National Library of Energy BETA

Sample records for mountain region cxs

  1. Field Testing Protocol Western Mountains, Valleys and Coast Regional Supplement

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Field Testing Protocol Western Mountains, Valleys and Coast Regional Supplement Organization and oversee the field testing of the draft Regional Supplement. Field testing will be done in cooperation, the District coordinator will provide team members with an introduction to the Regional Supplement

  2. Investigation of Groundwater Flow in Foothill and Mountain regions using Heat Flow measurements

    E-Print Network [OSTI]

    Fogg, Graham E.; Trask, James C

    2009-01-01

    Flow in Foothill and Mountain regions using Heat Flowenergy balance near mountain-front Finite element numericalcross-section for areal mountain-slope flow 10.2 2D cross-

  3. Rocky Mountain Environment and Society The Rocky Mountain West is the fastest-growing region of the United States. The rapid

    E-Print Network [OSTI]

    MacDonald, Lee

    Rocky Mountain Environment and Society The Rocky Mountain West is the fastest-growing region conflicting uses. The goals of the Rocky Mountain Environment and Society Institute (RMES) are to understand and quantify the influence of natural and human-induced change on Rocky Mountain ecosystems from the mountains

  4. Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region (RMCCS)

    SciTech Connect (OSTI)

    McPherson, Brian; Matthews, Vince

    2013-09-30

    The primary objective of the “Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region” project, or RMCCS project, is to characterize the storage potential of the most promising geologic sequestration formations within the southwestern U.S. and the Central Rocky Mountain region in particular. The approach included an analysis of geologic sequestration formations under the Craig Power Station in northwestern Colorado, and application or extrapolation of those local-scale results to the broader region. A ten-step protocol for geologic carbon storage site characterization was a primary outcome of this project.

  5. INTRODUCTION The Uinta Mountain region contains a relatively

    E-Print Network [OSTI]

    Pederson, Joel L.

    as the major drainage reversal that resulted in the Green River traversing and incising the Uinta uplift. This regional drainage change is important because it integrated the upper Green River into the greater Colorado River drainage, lowering baselevel and setting the stage for the late Cenozoic erosion that defines

  6. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    SciTech Connect (OSTI)

    J.S. Stuckless; D. O'Leary

    2006-09-25

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

  7. Risk Assessment of Geologic Formation Sequestration in The Rocky Mountain Region, USA

    SciTech Connect (OSTI)

    Lee, Si-Yong; McPherson, Brian

    2013-08-01

    The purpose of this report is to describe the outcome of a targeted risk assessment of a candidate geologic sequestration site in the Rocky Mountain region of the USA. Specifically, a major goal of the probabilistic risk assessment was to quantify the possible spatiotemporal responses for Area of Review (AoR) and injection-induced pressure buildup associated with carbon dioxide (CO?) injection into the subsurface. Because of the computational expense of a conventional Monte Carlo approach, especially given the likely uncertainties in model parameters, we applied a response surface method for probabilistic risk assessment of geologic CO? storage in the Permo-Penn Weber formation at a potential CCS site in Craig, Colorado. A site-specific aquifer model was built for the numerical simulation based on a regional geologic model.

  8. Cheap Artificial AB-Mountains, Extraction of Water and Energy from Atmosphere and Change of Regional Climate

    E-Print Network [OSTI]

    Alexander Bolonkin

    2008-05-11

    Author suggests and researches a new revolutionary method for changing the climates of entire countries or portions thereof, obtaining huge amounts of cheap water and energy from the atmosphere. In this paper is presented the idea of cheap artificial inflatable mountains, which may cardinally change the climate of a large region or country. Additional benefits: The potential of tapping large amounts of fresh water and energy. The mountains are inflatable semi-cylindrical constructions from thin film (gas bags) having heights of up to 3 - 5 km. They are located perpendicular to the main wind direction. Encountering these artificial mountains, humid air (wind) rises to crest altitude, is cooled and produces rain (or rain clouds). Many natural mountains are sources of rivers, and other forms of water and power production - and artificial mountains may provide these services for entire nations in the future. The film of these gasbags is supported at altitude by small additional atmospheric overpressure and may be connected to the ground by thin cables. The author has shown (in previous works about the AB-Dome) that this closed AB-Dome allows full control of the weather inside the Dome (the day is always fine, the rain is only at night, no strong winds) and influence to given region. This is a realistic and cheap method of economical irrigation, getting energy and virtual weather control on Earth at the current time.

  9. A Ten Step Protocol and Plan for CCS Site Characterization, Based on an Analysis of the Rocky Mountain Region, USA

    SciTech Connect (OSTI)

    McPherson, Brian; Matthews, Vince

    2013-09-15

    This report expresses a Ten-Step Protocol for CO2 Storage Site Characterization, the final outcome of an extensive Site Characterization analysis of the Rocky Mountain region, USA. These ten steps include: (1) regional assessment and data gathering; (2) identification and analysis of appropriate local sites for characterization; (3) public engagement; (4) geologic and geophysical analysis of local site(s); (5) stratigraphic well drilling and coring; (6) core analysis and interpretation with other data; (7) database assembly and static model development; (8) storage capacity assessment; (9) simulation and uncertainty assessment; (10) risk assessment. While the results detailed here are primarily germane to the Rocky Mountain region, the intent of this protocol is to be portable or generally applicable for CO2 storage site characterization.

  10. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, January 2000-December 2002

    SciTech Connect (OSTI)

    Locke, Glenn L. [US Geological Survey, Carson City, NV (United States); La Camera, Richard J. [US Geological Survey, Carson City, NV (United States)

    2003-12-31

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 35 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are tabulated from January 2000 through December 2002. Historical data on water levels, discharges, and withdrawals are graphically presented to indicate variations through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented for 1992–2002 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements, maximum, minimum, and median water-level altitudes, and average deviation of measured water-level altitudes compared to selected baseline periods. Baseline periods varied for 1985–93. At six of the seven wells in Jackass Flats, the median water levels for 2002 were slightly higher (0.3–2.4 feet) than for their respective baseline periods. At the remaining well, data for 2002 was not summarized statistically but median water-level altitude in 2001 was 0.7 foot higher than that in its baseline period.

  11. CO{sub 2} Sequestration Capacity and Associated Aspects of the Most Promising Geologic Formations in the Rocky Mountain Region: Local-Scale Analyses

    SciTech Connect (OSTI)

    Laes, Denise; Eisinger, Chris; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Scott, Phyllis; Lee, Si-Yong; Zaluski, Wade; Esser, Richard; Matthews, Vince; McPherson, Brian

    2013-07-30

    The purpose of this report is to provide a summary of individual local-­?scale CCS site characterization studies conducted in Colorado, New Mexico and Utah. These site-­? specific characterization analyses were performed as part of the “Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region” (RMCCS) project. The primary objective of these local-­?scale analyses is to provide a basis for regional-­?scale characterization efforts within each state. Specifically, limits on time and funding will typically inhibit CCS projects from conducting high-­? resolution characterization of a state-­?sized region, but smaller (< 10,000 km{sup 2}) site analyses are usually possible, and such can provide insight regarding limiting factors for the regional-­?scale geology. For the RMCCS project, the outcomes of these local-­?scale studies provide a starting point for future local-­?scale site characterization efforts in the Rocky Mountain region.

  12. Rocky Mountain Regional CO{sub 2} Storage Capacity and Significance

    SciTech Connect (OSTI)

    Laes, Denise; Eisinger, Chris; Esser, Richard; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Matthews, Vince; McPherson, Brian

    2013-08-30

    The purpose of this study includes extensive characterization of the most promising geologic CO{sub 2} storage formations on the Colorado Plateau, including estimates of maximum possible storage capacity. The primary targets of characterization and capacity analysis include the Cretaceous Dakota Formation, the Jurassic Entrada Formation and the Permian Weber Formation and their equivalents in the Colorado Plateau region. The total CO{sub 2} capacity estimates for the deep saline formations of the Colorado Plateau region range between 9.8 metric GT and 143 metric GT, depending on assumed storage efficiency, formations included, and other factors.

  13. Regional operations research program for commercialization of geothermal energy in the Rocky Mountain Basin and Range. Final report, August 1, 1978-February 28, 1980

    SciTech Connect (OSTI)

    Marlin, J.M.; Cunniff, R.; McDevitt, P.; Nowotny, K.; O'Dea, P.

    1981-01-01

    The work accomplished from August 1978 to February 1980 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program are described. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams and special analyses in support of several federal agencies.

  14. Assessment of the Potential to Reduce Emissions from Road Transportation, Notably NOx, Through the Use of Alternative Vehicles and Fuels in the Great Smoky Mountains Region

    SciTech Connect (OSTI)

    Sheffield, J.

    2001-08-30

    Air pollution is a serious problem in the region of the Great Smoky Mountains. The U.S. Environmental Protection Agency (EPA) may designate non-attainment areas by 2003 for ozone. Pollutants include nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), carbon monoxide (CO), volatile organic compounds (VOCs), lead, and particulate matter (PM), which are health hazards, damage the environment, and limit visibility. The main contributors to this pollution are industry, transportation, and utilities. Reductions from all contributors are needed to correct this problem. While improvements are projected in each sector over the next decades, the May 2000 Interim Report issued by the Southern Appalachian Mountains Initiative (SAMI) suggests that the percentage of NO{sub x} emissions from transportation may increase.

  15. alpine space -man & environment, vol. 7: Global Change and Sustainable Development in Mountain Regions 2008 iup innsbruck university press, ISBN 978-3-902571-97-7

    E-Print Network [OSTI]

    Anderson, Charles W.

    95 alpine space - man & environment, vol. 7: Global Change and Sustainable Development in Mountain Mountain Forests: Connecting People and Ecology Dan Binkley Colorado Forest Restoration Institute, Warner Mountains form the backbone of the North American continent, separating waters flowing eastward

  16. Mountains

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    of Guadalupe Mountains National Park (GUMO) as a reintroduction area for desert bighorn sheep. The study used landscape metrics to compare GUMO to a nearby mountain range that is currently supporting an estimated population of 400 bighorn sheep. This study...

  17. Integrated Vulnerability and Impacts Assessment for Natural and Engineered Water-Energy Systems in the Southwest and Southern Rocky Mountain Region

    SciTech Connect (OSTI)

    Tidwell, Vincent C.; Wolfsberg, Andrew; Macknick, Jordan; Middleton, Richard

    2015-01-01

    In the Southwest and Southern Rocky Mountains (SWSRM), energy production, energy resource extraction, and other high volume uses depend on water supply from systems that are highly vulnerable to extreme, coupled hydro-ecosystem-climate events including prolonged drought, flooding, degrading snow cover, forest die off, and wildfire. These vulnerabilities, which increase under climate change, present a challenge for energy and resource planners in the region with the highest population growth rate in the nation. Currently, analytical tools are designed to address individual aspects of these regional energy and water vulnerabilities. Further, these tools are not linked, severely limiting the effectiveness of each individual tool. Linking established tools, which have varying degrees of spatial and temporal resolution as well as modeling objectives, and developing next-generation capabilities where needed would provide a unique and replicable platform for regional analyses of climate-water-ecosystem-energy interactions, while leveraging prior investments and current expertise (both within DOE and across other Federal agencies).

  18. Integrated research on mountain glaciers: Current status, priorities and future prospects

    E-Print Network [OSTI]

    Roe, Gerard

    Integrated research on mountain glaciers: Current status, priorities and future prospects Lewis A: Glaciation Glaciers Mountains Glaciology Geochronology Modeling Mountain glaciers are sensitive probes; changes in the magnitude and timing of runoff in the mountains and adjacent regions; and, through

  19. YUCCA MOUNTAIN SITE DESCRIPTION

    SciTech Connect (OSTI)

    A.M. Simmons

    2004-04-16

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

  20. Impacts of Climate Change and Vegetation Dynamics on Runoff in the Mountainous Region of the Haihe River Basin in the Past Five Decades

    SciTech Connect (OSTI)

    Lei, Huimin; Yang, Dawen; Huang, Maoyi

    2014-04-16

    Climate and atmospheric CO2 concentration have changed significantly in the mountainous region of the Haihe River basin over the past five decades. In the study, a process-based terrestrial model, version 4 of the Community Land Model (CLM4), was used to quantify the spatiotemporal changes in runoff over the region, driven by the varying climate factors and CO2 concentration. Overall, our simulations suggest that climate-induced change in runoff in this region show a decreasing trend since 1960. Changes in precipitation, solar radiation, air temperature, and wind speed accounts for 56%, -14%, 13%, -5% of the overall decrease in annual runoff, respectively, but their relative contributions vary across the study area. Rising atmospheric CO2 concentration was found to have limited impacts on runoff. Significant decrease in runoff over the southern and northeastern portion of the region is primarily attributed to decreasing precipitation, while decreasing solar radiation and increasing air temperature are the main causes of slight runoff increase in the northern portion. Our results also suggest that the magnitude of decreasing trend could be greatly underestimated if the dynamical interactions of vegetation phenology with the environmental factors are not considered in the modeling, highlighting the importance of including dynamic vegetation phenology in the prediction of runoff in this region.

  1. Evaluating the Economics of Best Management Practices for Tarrant Regional Water District’s Eagle Mountain Lake Watershed 

    E-Print Network [OSTI]

    Johnson, Jason L.

