northern Overthrust Belt, Idaho and Wyoming 

    E-Print Network [OSTI]

    Silver, Wendy Ilene

    1979-01-01

    GRAVITY INTERPRETATION OF THE NORTHERN OVERTHRUST BELT, IDAHO AND 'vlYOMING A Thesis by IJENDY ILENE SILVER Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirements for the deoree of MASTER... OF SCIFNCE December 1979 Major Subject: Geology GRAVITY INTERPRETATION OF THE NORTHERN OVERTHRUST lIELT, . IDAHO AND NYOMING A Thesis by NENDY ILEI'lE 5!, LVER Approved as to style and content by: (Chairman of Committee (Hea o epartment (i~1embe...

  12. Idaho Students Learning Lessons on Energy Efficiency | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelBConservation Standards and TestEquipment:Ian Kalin AboutIdahoIdaho

  13. Holy Mother of Chiri Mountain: A Female Mountain Spirit in Korea

    E-Print Network [OSTI]

    Stiller, Maya

    2011-01-01

    pilgrimage route in Chiri mountain. The images have informedCSW upda te OCTOBER 2011 The Holy Mother of Chiri Mountain aFemale Mountain Spirit in Korea by Maya Stiller UCLA Center

  14. Soil Organic Carbon Storage and Aggregate Stability in an Arid Mountain Range, White Mountains, CA

    E-Print Network [OSTI]

    Frisbie, Juanita Aapris

    2014-01-01

    D.L. 1989. Responses of Mountain Big Sagebrush to inducedgradient in the Gongga Mountain on the Tibetan plateau. J.relationships in an arid mountain range, Mojave Desert,

  15. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    McKenzie, Barbara J.; West, Stephanie G.; Jones, Olga G.; Kerr, Dorothy A.; Bieri, Rita A.; Sanderson, Nancy L.

    1991-08-01

    The purpose of the Safety and Health (S H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG G Idaho, Inc. (EG G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety.

  16. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Goldberg, Edward S.; Keating, John J.

    1991-08-01

    The Management Subteam conducted a management assessment of Environment, Safety, and Health (ES H) programs and their implementation of Idaho National Engineering Laboratory (INEL). The objectives of the assessment were to: (1) evaluate the effectiveness of existing management functions and processes in terms of ensuring environmental compliance, and the health and safety of workers and the general public; and (2) identify probable root causes for ES H findings and concerns. Organizations reviewed were DOE-Headquarters: DOE Field Offices, Chicago (CH) and Idaho (ID); Argonne Area Offices, East (AAO-E) and West (AAO-W); Radiological and Environmental Sciences Laboratory (RESL); Argonne National Laboratory (ANL); EG G Idaho, Inc. (EG G); Westinghouse Idaho Nuclear Company, Inc. (WINCO); Rockwell-INEL; MK-Ferguson of Idaho Company (MK-FIC); and Protection Technology of Idaho, Inc. (PTI). The scope of the assessment covered the following ES H management issues: policies and procedures; roles, responsibilities, and authorities; management commitment; communication; staff development, training, and certification; recruitment; compliance management; conduct of operations; emergency planning and preparedness; quality assurance; self assessment; oversight activities; and cost plus award fee processes.

  17. Why sulfonamides are contraindicated in Rocky Mountain spotted fever

    E-Print Network [OSTI]

    Ren, Vicky; Hsu, Sylvia

    2014-01-01

    and mortality in cases of Rocky Mountain spotted fever. ClinNH. Experimental Rocky Mountain spotted fever and endemicRR. Experimental Rocky Mountain spotted fever: Results of

  18. commentary: Is climate change making plants go up mountains?

    E-Print Network [OSTI]

    Lovett, Jon C.; Hemp, Andreas

    2010-01-01

    Plant Ecology of High Mountain Ecosystems. pp 1-344altitudinal distribution in mountain forests during themaking plants go up mountains? Paleontological evidence

  19. Seepage into drifts in unsaturated fractured rock at Yucca Mountain

    E-Print Network [OSTI]

    Birkholzer, Jens; Li, Guomin; Tsang, Chin-Fu; Tsang, Yvonne

    1998-01-01

    Fractured Rock at Yucca Mountain Jens Birkholzer, Guomin Lrepository site at Yucca Mountain, Nevada, as it is locatedclimate conditions at Yucca Mountain. The numerical study is

  20. Evolution of the unsaturated zone testing at Yucca Mountain

    E-Print Network [OSTI]

    Wang, J.S.Y.; Bodvarsson, G.S.

    2002-01-01

    Studies Facility, Yucca Mountain, Nevada. Water-ResourcesGeologic Map of Yucca Mountain, Nye County, Nevada, withWater and Calcite, Yucca Mountain, Nevada: Water." Science,

  1. Volcanism Studies: Final Report for the Yucca Mountain Project

    SciTech Connect (OSTI)

    Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

    1998-12-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is defined and described as one of many alternative models of the structural controls of the distribution of Plio-Quaternary basalt centers in the YMR. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be > than about 7 x 10{sup {minus}8} events yr{sup {minus}1} . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption probability to the location of northeast boundaries of volcanic zones near the Yucca Mountain si

  2. Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana

    SciTech Connect (OSTI)

    Not Available

    1988-09-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs.

  3. Idaho National Laboratory Site Pollution Prevention Plan

    SciTech Connect (OSTI)

    E. D. Sellers

    2007-03-01

    It is the policy of the Department of Energy (DOE) that pollution prevention and sustainable environmental stewardship will be integrated into DOE operations as a good business practice to reduce environmental hazards, protect environmental resources, avoid pollution control costs, and improve operational efficiency and mission sustainability. In furtherance of this policy, DOE established five strategic, performance-based Pollution Prevention (P2) and Sustainable Environmental Stewardship goals and included them as an attachment to DOE O 450.1, Environmental Protection Program. These goals and accompanying strategies are to be implemented by DOE sites through the integration of Pollution Prevention into each site's Environmental Management System (EMS). This document presents a P2 and Sustainability Program and corresponding plan pursuant to DOE Order 450.1 and DOE O 435.1, Radioactive Waste Management. This plan is also required by the state of Idaho, pursuant to the Resource Conservation and Recovery Act (RCRA) partial permit. The objective of this document is to describe the Idaho National Laboratory (INL) Site P2 and Sustainability Program. The purpose of the program is to decrease the environmental footprint of the INL Site while providing enhanced support of its mission. The success of the program is dependent on financial and management support. The signatures on the previous page indicate INL, ICP, and AMWTP Contractor management support and dedication to the program. P2 requirements have been integrated into working procedures to ensure an effective EMS as part of an Integrated Safety Management System (ISMS). This plan focuses on programmatic functions which include environmentally preferable procurement, sustainable design, P2 and Sustainability awareness, waste generation and reduction, source reduction and recycling, energy management, and pollution prevention opportunity assessments. The INL Site P2 and Sustainability Program is administratively managed by the INL Site P2 Coordinator. Development and maintenance of this overall INL Site plan is ultimately the responsibility of DOE-ID. This plan is applicable to all INL Site contractors except those at the Naval Reactors Facility.

  4. A mountain-scale model for characterizing unsaturated flow and transport in fractured tuffs of Yucca Mountain

    E-Print Network [OSTI]

    Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.

    2003-01-01

    to Fault Zones at Yucca Mountain, Nevada, InternationalPneumatic Response of at Yucca Mountain, Nevada, Journal ofZone Site-Scale Model, Yucca Mountain Site Characterization

  5. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Jenifer Nordstrom

    2014-02-01

    This plan provides a high-level summary of environmental monitoring performed by various organizations within and around the Idaho National Laboratory (INL) Site as required by U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management, and DOE Order 458.1, Radiation Protection of the Public and the Environment, Guide DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, and in accordance with 40 Code of Federal Regulations (CFR) 61, National Emission Standards for Hazardous Air Pollutants. The purpose of these orders is to 1) implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations, and 2) to establish standards and requirements for the operations of DOE and DOE contractors with respect to protection of the environment and members of the public against undue risk from radiation. This plan describes the organizations responsible for conducting environmental monitoring across the INL Site, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. Detailed monitoring procedures, program plans, or other governing documents used by contractors or agencies to implement requirements are referenced in this plan. This plan covers all planned monitoring and environmental surveillance. Nonroutine activities such as special research studies and characterization of individual sites for environmental restoration are outside the scope of this plan.

  6. Idaho Operations Office: Technology summary, June 1994

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This document has been prepared by the Department of Energy`s (DOE) Environmental Management (EM) Office of Technology Development (OTD) in order to highlight research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Idaho Operations Office. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. OTD programs are designed to make new, innovative, and more cost-effective technologies available for transfer to DOE environmental restoration and waste management end-users. Projects are demonstrated, tested, and evaluated to produce solutions to current problems. Transition of technologies into more advanced stages of development is based upon technological, regulatory, economic, and institutional criteria. New technologies are made available for use in eliminating radioactive, hazardous, and other wastes in compliance with regulatory mandates. The primary goal is to protect human health and prevent further contamination. OTD`s technology development programs address three major problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention. These problems are not unique to DOE, but are associated with other Federal agency and industry sites as well. Thus, technical solutions developed within OTD programs will benefit DOE, and should have direct applications in outside markets.

  7. Timber Mountain Precipitation Monitoring Station

    SciTech Connect (OSTI)

    Lyles, Brad; McCurdy, Greg; Chapman, Jenny; Miller, Julianne

    2012-01-01

    A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in fiscal year 2011.

  8. Workshop on development of radionuclide getters for the Yucca Mountain waste repository: proceedings.

    SciTech Connect (OSTI)

    Moore, Robert Charles; Lukens, Wayne W. (Lawrence Berkeley National Laboratory)

    2006-03-01

    The proposed Yucca Mountain repository, located in southern Nevada, is to be the first facility for permanent disposal of spent reactor fuel and high-level radioactive waste in the United States. Total Systems Performance Assessment (TSPA) analysis has indicated that among the major radionuclides contributing to dose are technetium, iodine, and neptunium, all of which are highly mobile in the environment. Containment of these radionuclides within the repository is a priority for the Yucca Mountain Project (YMP). These proceedings review current research and technology efforts for sequestration of the radionuclides with a focus on technetium, iodine, and neptunium. This workshop also covered issues concerning the Yucca Mountain environment and getter characteristics required for potential placement into the repository.

  9. Native Americans and Yucca Mountain: A revised and updated summary report on research undertaken between 1987 and 1991; Volume 1

    SciTech Connect (OSTI)

    Fowler, C.S.

    1991-10-15

    This report summarizes data collected between September 1986 and September 1988 relative to Native American concerns involving the potential siting of a high-level nuclear waste repository at Yucca Mountain, Nevada. The data were collected from Western Shoshone and Southern Paiute people upon whose aboriginal lands the repository potentially is to be located. Western Shoshone people involved in the study were those resident or affiliated with reservation communities at Yomba and Duckwater, Nevada, and Death Valley, California. Southern Paiute people were at reservation communities at Moapa and Las Vegas. Additional persons of Western Shoshone and Southern Paiute descent were interviewed at Beatty, Tonopah, Caliente, Pahrump, and Las Vegas, Nevada. The work was part of a larger project of socioeconomic studies for the State of Nevada`s Nuclear Waste Projects office, conducted by Mountain West of Phoenix, Arizona.

  10. Carbon isotope chemostratigraphy of the Middle Riphean type section (Avzyan Formation, Southern Urals, Russia)

    E-Print Network [OSTI]

    Kah, Linda

    Urals, Russia): Signal recovery in a fold-and-thrust belt Julie K. Bartley a,, Linda C. Kah b , Julie L The Avzyan Formation of the southern Ural Mountains, Russia, forms part of the Middle Riphean (1300­1000 Ma Mesoproterozoic age. © 2006 Elsevier B.V. All rights reserved. Keywords: Mesoproterozoic; Russia; Urals; Carbonate

  11. SECTION 595 WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO,

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SECTION 595 ­ WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO, RURAL UTAH-Federal interests in Idaho, Montana, rural Nevada, New Mexico, rural Utah, and Wyoming pursuant to Section 595

  12. Idaho Workers Eager to Check Condition of Waste Moved to Cargo...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1952 to 1970, workers buried drums containing radioactive waste from the now-closed Rocky Flats site at the Idaho site's Subsurface Disposal Area. In the 1970s, the Idaho site...

  13. Mountain Goat Software, LLC Una Introduccin a

    E-Print Network [OSTI]

    Cabalar, Pedro

    Mountain Goat Software, LLC Una Introducción a Scrum Mike Cohen Traducido: Ernesto Grafeuille Revisado y modificado: Pedro Cabalar Noviembre 2013 #12;Mountain Goat Software, LLC Estamos perdiendo la hacia atrás -pueden servir mejor a los actuales requisitos competitivos". #12;Mountain Goat Software

  14. Ute Mountain Tribe- 2012 Project

    Broader source: Energy.gov [DOE]

    The Ute Mountain Ute Tribe has the renewable resources and the opportunity to become a national leader in renewable energy production through its local and commercial-scale solar developments due to its proximity to key interconnections in the Four Corners area and interest from various companies that can fund such projects.

  15. Current Reactor Physics Benchmark Activities at the Idaho National Laboratory

    SciTech Connect (OSTI)

    John D. Bess; Margaret A. Marshall; Mackenzie L. Gorham; Joseph Christensen; James C. Turnbull; Kim Clark

    2011-11-01

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) [1] and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) [2] were established to preserve integral reactor physics and criticality experiment data for present and future research. These valuable assets provide the basis for recording, developing, and validating our integral nuclear data, and experimental and computational methods. These projects are managed through the Idaho National Laboratory (INL) and the Organisation for Economic Co-operation and Development Nuclear Energy Agency (OECD-NEA). Staff and students at the Department of Energy - Idaho (DOE-ID) and INL are engaged in the development of benchmarks to support ongoing research activities. These benchmarks include reactors or assemblies that support Next Generation Nuclear Plant (NGNP) research, space nuclear Fission Surface Power System (FSPS) design validation, and currently operational facilities in Southeastern Idaho.

  16. Idaho Site’s Cold War Cleanup Takes Center Stage in Publication

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – An association with more than 29,000 members featured an in-depth article on EM’s extensive Cold War legacy cleanup at the Idaho site in the current issue of its publication, The Military Engineer.

  17. Sedimentology of mid Permian strata of the Sublett Range, South-Central Idaho 

    E-Print Network [OSTI]

    Duree, Dana Kay

    1983-01-01

    REGIONAL STRATIGRAPHY. 20 Park City Group. West-Central Utah, Northeastern Nevada, and South- Central Idaho. Kaibab Limestone Formation. Grandeur Formation vs. Grandeur Member. . . . . . . , . . . . . Grandeur Formation Plympton Formation Murdock... in Utah, Nevada, and south-central Idaho 23 Figure 8 Fence diagram showing distribution of Park City and Phosphoria Formations in southeastern Idaho and northeastern Utah. . . . . . . . . . . . . . . . . . . Figure 9 Diagramatic dip section...

  18. An early history of pure shear in the upper plate of the raft...

    Open Energy Info (EERE)

    early history of pure shear in the upper plate of the raft river metamorphic core complex- black pine mountains, southern Idaho Jump to: navigation, search OpenEI Reference...

  19. Idaho, Navy, DOE agree on shipments to, from INEL

    SciTech Connect (OSTI)

    Tompkins, B.

    1995-12-01

    This report describes aspects of a legal agreement between the U.S. Navy, the state of Idaho, and the United States Department of Energy (US DOE) regarding shipments of radioactive wastes. The agreement will allow for the shipment of 244 spent fuel shipments from the Fort St Vrain facility in Colorado, if a repository or interim storage facility outside Idaho is open and accepting spent fuel from INEL. The number of shipments to the INEL will be limited to 1133, instead of the 1940 originally planned. The Navy will be allowed 575 total shipments through the year 2035.

