Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mountains russia contemporaneous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains  

Open Energy Info (EERE)

2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains 2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains (Russia), Contemporaneous Granites, And Associated Ore Deposits Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains (Russia), Contemporaneous Granites, And Associated Ore Deposits Details Activities (0) Areas (0) Regions (0) Abstract: Diverse latest Pliocene volcanic and plutonic rocks in the north-central Caucasus Mountains of southern Russia are newly interpreted as components of a large caldera system that erupted a compositionally zoned rhyolite-dacite ash-flow sheet at 2.83 ± 0.02 Ma (sanidine and biotite 40Ar/39Ar). Despite its location within a cratonic collision zone, the Chegem system is structurally and petrologically similar to typical

2

Mountain  

U.S. Energy Information Administration (EIA) Indexed Site

Biodiesel (B100) Production by Petroleum Administration for Defense District (PADD)" Biodiesel (B100) Production by Petroleum Administration for Defense District (PADD)" "(million gallons)" "Period","PADD",,,,,,,,,,"U.S." ,"East Coast (PADD 1)",,"Midwest (PADD 2)",,"Gulf Coast (PADD 3)",,"Rocky Mountain (PADD 4)",,"West Coast (PADD 5)" 2011 "January",3,,30,,1,,0,,1,,35.355469 "February",3,,32,,4,,0,,1,,40.342355 "March",3,,47,,6,,0,,2,,59.59017 "April",3,,54,,10,,0,,3,,71.0517 "May",4,,58,,11,,0,,4,,77.196652 "June",4,,56,,14,,0,,7,,81.39104 "July",5,,65,,17,,0,,5,,91.679738 "August",5,,66,,20,,0,,5,,95.484891 "September",6,,65,,20,,0,,6,,95.880151 "October",7,,73,,22,,0,,4,,105.342474

3

Russia's Soft Underbelly: The Stability of Instability in Dagestan  

E-Print Network (OSTI)

Caucasus Mountains, wars between newly independent Georgia andGeorgia is no longer operational. The only railroad connecting Russia to the South Caucasus

Walker, Edward W.

2000-01-01T23:59:59.000Z

4

RUSSIA - Springer  

Science Conference Proceedings (OSTI)

The main Members demanding unification of oil and gas prices in. Russia are ..... 1972/2002 dated November 5, 2002 amending Regulation (EC) No. 384/96.

5

2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus...  

Open Energy Info (EERE)

.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains (Russia), Contemporaneous Granites, And Associated Ore Deposits Jump to: navigation, search GEOTHERMAL...

6

Russia's sorry infrastructure  

Science Conference Proceedings (OSTI)

The loss of the nuclear submarine Kursk and the fire in Moscow's TV tower are indications of an infrastructure in grievous disrepair. The outlook for Russia's technological infrastructure remains grim, experts insist. Almost 70 percent of the population ...

J. Oberg

2000-12-01T23:59:59.000Z

7

NPP Grassland: Kursk, Russia  

NLE Websites -- All DOE Office Websites (Extended Search)

69 Novocheryomushkinskaya Moscow 117418 RUSSIA co Department of Biology and Microbiology South Dakota State University Brookings, SD 57007 U.S.A. Telephone (U.S.A.): +1 (605)...

8

NPP Grassland: Tuva, Russia  

NLE Websites -- All DOE Office Websites (Extended Search)

Tuva, Russia, 1978-1985 Tuva, Russia, 1978-1985 [PHOTOGRAPH] Photograph: Forest-steppe foothills near Tuva (click on the photo to view a larger image from this site). Data Citation Cite this data set as follows: Gilmanov, T. G. 1996. NPP Grassland: Tuva, Russia, 1978-1985. Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. Description Productivity of an ultra-continental steppe was determined at the Tuva study site from 1978 to 1985. Measurement of monthly dynamics of above-ground plant biomass were made for each growing season (May-August). Cumulative above-ground net primary production was estimated for some years. These data are part of a series of grassland data sets recently

9

NPP Grassland: Otradnoe, Russia  

NLE Websites -- All DOE Office Websites (Extended Search)

Otradnoe, Russia, 1969-1973 Otradnoe, Russia, 1969-1973 Data Citation Cite this data set as follows: Gilmanov, T. G. 1996. NPP Grassland: Otradnoe, Russia, 1969-1973. Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. Description The productivities of two meadows (i.e., one loamy soil, one sandy soil) were determined at the Otradnoe study site from 1969 to 1973. Measurements of monthly dynamics of above-ground and below-ground plant biomass were made for each growing season (April-October). Above-ground net primary production was estimated for each year. These data are part of a series of grassland data sets recently assembled and checked by Dr. Tagir Gilmanov, which cover a wide range of climate and "continentality" (increasing

10

‹ Countries Russia Background - Energy Information Administration  

U.S. Energy Information Administration (EIA)

‹ Countries Russia Last Updated: September 18, 2012 full report Background Russia holds the world's largest natural gas reserves, the second-largest coal reserves, and

11

An assessment of recent extreme weather in Pakistan and Russia Mike Blackburn1  

E-Print Network (OSTI)

- 1 - An assessment of recent extreme weather in Pakistan and Russia Mike Blackburn1 , Andy Turner1 crossed the mountains over northern Pakistan, intensifying the monsoon rains there. This trough into northern Pakistan, beneath the trough(Fig.3) . It appears to be this conjunction of events that led

Dacre, Helen

12

Russia’s Natural Gas Export Potential up to 2050  

E-Print Network (OSTI)

Recent increases in natural gas reserve estimates and advances in shale gas technology make natural gas a fuel with good prospects to serve a bridge to a low-carbon world. Russia is an important energy supplier as it holds ...

Paltsev, Sergey

13

Russia - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Russia's Transneft holds a monopoly over Russia's pipeline network, ... Russia is one of the top producers and consumers of electric power in the world, ...

14

Double-Edged Sword: Russia’s Use of Energy as Leverage in the Near Abroad.  

E-Print Network (OSTI)

??This work explores Russia’s use of energy as leverage in the near abroad. This work argues that different strategies of using energy, such as moderation… (more)

Visotzky, Alexander M.

2009-01-01T23:59:59.000Z

15

Russia’s R&D for Low Energy Buildings: Insights for Cooperation with Russia  

SciTech Connect

Russian buildings, Russian buildings sector energy consumption. Russian government has made R&D investment a priority again. The government and private sector both invest in a range of building energy technologies. In particular, heating, ventilation and air conditioning, district heating, building envelope, and lighting have active technology research projects and programs in Russia.

Schaaf, Rebecca E.; Evans, Meredydd

2010-05-01T23:59:59.000Z

16

Russia’s Natural Gas Export Potential up to 2050  

E-Print Network (OSTI)

Recent increases in natural gas reserve estimates and advances in shale gas technology make natural gas a fuel with good prospects to serve a bridge to a low-carbon world. Russia is an important energy supplier as it holds the world largest natural gas reserves and it is the world’s largest exporter of natural gas. Energy was one of the driving forces of Russia’s recent economic recovery from the economic collapse of 1990s. These prospects have changed drastically with a global recession and the collapse of oil and gas prices from their peaks of 2008. An additional factor is an ongoing surge in a liquefied natural gas (LNG) capacity and a development of Central Asia’s and the Middle East gas supplies that can compete with Russian gas in its traditional (European) and potential (Asian) markets. To study the long-term prospects for Russian natural gas, we employ the MIT Emissions Prediction and Policy Analysis (EPPA) model, a computable general equilibrium model of the world economy. While we consider the updated reserve estimates for all world regions, in this paper we focus on the results for Russian natural gas trade. The role of natural gas is explored in the context of several policy assumptions: with no greenhouse gas mitigation policy and scenarios of emissions targets in developed countries. Scenarios where Europe takes on an even more restrictive target of 80

Sergey Paltsev; Sergey Paltsev

2011-01-01T23:59:59.000Z

17

Mountain-eering University of Trento Spin off  

E-Print Network (OSTI)

Mountain-eering University of Trento Spin off www.mountain-eering.com Contacts Mountain-eering srl-mail: info@mountain-eering.com web site: www.mountain-eering.com Administrative Office via Giusti, 10 - 38122 Trento (Italy) #12;Company data Full legal name:· Mountain eering srl. Legal form of incorporation:· Ltd

18

Alumina Production in Russia Part I  

Science Conference Proceedings (OSTI)

The historical development of Russia's alumina production capacity is closely connected with the development of the Soviet Union's aluminum industry, although ...

19

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network (OSTI)

Most of Russia’s coal fired plants are old, built in the 50spower rely on coal-fired plants, which were uninteresting tocampaign that turned coal fired plants in European Russia

Wenle, Susanne Alice

2010-01-01T23:59:59.000Z

20

U.S. and Russia Sign Plutonium Disposition Agreement | National...  

National Nuclear Security Administration (NNSA)

Agreement U.S. and Russia Sign Plutonium Disposition Agreement September 01, 2000 Washington, DC U.S. and Russia Sign Plutonium Disposition Agreement After two years of...

Note: This page contains sample records for the topic "mountains russia contemporaneous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Kenai, AK Liquefied Natural Gas Exports to Russia (Dollars per...  

U.S. Energy Information Administration (EIA) Indexed Site

Kenai, AK Liquefied Natural Gas Exports to Russia (Dollars per Thousand Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to Russia (Dollars per Thousand Cubic Feet) Decade...

22

Phytomass change in the mountain forests of southern Siberia under climate warming  

NLE Websites -- All DOE Office Websites (Extended Search)

Phytomass change in the mountain forests of southern Siberia Phytomass change in the mountain forests of southern Siberia under climate warming Nadja M. Tchebakova (E-mail: ncheby@forest.akadem.ru) V.N. Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia. Robert A. Monserud (E-mail: rmonserud@fs.fed.us; Ph: +1-503-808-2059; Fax: +1-503-808- 2020) Rocky Mountain and Pacific Northwest Research Stations, USDA Forest Service, P.O. Box 3890, Portland, OR 97208-3890 USA. Corresponding author. Elena I. Parfenova (E-mail: lyeti@forest.akadem.ru) V.N. Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia. 28 February 2001 Abstract. Introduction: Mitigation of climate warming is related to carbon sequestration in vegetation

23

POTENTAIL HABITAT MOUNTAIN PLOVERS  

E-Print Network (OSTI)

in the Yucca Mountain region has been studied using two approaches: a geological approach that examines Yucca Mountain [Andrews et al., 2007]. In this paper we report on an exercise to verify the computer. These benchmarks targeted the particular case of earthquake rupture on a normal fault at Yucca Mountain, Nevada

24

Perspectives for logistics clusters development in Russia  

E-Print Network (OSTI)

This thesis is a normative work aimed at identifying locations in Russia with high, medium and unclear potentials for logistics cluster development. As a framework this work uses four different models of logistics clusters: ...

Tantsuyev, Andriy

2012-01-01T23:59:59.000Z

25

Contemporaneous observations of the radio galaxy NGC 1275 from radio to very high energy gamma-rays  

E-Print Network (OSTI)

The radio galaxy NGC 1275, recently identified as a very high energy (VHE, >100 GeV) gamma-ray emitter by MAGIC, is one of the few non-blazar AGN detected in the VHE regime. In order to better understand the origin of the gamma-ray emission and locate it within the galaxy, we study contemporaneous multi-frequency observations of NGC 1275 and model the overall spectral energy distribution (SED). We analyze unpublished MAGIC observations carried out between Oct. 2009 and Feb. 2010, and the already published ones taken between Aug. 2010 and Feb. 2011. We study the multi-band variability and correlations analyzing data of Fermi-LAT (0.1 - 100 GeV), Chandra (X-ray), KVA (optical) and MOJAVE (radio) taken during the same period. Using custom Monte Carlo simulations corresponding to early MAGIC stereo data, we detect NGC 1275 also in the earlier MAGIC campaign. The flux level and energy spectra are similar to the results of the second campaign. The monthly light curve above 100 GeV shows a hint of variability at the...

Aleksi?, J; Antonelli, L A; Antoranz, P; Babic, A; Bangale, P; de Almeida, U Barres; Barrio, J A; González, J Becerra; Bednarek, W; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Fidalgo, D Carreto; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; Mendez, C Delgado; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Einecke, S; Eisenacher, D; Elsaesser, D; Farina, E; Ferenc, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Giavitto, G; Godinovi?, N; Muñoz, A González; Gozzini, S R; Hadamek, A; Hadasch, D; Herrero, A; Hildebrand, D; Hose, J; Hrupec, D; Idec, W; Kadenius, V; Kellermann, H; Knoetig, M L; Krause, J; Kushida, J; La Barbera, A; Lelas, D; Lewandowska, N; Lindfors, E; Lombardi, S; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Lozano, I; Makariev, M; Mallot, K; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Meucci, M; Miranda, J M; Mirzoyan, R; Moralejo, A; Munar-Adrover, P; Nakajima, D; Niedzwiecki, A; Nilsson, K; Nowak, N; Orito, R; Overkemping, A; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Partini, S; Persic, M; Prada, F; Moroni, P G Prada; Prandini, E; Preziuso, S; Puljak, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Garcia, J Rodriguez; Rügamer, S; Saggion, A; Saito, K; Salvati, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Stamatescu, V; Stamerra, A; Steinbring, T; Storz, J; Sun, S; Suri?, T; Takalo, L; Tavecchio, F; Temnikov, P; Terzi?, T; Tescaro, D; Teshima, M; Thaele, J; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Uellenbeck, M; Vogler, P; Wagner, R M; Zandanel, F; Zanin, R; Balmaverde, B; Kataoka, J; Rekola, R; Takahashi, Y; .,

2013-01-01T23:59:59.000Z

26

Why Russia is not a state  

SciTech Connect

This article makes two principal points. First the author argues that the Russian federation has never been a state and is not sustainable as a state. Four centrifugal indicators are presented to support this claim: ethnic divisiveness; uncertainty about the legitimacy of Russia`s current borders; competing claims for legitimacy on the part of federal and regional leaders; and army units` unpredictable allegiances. Second, she argues that Soviet policies intended to facilitate central control of the periphery had the perverse effect of creating ethnic identity and demands for national autonomy where, in many cases, they did not exist prior to the Communist regime. Following the introduction, part one briefly reviews the concepts of state, nation, and nationalism and the roles they play in Russia. Criteria for state-hood are discussed. Part two lists the main ethnic groups in Russia and considers the roots of ethnic nationalism in the Russian Federation. Part three discusses confusion over the legitimacy of the physical, economic, and political boundaries of the Russian Federation. Part four discusses political disarray in the center and the regions and the lack of unity among order-enforcing entities. The Volga-Ural region -- where there is a large concentration of nuclear weapons and facilities, and which is especially volatile politically -- is discussed in somewhat more detail. Part five argues that these factors taken together call into question Russia`s identity as a state. The author concludes that Russia remains a multi-ethnic empire in which the rule of law is still not supreme.

Stern, J.E.

1993-08-16T23:59:59.000Z

27

Contemporaneous Structural Steel Specifications  

Science Conference Proceedings (OSTI)

... World Trade Center Disaster: The Con Ed Substation in World ... Civil Engineer-ASCE ... Engineering News Record Also, see compilation volume of ...

28

Seismic Regionalization In Northeast Russia  

E-Print Network (OSTI)

In an effort to characterize seismicity in support of nuclear explosion monitoring for the continental regions of northeast Russia, we have been analyzing information obtained from regional seismic network operators. Our goal is to merge catalog, bulletin, waveform, and other ground truth data from several regional networks into a comprehensive data set that we will use for various seismic research projects. To date we have compiled a bulletin from published and unpublished event data of about 200,000 events and over 150,000 arrival times. We have also determined that the Russian regional network catalogs are contaminated with mining-explosion events. Hence, one of our primary efforts is to identify mining events when possible and move them into a separate bulletin from the natural earthquakes. We have extended our preliminary analysis of explosion contamination of Russian seismicity catalogs using temporal analysis into the Irkutsk and Chita districts and the Buryat Republic. Based on analysis of epicenters and origin times reported in Material po Seismichnost' Sibiri for 1970 -- 1993, it is likely that considerable explosion contamination occurs in the gold (Bodaibo, northern Irkutsk Region, and in the Chita region), mica (Vitim, northern Irkutsk Region), and other mining areas (Bushulei, Nerchinsk, and Petrovsk in the Buryat and Chita areas). Explosion contamination is also observed in northernmost Mongolia in the mining and industrial district near Darkhan. Explosions associated with the construction of the Baikal-Amur Mainline Railroad are likely, as was observed in the Amur district; however, the amount of natural seismicity dominates the activity and makes it impossible to resolve the railroad separately. In conjunction with the Magadan Seismic Network operators,...

Kevin Mackey Kazuya; Kazuya Fujita; Lee K. Steck; Hans E. Hartse

2002-01-01T23:59:59.000Z

29

Ties That Do Not Bind: Russia and the International Liberal Order  

E-Print Network (OSTI)

Iran, Russia, and Afghanistan”, Program on Energy and SustainableIran, Russia, and Afghanistan”, Program on Energy and Sustainable

Krickovic, Andrej

2012-01-01T23:59:59.000Z

30

Well-logging activities in Russia  

Science Conference Proceedings (OSTI)

The report is a brief survey of the current state of well-logging service in Russia (number and types of crews, structure of well-logging jobs, types of techniques used, well-logging equipment, auxiliary downhole jobs, etc.). Types and peculiarities of well data acquisition and processing hardware and software are discussed (petrophysics included). New well-logging technologies used in Russia (new methods of electric logging data processing, electromagnetic logging, pulse neutron logging, nuclear magnetic resonance logging, acoustic tomography, logging-testing-logging technique, etc.) are surveyed. Comparison of the Tengiz field (Kazakhstan) well data obtained by Schlumberger and Neftegazgeofizika Association crews is given. Several problems and drawbacks in equipment and technology used by well-logging crews in Russia are discussed.

Savostyanov, N.A. (Neftegazgeofizika, Moscow (Russian Federation))

1993-09-01T23:59:59.000Z

31

Russia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Russia: Energy Resources Russia: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60,"lon":100,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

32

Mountainous | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Mountainous Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Mountainous Dictionary.png Mountainous: A geothermal areal located in terrain characterized by rugged and steep topography with high relief Other definitions:Wikipedia Reegle Topographic Features List of topographic features commonly encountered in geothermal resource areas: Mountainous Horst and Graben Shield Volcano Flat Lava Dome Stratovolcano Cinder Cone Caldera Depression Resurgent Dome Complex The interior of Iceland holds a vast expanse of mountainous geothermal areas, one of the more famous areas is landmannalaugar, Iceland. Photo by

33

(M)other Russia: Evolution or Revolution  

E-Print Network (OSTI)

) Faradzh Karaev ..."Monsieur Bee Line" - Eccentric (1997) (b.1943, Azerbaijan/Russia) (introduced, Kancheli, Gubaidulina, Korndorf and Smirnov for Chandos, Naxos and BMG. FARADZH KARAEV was born in Baku,Azerbaijan in 1943. In 1966 graduated with distinction from the Azerbaijan State Conservatoire, majoring

Miranda, Eduardo Reck

34

Russia: "national subjects" between unity and secession  

Science Conference Proceedings (OSTI)

After the implosion of communism in the USSR (1991) was a real disintegration of the Soviet space, which resulted in five sets geopolitical: Russian Federation, Baltic States, Eastern European States, States Transcaucasian and Central Asian States. In ... Keywords: "national subjects", Russia, democratization, secession, unity

Teodor Simion; Gica Pehoiu; ?tefan Ispas

2010-07-01T23:59:59.000Z

35

Russia's role in the Kyoto Protocol  

E-Print Network (OSTI)

As a result of the allocation of emissions reductions, and the differential willingness of countries to ratify, it turns out that Russia is a central player in the Kyoto Protocol. With the U.S. out and Japan and the EU ...

Bernard, Alain.

36

Development of the Electricity Carbon Emission Factors for Russia | Open  

Open Energy Info (EERE)

the Electricity Carbon Emission Factors for Russia the Electricity Carbon Emission Factors for Russia Jump to: navigation, search Name Development of the Electricity Carbon Emission Factors for Russia Agency/Company /Organization European Bank for Reconstruction and Development Sector Energy Focus Area Renewable Energy Topics GHG inventory Resource Type Publications Website http://www.lahmeyer.de/fileadm Country Russia Eastern Europe References Development of the Electricity Carbon Emission Factors for Russia[1] References ↑ "Development of the Electricity Carbon Emission Factors for Russia" Retrieved from "http://en.openei.org/w/index.php?title=Development_of_the_Electricity_Carbon_Emission_Factors_for_Russia&oldid=383164" Category: Programs What links here Related changes Special pages

37

Mountain | OpenEI  

Open Energy Info (EERE)

Mountain Mountain Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 28, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA Mountain Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - Mountain- Reference Case (xls, 74.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

38

YUCCA MOUNTAIN SITE DESCRIPTION  

SciTech Connect

The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

A.M. Simmons

2004-04-16T23:59:59.000Z

39

YUCCA MOUNTAIN SITE DESCRIPTION  

SciTech Connect

The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

A.M. Simmons

2004-04-16T23:59:59.000Z

40

Yucca Mountain | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain Yucca Mountain Yucca Mountain Addthis Fuel assembly for production of nuclear power 1 of 13 Fuel assembly for production of nuclear power Nuclear fuel pellets 2 of 13 Nuclear fuel pellets Aerial view of north end of the Yucca Mountain crest in February 1993 3 of 13 Aerial view of north end of the Yucca Mountain crest in February 1993 View of the first curve in the main drift of the Exploratory Studies Facility in October 1995 4 of 13 View of the first curve in the main drift of the Exploratory Studies Facility in October 1995 Aerial view of the crest of Yucca Mountain 5 of 13 Aerial view of the crest of Yucca Mountain Location of Yucca Mountain, Nevada 6 of 13 Location of Yucca Mountain, Nevada A scientist uses ultra-violet light to study how fluids move through rock

Note: This page contains sample records for the topic "mountains russia contemporaneous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Deputy Secretary Poneman to Travel to Russia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Poneman to Travel to Russia Poneman to Travel to Russia Deputy Secretary Poneman to Travel to Russia December 3, 2010 - 12:00am Addthis Washington, D.C. - On Monday, December 6, U.S. Deputy Secretary of Energy Daniel Poneman will travel to Russia as part of the ongoing cooperation between the two countries on nuclear security and peaceful nuclear energy issues. On Tuesday, Deputy Secretary Poneman will co-chair the U.S.-Russia Nuclear Energy and Nuclear Security Working Group Plenary Meeting with Director General of the State Atomic Energy Corporation "Rosatom" Sergei Kiriyenko. The Working Group was established under the U.S.-Russia Bilateral Presidential Commission at the July 2009 Presidential Summit. Last fall, Director Kiriyenko visited the United States for the first meetings of the

42

Russia - Analysis - U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Search EIA.gov. A-Z Index; ... Russia is the second country in the world in terms of number of ... a number of international oil companies attempted ...

43

oil and Gas Resources of the West Siberian Basin, Russia  

U.S. Energy Information Administration (EIA)

Energy Information Administration Oil and Gas Resources of the West Siberian Basin, Russia 29 Appendix A Petroleum Geology The petroleum geology discussion is copied ...

44

Green Mountain Energy RFP  

NLE Websites -- All DOE Office Websites (Extended Search)

PROPOSALS PROPOSALS GREEN MOUNTAIN ENERGY COMPANY TIM SMITH VP OF ORIGINATION AND BUSINESS DEVELOPMENT 550 WESTLAKE PARK BOULEVARD ROOM 172 HOUSTON, TEXAS 77079 281-366-5124 DATE ISSUED: JANUARY 21, 2005 DUE DATE & TIME FOR RESPONSES: FRIDAY, MARCH 3, 2005 @ 11:00 A.M. CENTRAL TIME RFP NOTICE GREEN MOUNTAIN ENERGY COMPANY IS REQUESTING PROPOSALS FROM GENERATORS AND MARKETERS OF RENEWABLE ENERGY CREDITS, RENEWABLE ENERGY ATTRIBUTES OR 'GREEN TAGS' ("RECs") ASSOCIATED WITH THE GENERATION OF ELECTRICITY FROM RENEWABLE RESOURCES. ANY QUESTIONS REGARDING THIS REQUEST FOR PROPOSAL SHOULD BE DIRECTED TO TIM SMITH, GREEN MOUNTAIN ENERGY COMPANY, 281-366-5124 or tim.smith@greenmountain.com. Upon signing this page the organization certifies that they have read and agree to

45

Under U.S.-Russia Partnership, Final Shipment of Fuel Converted...  

NLE Websites -- All DOE Office Websites (Extended Search)

1993 U.S.-Russia HEU Purchase Agreement; U.S. and Russia Pledge to Future Nuclear Nonproliferation Collaboration WASHINGTON, D.C. - The United States and Russia are today...

46

San Antonio Mountain Experiment (SAMEX)  

Science Conference Proceedings (OSTI)

The San Antonio Mountain Experiment (SAMEX) involves a 3325 m. conically shaped, isolated mountain in north-central New Mexico where hourly observations of temperature, relative humidity, wind speed, wind direction, and precipitation are being ...

Morris H. McCutchan; Douglas G. Fox; R. William Furman

1982-10-01T23:59:59.000Z

47

Moving Beyond the Yucca Mountain  

E-Print Network (OSTI)

of Energy in characterizing a site at Yucca Mountain, Nevada, as a possible location for a permanent to a decision by the Secretary of Energycurrently scheduled for 2001on whether to recommend the Yucca Mountain a clear description of how a Yucca Mountain repository would perform over thousands of years and how

48

Inverse modeling and forecasting for the exploitation of the Pauzhetsky geothermal field, Kamchatka, Russia  

E-Print Network (OSTI)

Heat and mass transfer in geothermal systems of Kamchatka.study of the Pauzhetsky geothermal field, Kamchatka, Russia.Modeling the Pauzhetsky geothermal field, Kamchatka, Russia.

Kiryukhin, A.V.

2008-01-01T23:59:59.000Z

49

U.S. And Russia Complete Nuclear Security Upgrades Under Bratislava...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

And Russia Complete Nuclear Security Upgrades Under Bratislava Initiative U.S. And Russia Complete Nuclear Security Upgrades Under Bratislava Initiative December 23, 2008 - 9:18am...

50

Russia pins energy hopes on western Siberia gas  

Science Conference Proceedings (OSTI)

This paper reports that natural gas, not oil or coal, will pull Russia out of its fuel production slump by the end of the century, predicts a recently disclosed study by Moscow's leading energy specialists. Western investment in Russia's natural gas industry is now being proposed on a scale rivaling foreign outlays for joint ventures aimed at stabilizing the republic's oil production.

Not Available

1992-09-07T23:59:59.000Z

51

Changes in Russia's Military and Nuclear Doctrine  

Science Conference Proceedings (OSTI)

In 1993, the Russian Federation set out a new military doctrine that would determine the direction of its armed forces until President Putin set out the next doctrine in 2000. The Russian Federation creating the doctrine was new; the USSR had recently collapsed, Gorbachev - the creator of the predecessor to this doctrine in 1987 - was out of office, and the new Russian military had only been formed in May, 1992.1 The analysis of the 1993 doctrine is as follows: a definition of how doctrine is defined; a short history of Russian military doctrine leading up to the 1993 doctrine (officially the Basic Provisions of the Military Doctrine of the Russian Federation); and finally, what the doctrine established. An overview of the 1993 doctrine is: (1) Russia's 1993 doctrine was a return to older, more aggressive doctrine as a result of stability concerns surrounding the recent collapse of the USSR; (2) Russia turned from Gorbachev's 'defensive defense' in the 1987 doctrine to aggressive defense with the option of preempting or striking back against an aggressor; (3) Russia was deeply concerned about how nationalism would affect the former Soviet Republics, particularly in respect to the ethnic Russians still living abroad; and (4) Nuclear doctrine pledged to not be the first to use nuclear weapons but provided for the potential for escalation from a conventional to a nuclear war. The 2000 doctrine (officially the Russian Federation Military Doctrine) was created in a more stable world than the 1993 doctrine was. The Russian Federation had survived independence and the 'threat of direct military aggression against the Russian Federation and its allies' had diminished. It had secured all of the nuclear weapons from its neighbors Ukraine, Belarus, and Kazakhstan, and had elected a new president, Vladimir Putin, to replace Boris Yeltsin. Yet, even as the doctrine took more defensive tones than the 1993 doctrine, it expanded its nuclear options. Below are a new definition of what doctrine meant in 2000 and an outline of the 2000 doctrine. An overview of the 2000 doctrine is: (1) The 2000 doctrine was a return to a more defensive posture; the threat of nuclear retaliation, rather than that of preemptive force, would be its deterrence; (2) In order to strengthen its nuclear deterrence, Russia extended and redefined the cases in which nuclear weapons could be used to include a wider range of conflict types and a larger spectrum of attackers; and (3) Russia's threats changed to reflect its latest fear of engaging in a limited conflict with no prospect of the use of nuclear deterrence. In 2006, the defense minister and deputy prime minister Sergei Ivanov announced that the government was starting on a draft of a future doctrine. Four years later, in 2010, the Military Doctrine of the Russian Federation was put into effect with the intent of determining Russian doctrine until 2020. The 2010 doctrine, like all previous doctrines, was a product of the times in which it was written. Gone were many of the fears that had followed Russia for the past two decades. Below are an examination of the 2010 definition of doctrine as well as a brief analysis of the 2010 doctrine and its deviations from past doctrines. An overview of the 2010 doctrine is: (1) The new doctrine emphasizes the political centralization of command both in military policy and the use of nuclear weapons; (2) Nuclear doctrine remains the same in many aspects including the retention of first-use; (3) At the same time, doctrine was narrowed to using nuclear weapons only when the Russian state's existence is in danger; to continue strong deterrence, Russia also opted to follow the United States by introducing precision conventional weapons; (4) NATO is defined as Russia's primary external threat because of its increased global presence and its attempt to recruit states that are part of the Russian 'bloc'; and (5) The 2000 doctrine's defensive stance was left out of the doctrine; rumored options for use of nuclear weapons in local wars and in preemptive strikes were also left out.

Wolkov, Benjamin M. [Los Alamos National Laboratory; Balatsky, Galya I. [Los Alamos National Laboratory

2012-07-26T23:59:59.000Z

52

Russia Federation Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Centrally Planned Europe » Russian Federation Russia Federation Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends Since 1992 total fossil-fuel CO2 emissions from the Russian Federation have dropped 23% to 466 million metric tons of carbon, still the fourth largest emitting country in the world and the largest emitter of the republics comprising the former USSR. Emissions from gas consumption still represent the largest fraction (49.1%) of Russia's emissions and only recently have returned to the 1992 level. Emissions from coal consumption have dropped 25.5% since 1992 and presently account for 26.6% of Russia's emissions. Russia has the largest population of any Eastern European country with a population of 141 million people. From a per capita standpoint, Russia's

53

Secretary Bodman Travels to Russia to Advance Energy Security | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Russia to Advance Energy Security Russia to Advance Energy Security Secretary Bodman Travels to Russia to Advance Energy Security March 15, 2006 - 12:20pm Addthis Promotes Transparent Markets and Clean Energy Technologies; Participates in G8 Energy Ministerial and Delivers Remarks on the Global Nuclear Energy Partnership MOSCOW, RUSSIA-U.S. Secretary of Energy Samuel W. Bodman today began a two-day visit to Russia where he will lead the U.S. delegation to the G8 Energy Ministerial. During his visit the Secretary will promote greater energy security through the use of advanced energy technologies, the promotion of stable and transparent investment climates, and increased conservation and energy efficiency. Secretary Bodman will also deliver remarks to the Carnegie Center on the Global Nuclear Energy Partnership

54

Russia-USAID Climate Activities | Open Energy Information  

Open Energy Info (EERE)

USAID Climate Activities USAID Climate Activities Jump to: navigation, search Name Russia-USAID Climate Activities Agency/Company /Organization U.S. Agency for International Development Partner U.S. Forest Service Sector Land Focus Area Forestry Topics Background analysis Website http://www.usaid.gov/our_work/ Country Russia Eastern Europe References USAID Russia[1] "Currently, USAID/Russia addresses global climate change issues through its support to the U.S. Forest Service (USFS). Forests play an important role in mitigating the effects of climate change; therefore establishing good management practices and avoiding deforestation are critical. USFS collaboration with Russia focuses on sustainable forest management topics, including inventory and monitoring, fire management, illegal logging, and

55

Modeling studies of mountain-scale radionuclide transport in the unsaturated zone at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Investigations at Yucca Mountain - The Potential Repositoryin the Unsaturated Zone, Yucca Mountain, Nevada, ResourcesIN THE UNSATURATED ZONE AT YUCCA MOUNTAIN, NEVADA George J.

Moridis, George J.; Seol, Yongkoo; Wu, Yu-Shu

2003-01-01T23:59:59.000Z

56

Evolution of the unsaturated zone testing at Yucca Mountain  

E-Print Network (OSTI)

INTO DRIFTS AT YUCCA MOUNTAIN." JOURNAL OF CONTAMINANTFRACTURES AT YUCCA MOUNTAIN." JOURNAL OF CONTAMINANTPneumatic Testing at Yucca Mountain." International Journal

Wang, J.S.Y.; Bodvarsson, G.S.

2002-01-01T23:59:59.000Z

57

BLM Battle Mountain District Office | Open Energy Information  

Open Energy Info (EERE)

Battle Mountain District Office Jump to: navigation, search Logo: BLM Battle Mountain District Office Name BLM Battle Mountain District Office Short Name Battle Mountain Parent...