    2011-01-01

    the most cost-e f f e c t i v e means of reduci n g (and/o r preven t i n g ) tota l phosph o r u s (TP) inflow s into the Eagle Mountain Lake from a compr e h e n s i v e set of Best Manag e me n t Pract i c e s (BMPs ) . Additi o na l l y , the reduce... d total nitrog e n (TN), and sedime n t inflow s result i n g from adoption of these BMPs was also calculated. To achieve the desired water quality improveme n t s, manage ment consulting engineers indicated that the colle c t i ve assor t me n...

  2. SIMULATION MODEL ANALYSIS OF THE MOST PROMISING GEOLOGIC SEQUESTRATION FORMATION CANDIDATES IN THE ROCKY MOUNTAIN REGION, USA, WITH FOCUS ON UNCERTAINTY ASSESSMENT

    SciTech Connect (OSTI)

    Lee, Si-Yong; Zaluski, Wade; Will, Robert; Eisinger, Chris; Matthews, Vince; McPherson, Brian

    2013-09-01

    The purpose of this report is to report results of reservoir model simulation analyses for forecasting subsurface CO2 storage capacity estimation for the most promising formations in the Rocky Mountain region of the USA. A particular emphasis of this project was to assess uncertainty of the simulation-based forecasts. Results illustrate how local-scale data, including well information, number of wells, and location of wells, affect storage capacity estimates and what degree of well density (number of wells over a fixed area) may be required to estimate capacity within a specified degree of confidence. A major outcome of this work was development of a new workflow of simulation analysis, accommodating the addition of “random pseudo wells” to represent virtual characterization wells.

  3. Piegan Mountains 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    mountain bikers and hikers focus in the environment and to identify the key environmental elements and cognitive processes relevant to creating the mode of experience and underlying conflict, Visitor Employed Photography, VEP, and follow-up interviews were...

  4. Tectonic-sedimentary evolution of the northern margin of Gondwana during Late Palaeozoic – Early Cenozoic time in the Eastern Mediterranean region: evidence from the Central Taurus Mountains, Turkey. 

    E-Print Network [OSTI]

    Mackintosh, Peter W

    2008-01-01

    The Taurus Mountains are an E-W trending mountain range in southern Turkey, with an elevation of up to 3500 m. In the south central Taurides, the Beysehir-Hoyran-Hadim nappes, a series of thrust sheets of Palaeozoic to ...

  5. Aeromagnetic Survey At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    near Blue Mountain and Pumpernickel Valley near Winnemucca to study regional crustal structures to help understand the geologic framework of Blue Mountain and help in mineral and...

  6. Ground Gravity Survey At Blue Mountain Geothermal Area (U.S....

    Open Energy Info (EERE)

    near Blue Mountain and Pumpernickel Valley near Winnemucca to study regional crustal structures to help understand the geologic framework of Blue Mountain and help in mineral and...

  7. Ground Magnetics At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    near Blue Mountain and Pumpernickel Valley near Winnemucca to study regional crustal structures to help understand the geologic framework of Blue Mountain and help in mineral and...

  8. Rock Sampling At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    near Blue Mountain and Pumpernickel Valley near Winnemucca to study regional crustal structures to help understand the geologic framework of Blue Mountain and help in mineral and...

  9. Creating Mountains out of Mole Hills: Automatic Identification of Hills and Ranges Using Morphometric Analysis

    E-Print Network [OSTI]

    1 Creating Mountains out of Mole Hills: Automatic Identification of Hills and Ranges Using that comprise them (that mountain ranges are a collection of clustered yet individually identifiable mountains for automatically discerning mountain ranges as well as the smaller hills that constitute them. A mountainous region

  10. Categorical Exclusion Determinations: Western Area PowerAdministratio...

    Energy Savers [EERE]

    Mountain Region August 14, 2014 CX-012767: Categorical Exclusion Determination Medicine Bow Substation Control Building Installation Project Carbon County, Wyoming CX(s)...

  11. Finite - difference modeling of the Yucca Mountain, Nevada Area: a study of the regional water table gradients based on hydraulic conductivity contrasts 

    E-Print Network [OSTI]

    Davidson, Timothy Ross

    1994-01-01

    The Nevada Yucca Mountain site is being investigated to determine if it is a suitable site for the construction of a high-level nuclear waste repository. A feature of concern north of the selected site is an abrupt rise in the water table. This high...

  12. Geophysical Studies in the Vicinity of Blue Mountain and Pumpernickel...

    Open Energy Info (EERE)

    magnetic, and physical-property data were collected to study regional crustal structures as an aid to understanding the geologic framework of the Blue Mountain and...

  13. Kuuchamaa: The Kumeyaay Sacred Mountain

    E-Print Network [OSTI]

    Shipek, Florence C

    1985-01-01

    The Kumeyaay Sacred Mountain^ FLORENCE C. SHIPEK ASSAGE ofthe importance of the mountain and its relation- ship toin order to have the mountain preserved by nomination to the

  14. Mountaineer Creed As a Mountaineer, I will

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Mountaineer Creed As a Mountaineer, I will: · practice academic and personal integrity, · value standards of academic integrity; · to live and work according to the laws of man and the highest standards of professional conduct; · to place before profit, the honor and standing of the profession before person

  15. MOUNTAIN LAKE USER HANDBOOK

    E-Print Network [OSTI]

    Huang, Wei

    MOUNTAIN LAKE BIOLOGICAL STATION USER HANDBOOK Updated: 02 June 2015 #12;2 #12;3 Fundamental Code, and Purchases ------------------------------------------------------------ 14 The Mountain Lake Lodge;4 #12;5 Welcome Welcome to the Mountain Lake Biological Station! MLBS was established in 1929

  16. GREEN MOUNTAIN MORRIS DANCERS

    E-Print Network [OSTI]

    GREEN MOUNTAIN MORRIS DANCERS A young men's team performing Morris & Sword dances from England Mountain (boys) and Maple Leaf (girls) will be recruiting new members in January 2009, typically 6th grade, but as a springtime dance, to awaken the earth. The Green Mountain Morris and Maple Leaf Morris are based in Norwich

  17. Mountains

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    -f Annual Household Income, 2002 II-g Annual Household Income, 2035 III-a Wetlands IV-a FM 2275/George Richey Road Alignment Alternatives IV-b North East Texas Regional Mobility Authority, Toll 49 IV-c Major Streets & Highways VI-a Truck... to the Highway Trust Fund, in the form of gas and other highway taxes, is at least 90.5% in 2005 building toward a minimum of 92% relative rate of return by 2008. Innovative Finance ? SAFETEA-LU makes it easier and more attractive for the private sector...

  18. CX-011613: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Bald Mountain Fiber Optic Splice Temporary Pad CX(s) Applied: B1.15 Date: 12/11/2013 Location(s): Colorado, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  19. CX-011860: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Magnetic Mountain Microwave Tower Access road Maintenance, Rio Blanco County, Colorado CX(s) Applied: B1.3 Date: 01/28/2014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  20. CX-009801: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Copper Mountain to Boysen 34.5 Kilovolt Transmission Line Structure Replacement CX(s) Applied: B1.3 Date: 01/11/2013 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  1. Presented at the 2010 Rocky Mountain AAPG Section Meeting in Durango Colorado 1 Pre-and Post-injection Vertical Seismic Profiling over the Southwest Regional

    E-Print Network [OSTI]

    Wilson, Thomas H.

    -injection Vertical Seismic Profiling over the Southwest Regional Partnership's Phase II Fruitland Coal CO2 Pilot Tom of pre and post injection vertical seismic profiles collected at the Southwest Regional Partnership (SWP into the Fruitland coals. The pre-injection vertical seismic profiles were completed on June 2nd and 3rd of 2008

  2. Using Cable Suspended Submersible Pumps to Reduce Production Costs to Increase Ultimate Recovery in the Red Mountain Field of the San Juan Basin Region

    SciTech Connect (OSTI)

    Don L. Hanosh

    2006-08-15

    A joint venture between Enerdyne LLC, a small independent oil and gas producer, and Pumping Solutions Inc., developer of a low volume electric submersible pump, suspended from a cable, both based in Albuquerque, New Mexico, has re-established marginal oil production from Red Mountain Oil Field, located in the San Juan Basin, New Mexico by working over 17 existing wells, installing cable suspended submersible pumps ( Phase I ) and operating the oil field for approximately one year ( Phase II ). Upon the completion of Phases I and II ( Budget Period I ), Enerdyne LLC commenced work on Phase III which required additional drilling in an attempt to improve field economics ( Budget Period II ). The project was funded through a cooperative 50% cost sharing agreement between Enerdyne LLC and the National Energy Technology Laboratory (NETL), United States Department of Energy, executed on April 16, 2003. The total estimated cost for the two Budget Periods, of the Agreement, was $1,205,008.00 as detailed in Phase I, II & III Authorization for Expenditures (AFE). This report describes tasks performed and results experienced by Enerdyne LLC during the three phases of the cooperative agreement.

  3. ACULEATA HYMENOPTERA OF SAND MOUNTAIN AND BLOW SAND MOUNTAINS, NEVADA

    E-Print Network [OSTI]

    Hanks, Lawrence M.

    ACULEATA HYMENOPTERA OF SAND MOUNTAIN AND BLOW SAND MOUNTAINS, NEVADA R. W. Rust1, L. !\\1. Hanks collected from Sand !\\1ountain and Blow Sand Mountains, Nevada. Four species are considered new to science and none are considered endemic to ei ther dune area. Sand Mountain and Blow Sand Mountains were visited 19

  4. METEOROLOGYMETEOROLOGYMETEOROLOGYMETEOROLOGY 280280280280 Intro to Mountain MeteorologyIntro to Mountain MeteorologyIntro to Mountain MeteorologyIntro to Mountain Meteorology

    E-Print Network [OSTI]

    Clements, Craig

    1 METEOROLOGYMETEOROLOGYMETEOROLOGYMETEOROLOGY 280280280280 Intro to Mountain MeteorologyIntro to Mountain MeteorologyIntro to Mountain MeteorologyIntro to Mountain Meteorology Course Description This course will introduce the student to meteorological phenomena associated with mountain environments

  5. Quantifying mountain block recharge by means of catchment-scale storage-discharge relationships

    E-Print Network [OSTI]

    Troch, Peter

    Quantifying mountain block recharge by means of catchment-scale storage-discharge relationships the importance of mountainous catchments for providing freshwater resources, especially in semi-arid regions, little is known about key hydrological processes such as mountain block recharge (MBR). Here we implement

  6. Seismic modeling and analysis of a prototype heated nuclear waste storage tunnel, Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Snieder, Roel

    Seismic modeling and analysis of a prototype heated nuclear waste storage tunnel, Yucca Mountain rock surrounding a tunnel in Yucca Mountain tuff and com- pared the results with field data obtained waves diffracted around the tunnel in the region of changing velocity. INTRODUCTION The Yucca Mountain

  7. Location and mechanism of the Little Skull Mountain earthquake as constrained by satellite radar interferometry and

    E-Print Network [OSTI]

    Simons, Mark

    designed to measure the strain rate across the region around Yucca Mountain. The LSM earthquake complicates parameters; 7260 Seismology: Theory and modeling; KEYWORDS: InSAR, joint inversion, seismic, Yucca Mountain 1. Introduction [2] Yucca Mountain, a proposed long-term (103 ­105 years) disposal site for high-level radioactive

  8. Measured solubilities and speciations of neptunium, plutonium, and americium in a typical groundwater (J-13) from the Yucca Mountain region; Milestone report 3010-WBS 1.2.3.4.1.3.1

    SciTech Connect (OSTI)

    Nitsche, H.; Gatti, R.C.; Standifer, E.M.

    1993-07-01

    Solubility and speciation data are important in understanding aqueous radionuclide transport through the geosphere. They define the source term for transport retardation processes such as sorption and colloid formation. Solubility and speciation data are useful in verifying the validity of geochemical codes that are part of predictive transport models. Results are presented from solubility and speciation experiments of {sup 237}NpO{sub 2}{sup +}, {sup 239}Pu{sup 4+}, {sup 241}Am{sup 3+}/Nd{sup 3+}, and {sup 243}Am{sup 3+} in J-13 groundwater (from the Yucca Mountain region, Nevada, which is being investigated as a potential high-level nuclear waste disposal site) at three different temperatures (25{degree}, 60{degree}, and 90{degree}C) and pH values (5.9, 7.0, and 8.5). The solubility-controlling steady-state solids were identified and the speciation and/or oxidation states present in the supernatant solutions were determined. The neptunium solubility decreased with increasing temperature and pH. Plutonium concentrations decreased with increasing temperature and showed no trend with pH. The americium solutions showed no clear solubility trend with increasing temperature and increasing pH.

  9. SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING

    E-Print Network [OSTI]

    SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING US EPA Project Meeting April 7 2011April 7, 2011/Titan Uranium, VP Development · Deborah LebowAal/EPA Region 8 Air Program Introduction to Titan Uranium USA;PROJECT OVERVIEW ·Site Location·Site Location ·Fremont , Wyoming ·Existing Uranium Mine Permit 381C

  10. Origami DNA model Mountain fold

    E-Print Network [OSTI]

    Csürös, Miklós

    Origami DNA model Mountain fold Solid lines are "mountains" and are to be folded away from you with the peak pointing towards you. 1. Fold all solid lines going lengthwise down the page into "mountain folds fold 2. Fold all dashed lines going lengthwise down the page into "valley folds". Mountain folds along

  11. Gaglardi Way Burnaby Mountain Parkway

    E-Print Network [OSTI]

    Kavanagh, Karen L.

    Mountain Parkway To Hastings Street University Drive East Gaglardi Way University Drive East Tower Road

  12. Winter in Sacramento Mountains 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    Beginning in the late 1930s, fire exclusion has drastically altered the vegetation dynamics of the southern Appalachian Mountains. Extremely low fire frequency has allowed for more shade-tolerant species to invade once predominantly open forests...