  20. Idaho Supplementation Studies, 1991-1992 Annual Report.

    SciTech Connect (OSTI)

    Leitzinger, Eric J.; Bowles, Edward C.; Plaster, Kurtis

    1993-10-01

    Idaho Supplementation Studies (ISS) will help determine the utility of supplementation as a potential recovery tool for decimated stocks of spring and summer chinook salmon Oncorhynchus tshawytscha in Idaho. The objectives are to monitor and evaluate the effects of supplementation on presmolt and smolt numbers and spawning escapements of naturally produced salmon; monitor and evaluate changes in natural productivity and genetic composition of target and adjacent populations following supplementation and; determine which supplementation strategies (broodstock and release stage) provide the quickest effects on and highest response in natural production without adverse productivity.

  1. Idaho Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011 High Energy PhysicsScience (SC)Idaho RegionsIdaho

  2. Idaho Cleanup Project grows its workforce to complete ARRA work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHighHussein KhalilResearch88 Sign In AboutWorkshop:IceIdahoIdaho

  3. Electromagnetic pulse (EMP) survey of the Idaho State Emergency Operating Center, Boise, Idaho

    SciTech Connect (OSTI)

    Crutcher, R.I.; Buchanan, M.E.; Jones, R.W.

    1992-02-01

    The purpose of this report is to develop an engineering design package to protect the Federal Emergency Management Agency (FEMA) National Radio System (FNARS) facilities from the effects of high- altitude electromagnetic pulses (HEMPs). This report was developed specifically for the Idaho State Emergency Operating Center (EOC) in Boise, Idaho. It is highly probable that there will be a heavy dependence upon high-frequency (hf) radio communications for long- haul communications following a nuclear attack on the continental United States, should one occur. To maintain the viability of the FEMA hf radio network during such a situation, steps must be taken to protect the FNARS facilities against the effects of HEMP that are likely to be created in a nuclear confrontation. The solution must than be to reduce HEMP-induced stresses on the system by means of tailored retrofit hardening measures using commercial protection devices when available. It is the intent of this report to define the particular hardening measures that will minimize the susceptibility of system components to HEMP effects. To the extent economically viable, protective actions have been recommended for implementation, along with necessary changes or additions, during the period of the FNARS upgrade program. This report addresses electromagnetic pulse (EMP) effects only and disregards any condition in which radiation effects may be a factor. It has been established that, except for the source region of a surface burst, EMP effects of high-altitude bursts are more severe than comparable detonations in either air or surface regions. Any system hardened to withstand the more extreme EMP environment will survive the less severe EMP conditions. The threatening environment will therefore be limited to HEMP situations.

  4. Environmental surveillance for EG&G Idaho Waste Management facilities at the Idaho National Engineering Laboratory. 1993 annual report

    SciTech Connect (OSTI)

    Wilhelmsen, R.N.; Wright, K.C.; McBride, D.W.; Borsella, B.W.

    1994-08-01

    This report describes calendar year 1993 environmental surveillance activities of Environmental Monitoring of EG&G Idaho, Inc., performed at EG&G Idaho operated Waste Management facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Included are results of the sampling performed by the Radiological and Environmental Sciences Laboratory and the United States Geological Survey. The primary purposes of monitoring are to evaluate environmental conditions, to provide and interpret data, to ensure compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1993 environmental surveillance data with US Department of Energy derived concentration guides and with data from previous years.

  5. MOUNTAIN-VALLEY AND KATABATIC FLOW IN BOULDER Find mountain valley circulation patterns that indicate mountain-valley flow, e.g.,

    E-Print Network [OSTI]

    MOUNTAIN-VALLEY AND KATABATIC FLOW IN BOULDER TASK: Find mountain valley circulation patterns that indicate mountain-valley flow, e.g., in the Boulder Canyon or katabatic flow between the mountain ranges and the lower terrains around Denver and Colorado. MOTIVATION: Mountain-valley flow is a common well understood

  6. THREE NEW WHITEFISHES FROM BEAR LAKE, IDAHO AND UTAH

    E-Print Network [OSTI]

    the sides of the bordering mountains. The outlet of Lake Bonneville carried its overflow into Snake River of Great Salt Lake, the connection heing thr()ughBear River,~hic):1,h~.sits origin among the mountains connect~d'~th tbe quaternary.L,a~e Bonneville, the shorelines of which' are still plainly tracedalong

  7. The Women of Idaho National Laboratory's Space Nuclear Team

    Broader source: Energy.gov [DOE]

    The women of the Space Nuclear program at Idaho National Laboratory consider their work both demanding and enormously rewarding, operating in a high-stakes atmosphere. Read about the women who work in this program and get their insights about their careers.

  8. Water information bulletin No. 30 geothermal investigations in Idaho

    SciTech Connect (OSTI)

    Mitchell, J.C.; Johnson, L.L.; Anderson, J.E.; Spencer, S.G.; Sullivan, J.F.

    1980-06-01

    There are 899 thermal water occurrences known in Idaho, including 258 springs and 641 wells having temperatures ranging from 20 to 93/sup 0/C. Fifty-one cities or towns in Idaho containing 30% of the state's population are within 5 km of known geothermal springs or wells. These include several of Idaho's major cities such as Lewiston, Caldwell, Nampa, Boise, Twin Falls, Pocatello, and Idaho Falls. Fourteen sites appear to have subsurface temperatures of 140/sup 0/C or higher according to the several chemical geothermometers applied to thermal water discharges. These include Weiser, Big Creek, White Licks, Vulcan, Roystone, Bonneville, Crane Creek, Cove Creek, Indian Creek, and Deer Creek hot springs, and Raft River, Preston, and Magic Reservoir areas. These sites could be industrial sites, but several are in remote areas away from major transportation and, therefore, would probably be best utilized for electrical power generation using the binary cycle or Magma Max process. Present uses range from space heating to power generation. Six areas are known where commercial greenhouse operations are conducted for growing cut and potted flowers and vegetables. Space heating is substantial in only two places (Boise and Ketchum) although numerous individuals scattered throughout the state make use of thermal water for space heating and private swimming facilities. There are 22 operating resorts using thermal water and two commercial warm-water fish-rearing operations.

  9. NEZ PERCE SOIL AND WATER CONSERVATION DISTRICT CULDESAC, IDAHO 83524

    E-Print Network [OSTI]

    of Idaho Department of Corrections labor for installation. We #12;2 have lowered costs of off-site watering-2008. The District's use of BPA funds is unique in that it has a comparatively low indirect administration cost of 10 and federal sources. We are estimating similar results for the 2007 to 2009 period. Sources of cost

  10. CRAD, Emergency Management- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Emergency Management program at the Idaho Accelerated Retrieval Project Phase II.

  11. CRAD, Occupational Safety & Health- Idaho MF-628 Drum Treatment Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Occupational Safety and Industrial Hygiene programs at the MF-628 Drum Treatment Facility at the Idaho National Laboratory Advanced Mixed Waste Treatment Project.

  12. Idaho Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    contamination in lakes; methods to improve the estimates of key components of the Snake River Plain's hydrology; and linkage between Idaho's energy and water infrastructure in the Snake River. Research Program Introduction the designated Bunker Hill Mining and Metallurgical Superfund Site, contaminating the CDA River and CDA Lake

  13. Idaho Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    a Conjunctive Water Resources Planning and Management Model for the Eastern Snake River Plain Basic Information River Plain Project Number: 2012ID178B Start Date: 3/1/2012 End Date: 2/28/2013 Funding Source: 104B services in our river basins; developing a conjunctive planning model for Idaho's most important water

  14. Idaho National Engineering and Environmental Laboratory Licensing Qualification Issues

    E-Print Network [OSTI]

    /shutdown is not like PWR criticality control/reactor shutdown system, neither in required timing nor consequences · Approach to Regulatory Approval · Nuclear Design Codes · Summary #12;Idaho National Engineering endeavors · In nuclear systems, the activities that comprise the qualification have two parts: ­ Design

  15. CRAD, Fire Protection- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Fire Protection program at the Idaho Accelerated Retrieval Project Phase II.

  16. CRAD, Engineering- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Engineering program at the Idaho Accelerated Retrieval Project Phase II.

  17. CRAD, Safety Basis- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Safety Basis at the Idaho Accelerated Retrieval Project Phase II.

  18. CRAD, Criticality Safety- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Criticality Safety program at the Idaho Accelerated Retrieval Project Phase II.

  19. CRAD, Occupational Safety & Health- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Occupational Safety and Industrial Hygiene Program at the Idaho Accelerated Retrieval Project Phase II.

  20. CRAD, Training- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Training Program at the Idaho Accelerated Retrieval Project Phase II.

  1. CRAD, Radiological Controls- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Radiation Protection Program at the Idaho Accelerated Retrieval Project Phase II.

  2. CRAD, Management- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Management at the Idaho Accelerated Retrieval Project Phase II.

  3. CRAD, Quality Assurance- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Quality Assurance Program at the Idaho Accelerated Retrieval Project Phase II.

  4. CRAD, Maintenance- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Maintenance program at the Idaho Accelerated Retrieval Project Phase II.

  5. Mapco's NGL Rocky Mountain pipeline

    SciTech Connect (OSTI)

    Isaacs, S.F.

    1980-01-01

    The Rocky Mountain natural gas liquids (NGL) pipeline was born as a result of major producible gas finds in the Rocky Mountain area after gas deregulation. Gas discoveries in the overthurst area indicated considerable volumes of NGL would be available for transportation out of the area within the next 5 to 7 years. Mapco studied the need for a pipeline to the overthrust, but the volumes were not substantial at the time because there was little market and, consequently, little production for ethane. Since that time crude-based products for ethylene manufacture have become less competitive as a feed product on the world plastics market, and ethane demand has increased substantially. This change in the market has caused a major modification in the plans of the NGL producers and, consequently, the ethane content of the NGL stream for the overthrust area is expected to be 30% by volume at startup and is anticipated to be at 45% by 1985. These ethane volumes enhance the feasibility of the pipeline. The 1196-mile Rocky Mountain pipeline will be installed from the existing facility in W. Texas, near Seminole, to Rock Springs, Wyoming. A gathering system will connect the trunk line station to various plant locations. The pipeline development program calls for a capacity of 65,000 bpd by the end of 1981.

  6. Conceptual evaluation of the potential role of fractures in unsaturated processes at Yucca Mountain

    E-Print Network [OSTI]

    Hinds, Jennifer J.; Bodvarsson, Gudmundur S.; Nieder-Westermann, Gerald H.

    2002-01-01

    of Process Models, Yucca Mountain, Nevada. U.S. GeologicalZone Model of Yucca Mountain, Nevada. J. Contam. Hydrol. ,Studies Facility, Yucca Mountain Project. Yucca Mountain,

  7. Conceptual evaluation of the potential role of fractures in unsaturated processes at Yucca Mountain

    E-Print Network [OSTI]

    Hinds, Jennifer J.; Bodvarsson, Gudmundur S.; Nieder-Westermann, Gerald H.

    2002-01-01

    of Process Models, Yucca Mountain, Nevada. U.S. GeologicalUnsaturated Zone Model of Yucca Mountain, Nevada. J. Contam.Studies Facility, Yucca Mountain Project. Yucca Mountain,

  8. Idaho National Laboratory (INL) Sitewide Institutional Controls Plan

    SciTech Connect (OSTI)

    W. L. Jolley

    2006-07-27

    On November 9, 2002, the U.S. Environmental Protection Agency (EPA), the U.S. Department of Energy (DOE), and the Idaho Department of Environmental Quality approved the Record of Decision Experimental Breeder Reactor-I/Boiling Water Reactor Experiment Area and Miscellaneous Sites, which requires a Sitewide Institutional Controls Plan for the then Idaho National Engineering and Environmental Laboratory (now known as the Idaho National Laboratory). This document, first issued in June 2004, fulfilled that requirement. The revision is needed to provide an update as remedial actions are completed and new areas of concern are found. This Sitewide Institutional Controls Plan is based on guidance in the May 3, 1999, EPA Region 10 Final Policy on the Use of Institutional Controls at Federal Facilities; the September 29, 2000, EPA guidance Institutional Controls: A Site Manager's Guide to Identifying, Evaluating, and Selecting Institutional Controls at Superfund and RCRA Corrective Action Cleanups; and the April 9, 2003, DOE Policy 454.1, "Use of Institutional Controls." These policies establish measures that ensure short- and long-term effectiveness of institutional controls that protect human health and the environment at federal facility sites undergoing remedial action pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and/or corrective action pursuant to the Resource Conservation and Recovery Act (RCRA). The site-specific institutional controls currently in place at the Idaho National Laboratory are documented in this Sitewide Institutional Controls Plan. This plan is being updated, along with the Idaho National Engineering and Environmental Laboratory Comprehensive Facilities and Land Use Plan, to reflect the progress of remedial activities and changes in CERCLA sites.

  9. Cost Comparison for the Transfer of Select Calcined Waste Canisters to the Monitored Geologic Repository at Yucca Mountain, NV

    SciTech Connect (OSTI)

    Michael B. Heiser; Clark B. Millet

    2005-10-01

    This report performs a life-cycle cost comparison of three proposed canister designs for the shipment and disposition of Idaho National Laboratory high-level calcined waste currently in storage at the Idaho Nuclear Technology and Engineering Center to the proposed national monitored geologic repository at Yucca Mountain, Nevada. Concept A (2 × 10-ft) and Concept B (2 × 15-ft) canisters are comparable in design, but they differ in size and waste loading options and vary proportionally in weight. The Concept C (5.5 × 17.5-ft) canister (also called the “super canister”), while similar in design to the other canisters, is considerably larger and heavier than Concept A and B canisters and has a greater wall thickness. This report includes estimating the unique life-cycle costs for the three canister designs. Unique life-cycle costs include elements such as canister purchase and filling at the Idaho Nuclear Technology and Engineering Center, cask preparation and roundtrip consignment costs, final disposition in the monitored geologic repository (including canister off-loading and placement in the final waste disposal package for disposition), and cask purchase. Packaging of the calcine "as-is" would save $2.9 to $3.9 billion over direct vitrification disposal in the proposed national monitored geologic repository at Yucca Mountain, Nevada. Using the larger Concept C canisters would use 0.75 mi less of tunnel space, cost $1.3 billion less than 10-ft canisters of Concept A, and would be complete in 6.2 years.

  10. Marketing the Mountains: An Environmental History of Tourism in Rocky Mountain National Park

    E-Print Network [OSTI]

    Frank, Jerritt

    2008-09-05

    Marketing the Mountains explores the impact of tourism upon the natural world of Rocky Mountain National Park. Moving beyond culutral analysis of the development of tourism in the American West, this dissertation seeks to understand both...

  11. Getting Beyond Yucca Mountain - 12305

    SciTech Connect (OSTI)

    Halstead, Robert J. [State of Nevada Agency for Nuclear Projects, Carson City, NV 89706 (United States); Williams, James M. [Western Interstate Energy Board, Denver, CO 80202 (United States)

    2012-07-01

    The U.S. Department of Energy has terminated the Yucca Mountain repository project. The U.S. Nuclear Regulatory Commission has indefinitely suspended the Yucca Mountain licensing proceeding. The presidentially-appointed Blue Ribbon Commission (BRC) on America's Nuclear Future is preparing a report, due in January 2012, to the Secretary of Energy on recommendations for a new national nuclear waste management and disposal program. The BRC Draft Report published in July 2011 provides a compelling critique of the past three decades failed efforts in the United States to site storage and disposal facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLW). However, the BRC Draft Report fails to provide detailed guidance on how to implement an alternative, successful approach to facility site selection. The comments submitted to the BRC by the State of Nevada Agency for Nuclear Projects provide useful details on how the US national nuclear waste program can get beyond the failed Yucca Mountain repository project. A detailed siting process, consisting of legislative elements, procedural elements, and 'rules' for volunteer sites, could meet the objectives of the BRC and the Western Governors Association (WGA), while promoting and protecting the interests of potential host states. The recent termination of the proposed Yucca Mountain repository provides both an opportunity and a need to re-examine the United States' nuclear waste management program. The BRC Draft Report published in July 2011 provides a compelling critique of the past three decades failed efforts in the United States to site storage and disposal facilities for SNF and HLW. It is anticipated that the BRC Final report in January 2012 will recommend a new general course of action, but there will likely continue to be a need for detailed guidance on how to implement an alternative, successful approach to facility site selection. Getting the nation's nuclear waste program back on track requires, among other things, new principles for siting-principles based on partnership between the federal implementing agency and prospective host states. These principles apply to the task of developing an integrated waste management strategy, to interactions between the federal government and prospective host states for consolidated storage and disposal facilities, and to the logistically and politically complicated task of transportation system design. Lessons from the past 25 years, in combination with fundamental parameters of the nuclear waste management task in the US, suggest new principles for partnership outlined in this paper. These principles will work better if well-grounded and firm guidelines are set out beforehand and if the challenge of maintaining competence, transparency and integrity in the new organization is treated as a problem to be addressed rather than a result to be expected. (authors)

  12. Georgia Mountain | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprintGEXAGeminiEnergyHawaii |Methods3.376834°,Mountain

  13. King Mountain | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItronKanoshKetchikan PublicMountain Jump to: navigation,

  14. Laurel Mountain | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds Jump to:Laredo Ridge WindHill Jump to:Mountain

  15. BLUE MOUNTAIN | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc | DepartmentPeer20InsulatedofBESTCorn CanBLUE MOUNTAIN

  16. Trial by Mountain: Suffering and Healing in Difficult Landscapes

    E-Print Network [OSTI]

    Collins, Lindsey

    2012-01-01

    survivors_1.html. Where the Mountain Casts Its Shadow: The1980. MacFarlane, Robert. Mountains of the Mind. New York:A Woman’s Journey Into the Mountains to Find Her Soul. New

  17. THERMAL PROPERTIES OF GABLE MOUNTAIN BASALT CORES HANFORD NUCLEAR RESERVATION

    E-Print Network [OSTI]

    Martinez-Baez, L.F.