58

Rocky Mountain Customers  

NLE Websites -- All DOE Office Websites (Extended Search)

RM Home About RM Contact RM Customers Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates Rocky Mountain Region's Customer list Use the filters above the customer list to refine your search. Click the "Clear" to reset the list. Western's full list of customers is available on the Western's Customer Web page. Customer Name Customer Type State Region Project Arapahoe and Roosevelt National Forests Federal Agencies CO RM LAP Arkansas River Power Authority Municipalities CO RM/CRSP LAP/SLIP Burlington, City of Municipalities CO RM LAP Cheyenne Mountain Air Force Base Federal Agencies CO RM LAP Clay Center, City of Municipalities KS RM LAP Denver Water Board Municipalities CO RM LAP

59

RussiaLANLV3-web.indd  

National Nuclear Security Administration (NNSA)

Despite the high quality of the work being conducted under the US/Russian Science and Despite the high quality of the work being conducted under the US/Russian Science and Technology collaborations, the product of that work will inevitably be underutilized unless it is disseminated to the broader scientifi c community. In response to this realization, and with the objective of maximizing the benefi t of the collaboration, the researchers involved in these collaborations often publish their work. This particular project has resulted in the publication (by Springer-Verlag) of an extensive (over 400 pages) book on the topic of shock physics. The fi rst line of the preface reads, "This book is the result of collaboration between the Russian Federal Nuclear Center - All Russian Scientifi c Research Institute of Experimental Physics (RFNC-VNIIEF) located in Sarov, Russia, and the University of California-Los Alamos

60

Working with Russia | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Working with Russia Working with Russia Working with Russia Posted: February 11, 2013 - 3:34pm | Y-12 Report | Volume 9, Issue 2 | 2013 For decades official maps did not show Zheleznogorsk, Russia. Created in 1950 to produce weapons-grade plutonium, the Siberian city of about 90,000 existed in secrecy until the Cold War's close in 1991. The end of that conflict between the U.S. and the Union of Soviet Socialist Republics meant the end of weapons production, causing thousands of highly skilled Russian nuclear workers to lose their livelihood. "As the Russians were reducing the number of personnel in the weapons business, the U.S. didn't want the workers to be desperate and wonder how they were going to feed their families," said Y-12 Program Manager Ken Williams.

Note: This page contains sample records for the topic "mountains russia contemporaneous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Russia-Making Energy Efficiency Real (MEER) | Open Energy Information  

Open Energy Info (EERE)

Russia-Making Energy Efficiency Real (MEER) Russia-Making Energy Efficiency Real (MEER) Jump to: navigation, search Name Russia-Making Energy Efficiency Real (MEER) Agency/Company /Organization International Partnership for Energy Efficiency Cooperation (IPEEC) Sector Energy Focus Area Renewable Energy, People and Policy Topics Adaptation, Co-benefits assessment, - Energy Access, Finance, Low emission development planning, -LEDS, Market analysis, Pathways analysis, Policies/deployment programs Country Russia Eastern Europe References International Partnership for Energy Efficiency Cooperation[1] Program Overview The MEER will include a comprehensive inventory of international energy efficiency projects, as well as in-depth analysis of the opportunities to increase market penetration of EE. MEER will explore the role of international institutions in addressing key

62

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network (OSTI)

Peter Evans. "The State and the Economy." In The Handbook ofDoes Russia Have A "Market Economy"?" East European PoliticsSystem : The Political Economy of Communism. Princeton,

Wenle, Susanne Alice

2010-01-01T23:59:59.000Z

63

U.S. Natural Gas Exports to Russia  

Gasoline and Diesel Fuel Update (EIA)

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

64

U.S. Natural Gas Exports to Russia  

Annual Energy Outlook 2012 (EIA)

Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

65

oil and Gas Resources of the West Siberian Basin, Russia  

U.S. Energy Information Administration (EIA)

Energy Information Administration Oil and Gas Resources of the West Siberian Basin, Russia 139 Appendix D Field Summaries Tables 1D and 2D lists the fields of the West

66

BRMF Georgia Mountain Biofuels | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon BRMF Georgia Mountain Biofuels Jump to: navigation, search Name BRMFGeorgia Mountain Biofuels Place Clayton,...

67

Georgia Mountain | Open Energy Information  

Open Energy Info (EERE)

Georgia Mountain Georgia Mountain Jump to: navigation, search Name Georgia Mountain Facility Georgia Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner All Earth Renewables Developer All Earth Renewables Energy Purchaser Green Mountain Power Location Milton VT Coordinates 44.662351°, -73.067991° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.662351,"lon":-73.067991,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

68

Mountain Wind | Open Energy Information  

Open Energy Info (EERE)

Mountain Wind Mountain Wind Jump to: navigation, search Mountain Wind is a wind farm located in Uinta County, Wyoming. It consists of 67 turbines and has a total capacity of 140.7 MW. It is owned by Edison Mission Group.[1] Based on assertions that the site is near Fort Bridger, its approximate coordinates are 41.318716°, -110.386418°.[2] References ↑ http://www.wsgs.uwyo.edu/Topics/EnergyResources/wind.aspx ↑ http://www.res-americas.com/wind-farms/operational-/mountain-wind-i-wind-farm.aspx Retrieved from "http://en.openei.org/w/index.php?title=Mountain_Wind&oldid=132229" Category: Wind Farms What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

69

Back The Pico Mountain  

NLE Websites -- All DOE Office Websites (Extended Search)

Photos Photos *Pubs summary *Status *Inside view *Go Back The Pico Mountain free tropospheric station Richard Honrath, Michigan Tech (reh@mtu.edu) Paulo Fialho, University of the Azores (fialho.paulo@gmail.com) Detlev Helmig, University of Colorado Gracioso Pico *Photos *Pubs summary *Status *Inside view *Go Back View from sea level; Station height 2225 m Winter Station is usually above the MBL [Kleissl et al., 2007] *Photos *Pubs summary *Status *Inside view *Go Back Ideal location to sample impacts on the remote atmosphere -160 -140 -120 -100 -80 -60 -40 -20 0 20 0 10 20 30 40 50 60 70 80 90 Note haze layer from Quebec wildfires * Dominant transport patterns bring - Aged North American anthropogenic emissions. - Aged biomass burning emissions from boreal North America and Siberia. - Tropical North Atlantic air. - (African, European flow). * Note haze layer from Quebec wildfires *Photos

70

Iron Mountain Electromagnetic Results  

SciTech Connect

Iron Mountain Mine is located seventeen miles northwest of Redding, CA. After the completion of mining in early 1960s, the mine workings have been exposed to environmental elements which have resulted in degradation in water quality in the surrounding water sheds. In 1985, the EPA plugged ore stoops in many of the accessible mine drifts in an attempt to restrict water flow through the mine workings. During this process little data was gathered on the orientation of the stoops and construction of the plugs. During the last 25 years, plugs have begun to deteriorate and allow acidic waters from the upper workings to flow out of the mine. A team from Idaho National Laboratory (INL) performed geophysical surveys on a single mine drift and 3 concrete plugs. The project goal was to evaluate several geophysical methods to determine competence of the concrete plugs and orientation of the stopes.

Gail Heath

2012-07-01T23:59:59.000Z

71

Seismic Monitoring Of Blasting Activity In Russia  

E-Print Network (OSTI)

Two significant mining regions in Russia lie near Novosibirsk and at the Kursk Magnetic Anomaly. A small percentage of events from these areas trigger the International Monitoring System (IMS). We have studied IMS recordings of events from these areas with the main goal of better understanding how these blasts are detonated and how these events will be most effectively monitored using IMS data. We have collected ground-truth information on the mining blasts and crustal structure in the area to facilitate modeling of the events. We have focused on sifting out from further consideration routine mining events and identifying detonation anomalies. We define master traces to represent tight clusters of mining events and to be used to identify anomalous events. We have examined recordings of events from eight significant event clusters in the 500-km-long Kuzbass/Abakan mining trend near Novosibirsk. The recordings were made by the IMS station ZAL. We see significant variations in the P onset and early coda between different events in clusters. We have found strong evidence of a detonation anomaly in just one of the events (out of 178 examined). Differences in the onset wave trains are attributed largely to differences in the firing patterns. Time independent spectral modulations have been observed in seismic signals produced by delay-fired mining events in mining regions throughout the world. The Novosibirsk trend is no exception to this rule. Delay-fired events in many mining regions, such as Kuzbass/Abakan, are also commonly associated with enhanced long-period (2- to 8-s) surface waves. The mine blasts in Russian mining regions appear, seismically, to resemble large blasts recorded in other regions (such as Wyoming). Techniques found to be effective in Wyoming, reviewed by...

Michael Hedlin University; Michael A. H. Hedlin

2002-01-01T23:59:59.000Z

72

Hating the Bear? : Root Causes of Perceived anti-Russian Slant in Western News Coverage of the 2008 Russia-Georgia War  

E-Print Network (OSTI)

Russia & Georgia: The Fallout. 22 August 2008. http://Russia & Georgia: The Fallout, August 22, 2008; http://

Spivakovsky-Gonzalez, Pedro

2011-01-01T23:59:59.000Z

73

Laurel Mountain | Open Energy Information  

Open Energy Info (EERE)

Mountain Mountain Jump to: navigation, search Name Laurel Mountain Facility Laurel Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AES Corp. Developer AES Corp. Energy Purchaser Merchant Location Belington WV Coordinates 39.00702933°, -79.88500357° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.00702933,"lon":-79.88500357,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

74

mountain region | OpenEI  

Open Energy Info (EERE)

mountain region mountain region Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 8, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption mountain region Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - Mountain- Reference Case (xls, 297.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

75

Spruce Mountain | Open Energy Information  

Open Energy Info (EERE)

Mountain Mountain Jump to: navigation, search Name Spruce Mountain Facility Spruce Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Patriot Renewables Developer Patriot Renewables Energy Purchaser Energy New England Location Bryant Pond ME Coordinates 44.43443869°, -70.55286884° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.43443869,"lon":-70.55286884,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

76

Flow Acceleration and Mountain Drag*  

Science Conference Proceedings (OSTI)

Dynamic explanations of mountain drag usually invoke viscous effects and/or wave momentum flux by either Rossby or internal gravity waves. This paper explores an alternative mechanism in terms of the unsteadiness of the incident flow. The ...

Peter R. Bannon

1985-12-01T23:59:59.000Z

77

Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France  

E-Print Network (OSTI)

with Russia", The Nonproliferation Review, Summer 2001. 11with Russia", The Nonproliferation Review, Summer 2001.both power generation and nonproliferation purposes, state

Grigoriadis, Theocharis N

2009-01-01T23:59:59.000Z

78

United States, Russia Sign Agreement to Further Research and Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

States, Russia Sign Agreement to Further Research and States, Russia Sign Agreement to Further Research and Development Collaboration in Nuclear Energy and Security United States, Russia Sign Agreement to Further Research and Development Collaboration in Nuclear Energy and Security September 16, 2013 - 11:18am Addthis NEWS MEDIA CONTACT (202) 586-4940 VIENNA - U.S. Secretary of Energy Ernest Moniz and Director General of the Russian Federation State Corporation "Rosatom" Sergey Kirienko today signed the Agreement between the Government of the United States of America and the Government of the Russian Federation on Cooperation in Nuclear- and Energy-Related Scientific Research and Development on the margins of the International Atomic Energy Agency's General Conference in Vienna, Austria. The Agreement provides the legal framework necessary to expand cooperation

79

oil and Gas Resources of the West Siberian Basin, Russia  

Gasoline and Diesel Fuel Update (EIA)

report was prepared by the Energy Information Administration, the independent statistical and analytical agency report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy of the Department of Energy or any other organization. DOE/EIA - 0617 Distribution Category UC-950 Oil and Gas Resources of the West Siberian Basin, Russia November 1997 Energy Information Administration Office of Oil and Gas U. S. Department of Energy Washington, DC 20585 Energy Information Administration Oil and Gas Resources of the West Siberian Basin, Russia iii Preface Oil and Gas Resources of the West Siberian Basin, Russia is part of the Energy Information Administration's

80

United States, Russia Sign Agreement to Further Research and Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States, Russia Sign Agreement to Further Research and United States, Russia Sign Agreement to Further Research and Development Collaboration in Nuclear Energy and Security United States, Russia Sign Agreement to Further Research and Development Collaboration in Nuclear Energy and Security September 16, 2013 - 11:18am Addthis NEWS MEDIA CONTACT (202) 586-4940 VIENNA - U.S. Secretary of Energy Ernest Moniz and Director General of the Russian Federation State Corporation "Rosatom" Sergey Kirienko today signed the Agreement between the Government of the United States of America and the Government of the Russian Federation on Cooperation in Nuclear- and Energy-Related Scientific Research and Development on the margins of the International Atomic Energy Agency's General Conference in Vienna, Austria. The Agreement provides the legal framework necessary to expand cooperation

Note: This page contains sample records for the topic "mountains russia contemporaneous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Oil and gas resources in the West Siberian Basin, Russia  

Science Conference Proceedings (OSTI)

The primary objective of this study is to assess the oil and gas potential of the West Siberian Basin of Russia. The study does not analyze the costs or technology necessary to achieve the estimates of the ultimate recoverable oil and gas. This study uses reservoir data to estimate recoverable oil and gas quantities which were aggregated to the field level. Field totals were summed to a basin total for discovered fields. An estimate of undiscovered oil and gas, from work of the US Geological Survey (USGS), was added to give a total basin resource volume. Recent production decline points out Russia`s need to continue development of its discovered recoverable oil and gas. Continued exploration is required to discover additional oil and gas that remains undiscovered in the basin.

NONE

1997-12-01T23:59:59.000Z

82

United States-Russia Joint Statement on the Results of the Nuclear...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

States-Russia Joint Statement on the Results of the Nuclear Energy and Nuclear Security Working Group Meeting United States-Russia Joint Statement on the Results of the Nuclear...

83

Holy Mother of Chiri Mountain: A Female Mountain Spirit in Korea  

E-Print Network (OSTI)

Female Mountain Spirit in Korea by Maya Stiller UCLA Centera Female Mountain Spirit in Korea by Maya Stiller I n hisfemale mountain spirits in Korea, James Grayson argues that

Stiller, Maya

2011-01-01T23:59:59.000Z

84

Russia to import more goods for upstream projects  

Science Conference Proceedings (OSTI)

This paper reports that Russia is stepping up its imports of petroleum hardware. In the latest developments; Nippon Steel Corp. and C. Itoh and Co. Ltd., Tokyo, signed contracts to provide Russia $300 million worth of export credits for steel pipe and undisclosed drilling equipment; Nizhnevartovskneftegaz, a Russian oil and gas production association, asked the European Bank for Reconstruction and Development for a $60 million loan to buy western oil and gas equipment. The hardware, mostly pipe, tools, pumps, and workover rigs, will be used in part to return shut-in wells to production.

Not Available

1992-10-12T23:59:59.000Z

85

Seepage into drifts in unsaturated fractured rock at Yucca Mountain  

E-Print Network (OSTI)

Fractured Rock at Yucca Mountain Jens Birkholzer, Guomin Lrepository site at Yucca Mountain, Nevada, as it is locatedclimate conditions at Yucca Mountain. The numerical study is

Birkholzer, Jens; Li, Guomin; Tsang, Chin-Fu; Tsang, Yvonne

1998-01-01T23:59:59.000Z

86

Information Request Yucca Mountain Site | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information Request Yucca Mountain Site Information Request Yucca Mountain Site The Suitability of the Yucca Mountain Site and the Issue of Natural Barriers as the Principal...

87

2013 Annual Planning Summary for the Rocky Mountain Oilfield...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Oilfield Testing Center 2013 Annual Planning Summary for the Rocky Mountain Oilfield Testing Center 2013 Annual Planning Summary for the Rocky Mountain Oilfield...

88

A mountain-scale model for characterizing unsaturated flow and transport in fractured tuffs of Yucca Mountain  

E-Print Network (OSTI)

to Fault Zones at Yucca Mountain, Nevada, International2003c. Calibration of Yucca Mountain Unsaturated Zone FlowUnsaturated Zone, Yucca Mountain, Nevada, Water-Resources

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.

2003-01-01T23:59:59.000Z

89

Repowering the 250 MW Supercritical Power Plant at Lenenergo, Russia  

Science Conference Proceedings (OSTI)

This report describes the repowering of a supercritical 250 MW generating unit with an ABB 52.9 MN gas turbine at the Southern Plant of the Lenenergo system in Russia. It includes a review of the performance parameters of the repowered unit and an economic analysis of the repowering project.

1999-11-30T23:59:59.000Z

90

10/9/2003 1 Export of biomass from Russia  

E-Print Network (OSTI)

10/9/2003 1 Export of biomass from Russia in the context of climate change policies By: Hans Jansen of the forest sector · Customs cooperation · Timber port logistics · Trade facilitation procedures · Biomass;The Russian FederationThe Russian Federation #12;Biomass as Alternative Energy "Organic matter

91

FSU/Eastern Europe: Russia spearheads small upturn  

Science Conference Proceedings (OSTI)

The paper discusses the political and legal scene in Russia, domestic restructuring, exploration, drilling, development by Western companies and by Russian companies, and production. Exploration and development in Azerbaijan, Kazakhstan, Turkmenistan, Ukraine, Armenia, Belarus, Georgia, Kyrgyzstan, Latvia, Lithuania, Moldova, Tajikistan, Uzbekistan, Albania, Bulgaria, Croatia, Czech Republic, Hungary, Poland, Romania, Slovakia, Slovenia, and Serbia are also discussed.

NONE

1996-08-01T23:59:59.000Z

92

Pine Mountain Builders | Open Energy Information  

Open Energy Info (EERE)

Pine Mountain Builders Pine Mountain Builders Place Pine Mountain, GA Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Pine Mountain Builders is a company located in Pine Mountain, GA. References Retrieved from "http://en.openei.org/w/index.php?title=Pine_Mountain_Builders&oldid=379448" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 1863719699

93

Mercantilist Development in Russia: The Legitimacy of State Power, State Identity, and the Energy Charter Regime (1990 - 2010)  

E-Print Network (OSTI)

Chapter Five: Russia as Apprentice Under Yeltsin – Statepretender, disciple, and apprentice – that can be used toapprentice

Barkanov, Boris

2011-01-01T23:59:59.000Z

94

Information Request Yucca Mountain Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2008 , 2008 TO: Sue Tierney, Phil Niedzielski-Eichner, Skila Harris FROM: Chris Kouts SUBJECT: Information Request As requested, enclosed is the additional information you requested last week regarding use of engineered barriers. Please let me know if you need additional information or have any questions. A,4- -/0 7 The Suitability of the Yucca Mountain Site and the Issue of Natural Barriers as the Principal Barriers for Demonstrating Safety This paper addresses two issues that are frequently raised concerning the suitability of the Yucca Mountain site for development as a repository. The first issue is that the Yucca Mountain site is technically unsound and that an engineered barrier system is required because the site is not capable of protecting public health and safety. The second issue is

95

Secretary Chu to Travel to Russia Next Week | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Travel to Russia Next Week to Travel to Russia Next Week Secretary Chu to Travel to Russia Next Week June 3, 2011 - 12:00am Addthis WASHINGTON - U.S. Energy Secretary Steven Chu will travel to Russia from June 6-11 where he will highlight the tremendous potential for mutually beneficial cooperation and shared economic opportunities with Russia in the areas of innovative clean energy technology, safe and reliable civilian nuclear power, best practices in energy efficiency, and nuclear non-proliferation. The visit will promote continued collaboration between U.S. and Russian scientists, technical experts, and energy sector businesses. It will also pave the way for U.S. investment and clean technology exports to Russia. "From clean energy to nuclear security, the United States and Russia have a

96

Timber Mountain Precipitation Monitoring Station  

SciTech Connect

A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in fiscal year 2011.

Lyles Brad,McCurdy Greg,Chapman Jenny,Miller Julianne

2012-01-01T23:59:59.000Z

97

Frozen Ground 9 PERMAFROST HAZARDS IN MOUNTAINS  

E-Print Network (OSTI)

of potentially hazardous processes in regions with mountain permafrost. Buildings and utilities may be dam- aged for the maintenance or construction of high- mountain infrastructure. Increasing rockfall activity and a number

Kääb, Andreas

98

Rime Mushrooms on Mountains: Description, Formation, and Impacts on Mountaineering  

Science Conference Proceedings (OSTI)

Rime mushrooms, commonly called ice mushrooms, are large bulbous or mushroom-shaped accretions of hard rime that build up on the upwind side of mountain summits and ridges and on windward rock faces. This paper reviews the characteristics of rime ...

C. David Whiteman; Rolando Garibotti

2013-09-01T23:59:59.000Z

99

Microsoft PowerPoint - PRC - Poglyad,RIAR,Russia  

NLE Websites -- All DOE Office Websites (Extended Search)

engineering engineering and technology approaches in design of Polyfunctional Radiochemical Complex (PRC) Sergey Poglyad, Mikhail Kormilitsyn Research Institute of Atomic Reactors, Dimitrovgrad, Russia "Once upon a time" story PUREX based process Pyroprocess Fluoride volatility Superfluid extraction Plasma Electrorefining Oxide Nitride Metal More complicated RAW RAW RAW RAW Waste treatment Nobody has sufficient proof for choosing basic technology * Uranium * Mixed U-Pu * Th based (?) * Cooling time * Burnup * MA strategy The country which first develop a breeder reactor will have a great competitive advantage in atomic energy Enrico Fermi «Discussion on Breeding», 26 April 1944 2 International Pyroprocessing Research Conference Demands on reprocessing in Russia * Fast reactors "dense" spent fuel reprocessing; * Fuel cycle closing for all actinides; * Process

100

Demonstration of a PC 25 Fuel Cell in Russia  

DOE Green Energy (OSTI)

This project involved the installation of a 200kW PC25C{trademark} phosphoric-acid fuel cell power plant at Orgenergogaz, a Gazprom industrial site in Russia. In April 1997, a PC25C{trademark} was sold by ONSI Corporation to Orgenergogaz, a subsidiary of the Russian company ''Gazprom''. Due to instabilities in the Russian financial markets, at that time, the unit was never installed and started by Orgenergogaz. In October of 2001 International Fuel Cells (IFC), now known as UTC Fuel Cells (UTCFC), received a financial assistance award from the United States Department of Energy (DOE) entitled ''Demonstration of PC 25 Fuel Cell in Russia''. Three major tasks were part of this award: the inspection of the proposed site and system, start-up assistance, and installation and operation of the powerplant.

John C. Trocciola; Thomas N. Pompa; Linda S. Boyd

2004-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "mountains russia contemporaneous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Livermore Scientists Team with Russia to Discover Element 118  

NLE Websites -- All DOE Office Websites (Extended Search)

"Synthesis of the isotopes of elements 118 and 116" (Abstract) "Synthesis of the isotopes of elements 118 and 116" (Abstract) Physical Review C, October 9, 2006 Livermore Scientists Team With Russia To Discover Elements 113 and 115 LLNL News Release, February. 2, 2004 "Present at the Creation" Science & Technology Review, January/February 2002 Island of Stability NOVA Science Now, September 2006 Social Media Logos Follow LLNL on YouTube Subscribe to LLNL's RSS feed Follow LLNL on Facebook Follow LLNL on Twitter Follow LLNL on Flickr Contact: Anne M. Stark Phone: (925) 422-9799 E-mail: stark8l@llnl.gov FOR IMMEDIATE RELEASE October 16, 2006 NR-06-10-03 Livermore scientists team with Russia to discover element 118 LIVERMORE, Calif. - Scientists from the Chemistry, Materials and Life Sciences Directorate at Lawrence Livermore National Laboratory, in

102

United States-Russia: Environmental management activities, Summer 1998  

Science Conference Proceedings (OSTI)

A Joint Coordinating Committee for Environmental Restoration and Waste Management (JCCEM) was formed between the US and Russia. This report describes the areas of research being studied under JCCEM, namely: Efficient separations; Contaminant transport and site characterization; Mixed wastes; High level waste tank remediation; Transuranic stabilization; Decontamination and decommissioning; and Emergency response. Other sections describe: Administrative framework for cooperation; Scientist exchange; Future actions; Non-JCCEM DOE-Russian activities; and JCCEM publications.

NONE

1998-09-01T23:59:59.000Z

103

Political chaos reins progress on new joint ventures in Russia  

SciTech Connect

This paper reports that frustration is mounting among foreign petroleum companies chasing business opportunities in Russia. Political uncertainty continues to block large oil and gas exploration and production deals there. Most foreign officials believe Russia's transformation from a centrally planned economy to a market economy is irreversible. But enough political, social, and economic uncertainty persists that Russian leaders are hesitant to approve deals with foreign companies. The lack of certainty among leaders of the former Soviet republic about who controls Russia's natural resources, who can approve contracts, and who determines winners of bid tenders is causing confusion among foreign companies trying to negotiate major E and P deals. With no clearly successful path apparent for completing large deals, various secondary negotiating strategies are prevailing. Russian industry specialists say those secondary strategies work best for small deals involving relatively small players in less prospective regions. Meantime, countervailing political forces within the country, the world's top producer of oil and gas, continue to buffet petroleum companies that are negotiating deals or getting projects off the ground.

Not Available

1992-03-16T23:59:59.000Z

104

Comparison of resource assessment methods and geologic controls--deep natural gas plays and zones, United States and Russia  

Science Conference Proceedings (OSTI)

Deep (greater than 4.5 km--15,000 ft) conventional natural gas resources will play an important role in the future energy needs of the United States and Russia. Deep sedimentary basins are widespread in these countries and have formed in a variety of depositional and tectonic settings. Significant volumes of undiscovered deep natural gas are in the Gulf Coast, Anadarko, Permian, and Rocky Mountain basins of the U.S., and in the Timan-Pechora, West Siberia, East Siberia, and North and South Caspian basins of the former Soviet Union. Deep natural gas resources are regularly assessed by the All-Russia Petroleum Research Exploration Institute (VNIGRI) and the U.S. Geological Survey (USGS) as part of their normal research activities. Both VNIGRI and the USGS employ similar assessment methods involving play (or zone) analysis using geological data and based on an analysis of confirmed and hypothetical plays using field-size distributions, discovery-process models, and statistical estimation procedures that yield probabilistic estimates of undiscovered accumulations. Resource estimates for the deep structural and statigraphic plays of the Anadarko basin and deep Paleozoic zones in the Timan-Pechora basin are compared and contrasted using both methods. Differences in results of assessments between VNIGRI and USGS arise due to (1) the way in which plays/zones are defined, (2) different geochemical models for hydrocarbon generation as applied to hypothetical plays, (3) variations in the ways in which statistical estimation procedures are applied to plays and regions, and (4) differences in economic and technologic assumptions, reserve growth calculations, and accumulation size limits and ranges.

Dyman, T.S. (Geological Survey, Denver, CO (United States)); Belonin, M.D. (All-Russia Petroleum Research Exploration Inst., St. Petersburg (Russian Federation)) (and others)

1996-01-01T23:59:59.000Z

105

China and Russia to Join the Generation IV International Forum | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

China and Russia to Join the Generation IV International Forum China and Russia to Join the Generation IV International Forum China and Russia to Join the Generation IV International Forum July 13, 2006 - 3:03pm Addthis International Scope of Nuclear Nations Pursuing Advanced Reactors Broadens WASHINGTON, DC - U.S. Department of Energy Assistant Secretary for Nuclear Energy Dennis Spurgeon today announced that China and Russia are expected to join the Generation IV International Forum (GIF), a group of the world's leading nuclear nations who are working together to develop more efficient and less waste-intensive advanced reactors to meet future energy challenges. Earlier today, the GIF Policy Group voted unanimously to extend an offer of membership to China and Russia. China and Russia's formal entry into GIF is expected to be finalized by November 2006.

106

China and Russia to Join the Generation IV International Forum | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

China and Russia to Join the Generation IV International Forum China and Russia to Join the Generation IV International Forum China and Russia to Join the Generation IV International Forum July 13, 2006 - 3:03pm Addthis International Scope of Nuclear Nations Pursuing Advanced Reactors Broadens WASHINGTON, DC - U.S. Department of Energy Assistant Secretary for Nuclear Energy Dennis Spurgeon today announced that China and Russia are expected to join the Generation IV International Forum (GIF), a group of the world's leading nuclear nations who are working together to develop more efficient and less waste-intensive advanced reactors to meet future energy challenges. Earlier today, the GIF Policy Group voted unanimously to extend an offer of membership to China and Russia. China and Russia's formal entry into GIF is expected to be finalized by November 2006.

107

Conceptual evaluation of the potential role of fractures in unsaturated processes at Yucca Mountain  

E-Print Network (OSTI)

of Process Models, Yucca Mountain, Nevada. U.S. GeologicalUnsaturated Zone Model of Yucca Mountain, Nevada. J. Contam.Studies Facility, Yucca Mountain Project. Yucca Mountain,

Hinds, Jennifer J.; Bodvarsson, Gudmundur S.; Nieder-Westermann, Gerald H.

2002-01-01T23:59:59.000Z

108

Mountain Air | Open Energy Information  

Open Energy Info (EERE)

Air Air Jump to: navigation, search Name Mountain Air Facility Mountain Air Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Terna Energy Developer Terna Energy Energy Purchaser Idaho Power Location Hammett ID Coordinates 42.98719519°, -115.3985024° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.98719519,"lon":-115.3985024,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

109

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

ALLIED OIL & TOOL POWERJET SLOTTING TOOL ALLIED OIL & TOOL POWERJET SLOTTING TOOL JANUARY 10, 1996 FC9522 / 95DT3 ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS ALLIED OIL & TOOL POWERJET SLOTTING TOOL Prepared for: INDUSTRY PUBLICATION Prepared by: RALPH SCHULTE RMOTC Project Engineer January 11, 1996 551103/9522:jb CONTENTS Page Summary .......................................................................................................................2 Introduction.....................................................................................................................2 Description of Operations...................................................................................................3 Figure 1 ..........................................................................................................5

110

Russia Tri-Lab S&T Collaborations | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Our Jobs Working at NNSA Blog The National Nuclear Security Administration Russia Tri-Lab S&T Collaborations Home > About Us > Our Programs > Defense Programs > Future Science...

111

The Tunnel at the End of the Light: Privatization, Business Networks, and Economic Transformation in Russia  

E-Print Network (OSTI)

post-Communist countries, only Azerbaijan, Kazakh- stan, andVacuum Albania Armenia Azerbaijan Belarus Bosnia Bulgariafound in Russia either. Azerbaijan, Belarus, Tajikistan,

Cohen, Stephen S.; Schwartz, Andrew; Zysman, John

1998-01-01T23:59:59.000Z

112

Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferat...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation Collaboration Following Russian Delegation Visit to the United States Joint Statement on Future...

113

Energy Regulation, Roll Call Votes and Regional Resources: Evidence from Russia  

E-Print Network (OSTI)

parliamentary parameters of energy market reform in Russia.development in Russian energy markets. Deputies who arebeen negative toward energy market reform during the time

Grigoriadis, Theocharis N; Torgler, Benno

2007-01-01T23:59:59.000Z

114

US and Russia agree to collaborate on nuclear energy and security...  

National Nuclear Security Administration (NNSA)

US and Russia agree to collaborate on nuclear energy and security R&D | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation...

115

Media and democratization: a comparative study of two former communist countries (Poland and Russia).  

E-Print Network (OSTI)

??Democratization process in Europe and Russia was studied thoroughly, while less significant attention was paid to the role of Media in it. Media freedom ratings… (more)

Volkova, Anna

2012-01-01T23:59:59.000Z

116

Petroleum complex of Russia. Reconstruction of petroleum refineries: Means for accomplishing the task  

SciTech Connect

This report describes the refining industry in Russia with respect to production and economic factors. The modernization and reconstruction of the refineries is also discussed.

Rykunova, T.

1994-11-01T23:59:59.000Z

117

Russia-IEA Network of Expertise in Energy Technology | Open Energy...  

Open Energy Info (EERE)

International Energy Agency Sector Energy Focus Area Energy Efficiency, Renewable Energy Topics Background analysis Website http:www.iea.orgneetindex. Country Russia...

118

The hydrology of Yucca Mountain  

Science Conference Proceedings (OSTI)

Yucca Mountain, located in southern Nevada in the Mojave Desert, is being considered as a geologic repository for high-level radioactive waste. Although the site is arid, previous studies indicate net infiltration rates of 5-10 mm yr(-1) under current climate conditions. Unsaturated flow of water through the mountain generally is vertical and rapid through the fractures of the welded tuffs and slow through the matrix of the nonwelded tuffs. The vitric-zeolitic boundary of the nonwelded tuffs below the potential repository, where it exists, causes perching and substantial lateral flow that eventually flows through faults near the eastern edge of the potential repository and recharges the underlying groundwater system. Fast pathways are located where water flows relatively quickly through the unsaturated zone to the water table. For the bulk of the water a large part of the travel time from land surface to the potential repository horizon (similar to 300 m below land surface) is through the interlayered, low fracture density, nonwelded tuff where flow is predominantly through the matrix. The unsaturated zone at Yucca Mountain is being modeled using a three-dimensional, dual-continuum numerical model to predict the results of measurements and observations in new boreholes and excavations. The interaction between experimentalists and modelers is providing confidence in the conceptual model and the numerical model and is providing researchers with the ability to plan further testing and to evaluate the usefulness or necessity of further data collection.

Flint, A.L.; Flint, L.E.; Bodvarsson, G.S.; Kwicklis, E.M.; Fabryka-Martin, J.M.

2000-12-04T23:59:59.000Z

119

NEPA Yucca Mountain Downloads | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEPA Yucca Mountain Downloads NEPA Yucca Mountain Downloads NEPA Yucca Mountain Downloads October 24, 2008 EIS-0250: Notice of Intent to Prepare a Supplement to the Environmental Impact Statement Geologic Repository for the Disposal of Spent Nuclear Fuel and High-level Radioactive Waste at Yucca Mountain, Nye County, Nevada October 10, 2008 EIS-0369: Floodplain Statement of Finding Rail Alignment for the Construction and Operation of a Railroad in Nevada to a Geologic Repository at Yucca Mountain, Nye County, Nevada October 10, 2008 EIS-0369: Record of Decision and Floodplain Statement of Findings Nevada Rail Alignment for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada June 2, 2008 EIS-0250-S2: Final Supplemental Environmental Impact Statement

120

Black Mountain Insulation | Open Energy Information  

Open Energy Info (EERE)

Insulation Insulation Jump to: navigation, search Name Black Mountain Insulation Place United Kingdom Sector Carbon Product UK-based manufacturer of sheeps wool insulation which has a low carbon footprint than traditional glassfiber insulation. Website http://www.blackmountaininsula References Black Mountain Insulation Website[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Black Mountain Insulation is a company located in United Kingdom. It was formerly known as Ochre Natural Insulation Company. [2] References ↑ "Black Mountain Insulation Website" ↑ http://www.companiesintheuk.co.uk/ltd/black-mountain-insulation Retrieved from "http://en.openei.org/w/index.php?title=Black_Mountain_Insulation&oldid=391648

Note: This page contains sample records for the topic "mountains russia contemporaneous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Scientific and Technical Priorities at Yucca Mountain  

Science Conference Proceedings (OSTI)

Following completion of the site characterization and site recommendation phases, the Department of Energy (DOE) is moving to prepare and submit a license application to initiate construction of the geologic repository at Yucca Mountain. This report provides background on how the project arrived at this juncture in its history and detailed information on EPRI's Yucca Mountain-related activities during calendar year 2003. The report assesses the relative risk-importance of various Yucca Mountain system co...