  13. Mountain View, California: Fiat Res Publica

    E-Print Network [OSTI]

    Tung, Gregory

    1989-01-01

    Mountain View, California: Fiat Res Publica Gregory Tungundifferen­ tiated. In Mountain View, California (populationtoward San Francisco. Mountain View is avoiding a "just say

  14. Rocky Mountain Futures: An Ecological Perspective

    E-Print Network [OSTI]

    Aguero, Tania

    2003-01-01

    changes in the Rocky Mountains, global warming, and severalReview: Rocky Mountain Futures: An Ecological Perspective ByJill S. Baron (Ed. ). Rocky Mountain Futures: An Ecological

  15. Overview of Rocky Mountain Region's Capital Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TPL-001, -002, -003, -004 Ensure system is adequate to meet present and future needs Demonstrate through assessment * Planning for near and long term * Cover all...

  16. Mountain Home Well - Photos

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    2012-01-11

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  17. Mountain Home Well - Photos

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  18. Moving Beyond the Yucca Mountain

    E-Print Network [OSTI]

    Moving Beyond the Yucca Mountain Viability Assessment U.S. Nuclear Waste Technical Review Board the Yucca Mountain site in Nevada as the sole location to be studied for possi- ble development of the Yucca Mountain site. The U.S. Department of Energy (DOE) recently published Viability As- sessment

  19. Modeling studies of mountain-scale radionuclide transport in the unsaturated zone at Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Moridis, George J.; Seol, Yongkoo; Wu, Yu-Shu

    2003-01-01

    Investigations at Yucca Mountain - The Potential Repositoryin the Unsaturated Zone, Yucca Mountain, Nevada, ResourcesMODELING STUDIES OF MOUNTAIN-SCALE RADIONUCLIDE TRANSPORT IN

  20. A Mountain-Scale Monitoring Network for Yucca Mountain Performance Confirmation

    E-Print Network [OSTI]

    Freifeld, Barry; Tsang, Yvonne

    2006-01-01

    A Mountain-Scale MonitoringNetwork for Yucca Mountain Performance Confirmation Barrythe performance of Yucca Mountain is required by 10 CFR Part

  1. Evolution of the unsaturated zone testing at Yucca Mountain

    E-Print Network [OSTI]

    Wang, J.S.Y.; Bodvarsson, G.S.

    2002-01-01

    INTO DRIFTS AT YUCCA MOUNTAIN." JOURNAL OF CONTAMINANTFRACTURES AT YUCCA MOUNTAIN." JOURNAL OF CONTAMINANTPneumatic Testing at Yucca Mountain." International Journal

  2. CX-011616: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gore Pass-Kremmling 138-kilovolt Transmission Line Danger Tree Management CX(s) Applied: B1.3 Date: 11/21/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  3. CX-011618: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kremmling-Windy Gap 138-kilovolt Transmission Line Danger Tree Management CX(s) Applied: B1.3 Date: 11/21/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  4. CX-011619: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Muddy Pass-Walden 69-kilovolt Transmission Line Danger Tree Management CX(s) Applied: B1.3 Date: 11/21/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  5. CX-010891: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Archer-Stegall 230-Kilovolt Fiber Optic Ground Wire Addition CX(s) Applied: B4.7 Date: 08/20/2013 Location(s): Nebraska, Nebraska Offices(s): Western Area Power Administration-Rocky Mountain Region

  6. CX-008381: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Big Thompson to Flatiron 13.8 Kilovolt Transmission Line Structure Replacement CX(s) Applied: B1.3 Date: 05/09/2012 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  7. CX-010105: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Urban Transmission Line Danger Tree Management CX(s) Applied: B1.3 Date: 03/26/2013 Location(s): Colorado, Colorado, Colorado, Colorado, Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  8. CX-008377: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alcova-Casper North 115 Kilovolt Transmission Line Pole Replacements CX(s) Applied: B1.3 Date: 04/10/2012 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  9. CX-012081: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kimball Substation KY1A Transformer Replacement and Road Maintenance CX(s) Applied: B1.3 Date: 02/10/2014 Location(s): Nebraska Offices(s): Western Area Power Administration-Rocky Mountain Region

  10. CX-007819: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Yellowtail Dam Tie Lines CX(s) Applied: B2.5, B4.6 Date: 01/25/2012 Location(s): Montana Offices(s): Western Area Power Administration-Rocky Mountain Region

  11. CX-009531: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ault Substation Drainage Swale Construction CX(s) Applied: B4.6 Date: 12/13/2012 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  12. CX-012080: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Deering Lake and Yuma Substation Upgrades CX(s) Applied: B4.6 Date: 03/06/2014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  13. CX-011614: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Curecanti-Blue Mesa 115-kilovolt Transmission Line Danger Tree Management CX(s) Applied: B1.3 Date: 12/04/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  14. CX-011723: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Happy Jack 230 Kilovolt Substation Fiber Optic Installation in Laramie County, Wyoming CX(s) Applied: B4.7 Date: 12/31/2013 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  15. CX-012749: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Buffalo Pass Communications Building Replacement, Routt County, CO CX(s) Applied: B1.19Date: 41843 Location(s): ColoradoOffices(s): Western Area Power Administration-Rocky Mountain Region

  16. CX-010552: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Big George Substation Access Road Snow Prevention, Park County, Wyoming CX(s) Applied: B1.11 Date: 06/20/2013 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  17. CX-008382: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bridgeport-Sidney 115 Kilovolt Line Rejected Pole Replacement CX(s) Applied: B1.3 Date: 03/16/2012 Location(s): Nebraska Offices(s): Western Area Power Administration-Rocky Mountain Region

  18. CX-010890: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sheep's Knob Communication Site Road Maintenance CX(s) Applied: B1.3 Date: 08/20/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  19. CX-012077: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on Craig to Hayden 230-Kilovolt Transmission Line CX(s) Applied: B1.3 Date: 04/21/2014 Location(s): Colorado, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  20. CX-011208: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on Malta-Mount Elbert 230-Kilovolt Transmission Line CX(s) Applied: B1.3 Date: 09/09/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  1. CX-010889: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ault-Craig 345-Kilovolt WCMO Danger Tree Management CX(s) Applied: B1.3 Date: 08/14/2013 Location(s): Colorado, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  2. CX-009800: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Urban Transmission Line Danger Tree Management CX(s) Applied: B1.3 Date: 01/15/2013 Location(s): Colorado, Colorado, Colorado, Colorado, Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  3. CX-012078: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on the Great Cut Tap 115-Kilovolt Transmission Line CX(s) Applied: B1.3 Date: 02/20/2014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  4. CX-011204: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hayden-North Park 230-Kilovolt Transmission Lane Danger Tree Management CX(s) Applied: B1.3 Date: 08/30/2013 Location(s): Colorado, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  5. CX-011206: Categorical Exclusion Determination | Department of...

    Office of Environmental Management (EM)

    Maintenance CX(s) Applied: B1.3 Date: 08302013 Location(s): Colorado, Colorado, New Mexico Offices(s): Western Area Power Administration-Rocky Mountain Region Western Area Power...

  6. CX-012769: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Raspberry Microwave Building Footing Removal Montrose County, Colorado CX(s) Applied: B1.19Date: 41860 Location(s): ColoradoOffices(s): Western Area Power Administration-Rocky Mountain Region

  7. CX-011209: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Archer-North Park 230-Kilovolt Transmission Line Danger Tree Management CX(s) Applied: B1.3 Date: 09/10/2013 Location(s): Colorado, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  8. CX-008774: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Archer Communications Building Laramie County, Wyoming CX(s) Applied: B4.6, B4.11 Date: 03/07/2012 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  9. CX-012343: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Metal Mountain Communications Site - Emergency Air Conditioner Replacement CX(s) Applied: B1.4 Date: 07/03/2014 Location(s): California Offices(s): Western Area Power Administration-Desert Southwest Region

  10. CX-012345: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Collbran Substation Conduit Installation and Breaker Replacement, Mesa County, Colorado CX(s) Applied: B4.6 Date: 06/03/2014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  11. CX-012750: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Canon West-Poncha 230 Kilovolt Transmission Line Road Maintenance Chaffee and Fremont Counties, Colorado CX(s) Applied: B1.3Date: 41878 Location(s): ColoradoOffices(s): Western Area Power Administration-Rocky Mountain Region

  12. CX-012071: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Archer Substation Microwave Building Fiber Optic Installation CX(s) Applied: B4.7 Date: 04/29/2014 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  13. CX-010685: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hayden Substation 230-kilovolt Tie Line CX(s) Applied: B4.6 Date: 07/09/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  14. CX-012768: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Poncha Substation Access and Drainage Maintenance Chaffee County, Colorado CX(s) Applied: B1.3Date: 41880 Location(s): ColoradoOffices(s): Western Area Power Administration-Rocky Mountain Region

  15. CX-012771: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sinclair Substation License Outgrant, Carbon County, Wyoming CX(s) Applied: B1.24Date: 41838 Location(s): WyomingOffices(s): Western Area Power Administration-Rocky Mountain Region

  16. CX-012761: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gering-Bridgeport-Sydney Fiber Optic Addition Scottsbluff, Morril, and Cheyenne Counties, Wyoming CX(s) Applied: B4.7Date: 41857 Location(s): NebraskaOffices(s): Western Area Power Administration-Rocky Mountain Region

  17. CX-010686: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cheyenne Substation KV2A 115-kilovolt Tie Line Installation CX(s) Applied: B4.6 Date: 07/02/2013 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  18. CX-008792: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alliance Substation Communication Building Installation Box Butte County, Nebraska CX(s) Applied: B4.6 Date: 08/28/2011 Location(s): Nebraska Offices(s): Western Area Power Administration-Rocky Mountain Region

  19. CX-012770: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Shiprock Access Road Repair Project San Juan County, New Mexico CX(s) Applied: B1.3Date: 41858 Location(s): New MexicoOffices(s): Western Area Power Administration-Rocky Mountain Region

  20. CX-012748: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Big Spring-Sydney 115 Kilovolt Transmission Line Pole Replacement Project, Deuel County, Nebraska CX(s) Applied: B1.3Date: 41845 Location(s): NebraskaOffices(s): Western Area Power Administration-Rocky Mountain Region

  1. CX-012764: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kayenta-Navajo 230 Kilovolt Transmission Line Access Road Maintenance Coconini and Navajo Counties, Arizona CX(s) Applied: B1.3Date: 41872 Location(s): ArizonaOffices(s): Western Area Power Administration-Rocky Mountain Region

  2. CX-012762: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gore Pass-Kremmling 138 Kilovolt Transmission Line Maintenance Grand County, Colorado CX(s) Applied: B1.3Date: 41834 Location(s): ColoradoOffices(s): Western Area Power Administration-Rocky Mountain Region

  3. CX-012766: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Loveland Area Hazard Trees Larimer County, Colorado CX(s) Applied: B1.3Date: 41858 Location(s): ColoradoOffices(s): Western Area Power Administration-Rocky Mountain Region

  4. CX-011612: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Akron Hill Communication Site Cable Project CX(s) Applied: B1.3 Date: 11/19/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  5. CX-012756: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Curecanti Substation Access and Drainage Maintenance, Montrose County, Colorado CX(s) Applied: B1.3Date: 41845 Location(s): ColoradoOffices(s): Western Area Power Administration-Rocky Mountain Region

  6. CX-012357: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Shiprock Substation Stormwater Erosion Control Maintenance, San Juan County, New Mexico CX(s) Applied: B1.33 Date: 07/01/2014 Location(s): New Mexico Offices(s): Western Area Power Administration-Rocky Mountain Region

  7. CX-012767: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Medicine Bow Substation Control Building Installation Project Carbon County, Wyoming CX(s) Applied: B1.22, B1.23Date: 41857 Location(s): WyomingOffices(s): Western Area Power Administration-Rocky Mountain Region

  8. CX-012341: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Humboldt Mountain Communication Facility - Asbestos and Lead-based Paint Testing CX(s) Applied: B3.1 Date: 06/19/2014 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  9. CX-011235: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wood Pole Inspection and Treatment - Routine Transmission Line Maintenance CX(s) Applied: B1.3 Date: 10/24/2013 Location(s): CX: none Offices(s): Western Area Power Administration-Rocky Mountain Region

  10. Mountainous | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformationOliver, Pennsylvania: EnergyPark,Mountainous Jump to:

  11. Yucca Mountain - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentatabout Who Works for NIFYucca Mountain In 2009, the

  12. Introduction Rocky Mountain National Park (RMNP) is located at a high

    E-Print Network [OSTI]

    Fischer, Emily V.

    Introduction ·Rocky Mountain National Park (RMNP) is located at a high elevation with low nitrogen retention in plants and soil. ·Upslope wind events in the region are caused by synoptic scale storms as well, et al. A Seasonal Nitrogen Deposition Budget for Rocky Mountain National Park. In preparation

  13. A lithospheric instability origin for Columbia River flood basalts and Wallowa Mountains uplift in

    E-Print Network [OSTI]

    Humphreys, Eugene

    A lithospheric instability origin for Columbia River flood basalts and Wallowa Mountains uplift-eruptive sub- sidence took place in the Wallowa Mountains, followed by syn- eruptive uplift of several hundred metres and a long-term uplift of about 2 km. The mapped surface uplift mimics regional topo- graphy

  14. YUCCA MOUNTAIN PROJECT - A BRIEFING --

    SciTech Connect (OSTI)

    NA

    2003-08-05

    This report has the following articles: Nuclear waste--a long-term national problem; Spent nuclear fuel; High-level radioactive waste; Radioactivity and the environment; Current storage methods; Disposal options; U.S. policy on nuclear waste; The focus on Yucca Mountain; The purpose and scope of the Yucca Mountain Project; The approach for permanently disposing of waste; The scientific studies at Yucca Mountain; The proposed design for a repository at Yucca Mountain; Natural and engineered barriers would work together to isolate waste; Meticulous science and technology to protect people and the environment; Licensing a repository; Transporting waste to a permanent repository; The Environmental Impact Statement for a repository; Current status of the Yucca Mountain Project; and Further information available on the Internet.