    2011-01-01

    70 THERMAL PROPERTIES OF GABLE MOUNTAIN BASALT CORES HANFORDft); we used the data giyen for Gable Mountain K1005 for oursamples of Gable Mountain DB-5 (521 ft and 524 ft); and we

  18. Mountain Snowmobilers and Avalanches: An Examination of Precautionary Behaviour

    E-Print Network [OSTI]

    Mountain Snowmobilers and Avalanches: An Examination of Precautionary Behaviour by Luke Robbins of Resource Management (Planning) Report No. 586 Title of Thesis: Mountain Snowmobilers and Avalanches within the snowmobiling community. Since there was limited information available on mountain snowmobilers

  19. Drift Natural Convection and Seepage at the Yucca Mountain Repository

    E-Print Network [OSTI]

    Halecky, Nicholaus Eugene

    2010-01-01

    2 A Simulation Code for Yucca Mountain Transport Processes:List of Figures Yucca Mountain location, southwest1 Introduction 1.1 Yucca Mountain Repository . . . . 1.1.1

  20. Application of natural analogues in the Yucca Mountain project - overview

    E-Print Network [OSTI]

    Simmons, Ardyth M.

    2003-01-01

    Contractor) 2000. Yucca Mountain Site Description. TDR-CRW-in silicic tuff from Yucca Mountain, Nevada. Clays and ClayHazard Analysis for Yucca Mountain, Nevada. BA0000000-01717-

  1. A Preliminary Structural Model for the Blue Mountain Geothermal...

    Open Energy Info (EERE)

    thewest flanks of Blue Mountain and the Eugene Mountains, and amore local WNW-striking, SW-dipping normal-dextral fault onthe southwest side of Blue Mountain. The WNW-striking...

  2. Idaho National Engineering Laboratory installation roadmap document. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-05-30

    The roadmapping process was initiated by the US Department of Energy`s office of Environmental Restoration and Waste Management (EM) to improve its Five-Year Plan and budget allocation process. Roadmap documents will provide the technical baseline for this planning process and help EM develop more effective strategies and program plans for achieving its long-term goals. This document is a composite of roadmap assumptions and issues developed for the Idaho National Engineering Laboratory (INEL) by US Department of Energy Idaho Field Office and subcontractor personnel. The installation roadmap discusses activities, issues, and installation commitments that affect waste management and environmental restoration activities at the INEL. The High-Level Waste, Land Disposal Restriction, and Environmental Restoration Roadmaps are also included.

  3. Mountain

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43 by September1Louisiana - SedsN O F D e c e mb e

  4. EIS-0451: Hooper Springs Transmission Project, Caribou County, Idaho

    Broader source: Energy.gov [DOE]

    DOE’s Bonneville Power Administration (BPA) prepared an EIS that evaluates the potential environmental impacts of a proposed new 115-kilovolt (kV) transmission line from BPA's proposed Hooper Springs Substation near Soda Springs, Idaho, to either an existing Lower Valley Energy (LVE) substation or a proposed BPA connection with LVE's existing transmission system in northeastern Caribou County. Additional information is available at http://efw.bpa.gov/environmental_services/Document_Library/HooperSprings/.

  5. Fremont County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistar LLCNorthIdaho: Energy Resources Jump to:

  6. Drilling for Geothermal Resources Rules - Idaho | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsAreafor Geothermal Resources Rules - Idaho Jump to:

  7. Shoshone County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity for LowInformationShoshone County, Idaho: Energy Resources Jump

  8. RAPID/BulkTransmission/Idaho | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎ | BulkTransmission‎RAPID/BulkTransmission/Idaho <

  9. RAPID/Geothermal/Environment/Idaho | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada <RAPID/Geothermal/Environment <RAPID/Geothermal/Environment/Idaho

  10. RAPID/Geothermal/Exploration/Idaho | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado < RAPID‎ | Geothermal‎ | Exploration JumpGeothermal/Exploration/Idaho <

  11. Idaho State Historic Preservation Programmatic Agreement | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelBConservation Standards and TestEquipment:Ian Kalin AboutIdaho

  12. Veteran Leadership Strong at Idaho's Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobsAdvancedVeteran Leadership Strong at Idaho's Laboratory

  13. Voluntary Protection Program Onsite Review, Idaho Treatment Group, Llc,

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryinEnableVisualization &Idaho

  14. Chemical analysis quality assurance at the Idaho Chemical Processing Plant

    SciTech Connect (OSTI)

    Hand, R.L.; Anselmo, R.W.; Black, D.B.; Jacobson, J.J.; Lewis, L.C.; Marushia, P.C.; Spraktes, F.W.; Zack, N.R.

    1985-01-01

    The Idaho Chemical Processing Plant (ICPP) is a uranium reprocessing facility operated by Westinghouse Idaho Nuclear Company for the Department of Energy at the Idaho National Engineering Laboratory (INEL). The chemical analysis support required for the plant processes is provided by a chemical analysis staff of 67 chemists, analysts, and support personnel. The documentation and defense of the chemical analysis data at the ICPP has evolved into a complete chemical analysis quality assurance program with training/qualification and requalification, chemical analysis procedures, records management and chemical analysis methods quality control as major elements. The quality assurance procedures are implemented on a central analytical computer system. The individual features provided by the computer system are automatic method selection for process streams, automation of method calculations, automatic assignment of bias and precision estimates at analysis levels to all method results, analyst specific daily requalification or with-method-use requalification, untrained or unqualified analyst method lockout, statistical testing of process stream results for replicate agreement, automatic testing of process results against pre-established operating, safety, or failure limits at varying confidence levels, and automatic transfer and report of analysis data plus the results of all statistical testing to the Production Department.

  15. Geothermal Reservoir Temperatures in Southeastern Idaho using Multicomponent Geothermometry

    SciTech Connect (OSTI)

    Neupane, Ghanashyam; Mattson, Earl D.; McLing, Travis L.; Palmer, Carl D.; Smith, Robert W.; Wood, Thomas R.; Podgorney, Robert K.

    2015-03-01

    Southeastern Idaho exhibits numerous warm springs, warm water from shallow wells, and hot water within oil and gas test wells that indicate a potential for geothermal development in the area. Although the area exhibits several thermal expressions, the measured geothermal gradients vary substantially (19 – 61 şC/km) within this area, potentially suggesting a redistribution of heat in the overlying ground water from deeper geothermal reservoirs. We have estimated reservoir temperatures from measured water compositions using an inverse modeling technique (Reservoir Temperature Estimator, RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. Compositions of a selected group of thermal waters representing southeastern Idaho hot/warm springs and wells were used for the development of temperature estimates. The temperature estimates in the the region varied from moderately warm (59 şC) to over 175 şC. Specifically, hot springs near Preston, Idaho resulted in the highest temperature estimates in the region.

  16. Motion to Withdraw from Yucca Mountain application | Department...

    Broader source: Energy.gov (indexed) [DOE]

    it's pending license application for a permanent geologic repository at Yucca Mountain, Nevada. Motion to Withdraw from Yucca Mountain application More Documents &...

  17. Department of Energy Files Motion to Withdraw Yucca Mountain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Files Motion to Withdraw Yucca Mountain License Application Department of Energy Files Motion to Withdraw Yucca Mountain License Application March 3, 2010 -...

  18. Midwest/Mountain Alternative Fuel Initiative | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MidwestMountain Alternative Fuel Initiative MidwestMountain Alternative Fuel Initiative Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on...

  19. Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal...

  20. Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature...

  1. EA-1746: Blue Mountain Geothermal Development Project, Humboldt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    46: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV EA-1746: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV December 3,...

  2. Statement from Ward Sproat on Yucca Mountain, Director of the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ward Sproat on Yucca Mountain, Director of the Office of Civilian Radioactive Waste Management Statement from Ward Sproat on Yucca Mountain, Director of the Office of Civilian...

  3. The Cordilleran foreland thrust belt in northwestern Montana and northern Idaho from COCORP and industry seismic reflection data

    SciTech Connect (OSTI)

    Yoos, T.R.; Potter, C.J.; Thigpen, J.L.; Brown, L.D. (Cornell Univ., Ithaca, NY (United States))

    1991-06-01

    COCORP and petroleum industry seismic reflection profiles in northwestern Montana reveal the structure of the Cordilleran foreland thrust belt. The Front Ranges consist of thick thrust sheets containing Precambrian Belt Supergroup and Paleozoic miogeoclinal shelf rocks above a thin remnant of Paleozoic rocks and gently westward-dipping North American basement. Interpretation of the seismic data and results from a recent petroleum exploration well suggest that 15-22 km of Precambrian Belt Supergroup sedimentary rocks are present in several thrust plates beneath the eastern Purcell anticlinorium. Previous hypotheses of a large mass of Paleozoic miogeoclinal sedimentary rocks or slices of crystalline basement located beneath the eastern Purcell anticlinorium do not appear to be supported by the data. The easternmost occurrence of allochthonous basement is interpreted to be in the western part of the anticlinorium near the Montana-Idaho border. Comparison of the Cordilleran foreland thrust belt in northwestern Montana and southern Canada suggest that a change in the deep structure of the Purcell anticlinorium occurs along strike. The anticlinorium in southern Canada has been interpreted as a hanging-wall anticline that was thrust over the western edge of thick Proterozoic North American basement, whereas in northwestern Montana the anticlinorium appears to consist of a complex series of thrust sheets above highly attenuated North American basement.

  4. Strontium Distribution Coefficients of Basalt and Sediment Infill Samples from the Idaho National Engineering and Environmental Laboratory, Idaho

    SciTech Connect (OSTI)

    M. N. Pace; R. C. Bartholomay (USGS); J. J. Rosentreter (ISU)

    1999-07-01

    The U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy, are conducting a study to determine and evaluate strontium distribution coefficients (Kds) of subsurface materials at the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose of this study is to aid in assessing the variability of strontium Kds at the INEEL as part of an ongoing investigation of chemical transport of strontium-90 in the Snake River Plain aquifer. Batch experimental techniques were used to determine Kds of six basalt core samples, five samples of sediment infill of vesicles and fractures, and six standard material samples. Analyses of data from these experiments indicate that the Kds of the sediment infill samples are significantly larger than those of the basalt samples. Quantification of such information is essential of furthering the understanding of transport processes of strontium-90 in the Snake River Plain aquifer and in similar environments.

  5. Voluntary Protection Program Onsite Review, CH2M WG LLC, Idaho Cleanup Project – March 2014

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether CH2M WG LLC, Idaho Cleanup Project is performing at a level deserving DOE-VPP Star recognition.

  6. Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell

    Office of Energy Efficiency and Renewable Energy (EERE)

    American Recovery and Reinvestment Act cleanup crews at the Idaho site recently disposed of a hot cell as heavy as nine fully loaded Boeing 737s.

  7. Amended Record of Decision: Idaho High-Level Waste and Facilities...

    Office of Environmental Management (EM)

    of Decision: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement AGENCY: Department of Energy. ACTION: Amended Record of Decision. SUMMARY:...

  8. Preliminary Notice of Violation, CH2M-Washington Group Idaho...

    Broader source: Energy.gov (indexed) [DOE]

    14, 2007 Issued to CH2M-Washington Group Idaho, LLC, related to Radiation Protection Program Deficiencies at the Radioactive Waste Management Complex - Accelerated Retrieval...

  9. A Fruit of Yucca Mountain: The Remote Waste Package Closure System

    SciTech Connect (OSTI)

    Kevin Skinner; Greg Housley; Colleen Shelton-Davis

    2011-11-01

    Was the death of the Yucca Mountain repository the fate of a technical lemon or a political lemon? Without caution, this debate could lure us away from capitalizing on the fruits of the project. In March 2009, Idaho National Laboratory (INL) successfully demonstrated the Waste Package Closure System, a full-scale prototype system for closing waste packages that were to be entombed in the now abandoned Yucca Mountain repository. This article describes the system, which INL designed and built, to weld the closure lids on the waste packages, nondestructively examine the welds using four different techniques, repair the welds if necessary, mitigate crack initiating stresses in the surfaces of the welds, evacuate and backfill the packages with an inert gas, and perform all of these tasks remotely. As a nation, we now have a proven method for securely sealing nuclear waste packages for long term storage—regardless of whether or not the future destination for these packages will be an underground repository. Additionally, many of the system’s features and concepts may benefit other remote nuclear applications.

  10. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down Gradient of the Proposed Yucca Mountain Nuclear Waste Repository, U. S. Department of Energy Grant DE-RW0000233 2010 Project Report, prepared by The Hydrodynamics Group, LLC for Inyo County Yucca Mountain Repository Assessment Office

    SciTech Connect (OSTI)

    King, Michael J; Bredehoeft, John D., Dr.

    2010-09-03

    Inyo County completed the first year of the U.S. Department of Energy Grant Agreement No. DE-RW0000233. This report presents the results of research conducted within this Grant agreement in the context of Inyo County's Yucca Mountain oversight program goals and objectives. The Hydrodynamics Group, LLC prepared this report for Inyo County Yucca Mountain Repository Assessment Office. The overall goal of Inyo County's Yucca Mountain research program is the evaluation of far-field issues related to potential transport, by ground water, of radionuclide into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Data collected within the Grant is included in interpretive illustrations and discussions of the results of our analysis. The centeral elements of this Grant prgoram was the drilling of exploratory wells, geophysical surveys, geological mapping of the Southern Funeral Mountain Range. The cullimination of this research was 1) a numerical ground water model of the Southern Funeral Mountain Range demonstrating the potential of a hydraulic connection between the LCA and the major springs in the Furnace Creek area of Death Valley, and 2) a numerical ground water model of the Amargosa Valley to evaluate the potential for radionuclide transport from Yucca Mountain to Inyo County, California. The report provides a description of research and activities performed by The Hydrodynamics Group, LLC on behalf of Inyo County, and copies of key work products in attachments to this report.

  11. Karstic mountain almost conquered. [Guatemala

    SciTech Connect (OSTI)

    Not Available

    1982-06-10

    International design and construction teams building a 300-Mw hydroelectric system high in central Guatemala's rugged mountains since 1977 have persevered through karstic-limestone nightmares, logistical bottlenecks and political upheaval to bring the $700-million Rio Chixoy project close to completion. The costly power push, requiring the largest construction effort in Guatemala's modern history, plays a critical role for the future. When all five Pelton-wheel turbines are spinning late next year, their output will more than double electricity production in Central America's poorest, most populous country. Despite numerous delays, design changes and cost increases above the original $240-million bid package, work has progressed to the final stages on a 360-ft-high rockfill dam, 16-mile power tunnel and aboveground powerhouse.