2003-12-15T23:59:59.000Z

122

Green Mountain Energy Company | Open Energy Information  

Open Energy Info (EERE)

Mountain Energy Company Place Texas Utility Id 7554 Utility Location Yes Ownership R NERC Location TRE NERC ERCOT Yes Activity Retail Marketing Yes References EIA Form EIA-861...

123

Mountain Association for Community Economic Development - Solar...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heater Loan Program Mountain Association for Community Economic Development - Solar Water Heater Loan Program Eligibility Commercial Residential Savings For Heating &...

124

Russia to seek foreign partners in three fields  

Science Conference Proceedings (OSTI)

This paper reports that Russia plans in coming months to call for international tenders covering joint venture development of two oil fields and one oil and gas/condensate field in western Siberia. None has seen extensive drilling. Here are details on the fields: North Priob field is in the KhantiMansi autonomous district of the Tyumen region, one of the most industrially developed oil producing areas of western Siberia. Salim field also is in the KhantiMansi autonomous district of the Tyumen region.

Not Available

1992-08-10T23:59:59.000Z

125

Mercantilist Development in Russia: The Legitimacy of State Power, State Identity, and the Energy Charter Regime (1990 - 2010)  

E-Print Network (OSTI)

The 692 Komarov, “Energy Policy—Parliamentary Hearings, ‘OnI. Danchenko, “Russia’s Energy Policy, 1992-2005,” Eurasianthe development of national energy policy” (in Russian). V.

Barkanov, Boris

2011-01-01T23:59:59.000Z

126

Application of natural analogues in the Yucca Mountain project - overview  

E-Print Network (OSTI)

Contractor) 2000. Yucca Mountain Site Description. TDR-CRW-in silicic tuff from Yucca Mountain, Nevada. Clays and ClayHazard Analysis for Yucca Mountain, Nevada. BA0000000-01717-

Simmons, Ardyth M.

2003-01-01T23:59:59.000Z

127

Drift Natural Convection and Seepage at the Yucca Mountain Repository  

E-Print Network (OSTI)

2 A Simulation Code for Yucca Mountain Transport Processes:List of Figures Yucca Mountain location, southwest1 Introduction 1.1 Yucca Mountain Repository . . . . 1.1.1

Halecky, Nicholaus Eugene

2010-01-01T23:59:59.000Z

128

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

SAM III PROJECT SAM III PROJECT Sandia National laboratories Prepared for: Project File Documentation Prepared by: MICHAEL J. TAYLOR Project Manager March 31, 1998 JO 850200 : FC 970009 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a demonstration of the Surface Area Modulation Downhole Telemetry System (SAM 111) at the Department of Energy's Naval Petroleum Reserve No. 3 (NPR-3), in partnership with Sandia National Laboratories (SNL). The project encompassed the testing of a real-time wireless telemetry system in a simulated Measurement-While-Drilling (MWD) environment. A Surface Area Modulation (SAM) technique demonstrated data transmission rates greater than present techniques, in a deployment mode which requires

129

Yucca Mountain and The Environment  

Science Conference Proceedings (OSTI)

The Yucca Mountain Project places a high priority on protecting the environment. To ensure compliance with all state and federal environmental laws and regulations, the Project established an Environmental Management System. Important elements of the Environmental Management System include the following: (1) monitoring air, water, and other natural resources; (2) protecting plant and animal species by minimizing land disturbance; (3) restoring vegetation and wildlife habitat in disturbed areas; (4) protecting cultural resources; (5) minimizing waste, preventing pollution, and promoting environmental awareness; and (6) managing of hazardous and non-hazardous waste. Reducing the impacts of Project activities on the environment will continue for the duration of the Project.

NA

2005-04-12T23:59:59.000Z

130

Business Planning: A Key to Energy Efficiency in Russia  

E-Print Network (OSTI)

Financing is a significant barrier to energy efficiency in Russia. Many banks and Western companies would like to invest in energy efficiency projects in Russia, but are frustrated by the lack of Western-style business planning and preparation in Russian project proposals. With support from the U.S. Department of Energy, the Pacific Northwest National Laboratory has organized several training workshops on writing business plans for energy efficiency projects. Russian project proposals typically describe the technical measures to be implemented, and they provide a simple payback analysis of the costs. The most difficult tasks for Russian business people are often developing a marketing plan, using creative financing techniques, describing the implementation plan in sufficient detail, and providing appropriate information on the organizations involved in the project. As Russians learn to prepare solid business plans, their ability to attract financing for energy efficiency projects and successfully implement such projects will increase. Business planning also provides a useful framework for assessing energy projects. In this sense, it can help Russian business people better understand the advantages of energy efficiency and increase their willingness to invest in demand-side measures.

Evans, M.

1997-04-01T23:59:59.000Z

131

ENTRY AND ENTREPRENEURSHIP: The Case of Post-Communist Russia  

E-Print Network (OSTI)

Paper prepared for a special issue of Journal des Economistes et des Etudes Humaines (2001). We thank John Robert Subrick for helpful comments on an earlier version. 1 Entrepreneurial effectiveness is measured by the movement of economic actors – their alertness to opportunities for mutual gain, and their sense of when and where to enter and exit a market. Consumers send signals to entrepreneurs, signaling when it is demanded that they enter or exit the market. Markets are measured by both quantitative and qualitative parameters. The size of the market matters, but so does the ability of the market to work, that is, to send clear signals to participants. Our purpose is to examine the Russian market’s quantity and quality. How many producers and consumers are getting together is one part of the puzzle. The larger part of our story is how well they are able to make deals. The Russian economic system has been a state of continual turmoil and reform for over a century, making it difficult for business to develop as the political, legal, and economic foundation continually shifts. The beginning of the 20th century saw Russia struggling to change its economic system from feudalism to mercantilism under the Czars. World War I ended with Russia in the midst of transforming its economic and political system into the world’s first full-fledged communist system. The

Peter J. Boettke; Bridget I. Butkevich

2000-01-01T23:59:59.000Z

132

U.S.-Russia Twenty-Year Partnership Completes Final Milestone in Converting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S.-Russia Twenty-Year Partnership Completes Final Milestone in U.S.-Russia Twenty-Year Partnership Completes Final Milestone in Converting 20,000 Russian Nuclear Warheads into Fuel for U.S. Electricity U.S.-Russia Twenty-Year Partnership Completes Final Milestone in Converting 20,000 Russian Nuclear Warheads into Fuel for U.S. Electricity November 14, 2013 - 11:26am Addthis NEWS MEDIA CONTACT National Nuclear Security Administration (NNSA) Public Affairs: (202) 586-7371 WASHINGTON - U.S. Energy Secretary Ernest Moniz today announced the final shipment of low enriched uranium (LEU) derived from Russian weapons-origin highly enriched uranium (HEU) under the 1993 U.S.-Russia HEU Purchase Agreement, commonly known as the Megatons to Megawatts Program. Under this Agreement, Russia downblended 500 metric tons of HEU, equivalent to 20,000

133

United States-Russia Joint Statement on the Results of the Nuclear Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

States-Russia Joint Statement on the Results of the Nuclear States-Russia Joint Statement on the Results of the Nuclear Energy and Nuclear Security Working Group Meeting United States-Russia Joint Statement on the Results of the Nuclear Energy and Nuclear Security Working Group Meeting December 10, 2010 - 12:00am Addthis Moscow - Earlier this week, Deputy Secretary of Energy Daniel Poneman, representing the United States government, signed a joint statement with Russia's Director General of the State Atomic Energy Corporation "Rosatom" Sergey Kirienko on the results of the Nuclear Energy and Nuclear Security Working Group meeting that took place on December 6-7, 2010. The Working Group meeting strengthened cooperation between the U.S. and Russia on civil nuclear energy and nuclear security. Read the joint statement (PDF - 412 kb) signed by Deputy Secretary Poneman

134

Mercury Vapor At Socorro Mountain Area (Kooten, 1987) | Open...  

Open Energy Info (EERE)

Mercury Vapor At Socorro Mountain Area (Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Socorro Mountain Area...

135

Department of Energy Files Motion to Withdraw Yucca Mountain...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Files Motion to Withdraw Yucca Mountain License Application Department of Energy Files Motion to Withdraw Yucca Mountain License Application March 3, 2010 - 12:00am Addthis...

136

Motion to Withdraw from Yucca Mountain application | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Motion to Withdraw from Yucca Mountain application Motion to Withdraw from Yucca Mountain application DOE's withdraws it's pending license application for a permanent geologic...

137

Magnetotellurics At Mcgee Mountain Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Magnetotellurics At Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Mcgee Mountain Area (DOE...

138

Core Analysis At Mcgee Mountain Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Mcgee Mountain Area (DOE GTP) Exploration Activity Details Location Mcgee Mountain Area Exploration Technique Core Analysis Activity Date Usefulness not indicated DOE-funding...

139

Hydroprobe At Mcgee Mountain Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Hydroprobe At Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hydroprobe At Mcgee Mountain Area (DOE GTP)...

140

Ground Gravity Survey At Mcgee Mountain Area (DOE GTP) | Open...  

Open Energy Info (EERE)

Ground Gravity Survey At Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Mcgee Mountain...

Note: This page contains sample records for the topic "mountains russia contemporaneous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Numerical Simulation of Slope and Mountain Flows  

Science Conference Proceedings (OSTI)

Early descriptive models of mountain-valley circulations indicated that the mountain flow (i.e., the along-valley axis component out of the valley) is a true three-dimensional phenomenon. According to these descriptions, at night shallow-down ...

Richard T. McNider; Roger A. Pielke

1984-10-01T23:59:59.000Z

142

Cemex Black Mountain Quarry | Open Energy Information  

Open Energy Info (EERE)

Mountain Quarry Mountain Quarry Jump to: navigation, search Name Cemex Black Mountain Quarry Facility Cemex Black Mountain Quarry Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Foundation Windpower Developer Foundation Windpower Energy Purchaser Cemex Black Mountain Quarry Location Apple Valley CA Coordinates 34.622028°, -117.111833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.622028,"lon":-117.111833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

143

Mountain View Grand | Open Energy Information  

Open Energy Info (EERE)

Grand Grand Jump to: navigation, search Name Mountain View Grand Facility Mountain View Grand Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Mountain View Grand Developer Sustainable Energy Developments Energy Purchaser Mountain View Grand Location Mountain View Grand Resort & Spa NH Coordinates 44.397987°, -71.590306° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.397987,"lon":-71.590306,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

Kibby Mountain II | Open Energy Information  

Open Energy Info (EERE)

Kibby Mountain II Kibby Mountain II Jump to: navigation, search Name Kibby Mountain II Facility Kibby Mountain II Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under Construction Owner TransCanada Power Mktg Ltd Developer TransCanada Power Mktg Ltd Location Kibby Mountain ME Coordinates 45.354154°, -70.65412° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.354154,"lon":-70.65412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

145

Turtle Mountain Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Turtle Mountain Wind Farm Turtle Mountain Wind Farm Facility Turtle Mountain Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Turtle Mountain Chippewa Energy Purchaser Turtle Mountain Chippewa Location Belcourt ND Coordinates 48.839486°, -99.745145° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.839486,"lon":-99.745145,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

146

Geothermal Energy Resource Investigations, Chocolate Mountains Aerial  

Open Energy Info (EERE)

Investigations, Chocolate Mountains Aerial Investigations, Chocolate Mountains Aerial Gunnery Range, Imperial Valley, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Energy Resource Investigations, Chocolate Mountains Aerial Gunnery Range, Imperial Valley, California Details Activities (5) Areas (1) Regions (0) Abstract: The US Navy's Geothermal Program Office (GPO), has conducted geothermal exploration in the Chocolate Mountains Aerial Gunnery Range (CMAGR) since the mid-1970s. At this time, the focus of the GPO had been on the area to the east of the Hot Mineral Spa KGRA, Glamis and areas within the Chocolate Mountains themselves. Using potential field geophysics, mercury surveys and geologic mapping to identify potential anomalies related to recent hydrothermal activity. After a brief hiatus starting in

147

Yucca Mountain Archival Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain Archival Documents Yucca Mountain Archival Documents Yucca Mountain Archival Documents Yucca Mountain Archival Documents From the Former Office of Civilian Radioactive Waste Management President Obama and the Department of Energy are working to restart America's nuclear industry to help meet our energy and climate challenges and create thousands of new jobs. The Administration is fully committed to ensuring that long-term storage obligations for nuclear waste are met. The President has made clear that Yucca Mountain is not an option for waste storage. The Blue Ribbon Commission on America's Nuclear Future, led by Congressman Lee Hamilton and General Brent Scowcroft, has conducted a comprehensive review of policies for managing the back end of the nuclear fuel cycle, and has offered recommendations for developing a safe,

148

Yucca Mountain Press Conference | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain Press Conference Yucca Mountain Press Conference Yucca Mountain Press Conference June 3, 2008 - 12:51pm Addthis Remarks as Prepared for Delivery for Secretary Bodman Thank you all for being here. I'm pleased to announce that this morning the Department of Energy submitted a license application to the U.S. Nuclear Regulatory Commission seeking authorization to build America's first national repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. We are confident that the NRC's rigorous review process will validate that the Yucca Mountain repository will provide for the safe disposal of spent nuclear fuel and high-level radioactive waste in a way that protects human health and our environment. This application represents the culmination of over 20 years of work by

149

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

NOVERFLO (SMART CABLE) NOVERFLO (SMART CABLE) LIQUID LEAK DETECTION SYSTEM FEBRUARY 12, 1996 FC9535/96ET3 RMOTC TEST REPORT NOVERFLO LIQUID LEAK DETECTION SYSTEM (SMART CABLE) Prepared for: INDUSTRY PUBLICATION Prepared by: RALPH SCHULTE RMOTC Project Engineer February 12, 1996 650200/9535:jb CONTENTS Page Summary 1 Introducation 1 NPR-3 Map 2 Description of Operations 3 1 st Test 3 2 nd Test 3 3 rd Test 4 4 th Test 5 Concluding Remarks 5 Acknowledgements 6 Rocky Mountain Oilfield Testing Center Technical Report Noverflo Liquid Leak Detection System (Smart Cable) Summary As part of RMOTC's continuing mission to support and strengthen the domestic oil and gas industry by allowing testing by individual inventors and commercial companies to evaluate their products and technology, RMOTC

150

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

AUTOMATIC SHUTDOWN VALVE AUTOMATIC SHUTDOWN VALVE CAMBRIA VALVE CORPORATION OCTOBER 17, 1995 FC9536/95ET1 RMOTC TEST REPORT Automatic Shutdown Valve Cambria Valve Corporation Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR RMOTC Project Manager October 17, 1995 551103/9536:jb TABLE OF CONTENTS Page Introduction 1 Figure 1 2 Test Details 3 Table 1 4 Conclusions 5 Acknowledgments 5 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of an Automatic Shutdown Valve (ASDV) for hydraulic systems at the Naval Petroleum Reserve No. 3 (NPR- 3). The Cambria Valve Corporation (CVC) manufactures the 3-Port ASDV that is designed to automatically shut down the flow of fluid through a hydraulic system in the event of a ruptured line and safely redirect flow to a bypass system. The CVC ASDV effectively demonstrated its

151

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

AUTOMATED THREE-PHASE CENTRIFUGE PROJECT AUTOMATED THREE-PHASE CENTRIFUGE PROJECT MARCH 30, 1998 FC9535/96ET5 RMOTC TEST REPORT AUTOMATED THREE-PHASE CENTRIFUGE PROJECT Centech, Inc. Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR Project Manager March 30, 1998 850200/650200/650201:9583 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of an Automated ThreePhase Centrifuge at the Department of Energy's Naval Petroleum Reserve No. 3 (NPR-3). Centech, Inc. has manufactured a three-phase centrifuge which has been retrofitted with a PCbased, fuzzy-logic, automated control system, by Los Alamos National Laboratory. The equipment is designed to automatically process tank-bottom wastes within operator-prescribed limits of Basic

152

U.S. Natural Gas Exports to Russia  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

153

U.S. Natural Gas Exports to Russia  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

154

Wind-Diesel Hybrid Systems for Russia's Northern Territories  

DOE Green Energy (OSTI)

This paper will summarize the DOE/Russian Ministry of Fuel and Energy (MF and E) activities in Russia's Northern Territories in the field of hybrid wind-diesel power systems over the last three years (1997-1999). The National Renewable Energy Laboratory (NREL) supplied technical assistance to the project, including resource assessment, system design, site identification, training and system monitoring. As a result, several wind-diesel systems have been installed and are operating in the Arkhangelsk/Murmansk regions and in Chukotka. NREL designed and provided sets of data acquisition equipment to monitor several of the first pilot wind-diesel systems. NREL's computer simulation models are being used for performance data analysis and optimizing of future system configurations.

Gevorgian, V.; Touryan, K. [National Renewable Energy Laboratory (US); Bezrukikh, P. [Ministry of Fuel and Energy of Russian Federation (RU); Bezrukikh, P. Jr.; Karghiev, V. [Intersolarcenter

1999-10-20T23:59:59.000Z

155

Prospects and problems of development of geothermal resources of Russia  

SciTech Connect

This article discusses the pros and cons of geothermal energy source development in the Russian Federation. It estimates the geothermal reserves in each area of the Federation and presents the data in terms of tons of conventional fuels. Across the region, the average specific density exceeds 2,000,000 tons of conventional fuel per cubic kilometer. In the administrative regions of central Russia, the geothermal reserves are estimated to range from 160 years to 4200 years. The economic feasibility of developing these resources in the administrative regions is also explored, and it is concluded that the geothermal heat source is a source of hot water that is far superior to the conventional electric boiler-house source.

Boguslavskii, E.I.

1995-12-01T23:59:59.000Z

156

Air Shipment of Spent Nuclear Fuel from Romania to Russia  

SciTech Connect

Romania successfully completed the world’s first air shipment of spent nuclear fuel transported in Type B(U) casks under existing international laws and without shipment license special exceptions when the last Romanian highly enriched uranium (HEU) spent nuclear fuel was transported to the Russian Federation in June 2009. This air shipment required the design, fabrication, and licensing of special 20 foot freight containers and cask tiedown supports to transport the eighteen TUK 19 shipping casks on a Russian commercial cargo aircraft. The new equipment was certified for transport by road, rail, water, and air to provide multi modal transport capabilities for shipping research reactor spent fuel. The equipment design, safety analyses, and fabrication were performed in the Russian Federation and transport licenses were issued by both the Russian and Romanian regulatory authorities. The spent fuel was transported by truck from the VVR S research reactor to the Bucharest airport, flown by commercial cargo aircraft to the airport at Yekaterinburg, Russia, and then transported by truck to the final destination in a secure nuclear facility at Chelyabinsk, Russia. This shipment of 23.7 kg of HEU was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in close cooperation with the Rosatom State Atomic Energy Corporation and the International Atomic Energy Agency, and was managed in Romania by the National Commission for Nuclear Activities Control (CNCAN). This paper describes the planning, shipment preparations, equipment design, and license approvals that resulted in the safe and secure air shipment of this spent nuclear fuel.

Igor Bolshinsky; Ken Allen; Lucian Biro; Alexander Buchelnikov

2010-10-01T23:59:59.000Z

157

Joint electric power alternatives study. Appendix G. Joint parallel nuclear alternatives study for Russia. Final report  

Science Conference Proceedings (OSTI)

The Joint Parallel Nuclear Alternatives Study for Russia (JPNAS) is a parallel study to the Joint Electric Power Alternatives Study (JEPAS). The JPNAS assessed the costs of enhancing the safety level of Russian nuclear power plants (NPPs), decommissioning of RBMK-1000 and first generation VVER-440 units, completion of NPP construction, NPP repowering into fossil fuel plants, and construction of new generation NPPs. In the framework of the JEPAS, the JPNAS provides data on the nuclear sector which is needed to formulate an integrated resources plan and schedule for investments for the development of Russia`s power sector.

NONE

1995-06-01T23:59:59.000Z

158

White Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

White Mountains Geothermal Area White Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: White Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Hampshire Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

159

Weekly Rocky Mountains (PADD 4) Operable Crude Oil Distillation ...  

U.S. Energy Information Administration (EIA)

Weekly Rocky Mountains (PADD 4) Operable Crude Oil Distillation Capacity (Thousand Barrels per Calendar Day)

160

Modeling studies of mountain-scale radionuclide transport in the unsaturated zone at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Wu, and G.S. Bodvarsson, Radionuclide Transport Models Underdaughters of certain radionuclides. Increasing infiltrationOF MOUNTAIN-SCALE RADIONUCLIDE TRANSPORT IN THE UNSATURATED

Moridis, George J.; Seol, Yongkoo; Wu, Yu-Shu

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mountains russia contemporaneous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Green Mountain Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Green Mountain Wind Farm Green Mountain Wind Farm Facility Green Mountain Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer National Wind Power Energy Purchaser Green Mountain Energy Company Location Somerset County PA Coordinates 39.850753°, -79.066629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.850753,"lon":-79.066629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

162

Pillar Mountain II | Open Energy Information  

Open Energy Info (EERE)

Pillar Mountain II Pillar Mountain II Jump to: navigation, search Name Pillar Mountain II Facility Pillar Mountain II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Kodiak Electric Assoc. Developer Kodiak Electric Assoc. Energy Purchaser Kodiak Electric Assoc. Location Kodiak AK Coordinates 57.78667872°, -152.4434781° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.78667872,"lon":-152.4434781,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

163

Mountain Home Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Mountain Home Wind Farm Mountain Home Wind Farm Jump to: navigation, search Name Mountain Home Wind Farm Facility Mountain Home Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer John Deere Wind Energy Purchaser Idaho Power Location Elmore County ID Coordinates 43.268356°, -116.167939° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.268356,"lon":-116.167939,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

164

Mountaineer Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Mountaineer Wind Energy Center Mountaineer Wind Energy Center Jump to: navigation, search Name Mountaineer Wind Energy Center Facility Mountaineer Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Atlantic Renewable Energy Energy Purchaser Exelon Location Thomas WV Coordinates 39.163081°, -79.554516° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.163081,"lon":-79.554516,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

165

Turbulent Kinetic Energy Budgets over Mountainous Terrain  

Science Conference Proceedings (OSTI)

The objective of this study is to describe the characteristics of the airflow and turbulence structure over mountainous terrain. Turbulent characteristics of the airflow were measured using well-instrumented aircraft. The shear, buoyancy, ...

Theodore S. Karacostas; John D. Marwitz

1980-02-01T23:59:59.000Z

166

Ice Crystal Production by Mountain Surfaces  

Science Conference Proceedings (OSTI)

Evidence is presented for a process of ice crystal generation in supercooled orographic clouds in contact with snow-covered mountain surfaces. Comparisons of the crystal concentrations at the surface with aircraft sampling indicate that the “...

David C. Rogers; Gabor Vali

1987-09-01T23:59:59.000Z

167

Mountain Torque Events at the Tibetan Plateau  

Science Conference Proceedings (OSTI)

The interaction of large-scale wave systems with the Tibetan Plateau (TP) is investigated by regressing pressure, potential temperature, winds, precipitation, and selected fluxes in winter onto the three components Toi of this massif’s mountain ...

Joseph Egger; Klaus-Peter Hoinka

2008-02-01T23:59:59.000Z

168

On the Diurnal Variation of Mountain Waves  

Science Conference Proceedings (OSTI)

The diurnal variation of mountain waves and wave drag associated with flow past mesoscale ridges has been examined using the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) and an analytical boundary layer (BL) model. The wave drag ...

Qingfang Jiang; James D. Doyle

2008-04-01T23:59:59.000Z

169

April 25, 1997: Yucca Mountain exploratory drilling  

Energy.gov (U.S. Department of Energy (DOE))

April 25, 1997Workers complete drilling of the five-mile long, horseshoe-shaped exploratory tunnel through Yucca Mountain at the proposed high-level nuclear waste repository in Nevada.

170

Anelastic Semigeostrophic Flow over a Mountain Ridge  

Science Conference Proceedings (OSTI)

Scale analysis indicates that five nondimensional parameters (R02 ?, ? ? and k?) characterize the disturbance generated by the steady flow of a uniform wind (U0, V0) incident on a mountain ridge of width a in an isothermal, uniformly rotating, ...

Peter R. Bannon; Pe-Cheng Chu

1988-03-01T23:59:59.000Z

171

Microsoft Word - IceMountainFinal.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Tumbled-down boulders, called talus, on Ice Mountain's north- western slope collect ice during the winter. In the summer, cold air flows out of vents in the base of the talus,...

172

Mountain Torque and Rossby Wave Radiation  

Science Conference Proceedings (OSTI)

Planetary-scale orography exerts a substantial pressure drag on the atmosphere. This drag appears to be partially balanced by the convergence of momentum transports by Rossby waves induced by these mountains. Simple models of this process are ...

Joseph Egger

1998-09-01T23:59:59.000Z

173

Mountain Forces and the Atmospheric Energy Budget  

Science Conference Proceedings (OSTI)

Although mountains are generally thought to exert forces on the atmosphere, the related transfers of energy between earth and atmosphere are not represented in standard energy equations of the atmosphere. It is shown that the axial rotation of the ...

Joseph Egger

2011-11-01T23:59:59.000Z

174

Daytime heat transfer processes over mountainous terrain  

Science Conference Proceedings (OSTI)

The daytime heat transfer mechanisms over mountainous terrain are investigated by means of large-eddy simulations over idealized valleys. Two- and three-dimensional topographies, corresponding to infinite and finite valleys, are used in order to ...

Juerg Schmidli

175

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area (Redirected from Socorro Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

176

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area (Redirected from Jemez Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

177

U.S and Russia Develop Action Plan to Enhance Global and Bilateral Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

S and Russia Develop Action Plan to Enhance Global and Bilateral S and Russia Develop Action Plan to Enhance Global and Bilateral Nuclear Energy Cooperation U.S and Russia Develop Action Plan to Enhance Global and Bilateral Nuclear Energy Cooperation December 19, 2006 - 9:46am Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman and Russian Federal Atomic Energy Agency (Rosatom) Director Sergey V. Kiriyenko last week submitted to U.S. President George W. Bush and Russian President Vladimir Putin a joint work plan that will provide a framework for further bilateral cooperation in the development of nuclear energy technology and deployment. The plan was completed and signed by both parties the week of December 11, 2006, as part of an agreement that stemmed from the G8 Summit in St. Petersburg, Russia, in July of this year.

178

U.S. and Russia Sign Plan for Russian Plutonium Disposition | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sign Plan for Russian Plutonium Disposition Sign Plan for Russian Plutonium Disposition U.S. and Russia Sign Plan for Russian Plutonium Disposition November 19, 2007 - 4:31pm Addthis Will Eliminate Enough Russian Plutonium for Thousands of Nuclear Weapons WASHINGTON, DC -U.S. Secretary of Energy Samuel W. Bodman and Russian Federal Atomic Energy Agency Director Sergey Kiriyenko have signed a joint statement outlining a plan to dispose of 34 metric tons of surplus plutonium from Russia's weapons program. Under the new plan, the United States will cooperate with Russia to convert Russian weapon-grade plutonium into mixed oxide fuel (MOX) and irradiate the MOX fuel in the BN-600 fast reactor, currently operating at the Beloyarsk nuclear power plant, and in the BN-800 fast reactor, currently under construction at the same site. The United States and Russia also

179

U.S. And Russia Complete Nuclear Security Upgrades Under Bratislava  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

And Russia Complete Nuclear Security Upgrades Under Bratislava And Russia Complete Nuclear Security Upgrades Under Bratislava Initiative U.S. And Russia Complete Nuclear Security Upgrades Under Bratislava Initiative December 23, 2008 - 9:18am Addthis WASHINGTON, DC -The U.S. Department of Energy today delivered the Bratislava Nuclear Security report to the White House, which detailed the status of work agreed to by Presidents Bush and Putin in Bratislava in 2005. U.S. and Russian officials from the U.S. Department of Energy's National Nuclear Security Administration (NNSA), the U.S. Department of Defense, the Russian Ministry of Defense and State Atomic Energy Corporation "Rosatom" reviewed work to complete nuclear security upgrades in Russia at meetings in Moscow last week. Building on this success, both

180

NNSA Partners With Russia to Recover Material That Could Be Used in Dirty  

National Nuclear Security Administration (NNSA)

Partners With Russia to Recover Material That Could Be Used in Dirty Partners With Russia to Recover Material That Could Be Used in Dirty Bombs | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > NNSA Partners With Russia to Recover Material ... Press Release NNSA Partners With Russia to Recover Material That Could Be Used in Dirty

Note: This page contains sample records for the topic "mountains russia contemporaneous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Statement on Future U.S.-Russia Nuclear Energy and Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation Collaboration Following Russian Delegation Visit to the United States Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation Collaboration Following Russian Delegation Visit to the United States December 10, 2013 - 2:30pm Addthis News Media Contact (202) 586-4940 U.S. Secretary of Energy Ernest Moniz and State Corporation for Nuclear Energy (Rosatom) Director General Sergey Kirienko today held talks in Washington, D.C., about the future of U.S.-Russia collaborative work in the nuclear energy field, including nuclear research and development, commercial aspects of cooperation, nuclear safety, and nonproliferation. The meeting coincided with the arrival of the final shipment of low

182

18-Year Land-Surface Hydrology Model Simulations for a Midlatitude Grassland Catchment in Valdai, Russia  

Science Conference Proceedings (OSTI)

Off-line simulations of improved bucket hydrology and Simplified Simple Biosphere (SSiB) models are performed for a grassland vegetation catchment region, located at the Valdai water-balance research station in Russia, forced by observed ...

C. Adam Schlosser; Alan Robock; Konstantin Ya Vinnikov; Nina A. Speranskaya; Yongkang Xue

1997-12-01T23:59:59.000Z

183

Under U.S.-Russia Partnership, Final Shipment of Fuel Converted...  

National Nuclear Security Administration (NNSA)

Megawatts Program, with this week's off-loading of the final shipment of low enriched uranium (LEU) at the Port of Baltimore in Baltimore, Maryland, from Russia. The shipment was...

184

Russia Tri-Lab S&T Collaborations | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Russia Tri-Lab S&T Collaborations Home > About Us > Our Programs >...

185

21H.466 Imperial and Revolutionary Russia, 1800-1917, Fall 2002  

E-Print Network (OSTI)

Analyzes Russia's social, cultural, political heritage; Eurasian imperialism; and autocracy. Compares reforming and revolutionary impulses in the context of serfdom, the rise of the intelligentsia, and debates over capitalism. ...

Wood, Elizabeth A., 1958-

186

21H.466 Imperial and Revolutionary Russia: Culture and Politics, Fall 2008  

E-Print Network (OSTI)

At the beginning of the eighteenth century Russia began to come into its own as a major European power. Members of the Russian intellectual classes increasingly compared themselves and their autocratic order to states and ...

Wood, Elizabeth A.

187

Performance potential of the coal strip mining in the east of Russia  

Science Conference Proceedings (OSTI)

The potentialities of the leading mining districts in Russia to improve coal production by strip mining are analyzed. The operational issues of the Erunakovskiy (Kuzbass), Kansko-Achinskiy and South Yakutia territorial production complexes are considered.

Cheskidov, V.I. [Russian Academy of Science, Novosibirsk (Russian Federation). Inst. of Mining

2007-07-15T23:59:59.000Z

188

U.S.-Russia Twenty-Year Partnership Completes Final Milestone...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completes Final Milestone in Converting 20,000 Russian Nuclear Warheads into Fuel for U.S. Electricity U.S.-Russia Twenty-Year Partnership Completes Final Milestone in...

189

Russia-US Forest Service Climate Change Technical Cooperation | Open Energy  

Open Energy Info (EERE)

US Forest Service Climate Change Technical Cooperation US Forest Service Climate Change Technical Cooperation Jump to: navigation, search Name Russia-US Forest Service Climate Change Technical Cooperation Agency/Company /Organization United States Forest Service Sector Land Focus Area Forestry Topics Background analysis Website http://www.fs.fed.us/global/to Country Russia Eastern Europe References US Forest Service Climate Change Technical Cooperation[1] "Like the US, Russia contains temperate and boreal forests. The forests share similar species, similar forest health problems, and some common threats. Since the mid-nineties, the US Forest Service has worked with Russian partners, including the State Forestry Service of Russia to: 1) promote sustainable forestry practices, 2) address forest health issues and

190

DOE Announces U.S.-Russia Fourth Report on Bratislava Agreement |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S.-Russia Fourth Report on Bratislava Agreement U.S.-Russia Fourth Report on Bratislava Agreement DOE Announces U.S.-Russia Fourth Report on Bratislava Agreement January 12, 2007 - 9:59am Addthis WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel Bodman announced today that he and Russian Federal Atomic Energy Agency Director Sergey Kiriyenko have submitted to Presidents Bush and Putin the fourth report of the Senior Interagency Working Group on implementation of the February 2005 Bratislava Checklist. "The accelerated schedule adopted under Bratislava is being implemented with great success," Secretary Bodman said. "Our efforts to minimize and secure highly enriched uranium and plutonium are making the world safer. Our cooperation with Russia on emergency response and nuclear security

191

Energy Efficiency Investments in Public Facilities - Developing a Pilot Mechanism for Russia and Chelyabinsk Region  

SciTech Connect

Russian public sector buildings tend to be very inefficient, which creates vast opportunities for savings. This paper reviews opportunities to implement energy efficiency projects in Russian public buildings, created by new Russian legislation and regulations. Given Russia's limited experience with energy performance contracts (EPCs), a pilot project can help test an implementation mechanism. The authors use Chelyabinsk Region as an example to discuss opportunities, challenges and solutions to financing and implementing an EPC in Russia, navigating through federal requirements and specific local conditions.