  15. Natural Gas in the Rocky Mountains: Developing Infrastructure

    Reports and Publications (EIA)

    2007-01-01

    This Supplement to the Energy Information Administration's Short-Term Energy Outlook analyzes current natural gas production, pipeline and storage infrastructure in the Rocky Mountains, as well as prospective pipeline projects in these states. The influence of these factors on regional prices and price volatility is examined.

  16. KV04: Baxter Mountain This route visits

    E-Print Network [OSTI]

    Reiter, Clifford A.

    11 KV04: Baxter Mountain General This route visits Baxter Mountain which is a short hike that has between Hurricane and Green Mountains. The hike is relatively short although there is a good elevation Description The trail begins on Rt9N directly across from Hurricane Mountain Road. From Keene Valley, go north

  17. Rocky Mountain Research Station 20142017 Strategic Framework

    E-Print Network [OSTI]

    Rocky Mountain Research Station 2014­2017 Strategic Framework #12;Rocky Mountain Research Station 240 West Prospect Fort Collins, CO 80526 (970) 498-1100 www.fs.fed.us/rmrs High mountain lake at GLEES (Glacier Lakes Ecosystem Experiments Site) #12;1ROCKY MOUNTAIN RESEARCH STATION -- 2014­2017 STRATEg

  18. Trans Mountain Response to SFU IR No. 2 Trans Mountain Pipeline ULC

    E-Print Network [OSTI]

    Kavanagh, Karen L.

    Trans Mountain Response to SFU IR No. 2 Trans Mountain Pipeline ULC Trans Mountain Expansion Terminal as well as key civil tasks. Request: (1) Please advise whether Trans Mountain has investigated Way and Burnaby Mountain Parkway either during normal operation of the tank farm, or in the event

  19. Santa Monica Mountain Steelhead Assessment Santa Monica Mountains Steelhead Habitat Assessment

    E-Print Network [OSTI]

    Keller, Ed

    Santa Monica Mountain Steelhead Assessment 1 Santa Monica Mountains Steelhead Habitat Assessment identify which basins in the Santa Monica Mountains (SMM) are most capable of supporting steelhead trout watersheds within the SMM. Field Setting Geology of the Santa Monica Mountains The Santa Monica Mountains

  20. Carbon monoxide (CO) maximum over the Zagros mountains in the Middle East: Signature of mountain venting?

    E-Print Network [OSTI]

    Jones, Dylan

    Carbon monoxide (CO) maximum over the Zagros mountains in the Middle East: Signature of mountain- posphere (MOPITT) satellite instrument. Enhanced CO is observed over the Zagros mountains of Iran), Carbon monoxide (CO) maximum over the Zagros mountains in the Middle East: Signature of mountain venting

  1. Holy Mother of Chiri Mountain: A Female Mountain Spirit in Korea

    E-Print Network [OSTI]

    Stiller, Maya

    2011-01-01

    pilgrimage route in Chiri mountain. The images have informedCSW upda te OCTOBER 2011 The Holy Mother of Chiri Mountain aFemale Mountain Spirit in Korea by Maya Stiller UCLA Center

  2. Soil Organic Carbon Storage and Aggregate Stability in an Arid Mountain Range, White Mountains, CA

    E-Print Network [OSTI]

    Frisbie, Juanita Aapris

    2014-01-01

    D.L. 1989. Responses of Mountain Big Sagebrush to inducedgradient in the Gongga Mountain on the Tibetan plateau. J.relationships in an arid mountain range, Mojave Desert,

  3. Why sulfonamides are contraindicated in Rocky Mountain spotted fever

    E-Print Network [OSTI]

    Ren, Vicky; Hsu, Sylvia

    2014-01-01

    and mortality in cases of Rocky Mountain spotted fever. ClinNH. Experimental Rocky Mountain spotted fever and endemicRR. Experimental Rocky Mountain spotted fever: Results of

  4. commentary: Is climate change making plants go up mountains?

    E-Print Network [OSTI]

    Lovett, Jon C.; Hemp, Andreas

    2010-01-01

    Plant Ecology of High Mountain Ecosystems. pp 1-344altitudinal distribution in mountain forests during themaking plants go up mountains? Paleontological evidence

  5. Seepage into drifts in unsaturated fractured rock at Yucca Mountain

    E-Print Network [OSTI]

    Birkholzer, Jens; Li, Guomin; Tsang, Chin-Fu; Tsang, Yvonne

    1998-01-01

    Fractured Rock at Yucca Mountain Jens Birkholzer, Guomin Lrepository site at Yucca Mountain, Nevada, as it is locatedclimate conditions at Yucca Mountain. The numerical study is

  6. Evolution of the unsaturated zone testing at Yucca Mountain

    E-Print Network [OSTI]

    Wang, J.S.Y.; Bodvarsson, G.S.

    2002-01-01

    Studies Facility, Yucca Mountain, Nevada. Water-ResourcesGeologic Map of Yucca Mountain, Nye County, Nevada, withWater and Calcite, Yucca Mountain, Nevada: Water." Science,

  7. A mountain-scale model for characterizing unsaturated flow and transport in fractured tuffs of Yucca Mountain

    E-Print Network [OSTI]

    Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.

    2003-01-01

    to Fault Zones at Yucca Mountain, Nevada, InternationalPneumatic Response of at Yucca Mountain, Nevada, Journal ofZone Site-Scale Model, Yucca Mountain Site Characterization

  8. Timber Mountain Precipitation Monitoring Station

    SciTech Connect (OSTI)

    Lyles, Brad; McCurdy, Greg; Chapman, Jenny; Miller, Julianne

    2012-01-01

    A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in fiscal year 2011.

  9. Volcanism Studies: Final Report for the Yucca Mountain Project

    SciTech Connect (OSTI)

    Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

    1998-12-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is defined and described as one of many alternative models of the structural controls of the distribution of Plio-Quaternary basalt centers in the YMR. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be > than about 7 x 10{sup {minus}8} events yr{sup {minus}1} . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption probability to the location of northeast boundaries of volcanic zones near the Yucca Mountain si

  10. Mountain Goat Software, LLC Una Introduccin a

    E-Print Network [OSTI]

    Cabalar, Pedro

    Mountain Goat Software, LLC Una Introducción a Scrum Mike Cohen Traducido: Ernesto Grafeuille Revisado y modificado: Pedro Cabalar Noviembre 2013 #12;Mountain Goat Software, LLC Estamos perdiendo la hacia atrás -pueden servir mejor a los actuales requisitos competitivos". #12;Mountain Goat Software

  11. Ute Mountain Tribe- 2012 Project

    Broader source: Energy.gov [DOE]

    The Ute Mountain Ute Tribe has the renewable resources and the opportunity to become a national leader in renewable energy production through its local and commercial-scale solar developments due to its proximity to key interconnections in the Four Corners area and interest from various companies that can fund such projects.

  12. Rocky Mountain Basins Produced Water Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

  13. Preparing to Submit a License Application for Yucca Mountain

    SciTech Connect (OSTI)

    W.J. Arthur; M.D. Voegele

    2005-03-14

    In 1982, the U.S. Congress passed the Nuclear Waste Policy Act, a Federal law that established U.S. policy for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Congress amended the Act in 1987, directing the Department of Energy to study only Yucca Mountain, Nevada as the site for a permanent geologic repository. As the law mandated, the Department evaluated Yucca Mountain to determine its suitability as the site for a permanent geologic repository. Decades of scientific studies demonstrated that Yucca Mountain would protect workers, the public, and the environment during the time that a repository would be operating and for tens of thousands of years after closure of the repository. A repository at this remote site would also: preserve the quality of the environment; allow the environmental cleanup of Cold War weapons facilities; provide the nation with additional protection from acts of terrorism; and support a sound energy policy. Throughout the scientific evaluation of Yucca Mountain, there has been no evidence to disqualify Yucca Mountain as a suitable site for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Upon completion of site characterization, the Secretary of Energy considered the results and concluded that a repository at Yucca Mountain would perform in a manner that protects public health and safety. The Secretary recommended the site to the President in February 2002; the President agreed and recommended to Congress that the site be approved. The Governor of Nevada submitted a notice of disapproval, and both houses of Congress acted to override the disapproval. In July 2002, the President's approval allowed the Department to begin the process of submittal of a license application for Yucca Mountain as the site for the nation's first repository for spent nuclear fuel and high-level radioactive waste. Yucca Mountain is located on federal land in Nye County in southern Nevada, an arid region of the United States, approximately 100 miles (160 kilometers) northwest of Las Vegas (Figure 1). The location is remote from population centers, and there are no permanent residents within approximately 14 miles (23 km) of the site. Overall, Nye County has a population density of about two persons per square mile (two persons per 2.5 square km); in the vicinity of Yucca Mountain, it is significantly less. Yucca Mountain is a series of north-south-trending ridges extending approximately 25 miles (40 km), and consists of successive layers of fine-grained volcanic tuffs, millions of years old, underlain by older carbonate rocks. The alternating layers of welded and nonwelded volcanic tuffs have differing hydrologic properties that significantly impact the manner in which water moves through the mountain. The repository horizon will be in welded tuff located in the unsaturated zone, more than 1,000 feet (300 meters) above the water table in the present-day climate, and is expected to remain well above the water table during wetter future climate conditions. Future meteorology and climatology at Yucca Mountain are important elements in understanding the amount of water available to potentially interact with the waste.

  14. MOUNTAIN-VALLEY AND KATABATIC FLOW IN BOULDER Find mountain valley circulation patterns that indicate mountain-valley flow, e.g.,

    E-Print Network [OSTI]

    MOUNTAIN-VALLEY AND KATABATIC FLOW IN BOULDER TASK: Find mountain valley circulation patterns that indicate mountain-valley flow, e.g., in the Boulder Canyon or katabatic flow between the mountain ranges and the lower terrains around Denver and Colorado. MOTIVATION: Mountain-valley flow is a common well understood

  15. Patterns of avian diversification in Borneo: The case of the endemic Mountain Black-eye (Chlorocharis emiliae)

    E-Print Network [OSTI]

    Gawin, Dency F.; Rahman, Mustafa Abdul; Ramji, Mohamad Fizl Sidq; Smith, Brian Tilston; Lim, Haw Chuan; Moyle, Robert G.; Sheldon, Frederick H.

    2014-01-01

    The Mountain Black-eye (Chlorocharis emiliae) is an endemic white-eye (Zosteropidae) of Borneo with a unique “sky island” distribution. We compared mitochondrial ND2, ND3, Cytb, and control region DNA sequences (2,194 ...

  16. CX-012214: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Copper Mountain-Pilot Butte 34.5 Kilovolt Transmission Line Structure Pole Replacement Project, Fremont County, Wyoming CX(s) Applied: B1.3 Date: 05/05/2014 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  17. CX-012351: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on Green Mountain-Blue Ridge Repeater 2.4-kilovolt Distribution Line (Amended), Grand County, Colorado CX(s) Applied: B1.3 Date: 06/23/2014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  18. CX-011722: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Green Mountain-Blue Ridge Repeater 2.4 Kilovolt Distribution Line Danger Tree Management in Grand County, Colorado CX(s) Applied: B1.3 Date: 12/31/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  19. CX-011859: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Big George-Heart Mountain 69 Kilovolt Transmission Line Glendale Tap Replacement, Park County, Wyoming CX(s) Applied: B4.6 Date: 01/21/2014 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  20. CX-012073: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Big George-Heart Mountain 69-Kilovolt Transmission Line Glendale Tap Replacement (Amended) CX(s) Applied: B4.13 Date: 05/01/2014 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  1. Mapco's NGL Rocky Mountain pipeline

    SciTech Connect (OSTI)

    Isaacs, S.F.

    1980-01-01

    The Rocky Mountain natural gas liquids (NGL) pipeline was born as a result of major producible gas finds in the Rocky Mountain area after gas deregulation. Gas discoveries in the overthurst area indicated considerable volumes of NGL would be available for transportation out of the area within the next 5 to 7 years. Mapco studied the need for a pipeline to the overthrust, but the volumes were not substantial at the time because there was little market and, consequently, little production for ethane. Since that time crude-based products for ethylene manufacture have become less competitive as a feed product on the world plastics market, and ethane demand has increased substantially. This change in the market has caused a major modification in the plans of the NGL producers and, consequently, the ethane content of the NGL stream for the overthrust area is expected to be 30% by volume at startup and is anticipated to be at 45% by 1985. These ethane volumes enhance the feasibility of the pipeline. The 1196-mile Rocky Mountain pipeline will be installed from the existing facility in W. Texas, near Seminole, to Rock Springs, Wyoming. A gathering system will connect the trunk line station to various plant locations. The pipeline development program calls for a capacity of 65,000 bpd by the end of 1981.

  2. Conceptual evaluation of the potential role of fractures in unsaturated processes at Yucca Mountain

    E-Print Network [OSTI]

    Hinds, Jennifer J.; Bodvarsson, Gudmundur S.; Nieder-Westermann, Gerald H.