  12. Copyright 2004 IEEE. Published in the Proceedings of the 36th Annual North American Power Symposium, August 9-10 2004, University of Idaho, Moscow, Idaho Abstract--This paper explores a mathematical method for

    E-Print Network [OSTI]

    Copyright 2004 IEEE. Published in the Proceedings of the 36th Annual North American Power Symposium, August 9-10 2004, University of Idaho, Moscow, Idaho Abstract-- This paper explores a mathematical method

  13. Aqueous geochemistry of the Thermopolis hydrothermal system, southern Bighorn Basin, Wyoming, U.S.A.

    SciTech Connect (OSTI)

    Kaszuba, John P. [Univ. of Wyoming, Laramie, WY (United States). Dept. of Geology and Geophysics; Sims, Kenneth W.W. [Univ. of Wyoming, Laramie, WY (United States). School of Energy Resources; Pluda, Allison R. [Univ. of Wyoming, Laramie, WY (United States). Wyoming High-Precision Isotope Lab.

    2014-03-01

    The Thermopolis hydrothermal system is located in the southern portion of the Bighorn Basin, in and around the town of Thermopolis, Wyoming. It is the largest hydrothermal system in Wyoming outside of Yellowstone National Park. The system includes hot springs, travertine deposits, and thermal wells; published models for the hydrothermal system propose the Owl Creek Mountains as the recharge zone, simple conductive heating at depth, and resurfacing of thermal waters up the Thermopolis Anticline.

  14. Aqueous geochemistry of the Thermopolis hydrothermal system, southern Bighorn Basin, Wyoming, U.S.A.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kaszuba, John P.; Sims, Kenneth W.W.; Pluda, Allison R.

    2014-06-01

    The Thermopolis hydrothermal system is located in the southern portion of the Bighorn Basin, in and around the town of Thermopolis, Wyoming. It is the largest hydrothermal system in Wyoming outside of Yellowstone National Park. The system includes hot springs, travertine deposits, and thermal wells; published models for the hydrothermal system propose the Owl Creek Mountains as the recharge zone, simple conductive heating at depth, and resurfacing of thermal waters up the Thermopolis Anticline.

  15. The Virginia Mountain Streams Symposium October 30, 2004

    E-Print Network [OSTI]

    Lawrence, Deborah

    The Virginia Mountain Streams Symposium October 30, 2004 University of Virginia Summary Virginia mountains. The coordinated SWAS/VTSSS program now involves routine water quality monitoring in 65 forested mountain watersheds and associated mountain streams. To mark 25 years of investigation on Virginia

  16. 1. INTRODUCTION 1.1. Yucca Mountain Project

    E-Print Network [OSTI]

    Maerz, Norbert H.

    1. INTRODUCTION 1.1. Yucca Mountain Project The Yucca Mountain site in Nevada has been designated as United States choice for nuclear waste repository. Yucca Mountain is in a remote dry area, on federal has been made to characterize the nature of the discontinuities of the Yucca Mountain proposed nuclear

  17. Argonne National Laboratory-West, Former Production Workers Screening Projects (now known as the Idaho National Laboratory)

    Broader source: Energy.gov [DOE]

    Argonne National Laboratory-West, Former Production Workers Screening Projects (now known as the Idaho National Laboratory)

  18. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    SciTech Connect (OSTI)

    W. Mahlon Heileson

    2006-10-01

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  19. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  20. CAES 2014 Chemical Analyses of Thermal Wells and Springs in Southeastern Idaho

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Baum, Jeffrey

    This dataset contains chemical analyses for thermal wells and springs in Southeastern Idaho. Data includes all major cations, major anions, pH, collection temperature, and some trace metals, These samples were collected in 2014 by the Center for Advanced Energy Studies (CAES), and are part of a continuous effort to analyze the geothermal potential of Southeastern Idaho.

  1. CAES 2014 Chemical Analyses of Thermal Wells and Springs in Southeastern Idaho

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Baum, Jeffrey

    2014-03-10

    This dataset contains chemical analyses for thermal wells and springs in Southeastern Idaho. Data includes all major cations, major anions, pH, collection temperature, and some trace metals, These samples were collected in 2014 by the Center for Advanced Energy Studies (CAES), and are part of a continuous effort to analyze the geothermal potential of Southeastern Idaho.

  2. 2002 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Meachum, T.R.; Lewis, M.G.

    2003-02-20

    The 2002 Wastewater Land Application site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operation of the facilities during the 2002 permit year are discussed.

  3. 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Teresa R. Meachum

    2004-02-01

    The 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe the conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operations of the facilities during the 2003 permit year are discussed.

  4. A Bibliography of Genealogical Resources at the University of Idaho Library Where to Start Searching

    E-Print Network [OSTI]

    O'Laughlin, Jay

    A Bibliography of Genealogical Resources at the University of Idaho Library Where to Start a subject search of su: Latah County Genealogy. More family histories and general guides to early settlers: Whitman County Genealogy. For many more Idaho Genealogical resources, and also for other states, try

  5. DOE, State of Idaho Sign Agreement on Nuclear Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding Low-Cost2 DOE HQSite toDOE, State of Idaho Sign Agreement

  6. Valley County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:PowerNewPumatyUvaldeValles CalderaIdaho: Energy

  7. Garden City, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: Energy Resources Jump to:Garden Acres, California:Idaho:

  8. Gem County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: EnergyGateway Edit HistoryGeary County,County, Idaho:

  9. Elmore County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville, New York: Energy Resources JumpNewElmore County,Idaho:

  10. Idaho Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011 High Energy PhysicsScience (SC)Idaho Regions

  11. Madison County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 < MHKKemblaSolarMacoupinEnergyIdaho: Energy

  12. Lewis County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: EnergyLebanonTexas: EnergyIdaho: Energy Resources Jump to:

  13. New Meadows, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures LtdNeville, Ohio: EnergyHavenInformationMarket,Meadows, Idaho:

  14. Oneida County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt.Information Olinda LandfillShakthiNevada Jump to:Idaho:

  15. Idaho Waste Retrieval Facility Begins New Role | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to Apply for an SES PositionISA ApprovesReform atImproper UseIdaho

  16. City of Burley, Idaho (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd JumpGeorgiaBurley, Idaho (Utility Company) Jump to: navigation,

  17. City of Plummer, Idaho (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler, Iowa (UtilityIowaIowa (UtilityCityPioche, NevadaPlummer, Idaho

  18. Vigilante Electric Coop, Inc (Idaho) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho) Jump to: navigation, search Name: Vigilante

  19. Benefits of Biofuel Production and Use in Idaho

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy andandBeforeof Energy2 DOEisIdaho is a

  20. Soda Springs, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbH JumpSlough Heat andCreekSnohomishSocratesIdaho:

  1. Teton County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ Automation JumpSetIdaho: Energy Resources Jump to: navigation,

  2. Bear Lake County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformationArkansas:InformationHead Lake,County, Idaho:

  3. Camas County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas:Information(Redirected fromCounty,County, Idaho: Energy

  4. Cassia County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village,8199089°, -86.3376761° Show MapTexas:County, Idaho:

  5. Blaine County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-Gas Technologies,Blackhawk Biofuels LLCBlaine County, Idaho:

  6. Boundary County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-GasIllinois:EnergyIdahoTechnologyEnergyBound Brook,

  7. Custer County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc Jump to: navigation, search Name:Custar, Ohio:Idaho:

  8. Idaho Power - Commercial Custom Efficiency Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORKof71 HydrogenComputerPetroleumDepartment23 IdahoLocal

  9. Department of Energy Idaho - Inside DOE-ID

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find what you were looking for?DelegationsInside ID Inside Idaho

  10. Adams County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan)dataSuccessfulAdairsville, Georgia: EnergyColorado:Idaho:

  11. DOE-Idaho Operations Office | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOEAnalysis, MarchALARA StudySENSITIVE99 June 1999Offices in Idaho

  12. 2011 Annual Planning Summary for Idaho Operations Office (ID) | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i s t a nsecond report111.pdfof Energy Idaho

  13. Idaho Petroleum Reduction Leadership Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls21,Equipment:PetroleumDepartment of Energy Idaho2

  14. Voluntary Protection Program Onsite Review, Idaho National Laboratory -

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryinEnableVisualization &Idaho NationalBattelleOctober

  15. Savage Arms Sales Office 118 Mountain Road

    E-Print Network [OSTI]

    New Hampshire, University of

    Savage Arms Sales Office 118 Mountain Road Suffield, Ct. 06078 Phone: (413) 642-4121 Fax: (860) 668 to change.) California orders will also need the Dealers CFD# Sales Tax must be added for orders shipping

  16. Rank Quantization Mountain View, CA, USA

    E-Print Network [OSTI]

    Singh, Jaswinder Pal

    Rank Quantization Ravi Kumar Google Mountain View, CA, USA ravi.k53@gmail.com Ronny Lempel Yahoo and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post

  17. Proc. of 36th Rocky Mountain Bioengineering Symposium, April 16-18, 1999, Copper Mountain, Colorado AN INTERACTIVE SYSTEM FOR KINEMATIC ANALYSIS

    E-Print Network [OSTI]

    Hoff, William A.

    Proc. of 36th Rocky Mountain Bioengineering Symposium, April 16-18, 1999, Copper Mountain, Colorado;Proc. of 36th Rocky Mountain Bioengineering Symposium, April 16-18, 1999, Copper Mountain, Colorado

  18. Heat flow and seismicity patterns in the vicinity of the eastern Snake River Plain, Idaho

    SciTech Connect (OSTI)

    Blackwell, D.D. Kelley, S.A.; Steele, J.L. (Southern Methodist Univ., Dallas, TX (United States). Dept. of Geological Sciences)

    1993-04-01

    New heat flow data and thermal modeling are used to calculate crustal temperatures in and adjacent to the eastern Snake River Plain (SRP). The estimated crustal temperature are then used to investigate the relationship between crustal strength and the observed parabolic pattern of seismicity around the SRP. Heat flow below the SRP aquifer in deep wells on the Idaho National Engineering Laboratory (INEL) site near the northern margin of the SRP is 107 [plus minus] 15 mWm[sup [minus]2]. Heat flow values from deep wells on both the northern and southern margins of the eastern SRP average 100 [plus minus] 15 mWm[sup [minus]2]. 2-D finite-difference thermal models were developed to fit seismic and heat flow data in the vicinity of the SRP. The models have a shallow silicic magma chamber that is as wide as the SRP. The silicic chamber is underlain by mafic heat sources in the middle to lower crust and in the upper mantle. The heat flow data are best fit by models with deep heat sources that are wider than the SRP. These results are consistent with the presence of young basaltic centers that have been observed outside the SRP. The temperature from the authors thermal models were used to calculate strength envelopes for the crust in the SRP/Basin and Range region. The weakest part of the crust is along the edge of the Basin and Range, where it is heated by the SRP; thus the boundary to the two provinces may be a zone of weak coupling. Their modeling indicates that it is difficult to explain the earthquake pattern in the vicinity of the SRP as a thermomechanical effect related to the passage of the Yellowstone hot spot.

  19. Carbon Issues Task Force Report for the Idaho Strategic Energy Alliance

    SciTech Connect (OSTI)

    Travis L. Mcling

    2010-10-01

    The Carbon Issues Task Force has the responsibility to evaluate emissions reduction and carbon offset credit options, geologic carbon sequestration and carbon capture, terrestrial carbon sequestration on forest lands, and terrestrial carbon sequestration on agricultural lands. They have worked diligently to identify ways in which Idaho can position itself to benefit from potential carbon-related federal legislation, including identifying opportunities for Idaho to engage in carbon sequestration efforts, barriers to development of these options, and ways in which these barriers can be overcome. These are the experts to which we will turn when faced with federal greenhouse gas-related legislation and how we should best react to protect and provide for Idaho’s interests. Note that the conclusions and recommended options in this report are not intended to be exhaustive, but rather form a starting point for an informed dialogue regarding the way-forward in developing Idaho energy resources.

  20. ADVANCES IN YUCCA MOUNTAIN DESIGN

    SciTech Connect (OSTI)

    Harrington, P.G.; Gardiner, J.T.; Russell, P.R.Z.; Lachman, K.D.; McDaniel, P.W.; Boutin, R.J.; Brown, N.R.; Trautner, L.J.

    2003-02-27

    Since site designation of the Yucca Mountain Project by the President, the U.S. Department of Energy (DOE) has begun the transition from the site characterization phase of the project to preparation of the license application. As part of this transition, an increased focus has been applied to the repository design. Several evolution studies were performed to evaluate the repository design and to determine if improvements in the design were possible considering advances in the technology for handling and packaging nuclear materials. The studies' main focus was to reduce and/or eliminate uncertainties in both the pre-closure and post-closure performance of the repository and to optimize operations. The scope and recommendations from these studies are the subjects of this paper and include the following topics: (1) a more phased approach for the surface facility that utilize handling and packaging of the commercial spent nuclear fuel in a dry environment rather than in pools as was presented in the site recommendation; (2) slight adjustment of the repository footprint and a phased approach for construction and emplacement of the repository subsurface; and (3) simplification of the construction, fabrication and installation of the waste package and drip shield.

  1. Lagoon Seepage Testing Procedures for Central Facilities Area (CFA) Sewage Lagoons at Idaho National Laboratory Butte County, Idaho April 2014

    SciTech Connect (OSTI)

    Alan Giesbrecht

    2014-05-01

    The lagoon seepage testing procedures are documented herein as required by the Wastewater Rules (IDAPA 58.01.16.493). The Wastewater Rules and Wastewater Reuse Permit LA-000141-03 require that the procedure used for performing a seepage test be approved by IDEQ prior to conducting the seepage test. The procedures described herein are based on a seepage testing plan that was developed by J-U-B ENGINEERS, Inc. (J-U-B) and has been accepted by several IDEQ offices for lagoons in Idaho.

  2. Idaho field experiment 1981. Volume 2: measurement data

    SciTech Connect (OSTI)

    Start, G E; Sagendorf, J F; Ackermann, G R; Cate, J H; Hukari, N F; Dickson, C R

    1984-04-01

    The 1981 Idaho Field Experiment was conducted in southeastern Idaho over the upper Snake River Plain. Nine test-day case studies were conducted between July 15 and 30, 1981. Releases of SF/sub 6/ gaseous tracer were made for 8-hour periods from 46m above ground. Tracer was sampled hourly, for 12 sequential hours, at about 100 locations within an area 24km square. Also, a single total integrated sample of about 30 hours duration was collected at approximately 100 sites within an area 48 by 72km square (using 6km spacings). Extensive tower profiles of meteorology at the release point were collected. RAWINSONDES, RABALS and PIBALS were collected at 3 to 5 sites. Horizontal, low-altitude winds were monitored using the INEL MESONET. SF/sub 6/ tracer plume releases were marked with co-located oil fog releases and bi-hourly sequential launches of tetroon pairs. Aerial LIDAR observations of the oil fog plume and airborne samples of SF/sub 6/ were collected. High altitude aerial photographs of daytime plumes were collected. Volume II lists the data in tabular form or cites the special supplemental reports by other participating contractors. While the primary user file and the data archive are maintained on 9 track/1600 cpi magnetic tapes, listings of the individual values are provided for the user who either cannot utilize the tapes or wishes to preview the data. The accuracies and quality of these data are described.

  3. Idaho National Laboratory Cultural Resource Management Annual Report FY 2007

    SciTech Connect (OSTI)

    Julie Braun; Hollie Gilbert; Dino Lowrey; Clayton Marler; Brenda Pace

    2008-03-01

    The Idaho National Laboratory (INL) Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500-year span of human land use in the region. As a federal agency, the Department of Energy Idaho Operations Office has legal responsibility for the management and protection of those resources and has delegated these responsibilities to its primary contractor, Battelle Energy Alliance (BEA). The BEA professional staff is committed to maintaining a cultural resource management program that accepts these challenges in a manner reflecting the resources’ importance in local, regional, and national history. This annual report summarizes activities performed by the INL Cultural Resource Management Office (CRMO) staff during fiscal year 2007. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be both informative to internal and external stakeholders, and to serve as a planning tool for future cultural resource management work to be conducted on the INL.