Evans, Meredydd; Roshchanka, Volha; Parker, Steven A.; Baranovskiy, Aleksandr

2012-01-01T23:59:59.000Z

192

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

MECHANICAL SLIMHOLE TESTING SYSTEM (MSTS) MECHANICAL SLIMHOLE TESTING SYSTEM (MSTS) SLIMHOLE DRILL STEM TESTER APRIL, 1995 FC9524/95DT4 MSTS Test in Casper Wyoming April 19,1995 Background MSTS EXP-2 was shipped back to SPT for modifications and re-testing. A 4-1/2" cased well at the Rocky Mountain Oilfield Testing Center (RMOTC) in Casper Wyoming was selected. The well conditions were: Casper Well Deviation 0 Casing 4-1/2" 10.5#/ft Test depth 5380 ft BHT NOT Tubing 2-3/8" 4.7#/ft Formation Fluid Water & Oil Kill Fluid 10#/gal brine The MSTS was tested with a single 3.06" Dowell packer which was set at 5380 ft, approximately 80 off bottom. The test string was configured: MSTS EXP-2 with Inflate recorder - HPR-D Formation Gage - HPR-D Single packer, Dowell 3.06 TFV - 12 inch stroke no cam 900 ft of 2-3/8" 4.7 #/ft tubing (3000 #)

193

Under U.S.-Russia Partnership, Final Shipment of Fuel Converted From 20,000  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Under U.S.-Russia Partnership, Final Shipment of Fuel Converted Under U.S.-Russia Partnership, Final Shipment of Fuel Converted From 20,000 Russian Nuclear Warheads Arrives in United States and Will Be Used for U.S. Electricity Under U.S.-Russia Partnership, Final Shipment of Fuel Converted From 20,000 Russian Nuclear Warheads Arrives in United States and Will Be Used for U.S. Electricity December 10, 2013 - 2:50pm Addthis News Media Contact (202) 586-4940 WASHINGTON, D.C. - The United States and Russia are today commemorating the completion of the 1993 U.S.-Russia HEU Purchase Agreement, commonly known as the Megatons to Megawatts Program, with this week's off-loading of the final shipment of low enriched uranium (LEU) at the Port of Baltimore in Baltimore, Maryland, from Russia. The shipment was the last of the LEU converted from more than 500 metric tons of weapons-origin highly enriched

194

Analyzing flow patterns in unsaturated fractured rock of Yucca Mountain using an integrated modeling approach  

E-Print Network (OSTI)

zone site-scale model, Yucca Mountain Site Characterizationzone site- scale model, Yucca Mountain Project Milestonelateral diversion at Yucca Mountain, Nevada, Water Resources

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

2008-01-01T23:59:59.000Z

195

Modeling water seepage into heated waste emplacement drifts at Yucca Mountain  

E-Print Network (OSTI)

into drifts at Yucca Mountain, Journal of ContaminantEMPLACEMENT DRIFTS AT YUCCA MOUNTAIN Jens Birkholzer, Sumitfor nuclear waste at Yucca Mountain, Nevada. Heating of rock

Birkholzer, Jens; Mukhopadhyay, Sumitra; Tsang, Yvonne

2003-01-01T23:59:59.000Z

196

Calibration of Yucca Mountain unsaturated zone flow and transport model using porewater chloride data  

E-Print Network (OSTI)

of hydrogeologic units at Yucca Mountain, Nevada. U.S.infiltration for the Yucca Mountain Area, Nevada. Milestonethe unsaturated zone at Yucca Mountain, Nevada. J. Contam.

Liu, Jianchun; Sonnenthal, Eric L.; Bodvarsson, Gudmundur S.

2002-01-01T23:59:59.000Z

197

Characterization and Prediction of Subsurface Pneumatic Pressure Variations at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Group Exposed at Yucca Mountain, Nevada, U. S. Geologicalunsaturated zone, Yucca Mountain, Nevada, Water Resourcesgeologic map of Yucca Mountain, Nye County, Nevada, with

Ahlers, C. Fredrik; Finsterle, Stefan; Bodvarsson, Gudmundur S.

1998-01-01T23:59:59.000Z

198

Several TOUGH2 Modules Developed for Site Characterization Studies of Yucca Mountain  

E-Print Network (OSTI)

Unsaturated Zone Model of Yucca Mountain, Nevada. Lawrencestudies of Yucca Mountain. The model formulations arebeing used in the Yucca Mountain project. Pruess, K . ,

Wu, Yu-Shu; Pruess, Karsten

1998-01-01T23:59:59.000Z

199

Multiple-point statistical prediction on fracture networks at Yucca Mountain  

E-Print Network (OSTI)

on fracture networks at Yucca Mountain Xiaoyan Liu 1 ,systems, such as at Yucca Mountain, water flow rate andflow field behavior at the Yucca Mountain waste repository

Liu, X.Y

2010-01-01T23:59:59.000Z

200

Temporal Damping Effect of the Yucca Mountain Fractured Unsaturated Rock on Transient Infiltration Pulses  

E-Print Network (OSTI)

unsaturated zone at Yucca Mountain. J. of Cont. Hydrol. ,2003b. Calibration of Yucca Mountain unsaturated zone flowthe unsaturated zone, Yucca Mountain, USGS Water Resources

Zhang, Keni; Wu, Yu-Shu; Pan, Lehua

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mountains russia contemporaneous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Effect of small-scale fractures on flow and transport processes at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Transport Processes at Yucca Mountain, Nevada Yu-Shu Wu, H.matrix interaction in Yucca Mountain site characterizationthe Unsaturated Zone of Yucca Mountain, Nevada, Journal of

Wu, Yu-Shu; Liu, H.H.; Bodvarsson, G.S.

2002-01-01T23:59:59.000Z

202

Massively parallel computing simulation of fluid flow in the unsaturated zone of Yucca Mountain, Nevada  

E-Print Network (OSTI)

Central Block Area, Yucca Mountain, Nye County, Nevada. Mapunsaturated zone, Yucca Mountain, Nevada. Water-Resourcesisotope distributions at Yucca Mountain. Sandia National

Zhang, Keni; Wu, Yu-Shu; Bodvarsson, G.S.

2001-01-01T23:59:59.000Z

203

Fluid flow and reactive transport around potential nuclear waste emplacement tunnels at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Unsaturated Zone at Yucca Mountain, Nevada. U.S. Geologicalzone model at Yucca Mountain, Nevada. J. Contaminantinvesti- gations at Yucca Mountain - the potential

Spycher, N.F.; Sonnenthal, E.L.; Apps, J.A.

2002-01-01T23:59:59.000Z

204

Experimental and numerical simulation of dissolution and precipitation: Implications for fracture sealing at Yucca Mountain, Nevada  

E-Print Network (OSTI)

FRACTURE SEALING AT YUCCA MOUNTAIN, NEVADA Patrick F. Dobsonpotential repository at Yucca Mountain, Nevada, would reducewas flowed through crushed Yucca Mountain tuff at 94°C. The

Dobson, Patrick F.; Kneafsey, Timothy J.; Sonnenthal, Eric L.; Spycher, Nicolas; Apps, John A.

2001-01-01T23:59:59.000Z

205

Development of discrete flow paths in unsaturated fractures at Yucca Mountain  

E-Print Network (OSTI)

into drifts at Yucca Mountain. Journal of Contaminantof infiltration for the Yucca Mountain Area, Nevada, U. S.matrix properties, Yucca Mountain, Nevada, U.S. Geological

Bodvarsson, G.S.; Wu, Yu-Shu; Zhang, Keni

2002-01-01T23:59:59.000Z

206

Deep Blue No 1- A Slimhole Geothermal Discovery At Blue Mountain...  

Open Energy Info (EERE)

DOI: Unavailable Core Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) Blue Mountain Geothermal...

207

Microsoft PowerPoint - US-Russia3_Cynn_2009  

National Nuclear Security Administration (NNSA)

Static material strength determined using a DAC Static material strength determined using a DAC g g Joint US-Russia Material Conference H h C 1 W J E 1 J P Kl i 1 M Li 1 Prague, Czech Republic 8/30 - 9/4, 2009 Hyunchae Cynn 1 , W.J. Evans 1 , J. P. Klepeis 1 , M. Lipp 1 , H.-P. Liermann 2 *, W. Yang 2 cynn1@llnl.gov, 925-422-3432 Physical and Life Sciences Directorate Lawrence Livermore National Laboratory Livermore, CA 94550, USA Livermore, CA 94550, USA 2 HPCAT, Bld. 434E, Advanced Photon Source Argonne National Laboratory, Argonne, IL 60439-4803, USA *Currently at DESY, HASYLAB, Petra III, P02 Notkestr. 85, Bldg. 47c, Rm. L115 22607 H b G 22607 Hamburg, Germany This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. Portions of this work were performed at HPCAT (Sector 16),

208

U.S. Natural Gas Exports to Russia  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

209

International Centre for Integrated Mountain Development (ICIMOD) | Open  

Open Energy Info (EERE)

Centre for Integrated Mountain Development (ICIMOD) Centre for Integrated Mountain Development (ICIMOD) Jump to: navigation, search Name International Centre for Integrated Mountain Development (ICIMOD) Agency/Company /Organization International Centre for International Mountain Development (ICIMOD) Resource Type Training materials, Lessons learned/best practices Website http://www.icimod.org/ Country Afghanistan, Bangladesh, Bhutan, China, India, Myanmar, Nepal, Pakistan UN Region Southern Asia, Western Asia References ICIMOD[1] International Centre for Integrated Mountain Development (ICIMOD) Screenshot "The International Centre for Integrated Mountain Development, ICIMOD, is a regional knowledge development and learning centre serving the eight regional member countries of the Hindu Kush-Himalayas - Afghanistan,

210

Chocolate Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chocolate Mountains Geothermal Area Chocolate Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chocolate Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Map: Chocolate Mountains Geothermal Area Chocolate Mountains Geothermal Area Location Map Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: Phase II - Resource Exploration and Confirmation Coordinates: 33.352°, -115.353° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.352,"lon":-115.353,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

211

Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France  

E-Print Network (OSTI)

Jose and Mireia Piera. "Nuclear fission sustainability withJose and Mireia Piera. "Nuclear fission sustainability withnuclear energy redistribution in Russia and France; the substitution of fission

Grigoriadis, Theocharis N

2009-01-01T23:59:59.000Z

212

Mercantilist Development in Russia: The Legitimacy of State Power, State Identity, and the Energy Charter Regime (1990 - 2010)  

E-Print Network (OSTI)

A comparison of Azerbaijan and Russia,” Business andUkraine, Belorussia, Azerbaijan, Georgia, Kazakhstan,its competitors in the FSU (Azerbaijan, Central Asia) for

Barkanov, Boris

2011-01-01T23:59:59.000Z

213

Mercantilist Development in Russia: The Legitimacy of State Power, State Identity, and the Energy Charter Regime (1990 - 2010)  

E-Print Network (OSTI)

Restrictions on Natural Gas Imports from Russia,” Paperand dependency on oil and gas imports growing and suppliesreductions in natural gas imports were 54% for Bulgaria, 86%

Barkanov, Boris

2011-01-01T23:59:59.000Z

214

Mcgee Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mcgee Mountain Geothermal Area Mcgee Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mcgee Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (7) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8,"lon":-118.87,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

Tungsten Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Tungsten Mountain Geothermal Area Tungsten Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Tungsten Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (4) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6751,"lon":-117.6945,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

216

Bald Mountain Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Bald Mountain Geothermal Project Bald Mountain Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Bald Mountain Geothermal Project Project Location Information Coordinates 40.365833333333°, -120.2425° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.365833333333,"lon":-120.2425,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

217

Green Mountain Power Corp | Open Energy Information  

Open Energy Info (EERE)

Green Mountain Power Corp Green Mountain Power Corp Jump to: navigation, search Name Green Mountain Power Corp Place Vermont Service Territory Vermont Website www.greenmountainpower.co Green Button Landing Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 7601 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now!

218

Florida Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Florida Mountains Geothermal Area Florida Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Florida Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

219

Drum Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Drum Mountain Geothermal Area Drum Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Drum Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.544722222222,"lon":-112.91611111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

220

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

Note: This page contains sample records for the topic "mountains russia contemporaneous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

222

Augusta Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Augusta Mountains Geothermal Area Augusta Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Augusta Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

223

Sand Mountain Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Mountain Electric Coop Mountain Electric Coop Jump to: navigation, search Name Sand Mountain Electric Coop Place Alabama Utility Id 16629 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Drainage Pumping Station LS - Outdoor Lighting Service Lighting RS - Residential Service Residential Schedule GSA - General Power Service - Part 1 Commercial Schedule GSA - General Power Service - Part 2 Commercial Schedule GSA - General Power Service - Part 3 Commercial Schedule GSB Commercial Schedule GSD Commercial

224

Weapons test seismic investigations at Yucca Mountain  

Science Conference Proceedings (OSTI)

Yucca Mountain, located on and adjacent to the Nevada Test Site, is being characterized as part of an ongoing effort to identify a potential high-level nuclear waste repository. This site will be subjected to seismic ground motions induced by underground nuclear explosions. A knowledge of expected ground motion levels from these tests will enable the designers to provide for the necessary structural support in the designs of the various components of the repository. The primary objective of the Weapons Test Seismic Investigation project is to develop a method to predict the ground motions expected at the repository site as a result of future weapons tests. This paper summarizes the data base presently assembled for the Yucca Mountain Project, characteristics of expected ground motions, and characterization of the two-dimensional seismic properties along paths between Yucca Mountain and the testing areas of the Nevada Test Site.

Phillips, J.S.; Shephard, L.E.; Walck, M.C.

1991-01-01T23:59:59.000Z

225

Short-Period Seismic Noise in Vorkuta (Russia)  

SciTech Connect

Cultural development of new subpolar areas of Russia is associated with a need for detailed seismic research, including both mapping of regional seismicity and seismic monitoring of specific mining enterprises. Of special interest are the northern territories of European Russia, including shelves of the Kara and Barents Seas, Yamal Peninsula, and the Timan-Pechora region. Continuous seismic studies of these territories are important now because there is insufficient seismological knowledge of the area and an absence of systematic data on the seismicity of the region. Another task of current interest is the necessity to consider the seismic environment in the design, construction, and operation of natural gas extracting enterprises such as the construction of the North European Gas Pipeline. Issues of scientific importance for seismic studies in the region are the complex geodynamical setting, the presence of permafrost, and the complex tectonic structure. In particular, the Uralian Orogene (Fig. 1) strongly affects the propagation of seismic waves. The existing subpolar seismic stations [APA (67,57{sup o}N; 33,40{sup o}E), LVZ (67,90{sup o}N; 34,65{sup o}E), and NRIL (69,50{sup o}N; 88,40{sup o}E)] do not cover the extensive area between the Pechora and Ob Rivers (Fig. 1). Thus seismic observations in the Vorkuta area, which lies within the area of concern, represent a special interest. Continuous recording at a seismic station near the city of Vorkuta (67,50{sup o}N; 64,11{sup o}E) [1] has been conducted since 2005 for the purpose of regional seismic monitoring and, more specifically, detection of seismic signals caused by local mining enterprises. Current surveys of local seismic noise [7,8,9,11], are particularly aimed at a technical survey for the suitability of the site for installation of a small-aperture seismic array, which would include 10-12 recording instruments, with the Vorkuta seismic station as the central element. When constructed, this seismic array will considerably improve the recording capacity of regional and local seismic events. It will allow detection of signatures of seismic waves propagating in submeridional and sublatitudinal directions. The latter is of special interest not only to access the influence of the Urals on propagation patterns of seismic waves, but also to address other questions, such as the structure and dynamic characteristics of the internal dynamo of the Earth [9,13]. Recording seismic waves at low angular distances from seismically active subpolar zones will allow us to collect data on vortical and convective movements in subpolar lithosphere blocks and at the boundary of the inner core of the Earth, possibly giving essential clues to the modeling of the Earth's electromagnetic field [3,13]. The present study considers basic features of seismic noise at the Vorkuta station obtained through the analysis of seismic records from March, 2006 till December, 2007.

Kishkina, S B; Spivak, A A; Sweeney, J J

2008-05-15T23:59:59.000Z

226

The Sensitivity of Mountain Snowpack Accumulation to Climate Warming  

Science Conference Proceedings (OSTI)

Controls on the sensitivity of mountain snowpack accumulation to climate warming (?S) are investigated. This is accomplished using two idealized, physically based models of mountain snowfall to simulate snowpack accumulation for the Cascade ...

Justin R. Minder

2010-05-01T23:59:59.000Z

227

New Yucca Mountain Repository Design to be Simpler, Safer and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Yucca Mountain Repository Design to be Simpler, Safer and More Cost-Effective New Yucca Mountain Repository Design to be Simpler, Safer and More Cost-Effective untitled More...

228

Flow and Mixing in New Mexico Mountain Cumuli  

Science Conference Proceedings (OSTI)

Convection and cloud formation over mountains during weak winds and strong insolation were studied using an instrumented aircraft. Previous studies in cloudless situations had shown the existence of convergence over the mountain range at low ...

David J. Raymond; Marvin H. Wilkening

1982-10-01T23:59:59.000Z

229

Dongbai Mountain Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Dongbai Mountain Wind Power Co Ltd Jump to: navigation, search Name Dongbai Mountain Wind Power Co Ltd Place Zhejiang Province, China Sector Wind energy Product Dongyang-based wind...

230

Environment/Health/Safety (EHS): ISSM: Mountain Lion Sightings  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Safeguards & Security Management Integrated Safeguards & Security Management Home ISSM Plan Security at LBNL Clearance Holders Export Control International Visitors Security Updates Contact Us CI Awareness Security and Emergency Operations Website Mountain Lion Sightings Mountain Lion Adult Mountain Lion Cub Mountain Lion Adult Mountain Lion Cub Updated 11/19/2012: Mountain lions generally exist where deer are found. Warning signs have been placed at walkways and gate entrances. As a precaution, the use of isolated stairs/walkways at dusk, night, or dawn is discouraged. To limit an interaction with a mountain lion, avoid hiking or jogging in the undeveloped areas of the lab alone or at dawn, dusk or night. If you see a mountain lion, immediately call 7-911 from any Lab phone or 911 from any cell phone. Go to http://www.dfg.ca.gov/keepmewild/lion.html

231

From separations to reconstitution - a short history of Plutonium in the U.S. and Russia  

SciTech Connect

During the cold war plutonium was produced in reactors in both the US and Russia. It was then separated from the residual uranium and fission products by a variety of precipitation processes, such as Bismuth Phosphate, Redox, Butex, Purex, etc. in the US and uranium acetate and Purex in Russia. After a period of time in the field, plutonium weapons were recycled and the plutonium re-purified and returned to weapons. purification was accomplished by a variety of aqueous and molten salt processes, such as nitric-hydrofluoric acid dissolution followed by anion exchange, Purex modifications, molten salt extraction, electrorefining, etc. in the US and nitric acid dissolution or sodium hydroxide fusion followed by anion exchange in Russia. At the end of the Cold War, plutonium production of weapons-grade plutonium was cut off in the US and is expected to be cut off in Russia shortly after the turn of the century. Now both countries are looking at methods to reconstitute plutonium with fission products to render it no longer useful for nuclear weapons. These methods include immobilization in a ceramic matrix and then encasement in fission product laden glass, irradiation of MOX fuel, and disposal as waste in WIPP in the US and irradiation of MOX fuel in Russia. This paper details the contrast between the treatment of plutonium during the cold war and after the cold war was over.

Gray, L W

1999-04-15T23:59:59.000Z

232

Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) Exploration...

233

Ground Gravity Survey At Blue Mountain Area (Fairbank Engineering...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Blue Mountain Area (Fairbank Engineering, 2006) Exploration Activity...

234

THERMAL PROPERTIES OF GABLE MOUNTAIN BASALT CORES HANFORD NUCLEAR RESERVATION  

E-Print Network (OSTI)

1974. 7. Atlantic Richfield Hanford Company, Research andGABLE MOUNTAIN BASALT CORES HANFORD NUCLEAR RESERVATION L.

Martinez-Baez, L.F.

2011-01-01T23:59:59.000Z

235

Rocky Mountain (PADD 4) Exports of Normal Butane-Butylene ...  

U.S. Energy Information Administration (EIA)

Normal Butane/Butylene Supply and Disposition; Rocky Mountain (PADD 4) Exports of Crude Oil and Petroleum Products ...

236

Rocky Mountain (PADD 4) Refinery Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

Rocky Mountain (PADD 4) Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

237

NNSA Celebrates 10 Years of Cooperation with Russia in Securing Nuclear  

National Nuclear Security Administration (NNSA)

10 Years of Cooperation with Russia in Securing Nuclear 10 Years of Cooperation with Russia in Securing Nuclear Material | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > NNSA Celebrates 10 Years of Cooperation with ... NNSA Celebrates 10 Years of Cooperation with Russia in Securing Nuclear

238

U.S. and Russia Reaffirm Commitment to Disposing of Weapon-Grade Plutonium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reaffirm Commitment to Disposing of Weapon-Grade Reaffirm Commitment to Disposing of Weapon-Grade Plutonium U.S. and Russia Reaffirm Commitment to Disposing of Weapon-Grade Plutonium July 13, 2006 - 3:05pm Addthis WASHINGTON, DC - U.S. Energy Secretary Samuel W. Bodman and Sergey Kiriyenko, the director of Russia's Federal Atomic Energy Agency, have signed a joint statement reaffirming their commitment to dispose of 34 metric tons of excess weapon-grade plutonium by irradiation in nuclear reactors. "This statement is a clear sign of our mutual commitment to keeping dangerous nuclear material out of the hands of terrorists. We look forward to working together with the Russians to ensure that this important nonproliferation project moves forward in both Russia and the United States," Secretary Bodman said.

239

Secretary Bodman and Rosatom Director Kiriyenko Meet to Discuss U.S.-Russia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Rosatom Director Kiriyenko Meet to Discuss and Rosatom Director Kiriyenko Meet to Discuss U.S.-Russia Nuclear Security Progress Secretary Bodman and Rosatom Director Kiriyenko Meet to Discuss U.S.-Russia Nuclear Security Progress February 1, 2008 - 11:13am Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman and Russian Federal Atomic Energy Agency (Rosatom) Director Sergey Kiriyenko today met to highlight U.S.-Russian efforts to keep nuclear weapons and weapons material out of the hands of terrorists. Secretary Bodman and Director Kiriyenko discussed progress made and next steps to shutdown Russia plutonium reactors this year, dispose of 68 metric tons of plutonium, and advance cooperation to expand the use of civilian nuclear energy through the Global Nuclear Energy Partnership. Secretary Bodman also highlighted

240

Russia-Joint Programme on Resource Efficient and Cleaner Production (RECP)  

Open Energy Info (EERE)

Russia-Joint Programme on Resource Efficient and Cleaner Production (RECP) Russia-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Jump to: navigation, search Name Russia-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and Transition Countries Agency/Company /Organization United Nations Industrial Development Organization (UNIDO), United Nations Environment Programme (UNEP) Partner Ministry of Energy, Ministry of Planning, Ministry of Finance, Ministry of Environment, Ministry of Industry Sector Climate, Energy, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Goods and Materials, Industry, People and Policy, Water Conservation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment, Technology characterizations

Note: This page contains sample records for the topic "mountains russia contemporaneous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Russia Tri-Lab S&T Collaborations | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Russia Tri-Lab S&T Collaborations | National Nuclear Security Russia Tri-Lab S&T Collaborations | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Russia Tri-Lab S&T Collaborations Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

242

Russia-U.S. joint program on the safe management of nuclear materials  

Science Conference Proceedings (OSTI)

The Russia-US joint program on the safe management of nuclear materials was initiated to address common technical issues confronting the US and Russia in the management of excess weapons grade nuclear materials. The program was initiated after the 1993 Tomsk-7 accident. This paper provides an update on program activities since 1996. The Fourth US Russia Nuclear Materials Safety Management Workshop was conducted in March 1997. In addition, a number of contracts with Russian Institutes have been placed by Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL). These contracts support research related to the safe disposition of excess plutonium (Pu) and highly enriched uranium (HEU). Topics investigated by Russian scientists under contracts with SNL and LLNL include accident consequence studies, the safety of anion exchange processes, underground isolation of nuclear materials, and the development of materials for the immobilization of excess weapons Pu.

Witmer, F.E.; Krumpe, P.F. [Dept. of Energy, Washington, DC (United States); Carlson, D.D. [Sandia National Labs., Albuquerque, NM (United States)] [and others

1998-06-01T23:59:59.000Z

243

Technical framework to facilitate foreign spent fuel storage and geologic disposal in Russia  

SciTech Connect

The option of storage and eventual geologic disposal in Russia of spent fuel of US origin used in Taiwan provides a unique opportunity that can benefit many parties. Taiwan has a near term need for a spent fuel storage and geologic disposal solution, available financial resources, but limited prospect for a timely domestic solution. Russia has significant spent fuel storage and transportation management experience, candidate storage and repository sites, but limited financial resources available for their development. The US has interest in Taiwan energy security, national security and nonproliferation interests in Russian spent fuel storage and disposal and interest in the US origin fuel. While it is understood that such a project includes complex policy and international political issues as well as technical issues, the goal of this paper is to begin the discussion by presenting a technical path forward to establish the feasibility of this concept for Russia.

Jardine, L J; Halsey, W G; Cmith, C F

2000-01-31T23:59:59.000Z

244

Holy Mother of Chiri Mountain: A Female Mountain Spirit in Korea  

E-Print Network (OSTI)

was highly popular with pilgrims throughout the Chos?n dy-su witnessed several groups of pilgrims travelling to theon the custom of local pilgrim- ages to Chiri Mountain and

Stiller, Maya

2011-01-01T23:59:59.000Z

245

Surface Pressure and Mountain Drag for Transient Airflow over a Mountain Ridge  

Science Conference Proceedings (OSTI)

The linear problem of rotating, stratified, adiabatic, hydrostatic, Boussinesq airflow over a mountain ridge is solved analytically for the case where the spatially uniform, normally incident airflow is the sum of a steady and sinusoidally ...

Peter R. Bannon; Joseph A. Zehnder

1985-12-01T23:59:59.000Z

246

Delaware Mountain Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Delaware Mountain Wind Farm Delaware Mountain Wind Farm Jump to: navigation, search Name Delaware Mountain Wind Farm Facility Delaware Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer American National Wind Power/Orion Energy Energy Purchaser Lower Colorado River Authority Location Culberson County TX Coordinates 31.670717°, -104.739534° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.670717,"lon":-104.739534,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

247

Mcgee Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mcgee Mountain Geothermal Area Mcgee Mountain Geothermal Area (Redirected from Mcgee Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mcgee Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (7) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8,"lon":-118.87,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

248

Revision 2 Yucca Mountain Review Plan  

E-Print Network (OSTI)

The Yucca Mountain Review Plan provides guidance for the U.S. Nuclear Regulatory Commission staff to evaluate a U.S. Department of Energy license application for a geologic repository. It is not a regulation and does not impose regulatory requirements. The licensing criteria are contained in the U.S. Code of Federal Regulations (CFR) Title 10, Part 63

unknown authors

2003-01-01T23:59:59.000Z

249

GREEN MOUNTAIN BATTALION ROTC ALUMNI ASSOCIATION  

E-Print Network (OSTI)

level leadership! Strong subordinate leaders make for great organizations; not everyone can "make Society (elite scholar-leader organization). We sponsored Team entry to the Walter N. Levy Challenge to update and renovate the Green Mountain Battalion Fallen Heroes Memorial located in the ROTC HQ (601 N

Hayden, Nancy J.

250

Tungsten Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Tungsten Mountain Geothermal Area Tungsten Mountain Geothermal Area (Redirected from Tungsten Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Tungsten Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (4) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6751,"lon":-117.6945,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

251

Hueco Mountain Wind Ranch | Open Energy Information  

Open Energy Info (EERE)

Hueco Mountain Wind Ranch Hueco Mountain Wind Ranch Jump to: navigation, search Name Hueco Mountain Wind Ranch Facility Hueco Mountain Wind Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner El Paso Electric Co Developer Cielo Wind Power Energy Purchaser El Paso Electric Co Location El Paso County TX Coordinates 31.6966°, -106.295° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.6966,"lon":-106.295,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

252

Blue Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blue Mountain Geothermal Area Blue Mountain Geothermal Area (Redirected from Blue Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blue Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (15) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41,"lon":-118.13,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

253

{open_quotes}Rosshelf{close_quotes} company and development of the Arctic Shelf of Russia  

Science Conference Proceedings (OSTI)

The Russian {open_quotes}Rosshelf{close_quotes} company for developing the shelf is the nucleus of a new branch of industry for developing oil and gas fields on shelves of Russia, primarily in the Arctic. {open_quotes}Rosshelf{close_quotes}, created on the basis of leading naval defence enterprises, Russia`s largest geological and mining enterprises, and territorial organizations managing the northern regions of Russia, obtained a license in March 1993 for the right to use the natural resources of Europe`s largest Shtokman gas-condensate field and Prirazlomnoe oil field in the Barents Sea and thus has all the conditions and possibilities for the successful organization of oil and gas production on the continental shelf of Russia. The goals of {open_quotes}Rosshelf{close_quotes} are: the production of oil and gas equipment at converted defence enterprises, including under foreign license and for export; the development of oil and gas fields on the continental shelf of Russia; the creation of new prospective technologies for offshore oil and gas production under conditions of the Russian and mainly the arctic shelf. {open_quotes}Rosshelf{close_quotes} should develop the Pechora Sea fields, mainly the Prirazlomnoe oil field with its relatively small depth and distance from the shore. It is planned to develop Europe`s largest Shtokman field at a distance of 600 km from the shore in the course of 10-12 years with expenditures of about $6 billion. The use of defence technologies underlying the activities of {open_quotes}Rosshelf{close_quotes} gives the company a real change to reach the world level of offshore oil- and gas-production technology. Broad cooperation with foreign companies, mainly in the area of engineering, finances, ecology, and safety, planned also for this. Calculations show that already the priority projects of {open_quotes}Rosshelf{close_quotes} will provide 250,000-300,000 highly skilled jobs at Russian defence enterprises.

Velikhov, E.P.

1994-09-01T23:59:59.000Z

254

Viability Assessment of a Repository at Yucca Mountain | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Viability Assessment of a Repository at Yucca Mountain Viability Assessment of a Repository at Yucca Mountain Viability Assessment of a Repository at Yucca Mountain Summary The Viability Assessment of a Repository at Yucca Mountain describes the nuclear waste problem and explains why the United States and other nations are considering deep geologic disposal as the solution. The overview describes why the Unites States is considering Yucca Mountain and how a monitored geologic repository would work in the mountain. It presents a repository design, an assessment of its expected performance, and an evaluation of the possible effects on people living near Yucca Mountain. Also presented is the work remaining to be completed prior to a license application, along with the estimated cost of building and operating a

255

GreenMountain Engineering LLC | Open Energy Information  

Open Energy Info (EERE)

GreenMountain Engineering LLC GreenMountain Engineering LLC Jump to: navigation, search Name GreenMountain Engineering, LLC Place San Francisco, California Zip 94107 Product Consulting firm specializing in clean technology product design and manufacturing development. References GreenMountain Engineering, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. GreenMountain Engineering, LLC is a company located in San Francisco, California . References ↑ "GreenMountain Engineering, LLC" Retrieved from "http://en.openei.org/w/index.php?title=GreenMountain_Engineering_LLC&oldid=346101" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

256

A Preliminary Structural Model for the Blue Mountain Geothermal Field,  

Open Energy Info (EERE)

Structural Model for the Blue Mountain Geothermal Field, Structural Model for the Blue Mountain Geothermal Field, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Preliminary Structural Model for the Blue Mountain Geothermal Field, Humboldt County, Nevada Abstract The Blue Mountain geothermal field is a blind geothermalprospect (i.e., no surface hot springs) along the west flank of BlueMountain in southern Humboldt County, Nevada. Developmentwells in the system have high flow rates and temperatures above190°C at depths of ~600 to 1,070 m. Blue Mountain is a small~8-km-long east-tilted fault block situated between the EugeneMountains and Slumbering Hills. The geothermal field occupiesthe intersection between a regional NNE- to ENE-striking,west-dipping

257

An Evaluation of the United States Standard 8-in. Nonrecording Raingage at the Valdai Polygon, Russia  

Science Conference Proceedings (OSTI)

A unique set of data from Valdai, Russia, (previously unreported in the United States) is used to evaluate the ubiquitous standard 8-in.-diameter raingage that has been used for over 100 years at tens of thousands of United States stations. The ...

Valentin S. Golubev; Pavel Ya Groisman; Robert G. Quayle

1992-10-01T23:59:59.000Z

258

Pipeline gas trade between Asian Russia, Northeast Asia gets fresh look  

Science Conference Proceedings (OSTI)

Pipeline trade in natural gas between Asian Russia and Northeast Asia is receiving serious attention from the governments and companies central to the projects that might evolve. Such trade has become possible during the past 5 years because of improvements in relations between China and Russia. Prospects for a long-distance pipeline are enhanced by the possibility of extending deliveries of Russian gas to Korea and Japan to supplement imports by those countries of liquefied natural gas. Korea and Japan have expressed interest in participating in a Russia-China pipeline. But their approaches differ greatly and would require careful coordination. Furthermore, participation by western companies would be essential. A 2 year study by the Royal Institute of International Affairs examined Japanese and Korean views about energy needs and possible sources of supply. The study included a survey of 32 energy organizations in those countries. This article reviews the gas potential of Asian Russia, describes events that have brought attention to those resources as a possible source of supply to Northeast Asia, and summarizes findings of the survey.