    2002-01-01

    of Process Models, Yucca Mountain, Nevada. U.S. GeologicalZone Model of Yucca Mountain, Nevada. J. Contam. Hydrol. ,Studies Facility, Yucca Mountain Project. Yucca Mountain,

  3. Conceptual evaluation of the potential role of fractures in unsaturated processes at Yucca Mountain

    E-Print Network [OSTI]

    Hinds, Jennifer J.; Bodvarsson, Gudmundur S.; Nieder-Westermann, Gerald H.

    2002-01-01

    of Process Models, Yucca Mountain, Nevada. U.S. GeologicalUnsaturated Zone Model of Yucca Mountain, Nevada. J. Contam.Studies Facility, Yucca Mountain Project. Yucca Mountain,

  4. Marketing the Mountains: An Environmental History of Tourism in Rocky Mountain National Park

    E-Print Network [OSTI]

    Frank, Jerritt

    2008-09-05

    Marketing the Mountains explores the impact of tourism upon the natural world of Rocky Mountain National Park. Moving beyond culutral analysis of the development of tourism in the American West, this dissertation seeks to understand both...

  5. doi:10.1016/S0016-7037(03)00140-6 The Geysers -Cobb Mountain Magma System, California (Part 1): U-Pb zircon ages of

    E-Print Network [OSTI]

    Harrison, Mark

    doi:10.1016/S0016-7037(03)00140-6 The Geysers - Cobb Mountain Magma System, California (Part 1): U and regional geological relationships (1 analytical error): 2.47 0.04 Ma (rhyolite of Pine Mountain), 1.38 0.01 Ma (rhyolite of Alder Creek), 1.33 0.04 Ma (rhyodacite of Cobb Mountain), 1.27 0.03 Ma (dacite

  6. Seismicity in the Vicinity of Yucca Mountain, Nevada, for the Period October 1, 2004 to September 30, 2006

    SciTech Connect (OSTI)

    Smith, Ken

    2007-11-26

    This report describes earthquake activity within approximately 65 km of Yucca Mountain site during the October 1, 2004 to September 30, 2006 time period (FY05-06). The FY05-06 earthquake activity will be compared with the historical and more recent period of seismic activity in the Yucca Mountain region. The relationship between the distribution of seismicity and active faults, historical patterns of activity, and rates of earthquakes (number of events and their magnitudes) are important components in the assessment of the seismic hazard for the Yucca Mountain site. Since October 1992 the University of Nevada has compiled a catalog of earthquakes in the Yucca Mountain area. Seismicity reports have identified notable earthquake activity, provided interpretations of the seismotectonics of the region, and documented changes in the character of earthquake activity based on nearly 30 years of site-characterization monitoring. Data from stations in the seismic network in the vicinity of Yucca Mountain is collected and managed at the Nevada Seismological Laboratory (NSL) at the University of Nevada Reno (UNR). Earthquake events are systematically identified and cataloged under Implementing Procedures developed in compliance with the Nevada System of Higher Education (NSHE) Quality Assurance Program. The earthquake catalog for FY05-06 in the Yucca Mountain region submitted to the Yucca Mountain Technical Data Management System (TDMS) forms the basis of this report.

  7. Getting Beyond Yucca Mountain - 12305

    SciTech Connect (OSTI)

    Halstead, Robert J. [State of Nevada Agency for Nuclear Projects, Carson City, NV 89706 (United States); Williams, James M. [Western Interstate Energy Board, Denver, CO 80202 (United States)

    2012-07-01

    The U.S. Department of Energy has terminated the Yucca Mountain repository project. The U.S. Nuclear Regulatory Commission has indefinitely suspended the Yucca Mountain licensing proceeding. The presidentially-appointed Blue Ribbon Commission (BRC) on America's Nuclear Future is preparing a report, due in January 2012, to the Secretary of Energy on recommendations for a new national nuclear waste management and disposal program. The BRC Draft Report published in July 2011 provides a compelling critique of the past three decades failed efforts in the United States to site storage and disposal facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLW). However, the BRC Draft Report fails to provide detailed guidance on how to implement an alternative, successful approach to facility site selection. The comments submitted to the BRC by the State of Nevada Agency for Nuclear Projects provide useful details on how the US national nuclear waste program can get beyond the failed Yucca Mountain repository project. A detailed siting process, consisting of legislative elements, procedural elements, and 'rules' for volunteer sites, could meet the objectives of the BRC and the Western Governors Association (WGA), while promoting and protecting the interests of potential host states. The recent termination of the proposed Yucca Mountain repository provides both an opportunity and a need to re-examine the United States' nuclear waste management program. The BRC Draft Report published in July 2011 provides a compelling critique of the past three decades failed efforts in the United States to site storage and disposal facilities for SNF and HLW. It is anticipated that the BRC Final report in January 2012 will recommend a new general course of action, but there will likely continue to be a need for detailed guidance on how to implement an alternative, successful approach to facility site selection. Getting the nation's nuclear waste program back on track requires, among other things, new principles for siting-principles based on partnership between the federal implementing agency and prospective host states. These principles apply to the task of developing an integrated waste management strategy, to interactions between the federal government and prospective host states for consolidated storage and disposal facilities, and to the logistically and politically complicated task of transportation system design. Lessons from the past 25 years, in combination with fundamental parameters of the nuclear waste management task in the US, suggest new principles for partnership outlined in this paper. These principles will work better if well-grounded and firm guidelines are set out beforehand and if the challenge of maintaining competence, transparency and integrity in the new organization is treated as a problem to be addressed rather than a result to be expected. (authors)

  8. Georgia Mountain | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprintGEXAGeminiEnergyHawaii |Methods3.376834°,Mountain

  9. King Mountain | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItronKanoshKetchikan PublicMountain Jump to: navigation,

  10. Laurel Mountain | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds Jump to:Laredo Ridge WindHill Jump to:Mountain

  11. BLUE MOUNTAIN | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc | DepartmentPeer20InsulatedofBESTCorn CanBLUE MOUNTAIN

  12. Trial by Mountain: Suffering and Healing in Difficult Landscapes

    E-Print Network [OSTI]

    Collins, Lindsey

    2012-01-01

    survivors_1.html. Where the Mountain Casts Its Shadow: The1980. MacFarlane, Robert. Mountains of the Mind. New York:A Woman’s Journey Into the Mountains to Find Her Soul. New

  13. THERMAL PROPERTIES OF GABLE MOUNTAIN BASALT CORES HANFORD NUCLEAR RESERVATION

    E-Print Network [OSTI]

    Martinez-Baez, L.F.

    2011-01-01

    70 THERMAL PROPERTIES OF GABLE MOUNTAIN BASALT CORES HANFORDft); we used the data giyen for Gable Mountain K1005 for oursamples of Gable Mountain DB-5 (521 ft and 524 ft); and we

  14. Mountain Snowmobilers and Avalanches: An Examination of Precautionary Behaviour

    E-Print Network [OSTI]

    Mountain Snowmobilers and Avalanches: An Examination of Precautionary Behaviour by Luke Robbins of Resource Management (Planning) Report No. 586 Title of Thesis: Mountain Snowmobilers and Avalanches within the snowmobiling community. Since there was limited information available on mountain snowmobilers

  15. Drift Natural Convection and Seepage at the Yucca Mountain Repository

    E-Print Network [OSTI]

    Halecky, Nicholaus Eugene

    2010-01-01

    2 A Simulation Code for Yucca Mountain Transport Processes:List of Figures Yucca Mountain location, southwest1 Introduction 1.1 Yucca Mountain Repository . . . . 1.1.1

  16. Application of natural analogues in the Yucca Mountain project - overview

    E-Print Network [OSTI]

    Simmons, Ardyth M.

    2003-01-01

    Contractor) 2000. Yucca Mountain Site Description. TDR-CRW-in silicic tuff from Yucca Mountain, Nevada. Clays and ClayHazard Analysis for Yucca Mountain, Nevada. BA0000000-01717-

  17. A Preliminary Structural Model for the Blue Mountain Geothermal...

    Open Energy Info (EERE)

    thewest flanks of Blue Mountain and the Eugene Mountains, and amore local WNW-striking, SW-dipping normal-dextral fault onthe southwest side of Blue Mountain. The WNW-striking...

  18. Mountain

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43 by September1Louisiana - SedsN O F D e c e mb e

  19. Motion to Withdraw from Yucca Mountain application | Department...

    Broader source: Energy.gov (indexed) [DOE]

    it's pending license application for a permanent geologic repository at Yucca Mountain, Nevada. Motion to Withdraw from Yucca Mountain application More Documents &...

  20. Department of Energy Files Motion to Withdraw Yucca Mountain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Files Motion to Withdraw Yucca Mountain License Application Department of Energy Files Motion to Withdraw Yucca Mountain License Application March 3, 2010 -...

  1. Midwest/Mountain Alternative Fuel Initiative | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MidwestMountain Alternative Fuel Initiative MidwestMountain Alternative Fuel Initiative Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on...

  2. Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal...

  3. Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature...

  4. EA-1746: Blue Mountain Geothermal Development Project, Humboldt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    46: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV EA-1746: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV December 3,...

  5. Statement from Ward Sproat on Yucca Mountain, Director of the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ward Sproat on Yucca Mountain, Director of the Office of Civilian Radioactive Waste Management Statement from Ward Sproat on Yucca Mountain, Director of the Office of Civilian...

  6. Reservoir Simulation Used to Plan Diatomite Developement in Mountainous Region 

    E-Print Network [OSTI]

    Powell, Richard

    2012-10-19

    -10 md) and high viscosity (~220 cp) at the reservoir temperature. Cyclic steam injection has been widely used in diatomite reservoirs to take advantage of the diatomite rocks unique properties and lower the viscosity of the oil. Some companies used...

  7. Mountain Region Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.82 (MillionandIndustrialYear137 186Cubic19,202

  8. Mountain Region Natural Gas Underground Storage Volume (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014ProvedYear Jan Feb Mar Apr MayYearperProved894

  9. Mountain Region Natural Gas Working Underground Storage (Billion Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014ProvedYear Jan Feb Mar Apr

  10. Mountain Regions Natural Gas Underground Storage Net Withdrawals (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014ProvedYear Jan Feb Mar AprCubic Feet) Year Jan

  11. Mountain Region Natural Gas Injections into Underground Storage (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar AprThousand Cubic Feet) DecadeYear2 7476

  12. Mountain Region Natural Gas Total Underground Storage Capacity (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar AprThousand Cubic Feet) DecadeYear2 7476Cubic

  13. Mountain Region Natural Gas Underground Storage Withdrawals (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar AprThousand Cubic Feet) DecadeYear2 7476CubicFeet)

  14. Mountain Region Natural Gas Working Underground Storage Capacity (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar AprThousand Cubic Feet) DecadeYear2

  15. Mountain Region Natural Gas in Underground Storage (Base Gas) (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar AprThousand Cubic Feet) DecadeYear2Cubic Feet)

  16. Mountain Region Natural Gas in Underground Storage (Working Gas) (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar AprThousand Cubic Feet) DecadeYear2Cubic

  17. Mountain Region Underground Natural Gas Storage - All Operators

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar AprThousand Cubic Feet) DecadeYear2Cubicfrom

  18. Mountain Regions Natural Gas Underground Storage Net Withdrawals (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar AprThousand Cubic Feet) DecadeYear2CubicfromCubic

  19. 2014 FIRST Robotics Smoky Mountain Regionals | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3 Racetracks2 DOEEnergy Los Alamos3and4 Awards4 DOE4FIRST

  20. Karstic mountain almost conquered. [Guatemala

    SciTech Connect (OSTI)

    Not Available

    1982-06-10

    International design and construction teams building a 300-Mw hydroelectric system high in central Guatemala's rugged mountains since 1977 have persevered through karstic-limestone nightmares, logistical bottlenecks and political upheaval to bring the $700-million Rio Chixoy project close to completion. The costly power push, requiring the largest construction effort in Guatemala's modern history, plays a critical role for the future. When all five Pelton-wheel turbines are spinning late next year, their output will more than double electricity production in Central America's poorest, most populous country. Despite numerous delays, design changes and cost increases above the original $240-million bid package, work has progressed to the final stages on a 360-ft-high rockfill dam, 16-mile power tunnel and aboveground powerhouse.

  1. Geomorphology and morphometric characteristics of alluvial fans, Guadalupe Mountains National Park and adjacent areas, west Texas and New Mexico 

    E-Print Network [OSTI]

    Given, Jeffrey Lyle

    2004-09-30

    , near the Last Glacial Maximum (LGM), that pluvial Lake King (to be discussed in section 2.6) occupied Salt Basin- Crow Flats (Wilkins and Currey, 1997). The late Pleistocene was characterized by a final period of minor uplift that displaced... of the Guadalupe Mountains Region... 20 7 Fault map of the Guadalupe and Brokeoff Mountains ............................ 21 8 Alluvial fans and bajada in Salt Basin-Crow Flats.................................. 22 9 Photograph of a drainage...