  4. Idaho National Laboratory Cultural Resource Management Annual Report FY 2006

    SciTech Connect (OSTI)

    Clayton F. Marler; Julie Braun; Hollie Gilbert; Dino Lowrey; Brenda Ringe Pace

    2007-04-01

    The Idaho National Laboratory Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500-year span of human occupation in the region. As a federal agency, the Department of Energy Idaho Operations Office has legal responsibility for the management and protection of those resources and has delegated these responsibilities to its primary contractor, Battelle Energy Alliance (BEA). The INL Cultural Resource Management Office, staffed by BEA professionals, is committed to maintaining a cultural resource management program that accepts these challenges in a manner reflecting the resources’ importance in local, regional, and national history. This annual report summarizes activities performed by the INL Cultural Resource Management Office staff during Fiscal Year 2006. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be both informative to internal and external stakeholders, and to serve as a planning tool for future cultural resource management work to be conducted on the INL.

  5. Climate Change Vulnerability Assessment for Idaho National Laboratory

    SciTech Connect (OSTI)

    Christopher P. Ischay; Ernest L. Fossum; Polly C. Buotte; Jeffrey A. Hicke; Alexander Peterson

    2014-10-01

    The University of Idaho (UI) was asked to participate in the development of a climate change vulnerability assessment for Idaho National Laboratory (INL). This report describes the outcome of that assessment. The climate change happening now, due in large part to human activities, is expected to continue in the future. UI and INL used a common framework for assessing vulnerability that considers exposure (future climate change), sensitivity (system or component responses to climate), impact (exposure combined with sensitivity), and adaptive capacity (capability of INL to modify operations to minimize climate change impacts) to assess vulnerability. Analyses of climate change (exposure) revealed that warming that is ongoing at INL will continue in the coming decades, with increased warming in later decades and under scenarios of greater greenhouse gas emissions. Projections of precipitation are more uncertain, with multi model means exhibiting somewhat wetter conditions and more wet days per year. Additional impacts relevant to INL include estimates of more burned area and increased evaporation and transpiration, leading to reduced soil moisture and plant growth.

  6. Idaho National Laboratory's FY13 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Kimberly Frerichs

    2014-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2013 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho. This report details the methods behind quantifying INL’s GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only the large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  7. Horizontal structures in granulite terrains: A record of mountain building or mountain collapse?

    E-Print Network [OSTI]

    Sandiford, Mike

    Horizontal structures in granulite terrains: A record of mountain building or mountain collapse horizontal structures occurred during the metamorphic culmination and was followed by isobaric cooling that no significant erosional denudation fol- lowed the development of the horizontal structures and thus precludes

  8. Analyzing flow patterns in unsaturated fractured rock of Yucca Mountain using an integrated modeling approach

    E-Print Network [OSTI]

    Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

    2008-01-01

    zone site-scale model, Yucca Mountain Site Characterizationscale model, Yucca Mountain Project Milestone 3GLM105M,lateral diversion at Yucca Mountain, Nevada, Water Resources

  9. Preliminary Study of Pesticide Drift into the Maya Mountain Protected Areas of Belize

    E-Print Network [OSTI]

    Kaiser, Kristine

    2011-01-01

    Drift into the Maya Mountain Protected Areas of BelizeProtected Areas of the Maya Mountains rely heavily on theinto the nearby Maya Mountain Protected Areas occurred by

  10. Several TOUGH2 Modules Developed for Site Characterization Studies of Yucca Mountain

    E-Print Network [OSTI]

    Wu, Yu-Shu; Pruess, Karsten

    1998-01-01

    Zone Model of Yucca Mountain, Nevada. Lawrence Berkeleystudies of Yucca Mountain. The model formulations arebeing used in the Yucca Mountain project. Pruess, K . ,

  11. Breast cancer, biosociality, and wilderness therapy: the practice of remaking selfhood in mountain climbing

    E-Print Network [OSTI]

    Collins, Lindsey

    2007-01-01

    that conquering the mountain is like conquering cancer,coexisting and learning from mountains is coexisting, albeitand psychically with mountain landscapes. Perhaps Susan

  12. Multiple-point statistical prediction on fracture networks at Yucca Mountain

    E-Print Network [OSTI]

    Liu, X.Y

    2010-01-01

    networks at Yucca Mountain Xiaoyan Liu 1 , Chengyuan Zhangsystems, such as at Yucca Mountain, water flow rate andbehavior at the Yucca Mountain waste repository system.

  13. Terrestrial and Aquatic Macroinvertebrate Assemblages as a Function of Wetland Type across a Mountain Landscape

    E-Print Network [OSTI]

    Holmquist, Jeffrey G; Jones, Jennifer R; Schmidt-Gengenbach, Jutta; Pierotti, Lyra F; Love, Jason P

    2011-01-01

    the spatial complexity of mountain habitats. Global Ecologyof Wetland Type across a Mountain Landscape Jeffrey G.Jason P. Love* *White Mountain Research Station, University

  14. Hydrologic diversity in Santa Cruz mountain creeks and implications for steelhead population survival

    E-Print Network [OSTI]

    Peterson, Michael

    2012-01-01

    diversity in Santa Cruz mountain creeks and implications foroccurring in the Santa Cruz mountains and outlets in andto compare Santa Cruz mountain watershed responses to a

  15. Global Change and Mountain Lakes: Establishing Nutrient Criteria and Critical Loads for Sierra Nevada Lakes

    E-Print Network [OSTI]

    Heard, ANDREA Michelle

    2013-01-01

    and climate change in European mountain lakes assessed usinglimitation in Colorado mountain lakes. Freshwater Biologyparks of the Rocky Mountains. Ecological Applications 19(4):

  16. Black carbon transport and deposition to the California mountain snow pack

    E-Print Network [OSTI]

    Hadley, Odelle L.

    2008-01-01

    desert soils on duration of mountain snow cover, Geophys Resdesert soils on duration of mountain snow cover, Geophys Resdesert soils on duration of mountain snow cover, Geophys Res

  17. Development of discrete flow paths in unsaturated fractures at Yucca Mountain

    E-Print Network [OSTI]

    Bodvarsson, G.S.; Wu, Yu-Shu; Zhang, Keni

    2002-01-01

    into drifts at Yucca Mountain. Journal of Contaminantof infiltration for the Yucca Mountain Area, Nevada, U. S.matrix properties, Yucca Mountain, Nevada, U.S. Geological

  18. Temporal Damping Effect of the Yucca Mountain Fractured Unsaturated Rock on Transient Infiltration Pulses

    E-Print Network [OSTI]

    Zhang, Keni; Wu, Yu-Shu; Pan, Lehua

    2005-01-01

    unsaturated zone at Yucca Mountain. J. of Cont. Hydrol. ,2003b. Calibration of Yucca Mountain unsaturated zone flowthe unsaturated zone, Yucca Mountain, USGS Water Resources

  19. Characterization and Prediction of Subsurface Pneumatic Pressure Variations at Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Ahlers, C. Fredrik; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    1998-01-01

    Group Exposed at Yucca Mountain, Nevada, U. S. Geologicalunsaturated zone, Yucca Mountain, Nevada, Water Resourcesgeologic map of Yucca Mountain, Nye County, Nevada, with

  20. Influence of faults on groundwater flow and transport at Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Cohen, Andrew J.B.; Sitar, Nicholas

    1999-01-01

    assessment for Yucca Mountain-SNL second interation (TSPA-Site-Scale Model, Yucca Mountain Project Level 4 Milestonetransport model, Yucca Mountain Site Characterizaton Project

  1. Effect of small-scale fractures on flow and transport processes at Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Wu, Yu-Shu; Liu, H.H.; Bodvarsson, G.S.

    2002-01-01

    Transport Processes at Yucca Mountain, Nevada Yu-Shu Wu, H.matrix interaction in Yucca Mountain site characterizationthe Unsaturated Zone of Yucca Mountain, Nevada, Journal of

  2. Massively parallel computing simulation of fluid flow in the unsaturated zone of Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Zhang, Keni; Wu, Yu-Shu; Bodvarsson, G.S.

    2001-01-01

    Central Block Area, Yucca Mountain, Nye County, Nevada. Mapunsaturated zone, Yucca Mountain, Nevada. Water-Resourcesisotope distributions at Yucca Mountain. Sandia National

  3. Several TOUGH2 Modules Developed for Site Characterization Studies of Yucca Mountain

    E-Print Network [OSTI]

    Wu, Yu-Shu; Pruess, Karsten

    1998-01-01

    Unsaturated Zone Model of Yucca Mountain, Nevada. Lawrencestudies of Yucca Mountain. The model formulations arebeing used in the Yucca Mountain project. Pruess, K . ,

  4. Multiphysics processes in partially saturated fracture rock: Experiments and models from Yucca Mountain

    E-Print Network [OSTI]

    Rutqvist, J.

    2014-01-01

    Materials from Yucca Mountain, Nye County, Nevada, Rep.Volcanic Tuff Units from Yucca Mountain, Nevada Test Site,N. Spycher (1999), Yucca Mountain single heater test final

  5. Modeling water seepage into heated waste emplacement drifts at Yucca Mountain

    E-Print Network [OSTI]

    Birkholzer, Jens; Mukhopadhyay, Sumitra; Tsang, Yvonne

    2003-01-01

    into drifts at Yucca Mountain, Journal of ContaminantEMPLACEMENT DRIFTS AT YUCCA MOUNTAIN Jens Birkholzer, Sumitfor nuclear waste at Yucca Mountain, Nevada. Heating of rock

  6. Fluid flow and reactive transport around potential nuclear waste emplacement tunnels at Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Spycher, N.F.; Sonnenthal, E.L.; Apps, J.A.

    2002-01-01

    Unsaturated Zone at Yucca Mountain, Nevada. U.S. GeologicalE. Sonnenthal; N. Spycher, Yucca Mountain Single Heater TestFinal Report. Yucca Mountain Site Characterization Project.

  7. Calibration of Yucca Mountain unsaturated zone flow and transport model using porewater chloride data

    E-Print Network [OSTI]

    Liu, Jianchun; Sonnenthal, Eric L.; Bodvarsson, Gudmundur S.

    2002-01-01

    of hydrogeologic units at Yucca Mountain, Nevada. U.S.infiltration for the Yucca Mountain Area, Nevada. Milestonethe unsaturated zone at Yucca Mountain, Nevada. J. Contam.

  8. Experimental and numerical simulation of dissolution and precipitation: Implications for fracture sealing at Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Dobson, Patrick F.; Kneafsey, Timothy J.; Sonnenthal, Eric L.; Spycher, Nicolas; Apps, John A.

    2001-01-01

    FRACTURE SEALING AT YUCCA MOUNTAIN, NEVADA Patrick F. Dobsonpotential repository at Yucca Mountain, Nevada, would reducewas flowed through crushed Yucca Mountain tuff at 94°C. The

  9. Multiple-point statistical prediction on fracture networks at Yucca Mountain

    E-Print Network [OSTI]

    Liu, X.Y

    2010-01-01

    on fracture networks at Yucca Mountain Xiaoyan Liu 1 ,systems, such as at Yucca Mountain, water flow rate andflow field behavior at the Yucca Mountain waste repository

  10. H33B-05H33B-05 Water subsidies from mountains to deserts:Water subsidies from mountains to deserts:Water subsidies from mountains to deserts

    E-Print Network [OSTI]

    Nacional de San Luis, Universidad

    water Bare dunes, instead, experienced deep drainage & local recharge. quicktour Site A bare interduneH33B-05H33B-05 Water subsidies from mountains to deserts:Water subsidies from mountains to deserts:Water subsidies from mountains to deserts: groundwater-fed oases in a sandy landscape Water subsidies from

  11. Early Ceramics from Southern California

    E-Print Network [OSTI]

    Drover, Christopher E.

    1975-01-01

    REPORTS Early Ceramics from Southern California CHRISTOPHERThis paper describes the ceramics and their chronologicalfor dating. To date, 10 ceramic specimens have been

  12. Southern Enclave Issue 47 

    E-Print Network [OSTI]

    1997-01-01

    Back opens in theaters on February 21, 1997, to be followed by Return of the Jedi on March 7, 1997. SW fans are eager to talk about the new edition and this issue of Southern Enclave opens with some comments and opinions. SE#48, due in July 1997... the days until Feb. 21 for TESB and then March 7 for ROTJ! Debbie Kittle: Well, I have seen the SWSE 4 times so far and truly enjoyed it. I thought it was quite well done. I'm sure the international readers will get a major sneak preview of our...

  13. Southern Enclave Issue 19 

    E-Print Network [OSTI]

    1988-01-01

    for any assistance. ART CREDITS Judith Low -- Mastheads Carol Peters -- 37, 42, 50 Danaline Bryant -- 38 Melanie Guttierrez -- 44 Sandi Jones -- 53 A Personal Statement Equal space will be offered for replies. ?Editor's note: I do not know either... it together. Melanie Gutterriez of New Orleans is putting her considerable talent and imagination to work on the cover. I invite SOUTHERN ENCLAVE's readers to check us out for themselves and make up their own minds. The issue will cost $2.00 and the first...

  14. ARM Southern Great Plains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility009 ARM Orientation 1Southern Great

  15. Flow calculations for Yucca Mountain groundwater travel time (GWTT-95)

    SciTech Connect (OSTI)

    Altman, S.J.; Arnold, B.W.; Barnard, R.W.; Barr, G.E.; Ho, C.K.; McKenna, S.A.; Eaton, R.R.

    1996-09-01

    In 1983, high-level radioactive waste repository performance requirements related to groundwater travel time were defined by NRC subsystem regulation 10 CFR 60.113. Although DOE is not presently attempting to demonstrate compliance with that regulation, understanding of the prevalence of fast paths in the groundwater flow system remains a critical element of any safety analyses for a potential repository system at Yucca Mountain, Nevada. Therefore, this analysis was performed to allow comparison of fast-path flow against the criteria set forth in the regulation. Models developed to describe the conditions for initiation, propagation, and sustainability of rapid groundwater movement in both the unsaturated and saturated zones will form part of the technical basis for total- system analyses to assess site viability and site licensability. One of the most significant findings is that the fastest travel times in both unsaturated and saturated zones are in the southern portion of the potential repository, so it is recommended that site characterization studies concentrate on this area. Results support the assumptions regarding the importance of an appropriate conceptual model of groundwater flow and the incorporation of heterogeneous material properties into the analyses. Groundwater travel times are sensitive to variation/uncertainty in hydrologic parameters and in infiltration flux at upper boundary of the problem domain. Simulated travel times are also sensitive to poorly constrained parameters of the interaction between flow in fractures and in the matrix.

  16. Yucca Mountain Project - Science & Technology Radionuclide Absorbers Development Program Overview

    SciTech Connect (OSTI)

    Hong-Nian Jow; R.C. Moore; K.B. Helean; S. Mattigod; M. Hochella; A.R. Felmy; J. Liu; K. Rosso; G. Fryxell; J. Krumhansl; Y. Wang

    2005-01-14

    The proposed Yucca Mountain repository is anticipated to be the first facility for long-term disposal of commercial spent nuclear fuel and high-level radioactive waste in the United States. The facility, located in the southern Nevada desert, is currently in the planning stages with initial exploratory excavations completed. It is an underground facility mined into the tuffaceous volcanic rocks that sit above the local water table. The focus of the work described in this paper is the development of radionuclide absorbers or ''getter'' materials for neptunium (Np), iodine (I), and technetium (Tc) for potential deployment in the repository. ''Getter'' materials retard the migration of radionuclides through sorption, reduction, or other chemical and physical processes, thereby slowing or preventing the release and transport of radionuclides. An overview of the objectives and approaches utilized in this work with respect to materials selection and modeling of ion ''getters'' is presented. The benefits of the ''getter'' development program to the United States Department of Energy (US DOE) are outlined.

  17. Astrophysics in Southern Africa

    E-Print Network [OSTI]

    Patricia A. Whitelock

    2007-07-06

    The government of South Africa has identified astronomy as a field in which their country has a strategic advantage and is consequently investing very significantly in astronomical infrastructure. South Africa now operates a 10-m class optical telescope, the Southern African Large Telescope (SALT), and is one of two countries short listed to host the Square Kilometre Array (SKA), an ambitious international project to construct a radio telescope with a sensitivity one hundred times that of any existing telescope. The challenge now is to produce an indigenous community of users for these facilities, particularly from among the black population which was severely disadvantaged under the apartheid regime. In this paper I briefly describe the observing facilities in Southern Africa before going on to discuss the various collaborations that are allowing us to use astronomy as a tool for development, and at the same time to train a new generation of astronomers who will be well grounded in the science and linked to their colleagues internationally.