Paik, K.W. [Royal Inst. of International Affairs, London (United Kingdom); Choi, J.Y. [University College, London (United Kingdom)

1997-08-18T23:59:59.000Z

259

Rail Access to Yucca Mountain: Critical Issues  

SciTech Connect

The proposed Yucca Mountain repository site currently lacks rail access. The nearest mainline railroad is almost 100 miles away. Absence of rail access could result in many thousands of truck shipments of spent nuclear fuel and high-level radioactive waste. Direct rail access to the repository could significantly reduce the number of truck shipments and total shipments. The U.S. Department of Energy (DOE) identified five potential rail access corridors, ranging in length from 98 miles to 323 miles, in the Final Environmental Impact Statement (FEIS) for Yucca Mountain. The FEIS also considers an alternative to rail spur construction, heavy-haul truck (HHT) delivery of rail casks from one of three potential intermodal transfer stations. The authors examine the feasibility and cost of the five rail corridors, and DOE's alternative proposal for HHT transport. The authors also address the potential for rail shipments through the Las Vegas metropolitan area.

Halstead, R. J.; Dilger, F.; Moore, R. C.

2003-02-25T23:59:59.000Z

260

Rocky Mountain Institute | Open Energy Information  

Open Energy Info (EERE)

Institute Institute Jump to: navigation, search Logo: Rocky Mountain Institute Name Rocky Mountain Institute Address 1820 Folsom Street Place Boulder, Colorado Zip 80302 Region Rockies Area Coordinates 40.01838°, -105.262323° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.01838,"lon":-105.262323,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "mountains russia contemporaneous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Maine Mountain Power | Open Energy Information  

Open Energy Info (EERE)

Maine Mountain Power Maine Mountain Power Place Yarmouth, Maine Zip 4096 Sector Wind energy Product Wind farm development company focused on projects in Maine. It is a subsidiary of Endless Energy Corporation. Coordinates 41.663318°, -70.198987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.663318,"lon":-70.198987,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

ROCKY MOUNTAIN OILFIELD TESTING CENTER MICROTURBINE PROJECT  

NLE Websites -- All DOE Office Websites (Extended Search)

MICROTURBINE PROJECT MICROTURBINE PROJECT Stacy & Stacy Consulting, LLC March 31, 1998 ROCKY MOUNTAIN OILFIELD TESTING CENTER MICROTURBINE PROJECT Stacy & Stacy Consulting, LLC Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR Project Manager March 31, 1998 JO 850200 : FC 980009 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a demonstration of gas-fired, integrated microturbine systems at the Department of Energy's Naval Petroleum Reserve No. 3 (NPR-3), in partnership with Stacy & Stacy Consulting, LLC (Stacy & Stacy). The project encompassed the testing of two gas microturbine systems at two oil-production wellsites. The microturbine-generators were fueled directly by casinghead gas to power their beam-pumping-unit motors. The system at well 47-A-34 utilized the casinghead sweet gas (0-ppm

263

Predicting the Future at Yucca Mountain  

Science Conference Proceedings (OSTI)

This paper summarizes a climate-prediction model funded by the DOE for the Yucca Mountain nuclear waste repository. Several articles in the open literature attest to the effects of the Global Ocean Conveyor upon paleoclimate, specifically entrance and exit from the ice age. The data shows that these millennial-scale effects are duplicated on the microscale of years to decades. This work also identifies how man may have influenced the Conveyor, affecting global cooling and warming for 2,000 years.

J. R. Wilson

1999-07-01T23:59:59.000Z

264

Modeling coupled thermal-hydrological-chemical processes in the unsaturated fractured rock of Yucca Mountain, Nevada: Heterogeneity and seepage  

E-Print Network (OSTI)

emplacement drift at Yucca Mountain. Journal of ContaminantScale Heater Test at Yucca Mountain. International Journalemplacement tunnels at Yucca Mountain, Nevada. Journal of

Mukhopadhyay, Sumit; Sonnenthal, Eric L.; Spycher, Nicolas

2005-01-01T23:59:59.000Z

265

The use of TOUGH2/iTOUGH2 in support of the Yucca Mountain Project: Successes and limitations  

E-Print Network (OSTI)

emplace- ment drifts at Yucca Mountain, Proceedings: TOUGHLarge Block Test at Yucca Mountain, Nevada, Water Resourcesthe Unsaturated Zone, Yucca Mountain, Ne- vada. LBL-20553.

Bodvarsson, G.S.; Birkholzer, J.T.; Finsterle, S.; Liu, H.H.; Rutqvist, J.; Wu, Y.S.

2003-01-01T23:59:59.000Z

266

Estimation of host rock thermal conductivities using the temperature data from the drift-scale test at Yucca Mountain, Nevada  

E-Print Network (OSTI)

the Drift Scale Test at Yucca Mountain, Nevada, Journal ofunsaturated model of Yucca Mountain, Nevada, Journal ofE. , and Spycher, N. , Yucca Mountain single heater test

Mukhopadhyay, Sumitra; Tsang, Y.W.

2008-01-01T23:59:59.000Z

267

The Influence of Proposed Repository Thermal Load on Multiphase Flow and Heat Transfer in the Unsaturated Zone of Yucca Mountain  

E-Print Network (OSTI)

Studies Using the Yucca Mountain Unsaturated Zone Model,Unsaturated Zone at Yucca Mountain, Nevada, to Thermal LoadLarge Block Test at Yucca Mountain, Nevada, Water Resources

Wu, Y.-S.; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, G.S.

2006-01-01T23:59:59.000Z

268

Characterization of Spatial Variability of Hydrogeologic Properties for Unsaturated Flow in the Fractured Rocks at Yucca Mountain, Nevada  

E-Print Network (OSTI)

using matrix properties , Yucca Mountain, Nevada, USGS Waterof hydrogeologic units at Yucca Mountain, Nevada, U.S.Unsaturated Zone, Yucca Mountain, Nevada . Water-Resources

Zhou, Quanlin; Bodvarsson, Gudmundur S.; Liu, Hui-Hai; Oldenburg, Curtis M.

2002-01-01T23:59:59.000Z

269

Uncertainties in coupled thermal-hydrological processes associated with the drift scale test at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Scale Test at Yucca Mountain, Nevada S. Mukhopadhyay * , Y.waste repository at Yucca Mountain, Nevada. The Drift Scalerock; Radioactive waste; Yucca Mountain, Nevada Introduction

Mukhopadhyay, Sumitra; Tsang, Y.W.

2002-01-01T23:59:59.000Z

270

A Mountain-Scale Thermal Hydrologic Model for Simulating Fluid Flow and Heat Transfer in Unsaturated Fractured Rock  

E-Print Network (OSTI)

Studies Using the Yucca Mountain Unsaturated Zone Model,Unsaturated Zone at Yucca Mountain, Nevada, to Thermal LoadUnsaturated Zone, Yucca Mountain, Nevada, Water-Resources

Wu, Yu-Shu; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, Gudmundur S.

2005-01-01T23:59:59.000Z

271

Sensitivity Analysis Of Hydrological Parameters In Modeling Flow And Transport In The Unsaturated Zone Of Yucca Mountain  

E-Print Network (OSTI)

Unsaturated Zone of Yucca Mountain Keni Zhang, Yu-Shu Wu,volcanic deposits at Yucca Mountain have been intensivelyhydraulic properties, Yucca Mountain Introduction Site

Zhang, Keni; Wu, Yu-Shu; Houseworth, James E

2006-01-01T23:59:59.000Z

272

Modeling thermal-hydrological response of the unsaturated zone at Yucca Mountain, Nevada, to thermal load at a potential repository  

E-Print Network (OSTI)

Repository at Yucca Mountain. In Materials Research Societystudies using the Yucca Mountain unsaturated zone model.Unsaturated Zone, Yucca Mountain, Nevada. Water Resources

Haukwa, C.B.; Wu, Yu-Shu; Bodvarsson, G.S.

2002-01-01T23:59:59.000Z

273

Energy Efficiency Investments in Public Facilities - Developing a Pilot Mechanism for Energy Performance Contracts (EPCs) in Russia  

SciTech Connect

: Russian public sector buildings tend to be very inefficient, which creates vast opportunities for savings. This report overviews the latest developments in the Russian legislation related to energy efficiency in the public sector, describes the major challenges the regulations pose, and proposes ways to overcome these challenges. Given Russia’s limited experience with energy performance contracts (EPCs), a pilot project can help test an implementation mechanism. This paper discusses how EPCs and other mechanisms can help harness energy savings opportunities in Russia in general, and thus, can be applicable to any Russian region.

Evans, Meredydd; Roshchanka, Volha; Parker, Steven A.; Baranovskiy, Aleksandr

2012-02-01T23:59:59.000Z

274

February 14, 2002: Yucca Mountain | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

14, 2002: Yucca Mountain 14, 2002: Yucca Mountain February 14, 2002: Yucca Mountain February 14, 2002: Yucca Mountain February 14, 2002 Secretary Abraham formally recommends to President Bush that the Yucca Mountain site in Nevada be developed as the nation's first long-term geologic repository for high-level radioactive waste. "I have considered whether sound science supports the determination that the Yucca Mountain site is scientifically and technically suitable for the development of a repository," the Secretary informs the President. "I am convinced that it does. The results of this extensive investigation and the external technical reviews of this body of scientific work give me confidence for the conclusion, based on sound scientific principles, that a repository at

275

Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sand Mountain Electric Cooperative - Residential Heat Pump Loan Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Alabama Program Type Utility Loan Program Rebate Amount 7% interest rate 5 or 10 year pay schedule maximum of $12,000 Provider Sand Mountain Electric Cooperative The Sand Mountain Electric Cooperative offers a heat pump loan program to eligible residential members. To qualify, members must have had power with Sand Mountain Electric Cooperative for at least one year, have the home electric bill and deeds in the same name, and pass a credit check. Heat pumps must be installed by a [http://www.smec.coop/heatpumpcontractors.htm

276

Green Mountain Energy Renewable Rewards Program (Texas) | Open...  

Open Energy Info (EERE)

is offered by a retail electric provider (REP); available to customers throughout the state where Green Mountain Energy offers retail electric service. Meter Aggregation Not...

277

Yucca Mountain Exploratory Studies Facilities: Construction status; Extended summary  

SciTech Connect

This paper discusses the progress to date on the construction planning development of the Yucca Mountain Site Characterization Project Exploratory Studies Facilities (ESF).

Allan, J. [Morrison-Knudsen Corp. (United States); Leonard, T.M. [Reynolds Electrical and Engineering Co., Inc., Las Vegas, NV (United States)

1992-09-01T23:59:59.000Z

278

Observation Wells At Blue Mountain Area (Warpinski, Et Al., 2004...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Blue Mountain Area (Warpinski, Et Al., 2004) Exploration Activity Details Location...

279

Self Potential At Blue Mountain Area (Fairbank Engineering, 2008) | Open  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Self Potential At Blue Mountain Area (Fairbank Engineering, 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential At Blue Mountain Area (Fairbank Engineering, 2008) Exploration Activity Details Location Blue Mountain Area Exploration Technique Self Potential Activity Date Usefulness not indicated DOE-funding Unknown Notes Geophysical surveys that have been conducted specifically for the geothermal program at Blue Mountain include a self-potential (SP) survey, and additional IP/electrical resistivity traversing. These surveys were conducted under a cooperative program between Noramex Corporation and the Energy and Geosciences Institute (EGI), University of Utah, with funding

280

Earth Tidal Analysis At Marysville Mountain Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Mountain Geothermal Area (1984) Mountain Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Marysville Mountain Geothermal Area (1984) Exploration Activity Details Location Marysville Mountain Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1984 Usefulness useful DOE-funding Unknown Exploration Basis Determine porosity of the reservoir Notes The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be

Note: This page contains sample records for the topic "mountains russia contemporaneous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

MICROBIAL PRODUCTION STIMULATION MARCH 31, 1998 FC970010 ROCKY MOUNTAIN OILFIELD TESTING CENTER Microbial Production Stimulation for: D. Michael Dennis Geomicrobial Technologies,...

282

Green Mountain Power - Solar GMP | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of electricity generated by the system. This credit is available to all customers of Green Mountain Power. The incentive does not have a specified duration or expiration date....

283

Thermal Gradient Holes At Mcgee Mountain Area (DOE GTP) | Open...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Mcgee Mountain Area (DOE GTP) Exploration Activity Details Location...

284

EIS-0445: American Electric Power Service Corporation's Mountaineer...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: American Electric Power Service Corporation's Mountaineer Commercial Scale Carbon Capture and Storage Demonstration, New Haven, Mason County, West Virginia EIS-0445: American...

285

Rocky Mountain E&P Technology Transfer Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Rocky Mountain E&P Technology Transfer Workshop August 4, 2003 Table of Contents Disclaimer Papers and Presentations Disclaimer This report was prepared as an account of work...

286

Microsoft Word - Interim Use of Scott Mountain Communications...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clearance Memorandum Cynthia Rounds Project Manager - TPC-TPP-4 Proposed Action: Interim Use of Scott Mountain Communications Site Budget Information: Work Order 00004688, Task 04...

287

Modeling-Computer Simulations At White Mountains Area (Goff ...  

Open Energy Info (EERE)

Modeling-Computer Simulations At White Mountains Area (Goff & Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer...

288

Modeling-Computer Simulations At Chocolate Mountains Area (Alm...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Modeling-Computer Simulations At Chocolate Mountains Area (Alm, Et Al., 2010) Jump to: navigation,...

289

Rocky Mountain (PADD 4) Product Supplied of Normal Butane ...  

U.S. Energy Information Administration (EIA)

Normal Butane/Butylene Supply and Disposition; Product Supplied for Normal Butane/Butylene ; Rocky Mountain (PADD 4) Product Supplied for Crude Oil ...

290

Pages that link to "Aeromagnetic Survey At Blue Mountain Area...  

Open Energy Info (EERE)

wikiSpecial:WhatLinksHereAeromagneticSurveyAtBlueMountainArea(FairbankEngineering,2004)" Special pages About us Disclaimers Energy blogs Developer services...

291

Pages that link to "Aeromagnetic Survey At Blue Mountain Area...  

Open Energy Info (EERE)

wikiSpecial:WhatLinksHereAeromagneticSurveyAtBlueMountainArea(FairbankEngineering,2003)" Special pages About us Disclaimers Energy blogs Developer services...

292

Mountain Association for Community Economic Development - Solar Water  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mountain Association for Community Economic Development - Solar Mountain Association for Community Economic Development - Solar Water Heater Loan Program Mountain Association for Community Economic Development - Solar Water Heater Loan Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Solar Water Heating Program Info Funding Source Kentucky Solar Partnership (KSP) State Kentucky Program Type Local Loan Program Rebate Amount 100% of equipment and installation cost Provider Kentucky Solar Partnership The Kentucky Solar Partnership (KSP) and the Mountain Association for Community Economic Development (MACED) partner to offer low interest loans for the installation of solar water heaters. Loans cover the full equipment and installation cost. Flexible rate loans and terms are available. They

293

A Multiscale Analysis of the Extreme Weather Events over Western Russia and Northern Pakistan during July 2010  

Science Conference Proceedings (OSTI)

This manuscript presents a detailed multiscale analysis—using observations, model analyses, and ensemble forecasts—of the extreme heat wave over Russia and historic floods over Pakistan during late July 2010, with an emphasis on the floods over ...

Thomas J. Galarneau Jr.; Thomas M. Hamill; Randall M. Dole; Judith Perlwitz

2012-05-01T23:59:59.000Z

294

Tell President Obama About Coal River Mountain Coal River Mountain and the Heathrow Airport runway remind me how important it is to  

E-Print Network (OSTI)

Tell President Obama About Coal River Mountain Coal River Mountain and the Heathrow Airport runway remind me how important it is to keep our eye on the ball. Coal River Mountain is the site of an absurdity. I learned about Coal River Mountain from students at Virginia Tech last fall. They were concerned

Hansen, James E.

295

Review of Yucca Mountain Disposal Criticality Studies  

SciTech Connect

The U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management, submitted a license application for construction authorization of a deep geologic repository at Yucca Mountain, Nevada, in June of 2008. The license application is currently under review by the U.S. Nuclear Regulatory Commission. However,on March 3, 2010 the DOE filed a motion requesting withdrawal of the license application. With the withdrawal request and the development of the Blue Ribbon Commission to seek alternative strategies for disposing of spent fuel, the status of the proposed repository at Yucca Mountain is uncertain. What is certain is that spent nuclear fuel (SNF) will continue to be generated and some long-lived components of the SNF will eventually need a disposition path(s). Strategies for the back end of the fuel cycle will continue to be developed and need to include the insights from the experience gained during the development of the Yucca Mountain license application. Detailed studies were performed and considerable progress was made in many key areas in terms of increased understanding of relevant phenomena and issues regarding geologic disposal of SNF. This paper reviews selected technical studies performed in support of the disposal criticality analysis licensing basis and the use of burnup credit. Topics include assembly misload analysis, isotopic and criticality validation, commercial reactor critical analyses, loading curves, alternative waste package and criticality control studies, radial burnup data and effects, and implementation of a conservative application model in the criticality probabilistic evaluation as well as other information that is applicable to operations regarding spent fuel outside the reactor. This paper summarizes the work and significant accomplishments in these areas and provides a resource for future, related activities.

Scaglione, John M [ORNL; Wagner, John C [ORNL

2011-01-01T23:59:59.000Z

296

A site scale model for modeling unsaturated zone processes at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Unsaturated Zone Model of Yucca Mountain, Nevada, for theZone Trocesses at yucca Mountain, N G. S. Bodvarsson, Y. S.unsaturated zone at Yucca Mountain, Nevada, as a permanent

1997-01-01T23:59:59.000Z

297

Influence of faults on groundwater flow and transport at Yucca Mountain, Nevada  

E-Print Network (OSTI)

test well USW H- 6, Yucca Mountain area, Nye County, Nevada,by test well UE- 25p#1, Yucca Mountain Area, Nye County,assessment for Yucca Mountain-SNL second interation (TSPA-

Cohen, Andrew J.B.; Sitar, Nicholas

1999-01-01T23:59:59.000Z

298

Numerical analysis of thermal-hydrological conditions in the single heater test at Yucca Mountain  

E-Print Network (OSTI)

Single Heater Test at Yucca Mountain, LBNL-39789, E.O. Law­Single Heater Test at Yucca Mountain Jens T. Birkholzer andwaste repository at Yucca Mountain. The heating phase of the

Birkholzer, Jens T.; Tsang, Yvonne W.

1998-01-01T23:59:59.000Z

299

Modeling Unsaturated Flow and Transport Processes in Fractured Tuffs of Yucca Mountain  

E-Print Network (OSTI)

zone site-scale model, Yucca Mountain Site Characterizationsite-scale model, Yucca Mountain Project Milestone 3GLM105M,unsaturated zone, Yucca Mountain, Nevada. Water-Resources

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.

2003-01-01T23:59:59.000Z

300

Estimating Wind Velocities in Mountain Lee Waves Using Sailplane Flight Data  

Science Conference Proceedings (OSTI)

Mountain lee waves are a form of atmospheric gravity wave that is generated by flow over mountain topography. Mountain lee waves are of considerable interest, because they can produce drag that affects the general circulation, windstorms, and ...

R. P. Millane; G. D. Stirling; R. G. Brown; N. Zhang; V. L. Lo; E. Enevoldson; J. E. Murray

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mountains russia contemporaneous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Overview of the Yucca Mountain Licensing Process  

SciTech Connect

This paper presents an overview of the licensing process for a Yucca Mountain repository for high-level radioactive waste and spent nuclear fuel. The paper discusses the steps in the licensing proceeding, the roles of the participants, the licensing and hearing requirements contained in the Code of Federal Regulations. A description of the Nuclear Regulatory Commission (NRC) staff acceptance and compliance reviews of the Department of Energy (DOE) application for a construction authorization and a license to receive and possess high-level radioactive waste and spent nuclear fuel is provided. The paper also includes a detailed description of the hearing process.

M. Wisenburg

2004-05-03T23:59:59.000Z

302

Yucca MountainTransportation: Private Sector Perspective  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation: Transportation: Private Sector "Lessons Learned" US Transport Council David Blee Executive Director dblee@ustransportcouncil.org DOE Transportation External Coordination (TEC) Working Group April 4, 2005 Phoenix, Arizona US Transport Council -- DOE TEC 4/4/05 2 US Transport Council Formed in 2002 during the Yucca Mountain Ratification debate to provide factual information on nuclear materials transportation, experience, safety & emergency planning Comprised of 24 member companies from the transport sector including suppliers and customers Principal focus is transport education, policy and business commerce related to nuclear materials transport US Transport Council -- DOE TEC 4/4/05 3 USTC Members AREVA BNFL, Inc Burns & Roe Cameco

303

U.S. and Russia Cooperation Continues on Nuclear Security | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooperation Continues on Nuclear Security Cooperation Continues on Nuclear Security U.S. and Russia Cooperation Continues on Nuclear Security June 28, 2007 - 2:08pm Addthis Newly Signed Fifth Bratislava Report Highlights Most Recent Advances in Nuclear Security and Nonproliferation WASHINGTON, D.C. - U.S. Secretary of Energy Samuel W. Bodman and Russian Federal Atomic Energy Agency (Rosatom) Director Sergey Kiriyenko today submitted to Presidents Bush and Putin the fifth report on nuclear security cooperation between the two countries. The report is known as the Bratislava Report after the 2005 historic nonproliferation agreement between the two presidents. It details significant work completed by the United States and Russia over the past six months in the areas of emergency response, nuclear security procedures and best practices, security culture,

304

Material protection, control and accounting cooperation at the Urals Electrochemical Integrated Plant (UEIP), Novouralsk, Russia  

Science Conference Proceedings (OSTI)

The Urals Electrochemical Integrated Plant is one of the Russian Ministry of Atomic Energy`s nuclear material production sites participating in the US Department of Energy`s Material Protection, Control and Accounting (MPC&A) Program. The Urals Electrochemical Integrated Plant is Russia`s largest uranium enrichment facility and blends tons of high-enriched uranium into low enriched uranium each year as part of the US high-enriched uranium purchase. The Electrochemical Integrated Plant and six participating national laboratories are cooperating to implement a series of enhancements to the nuclear material protection, control, and accountability systems at the site This paper outlines the overall objectives of the MPC&A program at Urals Electrochemical Integrated Plant and the work completed as of the date of the presentation.

McAllister, S., LLNL

1998-07-15T23:59:59.000Z

305

Flow Test At Mcgee Mountain Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Mcgee Mountain Area (DOE GTP) Exploration Activity Details Location Mcgee Mountain...

306

2-M Probe At Mcgee Mountain Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At Mcgee Mountain Area (DOE GTP) Exploration Activity...

307

Estimating Fractional Snow Cover in Mountain Environments with Fuzzy Classification  

Science Conference Proceedings (OSTI)

The disproportionate amount of water runoff from mountains to surrounding arid and semiarid lands has generated much research in snow water equivalent (SWE) modeling. A primary input in SWE models is snow covered area (SCA) which is generally obtained ... Keywords: Fuzzy Classification, GIS, Landsat ETM+, Mountain Environments, Recursive Partitioning, Remote Sensing, Snow Covered Area, Snow Water Equivalent

Clayton J. Whitesides; Matthew H. Connolly

2012-07-01T23:59:59.000Z

308

A Theoretical Study of Mountain Barrier Jets over Sloping Valleys  

Science Conference Proceedings (OSTI)

A shallow-water model is developed to examine the dynamics of mountain-barrier jets over a mesoscale sloping valley between two mountain ridges. In this model, the cold air trapped in the valley is represented by a shallow-water layer that is ...

Qin Xu; Ming Liu; Douglas L. Westphal

2000-05-01T23:59:59.000Z

309

Livelihood Assets Atlas Mountainous Districts of NWFP (Pakistan)  

E-Print Network (OSTI)

Livelihood Assets Atlas Mountainous Districts of NWFP (Pakistan) April 2009 SDPISustainable Mountainous Districts of NWFP (Pakistan) Abid Qaiyum Suleri, Babar Shahbaz, Sahab Haq Rana Nazir Mehmood and Gulbaz Ali Khan Sustainable Development Policy Institute 20 Hill Road, F-6/3, Islamabad - Pakistan www

Richner, Heinz

310

MOUNTAIN WEATHER PREDICTION: PHENOMENOLOGICAL CHALLENGES AND FORECAST METHODOLOGY  

E-Print Network (OSTI)

MOUNTAIN WEATHER PREDICTION: PHENOMENOLOGICAL CHALLENGES AND FORECAST METHODOLOGY Michael P. Meyers of the American Meteorological Society Mountain Weather and Forecasting Monograph Draft from Friday, May 21, 2010 of weather analysis and forecasting in complex terrain with special emphasis placed on the role of humans

Steenburgh, Jim

311

Yucca Mountain Climate Technical Support Representative  

SciTech Connect

The primary objective of Project Activity ORD-FY04-012, “Yucca Mountain Climate Technical Support Representative,” was to provide the Office of Civilian Radioactive Waste Management (OCRWM) with expertise on past, present, and future climate scenarios and to support the technical elements of the Yucca Mountain Project (YMP) climate program. The Climate Technical Support Representative was to explain, defend, and interpret the YMP climate program to the various audiences during Site Recommendation and License Application. This technical support representative was to support DOE management in the preparation and review of documents, and to participate in comment response for the Final Environmental Impact Statement, the Site Recommendation Hearings, the NRC Sufficiency Comments, and other forums as designated by DOE management. Because the activity was terminated 12 months early and experience a 27% reduction in budget, it was not possible to complete all components of the tasks as originally envisioned. Activities not completed include the qualification of climate datasets and the production of a qualified technical report. The following final report is an unqualified summary of the activities that were completed given the reduced time and funding.

Sharpe, Saxon E

2007-10-23T23:59:59.000Z

312

Magma Dynamics at Yucca Mountain, Nevada  

Science Conference Proceedings (OSTI)

Small-volume basaltic volcanic activity at Yucca Mountain has been identified as one of the potential events that could lead to release of radioactive material from the U.S. Department of Energy (DOE) designated nuclear waste repository at Yucca Mountain. Release of material could occur indirectly as a result of magmatic dike intrusion into the repository (with no associated surface eruption) by changing groundwater flow paths, or as a result of an eruption (dike intrusion of the repository drifts, followed by surface eruption of contaminated ash) or volcanic ejection of material onto the Earth's surface and the redistribution of contaminated volcanic tephra. Either release method includes interaction between emplacement drifts and a magmatic dike or conduit, and natural (geologic) processes that might interrupt or halt igneous activity. This analysis provides summary information on two approaches to evaluate effects of disruption at the repository by basaltic igneous activity: (1) descriptions of the physical geometry of ascending basaltic dikes and their interaction with silicic host rocks similar in composition to the repository host rocks; and (2) a summary of calculations developed to quantify the response of emplacement drifts that have been flooded with magma and repressurized following blockage of an eruptive conduit. The purpose of these analyses is to explore the potential consequences that could occur during the full duration of an igneous event.

D. Krier

2005-08-29T23:59:59.000Z

313

Blue Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Blue Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blue Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (15) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41,"lon":-118.13,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

314

Glass Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Glass Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Glass Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (3) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7,"lon":-121.45,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

315

Green Mountain Energy Renewable Rewards Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mountain Energy Renewable Rewards Program Mountain Energy Renewable Rewards Program Green Mountain Energy Renewable Rewards Program < Back Eligibility Residential Savings Category Bioenergy Buying & Making Electricity Water Solar Wind Program Info State Texas Program Type Net Metering Provider Green Mountain Energy '''''Texas does not have statewide net metering as the term is generally understood. However, retail electricity providers in Texas are permitted, but not required, to compensate customers for electricity produced by distributed renewable energy generation systems and exported to the electric grid. The program described below operates in a fashion similar to net metering and has similar customer benefits up to a certain point.''''' Green Mountain Energy Company, a retail provider of green electricity,

316

List of Yucca Mountain Archival Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

List of Yucca Mountain Archival Documents List of Yucca Mountain Archival Documents List of Yucca Mountain Archival Documents March 3, 2010 Motion to Withdraw from Yucca Mountain application DOE's withdraws it's pending license application for a permanent geologic repository at Yucca Mountain, Nevada. December 30, 2008 Office of Civilian Radioactive Waste Management-Quality Assurance Requirements and Description A report detailling the requirements and description of the Quality Assurance program. December 9, 2008 The Report To The President And The Congress By The Secretary Of Energy On The Need For A Second Repository This report is prepared pursuant to Section 161 of the Nuclear Waste Policy Act of 1982, which requires the Secretary of Energy to report to the President and to the Congress on or after January 1, 2007, but not later

317

DOE Marks Milestone in Submitting Yucca Mountain License Application |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marks Milestone in Submitting Yucca Mountain License Marks Milestone in Submitting Yucca Mountain License Application DOE Marks Milestone in Submitting Yucca Mountain License Application June 3, 2008 - 12:51pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced submittal of a license application (LA) to the U.S. Nuclear Regulatory Commission (NRC) seeking authorization to construct America's first repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. The 8,600 page application describes DOE's plan to safely isolate spent nuclear fuel and high-level radioactive waste in tunnels deep underground at Yucca Mountain, a remote ridge on federally controlled land in the Mojave Desert 90 miles northwest of Las Vegas. Currently, the waste is stored at 121 temporary locations in 39 states

318

Geophysical Studies in the Vicinity of Blue Mountain and Pumpernickel  

Open Energy Info (EERE)

the Vicinity of Blue Mountain and Pumpernickel the Vicinity of Blue Mountain and Pumpernickel Valley near Winnemucca, North-Central Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical Studies in the Vicinity of Blue Mountain and Pumpernickel Valley near Winnemucca, North-Central Nevada Abstract From May 2008 to September 2009, the U.S. Geological Survey (USGS) collected data from more than 660 gravity stations, 100 line-km of truck-towed magnetometer traverses, and 260 physical-property sites in the vicinity of Blue Mountain and Pumpernickel Valley, northern Nevada (fig. 1). Gravity, magnetic, and physical-property data were collected to study regional crustal structures as an aid to understanding the geologic framework of the Blue Mountain and Pumpernickel Valley areas, which in

319

Preliminary Notice of Violation, Rocky Mountain Remediation Services -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Remediation Rocky Mountain Remediation Services - EA-97-04 Preliminary Notice of Violation, Rocky Mountain Remediation Services - EA-97-04 June 6, 1997 Preliminary Notice of Violation issued to Rocky Mountain Remediation Services related to a Radioactive Material Release during Trench Remediation at the Rocky Flats Environmental Technology Site, (EA-97-04) This letter refers to the Department of Energy's (DOE) evaluation of noncompliances associated with the dispersal of radioactive material during the remediation of trenches. Preliminary Notice of Violation, Rocky Mountain Remediation Services - EA-97-04 More Documents & Publications Preliminary Notice of Violation, Kaiser-Hill Company - EA-97-03 Consent Order, Kaiser-Hill Company, LLC - EA 98-03 Preliminary Notice of Violation , Rocky Flats Environmental Technology Site

320

Yucca Mountain Science and Engineering Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report describes the results of scientific and engineering studies of the Yucca Mountain site, the waste forms to be disposed, the repository and waste package designs, and the results of the most recent assessments of the long-term performance of the potential repository. The scientific investigations include site characterization studies of the geologic, hydrologic, and geochemical environment, and evaluation of how conditions might evolve over time. These analyses considered a range of processes that would operate in and around the potential repository. Since projections of performance for 10,000 years are inherently uncertain, the uncertainties associated with analyses and

Note: This page contains sample records for the topic "mountains russia contemporaneous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DOE Announces Yucca Mountain License Application Schedule | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain License Application Schedule Yucca Mountain License Application Schedule DOE Announces Yucca Mountain License Application Schedule July 19, 2006 - 3:13pm Addthis New Director Ward Sproat Testifies on Revised Timeline WASHINGTON, DC - The Department of Energy (DOE) today announced that it will submit a license application to the Nuclear Regulatory Commission (NRC) for a nuclear waste repository at Yucca Mountain, Nevada, no later than June 30, 2008. The Department also announced that if requested legislative changes are enacted, the repository will be able to accept spent nuclear fuel and high-level waste starting in early 2017. Announcing a schedule for submitting a license application is another step in the Department's mission to provide stability, clarity and predictability in moving the Yucca Mountain Project forward as quickly as

322

Department of Energy Files Motion to Withdraw Yucca Mountain License  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Files Motion to Withdraw Yucca Mountain Files Motion to Withdraw Yucca Mountain License Application Department of Energy Files Motion to Withdraw Yucca Mountain License Application March 3, 2010 - 12:00am Addthis WASHINGTON, D.C. - The U.S. Department of Energy today filed a motion with the Nuclear Regulatory Commission to withdraw the license application for a high-level nuclear waste repository at Yucca Mountain with prejudice. "President Obama is fully committed to ensuring that the Nation meets our long-term storage obligations for nuclear waste," said Department of Energy General Counsel Scott Blake Harris. "In light of the decision not to proceed with the Yucca Mountain nuclear waste repository, the President directed Secretary Chu to establish the Blue Ribbon Commission on America's

323

Rocky Mountain Power - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - Net Metering Rocky Mountain Power - Net Metering Rocky Mountain Power - Net Metering < Back Eligibility Agricultural Commercial Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Idaho Program Type Net Metering Provider Rocky Mountain Power Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has a net-metering tariff on file with the Idaho Public Utilities Commission (PUC). The framework of the utilities' net-metering programs is similar, in that each utility: (1) offers net

324

Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering,  

Open Energy Info (EERE)

Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering, Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering, 2005) Exploration Activity Details Location Blue Mountain Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Geophysical surveys that have been conducted specifically for the geothermal program at Blue Mountain include a self-potential (SP) survey, and additional IP/electrical resistivity traversing. These surveys were conducted under a cooperative program between Noramex Corporation and the Energy and Geosciences Institute (EGI), University of Utah, with funding

325

Static Temperature Survey At Blue Mountain Area (Fairbank Engineering,  

Open Energy Info (EERE)

Static Temperature Survey At Blue Mountain Area (Fairbank Engineering, Static Temperature Survey At Blue Mountain Area (Fairbank Engineering, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Blue Mountain Area (Fairbank Engineering, 2010) Exploration Activity Details Location Blue Mountain Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes Using a precision thermistor probe, EGI, University of Utah, obtained detailed temperature logs of eleven new mineral exploration holes drilled at Blue Mountain. The holes, ranging in depth from 99 to 244 meters (325 to 800 feet), were drilled in areas to the northeast, northwest and southwest of, and up to distances of two kilometers from, the earlier mineral exploration drill holes that encountered hot artesian flows. Unfortunately,

326

Yucca Mountain Science and Engineering Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report describes the results of scientific and engineering studies of the Yucca Mountain site, the waste forms to be disposed, the repository and waste package designs, and the results of the most recent assessments of the long-term performance of the potential repository. The scientific investigations include site characterization studies of the geologic, hydrologic, and geochemical environment, and evaluation of how conditions might evolve over time. These analyses considered a range of processes that would operate in and around the potential repository. Since projections of performance for 10,000 years are inherently uncertain, the uncertainties associated with analyses and

327

List of Yucca Mountain Archival Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

List of Yucca Mountain Archival Documents List of Yucca Mountain Archival Documents List of Yucca Mountain Archival Documents March 10, 2004 EIS-0250-SA-01: Supplement Analysis Geologic Repository for the Disposal of Spent Nuclear and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada March 1, 2004 Nuclear Waste Policy Act Document on the Nuclear Waste Policy Act of 1982 An Act to provide for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel, to establish a program of research, development, and demonstration regarding the disposal of high-level radioactive waste and spent nuclear fuel, and for other purposes. April 1, 2003 Final Report of theIgneous Consequences Peer Review Panel A report for the DOE on the Yucca Mountain Project.