  2. Major results of geophysical investigations at Yucca Mountain and vicinity, southern Nevada

    SciTech Connect (OSTI)

    Oliver, H.W.; Ponce, D.A. [eds.] [Geological Survey, Menlo Park, CA (United States); Hunter, W.C. [ed.] [Geological Survey, Denver, CO (United States). Yucca Mountain Project Branch

    1995-12-31

    In the consideration of Yucca Mountain as a possible site for storing high level nuclear waste, a number of geologic concerns have been suggested for study by the National Academy of Sciences which include: (1) natural geologic and geochemical barriers, (2) possible future fluctuations in the water table that might flood a mined underground repository, (3) tectonic stability, and (4) considerations of shaking such as might be caused by nearby earthquakes or possible volcanic eruptions. This volume represents the third part of an overall plan of geophysical investigation of Yucca Mountain, preceded by the Site Characterization Plan (SCP; dated 1988) and the report referred to as the Geophysical White Paper, Phase 1, entitled Status of Data, Major Results, and Plans for Geophysical Activities, Yucca Mountain Project (Oliver and others, 1990). The SCP necessarily contained uncertainty about applicability and accuracy of methods then untried in the Yucca Mountain volcano-tectonic setting, and the White Paper, Phase 1, focused on summarization of survey coverage, data quality, and applicability of results. For the most part, it did not present data or interpretation. The important distinction of the current volume lies in presentation of data, results, and interpretations of selected geophysical methods used in characterization activities at Yucca Mountain. Chapters are included on the following: gravity investigations; magnetic investigations; regional magnetotelluric investigations; seismic refraction investigations; seismic reflection investigations; teleseismic investigations; regional thermal setting; stress measurements; and integration of methods and conclusions. 8 refs., 60 figs., 2 tabs.

  3. Phytologia (December 2011) 93(3)316 IDENTIFICATON OF THE ELBURZ MOUNTAINS, IRAN

    E-Print Network [OSTI]

    Adams, Robert P.

    Phytologia (December 2011) 93(3)316 IDENTIFICATON OF THE ELBURZ MOUNTAINS, IRAN JUNIPER and Rangelands, Box 13185-116, Tehran, Iran ABSTRACT The utilization of 3,714 bp from four gene regions (nr the Elburz Mtns., Iran as Juniperus polycarpos var. polycarpos, not J. excelsa. The combined NJ tree (3

  4. The Virginia Mountain Streams Symposium October 30, 2004

    E-Print Network [OSTI]

    Lawrence, Deborah

    The Virginia Mountain Streams Symposium October 30, 2004 University of Virginia Summary Virginia mountains. The coordinated SWAS/VTSSS program now involves routine water quality monitoring in 65 forested mountain watersheds and associated mountain streams. To mark 25 years of investigation on Virginia

  5. 1. INTRODUCTION 1.1. Yucca Mountain Project

    E-Print Network [OSTI]

    Maerz, Norbert H.

    1. INTRODUCTION 1.1. Yucca Mountain Project The Yucca Mountain site in Nevada has been designated as United States choice for nuclear waste repository. Yucca Mountain is in a remote dry area, on federal has been made to characterize the nature of the discontinuities of the Yucca Mountain proposed nuclear

  6. Oxygen isotope records of goethite from ferricrete deposits indicate regionally varying Holocene climate change in

    E-Print Network [OSTI]

    Hren, Michael

    Oxygen isotope records of goethite from ferricrete deposits indicate regionally varying Holocene isotopes of goethite from ferricrete deposits were measured from both northern and southern Rocky Mountain in oxygen isotope values of 14 C-dated goethites in the northern Rocky Mountains suggests a regional

  7. Savage Arms Sales Office 118 Mountain Road

    E-Print Network [OSTI]

    New Hampshire, University of

    Savage Arms Sales Office 118 Mountain Road Suffield, Ct. 06078 Phone: (413) 642-4121 Fax: (860) 668 to change.) California orders will also need the Dealers CFD# Sales Tax must be added for orders shipping

  8. Rank Quantization Mountain View, CA, USA

    E-Print Network [OSTI]

    Singh, Jaswinder Pal

    Rank Quantization Ravi Kumar Google Mountain View, CA, USA ravi.k53@gmail.com Ronny Lempel Yahoo and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post

  9. Proc. of 36th Rocky Mountain Bioengineering Symposium, April 16-18, 1999, Copper Mountain, Colorado AN INTERACTIVE SYSTEM FOR KINEMATIC ANALYSIS

    E-Print Network [OSTI]

    Hoff, William A.

    Proc. of 36th Rocky Mountain Bioengineering Symposium, April 16-18, 1999, Copper Mountain, Colorado;Proc. of 36th Rocky Mountain Bioengineering Symposium, April 16-18, 1999, Copper Mountain, Colorado

  10. Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction

    SciTech Connect (OSTI)

    R.A. Levich; J.S. Stuckless

    2006-09-25

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation.

  11. Geology and geothermal waters of Lightning Dock region, Animas...

    Open Energy Info (EERE)

    Geology and geothermal waters of Lightning Dock region, Animas Valley and Pyramid Mountains, Hidalgo County, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to...

  12. ADVANCES IN YUCCA MOUNTAIN DESIGN

    SciTech Connect (OSTI)

    Harrington, P.G.; Gardiner, J.T.; Russell, P.R.Z.; Lachman, K.D.; McDaniel, P.W.; Boutin, R.J.; Brown, N.R.; Trautner, L.J.

    2003-02-27

    Since site designation of the Yucca Mountain Project by the President, the U.S. Department of Energy (DOE) has begun the transition from the site characterization phase of the project to preparation of the license application. As part of this transition, an increased focus has been applied to the repository design. Several evolution studies were performed to evaluate the repository design and to determine if improvements in the design were possible considering advances in the technology for handling and packaging nuclear materials. The studies' main focus was to reduce and/or eliminate uncertainties in both the pre-closure and post-closure performance of the repository and to optimize operations. The scope and recommendations from these studies are the subjects of this paper and include the following topics: (1) a more phased approach for the surface facility that utilize handling and packaging of the commercial spent nuclear fuel in a dry environment rather than in pools as was presented in the site recommendation; (2) slight adjustment of the repository footprint and a phased approach for construction and emplacement of the repository subsurface; and (3) simplification of the construction, fabrication and installation of the waste package and drip shield.

  13. Simulating 3-D Radiative Transfer Effects over the Sierra Nevada Mountains using WRF

    SciTech Connect (OSTI)

    Gu, Yu; Liou, K. N.; Lee, W- L.; Leung, Lai-Yung R.

    2012-10-30

    A surface solar radiation parameterization based on deviations between 3-D and conventional plane-parallel radiative transfer models has been incorporated into the Weather Research and Forecasting (WRF) model to understand the solar insolation over mountain/snow areas and to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on land-surface processes. Using the Sierra-Nevada in the western United States as a testbed, we show that mountain effect could produce up to ?50 to + 50Wm?2 deviations in the surface solar fluxes over the mountain areas, resulting in a temperature increase of up to 1 °C on the sunny side. Upward surface sensible and latent heat fluxes are modulated accordingly to compensate for the change in surface solar fluxes. Snow water equivalent and surface albedo both show decreases on the sunny side of the mountains, indicating more snowmelt and hence reduced snow albedo associated with more solar insolation due to mountain effect. Soil moisture increases on the sunny side of the mountains due to enhanced snowmelt, while decreases on the shaded side. Substantial differences are found in the morning hours from 8-10 a.m. and in the afternoon around 3-5 p.m., while differences around noon and in the early morning and late afternoon are comparatively smaller. Variation in the surface energy balance can also affect atmospheric processes, such as cloud fields, through the modulation of vertical thermal structure. Negative changes of up to ?40 gm?2 are found in the cloud water path, associated with reductions in the surface insolation over the cloud region. The day-averaged deviations in the surface solar flux are positive over the mountain areas and negative in the valleys, with a range between ?12~12Wm?2. Changes in sensible and latent heat fluxes and surface skin temperature follow the solar insolation pattern. Differences in the domain-averaged diurnal variation over the Sierras show that the mountain area receives more solar insolation during early morning and late afternoon, resulting in enhanced upward sensible heat and latent heat fluxes from the surface and a corresponding increase in surface skin temperature. During the middle of the day, however, the surface insolation and heat fluxes show negative changes, indicating a cooling effect. Hence overall, the diurnal variations of surface temperature and surface fluxes in the Sierra-Nevada are reduced through the interactions of radiative transfer and mountains. The hourly differences of the surface solar insolation in higher elevated regions, however, show smaller magnitude in negative changes during the middle of the day and possibly more solar fluxes received during the whole day.

  14. Fact #675: May 16, 2011 Gasoline Prices by Region, May 2, 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    The West Coast region paid the highest prices for gasoline averaging $4.14 for a gallon of regular gasoline while the Rocky Mountain region paid the least at $3.70 per gallon. The southern states,...

  15. Horizontal structures in granulite terrains: A record of mountain building or mountain collapse?

    E-Print Network [OSTI]

    Sandiford, Mike

    Horizontal structures in granulite terrains: A record of mountain building or mountain collapse horizontal structures occurred during the metamorphic culmination and was followed by isobaric cooling that no significant erosional denudation fol- lowed the development of the horizontal structures and thus precludes

  16. Analyzing flow patterns in unsaturated fractured rock of Yucca Mountain using an integrated modeling approach

    E-Print Network [OSTI]

    Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

    2008-01-01

    zone site-scale model, Yucca Mountain Site Characterizationscale model, Yucca Mountain Project Milestone 3GLM105M,lateral diversion at Yucca Mountain, Nevada, Water Resources

  17. Preliminary Study of Pesticide Drift into the Maya Mountain Protected Areas of Belize

    E-Print Network [OSTI]

    Kaiser, Kristine

    2011-01-01

    Drift into the Maya Mountain Protected Areas of BelizeProtected Areas of the Maya Mountains rely heavily on theinto the nearby Maya Mountain Protected Areas occurred by

  18. Several TOUGH2 Modules Developed for Site Characterization Studies of Yucca Mountain

    E-Print Network [OSTI]

    Wu, Yu-Shu; Pruess, Karsten

    1998-01-01

    Zone Model of Yucca Mountain, Nevada. Lawrence Berkeleystudies of Yucca Mountain. The model formulations arebeing used in the Yucca Mountain project. Pruess, K . ,

  19. Breast cancer, biosociality, and wilderness therapy: the practice of remaking selfhood in mountain climbing

    E-Print Network [OSTI]

    Collins, Lindsey

    2007-01-01

    that conquering the mountain is like conquering cancer,coexisting and learning from mountains is coexisting, albeitand psychically with mountain landscapes. Perhaps Susan

  20. Multiple-point statistical prediction on fracture networks at Yucca Mountain

    E-Print Network [OSTI]

    Liu, X.Y

    2010-01-01

    networks at Yucca Mountain Xiaoyan Liu 1 , Chengyuan Zhangsystems, such as at Yucca Mountain, water flow rate andbehavior at the Yucca Mountain waste repository system.

  1. Terrestrial and Aquatic Macroinvertebrate Assemblages as a Function of Wetland Type across a Mountain Landscape

    E-Print Network [OSTI]

    Holmquist, Jeffrey G; Jones, Jennifer R; Schmidt-Gengenbach, Jutta; Pierotti, Lyra F; Love, Jason P

    2011-01-01

    the spatial complexity of mountain habitats. Global Ecologyof Wetland Type across a Mountain Landscape Jeffrey G.Jason P. Love* *White Mountain Research Station, University

  2. Evaluating Wildlife Corridor Linkages: Do Freeway Underpasses Connect the Peninsular and Transverse Mountain Ranges?

    E-Print Network [OSTI]

    Murphy, Michelle L.

    2011-01-01

    some lessons from mountain lions in Southern California.and J.L. Doherty. 1985. Managing mountain goats at a highwaythe Peninsular and Transverse Mountain Ranges? A Thesis

  3. The LGBT Divide: A Data Portrait of LGBT People in the Midwestern, Mountain & Southern States

    E-Print Network [OSTI]

    Hasenbush, Amira; Flores, Andrew; Kastanis, Angeliki; Sears, Brad; Gates, Gary

    2014-01-01

    the South, Midwest and Mountain states in more depth mayin the Midwestern, Mountain & Southern States By Amirain the Midwest, South and Mountain states with limited legal

  4. Hydrologic diversity in Santa Cruz mountain creeks and implications for steelhead population survival

    E-Print Network [OSTI]

    Peterson, Michael

    2012-01-01

    diversity in Santa Cruz mountain creeks and implications foroccurring in the Santa Cruz mountains and outlets in andto compare Santa Cruz mountain watershed responses to a

  5. Global Change and Mountain Lakes: Establishing Nutrient Criteria and Critical Loads for Sierra Nevada Lakes

    E-Print Network [OSTI]

    Heard, ANDREA Michelle

    2013-01-01

    and climate change in European mountain lakes assessed usinglimitation in Colorado mountain lakes. Freshwater Biologyparks of the Rocky Mountains. Ecological Applications 19(4):

  6. Black carbon transport and deposition to the California mountain snow pack

    E-Print Network [OSTI]

    Hadley, Odelle L.