  18. Overview of Idaho National Laboratory's Hot Fuels Examination Facility

    SciTech Connect (OSTI)

    Adam B. Robinson; R. Paul Lind; Daniel M. Wachs

    2007-09-01

    The Hot Fuels Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) of the Idaho National Laboratory was constructed in the 1960’s and opened for operation in the 1975 in support of the liquid metal fast breeder reactor research. Specifically the facility was designed to handle spent fuel and irradiated experiments from the Experimental Breeder Reactor EBRII, the Fast Flux Test Facility (FFTF), and the Transient Reactor Test Facility (TREAT). HFEF is a large alpha-gamma facility designed to remotely characterize highly radioactive materials. In the late 1980’s the facility also began support of the US DOE waste characterization including characterizing contact-handled transuranic (CH-TRU) waste. A description of the hot cell as well as some of its primary capabilities are discussed herein.

  19. Neutron radiography of irradiated nuclear fuel at Idaho National Laboratory

    SciTech Connect (OSTI)

    Craft, Aaron E.; Wachs, Daniel M.; Okuniewski, Maria A.; Chichester, David L.; Williams, Walter J.; Papaioannou, Glen C.; Smolinski, Andrew T.

    2015-09-10

    Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Idaho National Laboratory (INL) has multiple nuclear fuels research and development programs that routinely evaluate irradiated fuels using neutron radiography. The Neutron Radiography reactor (NRAD) sits beneath a shielded hot cell facility where neutron radiography and other evaluation techniques are performed on these highly radioactive objects. The NRAD currently uses the foil-film transfer technique for imaging fuel that is time consuming but provides high spatial resolution. This study describes the NRAD and hot cell facilities, the current neutron radiography capabilities available at INL, planned upgrades to the neutron imaging systems, and new facilities being brought online at INL related to neutron imaging.

  20. Neutron radiography of irradiated nuclear fuel at Idaho National Laboratory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Craft, Aaron E.; Wachs, Daniel M.; Okuniewski, Maria A.; Chichester, David L.; Williams, Walter J.; Papaioannou, Glen C.; Smolinski, Andrew T.

    2015-09-10

    Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Idaho National Laboratory (INL) has multiple nuclear fuels research and development programs that routinely evaluate irradiated fuels using neutron radiography. The Neutron Radiography reactor (NRAD) sits beneath a shielded hot cell facility where neutron radiography and other evaluation techniques are performed on these highly radioactive objects. The NRAD currently uses the foil-film transfer technique for imaging fuel that is time consuming but provides high spatial resolution. This study describes the NRAD and hot cell facilities,more »the current neutron radiography capabilities available at INL, planned upgrades to the neutron imaging systems, and new facilities being brought online at INL related to neutron imaging.« less

  1. Weld Tests Conducted by the Idaho National Laboratory

    SciTech Connect (OSTI)

    Larry Zirker; Lance Lauerhass; James Dowalo

    2007-02-01

    During the fiscal year of 2006, the Idaho National Laboratory (INL) performed many tests and work relating to the Mobile Melt-Dilute (MMD) Project components. Tests performed on the Staubli quick disconnect fittings showed promising results, but more tests were needed validate the fittings. Changes were made to the shield plug design—reduced the closure groove weld depth between the top of the canister and the top plate of the shielding plug from 0.5-in to 0.375-in deep. Other changes include a cap to cover the fitting, lifting pintle and welding code citations on the prints. Tests conducted showed stainless steel tubing, with 0.25-in, 0.375-in, and 0.5-in diameters, all with 0.035-in wall thickness, could be pinch seal welded using commercially available resistance welding equipment. Subsequent testing showed that these welds could be real-time inspected with ultrasonic inspection methods.

  2. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2010

    SciTech Connect (OSTI)

    INL Cultural Resource Management Office

    2010-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2010 (FY 2010). Throughout the year, thirty-three cultural resource localities were revisited, including somethat were visited more than once, including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-six prehistoric archaeological sites, two historic stage stations, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. The resources that were monitored included seventeen that are routinely visited and sixteen that are located in INL project areas. Although impacts were documented at a few locations and one trespassing incident (albeit sans formal charges) was discovered, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.

  3. QER- Comment of Southern Company

    Broader source: Energy.gov [DOE]

    Southern Company Services, Inc., as agent for Alabama Power Company, Georgia Power Company, Gulf Power Company, and Mississippi Power Company, (collectively, “Southern Companies”), are pleased to hereby provide their comments to the Department of Energy as it prepares the Quadrennial Energy Review. If there is anything else that we can do in this regard, please feel free to contact us.

  4. Southern Region Watershed Management Project

    E-Print Network [OSTI]

    and technology transfer programs. #12;Southern Region Watershed Management Project September 15, 2000 and networking both internally and with other regional water resources management programs, promoted technology1 Southern Region Watershed Management Project September 15, 2000 to September 14, 2005 Terminal

  5. RADIOISOTOPE POWER SYSTEM CAPABILITIES AT THE IDAHO NATIONAL LABORATORY (INL)

    SciTech Connect (OSTI)

    Kelly Lively; Stephen Johnson; Eric Clarke

    2014-07-01

    --Idaho National Laboratory’s, Space Nuclear Systems and Technology Division established the resources, equipment and facilities required to provide nuclear-fueled, Radioisotope Power Systems (RPS) to Department of Energy (DOE) Customers. RPSs are designed to convert the heat generated by decay of iridium clad, 238PuO2 fuel pellets into electricity that is used to power missions in remote, harsh environments. Utilization of nuclear fuel requires adherence to governing regulations and the INL provides unique capabilities to safely fuel, test, store, transport and integrate RPSs to supply power—supporting mission needs. Nuclear capabilities encompass RPS fueling, testing, handling, storing, transporting RPS nationally, and space vehicle integration. Activities are performed at the INL and in remote locations such as John F. Kennedy Space Center and Cape Canaveral Air Station to support space missions. This paper will focus on the facility and equipment capabilities primarily offered at the INL, Material and Fuel Complex located in a security-protected, federally owned, industrial area on the remote desert site west of Idaho Falls, ID. Nuclear and non-nuclear facilities house equipment needed to perform required activities such as general purpose heat source (GPHS) module pre-assembly and module assembly using nuclear fuel; RPS receipt and baseline electrical testing, fueling, vibration testing to simulate the launch environment, mass properties testing to measure the mass and compute the moment of inertia, electro-magnetic characterizing to determine potential consequences to the operation of vehicle or scientific instrumentation, and thermal vacuum testing to verify RPS power performance in the vacuum and cold temperatures of space.

  6. Idaho Steelhead Monitoring and Evaluation Studies : Annual Progress Report 2007.

    SciTech Connect (OSTI)

    Copeland, Timothy; Putnam, Scott

    2008-12-01

    The goal of Idaho Steelhead Monitoring and Evaluation Studies is to collect monitoring data to evaluate wild and natural steelhead populations in the Clearwater and Salmon river drainages. During 2007, intensive population data were collected in Fish Creek (Lochsa River tributary) and Rapid River (Little Salmon River tributary); extensive data were collected in other selected spawning tributaries. Weirs were operated in Fish Creek and Rapid River to estimate adult escapement and to collect samples for age determination and genetic analysis. Snorkel surveys were conducted in Fish Creek, Rapid River, and Boulder Creek (Little Salmon River tributary) to estimate parr density. Screw traps were operated in Fish Creek, Rapid River, Secesh River, and Big Creek to estimate juvenile emigrant abundance, to tag fish for survival estimation, and to collect samples for age determination and genetic analysis. The estimated wild adult steelhead escapement in Fish Creek was 81 fish and in Rapid River was 32 fish. We estimate that juvenile emigration was 24,127 fish from Fish Creek; 5,632 fish from Rapid River; and 43,674 fish from Big Creek. The Secesh trap was pulled for an extended period due to wildfires, so we did not estimate emigrant abundance for that location. In cooperation with Idaho Supplementation Studies, trap tenders PIT tagged 25,618 steelhead juveniles at 18 screw trap sites in the Clearwater and Salmon river drainages. To estimate age composition, 143 adult steelhead and 5,082 juvenile steelhead scale samples were collected. At the time of this report, 114 adult and 1,642 juvenile samples have been aged. Project personnel collected genetic samples from 122 adults and 839 juveniles. We sent 678 genetic samples to the IDFG Eagle Fish Genetics Laboratory for analysis. Water temperature was recorded at 37 locations in the Clearwater and Salmon river drainages.

  7. Integrated research on mountain glaciers: Current status, priorities and future prospects

    E-Print Network [OSTI]

    Roe, Gerard

    Integrated research on mountain glaciers: Current status, priorities and future prospects Lewis A: Glaciation Glaciers Mountains Glaciology Geochronology Modeling Mountain glaciers are sensitive probes; changes in the magnitude and timing of runoff in the mountains and adjacent regions; and, through

  8. Secondary Sulfate Mineralization and Basaltic Chemistry of Craters of the Moon National Monument, Idaho: Potential Martian Analog

    SciTech Connect (OSTI)

    C. Doc Richardson; Nancy W. Hinman; Lindsay J. McHenry; J. Michelle Kotler; Jill R. Scott

    2012-05-01

    Secondary deposits associated with the basaltic caves of Craters of the Moon National Monument (COM) in southern Idaho were examined using X-ray powder diffraction, X-ray fluorescence spectrometry, Fourier transform infrared spectrometry, and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The secondary mineral assemblages are dominated by Na-sulfate minerals (thenardite, mirabilite) with a small fraction of the deposits containing minor concentrations of Na-carbonate minerals. The assemblages are found as white, efflorescent deposits in small cavities along the cave walls and ceilings and as localized mounds on the cave floors. Formation of the deposits is likely due to direct and indirect physiochemical leaching of meteoritic water through the overlying basalts. Whole rock data from the overlying basaltic flows are characterized by their extremely high iron concentrations, making them good analogs for martian basalts. Understanding the physiochemical pathways leading to secondary mineralization at COM is also important because lava tubes and basaltic caves are present on Mars. The ability of FTICR-MS to consistently and accurately identify mineral species within these heterogeneous mineral assemblages proves its validity as a valuable technique for the direct fingerprinting of mineral species by deductive reasoning or by comparison with reference spectra.

  9. Southern California Channel Islands Bibliography, through 1992

    E-Print Network [OSTI]

    Channel Islands National Marine Sanctuary

    1992-01-01

    Southern California Bight/San Onofre/Power Plant/Southern California Bight/San Onofre Power Plant/Power Plant (DCPP), San Luis Obispo County, California.

  10. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is...

  11. Variation of Treeline Mountain Birch Establishment Under Herbivory Pressure 

    E-Print Network [OSTI]

    Granberg, Tynan

    2012-10-19

    be attributable to the impacts of herbivores. This study investigates the interacting effects of herbivory, climate, and understory vegetation on mountain birch establishment at treeline in the Scandes Mountains of northern Sweden. An extensive...

  12. VEE-0076- In the Matter of Green Mountain Energy Company

    Broader source: Energy.gov [DOE]

    On August 23, 2000, the Green Mountain Energy Company (Green Mountain) of Austin, Texas, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy (DOE)...

  13. Drift Natural Convection and Seepage at the Yucca Mountain Repository

    E-Print Network [OSTI]

    Halecky, Nicholaus Eugene

    2010-01-01

    in situ heater test. Nuclear Technology, [81] SD Dunn, B.Yucca Mountain, Nevada. Nuclear Technology, 148(2):138–150,at Yucca Mountain. Nuclear Technology, 63(1):147– [66

  14. New Yucca Mountain Repository Design to be Simpler, Safer and...

    Office of Environmental Management (EM)

    New Yucca Mountain Repository Design to be Simpler, Safer and More Cost-Effective New Yucca Mountain Repository Design to be Simpler, Safer and More Cost-Effective untitled More...

  15. Exploiting User Generated Content for Mountain Peak Detection

    E-Print Network [OSTI]

    Tagliasacchi, Marco

    Exploiting User Generated Content for Mountain Peak Detection Roman Fedorov Politecnico di Milano.g. snow water availability maps based on mountain peaks states extracted from photographs hosting services). User Generated Content(UGC); collective intelligence; passive crowdsourcing; environmental models

  16. SECTION 595 WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO,

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SECTION 595 ­ WRDA 1999, AS AMENDED IDAHO, MONTANA, RURAL NEVADA, NEW MEXICO, RURAL UTAH, rural Nevada, New Mexico, rural Utah, and Wyoming pursuant to Section 595 of the Water Resources

  17. EA-1969: Clark Fork River Delta Restoration Project, Bonner County, Idaho

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration prepared an environmental assessment to analyze the potential effects of a proposal to restore wetland and riparian (riverbank) habitat and to reduce erosion in the Clark Fork River delta located in Bonner County, Idaho.

  18. Idaho Request for Extension of Time to Submit Proof of Beneficial...

    Open Energy Info (EERE)

    Extension of Time to Submit Proof of Beneficial Use (DWR Form 204) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Idaho Request for Extension of Time to...

  19. IDAPA 31.01.01 - Rules of Procedure of the Idaho Public Utilities...

    Open Energy Info (EERE)

    IDAPA 31.01.01 - Rules of Procedure of the Idaho Public Utilities Commission Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  20. Idaho IC 61-1701, Legislative Purposes and Findings for the Siting...

    Open Energy Info (EERE)

    Idaho IC 61-1701, Legislative Purposes and Findings for the Siting of Certain Electrical Transmission Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  1. Air Emission Inventory for the Idaho National Engineering Laboratory: 1992 emissions report

    SciTech Connect (OSTI)

    Stirrup, T.S.

    1993-06-01

    This report presents the 1992 Air Emission Inventory for the Idaho National Engineering Laboratory. Originally, this report was in response to the Environmental Oversight and Monitoring Agreement in 1989 between the State of Idaho and the Department of Energy Idaho Field Office, and a request from the Idaho Air Quality Bureau. The current purpose of the Air Emission Inventory is to provide the basis for the preparation of the INEL Permit-to-Operate (PTO) an Air Emission Source Application, as required by the recently promulgated Title V regulations of the Clean Air Act. This report includes emissions calculations from 1989 to 1992. The Air Emission Inventory System, an ORACLE-based database system, maintains the emissions inventory.

  2. Deep drilling data, Raft River geothermal area, Idaho-Raft River...

    Open Energy Info (EERE)

    Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  3. Vehicle Technologies Office Merit Review 2014: Idaho National Laboratory Testing of Advanced Technology Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing of advanced...

  4. Analysis and Methane Gas Separations Studies for City of Marsing, Idaho An Idaho National Laboratory Technical Assistance Program Study

    SciTech Connect (OSTI)

    Christopher Orme

    2012-08-01

    Introduction and Background Large amounts of methane in well water is a wide spread problem in North America. Methane gas from decaying biomass and oil and gas deposits escape into water wells typically through cracks or faults in otherwise non-porous rock strata producing saturated water systems. This methane saturated water can pose several problems in the delivery of drinking water. The problems range from pumps vapor locking (cavitating), to pump houses exploding. The City of Marsing requested Idaho National Laboratory (INL) to assist with some water analyses as well as to provide some engineering approaches to methane capture through the INL Technical Assistance Program (TAP). There are several engineering approaches to the removal of methane and natural gas from water sources that include gas stripping followed by compression and/or dehydration; membrane gas separators coupled with dehydration processes, membrane water contactors with dehydration processes.

  5. MountainPineBeetleManagement Short-Term Management

    E-Print Network [OSTI]

    to mountain pine beetle attacks and forest fires. Wider growth rings (to the right), show how a tree responds

  6. Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  7. Exploratory Boreholes At Blue Mountain Geothermal Area (Parr...

    Open Energy Info (EERE)

    Exploratory Boreholes At Blue Mountain Geothermal Area (Parr & Percival, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory...