328

Rocky Mountain Power - Energy FinAnswer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - Energy FinAnswer Rocky Mountain Power - Energy FinAnswer Rocky Mountain Power - Energy FinAnswer < Back Eligibility Agricultural Commercial Construction Industrial Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Maximum Rebate Retrofit: 50% of eligible measure cost Lighting Energy Savings Limit: 50%-75% of savings Program Info State Utah Program Type Utility Rebate Program Rebate Amount 0.12/kWh annual energy savings + 50/kW average monthly on-peak demand savings Provider Rocky Mountain Power Rocky Mountain Power's Energy FinAnswer program provides cash incentives to help its commercial and industrial customers improve the efficiency of their existing facilities and build new facilities that are significantly

329

DOE Defends Its Motion to Withdraw Yucca Mountain Application | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Defends Its Motion to Withdraw Yucca Mountain Application Defends Its Motion to Withdraw Yucca Mountain Application DOE Defends Its Motion to Withdraw Yucca Mountain Application May 27, 2010 - 2:22pm Addthis Today, the United States Department of Energy filed with the NRC's Atomic Safety and Licensing Board a reply brief making clear that its motion to withdraw the pending application to license the Yucca Mountain geologic repository is authorized by the Atomic Energy Act (AEA) and consistent with the Nuclear Waste Policy Act (NWPA). As today's filing details, the AEA vests the Department with broad authority over the disposal of spent nuclear fuel and high-level radioactive waste. The NWPA does not strip the Department of that authority or otherwise compel the Department to go forward with the construction of the Yucca Mountain repository. Rather, the

330

EIS-0445: American Electric Power Service Corporation's Mountaineer  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: American Electric Power Service Corporation's Mountaineer 5: American Electric Power Service Corporation's Mountaineer Commercial Scale Carbon Capture and Storage Demonstration, New Haven, Mason County, West Virginia EIS-0445: American Electric Power Service Corporation's Mountaineer Commercial Scale Carbon Capture and Storage Demonstration, New Haven, Mason County, West Virginia Summary This EIS evaluates the environmental impacts of a proposal to provide financial assistance for the construction and operation of a project proposed by American Electric Power Service Corporation (AEP). DOE selected tbis project for an award of financial assistance through a competitive process under the Clean Coal Power Initiative (CCPI) Program. AEP's Mountaineer Commercial Scale Carbon Capture and Storage Project (Mountaineer CCS II Project) would construct a commercial scale

331

Cuttings Analysis At Jemez Mountain Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area (1976) Jemez Mountain Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Jemez Mountain Geothermal Area (1976) Exploration Activity Details Location Jemez Mountain Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Retrieved from "http://en.openei.org/w/index.php?title=Cuttings_Analysis_At_Jemez_Mountain_Geothermal_Area_(1976)&oldid=473910

332

DOE - Office of Legacy Management -- Rocky Mountain Research Laboratories -  

Office of Legacy Management (LM)

Rocky Mountain Research Rocky Mountain Research Laboratories - CO 06 FUSRAP Considered Sites Site: ROCKY MOUNTAIN RESEARCH LABORATORIES (CO.06 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 1020 Yuma Street , Denver , Colorado CO.06-1 Evaluation Year: Circa 1987 CO.06-3 Site Operations: Processed beryllium on a pilot scale. CO.06-1 Site Disposition: Eliminated - No indication of radioactive materials handled at the site CO.06-2 Radioactive Materials Handled: No Primary Radioactive Materials Handled: None Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP CO.06-2 Also see Documents Related to ROCKY MOUNTAIN RESEARCH LABORATORIES CO.06-1 - Rocky Mountain Research Letter; Burton to Smith; Subject:

333

DOE Defends Its Motion to Withdraw Yucca Mountain Application | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Its Motion to Withdraw Yucca Mountain Application Its Motion to Withdraw Yucca Mountain Application DOE Defends Its Motion to Withdraw Yucca Mountain Application May 27, 2010 - 2:22pm Addthis Today, the United States Department of Energy filed with the NRC's Atomic Safety and Licensing Board a reply brief making clear that its motion to withdraw the pending application to license the Yucca Mountain geologic repository is authorized by the Atomic Energy Act (AEA) and consistent with the Nuclear Waste Policy Act (NWPA). As today's filing details, the AEA vests the Department with broad authority over the disposal of spent nuclear fuel and high-level radioactive waste. The NWPA does not strip the Department of that authority or otherwise compel the Department to go forward with the construction of the Yucca Mountain repository. Rather, the

334

20th-century variations in area of cirque glaciers and glacierets, Rocky Mountain National Park, Rocky Mountains,  

E-Print Network (OSTI)

, Rocky Mountains, Colorado, USA Matthew J. HOFFMAN,1 Andrew G. FOUNTAIN,2 Jonathan M. ACHUFF3 1 maps and aerial and ground-based photographs for the small cirque glaciers and glacierets of Rocky Mountain National Park in the northern Front Range of Colorado, USA, indicates modest change during the 20

Fountain, Andrew G.

335

Mountain View IV | Open Energy Information  

Open Energy Info (EERE)

IV IV Facility Mountain View IV Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AES Wind Generation Developer AES Wind Generation Energy Purchaser Southern California Edison Co Location White Water CA Coordinates 33.95475187°, -116.7015839° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.95475187,"lon":-116.7015839,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

336

Drum Mountain Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Drum Mountain Geothermal Project Project Location Information Coordinates 39.544722222222°, -112.91611111111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.544722222222,"lon":-112.91611111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

337

Testimony of Greg Friedman Yucca Mountain  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environment and the Economy Environment and the Economy of the Committee on Energy and Commerce U.S. House of Representatives FOR RELEASE ON DELIVERY 1:00 PM Wednesday, June 1, 2011 1 Mr. Chairman and members of the Subcommittee, I am pleased to be here at your request to testify on matters relating to the Department of Energy's Yucca Mountain Project. As you know, issues surrounding the termination of the Project have been widely publicized. They directly impact the Department's responsibilities to manage legacy waste generated from nuclear weapons production and to accept and dispose of spent nuclear fuel emanating from commercial nuclear reactors. The United States has invested nearly 30 years of effort and expended over $15 billion to

338

White Mountain Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: White Mountain Geothermal Project Project Location Information Coordinates 44.571666666667°, -114.47916666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.571666666667,"lon":-114.47916666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

339

Mountain Parks Electric, Inc | Open Energy Information  

Open Energy Info (EERE)

Parks Electric, Inc Parks Electric, Inc Jump to: navigation, search Name Mountain Parks Electric, Inc Place Colorado Utility Id 13050 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial: Large Power Peak-Shaving Rate (Primary Service) Commercial Commercial: Large Power Peak-Shaving Rate (Secondary Service) Commercial Commercial: Large Power Rate Commercial Commercial: Small Power Rate Commercial General Service (Residential): Time-of-Use Rate Rate A Residential General Service (Residential): Time-of-Use Rate, Rate B Residential

340

Rocky Mountain Humane Investing | Open Energy Information  

Open Energy Info (EERE)

Humane Investing Humane Investing Jump to: navigation, search Name Rocky Mountain Humane Investing Place Allenspark, Colorado Zip 80510 Product Allenspark-based investment management firm prioritising Socially Responsible Investing (SRI). Coordinates 40.19472°, -105.525719° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.19472,"lon":-105.525719,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "mountains russia contemporaneous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Aquarious Mountain Area, Arizona: APossible HDR Prospect  

DOE Green Energy (OSTI)

Exploration for Hot Dry Rock (HDR) requires the ability to delineate areas of thermal enhancement. It is likely that some of these areas will exhibit various sorts of anomalous conditions such as seismic transmission delays, low seismic velocities, high attenuation of seismic waves, high electrical conductivity in the crust, and a relatively shallow depth to Curie point of Magnetization. The Aquarius Mountain area of northwest Arizona exhibits all of these anomalies. The area is also a regional Bouguer gravity low, which may indicate the presence of high silica type rocks that often have high rates of radioactive heat generation. The one deficiency of the area as a HDR prospect is the lack of a thermal insulating blanket.

West, F.G.; Laughlin, A.W.

1979-05-01T23:59:59.000Z

342

Rocky Mountain Basins Produced Water Database  

DOE Data Explorer (OSTI)

Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

343

Engineering in a mountain resort town  

E-Print Network (OSTI)

This Record of Study (ROS) summarizes the experiences and lessons learned while serving as an intern with Peak Land Consultants (PLC) in Vail, Colorado. The objectives of the internship were designed to provide benefits to myself, the United States Air Force Academy, and PLC. The first objective was to develop a business plan for a similar company in a mountain community. This provides a useful tool to begin a second career after retirement from the Air Force. The second objective was to build lesson plans based on the experience at PLC for the Air Force Academy cadets. Through the use of real engineering examples and by integrating civil engineering subjects across the curriculum, Air Force Academy cadets will be better prepared for their professional life as a civil engineer. The last objective was to provide PLC with an objective management review. The management review highlighted good practices and provided recommendations for further improvement in areas such as marketing, communication, project management, training, and company goals. Each one of the objectives was tested. The business plan was provided to a loan officer at Wells Fargo bank. The loan officer remarked that the plan was well researched. He also indicated that the bank was willing to provide a loan for the business. This positive result indicated that the objective to develop a business plan for a similar company in a mountain community was met. The second objective to build lesson plans for the Air Force Academy was also met. These plans were presented to a senior class in April 07. The cadets liked the idea of seeing how an engineer solves problems in the private sector. In addition, the cadets recognized the usefulness of AutoCAD in solving problems in their other classes. Finally, the objective for providing a management review of PLC also proved to be successful. PLC has already implemented a number of recommendations from the review and is using the review to build new company and employee goals.

Waters, Eric W.

2007-12-01T23:59:59.000Z

344

Geological map of Bare Mountain, Nye County, Nevada  

SciTech Connect

Bare Mountain comprises the isolated complex of mountain peaks southeast of the town of Beatty in southern Nye County, Nevada. This small mountain range lies between the alluvial basins of Crater Flat to the east and the northern Amargosa Desert to the southwest. The northern boundary of the range is less well defined, but for this report, the terrane of faulted Miocene volcanic rocks underlying Beatty Mountain and the unnamed hills to the east are considered to be the northernmost part of Bare Mountain. The southern tip of the mountain range is at Black Marble, the isolated hill at the southeast corner of the map. The main body of the range, between Fluorspar Canyon and Black Marble, is a folded and complexly faulted, but generally northward-dipping (or southward-dipping and northward-overturned), sequence of weakly to moderately metamorphosed upper Proterozoic and Paleozoic marine strata, mostly miogeoclinal (continental shelf) rocks. The geology of Bare Mountain is mapped at a scale of 1:24,000.

Monsen, S.A.; Carr, M.D.; Reheis, M.C.; Orkild, P.P.

1992-12-31T23:59:59.000Z

345

Repository site data report for unsaturated tuff, Yucca Mountain, Nevada  

Science Conference Proceedings (OSTI)

The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

1985-11-01T23:59:59.000Z

346

Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank  

Open Energy Info (EERE)

5) 5) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank Engineering, 2005) Exploration Activity Details Location Blue Mountain Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Geophysical surveys that have been conducted specifically for the geothermal program at Blue Mountain include a self-potential (SP) survey, and additional IP/electrical resistivity traversing. These surveys were conducted under a cooperative program between Noramex Corporation and the Energy and Geosciences Institute (EGI), University of Utah, with funding support from the DOE's Office of Geothermal Technology (DOE/OGT).

347

MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM)MODELS  

SciTech Connect

This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used to support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrologic properties, flow and transport. The mountain-scale THM model addresses changes in permeability due to mechanical and thermal disturbances in stratigraphic units above and below the repository host rock. The THM model focuses on evaluating the changes in UZ flow fields arising out of thermal stress and rock deformation during and after the thermal period (the period during which temperatures in the mountain are significantly higher than ambient temperatures).

Y.S. Wu

2005-08-24T23:59:59.000Z

348

Rocky Mountain Power - FinAnswer Express | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express < Back Eligibility Agricultural Commercial Construction Industrial Savings Category Other Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Design & Remodeling Windows, Doors, & Skylights Program Info State Idaho Program Type Utility Rebate Program Rebate Amount '''New Construction/Major Renovation Only''' Interior Lighting: $0.08/kwh annual energy savings LED Fixture (Exterior): $100 Induction Fixture (Exterior): $125 CFL Wallpack (Exterior): $30 Lighting Control (Exterior): $70 '''Retrofit Only''' Fluorescent Fixture Upgrades: $5-$20/fixture

349

Program on Technology Innovation: Room at the Mountain  

Science Conference Proceedings (OSTI)

This report provides a preliminary analysis of the physical capacity of Yucca Mountain for the disposal of additional commercial spent nuclear fuel (CSNF). The result of this examination is that the current legislative limit on Yucca Mountain disposal capacity, 70,000 MTU of a combination of CSNF, DOE, and defense wastes (63,000 MTU CSNF; 7000 MTU or equivalent of DOE and defense wastes) is a small fraction of the actual available physical capacity of the Yucca Mountain system. EPRI is confident that at ...

2006-05-31T23:59:59.000Z

350

Rocky Mountain Power - New Homes Program for Builders | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - New Homes Program for Builders Rocky Mountain Power - New Homes Program for Builders Rocky Mountain Power - New Homes Program for Builders < Back Eligibility Construction Installer/Contractor Multi-Family Residential Residential Savings Category Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Windows, Doors, & Skylights Program Info State Utah Program Type Utility Rebate Program Rebate Amount '''New Construction Whole Home Options''' Home Performance ENERGY STAR Version 3 Certified Home: $500 (Single Family); $200 (Multifamily) ENERGY STAR Version 3 Certified Home: $250 (Single Family); $150 (Multifamily)

351

The challenge of new pipeline systems in Russia and the republics  

Science Conference Proceedings (OSTI)

This paper reports that there will be considerable development of the oil and gas industry in the former USSR in the near future. Concurrent with this development will be the need to repair, upgrade and extend existing pipeline systems to carry more products from an increasingly wider production base. Considerable activity in pipeline construction is envisaged in the near future in Russia and its neighboring states. Western participation will continue to grow and the CIS will become a key market for pipeline service companies and construction contractors in the closing years of the 20th century.

Davies, P. (JP Kenny Group of Companies, London (GB)); Chernyaev, V.D. (Transneft, Moscow (SU))

1992-03-01T23:59:59.000Z

352

Geothermometry At Socorro Mountain Area (Armstrong, Et Al., 1995) | Open  

Open Energy Info (EERE)

Geothermometry At Socorro Mountain Area (Armstrong, Et Al., 1995) Geothermometry At Socorro Mountain Area (Armstrong, Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Socorro Mountain Area (Armstrong, Et Al., 1995) Exploration Activity Details Location Socorro Mountain Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Corresponding Socorro caldera Carboniferous rocks were studied in the field in 1988-1992-Renault later completed geochemistry and silica-crystallite geothermometry, Armstrong petrographic analysis and cathodoluminescence, Oscarson SEM studies, and John Repetski (USGS, Reston, Virgina) conodont stratigraphy and color and textural alteration as guides to the carbonate rocks' thermal history. The carbonate-rock classification used in this

353

Two Independent Assessments Find the Department of Energy's Yucca Mountain  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Two Independent Assessments Find the Department of Energy's Yucca Two Independent Assessments Find the Department of Energy's Yucca Mountain Project is on Track Two Independent Assessments Find the Department of Energy's Yucca Mountain Project is on Track December 13, 2007 - 4:44pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) Director of the Office of Civilian Radioactive Waste Management (OCRWM) today released two independent assessments addressing areas critical to the overall success of the Yucca Mountain repository program. These assessments, which include an independent review of the OCRWM Quality Assurance (QA) Program and an independent review of its engineering processes and procedures, have concluded that the Yucca Mountain Project's current QA and engineering processes and procedures are consistent with standard nuclear industry

354

City of White Mountain, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Mountain, Alaska (Utility Company) Mountain, Alaska (Utility Company) Jump to: navigation, search Name City of White Mountain Place Alaska Utility Id 20535 Utility Location Yes Ownership M Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Commercial Residential Rate Residential Average Rates Residential: $0.7230/kWh Commercial: $0.7470/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_White_Mountain,_Alaska_(Utility_Company)&oldid=410426"

355

Rock Sampling At Florida Mountains Area (Brookins, 1982) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Rock Sampling At Florida Mountains Area (Brookins, 1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Florida Mountains Area (Brookins, 1982) Exploration Activity Details Location Florida Mountains Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Radiogenic heat production analysis from U,Th,K concentrations. References D. G. Brookins (1982) Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In The Precambrian And Younger Silicic Rocks Of The Zuni And Florida Mountains, New Mexico (Usa)

356

Two Independent Assessments Find the Department of Energy's Yucca Mountain  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Assessments Find the Department of Energy's Yucca Independent Assessments Find the Department of Energy's Yucca Mountain Project is on Track Two Independent Assessments Find the Department of Energy's Yucca Mountain Project is on Track December 13, 2007 - 4:44pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) Director of the Office of Civilian Radioactive Waste Management (OCRWM) today released two independent assessments addressing areas critical to the overall success of the Yucca Mountain repository program. These assessments, which include an independent review of the OCRWM Quality Assurance (QA) Program and an independent review of its engineering processes and procedures, have concluded that the Yucca Mountain Project's current QA and engineering processes and procedures are consistent with standard nuclear industry

357

Reflection Survey At Blue Mountain Area (Fairbank Engineering, 2007) | Open  

Open Energy Info (EERE)

Blue Mountain Area (Fairbank Engineering, 2007) Blue Mountain Area (Fairbank Engineering, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Blue Mountain Area (Fairbank Engineering, 2007) Exploration Activity Details Location Blue Mountain Area Exploration Technique Reflection Survey Activity Date Usefulness useful DOE-funding Unknown Notes A high-resolution seismic reflection survey was conducted by Utah Geophysical, Inc. (1990) along four widely spaced survey lines normal to range front fault sets. The survey was designed primarily to detect silicified zones or zones of argillic alteration, and faulting, to depths of about 300 meters (1000 feet), as part of the precious metals exploration program. One interpretation of the data showed discrete, high-angle faults

358

Mesoscale Modeling for Mountain Weather Forecasting Over the Himalayas  

Science Conference Proceedings (OSTI)

Severe weather has a more calamitous effect in the mountainous region-because the terrain is complex and the economy is poorly developed and fragile. Such weather systems occurring on a small spatiotemporal scale invite application of models with ...

Someshwar Das; S. V. Singh; E. N. Rajagopal; Robert Gall

2003-09-01T23:59:59.000Z

359

Inversion Breakup in Small Rocky Mountain and Alpine Basins  

Science Conference Proceedings (OSTI)

Comparisons are made between the postsunrise breakup of temperature inversions in two similar closed basins in very different climate settings, one in the eastern Alps and one in the Rocky Mountains. The small, high-altitude, limestone sinkholes ...

C. David Whiteman; Bernhard Pospichal; Stefan Eisenbach; Philipp Weihs; Craig B. Clements; Reinhold Steinacker; Erich Mursch-Radlgruber; Manfred Dorninger

2004-08-01T23:59:59.000Z

360

Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain,  

Open Energy Info (EERE)

Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain, Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain, Humboldt County, Nevada Abstract Shallow exploration drilling on the west flank of Blue Mountain discovered sub economic gold mineralization and a spatially associated active geothermal system. The gold mineralization is an unusual example of an acid sulfate type epithermal system developed in pre Tertiary sedimentary host rocks. The geothermal system is largely unexplored but is unusual in that surface manifestation s typically associated with active geothermal system are not present. Authors Andrew J. Parr and Timothy J. Percival

Note: This page contains sample records for the topic "mountains russia contemporaneous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Aeromagnetic Survey At Blue Mountain Area (Fairbank Engineering, 2003) |  

Open Energy Info (EERE)

Blue Mountain Area (Fairbank Blue Mountain Area (Fairbank Engineering, 2003) Exploration Activity Details Location Blue Mountain Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The airborne magnetometer and VLF-EM surveys carried out by Aerodat Limited, in 1988, covered the western flank of Blue Mountain including most of the geothermal lease area. The interpreted data (total field magnetic contours; calculated vertical magnetic gradient) indicate parallel sets of northerly, northeasterly, and northwesterly-trending structures that correspond well with the major fault sets identified from geologic mapping and interpreted drilling sections. Also, an elongate northerly-trending area of low magnetic gradient coincides closely with the area of intense

362

Geology and Temperature Gradient Surveys Blue Mountain Geothermal  

Open Energy Info (EERE)

Geology and Temperature Gradient Surveys Blue Mountain Geothermal Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Abstract Triassic argillite and sandstone of the Grass Valley Formation and phyllitic mudstone of the overlying Raspberry Formation, also of Triassic age, host a blind geothermal system under exploration by Blue Mountain Power Company Inc. with assistance from the Energy & Geoscience Institute. Geologically young, steeply dipping, open fault sets, striking N50-60°E,N50-60°W, and N-S intersect in the geothermal zone providing deep permeability over a wide area. Extensive silicification andhydro

363

Technical Report Confirms Reliability of Yucca Mountain Technical Work |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Report Confirms Reliability of Yucca Mountain Technical Technical Report Confirms Reliability of Yucca Mountain Technical Work Technical Report Confirms Reliability of Yucca Mountain Technical Work February 17, 2006 - 11:59am Addthis WASHINGTON, DC - The Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM) today released a report confirming the technical soundness of infiltration modeling work performed by U.S. Geological Survey (USGS) employees. "The report makes clear that the technical basis developed by the USGS has a strong conceptual foundation and is corroborated by independently-derived scientific conclusions, and provides a solid underpinning for the 2002 site recommendation," said OCRWM's Acting Director Paul Golan. "We are committed to opening Yucca Mountain based only on sound science. The work

364

Snowflake White Mountain Power Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Snowflake White Mountain Power Biomass Facility Snowflake White Mountain Power Biomass Facility Jump to: navigation, search Name Snowflake White Mountain Power Biomass Facility Facility Snowflake White Mountain Power Sector Biomass Owner Renegy Location Snowflake, Arizona Coordinates 34.5133698°, -110.0784491° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.5133698,"lon":-110.0784491,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

365

ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA Energy Efficiency and Conservation Block Grant Program Location: Tribe ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA ND American Recovery and Reinvestment Act: Proposed Action or Project Description The Turtle Mountain Band of Chippewa Indians of North Dakota propose to 1) explore the potential for wind energy development on the Reservation by soliciting expertise from an engineering company to determine the best option for tapping wind energy on the reservation for its public buildings and seek legal expertise to study legal barriers that may exist; 2) conduct energy audits and a feasibility study to determine if several sizeable public buildings have the potential to be sites for either district heating or a

366

Rocky Mountain (PADD 4) Refinery and Blender Net Production of ...  

U.S. Energy Information Administration (EIA)

Rocky Mountain (PADD 4) Refinery and Blender Net Production of Normal Butane (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8

367

Observations of Liquid Water in Orographic Clouds over Elk Mountain  

Science Conference Proceedings (OSTI)

The relatively simple orographic clouds forming in winter over Elk Mountain, Wyoming provided useful opportunities for field studies of cloud formation and of ice crystal development. In this paper, the observations of cloud droplet populations ...

Marcia K. Politovich; Gabor Vali

1983-05-01T23:59:59.000Z

368

Waves on a Marine Inversion Undergoing Mountain Leeside Wind Shear  

Science Conference Proceedings (OSTI)

Inland penetration of a shallow layer of marine air is a common occurrence along the coast of southern California. The marine air generally is confined to the coastal basin by surrounding mountains and a capping inversion. Air above the inversion ...

William T. Sommers

1981-06-01T23:59:59.000Z

369

Topography and Radiation Exchange of a Mountainous Watershed  

Science Conference Proceedings (OSTI)

This report deals with the radiation exchange of a complex terrain. A relatively simple network for computing topographic parameters global radiation, and net radiation of a mountainous terrain was developed and applied to a forested Appalachian ...

Hailiang Fu; Stanislaw J. Tajchman; James N. Kochenderfer

1995-04-01T23:59:59.000Z

370

Mesoscale Snowfall Prediction and Verification in Mountainous Terrain  

Science Conference Proceedings (OSTI)

Short-term forecasting of precipitation often relies on meteorological radar coverage to provide information on the intensity, extent, and motion of approaching mesoscale features. However, in significant portions of mountainous regions, radar ...

Melanie Wetzel; Michael Meyers; Randolph Borys; Ray McAnelly; William Cotton; Andrew Rossi; Paul Frisbie; David Nadler; Douglas Lowenthal; Stephen Cohn; William Brown

2004-10-01T23:59:59.000Z

371

Wave–Turbulence Interactions in a Breaking Mountain Wave  

Science Conference Proceedings (OSTI)

The mean and turbulent structures in a breaking mountain wave are considered through an ensemble of high-resolution (essentially large-eddy simulation) wave-breaking calculations. Of particular interest are the turbulent heat and momentum fluxes ...

Craig C. Epifanio; Tingting Qian

2008-10-01T23:59:59.000Z

372

The Dynamics of Mountain-Wave-Induced Rotors  

Science Conference Proceedings (OSTI)

The development of rotor flow associated with mountain lee waves is investigated through a series of high-resolution simulations with the nonhydrostatic Coupled Ocean–Atmospheric Mesoscale Prediction System (COAMPS) model using free-slip and no-...

James D. Doyle; Dale R. Durran

2002-01-01T23:59:59.000Z

373

Large-Amplitude Mountain Wave Breaking over Greenland  

Science Conference Proceedings (OSTI)

A large-amplitude mountain wave generated by strong southwesterly flow over southern Greenland was observed during the Fronts and Atlantic Storm-Track Experiment (FASTEX) on 29 January 1997 by the NOAA G-IV research aircraft. Dropwindsondes ...

James D. Doyle; Melvyn A. Shapiro; Qingfang Jiang; Diana L. Bartels

2005-09-01T23:59:59.000Z

374

Rocky Mountain (PADD 4) Foreign Crude Oil Refinery Receipts by ...  

U.S. Energy Information Administration (EIA)

Rocky Mountain (PADD 4) Foreign Crude Oil Refinery Receipts by Tank Cars (Rail) (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8

375

A New Look at Snowpack Trends in the Cascade Mountains  

Science Conference Proceedings (OSTI)

This study examines the changes in Cascade Mountain spring snowpack since 1930. Three new time series facilitate this analysis: a water-balance estimate of Cascade snowpack from 1930 to 2007 that extends the observational record 20 years earlier ...

Mark T. Stoelinga; Mark D. Albright; Clifford F. Mass

2010-05-01T23:59:59.000Z

376

Energy Flux and Wavelet Diagnostics of Secondary Mountain Waves  

Science Conference Proceedings (OSTI)

In recent years, aircraft data from mountain waves have been primarily analyzed using velocity and temperature power spectrum and momentum flux estimation. Herein it is argued that energy flux wavelets (i.e., pressure–velocity wavelet cross-...

Bryan K. Woods; Ronald B. Smith

2010-11-01T23:59:59.000Z

377

Australian Winter Mountain Storm Clouds: Precipitation Augmentation Potential  

Science Conference Proceedings (OSTI)

Two Australian winter mountain storm field research projects were conducted by the Commonwealth Scientific and Industrial Research Organisation Division of Atmospheric Research and the Desert Research Institute Atmospheric Sciences Center in the ...

Alexis B. Long; Elizabeth J. Carter

1996-09-01T23:59:59.000Z

378

Pressure Perturbations and Upslope Flow over a Heated, Isolated Mountain  

Science Conference Proceedings (OSTI)

Surface and upper-air data, collected as part of the Cumulus Photogrammetric, In Situ, and Doppler Observations (CuPIDO) experiment during the 2006 monsoon season around the Santa Catalina Mountains in southeast Arizona, are used to study the ...

Bart Geerts; Qun Miao; J. Cory Demko

2008-11-01T23:59:59.000Z

379

The Interaction of Simulated Squall Lines with Idealized Mountain Ridges  

Science Conference Proceedings (OSTI)

Numerical simulations of squall lines traversing sinusoidal mountain ridges are performed using the Advanced Regional Prediction System cloud-resolving model. Precipitation and updraft strength are enhanced through orographic ascent as a squall ...

Jeffrey Frame; Paul Markowski

2006-07-01T23:59:59.000Z

380

The Penetration of Mountain Waves into the Middle Atmosphere  

Science Conference Proceedings (OSTI)

A linear nonhydrostatic model of gravity waves forced by a bell-shaped ridge is used to investigate the penetration of mountain waves into the stratosphere and mesosphere during winter and fall. Gravity waves with horizontal scales less than 30 ...

Mark R. Schoeberl

1985-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "mountains russia contemporaneous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Do Breaking Mountain Waves Deceierate the Local Mean Flow?  

Science Conference Proceedings (OSTI)

Numerical simulations are examined in order to determine the local mean flow response to the generation, propagation, and breakdown of two-dimensional mountain waves. Realistic and idealized cases are considered, and in all instances the pressure ...

Dale R. Durran

1995-11-01T23:59:59.000Z

382

Rocky Mountain Power - Residential Energy Efficiency Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for contractor) Duct Sealing: 275 - 375 (75 for contractor) Windows: 1sq. ft. Insulation: 0.15 - 0.60sq. ft. Rocky Mountain Power offers the Home Energy Savings Program...

383

Density of Freshly Fallen Snow in the Central Rocky Mountains  

Science Conference Proceedings (OSTI)

New snow density distributions are presented for six measurement sites in the mountains of Colorado and Wyoming. Densities were computed from daily measurements of new snow depth and water equivalent from snow board cores. All data were measured ...

Arthur Judson; Nolan Doesken

2000-07-01T23:59:59.000Z

384

INTER-MOUNTAIN BASINS SHALE BADLAND extent exaggerated for display  

E-Print Network (OSTI)

INTER-MOUNTAIN BASINS SHALE BADLAND R.Rondeau extent exaggerated for display ACHNATHERUM HYMENOIDES HERBACEOUS ALLIANCE Achnatherum hymenoides Shale Barren Herbaceous Vegetation ARTEMISIA BIGELOVII SHRUBLAND ALLIANCE Leymus salinus Shale Sparse Vegetation Overview: This widespread ecological system

385

Yucca Mountain Total System Performance Assessment, Phase 3  

Science Conference Proceedings (OSTI)

This report discusses recent developments of EPRI's Total System Performance Assessment (TSPA) model applied to the candidate spent fuel and high-level radioactive waste (HLW) disposal site at Yucca Mountain, Nevada. Building on earlier work where a probability-based methodology was developed, the report details the recent modifications to the EPRI TSPA code, IMARC, applied to Yucca Mountain. The report also includes performance analyses using IMARC, identifies key technical components important to Yucca...

1996-12-02T23:59:59.000Z

386

Biosphere Modeling and Dose Assessment for Yucca Mountain  

Science Conference Proceedings (OSTI)

This report develops a biosphere model appropriate for use in calculating doses to hypothetical individuals living in the far future in the vicinity of Yucca Mountain, Nevada. Doses are assumed to arise from potential releases from a spent fuel and high-level radioactive waste (HLW) disposal facility located beneath Yucca Mountain. The model provides guidance on approaches to dealing with the biosphere appropriate for site suitability and licensing assessments.

1996-12-31T23:59:59.000Z

387

Program on Technology Innovation: Room at the Mountain  

Science Conference Proceedings (OSTI)

Projected expansion of nuclear power beyond the year 2014 will result in the need for commercial spent nuclear fuel (CSNF) management options in addition to the currently legislated CSNF storage capacity at the proposed Yucca Mountain geological repository. At present, 70,000 MTHM of storage capacity has been authorized, with a projection that 63,000 MTHM would be used for CSNF. This report extends preliminary analyses of the maximum physical capacity of the Yucca Mountain repository, presented in EPRI r...

2007-06-29T23:59:59.000Z

388

Mountain-Wave Drag in the Stratosphere and Mesosphere Inferred from Observed Winds and a Simple Mountain-Wave Parameterization Scheme  

Science Conference Proceedings (OSTI)

A daily analysis of mountain-wave propagation through observed, global wind, and temperature fields in January and August is presented. Winds and temperatures are obtained from the daily 18-level NMC Climate Analysis Center. Mountain-wave ...