    2008-01-01

    desert soils on duration of mountain snow cover, Geophys Resdesert soils on duration of mountain snow cover, Geophys Resdesert soils on duration of mountain snow cover, Geophys Res

  7. Development of discrete flow paths in unsaturated fractures at Yucca Mountain

    E-Print Network [OSTI]

    Bodvarsson, G.S.; Wu, Yu-Shu; Zhang, Keni

    2002-01-01

    into drifts at Yucca Mountain. Journal of Contaminantof infiltration for the Yucca Mountain Area, Nevada, U. S.matrix properties, Yucca Mountain, Nevada, U.S. Geological

  8. Temporal Damping Effect of the Yucca Mountain Fractured Unsaturated Rock on Transient Infiltration Pulses

    E-Print Network [OSTI]

    Zhang, Keni; Wu, Yu-Shu; Pan, Lehua

    2005-01-01

    unsaturated zone at Yucca Mountain. J. of Cont. Hydrol. ,2003b. Calibration of Yucca Mountain unsaturated zone flowthe unsaturated zone, Yucca Mountain, USGS Water Resources

  9. Characterization and Prediction of Subsurface Pneumatic Pressure Variations at Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Ahlers, C. Fredrik; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    1998-01-01

    Group Exposed at Yucca Mountain, Nevada, U. S. Geologicalunsaturated zone, Yucca Mountain, Nevada, Water Resourcesgeologic map of Yucca Mountain, Nye County, Nevada, with

  10. Influence of faults on groundwater flow and transport at Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Cohen, Andrew J.B.; Sitar, Nicholas

    1999-01-01

    assessment for Yucca Mountain-SNL second interation (TSPA-Site-Scale Model, Yucca Mountain Project Level 4 Milestonetransport model, Yucca Mountain Site Characterizaton Project

  11. Effect of small-scale fractures on flow and transport processes at Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Wu, Yu-Shu; Liu, H.H.; Bodvarsson, G.S.

    2002-01-01

    Transport Processes at Yucca Mountain, Nevada Yu-Shu Wu, H.matrix interaction in Yucca Mountain site characterizationthe Unsaturated Zone of Yucca Mountain, Nevada, Journal of

  12. Massively parallel computing simulation of fluid flow in the unsaturated zone of Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Zhang, Keni; Wu, Yu-Shu; Bodvarsson, G.S.

    2001-01-01

    Central Block Area, Yucca Mountain, Nye County, Nevada. Mapunsaturated zone, Yucca Mountain, Nevada. Water-Resourcesisotope distributions at Yucca Mountain. Sandia National

  13. Several TOUGH2 Modules Developed for Site Characterization Studies of Yucca Mountain

    E-Print Network [OSTI]

    Wu, Yu-Shu; Pruess, Karsten

    1998-01-01

    Unsaturated Zone Model of Yucca Mountain, Nevada. Lawrencestudies of Yucca Mountain. The model formulations arebeing used in the Yucca Mountain project. Pruess, K . ,

  14. Multiphysics processes in partially saturated fracture rock: Experiments and models from Yucca Mountain

    E-Print Network [OSTI]

    Rutqvist, J.

    2014-01-01

    Materials from Yucca Mountain, Nye County, Nevada, Rep.Volcanic Tuff Units from Yucca Mountain, Nevada Test Site,N. Spycher (1999), Yucca Mountain single heater test final

  15. Modeling water seepage into heated waste emplacement drifts at Yucca Mountain

    E-Print Network [OSTI]

    Birkholzer, Jens; Mukhopadhyay, Sumitra; Tsang, Yvonne

    2003-01-01

    into drifts at Yucca Mountain, Journal of ContaminantEMPLACEMENT DRIFTS AT YUCCA MOUNTAIN Jens Birkholzer, Sumitfor nuclear waste at Yucca Mountain, Nevada. Heating of rock

  16. Fluid flow and reactive transport around potential nuclear waste emplacement tunnels at Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Spycher, N.F.; Sonnenthal, E.L.; Apps, J.A.

    2002-01-01

    Unsaturated Zone at Yucca Mountain, Nevada. U.S. GeologicalE. Sonnenthal; N. Spycher, Yucca Mountain Single Heater TestFinal Report. Yucca Mountain Site Characterization Project.

  17. Calibration of Yucca Mountain unsaturated zone flow and transport model using porewater chloride data

    E-Print Network [OSTI]

    Liu, Jianchun; Sonnenthal, Eric L.; Bodvarsson, Gudmundur S.

    2002-01-01

    of hydrogeologic units at Yucca Mountain, Nevada. U.S.infiltration for the Yucca Mountain Area, Nevada. Milestonethe unsaturated zone at Yucca Mountain, Nevada. J. Contam.

  18. Experimental and numerical simulation of dissolution and precipitation: Implications for fracture sealing at Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Dobson, Patrick F.; Kneafsey, Timothy J.; Sonnenthal, Eric L.; Spycher, Nicolas; Apps, John A.

    2001-01-01

    FRACTURE SEALING AT YUCCA MOUNTAIN, NEVADA Patrick F. Dobsonpotential repository at Yucca Mountain, Nevada, would reducewas flowed through crushed Yucca Mountain tuff at 94°C. The

  19. Multiple-point statistical prediction on fracture networks at Yucca Mountain

    E-Print Network [OSTI]

    Liu, X.Y

    2010-01-01

    on fracture networks at Yucca Mountain Xiaoyan Liu 1 ,systems, such as at Yucca Mountain, water flow rate andflow field behavior at the Yucca Mountain waste repository

  20. H33B-05H33B-05 Water subsidies from mountains to deserts:Water subsidies from mountains to deserts:Water subsidies from mountains to deserts

    E-Print Network [OSTI]

    Nacional de San Luis, Universidad

    water Bare dunes, instead, experienced deep drainage & local recharge. quicktour Site A bare interduneH33B-05H33B-05 Water subsidies from mountains to deserts:Water subsidies from mountains to deserts:Water subsidies from mountains to deserts: groundwater-fed oases in a sandy landscape Water subsidies from

  1. A revised Litostragraphic Framework for the Southern Yucca Mountain Area, Nye County, Nevada

    SciTech Connect (OSTI)

    R.W. Spengler; F.M. Byers; R.P. Dickerson

    2006-03-24

    An informal, revised lithostratigraphic framework for the southern Yucca Mountain area, Nevada has been developed to accommodate new information derived from subsurface investigations of the Nye County Early Warning Drilling Program. Lithologies penetrated by recently drilled boreholes at locations between Stagecoach Road and Highway 95 in southern Nye County include Quaternary and Pliocene alluvium and alluvial breccia, Miocene pyroclastic flow deposits and intercalated lacustrine siltstone and claystone sequences, early Miocene to Oligocene pre-volcanic sedimentary rocks, and Paleozoic strata. Of the 37 boreholes currently drilled, 21 boreholes have sufficient depth, spatial distribution, or traceable pyroclastic flow, pyroclastic fall, and reworked tuff deposits to aid in the lateral correlation of lithostrata. Medial and distal parts of regional pyroclastic flow deposits of Miocene age can be correlated with the Timber Mountain, Paintbrush, Crater Flat, and Tram Ridge Groups. Rocks intercalated between these regional pyroclastic flow deposits are substantially thicker than in the central part of Yucca Mountain, particularly near the downthrown side of major faults and along the southern extent of exposures at Yucca Mountain.

  2. Mountain Home Well - Borehole Geophysics Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    2012-11-11

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  3. Mountain Home Well - Borehole Geophysics Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  4. Variation of Treeline Mountain Birch Establishment Under Herbivory Pressure 

    E-Print Network [OSTI]

    Granberg, Tynan

    2012-10-19

    be attributable to the impacts of herbivores. This study investigates the interacting effects of herbivory, climate, and understory vegetation on mountain birch establishment at treeline in the Scandes Mountains of northern Sweden. An extensive...

  5. VEE-0076- In the Matter of Green Mountain Energy Company

    Broader source: Energy.gov [DOE]

    On August 23, 2000, the Green Mountain Energy Company (Green Mountain) of Austin, Texas, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy (DOE)...

  6. Drift Natural Convection and Seepage at the Yucca Mountain Repository

    E-Print Network [OSTI]

    Halecky, Nicholaus Eugene

    2010-01-01

    in situ heater test. Nuclear Technology, [81] SD Dunn, B.Yucca Mountain, Nevada. Nuclear Technology, 148(2):138–150,at Yucca Mountain. Nuclear Technology, 63(1):147– [66

  7. New Yucca Mountain Repository Design to be Simpler, Safer and...

    Office of Environmental Management (EM)

    New Yucca Mountain Repository Design to be Simpler, Safer and More Cost-Effective New Yucca Mountain Repository Design to be Simpler, Safer and More Cost-Effective untitled More...

  8. Exploiting User Generated Content for Mountain Peak Detection

    E-Print Network [OSTI]

    Tagliasacchi, Marco

    Exploiting User Generated Content for Mountain Peak Detection Roman Fedorov Politecnico di Milano.g. snow water availability maps based on mountain peaks states extracted from photographs hosting services). User Generated Content(UGC); collective intelligence; passive crowdsourcing; environmental models

  9. MountainPineBeetleManagement Short-Term Management

    E-Print Network [OSTI]

    to mountain pine beetle attacks and forest fires. Wider growth rings (to the right), show how a tree responds

  10. Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  11. Exploratory Boreholes At Blue Mountain Geothermal Area (Parr...

    Open Energy Info (EERE)

    Exploratory Boreholes At Blue Mountain Geothermal Area (Parr & Percival, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory...

  12. Calcite/opal deposits at Yucca Mountain, Nevada: Pedogenic or hypogene?

    SciTech Connect (OSTI)

    Hill, C.A.; Schluter, C.M.; Harmon, R.S.

    1994-01-01

    This study is part of the research program of the Yucca Mountain Project intended to provide the State of Nevada with a detailed assessment of the geology and geochemistry of Yucca Mountain and adjacent regions. The purpose of this paper is to consider all of the geological and geochemical data available for the calcite/opal deposits at Yucca Mountain and to ascertain whether this data favors a pedogenic or hyogene origin for these deposits. Far from being of esoteric concern, this subject is of paramount importance to the debate which rages around the suitability of Yucca Mountain as a high-level radioactive waste repository site. It is also the purpose of this paper to serve as a foundation for a lengthy feature article to be submitted for publication in 1994. In addition, a stand has been taken by the National Research Council of the National Academy of Sciences against the upwelling-water model (a vote of 17 to 0 against), and this same panel report has concluded that {open_quotes}there is no compelling evidence for the repetitive flooding of the environment by expulsion of groundwater{close_quotes} and that {open_quotes}instead, the evidence strongly supports the idea that the near-surface mineral deposits resulted from percolating rainwater, which carried soil minerals down into rock fractures{close_quotes}. Based on such information the Department of Energy has stated that it {open_quotes}finds no basis to continue to study the origin of these specific deposits{close_quotes}. This study, based upon many different independent lines of evidence, reaches the opposite conclusion and instead favors a hypogene spring-travertine origin for the controversial calcite/opal deposits at Yucca Mountain. This study recognizes a pedogenic carbonate component at Yucca Mountain, but argues that this component is distinct from, and sometimes intermixed with, the calcite/opal deposits.

  13. Becky Hill Green Mountain DNA Conference LT-DNA Analysis

    E-Print Network [OSTI]

    Becky Hill ­ Green Mountain DNA Conference LT-DNA Analysis July 26, 2010 http of the Chief Medical Examiner, NYC Green Mountain DNA Conference Burlington, VT July 26, 2010 Low Template (LT generally aim for 0.5-2 ng 100 pg template 5 pg template #12;Becky Hill ­ Green Mountain DNA Conference LT

  14. A Mountain Pass for Reacting Molecules Mathieu LEWIN

    E-Print Network [OSTI]

    A Mountain Pass for Reacting Molecules Mathieu LEWIN CEREMADE, CNRS UMR 7534, Universit'e Paris IX nuclei, and look for a mountain pass point between the two minima in the non­relativistic Schr by the mountain pass method are not compact. This enables us to identify precisely the possible values

  15. Mountains on Titan: Modeling and observations Giuseppe Mitri,1

    E-Print Network [OSTI]

    Mountains on Titan: Modeling and observations Giuseppe Mitri,1 Michael T. Bland,2 Adam P. Showman,3. Showman, J. Radebaugh, B. Stiles, R. M. C. Lopes, J. I. Lunine, and R. T. Pappalardo (2010), Mountains. Introduction [2] The Cassini Radar instrument has imaged mountainous topography on Saturn's moon Titan

  16. The Influence of Previous Mountain Pine Beetle (Dendroctonus

    E-Print Network [OSTI]

    Moorcroft, Paul R.

    The Influence of Previous Mountain Pine Beetle (Dendroctonus ponderosae) Activity on the 1988, Bozeman Montana, 59715, USA ABSTRACT We examined the historical record of mountain pine beetle variables: drought, aspect, and sus- tained mountain pine beetle activity in the period 1972­75. Of the two

  17. WATERSHED MANAGEMENT PLANNING IN A MOUNTAIN RESORT COMMUNITY

    E-Print Network [OSTI]

    WATERSHED MANAGEMENT PLANNING IN A MOUNTAIN RESORT COMMUNITY: A CASE STUDY OF WHISTLER'S CRABAPPLE at local and municipal scales. As part of an overall movement towards sustainability, the mountain resort and visitors in a natural mountain environment. From a tourism perspective, Whistler faces the challenge

  18. Counting Mountain-Valley Assignments for Flat Folds

    E-Print Network [OSTI]

    Hull, Thomas C.