  8. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down gradient of the Proposed Yucca Mountain Nuclear Waste Repository

    SciTech Connect (OSTI)

    Inyo County

    2006-07-26

    Inyo County has participated in oversight activities associated with the Yucca Mountain Nuclear Waste Repository since 1987. The overall goal of these studies are the evaluation of far-field issues related to potential transport, by ground water, or radionuclides into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Our oversight and completed Cooperative Agreement research, and a number of other investigators research indicate that there is groundwater flow between the alluvial and carbonate aquifers both at Yucca Mountain and in Inyo County. In addition to the potential of radionuclide transport through the LCA, Czarnecki (1997), with the US Geological Survey, research indicate potential radionuclide transport through the shallower Tertiary-age aquifer materials with ultimate discharge into the Franklin Lake Playa in Inyo County. The specific purpose of this Cooperative Agreement drilling program was to acquire geological, subsurface geology, and hydrologic data to: (1) establish the existence of inter-basin flow between the Amargosa Basin and Death Valley Basin; (2) characterize groundwater flow paths in the LCA through Southern Funeral Mountain Range, and (3) Evaluation the hydraulic connection between the Yucca Mountain repository and the major springs in Death Valley through the LCA.

  9. Yucca Mountain Waste Package Closure System

    SciTech Connect (OSTI)

    shelton-davis; Colleen Shelton-Davis; Greg Housley

    2005-10-01

    The current disposal path for high-level waste is to place the material into secure waste packages that are inserted into a repository. The Idaho National Laboratory has been tasked with the development, design, and demonstration of the waste package closure system for the repository project. The closure system design includes welding three lids and a purge port cap, four methods of nondestructive examination, and evacuation and backfill of the waste package, all performed in a remote environment. A demonstration of the closure system will be performed with a full-scale waste package.

  10. Yucca Mountain Waste Package Closure System

    SciTech Connect (OSTI)

    Herschel Smartt; Arthur Watkins; David Pace; Rodney Bitsoi; Eric Larsen; Timothy McJunkin; Charles Tolle

    2006-04-01

    The current disposal path for high-level waste is to place the material into secure waste packages that are inserted into a repository. The Idaho National Laboratory has been tasked with the development, design, and demonstration of the waste package closure system for the repository project. The closure system design includes welding three lids and a purge port cap, four methods of nondestructive examination, and evacuation and backfill of the waste package, all performed in a remote environment. A demonstration of the closure system will be performed with a full-scale waste package.

  11. Drum Mountain Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsAreafor Geothermal Resources Rules - IdahoDruid Hills,2)Drum

  12. West Mountain Energy Capital | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)Vossloh KiepeWebelInformation(RedirectedEnergy

  13. White Mountain Group LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)VosslohWest PlainsAssn, Inc JumpGroup LLC Jump to:

  14. Environmental resource document for the Idaho National Engineering Laboratory. Volume 2

    SciTech Connect (OSTI)

    Irving, J.S.

    1993-07-01

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  15. Environmental resource document for the Idaho National Engineering Laboratory. Volume 1

    SciTech Connect (OSTI)

    Irving, J.S.

    1993-07-01

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  16. Becky Hill Green Mountain DNA Conference LT-DNA Analysis

    E-Print Network [OSTI]

    Becky Hill ­ Green Mountain DNA Conference LT-DNA Analysis July 26, 2010 http of the Chief Medical Examiner, NYC Green Mountain DNA Conference Burlington, VT July 26, 2010 Low Template (LT generally aim for 0.5-2 ng 100 pg template 5 pg template #12;Becky Hill ­ Green Mountain DNA Conference LT

  17. A Mountain Pass for Reacting Molecules Mathieu LEWIN

    E-Print Network [OSTI]

    A Mountain Pass for Reacting Molecules Mathieu LEWIN CEREMADE, CNRS UMR 7534, Universit'e Paris IX nuclei, and look for a mountain pass point between the two minima in the non­relativistic Schr by the mountain pass method are not compact. This enables us to identify precisely the possible values

  18. Mountains on Titan: Modeling and observations Giuseppe Mitri,1

    E-Print Network [OSTI]

    Mountains on Titan: Modeling and observations Giuseppe Mitri,1 Michael T. Bland,2 Adam P. Showman,3. Showman, J. Radebaugh, B. Stiles, R. M. C. Lopes, J. I. Lunine, and R. T. Pappalardo (2010), Mountains. Introduction [2] The Cassini Radar instrument has imaged mountainous topography on Saturn's moon Titan

  19. The Influence of Previous Mountain Pine Beetle (Dendroctonus

    E-Print Network [OSTI]

    Moorcroft, Paul R.

    The Influence of Previous Mountain Pine Beetle (Dendroctonus ponderosae) Activity on the 1988, Bozeman Montana, 59715, USA ABSTRACT We examined the historical record of mountain pine beetle variables: drought, aspect, and sus- tained mountain pine beetle activity in the period 1972­75. Of the two

  20. WATERSHED MANAGEMENT PLANNING IN A MOUNTAIN RESORT COMMUNITY

    E-Print Network [OSTI]

    WATERSHED MANAGEMENT PLANNING IN A MOUNTAIN RESORT COMMUNITY: A CASE STUDY OF WHISTLER'S CRABAPPLE at local and municipal scales. As part of an overall movement towards sustainability, the mountain resort and visitors in a natural mountain environment. From a tourism perspective, Whistler faces the challenge

  1. Counting Mountain-Valley Assignments for Flat Folds

    E-Print Network [OSTI]

    Hull, Thomas C.

    Counting Mountain-Valley Assignments for Flat Folds Thomas Hull Department of Mathematics Merrimack), a mountain-valley (MV) assignment is a function f : E {M,V} which indicates which crease lines are con- vex can be thought of as a structural blueprint of the fold.) Creases come in two types: mountain creases

  2. Lifestyle, identity and young people's experiences of mountain biking

    E-Print Network [OSTI]

    Lifestyle, identity and young people's experiences of mountain biking It has been widely recognised emphasis on young people as a key target group. Mountain biking, as a popular youth sport that often occurs. The research employed ethnographic techniques to capture youth experiences and understandings of mountain

  3. Dr. Peter M. Vallone Vermont Green Mountain Conference

    E-Print Network [OSTI]

    Dr. Peter M. Vallone Vermont Green Mountain Conference August 6th, 2008 http://www.cstl.nist.gov/biotech. Vallone Vermont Green Mountain Conference August 6th, 2008 http://www.cstl.nist.gov/biotech/limits of rapid multiplex PCR? #12;Dr. Peter M. Vallone Vermont Green Mountain Conference August 6th, 2008 http://www.cstl.nist.gov/biotech

  4. Synoptic Responses to Mountain Gravity Waves Encountering Directional Critical Levels

    E-Print Network [OSTI]

    Lott, Francois

    Synoptic Responses to Mountain Gravity Waves Encountering Directional Critical Levels ARMEL MARTIN the synoptic response to mountain gravity waves (GWs) absorbed at directional critical levels. The model in the midtroposphere. First, the authors consider the case of an idealized mountain range such that the orographic

  5. TESTING MODELS FOR BASALTIC VOLCANISM: IMPLICATIONS FOR YUCCA MOUNTAIN, NEVADA

    E-Print Network [OSTI]

    Conrad, Clint

    TESTING MODELS FOR BASALTIC VOLCANISM: IMPLICATIONS FOR YUCCA MOUNTAIN, NEVADA Eugene Smith 1 The determination of volcanic risk to the proposed high- level nuclear waste repository at Yucca Mountain requires, then volcanism in the future may not be a significant threat to Yucca Mountain. On the other hand, if melting

  6. Climate Change at Yucca Mountain: Lessons from Earth History

    E-Print Network [OSTI]

    Schrag, Daniel

    9 Climate Change at Yucca Mountain: Lessons from Earth History MaryLynn Musgrove and Daniel P. Schrag Yucca Mountain's suitability as a nuclear waste repository stems largely from its very dry climate the climate and hydrologic conditions at Yucca Mountain will be stable enough beyond the next ten millennia so

  7. Mountain Caribou in Managed Forests: Recommendations for Managers

    E-Print Network [OSTI]

    Northern British Columbia, University of

    by the program. Financial support for the production of the second edition of Mountain Caribou in managed forestsMountain Caribou in Managed Forests: Recommendations for Managers Second Edition Susan K. Stevenson, Lands and Parks. #12;iv ACKNOWLEDGEMENTS The first edition of this report, Mountain Caribou in managed

  8. DEFORMATION OF THE HURRICANE MOUNTAIN FORMATION MELANGE ALONG TOMHEGAN AND

    E-Print Network [OSTI]

    Beane, Rachel J.

    DEFORMATION OF THE HURRICANE MOUNTAIN FORMATION MELANGE ALONG TOMHEGAN AND COLD STREAMS, WEST through Acadian deformation recorded in foliated pelites of the Hurricane Mountain Formation in west central Maine. The Hurricane Mountain Formation is a melange with a grey sulfidic slate- to gneiss- matrix

  9. Seismicity and focal mechanisms for the southern Great Basin of Nevada and California: 1987 through 1989

    SciTech Connect (OSTI)

    Harmsen, S.C.; Bufe, C.G.

    1991-12-31

    For the calendar year 1987, the southern Great basin seismic network (SGBSN) recorded about 820 earthquakes in the southern Great Basin (SGB). Local magnitudes ranged from 0.2 to 4.2 (December 30, 1987, 22:50:42 UTC at Hot Creek Valley). Five earthquakes epicenters in 1987 within the detection threshold of the seismic network are at Yucca Mountain, the site of a potential national, high-level nuclear waste repository. The maximum magnitude of those five earthquakes is 1.1, and their estimated depths of focus ranged from 3.1 to 7.6 km below sea level. For the calendar year 1988, about 1280 SGB earthquakes were catalogued, with maximum magnitude-4.4 for an Owens Valley, California, earthquake on July 5, 1988. Eight earthquake epicenters in 1988 are at Yucca Mountain, with depths ranging from three to 12 km below sea level, and maximum magnitude 2.1. For the calendar year 1989, about 1190 SGB earthquakes were located and catalogued, with maximum magnitude equal to 3.5 for earthquake about ten miles north of Las Vegas, Nevada, on January 9. No Yucca Mountain earthquakes were recorded in 1989. An earthquake having a well-constrained depth of about 30 km below sea level was observed on August 21, 1989, in eastern Nevada Test Site (NTS).

  10. Report Card for GSHP in the Mountain West

    E-Print Network [OSTI]

    Corporation Salt Lake City UT and Las Vegas, NV 801-942-6100 #12;Arizona, Colorado, Idaho, Nevada · A Closed Loop system does not require a drilling permit, but you must use

  11. SOLAR TODAY28 The Green Mountain Energysm

    E-Print Network [OSTI]

    of the public and the renewable energy industry have worked diligently in regula- tory and public policy arenas, generates pollution-free, renewable electricity. GreenMountainEnergyCompany BuyingGreenPower-- You of renewable energy technologies. by Blair Swezey and Lori Bird #12;January/February 2003 29 The electricity

  12. YUCCA MOUNTAIN WASTE PACKAGE CLOSURE SYSTEM

    SciTech Connect (OSTI)

    G. Housley; C. Shelton-davis; K. Skinner

    2005-08-26

    The method selected for dealing with spent nuclear fuel in the US is to seal the fuel in waste packages and then to place them in an underground repository at the Yucca Mountain Site in Nevada. This article describes the Waste Package Closure System (WPCS) currently being designed for sealing the waste packages.

  13. SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING

    E-Print Network [OSTI]

    SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING US EPA Project Meeting April 7 2011April 7, 2011/Titan Uranium, VP Development · Deborah LebowAal/EPA Region 8 Air Program Introduction to Titan Uranium USA;PROJECT OVERVIEW ·Site Location·Site Location ·Fremont , Wyoming ·Existing Uranium Mine Permit 381C

  14. Characterize Eruptive Processes at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    D. Krier

    2004-10-04

    The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004 [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached.

  15. Effects of climate, physical erosion, parent mineralogy, and dust on chemical erosion rates in mountainous terrain

    E-Print Network [OSTI]

    Ferrier, Ken

    2009-01-01

    in the Idaho Batholith Abstract Chemical weathering promoteschemical weathering rates over millennial timescales: Measurements at Rio Icacos, Puerto Rico Abstract . . . . . . . . . . . . . . . . . . . . .chemical erosion rates: Measurements along two altitudinal transects in the Idaho Batholith Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  16. Rocky Mountain Environment and Society The Rocky Mountain West is the fastest-growing region of the United States. The rapid

    E-Print Network [OSTI]

    MacDonald, Lee

    Rocky Mountain Environment and Society The Rocky Mountain West is the fastest-growing region conflicting uses. The goals of the Rocky Mountain Environment and Society Institute (RMES) are to understand and quantify the influence of natural and human-induced change on Rocky Mountain ecosystems from the mountains

  17. An interdisciplinary approach to characterize flash flood occurrence frequency for mountainous Southern California

    E-Print Network [OSTI]

    Carpenter, Theresa Marie Modrick

    2011-01-01

    Sandia Creek 11128250 Alamo Pintado Figure 3.1. Southerntransformed flows for the Alamo Pintado Creek and Sweetwatertransformed flows for the Alamo Pintado Creek and Sweetwater

  18. Dendroclimatic Response along a Moisture Gradient in the Southern Rocky Mountains 

    E-Print Network [OSTI]

    Young, Shelby Lynn

    2015-06-01

    the moisture gradient. Using tree-ring analysis, I found growth to be slower and more sensitive to climate at the low moisture distributional limit than elsewhere within the spatial distribution. Trees at this site were more impacted by the 1950s drought...

  19. Structural discordance between neogene detachments and frontal sevier thrusts, central Mormon Mountains, southern Nevada

    E-Print Network [OSTI]

    Wernicke, Brian; Walker, J. Douglas; Beaufait, Mark S.

    1985-02-01

    , light ohve to dark gray, fine-to coarse-graned, laminated to thn-bedded, cherry wth columnar strornatolites near top _/ Unit 4- Dolomde, light o dark gray, fine-to ccx3rse-cjraned, lamnated to very thm-beddecL, 3nt strcmatolltes near base J... olomitic sltstone, grayish orange, fin tomedum-graned, laminated to tt'un-bedded -/ Dolomite, light ohve-gray, medium to coarse-grained, tt'un-bedded, local- ly sllty, oohhc, black bond at base Unit 3- Dolornlte, IJht to dark gray, fine to coome...

  20. SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

    SciTech Connect (OSTI)

    Perry, F. V.; Crowe, G. A.; Valentine, G. A.; Bowker, L. M.

    1997-09-23

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The distribution of Pliocene and Quaternary basaltic volcanic centers is evaluated with respect to tectonic models for detachment, caldera, regional and local rifting, and the Walker Lane structural zone. Geophysical data are described for the YMR and are used as an aid to understand the distribution of past basaltic volcanic centers and possible future magmatic processes. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be greater than 10{sup -7} events per year. Bounding probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Arnargosa Valley and Crater Flat. The results of simulation modeling are used to assess the sensitivity of the disruption probability for the location of northeast boundaries of volcanic zones near the Yucca Mountain site. A new section on modeling of radiological releases associated with surface and subsurface magmatic activity has been added to chapter 6. The modeling results are consistent with past total system performance assessments that show future volcanic and magmatic events are not significant components of repository performance and volcanism is not a prio

  1. Post Irradiation Capabilities at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Schulthess, J.L.; Robert D. Mariani; Rory Kennedy; Doug Toomer

    2011-08-01

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States’ ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

  2. Post Irradiation Capabilities at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Schulthess, J.L.

    2011-08-01

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

  3. Update on Ultrasonic Thermometry Development at Idaho National Laboratory

    SciTech Connect (OSTI)

    Joshua Daw; Joy Rempe; John Crepeau

    2012-07-01

    The Idaho National Laboratory (INL) has initiated an effort to evaluate the viability of using ultrasonic thermometry technology as an improved sensor for detecting temperature during irradiation testing of advanced fuels proposed within the Fuel Cycle Research and Development (FCR&D) program sponsored by the U.S. Department of Energy (US DOE). Ultrasonic thermometers (UTs) work on the principle that the speed at which sound travels through a material (acoustic velocity) is dependent on the temperature of the material. UTs have several advantages over other types of temperature sensors . UTs can be made very small, as the sensor consists only of a small diameter rod which may or may not require a sheath. Measurements may be made up to very high temperature (near the melting point of the sensor material) and, as no electrical insulation is required, shunting effects observed in traditional high temperature thermocouple applications are avoided. Most attractive, however, is the ability to introduce multiple acoustic discontinuities into the sensor, as this enables temperature profiling with a single sensor. The current paper presents initial results from FCR&D UT development efforts. These developments include improved methods for fabricating magnetostrictive transducers and joining them to waveguides, characterization of candidate sensor materials appropriate for use in FCR&D fuels irradiations (both ceramic fuels in inert gas and sodium bonded metallic fuels), enhanced signal processing techniques, and tests to determine potential accuracy and resolution.