Julio T. Bacmeister

1993-02-01T23:59:59.000Z

389

ITPA Joint Meeting on Control, St. Petersburg, Russia, 14/07/2003 R. A. Pitts, Centre de Recherches en Physique des Plasmas Some requirements and possibilities for the  

E-Print Network (OSTI)

ITPA Joint Meeting on Control, St. Petersburg, Russia, 14/07/2003 R. A. Pitts, Centre de Recherches de Recherches en Physique des Plasmas #12;ITPA Joint Meeting on Control, St. Petersburg, Russia, 14 factors, pumping Materials · Erosion and redeposition, tritium inventory #12;ITPA Joint Meeting on Control

390

1995 Protocol for Working Group VIII: Influence of environmental changes on climate. US-Russia agreement on cooperation in the field of protection of the environment and natural resources. Final report, January 1, 1994--December 31, 1994  

SciTech Connect

Cooperative research programs of Russia and the United States concerned with global warming and climatic change are briefly described.

NONE

1995-05-01T23:59:59.000Z

391

Mercury audit at Rocky Mountain Arsenal  

Science Conference Proceedings (OSTI)

This report presents the results of an environmental compliance audit to identify potential mercury-containing equipment in 261 building and 197 tanks at the Rocky Mountain Arsenal (RMA). The RMA, located near Denver, Colorado, is undergoing clean up and decommissioning by the Department of the Army. Part of the decommissioning procedure is to ensure that all hazardous wastes are properly identified and disposed of. The purpose of the audit was to identify any mercury spills and mercury-containing instrumentation. The audit were conducted from April 7, 1992, through July 16, 1992, by a two-person team. The team interviewed personnel with knowledge of past uses of the buildings and tanks. Information concerning past mercury spills and the locations and types of instrumentation that contain mercury proved to be invaluable for an accurate survey of the arsenal. The team used a Jerome{reg_sign} 431-X{trademark} Mercury Vapor Analyzer to detect spills and confirm locations of mercury vapor. Twelve detections were recorded during the audit and varied from visible mercury spills to slightly elevated readings in the corners of rooms with past spills. The audit also identified instrumentation that contained mercury. All data have been incorporated into a computerized data base that is compatible with the RMA data base.

Smith, S.M.; Jensen, M.K. [Oak Ridge National Lab., TN (United States); Anderson, G.M. [Rocky Mountain Arsenal, Denver, CO (United States)

1994-02-01T23:59:59.000Z

392

Global warming risk in Russia: National actions and some options for international cooperation  

SciTech Connect

In the management of global environmental risks the Russia case is a special one regarding certain specific features which determine the position of the country, particularly in a new international community emerged on the territory of the former Soviet Union, large scientific interest to the global physical processes and low interest and capabilities to deal with such risks on the part of social institutions inherited from the USSR. The largest country in the world with visible geopolitical role and probably biggest regional differences could not be ignored as a one of major players in the management of global environmental risks. The understanding of all deficiencies and positive sides of global risks management process in this country are absolutely important for extrapolating the appropriate trends in some other parts of the world. At the same time the ex-Soviet Union case shows clearly how the social learning process can radically ``change the course``, diverting to the opposite direction the social goals and preferences. Starting the studies on possibilities to change the climate for improving the human being, the former soviet society perceived the risks of human impact on climate and started to regulate it and to participate in the process of international management of global warming. The level of activity in this process on the part of Russia will however depend heavily on how much national interests will be reflected in the specific prevention measures realized by the international community.

Sokolov, V.I. [Russian Academy of Sciences, Moscow (Russian Federation)

1995-06-01T23:59:59.000Z

393

Modeling of coupled heat transfer and reactive transport processes in porous media: Application to seepage studies at Yucca Mountain, Nevad a  

E-Print Network (OSTI)

Fractured Rock of Yucca Mountain, Nevada: Heterogeneity andfractured rocks of Yucca Mountain have been extensivelyHydrothermal Flow at Yucca Mountain, Part I: Modeling and

Mukhopadhyay, S.; Sonnenthal, E.L.; Spycher, N.

2008-01-01T23:59:59.000Z

394

Evaluating the Moisture Conditions in the Fractured Rock at Yucca Mountain: The Impact of Natural Convection Processes in Heated Emplacement Drifts  

E-Print Network (OSTI)

THE FRACTURED ROCK AT YUCCA MOUNTAIN: THE IMPACT OF NATURALgeologic repository at Yucca Mountain, Nevada, will stronglyWaste Emplacement Drifts at Yucca Mountain, Nevada, Nuclear

Birkholzer, J.T.; Webb, S.W.; Halecky, N.; Peterson, P.F.; Bodvarsson, G.S.

2005-01-01T23:59:59.000Z

395

Response to "Analysis of the Treatment, by the U.S. Department of Energy, of the FEP Hydrothermal Activity in the Yucca Mountain Performance Assessment" by Yuri Dublyansky  

E-Print Network (OSTI)

Mineral Formation at Yucca Mountain, Nevada. ” Geochimica etand Heat Flow Near Yucca Mountain, Nevada: Some Tectonic andNuclear Waste Site, Yucca Mountain, Nevada, USA: Pedogenic,

Houseworth, J.E.

2010-01-01T23:59:59.000Z

396

Revised potentiometric-surface map, Yucca Mountain and vicinity, Nevada  

SciTech Connect

The revised potentiometric-surface map presented in this report updates earlier maps of the Yucca Mountain area using mainly 1988 average water levels. Because of refinements in the corrections to the water-level measurements, these water levels have increased accuracy and precision over older values. The small-gradient area to the southeast of Yucca Mountain is contoured with a 0.25-meter interval and ranges in water-level altitude from 728.5 to 73 1.0 meters. Other areas with different water levels, to the north and west of Yucca Mountain, are illustrated with shaded patterns. The potentiometric surface can be divided into three regions: (1) A small-gradient area to the southeast of Yucca Mountain, which may be explained by flow through high-transmissivity rocks or low ground-water flux through the area; (2) A moderate-gradient area, on the western side of Yucca Mountain, where the water-level altitude ranges from 775 to 780 meters, and appears to be impeded by the Solitario Canyon Fault and a splay of that fault; and (3) A large-gradient area, to the north-northeast of Yucca Mountain, where water level altitude ranges from 738 to 1,035 meters, possibly as a result of a semi-perched groundwater system. Water levels from wells at Yucca Mountain were examined for yearly trends using linear least-squares regression. Data from five wells exhibited trends which were statistically significant, but some of those may be a result of slow equilibration of the water level from drilling in less permeable rocks. Adjustments for temperature and density changes in the deep wells with long fluid columns were attempted, but some of the adjusted data did not fit the surrounding data and, thus, were not used.

Ervin, E.M.; Luckey, R.R.; Burkhardt, D.J.

1994-12-01T23:59:59.000Z

397

Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) |  

Open Energy Info (EERE)

Blue Mountain Area (Fairbank & Neggemann, 2004) Blue Mountain Area (Fairbank & Neggemann, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) Exploration Activity Details Location Blue Mountain Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown References Brian D. Fairbank, Kim V. Niggemann (2004) Deep Blue No 1- A Slimhole Geothermal Discovery At Blue Mountain, Humboldt County, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Thermal_Gradient_Holes_At_Blue_Mountain_Area_(Fairbank_%26_Neggemann,_2004)&oldid=386709" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link

398

Armenia Mountain Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

Armenia Mountain Wind Energy Project Armenia Mountain Wind Energy Project Jump to: navigation, search Name Armenia Mountain Wind Energy Project Facility Armenia Mountain Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AES Armenia Mountain Wind Developer AES Energy Purchaser Old Dominion Electric Location Tioga and Bradford Counties PA Coordinates 41.763272°, -76.842613° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.763272,"lon":-76.842613,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

399

Field trip guide to selected outcrops, Arbuckle Mountains, Oklahoma  

Science Conference Proceedings (OSTI)

The Arbuckle Mountains, named for Brigadier General Matthew Arbuckle, are located in south-central Oklahoma. The formations that comprise the Arbuckle Mountains have been extensively studied for hydrocarbon source rock and reservoir rock characteristics that can be applied to the subsurface in the adjacent Anadarko and Ardmore basins. Numerous reports and guidebooks have been written concerning the Arbuckle Mountains. A few important general publications are provided in the list of selected references. The purpose of this handout is to provide general information on the geology of the Arbuckle Mountains and specific information on the four field trip stops, adapted from the literature. The four stops were at: (1) Sooner Rock and Sand Quarry; (2) Woodford Shale; (3) Hunton Anticline and Hunton Quarry; and (4) Tar Sands of Sulfur Area. As part of this report, two papers are included for more detail: Paleomagnetic dating of basinal fluid migration, base-metal mineralization, and hydrocarbon maturation in the Arbuckle Mountains, Oklahoma and Laminated black shale-bedded chert cyclicity in the Woodford Formation, southern Oklahoma.

NONE

1991-11-17T23:59:59.000Z

400

A Conceptual and Numerical Model for Thermal-Hydrological-Chemical Processes in the Yucca Mountain Drift Scale Test  

E-Print Network (OSTI)

of the unsaturated zone at Yucca Mountain, NV from three-Scale Heater Test. Yucca Mountain Project Level 4 MilestoneReport, Chapter 6. Yucca Mountain Project Level 4 Milestone

Sonnenthal, Eric L.; Spycher, Nicolas F.; Conrad, Mark; Apps, John

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mountains russia contemporaneous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Preliminary 3-D site-scale studies of radioactive colloid transort in the unsaturated zone at Yucca Mountain, Nevada  

E-Print Network (OSTI)

into drifts at Yucca Mountain. ” J. Contam. Hydrol. , 38(1–pneumatic response at Yucca Mountain, Nevada. J. Contam.unsaturated zone model of Yucca Mountain, Nevada. J. Contam.

Moridis, G.J.; Hu, Q.; Wu, Y.-S.; Bodvarsson, G.S.

2001-01-01T23:59:59.000Z

402

Coupled Analysis of Change in Fracture Permeability during the Cooling Phase of the Yucca Mountain Drift Scale Test  

E-Print Network (OSTI)

mechanical analysis of the Yucca Mountain Drift Scale Test –scale heater test at Yucca Mountain, Nevada, USA. In.t J.and Cooling at the Yucca Mountain Drift Scale Test. In.t J.

Rutqvist, J.

2008-01-01T23:59:59.000Z

403

Evaluating Flake Assemblage and Stone Tool Distributions at a Large Western Stemmed Tradition Site Near Yucca Mountain, Nevada  

E-Print Network (OSTI)

Tradition Site Near Yucca Mountain, Nevada G R E G O R Y M .Institute near Yucca Mountain, Nevada, have revealed anlevel at the top of Yucca Mountain. Vegetation is typi- cal

Haynes, Gregory M

1996-01-01T23:59:59.000Z

404

Effects of Mountain Uplift on East Asian Summer Climate Investigated by a Coupled Atmosphere–Ocean GCM  

Science Conference Proceedings (OSTI)

To study the effects of progressive mountain uplift on East Asian summer climate, a series of coupled general circulation model (CGCM) experiments were performed. Eight different mountain heights were used: 0% (no mountain), 20%, 40%, 60%, 80%, ...

Akio Kitoh

2004-02-01T23:59:59.000Z

405

Performance predictions for mechanical excavators in Yucca Mountain tuffs; Yucca Mountain Site Characterization Project  

SciTech Connect

The performances of several mechanical excavators are predicted for use in the tuffs at Yucca Mountain: Tunnel boring machines, the Mobile Miner, a roadheader, a blind shaft borer, a vertical wheel shaft boring machine, raise drills, and V-Moles. Work summarized is comprised of three parts: Initial prediction using existing rock physical property information; Measurement of additional rock physical properties; and Revision of the initial predictions using the enhanced database. The performance predictions are based on theoretical and empirical relationships between rock properties and the forces-experienced by rock cutters and bits during excavation. Machine backup systems and excavation design aspects, such as curves and grades, are considered in determining excavator utilization factors. Instanteous penetration rate, advance rate, and cutter costs are the fundamental performance indicators.

Ozdemir, L.; Gertsch, L.; Neil, D.; Friant, J. [Colorado School of Mines, Golden, CO (United States). Earth Mechanics Inst.

1992-09-01T23:59:59.000Z

406

Cuttings Analysis At Marysville Mountain Geothermal Area (1976) | Open  

Open Energy Info (EERE)

Geothermal Area (1976) Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Marysville Mountain Geothermal Area (1976) Exploration Activity Details Location Marysville Mountain Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Retrieved from "http://en.openei.org/w/index.php?title=Cuttings_Analysis_At_Marysville_Mountain_Geothermal_Area_(1976)&oldid=473911"

407

Rocky Mountain Power - FinAnswer Express | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express < Back Eligibility Agricultural Commercial Construction Industrial Multi-Family Residential Savings Category Other Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Insulation Design & Remodeling Windows, Doors, & Skylights Program Info State Utah Program Type Utility Rebate Program Rebate Amount Interior Lighting: $0.08/kWh annual savings Induction Fixture (Exterior): $125/unit LED Outdoor/Roadway Fixture (Exterior): $100/unit CFL Wall Pack (Exterior): $30/unit Lighting Controls: $75/sensor Wall Insulation: $0.07/sq. ft. Roof Insulation: $0.05/sq. ft.

408

Interior Bureau of Land Management Battle Mountain District Office  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Department of the United States Department of the Interior Bureau of Land Management Battle Mountain District Office Battle Mountain Nevada November 19, 2010 Tonopah Field Office Tonopah, Nevada FES-10-57 N-86292 DOI-BLM-NVB020-2009-0104-EIS Tonopah Solar Energy, LLC Crescent Dunes Solar Energy Project Final Environmental Impact Statement Proposed Crescent Dunes Solar Energy Project: Final EIS| ii BLM Mission Statement It is the mission of the Bureau of Land Management to sustain the health, diversity, and productivity of the public lands for the use and enjoyment of present and future generations. BLM/NV/BM/EIS/10/30+1793 DOI No. FES 10-57 http://www.blm.gov/nv/stlenlfo/battle_mountain_field.html In Reply Refer To: N-86292 DOI-BLM-NVBO2O-2009-0 1 04-EIS 2800 (NVB0200) Dear

409

Rocky Mountain Power - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - Residential Energy Efficiency Rebate Program Rocky Mountain Power - Residential Energy Efficiency Rebate Program Rocky Mountain Power - Residential Energy Efficiency Rebate Program < Back Eligibility Installer/Contractor Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Utah Program Type Utility Rebate Program Rebate Amount Clothes Washers: up to $50 Dishwashers: $20 Refrigerator: $40 Freezer: $20 Electric Water Heaters: $50 CFL/LED Light Fixtures: $20/fixture Insulation: $0.15 - $0.65/sq. ft., plus potential bonus Windows: $0.50 - $2/sq. ft. Room Air Conditioners: $30 Duct Sealing/Insulation/Weatherization (Electric): up to $300

410

Thermohydrologic behavior and repository design at Yucca Mountain  

DOE Green Energy (OSTI)

Radioactive decay of nuclear waste emplaced at Yucca Mountain will produce an initial heat flux many times larger than the heat flux in some natural geothermal systems. This heat flux will change the thermal and hydrologic environment at Yucca Mountain significantly, affecting both the host rock and conditions within the emplacement tunnels (drifts). Understanding the thermohydrologic behavior in this coupled natural and engineered system is critical to the assessment of the viability of Yucca Mountain as a nuclear-waste repository site and for repository design decision-making. We report results from a study that uses our multi-scale modeling approach to explore the relationship between repository design, thermohydrologic behavior, and key repository performance measures.

Buscheck, T; Rosenberg, N D; Gansemer, J D; Sun, Y

2000-10-01T23:59:59.000Z

411

Buffalo Mountain Wind Energy Center I | Open Energy Information  

Open Energy Info (EERE)

Buffalo Mountain Wind Energy Center I Buffalo Mountain Wind Energy Center I Facility Buffalo Mountain Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Tennessee Valley Authority Developer EnXco Energy Purchaser Tennessee Valley Authority Location Anderson County TN Coordinates 36.115822°, -84.333742° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.115822,"lon":-84.333742,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

412

Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Abstract Self potential and electrical resistivity surveys have been completed at the Blue Mountain geothermal area to search for the source of thermal fluids discovered during drilling for mineral exploration, and to help characterize the geothermal resource. Two large SP anomalies are associated with the artesian thermal area and the area of highest temperature observed in drill holes. Two similar anomalies were mapped 1 to 3 km to the south

413

Jemez Mountains Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountains Elec Coop, Inc Jemez Mountains Elec Coop, Inc Jump to: navigation, search Name Jemez Mountains Elec Coop, Inc Place New Mexico Utility Id 9699 Utility Location Yes Ownership C NERC Location WECC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Power Service Industrial Large Power Service-TOU Industrial Municipal Service and Small School Service Commercial Municipal Service and Small School Service TOU Commercial Residential Service Residential Residential Time of Use Rates Residential Small Commercial Service Residential

414

Magnetotellurics At Socorro Mountain Area (Owens, Et Al., 2005) | Open  

Open Energy Info (EERE)

Owens, Et Al., 2005) Owens, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Socorro Mountain Area (Owens, Et Al., 2005) Exploration Activity Details Location Socorro Mountain Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes magneto-telluric surveys are pending for the near future when geochemical and surface geophysical surveys are complete. Results of this survey should verify the occurrence of low-resisitivity fluids and alteration at depth. References Lara Owens, Richard Baars, David Norman, Harold Tobin (2005) New Methods In Exploration At The Socorro Peak Kgra- A Gred Iii Project Retrieved from "http://en.openei.org/w/index.php?title=Magnetotellurics_At_Socorro_Mountain_Area_(Owens,_Et_Al.,_2005)&oldid=388765

415

City of Kings Mountain, North Carolina (Utility Company) | Open Energy  

Open Energy Info (EERE)

Mountain, North Carolina (Utility Company) Mountain, North Carolina (Utility Company) Jump to: navigation, search Name City of Kings Mountain Place North Carolina Utility Id 10324 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Housing Authority Industrial Large General Service (>500kW) Commercial Large Industrial Service (>500kW) Industrial Medium General Service (100-500kW) Commercial Medium Industrial Service (100-500kW) Industrial Outdoor Lighting Service- 150W High Pressure Sodium- Urban, Existing Pole

416

Geothermal Drilling Success at Blue Mountain, Nevada | Open Energy  

Open Energy Info (EERE)

Drilling Success at Blue Mountain, Nevada Drilling Success at Blue Mountain, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Drilling Success at Blue Mountain, Nevada Abstract Exploration in a blind prospect has led to the confirmation of a geothermal resource at Blue Mt.Nevada. The latest results include drilling of three production wells into Piedmont faults. These wells produce from a 185 to 190°C dilute benign brine reservoir. Short flow tests have shown prolific flow rates and indications of reservoir continuity.Well entries have shown that system permeability is fault-dominated. This is confirmed by the results of seismic reflection imaging. Young faulting in the area includes intersecting range front faults that strike NW, NS, and NE. Exposure of

417

Zuni Mountains Nm Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Zuni Mountains Nm Geothermal Area Zuni Mountains Nm Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Zuni Mountains Nm Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

418

Rocky Mountain Power - FinAnswer Express | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express < Back Eligibility Agricultural Commercial Construction Industrial Installer/Contractor Savings Category Other Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Manufacturing Heat Pumps Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Windows, Doors, & Skylights Maximum Rebate Lighting Retrofit: 70% of project cost Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Custom: $0.10/annual kWh saved Interior Lighting: $0.08/kwh annual energy savings LED Fixture (Exterior): $100 Induction Fixture (Exterior): $125 Lighting Control (Exterior): $70 Air Conditioners and Heat Pumps: $50-$100/ton

419

Mountain View Electric Association, Inc - Energy Efficiency Credit Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mountain View Electric Association, Inc - Energy Efficiency Credit Mountain View Electric Association, Inc - Energy Efficiency Credit Program Mountain View Electric Association, Inc - Energy Efficiency Credit Program < Back Eligibility Agricultural Commercial Industrial Residential Savings Category Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate LED Street Lighting: $20,000 LED Refrigerated Case Lighting Retrofit: $3,000 Commercial Lighting Replacement: $20,000 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Geothermal Heat Pumps: $150/ton, additional $150 per unit for Energy Star units greater than 3 tons, additional $120 if attached to electric water heater Air-Source Heat Pump: $125 - $150/ton, additional $100 - $150 per unit for

420

Rocky Mountain Power - Energy FinAnswer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

70% project cost 70% project cost New Construction: 50% Lighting: 50%-75% of savings Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount $0.15/kWh annual energy savings + $50/kW average monthly demand savings Provider Rocky Mountain Power Rocky Mountain Power's Energy FinAnswer program provides incentives to help its customers improve the efficiency of existing facilities and build new facilities that are significantly more efficient than code. New construction and retrofit projects for all industrial facilities can participate as well as all new commercial projects and commercial retrofits in facilities larger than 20,000 square feet. Rocky Mountain Power will be involved from the beginning of the construction process. They will start by reviewing the facility plans and

Note: This page contains sample records for the topic "mountains russia contemporaneous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Rocky Mountain Oilfield Testing Center | Open Energy Information  

Open Energy Info (EERE)

Oilfield Testing Center Oilfield Testing Center Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Rocky Mountain Oilfield Testing Center General Information Name Rocky Mountain Oilfield Testing Center Facility Rocky Mountain Oilfield Testing Center Sector Geothermal energy Location Information Coordinates 42.9724567°, -106.3160188° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.9724567,"lon":-106.3160188,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

422

Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data  

SciTech Connect

Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical r

Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

2007-06-25T23:59:59.000Z

423

Preparing to Submit a License Application for Yucca Mountain  

Science Conference Proceedings (OSTI)

In 1982, the U.S. Congress passed the Nuclear Waste Policy Act, a Federal law that established U.S. policy for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Congress amended the Act in 1987, directing the Department of Energy to study only Yucca Mountain, Nevada as the site for a permanent geologic repository. As the law mandated, the Department evaluated Yucca Mountain to determine its suitability as the site for a permanent geologic repository. Decades of scientific studies demonstrated that Yucca Mountain would protect workers, the public, and the environment during the time that a repository would be operating and for tens of thousands of years after closure of the repository. A repository at this remote site would also: preserve the quality of the environment; allow the environmental cleanup of Cold War weapons facilities; provide the nation with additional protection from acts of terrorism; and support a sound energy policy. Throughout the scientific evaluation of Yucca Mountain, there has been no evidence to disqualify Yucca Mountain as a suitable site for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Upon completion of site characterization, the Secretary of Energy considered the results and concluded that a repository at Yucca Mountain would perform in a manner that protects public health and safety. The Secretary recommended the site to the President in February 2002; the President agreed and recommended to Congress that the site be approved. The Governor of Nevada submitted a notice of disapproval, and both houses of Congress acted to override the disapproval. In July 2002, the President's approval allowed the Department to begin the process of submittal of a license application for Yucca Mountain as the site for the nation's first repository for spent nuclear fuel and high-level radioactive waste. Yucca Mountain is located on federal land in Nye County in southern Nevada, an arid region of the United States, approximately 100 miles (160 kilometers) northwest of Las Vegas (Figure 1). The location is remote from population centers, and there are no permanent residents within approximately 14 miles (23 km) of the site. Overall, Nye County has a population density of about two persons per square mile (two persons per 2.5 square km); in the vicinity of Yucca Mountain, it is significantly less. Yucca Mountain is a series of north-south-trending ridges extending approximately 25 miles (40 km), and consists of successive layers of fine-grained volcanic tuffs, millions of years old, underlain by older carbonate rocks. The alternating layers of welded and nonwelded volcanic tuffs have differing hydrologic properties that significantly impact the manner in which water moves through the mountain. The repository horizon will be in welded tuff located in the unsaturated zone, more than 1,000 feet (300 meters) above the water table in the present-day climate, and is expected to remain well above the water table during wetter future climate conditions. Future meteorology and climatology at Yucca Mountain are important elements in understanding the amount of water available to potentially interact with the waste.

W.J. Arthur; M.D. Voegele

2005-03-14T23:59:59.000Z

424

The vegetation of Yucca Mountain: Description and ecology  

Science Conference Proceedings (OSTI)

Vegetation at Yucca Mountain, Nevada, was monitored over a six-year period, from 1989 through 1994. Yucca Mountain is located at the northern limit of the Mojave Desert and is the only location being studied as a potential repository for high-level nuclear waste. Site characterization consists of a series of multidisciplinary, scientific investigations designed to provide detailed information necessary to assess the suitability of the Yucca Mountain Site as a repository. This vegetation description establishes a baseline for determining the ecological impact of site characterization activities; it porvides input for site characterization research and modeling; and it clarifies vegetation community dynamics and relationships to the physical environment. A companion study will describe the impact of site characterization of vegetation. Cover, density, production, and species composition of vascular plants were monitored at 48 Ecological Study Plots (ESPs) stratified in four vegetation associations. Precipitation, soil moisture, and maximum and minimum temperatures also were measured at each study plot.

NONE

1996-03-29T23:59:59.000Z

425

Age constraints on fluid inclusions in calcite at Yucca Mountain  

Science Conference Proceedings (OSTI)

The {sup 207}Pb/{sup 235}U ages for 14 subsamples of opal or chalcedony layers younger than calcite formed at elevated temperature range between 1.88 {+-} 0.05 and 9.7 {+-} 1.5 Ma with most values older than 6-8 Ma. These data indicate that fluids with elevated temperatures have not been present in the unsaturated zone at Yucca Mountain since about 1.9 Ma and most likely since 6-8 Ma. Discordant U-Pb isotope data for chalcedony subsamples representing the massive silica stage in the formation of the coatings are interpreted using a model of the diffusive loss of U decay products. The model gives an age estimate for the time of chalcedony formation around 10-11 Ma, which overlaps ages of clay minerals formed in tuffs below the water table at Yucca Mountain during the Timber Mountain thermal event.

Neymark, Leonid A.; Amelin, Yuri V.; Paces, James B.; Peterman, Zell E.; Whelan, Joseph F.

2001-04-29T23:59:59.000Z

426

City of Mountain Lake, Minnesota (Utility Company) | Open Energy  

Open Energy Info (EERE)

Mountain Lake Mountain Lake Place Minnesota Utility Id 13048 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png City Rates Commercial Commercial Commercial Industrial Industrial Residential- Rural Residential Residential- Urban Residential Average Rates Residential: $0.0957/kWh Commercial: $0.0842/kWh Industrial: $0.0804/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Mountain_Lake,_Minnesota_(Utility_Company)&oldid=40998

427

City of Mountain View, Missouri (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Mountain View Mountain View Place Missouri Utility Id 13057 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Residential Residential Average Rates Residential: $0.0810/kWh Commercial: $0.0807/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Mountain_View,_Missouri_(Utility_Company)&oldid=409985" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs What links here

428

Boundary Layer Energy Transport and Cumulus Development over a Heated Mountain: An Observational Study  

Science Conference Proceedings (OSTI)

Aircraft and surface measurements of the boundary layer transport of mass and moisture toward an isolated, heated mountain are presented. The data were collected around the Santa Catalina Mountains in Arizona, 20–30 km in diameter, during the ...

J. Cory Demko; Bart Geerts; Qun Miao; Joseph A. Zehnder

2009-01-01T23:59:59.000Z

429

Yucca Mountain - U.S. Department of Energy's Brief in Support...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain - U.S. Department of Energy's Brief in Support of Review and Reversal of the Board's Ruling on the Motion to Withdraw Yucca Mountain - U.S. Department of Energy's...

430

A Modeling Study of Nonstationary Trapped Mountain Lee Waves. Part II: Nonlinearity  

Science Conference Proceedings (OSTI)

The generation of nonstationary trapped mountain lee waves through nonlinear wave dynamics without any concomitant change in the background flow is investigated by conducting two-dimensional mountain wave simulations. These simulations ...

Louisa B. Nance; Dale R. Durran

1998-04-01T23:59:59.000Z

431

The Role of Terrain and Pressure Stresses in Rocky Mountain Lee Cyclones  

Science Conference Proceedings (OSTI)

The earth–atmosphere exchange of storm absolute dynamic circulation by mountain-induced surface pressure stress and the response of the circulation in a Rocky Mountain Ice cyclone is examined. Surface pressure stresses that transfer horizontal ...

Alan C. Czarnetzki; Donald R. Johnson

1996-04-01T23:59:59.000Z

432

The Role of the Central Asian Mountains on the Midwinter Suppression of North Pacific Storminess  

Science Conference Proceedings (OSTI)

The role of the central Asian mountains on North Pacific storminess is examined using an atmospheric general circulation model by varying the height and the areas of the mountains. A series of model integrations show that the presence of the ...

Hyo-Seok Park; John C. H. Chiang; Seok-Woo Son

2010-11-01T23:59:59.000Z

433

Max-Min characterization of the mountain pass energy level for a class of variational problems  

E-Print Network (OSTI)

We provide a max-min characterization of the mountain pass energy level for a family of variational problems. As a consequence we deduce the mountain pass structure of solutions to suitable PDEs, whose existence follows from classical minimization argument.

Jacopo Bellazzini; Nicola Visciglia

2009-09-01T23:59:59.000Z

434

Max-Min characterization of the mountain pass energy level for a class of variational problems  

E-Print Network (OSTI)

We provide a max-min characterization of the mountain pass energy level for a family of variational problems. As a consequence we deduce the mountain pass structure of solutions to suitable PDEs, whose existence follows from classical minimization argument.

Bellazzini, Jacopo

2009-01-01T23:59:59.000Z

435

Evaluation of an Ecohydrologic-Process Model Approach to Estimating Annual Mountain-Block Recharge.  

E-Print Network (OSTI)

??Magruder, Ian, M.S., December 2006 Geology Evaluation of an Ecohydrologic-Process Model Approach to Estimating Annual Mountain-Block Recharge Chairperson: Dr. William Woessner Regional subsurface mountain-block recharge… (more)

Magruder, Ian Auguste

2007-01-01T23:59:59.000Z

436

Three-Dimensional Numerical Model Simulations of Airflow Over Mountainous Terrain: A Comparison with Observations  

Science Conference Proceedings (OSTI)

Numerical simulations of airflow over two different choices of mountainous terrain and the comparisons of results with aircraft observations are presented. Two wintertime casts for flow over Elk Mountain, Wyoming where surface heating is assumed ...

Terry L. Clark; Robert Gall

1982-07-01T23:59:59.000Z

437

Climatic Controls on the Snowmelt Hydrology of the Northern Rocky Mountains  

Science Conference Proceedings (OSTI)

The northern Rocky Mountains (NRMs) are a critical headwaters region with the majority of water resources originating from mountain snowpack. Observations showing declines in western U.S. snowpack have implications for water resources and ...

Gregory T. Pederson; Stephen T. Gray; Toby Ault; Wendy Marsh; Daniel B. Fagre; Andrew G. Bunn; Connie A. Woodhouse; Lisa J. Graumlich

2011-03-01T23:59:59.000Z

438

Observations of Mountain Wave–Induced Precipitation Shadows over Northeast Pennsylvania  

Science Conference Proceedings (OSTI)

WSR-88D depictions of two mountain wave–induced precipitation shadows observed near the Wyoming Valley of northeast Pennsylvania are presented. These mountain waves developed in similar synoptic environments that featured a strong south to ...

Raymond H. Brady; Jeff S. Waldstreicher

2001-06-01T23:59:59.000Z

439

Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Great Smoky Mountains Great Smoky Mountains National Park Turns to Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Google Bookmark Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Delicious Rank Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Digg Find More places to share Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on AddThis.com...

440

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

PETROLEUM MAGNETICS INTERNATIONAL PETROLEUM MAGNETICS INTERNATIONAL NOVEMBER 28, 1996 FC9520 / 95PT8 ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS PETROLEUM MAGNETIC INTERNATIONAL DOWNHOLE MAGNETS FOR SCALE CONTROL Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer November 28, 1995 650100/9520:jb ABSTRACT November 28, 1995 The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a field test on the Petroleum Magnetics International (PMI) downhole magnet, at the Naval Petroleum Reserve No. 3 (NPR- 3) located 35 miles north of Casper in Natrona County, Wyoming. PMI of Odessa, Texas, states that the magnets are designed to reduce scale and paraffin buildup on the rods, tubing

Note: This page contains sample records for the topic "mountains russia contemporaneous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Blue Ridge Mountain Electric Membership Corporation - Water Heater Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Blue Ridge Mountain Electric Membership Corporation - Water Heater Rebate Program Blue Ridge Mountain Electric Membership Corporation - Water Heater Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Ventilation Manufacturing Heat Pumps Appliances & Electronics Water Heating Program Info State Georgia Program Type Utility Rebate Program Rebate Amount In-Home Energy Evaluation Program Windows: $500 Duct Repair: $500 Rehabilitation Work: $250 HVAC Replacement: $250/unit HVAC Tune-up: $150/unit Insulation: $500 Water Heater and Pipe Insulation: $50 Air Sealing: $500 Energy Right Program

442

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

TANK LEVEL GAUGING SYSTEM TANK LEVEL GAUGING SYSTEM JULY 25, 1996 FC9519 / 95PT7 ROCKY MOUNTAIN OILFIELD TESTING CENTER TANK LEVEL GAUGING SYSTEM DOUBLE M ELECTRIC Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer July 25, 1996 551103/9519:jb ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of a Tank Level Gauging System at the Naval Petroleum Reserve No. 3 (NPR-3). Double M. Electric manufactures the equipment that incorporates an optical-encoder sending unit, cellular communications, and software interface. The system effectively displayed its capabilities for remote monitoring and recording of tank levels.

443

Report on the Copper Mountain Conference on Multigrid Methods  

SciTech Connect

OAK B188 Report on the Copper Mountain Conference on Multigrid Methods. The Copper Mountain Conference on Multigrid Methods was held on April 11-16, 1999. Over 100 mathematicians from all over the world attended the meeting. The conference had two major themes: algebraic multigrid and parallel multigrid. During the five day meeting 69 talks on current research topics were presented as well as 3 tutorials. Talks with similar content were organized into sessions. Session topics included: Fluids; Multigrid and Multilevel Methods; Applications; PDE Reformulation; Inverse Problems; Special Methods; Decomposition Methods; Student Paper Winners; Parallel Multigrid; Parallel Algebraic Multigrid; and FOSLS.

2001-04-06T23:59:59.000Z

444

Evaluation of a Spent Fuel Repository at Yucca Mountain, Nevada  

Science Conference Proceedings (OSTI)

In June 2008, the U.S. Department of Energy (DOE) submitted a license application to the U.S. Nuclear Regulatory Commission (NRC) for the construction of a geologic repository at Yucca Mountain, Nevada, for the disposal of spent nuclear fuel and high-level radioactive waste. The license application was accepted for formal NRC review in September 2008. Throughout the more than 20-year history of the Yucca Mountain project, EPRI has performed independent assessments of key technical and scientific issues t...

2008-12-22T23:59:59.000Z

445

RWU 4201 Wildlife Ecology in Rocky Mountain Landscapes A Winter Survey Method for Detecting and  

E-Print Network (OSTI)

in the Pioneer, Anaconda-Pintler, Flint Creek, and Beaverhead mountain ranges in southwest Montana. We began

446

Volcanism Studies: Final Report for the Yucca Mountain Project  

SciTech Connect

This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is defined and described as one of many alternative models of the structural controls of the distribution of Plio-Quaternary basalt centers in the YMR. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be > than about 7 x 10{sup {minus}8} events yr{sup {minus}1} . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption probability to the location of northeast boundaries of volcanic zones near the Yucca Mountain si

Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

1998-12-01T23:59:59.000Z

447

Volcanism Studies: Final Report for the Yucca Mountain Project  

Science Conference Proceedings (OSTI)

This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is defined and described as one of many alternative models of the structural controls of the distribution of Plio-Quaternary basalt centers in the YMR. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be > than about 7 x 10{sup {minus}8} events yr{sup {minus}1} . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption probability to the location of northeast boundaries of volcanic zones near the Yucca Mountain si

Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

1998-12-01T23:59:59.000Z

448

Preliminary background ozone concentrations in the mountain and coastal areas of Bulgaria  

E-Print Network (OSTI)

the Govedartsi Valley on the northwest slope of Rila Mountain in southwest Bulgaria (Donev et al. 1996, 1998. These two wind regimes impact diel O3 con- centration patterns as discussed by Donev et al. (1996). A second part of Rila Mountain (Zeller et al. 1992, 1997; Donev et al. 1996, 1998, 1999), the highest mountain

449

Dynamic rupture through a branched fault2 configuration at Yucca Mountain and resulting3  

E-Print Network (OSTI)

for the District of Columbia Circuit, which remanded to the U.S. Environmental Protection Agency its Yucca Mountain). The design of surface facilities at Yucca Mountain should be an integrated part of the total waste, storage, and disposal) casks for transporting, storing, and disposing of spent fuel at Yucca Mountain

Dmowska, Renata

450

Limited hydrologic response to Pleistocene climate change in deep vadose zones --Yucca Mountain, Nevada  

E-Print Network (OSTI)

regulations for radiation releases from the planned permanent U.S. nuclear-waste repository in Yucca Mountain releases from the proposed U.S. nuclear-waste repository in Yucca Mountain, Nevada.1 E.P.A. recommended these guarantees for Yucca Mountain. Instead E.P.A. recommends changes both in the exposure-limits and in how

Holliday, Vance T.

451

Dynamic Rupture through a Branched Fault Configuration at Yucca Mountain, and Resulting Ground Motions  

E-Print Network (OSTI)

-term care. Now, after decades of expensive false starts, and with an uncertain future for Yucca Mountain Yucca Mountain can handle, even if the statutory limits on its capacity are doubled repository. Second, it is unclear whether Yucca Mountain will ever receive a license from the Nuclear

Bhat, Harsha S.

452

Surface-to-tunnel seismic tomography studies at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Dynamic Rupture through a Branched Fault Configuration at Yucca Mountain, and Resulting Ground of Yucca Mountain, Nevada, a potential site for a high-level radioactive waste repository. The Solitario km away from the SCF beneath the crest of Yucca Mountain, causing the repository site to experience

Korneev, Valeri A.

453

Board Oversight of the DOE's Scientific and Technical Activities at Yucca Mountain  

E-Print Network (OSTI)

Surface-to-tunnel seismic tomography studies at Yucca Mountain, Nevada Roland Gritto, Valeri A in the proposed nuclear waste repository area at Yucca Mountain, Nevada. A 5-km-long source line and a 3-km-long receiver line were located on top of Yucca Mountain ridge and inside the Exploratory Study Facility (ESF

454

Testing for fault activity at Yucca Mountain, Nevada, using independent GPS results from the BARGEN network  

E-Print Network (OSTI)

that will not support nesting Mountain Plovers. Included in these areas is a hilly section of yucca and sagebrushPOTENTAIL HABITAT FOR MOUNTAIN PLOVERS ON COLORADO SPRINGS UTILITIES PROPERTY A Report to Colorado Delivery Fort Collins, Colorado 80523-8002 #12;INTRODUCTION The Mountain Plover (Charadrius montanus

Blewitt, Geoffrey

455

A Radionuclide Transport Model for the Unsaturated Zone at Yucca Mountain Bruce A. Robinson  

E-Print Network (OSTI)

.S. Geological Survey #12;Yucca Mountain (arrow) in its regional setting. From lower left to upper right (toward southeast), Forty-Mile Wash (trending south), and Jackass Flat (JF, sandy-colored area east ofYucca Mountain). Between Yucca Mountain and theAmargosa River lie Crater Flat (CF) with its young volcanic centers (red

Lu, Zhiming

456

Climatological lightning characteristics of the Southern Rocky and Appalachian Mountain chains, a comparison of two distinct mountain effects  

E-Print Network (OSTI)

This study presents a high-resolution lightning climatology for southern portions of both the Rocky Mountains and the Appalachian Mountains. Data from the National Lightning Detection Network (NLDN) are analyzed to produce maps of average annual lightning flash density, positive flash density, percent positive flashes, median peak current, and multiplicity. Three-hourly increments are used to demonstrate the annual average diurnal evolution of flash density. Data are also divided into seasonal averages for the same three-hourly increments to describe the daily evolution of flash density for each of the four seasons: December-January-February, March-April-May, June-July-August, and September-October-November. The flash density analyses reveal opposite mountain-valley effects. In the Rocky Mountains, flash density enhancements occur over and near mountains and flash density minima occur in the valleys. In the Appalachians, the enhancements occur in the valleys, while minimums are noted over the mountains. The eastern edge of the Appalachian lightning suppression is determined to be a result of faster propagation of mountain-initiated convection. Weaker mountain breezes in the Appalachians are theorized to be the catalysts for this. The western edge of the suppression is the cumulative effect of consistent flash density gradients at the Appalachian's western slopes. A theory is presented which links this gradient to observations of high median peak currents. Statistical tests on flash density means show that the Appalachian suppression is significant. Multiple regressions predict lightning flash density from terrain characteristics. Vertical wind and thermodynamic profiles, horizontal temperature differences at summit levels, and average annual precipitation complete the study. From these data, a conceptual model is presented to describe the nature of the lightning evolution in each region, and explain the processes that lead to the end state. This study concludes that the differences between the patterns of lightning characteristics in the Southern Rockies and the Southern Appalachians are the cumulative effects of subtle differences in the diurnal evolution patterns. Furthermore, the Appalachian lightning suppression is a product of lightning propagation and storm evolution, rather than a suppression of convective initiation.

Phillips, Stephen Edward

2001-01-01T23:59:59.000Z

457

Effects of Frozen Soil on Soil Temperature, Spring Infiltration, and Runoff: Results from the PILPS 2(d) Experiment at Valdai, Russia  

Science Conference Proceedings (OSTI)

The Project for Intercomparison of Land-Surface Parameterization Schemes phase 2(d) experiment at Valdai, Russia, offers a unique opportunity to evaluate land surface schemes, especially snow and frozen soil parameterizations. Here, the ability ...

Lifeng Luo; Alan Robock; Konstantin Y. Vinnikov; C. Adam Schlosser; Andrew G. Slater; Aaron Boone; Pierre Etchevers; Florence Habets; Joel Noilhan; Harald Braden; Peter Cox; Patricia de Rosnay; Robert E. Dickinson; Yongjiu Dai; Qing-Cun Zeng; Qingyun Duan; John Schaake; Ann Henderson-Sellers; Nicola Gedney; Yevgeniy M. Gusev; Olga N. Nasonova; Jinwon Kim; Eva Kowalczyk; Kenneth Mitchell; Andrew J. Pitman; Andrey B. Shmakin; Tatiana G. Smirnova; Peter Wetzel; Yongkang Xue; Zong-Liang Yang

2003-04-01T23:59:59.000Z

458

Turtle Mountain Community College Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Community College Wind Farm Community College Wind Farm Jump to: navigation, search Name Turtle Mountain Community College Wind Farm Facility Turtle Mountain Community College Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Turtle Mountain Community College Developer Distributed Gen Energy Purchaser Turtle Mountain Community College Location St. John ND Coordinates 48.884703°, -99.751936° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.884703,"lon":-99.751936,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

459

Goat Mountain Phase I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Goat Mountain Phase I Wind Farm Goat Mountain Phase I Wind Farm Jump to: navigation, search Name Goat Mountain Phase I Wind Farm Facility Goat Mountain Phase I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Cielo/Edison Mission Group Developer Cielo/Edison Mission Group Energy Purchaser Market Location North of San Angelo TX Coordinates 31.908696°, -100.824122° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.908696,"lon":-100.824122,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

460

Goat Mountain Phase II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Goat Mountain Phase II Wind Farm Goat Mountain Phase II Wind Farm Jump to: navigation, search Name Goat Mountain Phase II Wind Farm Facility Goat Mountain Phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Cielo/Edison Mission Group Developer Cielo/Edison Mission Group Energy Purchaser Market Location North of San Angelo TX Coordinates 31.910008°, -100.869355° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.910008,"lon":-100.869355,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "mountains russia contemporaneous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

PETRO-PLUG PETRO-PLUG BENTONITE PLUGGING JANUARY 27, 1998 Report No. RMOTC/97PT22 ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS PETRO-PLUG BENTONITE PLUGGING Prepared for: INDUSTRY PUBLICATION Prepared by: Michael R. Tyler RMOTC Project Manager January 27, 1998 Report No. RMOTC/96ET4 CONTENTS Page Technical Description ...................................................................................................... 1 Problem ............................................................................................................................ 1 Solution ............................................................................................................................ 2 Operation..........................................................................................................................

462

Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project  

Science Conference Proceedings (OSTI)

The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

Deanna Gilliland; Matthew Usher

2011-12-31T23:59:59.000Z

463

Sustaining mobile pastoralists in the mountains of northern Pakistan  

E-Print Network (OSTI)

Sustaining mobile pastoralists in the mountains of northern Pakistan Mobile pastoralism According-West Frontier Province), in northern Pakistan. But the provision of these goods and services is at risk payments for ecosystem services. Case studies featured here were conducted in: Pakistan, Tanzania

Richner, Heinz

464

Asymmetric Removal of Temperature Inversions in a High Mountain Valley  

Science Conference Proceedings (OSTI)

During July 1985 the transition from nighttime to daytime wind regimes was studied in a steep-sided, broad mountain valley at about 2200 m MSL, in southeastern Wyoming. An array of surface weather stations and plot balloon releases from several ...

Robert D. Kelly

1988-05-01T23:59:59.000Z

465

Natural Gas in the Rocky Mountains: Developing Infrastructure  

Reports and Publications (EIA)

This Supplement to EIA's Short-Term Energy Outlook analyzes current natural gas production, pipeline and storage infrastructure in the Rocky Mountains, as well as prospective pipeline projects in these States. The influence of these factors on regional prices and price volatility is examined.

Information Center

2007-09-20T23:59:59.000Z

466

Uranium and Neptunium Desorption from Yucca Mountain Alluvium  

SciTech Connect

Uranium and neptunium were used as reactive tracers in long-term laboratory desorption studies using saturated alluvium collected from south of Yucca Mountain, Nevada. The objective of these long-term experiments is to make detailed observations of the desorption behavior of uranium and neptunium to provide Yucca Mountain with technical bases for a more realistic and potentially less conservative approach to predicting the transport of adsorbing radionuclides in the saturated alluvium. This paper describes several long-term desorption experiments using a flow-through experimental method and groundwater and alluvium obtained from boreholes along a potential groundwater flow path from the proposed repository site. In the long term desorption experiments, the percentages of uranium and neptunium sorbed as a function of time after different durations of sorption was determined. In addition, the desorbed activity as a function of time was fit using a multi-site, multi-rate model to demonstrate that different desorption rate constants ranging over several orders of magnitude exist for the desorption of uranium from Yucca Mountain saturated alluvium. This information will be used to support the development of a conceptual model that ultimately results in effective K{sub d} values much larger than those currently in use for predicting radionuclide transport at Yucca Mountain.

C.D. Scism; P.W. Reimus; M. Ding; S.J. Chipera

2006-03-16T23:59:59.000Z

467

Natural gels in the Yucca Mountain Area, Nevada, USA  

SciTech Connect

Relict gels at Yucca Mountain include pore- and fracture-fillings of silica and zeolite related to diagenetic and hydrothermal alteration of vitric tuffs. Water-rich free gels in fractures at Rainier Mesa consist of smectite with or without silica-rich gel fragments. Gels are being studied for their potential role in transport of radionuclides from a nuclear-waste repository.

Levy, S.S.

1991-12-31T23:59:59.000Z

468

Mountain-Induced Convection under Fair Weather Conditions  

Science Conference Proceedings (OSTI)

Measurements of the structure of dry convection over an isolated mountain range heated by the sun are presented. Filter techniques are used to deduce those scales of motion of significance to the circulation. A two-scale process is observed in ...

David Raymond; Marvin Wilkening

1980-12-01T23:59:59.000Z

469

Vision and framework for technical and management support to facilitate foreign spent fuel storage and geologic disposal in Russia  

SciTech Connect

This ''Technical and Management Support'' program would facilitate the transfer of spent fuel from commercial power plants in Taiwan to a storage and geologic repository site near Krasnoyarsk, Russia. This program resolves issues of disposition of Taiwan spent fuel (including US origin fuel) and provides revenue for Russia to develop an integrated spent fuel storage and radioactive waste management system including a geologic repository. LLNL has ongoing contracts and collaborations with all the principal parties and is uniquely positioned to facilitate the development of such a program. A three-phase approach over 20 years is proposed: namely, an initial feasibility investigation followed by an engineering development phase, and then implementation.

Halsey, W G; Jardine, L J; Smith, C F

1999-07-01T23:59:59.000Z

470

Step-Mountain Technique Applied to an Atmospheric C-Grid Model, or How to Improve Precipitation near Mountains  

Science Conference Proceedings (OSTI)

Starting with Arakawa and Lamb’s second-order C-grid scheme, this paper describes the modifications made to the dynamics to create a C-grid atmospheric model with a variable number of cells for each vertical column. Where mountains exist, grid ...

Gary L. Russell

2007-12-01T23:59:59.000Z

471

Yucca Mountain Site Characterization Project technical data catalog; Yucca Mountain Site Characterization Project  

Science Conference Proceedings (OSTI)

The June 1, 1985, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. Each new publication of the Technical Data Catalog supersedes the previous edition.

NONE

1992-09-30T23:59:59.000Z

472

Lessons Learned and Present Day Challenges of Addressing 20th Century Radiation Legacies of Russia and the United States  

Science Conference Proceedings (OSTI)

The decommissioning of nuclear submarines, disposal of highly-enriched uranium and weapons-grade plutonium, and processing of high-level radioactive wastes represent the most challenging issues facing the cleanup of 20th century radiation legacy wastes and facilities. The US and Russia are the two primary countries dealing with these challenges, because most of the world's fissile inventory is being processed and stored at multiple industrial sites and nuclear weapons production facilities in these countries.

KRISTOFZSKI, J.G.

2000-10-26T23:59:59.000Z

473

Petroleum and geothermal production technology in Russia: Summary of information obtained during informational meetings with several Russian Institutes  

DOE Green Energy (OSTI)

Russian scientists and engineers have drilled the deepest holes in the world. It is recognized that this experience has given them an expertise in drilling superdeep holes, as well as other aspects of drilling, completions, and geophysics. More and more US oil and gas companies are vigorously expanding their exploration and development into Russia. It is important for them to identify and use Russian technology in drilling, completion, logging, and reservoir characterization to the extent possible, in order to both reduce drilling costs and help support the Russian economy. While these US companies are interested in becoming involved in and/or sponsoring research in Russia, they have been unsure as to which scientists and institutes are working on problems of interest. It was also important to determine in which areas Russian technology is farther advanced than in the West. Such technology could then be commercialized as part of the Industrial Partnering Program. In order to develop a clear understanding of these issues, two Sandia engineers with drilling and completions expertise and a geophysicist with expertise in reservoir analysis traveled to Russia to meet with Russian scientists and engineers to discuss their technologies and areas of interest. This report contains a summary of the information obtained during the visit.

Schafer, D.M.; Glowka, D.A.; Teufel, L.W.

1995-04-01T23:59:59.000Z

474

Scientists in a Changed Institutional Environment: Subjective Adaptation and Social Responsibility Norms in Russia  

Science Conference Proceedings (OSTI)

How do scientists react when the institutional setting in which they conduct their work changes radically? How do long-standing norms regarding the social responsibility of scientists fare? What factors influence whether scientists embrace or reject the new institutions and norms? We examine these questions using data from a unique survey of 602 scientists in Russia, whose science system experienced a sustained crisis and sweeping changes in science institutions following the collapse of the Soviet Union. We develop measures of how respondents view financing based on grants and other institutional changes in the Russian science system, as well as measures of two norms regarding scientists social responsibility. We find that the majority of scientists have adapted, in the sense that they hold positive views of the new institutions, but a diversity of orientations remains. Social responsibility norms are common among Russian scientists, but far from universal. The main correlates of adaptation are age and current success at negotiating the new institutions, though prospective success, work context, and ethnicity have some of the hypothesized associations. As for social responsibility norms, the main source of variation is age: younger scientists are more likely to embrace individualistic rather than socially-oriented norms.

Gerber, T P; Ball, D Y

2008-06-05T23:59:59.000Z

475

Aeromagnetic Survey At Blue Mountain Area (Fairbank Engineering, 2004) |  

Open Energy Info (EERE)

4) 4) Exploration Activity Details Location Blue Mountain Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The airborne magnetometer and VLF-EM surveys carried out by Aerodat Limited, in 1988, covered the western flank of Blue Mountain including most of the geothermal lease area. The interpreted data (total field magnetic contours; calculated vertical magnetic gradient) indicate parallel sets of northerly, northeasterly, and northwesterly-trending structures that correspond well with the major fault sets identified from geologic mapping and interpreted drilling sections. Also, an elongate northerly-trending area of low magnetic gradient coincides closely with the area of intense hydrothermal alteration associated with the prominent north-south range

476

NETL: Ambient Monitoring - Great Smoky Mountains National Park  

NLE Websites -- All DOE Office Websites (Extended Search)

Great Smoky Mountains Project (GSMP) Great Smoky Mountains Project (GSMP) Background Fine particle annual mass concentrations in the Tennessee Valley range from 14 to20 micrograms per cubic meter. All seven urban/suburban sites exceeded the annual PM2.5 standard; only the rural Lawrence County TN site remained below the 15 µg/m3 annual standard. None of the stations exceeded the 65 µg/m3 level of the 24-hour PM2.5 standard. Summer high-winter low seasonality is evident. The current FRM PM2.5 mass measurements under-estimate the contribution of volatile/semi-volatile nitrates and organic carbon species. The semi-volatile organic fraction is both highly variable and significant, and assessments of semi-volatile and non-volatile organic carbon fractions are needed when particle composition measurements are made, especially at urban sites.

477

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

AJUST A PUMP BEAM PUMPING UNIT AJUST A PUMP BEAM PUMPING UNIT FEBRUARY 19, 1997 FC9532 / 95EC1 ROCKY MOUNTAIN OILFIELD TESTING CENTER AJUST A PUMP TEST Rosemond Manufacturing, Inc. (RMI) Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR Project Manager February 19, 1997 650200/551107:9532 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of a Model-2000 Ajust A Pump system at the Naval Petroleum Reserve No. 3 (NPR-3). Rosemond Manufacturing, Inc. (RMI) manufactures compact beam-pumping units that incorporate energy-efficient gear boxes. The equipment is designed to reduce operating costs and minimize maintenance labor. This report documents the equipment performance and the results of the Ajust A Pump test. The purpose of the test was to demonstrate claims of energy efficiency and reduced labor requirements. The test showed

478

Signal Mountain, Tennessee: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Signal Mountain, Tennessee: Energy Resources Signal Mountain, Tennessee: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.1225727°, -85.3438488° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1225727,"lon":-85.3438488,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

479

Rocky Mountain Power - Energy FinAnswer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

50% of eligible measure cost 50% of eligible measure cost Lighting Energy Savings Limit: 50%-75% of savings Payback Cap: 1 year; if incentive brings the simple payback below one year, the incenive is reduced so the simple payback equals one year Program Info State Idaho Program Type Utility Rebate Program Rebate Amount $0.12/kWh annual energy savings + $50/kW average monthly on-peak demand savings Provider Rocky Mountain Power Rocky Mountain Power's Energy FinAnswer program provides incentives to help its customers improve the efficiency of existing facilities and build new facilities that are significantly more efficient than code. New construction and retrofit projects for all industrial facilities can participate as well as all new commercial projects and commercial retrofits in facilities larger than 20,000 square feet.

480

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

PERMANENT DOWNHOLE PRESSURE GAUGE PERMANENT DOWNHOLE PRESSURE GAUGE MARCH 15, 1998 FC9553/96PT16 ROCKY MOUNTAIN OILFIELD TESTING CENTER Sperry-Sun Permanent Downhole Pressure Gauge PROJECT TEST RESULTS March 16, 1998 Michael R. Tyler Project Manager Abstract The Sperry-Sun Downhole Permanent Pressure Gauge (DPPG) is a pressure gauge that is designed to remain in the well for long periods of time providing real time surface data on borehole pressures. The DPPG was field tested at the Rocky Mountain Oilfield Testing Center in well 63-TPX-10. The instrument was attached to the production string directly above a submersible pump. It was expected to monitor pressure draw-down and build-ups during normal production cycles. During the first two months of the test, the tool worked fine providing a pressure up survey that

Note: This page contains sample records for the topic "mountains russia contemporaneous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Drum Mountain Geothermal Project (3) | Open Energy Information  

Open Energy Info (EERE)

Development Project: Drum Mountain Geothermal Project (3) Development Project: Drum Mountain Geothermal Project (3) Project Location Information Coordinates The following coordinate was not recognized: 39.32.41" N, 112°55'1" W.The following coordinate was not recognized: 39.32.41" N, 112°55'1" W. Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

482

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

MAG-WELL DOWNHOLE MAGNETIC FLUID CONDITIONERS MAG-WELL DOWNHOLE MAGNETIC FLUID CONDITIONERS APRIL 4,1995 FC9511 / 95PT5 ROCKY MOUNTAIN OILFIELD TESTING CENTER MAG-WELL DOWNHOLE MAGNETIC FLUID CONDITIONERS PROJECT TEST RESULTES Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer November 28, 1995 650100/9511:jb ABSTRACT November 28, 1995 The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a field test on the Mag-Well Downhole Magnetic Fluid Conditioners (MFCs), at the Naval Petroleum Reserve No. 3 (NPR- 3) located 35 miles north of Casper in Natrona County, Wyoming. Mag-Well, Inc., manufactures the MFCs, that are designed to reduce scale and paraffin buildup on the rods, tubing and downhole pump of producing oil wells. The Mag-Well magnetic tools failed to

483

Squirrel Mountain Valley, California: Energy Resources | Open Energy  

Open Energy Info (EERE)

Squirrel Mountain Valley, California: Energy Resources Squirrel Mountain Valley, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.6232866°, -118.4098058° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.6232866,"lon":-118.4098058,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

484

Mountain View Elec Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

Mountain View Elec Assn, Inc Mountain View Elec Assn, Inc Place Colorado Utility Id 13058 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 16.01 RESIDENTIAL RATE Residential 16.05 RESIDENTIAL TIME OF DAY SERVICE RATE Residential 18.40 SMALL POWER RATE Commercial 18.60 LARGE POWER RATE Commercial 18.61 LARGE POWER - PRIMARY METERING RATE Commercial 18.62 LARGE POWER - LOAD MANAGEMENT RATE Commercial 18.63 LARGE POWER - LOAD MANAGEMENT - PRIMARY METERING RATE Commercial 18.64 GENERAL POWER RATE Industrial

485

The National Repository at Yucca Mountain, Russ Dyer  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Repository at Repository at Yucca Mountain Presented to: EM High Level Waste Corporate Board Presented by: Russ Dyer Chief Scientist Office of Civilian Radioactive Waste Management July 24, 2008 Idaho National Laboratory 2 SBBB-GeneralBriefing_070808Rev1.ppt Solving a national problem now * On June 3, 2008, the U.S. Department of Energy submitted an application to the U.S. Nuclear Regulatory Commission for a license to construct a repository at Yucca Mountain 3 SBBB-GeneralBriefing_070808Rev1.ppt Repository license application * The LA seeks authorization to construct the nation's first geologic repository * It is a culmination of more than 25 years of scientific research and engineering * The LA describes DOE's plan to safely isolate spent nuclear fuel and high-level radioactive

486

Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal  

Open Energy Info (EERE)

Tilapia Aquaculture Low Temperature Geothermal Tilapia Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal Facility Facility Rocky Mountain White Tilapia Sector Geothermal energy Type Aquaculture Location Alamosa, Colorado Coordinates 37.4694491°, -105.8700214° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

487

Degradation Modes of Alloy 22 in Yucca Mountain Repository Conditions  

DOE Green Energy (OSTI)

The nuclear waste package design for Yucca Mountain (Nevada, USA), in its current configuration, consists of a double wall cylindrical container fabricated using a highly corrosion resistant Ni-based Alloy 22 for the outer barrier and type 316 stainless steel for the inner structural vessel. A mailbox-shaped drip shield fabricated primarily using Ti Grade 7 will cover the waste packages. The environmental degradation of the relevant materials have been extensively studied and modeled for over ten years. This paper reviews the state-of-the-art understanding of the degradation modes of Alloy 22 (N06022) due to its interaction with the predicted in-drift mountain conditions including temperature and types of electrolytes. Subjects discussed include thermal aging and phase stability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced cracking.

Hua, F; Gordon, G M; Mon, K G; Rebak, R B

2005-11-05T23:59:59.000Z

488

DEGRADATION MODES OF ALLOY 22 IN YUCCA MOUNTAIN REPOSITORY CONDITIONS  

DOE Green Energy (OSTI)

The nuclear waste package design for Yucca Mountain (Nevada, USA), in its current configuration, consists of a double wall cylindrical container fabricated using a highly corrosion resistant Ni-based Alloy 22 for the outer barrier and type 316 stainless steel for the inner structural vessel. A mailbox-shaped drip shield fabricated primarily using Ti Grade 7 will cover the waste packages. The environmental degradation of the relevant materials have been extensively studied and modeled for over ten years. This paper reviews the state-of-the-art understanding of the degradation modes of Alloy 22 (N06022) due to its interaction with the predicted in-drift mountain conditions including temperature and types of electrolytes. Subjects discussed include thermal aging and phase stability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced cracking.

F. Hua; G.M. Gordon; R.B. Rebak

2005-10-13T23:59:59.000Z

489

Pine Mountain, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Pine Mountain, GA) (Redirected from Pine Mountain, GA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.6759423°, -84.1149163° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.6759423,"lon":-84.1149163,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

490

Casper Mountain, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mountain, Wyoming: Energy Resources Mountain, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.7330199°, -106.3266921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.7330199,"lon":-106.3266921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

491

Mountain Wind II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Facility Mountain Wind II Facility Mountain Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group Developer Edison Mission Group Energy Purchaser PacifiCorp Location WY Coordinates 41.275629°, -110.539488° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.275629,"lon":-110.539488,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

492

Coal River Mountain Redux Below is an update to the Coal River Mountain story that I described earlier in an e-mail, in an  

E-Print Network (OSTI)

Coal River Mountain Redux Below is an update to the Coal River Mountain story that I described billion gallons of toxic coal sludge located directly above Marsh Fork Elementary School. (No word yet on their campus a couple of years ago. Underground Appalachian coal mining is being replaced in recent years

Hansen, James E.

493

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

D-JAX PUMP-OFF CONTROLLER D-JAX PUMP-OFF CONTROLLER APRIL 4,1995 FC9510 / 95PT4 ROCKY MOUNTAIN OILFIELD TESTING CENTER D-JAX PUMP-OFF CONTROLLER PROJECT TEST RESULTES Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer April 4, 1995 55103/9510:jb CONTENTS Page Introduction........................................................................................1 NPR-3 Map........................................................................................2 Benefits of D-JAX Pump-Off Controller.....................................................3 Test Results.......................................................................................3 Production Information..........................................................................4

494

Determination of HEat Capacity of Yucca Mountain Strtigraphic Layers  

DOE Green Energy (OSTI)

The heat generated from the radioactive waste to be placed in the proposed geologic repository at Yucca Mountain, Nevada, will affect the thermal-hydrology of the Yucca Mountain stratigraphic layers. In order to assess the effect of the movement of repository heat into the fractured rocks accurate determination of thermodynamic and hydraulic properties is important. Heat capacity is one of the properties that are required to evaluate energy storage in the fractured rock. Rock-grain heat capacity, the subject of this study, is the heat capacity of the solid part of the rock. Yucca Mountain consists of alternating lithostratigraphic units of welded and non-welded ash-flow tuff, mainly rhyolitic in composition and displaying varying degrees of vitrification and alteration. A number of methods exist that can be used to evaluate heat capacity of the stratigraphic layers that consist of different compositions. In this study, the mineral summation method has been used to quantify the heat capacity of the stratigraphic layers based on Kopp's rule. The mineral summation method is an addition of the weighted heat capacity of each mineral found in a specific layer. For this study the weighting was done based on the mass percentage of each mineral in the layer. The method utilized a mineralogic map of the rocks at the Yucca Mountain repository site. The Calico Hills formation and adjacent bedded tuff layers display a bimodal mineral distribution of vitric and zeolitic zones with differing mineralogies. Based on this bimodal distribution in zeolite abundance, the boundary between the vitric and zeolitic zones was selected to be 15% zeolitic abundance. Thus, based on the zeolite abundance, subdivisions have been introduced to these layers into ''vitric'' and ''zeolitic'' zones. Heat capacity values have been calculated for these layers both as ''layer average'' and ''zone average''. The heat capacity determination method presented in this report did not account for spatial variability in the horizontal direction within each layer.

T. Hadgu; C. Lum; J.E. Bean

2006-06-20T23:59:59.000Z

495

Regional geology and geophysics of the Jemez Mountains  

DOE Green Energy (OSTI)

The western margin of the Rocky Mountain tectonic belt is the initial site for the Los Alamos Geothermal Project. lgneous activity in the area culminated with the formation of a collapsed volcanic caldera and the deposition of thick beds of tuff. Geophysical studies indicate that the region is one of relatively highterrestrial heat flow, low-crustal density, low-crustal seismic velocities, low-crustal magnetoelectric impedance, and thin crust. 34 references. (auth)

West, F.G.

1973-08-01T23:59:59.000Z

496

The occurrence and distribution of erionite at Yucca Mountain, Nevada  

SciTech Connect

We have conducted an investigation to determine the occurrence and distribution of erionite, a potential carcinogen, at Yucca Mountain, Nevada. Using x-ray powder diffraction techniques yielding detection limits to below 0.05 wt %, we positively identified erionite in only 3 out of 76 bulk and 12 fracture samples investigated. The three erionite-bearing samples (J12-620/630, UE-25aNo.1-1296.2, and USW G4-1314) all occur above the static water level in clay/zeolite-rich horizons near the top of vitrophyres. Erionite occurs as trace amounts of less than 1 wt % in the whole rock, although it may occur locally in significant amounts as fracture fillings (e.g., UE-25aNo.1-1296.2 where it comprises approximately 45 wt % of the fracture filling material). All three occurrences appear to be extremely isolated cases since erionite was not detected in neighboring samples. Erionite at Yucca Mountain apparently formed only in localized microenvironments, possibly restricted to fractures. Since erionite occurs in trace amounts only in extremely isolated instances, it should pose little or no health hazard to workers in the potential repository at Yucca Mountain or to the public. The amounts of erionite liberated to the biosphere should be negligible, particularly when compared with the amounts of erionite occurring naturally at the surface in Nevada and surrounding states. 24 refs., 7 figs., 2 tabs.

Chipera, S.J.; Bish, D.L.

1989-09-01T23:59:59.000Z

497

Rocky Mountain Power - Solar Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - Solar Incentive Program Rocky Mountain Power - Solar Incentive Program Rocky Mountain Power - Solar Incentive Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $5,000 Small Non-Residential (up to 25 kW): $25,000 Large Non-Residential (greater than 25 kW, up to 1,000 kW): $800,000 Program Info Funding Source Rate-payer funds Start Date 9/1/2007 Expiration Date 12/31/2017 State Utah Program Type Utility Rebate Program Rebate Amount Program Year 2012/2013 (application period is closed): Residential: $1.25/W-AC Small Non-Residential (up to 25 kW): $1.00/W-AC Large Non-Residential (greater than 25 kW, up to 1,000 kW): $0.80/W-AC '''''Note: Applications for 2013 were accepted during a two-week period

498

Radiation environment at high-mountains stations and onboard spacecraft  

SciTech Connect

Radiation environment has been studied at high-mountain observatories and onboard spacecraft. The most important contribution to this environment at high-mountain observatories represents cosmic radiation component. We have been studied this environment in two high-mountain observatories: one situated on the top of Lomnicky Stit, High Tatras, Slovakia, and another one close to the top of Moussala, Rila, Bulgaria (Basic Environment Observatory--BEO). The studies have been performed using: an energy depos