  4. Great Western Malting Company geothermal project, Pocatello, Idaho. Final report

    SciTech Connect (OSTI)

    Christensen, N.T.; McGeen, M.A.; Corlett, D.F.; Urmston, R.

    1981-12-23

    The Great Western Malting Company recently constructed a barley malting facility in Pocatello, Idaho, designed to produce 6.0 million bushels per year of brewing malt. This facility uses natural gas to supply the energy for germination and kilning processes. The escalating cost of natural gas has prompted the company to look at alternate and more economical sources of energy. Trans Energy Systems has investigated the viabiity of using geothermal energy at the new barley processing plant. Preliminary investigations show that a geothermal resource probably exists, and payback on the installation of a system to utilize the resource will occur in under 2 years. The Great Western Malting plant site has geological characteristics which are similar to areas where productive geothermal wells have been established. Geological investigations indicate that resource water temperatures will be in the 150 to 200/sup 0/F range. Geothermal energy of this quality will supply 30 to 98% of the heating requirements currently supplied by natural gas for this malting plant. Trans Energy Systems has analyzed several systems of utilizing the geothermal resource at the Great Western barley malting facility. These systems included: direct use of geothermal water; geothermal energy heating process water through an intermediary heat exchanger; coal or gas boosted geothermal systems; and heat pump boosted geothermal system. The analysis examined the steps that are required to process the grain.

  5. Wildlife Impact Assessment Palisades Project, Idaho, Final Report.

    SciTech Connect (OSTI)

    Sather-Blair, Signe

    1985-02-01

    The Habitat Evaluation Procedures were used to evaluate pre- and post-construction habitat conditions of the US Bureau of Reclamation's Palisades Project in eastern Idaho. Eight evaluation species were selected with losses expressed in the number of Habitat Units (HU's). One HU is equivalent to one acre of prime habitat. The evaluation estimated that a loss of 2454 HU's of mule deer habitat, 2276 HU's of mink habitat, 2622 HU's of mallard habitat, 805 HU's of Canada goose habitat, 2331 HU's of ruffed grouse habitat, 5941 and 18,565 HU's for breeding and wintering bald eagles, and 1336 and 704 HU's for forested and scrub-shrub wetland nongame species occurred as a result of the project. The study area currently has 29 active osprey nests located around the reservoir and the mudflats probably provide more feeding habitat for migratory shore birds and waterfowl than was previously available along the river. A comparison of flow conditions on the South Fork of the Snake River below the dam between pre- and post-construction periods also could not substantiate claims that water releases from the dam were causing more Canada goose nest losses than flow in the river prior to construction. 41 refs., 16 figs., 9 tabs.

  6. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2008

    SciTech Connect (OSTI)

    Brenda R. Pace

    2009-01-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2008 (FY 2008). Throughout the year, 45 cultural resource localities were revisited including: two locations of heightened Shoshone-Bannock tribal sensitivity, four caves, one butte, twenty-eight prehistoric archaeological sites, three historic homesteads, two historic stage stations, one historic canal construction camp, three historic trails, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2008 to assess project compliance with cultural resource recommendations, confirm the locations of previously recorded cultural resources in relation to project activities, to assess the damage caused by fire-fighting efforts, and to watch for cultural materials during ground disturbing activities. Although impacts were documented at a few locations, no significant adverse effects that would threaten the National Register eligibility of any resource were observed. Monitoring also demonstrated that INL projects generally remain in compliance with recommendations to protect cultural resources

  7. Oxidized organic functional groups in aerosol particles from forest emissions measured at mid-mountain and high- elevation mountain sites in Whistler, BC

    E-Print Network [OSTI]

    Schwartz, Rachel E.

    2010-01-01

    in Aerosol Particles from a Mountain Forest Site and theirin the Sierra Nevada Mountains of California, J. Geophys.in Aerosol Particles from a Mountain Forest Site and their

  8. Central and southern Africa

    SciTech Connect (OSTI)

    McGrew, H.J.

    1981-10-01

    Exploration in central and southern Africa continued to expand during 1980. The greatest concentration of activity was in Nigeria. However, there was considerable increase in the level of exploratory work in Cameroon and Congo. Significant new finds have been made in Ivory Coast. Geological and geophysical activity was carried out in 18 of the countries, with those in the western part having the largest share. Seismic work involved 225 party months of operation. Most of this time was spent on land, but marine operations accounted for 73,389 km of new control. Gravity and magnetic data were recorded during the marine surveys, and several large aeromagnetic projects were undertaken to obtain a total of 164,498 line km of data. Exploratory and development drilling accounted for a total of 304 wells and 2,605,044 ft (794,212 m) of hole. The 92 exploratory wells that were drilled resulted in 47 oil and gas discoveries. In development drilling 89% of the 212 wells were successful. At the end of the year, 27 exploratory wells were underway, and 34 development wells were being drilled for a total of 61. Oil production from the countries that this review covers was 918,747,009 bbl in 1980, a drop of about 9% from the previous year. Countries showing a decline in production were Nigeria, Gabon, Cabinda, and Zaire. Increases were recorded in Cameroon, Congo, and Ghana. A new country was added to the list of producers when production from the Belier field in Ivory Coast came on stream. 33 figures, 15 tables.

  9. Evaluating cumulative ascent: Mountain biking meets Mandelbrot

    E-Print Network [OSTI]

    D. C. Rapaport

    2011-03-10

    The problem of determining total distance ascended during a mountain bike trip is addressed. Altitude measurements are obtained from GPS receivers utilizing both GPS-based and barometric altitude data, with data averaging used to reduce fluctuations. The estimation process is sensitive to the degree of averaging, and is related to the well-known question of determining coastline length. Barometric-based measurements prove more reliable, due to their insensitivity to GPS altitude fluctuations.

  10. Lagoon Seepage Testing Report for Central Facilities Area (CFA) Sewage Lagoons at Idaho National Laboratory, Butte County, Idaho

    SciTech Connect (OSTI)

    Bridger Morrison

    2014-09-01

    J-U-B ENGINEERS, Inc. (J-U-B) performed seepage tests on the CFA Wastewater Lagoons 1, 2, and 3 between August 26th and September 22nd, 2014. The lagoons were tested to satisfy the Idaho Department of Environmental Quality (DEQ) Rules (IDAPA 58.01.16) that require all lagoons be tested at a frequency of every 10 years and the Compliance Activity CA-141-03 in the DEQ Wastewater Reuse Permit for the CFA Sewage Treatment Plant (LA-000141-03). The lagoons were tested to determine if the average seepage rates are less than 0.25 in/day, the maximum seepage rate allowed for lagoons built prior to April 15, 2007. The average seepage rates were estimated for each lagoon and are given in Table-ES1. The average seepage rates for Lagoons 1 and 2 are less than the allowable seepage rate of 0.25 in/day. Lagoon 1 and 2 passed the seepage test and will not have to be tested again until the year 20241. However, the average seepage rate for Lagoon 3 appears to exceed the allowable seepage rate of 0.25 in/day which means the potential source for the excessive leakage should be investigated further.

  11. Strontium Distribution Coefficients of Surficial and Sedimentary Interbed Samples from the Idaho National Engineering and Environmental Laboratory, Idaho

    SciTech Connect (OSTI)

    M. J. Liszewski (USGS); J. J. Rosentreter (ISU); K. E. Miller (USGS); R. C. Bartholomay (USGS)

    1998-04-01

    The transport and fate of waste constituents in geologic media is dependent on physical and chemical processes that govern the distribution of constituents between the solid, geologic, stationary phase and an aqueous, mobile phase. This distribution often is quantified, at thermodynamic equilibrium by an empirically determined parameter called the distribution coefficient (Kd). Kd's can be used effectively to summarize the chemical factors that affect transport efficiency of ground-water constituents. Strontium distribution coefficients (Kd's) were measured for 21 surficial and 17 sedimentary interbed samples collected from sediment cores from selected sites at the Idaho National Engineering and Environmental Laboratory (INEEL) to help assess the variability of strontium Kd's at the INEEL as part of an ongoing investigation of strontium chemical-transport properties. Batch experimental techniques were used to determine strontium Kd's of the sediments. Measured strontium Kd's of th e surficial and interbedded sediments ranged from 26{+-}1 to 328{+-}41 milliliters per gram. These results indicate significant variability in the strontium sorptive capacities of surficial and interbedded sediments at the INEEL. Some of this variability can be attributed to physical and chemical properties of the sediment; other variability may be due to compositional changes in the equilibrated solutions after being mixed with the sediment.

  12. Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical...

    Energy Savers [EERE]

    Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company:...

  13. Wind Forecast Improvement Project Southern Study Area Final Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study...

  14. Aadland, R.K., and E.H. Bennett. 1979. Geologic Map of the Sandpoint Quadrangle, Idaho and Washington: Idaho Geological Survey, 1:250,000 Scale, 1 Plate.

    E-Print Network [OSTI]

    and the Bonneville Power Administration Alden, W. C. 1953. Physiography and glacial geology of western Montana Tribe of Idaho. Prepared for the Bonneville Power Administration, Portland, OR. Anders, P. J. 1994. Kootenai Tribe of Idaho. Prepared for the Bonneville Power Administration, Portland, OR. Anders, P.J. and M

  15. Idaho National Laboratory’s Greenhouse Gas FY08 Baseline

    SciTech Connect (OSTI)

    Jennifer D. Morton

    2011-06-01

    A greenhouse gas (GHG) inventory is a systematic attempt to account for the production and release of certain gasses generated by an institution from various emission sources. The gasses of interest are those which have become identified by climate science as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2008 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. Concern about the environmental impact of GHGs has grown in recent years. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of a baseline estimate of total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions in the future, and such documentation will require knowledge of a baseline against which reductions can be measured. INL's FY08 GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three Scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries but are a consequence of INL's activities). This inventory found that INL generated a total of 113,049 MT of CO2-equivalent emissions during FY08. The following conclusions were made from looking at the results of the individual contributors to INL's baseline GHG inventory: (1) Electricity (including the associated transmission and distribution losses) is the largest contributor to INL's GHG inventory, with over 50% of the CO2e emissions; (2) Other sources with high emissions were stationary combustion (facility fuels), waste disposal (including fugitive emissions from the onsite landfill and contracted disposal), mobile combustion (fleet fuels), employee commuting, and business air travel; and (3) Sources with low emissions were wastewater treatment (onsite and contracted), fugitive emissions from refrigerants, and business ground travel (in personal and rental vehicles). This report details the methods behind quantifying INL's GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  16. Idaho National Laboratory’s Greenhouse Gas FY08 Baseline

    SciTech Connect (OSTI)

    Jennifer D. Morton

    2010-09-01

    A greenhouse gas (GHG) inventory is a systematic attempt to account for the production and release of certain gasses generated by an institution from various emission sources. The gasses of interest are those which have become identified by climate science as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2008 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. Concern about the environmental impact of GHGs has grown in recent years. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of a baseline estimate of total GHGs generated at the INL. Additionally, the INL has a desire to see how its emissions compare with similar institutions, including other DOE-sponsored national laboratories. Executive Order 13514 requires that federally-sponsored agencies and institutions document reductions in GHG emissions in the future, and such documentation will require knowledge of a baseline against which reductions can be measured. INL’s FY08 GHG inventory was calculated according to methodologies identified in Federal recommendations and an as-yet-unpublished Technical and Support Document (TSD) using operational control boundary. It measures emissions generated in three Scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL’s organizational boundaries but are a consequence of INL’s activities). This inventory found that INL generated a total of 114,256 MT of CO2-equivalent emissions during fiscal year 2008 (FY08). The following conclusions were made from looking at the results of the individual contributors to INL’s baseline GHG inventory: • Electricity is the largest contributor to INL’s GHG inventory, with over 50% of the net anthropogenic CO2e emissions • Other sources with high emissions were stationary combustion, fugitive emissions from the onsite landfill, mobile combustion (fleet fuels) and the employee commute • Sources with low emissions were contracted waste disposal, wastewater treatment (onsite and contracted) and fugitive emissions from refrigerants. This report details the methods behind quantifying INL’s GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to stress that the methodology behind this inventory followed guidelines that have not yet been formally adopted. Thus, some modification of the conclusions may be necessary as additional guidance is received. Further, because this report differentiates between those portions of the INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  17. Idaho National Laboratory Cultural Resource Monitoring Report for 2013

    SciTech Connect (OSTI)

    Julie B. Williams; Brenda Pace

    2013-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during 2013. Throughout the year, thirty-eight cultural resource localities were revisited including: two locations with Native American human remains, one of which is also a cave; fourteen additional caves; seven prehistoric archaeological sites ; four historic archaeological sites; one historic trail; one nuclear resource (Experimental Breeder Reactor-I, a designated National Historic Landmark); and nine historic structures located at the Central Facilities Area. Of the monitored resources, thirty-three were routinely monitored, and five were monitored to assess project compliance with cultural resource recommendations along with the effects of ongoing project activities. On six occasions, ground disturbing activities within the boundaries of the Power Burst Facility/Critical Infrastructure Test Range Complex (PBF/CITRC) were observed by INL CRM staff prepared to respond to any additional finds of Native American human remains. In addition, two resources were visited more than once as part of the routine monitoring schedule or to monitor for additional damage. Throughout the year, most of the cultural resources monitored had no visual adverse changes resulting in Type 1determinations. However, Type 2 impacts were noted at eight sites, indicating that although impacts were noted or that a project was operating outside of culturally cleared limitations, cultural resources retained integrity and noted impacts did not threaten National Register eligibility. No new Type 3 or any Type 4 impacts that adversely impacted cultural resources and threatened National Register eligibility were observed at cultural resources monitored in 2013.

  18. Idaho National Laboratory Comprehensive Land Use and Environmental Stewardship Report

    SciTech Connect (OSTI)

    No name listed on publication

    2011-08-01

    Land and facility use planning and decisions at the Idaho National Laboratory (INL) Site are guided by a comprehensive site planning process in accordance with Department of Energy Policy 430.1, 'Land and Facility Use Policy,' that integrates mission, economic, ecologic, social, and cultural factors. The INL Ten-Year Site Plan, prepared in accordance with Department of Energy Order 430.1B, 'Real Property Asset Management,' outlines the vision and strategy to transform INL to deliver world-leading capabilities that will enable the Department of Energy to accomplish its mission. Land use planning is the overarching function within real property asset management that integrates the other functions of acquisition, recapitalization, maintenance, disposition, real property utilization, and long-term stewardship into a coordinated effort to ensure current and future mission needs are met. All land and facility use projects planned at the INL Site are considered through a formal planning process that supports the Ten-Year Site Plan. This Comprehensive Land Use and Environmental Stewardship Report describes that process. The land use planning process identifies the current condition of existing land and facility assets and the scope of constraints across INL and in the surrounding region. Current land use conditions are included in the Comprehensive Land Use and Environmental Stewardship Report and facility assets and scope of constraints are discussed in the Ten-Year Site Plan. This report also presents the past, present, and future uses of land at the INL Site that are considered during the planning process, as well as outlining the future of the INL Site for the 10, 30, and 100-year timeframes.

  19. Erosion Control Progress in the HUA IDAHO SNAKE-PAYETTE RIVERS --HUA WATER QUALITY PROJECT FINAL REPORT

    E-Print Network [OSTI]

    O'Laughlin, Jay

    Erosion Control Progress in the HUA IDAHO SNAKE-PAYETTE RIVERS -- HUA WATER QUALITY PROJECT FINAL water quality within the HUA used in #12;2 -- Erosion Control IDAHO SNAKE-PAYETTE RIVERS -- HUA WATER from farms­thus improving surface water quality. The technologies used to improve erosion control

  20. 2002 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory and Associated Documentation

    SciTech Connect (OSTI)

    Meachum, Teresa Ray; Michael G. Lewis

    2003-02-01

    The 2002 Wastewater Land Application site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operation of the facilities during the 2002 permit year are discussed.