    Counting Mountain-Valley Assignments for Flat Folds Thomas Hull Department of Mathematics Merrimack), a mountain-valley (MV) assignment is a function f : E {M,V} which indicates which crease lines are con- vex can be thought of as a structural blueprint of the fold.) Creases come in two types: mountain creases

  19. Lifestyle, identity and young people's experiences of mountain biking

    E-Print Network [OSTI]

    Lifestyle, identity and young people's experiences of mountain biking It has been widely recognised emphasis on young people as a key target group. Mountain biking, as a popular youth sport that often occurs. The research employed ethnographic techniques to capture youth experiences and understandings of mountain

  20. Dr. Peter M. Vallone Vermont Green Mountain Conference

    E-Print Network [OSTI]

    Dr. Peter M. Vallone Vermont Green Mountain Conference August 6th, 2008 http://www.cstl.nist.gov/biotech. Vallone Vermont Green Mountain Conference August 6th, 2008 http://www.cstl.nist.gov/biotech/limits of rapid multiplex PCR? #12;Dr. Peter M. Vallone Vermont Green Mountain Conference August 6th, 2008 http://www.cstl.nist.gov/biotech

  1. Synoptic Responses to Mountain Gravity Waves Encountering Directional Critical Levels

    E-Print Network [OSTI]

    Lott, Francois

    Synoptic Responses to Mountain Gravity Waves Encountering Directional Critical Levels ARMEL MARTIN the synoptic response to mountain gravity waves (GWs) absorbed at directional critical levels. The model in the midtroposphere. First, the authors consider the case of an idealized mountain range such that the orographic

  2. TESTING MODELS FOR BASALTIC VOLCANISM: IMPLICATIONS FOR YUCCA MOUNTAIN, NEVADA

    E-Print Network [OSTI]

    Conrad, Clint

    TESTING MODELS FOR BASALTIC VOLCANISM: IMPLICATIONS FOR YUCCA MOUNTAIN, NEVADA Eugene Smith 1 The determination of volcanic risk to the proposed high- level nuclear waste repository at Yucca Mountain requires, then volcanism in the future may not be a significant threat to Yucca Mountain. On the other hand, if melting

  3. Climate Change at Yucca Mountain: Lessons from Earth History

    E-Print Network [OSTI]

    Schrag, Daniel

    9 Climate Change at Yucca Mountain: Lessons from Earth History MaryLynn Musgrove and Daniel P. Schrag Yucca Mountain's suitability as a nuclear waste repository stems largely from its very dry climate the climate and hydrologic conditions at Yucca Mountain will be stable enough beyond the next ten millennia so

  4. Mountain Caribou in Managed Forests: Recommendations for Managers

    E-Print Network [OSTI]

    Northern British Columbia, University of

    by the program. Financial support for the production of the second edition of Mountain Caribou in managed forestsMountain Caribou in Managed Forests: Recommendations for Managers Second Edition Susan K. Stevenson, Lands and Parks. #12;iv ACKNOWLEDGEMENTS The first edition of this report, Mountain Caribou in managed

  5. DEFORMATION OF THE HURRICANE MOUNTAIN FORMATION MELANGE ALONG TOMHEGAN AND

    E-Print Network [OSTI]

    Beane, Rachel J.

    DEFORMATION OF THE HURRICANE MOUNTAIN FORMATION MELANGE ALONG TOMHEGAN AND COLD STREAMS, WEST through Acadian deformation recorded in foliated pelites of the Hurricane Mountain Formation in west central Maine. The Hurricane Mountain Formation is a melange with a grey sulfidic slate- to gneiss- matrix

  6. Climatological lightning characteristics of the Southern Rocky and Appalachian Mountain chains, a comparison of two distinct mountain effects 

    E-Print Network [OSTI]

    Phillips, Stephen Edward

    2001-01-01

    This study presents a high-resolution lightning climatology for southern portions of both the Rocky Mountains and the Appalachian Mountains. Data from the National Lightning Detection Network (NLDN) are analyzed to produce maps of average annual...

  7. SOLAR TODAY28 The Green Mountain Energysm

    E-Print Network [OSTI]

    of the public and the renewable energy industry have worked diligently in regula- tory and public policy arenas, generates pollution-free, renewable electricity. GreenMountainEnergyCompany BuyingGreenPower-- You of renewable energy technologies. by Blair Swezey and Lori Bird #12;January/February 2003 29 The electricity

  8. YUCCA MOUNTAIN WASTE PACKAGE CLOSURE SYSTEM

    SciTech Connect (OSTI)

    G. Housley; C. Shelton-davis; K. Skinner

    2005-08-26

    The method selected for dealing with spent nuclear fuel in the US is to seal the fuel in waste packages and then to place them in an underground repository at the Yucca Mountain Site in Nevada. This article describes the Waste Package Closure System (WPCS) currently being designed for sealing the waste packages.

  9. Characterize Eruptive Processes at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    D. Krier

    2004-10-04

    The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004 [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached.

  10. CX-010888: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Great Cut-McPhee 12.5-Kilovolt Fiber Optic Line Replacement CX(s) Applied: B1.3, B4.7 Date: 08/08/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  11. CX-008783: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fiber Optic Installation at the Stegall 230 Kilovolt Substation Scotts Bluff County, Nebraska CX(s) Applied: B4.7 Date: 06/20/2012 Location(s): Nebraska Offices(s): Western Area Power Administration-Rocky Mountain Region

  12. CX-011721: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gore Pass-Muddy Pass 69 Kilovolt Transmission Line Danger Tree Management in Grand and Jackson Counties, Colorado CX(s) Applied: B1.3 Date: 12/31/2013 Location(s): Colorado, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  13. CX-012352: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Flaming Gorge Microwave Site Communications Building Access Road Repairs, Daggett County, Utah (Amended) CX(s) Applied: B1.3 Date: 06/03/2014 Location(s): Utah Offices(s): Western Area Power Administration-Rocky Mountain Region

  14. CX-008785: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Line Switch Replacements at Chappell and Julesburg Taps in Deuel County, Nebraska and Kersey Tap in Weld, Colorado CX(s) Applied: B4.6, B4.11 Date: 07/25/2012 Location(s): Nebraska, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  15. CX-008788: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Rifle and Craig Substation Modifications and Approach Spans Re-Conductoring Garfield County, Rifle, Colorado and Moffat County, Craig, Colorado CX(s) Applied: B4.6, B4.13 Date: 05/22/2012 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  16. CX-008398: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Erosion Control Measures Structure No. 20-1 East Morrill Tap to Lyman 34.5 Kilovolt Transmission Line, Scotts Bluff County, Nebraska CX(s) Applied: B1.3 Date: 03/29/2012 Location(s): Nebraska Offices(s): Western Area Power Administration-Rocky Mountain Region

  17. CX-010549: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chappell, Julesburg, and Kersey Tap Line Switch Replacements in Deuel County, Nebraska and Weld County, Colorado CX(s) Applied: B4.6, B4.11 Date: 06/04/2013 Location(s): Nebraska, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  18. CX-010885: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kiowa Creek-Weld 115-Kilovolt Transmission Line Culvert Replacement CX(s) Applied: B1.3, B1.33 Date: 08/06/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  19. CX-010550: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Upper Molina-Lower Molina 115 Kilovolt Danger Tree Management Mesa County, Colorado CX(s) Applied: B1.3 Date: 06/14/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  20. CX-011621: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Windy Gap-Granby Pumping Plant and Granby Pumping Plant-Mary's Lake (West Portal) 69-kilovolt Transmission Line Danger Tree Management CX(s) Applied: B1.3 Date: 11/21/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  1. CX-011231: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hayden Communications Site Tower Removal and Parking Area Grading Routt County, Colorado CX(s) Applied: B1.3, B1.19 Date: 10/01/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  2. CX-011617: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hayden Communications Site Tower Removal and Parking Area Grading (Amended) CX(s) Applied: B1.3, B1.19 Date: 11/21/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  3. CX-012757: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on Curecanti-Lost Canyon 230 Kilovolt Transmission Line Phase II Montezuma County, Colorado CX(s) Applied: B1.3Date: 41838 Location(s): ColoradoOffices(s): Western Area Power Administration-Rocky Mountain Region

  4. CX-012759: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on Hayden-Gore Pass 230 Kilovolt Transmission Line Grand and Routt Counties, Colorado CX(s) Applied: B1.3Date: 41866 Location(s): ColoradoOffices(s): Western Area Power Administration-Rocky Mountain Region

  5. CX-011233: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Curecanti-Morrow Point 230 Kilovolt Transmission Line Danger Tree Management, Montrose County, Colorado CX(s) Applied: B1.3 Date: 10/17/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  6. CX-012346: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on Blue River-Gore Pass 230-kilovolt Transmission Line (Amended), Grand County, Colorado CX(s) Applied: B1.3 Date: 06/02/2014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  7. CX-012349: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on Gore Pass-Hayden 138-kilovolt Transmission Line, Grand and Routt Counties, Colorado CX(s) Applied: B1.3 Date: 06/02/2014 Location(s): Colorado, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  8. CX-010108: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on Curecanti-Crystal, 115 Kilovolt Transmission Line Danger Tree and Vegetation Management CX(s) Applied: B1.3 Date: 04/25/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  9. CX-012350: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on Gore Pass-Kremmling 138-kilovolt Transmission Line (Amended), Grand County, Colorado CX(s) Applied: B1.3 Date: 07/01/2014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  10. CX-012216: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on Curecanti-Morrow Point 230 Kilovolt Transmission Line (Amended), Montrose County, Colorado CX(s) Applied: B1.3 Date: 05/16/2014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  11. CX-011207: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ault-Craig 345-Kilovolt Transmission Line Eastern Colorado Maintenance Office Danger Tree Management CX(s) Applied: B1.3 Date: 09/09/2013 Location(s): Colorado, Colorado, Colorado, Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  12. CX-012760: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on Hesperus-Montrose 345 Kilovolt Transmission Line, Phase II Montezuma County, Colorado CX(s) Applied: B1.3Date: 41838 Location(s): ColoradoOffices(s): Western Area Power Administration-Rocky Mountain Region

  13. CX-011720: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Blue River-Gore Pass 230 Kilovolt Transmission Line Danger Tree Management in Grand County, Colorado CX(s) Applied: B1.3 Date: 01/06/2014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  14. CX-012348: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on Curecanti to Poncha 230-kilovolt Transmission Line, Gunnison County, Colorado CX(s) Applied: B1.3 Date: 07/02/2014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  15. CX-011230: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Artesia Tap- Southwest Rangely 138 Kilovolt Transmission Line Danger Tree and Herbicide Treatment for Vegetation Management CX(s) Applied: B1.3 Date: 09/26/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  16. CX-012347: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on Craig-Rifle 230-kilovolt Transmission Line, Moffat, Rio Blanco, and Garfield Counties, Colorado CX(s) Applied: B1.3 Date: 06/02/2014 Location(s): Colorado, Colorado, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  17. CX-009530: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Artesia-Rangely Tap of the Hayden-Vernal 138 Kilovolt Transmission Line Bank Stabilization on Structure 20/2 CX(s) Applied: B1.3 Date: 10/29/2012 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  18. CX-011858: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Beaver Creek-Sterling 115 Kilovolt Transmission Line Structure Relocation, Morgan County, Colorado CX(s) Applied: B4.13 Date: 01/21/2014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  19. CX-012751: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Casper-Seminoe (Retired) 69 Kilovolt Transmission Line Emergency Conductor Removal Carbon and Natrona Counties, Wyoming CX(s) Applied: B4.10Date: 41858 Location(s): WyomingOffices(s): Western Area Power Administration-Rocky Mountain Region

  20. CX-008784: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    License Outgrant to Owl Creek Water District Town of Thermopolis, Hot Springs County, Wyoming CX(s) Applied: B4.9 Date: 07/23/2012 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  1. CX-012758: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on Curecanti to South Canal and South Canal to Montrose 115 Kilovolt Transmission Lines, Gunnison County, Colorado CX(s) Applied: B1.3Date: 41855 Location(s): ColoradoOffices(s): Western Area Power Administration-Rocky Mountain Region

  2. CX-009803: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Western's Power Marketing Operations Center New Fiber Optic Cable Installation CX(s) Applied: B1.31, B2.2, B4.7 Date: 01/16/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  3. CX-012074: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Canyon City West-Midway 230-Kilovolt Transmission Line Safety Marker Ball Installation CX(s) Applied: B.13 Date: 04/07/2014 Location(s): Colorado, Colorado, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  4. CX-011232: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gore Pass-Hayden 138 Kilovolt Transmission Line Emergency Repairs of Downed Conductor Grand County, Colorado CX(s) Applied: B1.3 Date: 10/09/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  5. CX-010418: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Eastern Colorado Field Office Com Buildings Removal CX(s) Applied: B1.22, B1.23, B1.24 Date: 05/20/2013 Location(s): Colorado, Wyoming, Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  6. CX-012083: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Rosedale-Willowby-Kiowa Creek 115-Kilovolt Transmission Line Wood H-Structure Replacement CX(s) Applied: B1.3 Date: 04/10/2014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  7. CX-008786: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Lovell, Basin, and Buffalo Bill Substations, Control Building Rehabilitation Projects Big Horn and Park Counties, Wyoming CX(s) Applied: B1.3, B1.4 Date: 07/02/2012 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  8. CX-011857: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Archer-Cheyenne North/South 115 Kilovolt Transmission Line Structure Replacement, Laramie County, Wyoming CX(s) Applied: B4.13 Date: 01/28/2014 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  9. CX-008793: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gore Pass to Muddy Pass: Single Pole and Multiple Cross Arm Replacements Grand County, Wyoming CX(s) Applied: B1.3, B4.6 Date: 09/16/2011 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  10. CX-010884: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    North Gunnison-Salida 115-Kilovolt Pole Installation and Site Road Maintenance, Saquache County, Colorado CX(s) Applied: B1.3 Date: 07/31/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  11. CX-009235: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Willow Creek - Granby Tap 2.4 Kilovolt Distribution Line Structure 0/3A Pole Replacement Project CX(s) Applied: B4.6 Date: 09/20/2012 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  12. Potentially disruptive hydrologic features, events and processes at the Yucca Mountain Site, Nevada

    SciTech Connect (OSTI)

    Hoxie, D.T.

    1995-04-01

    Yucca Mountain, Nevada, has been selected by the United States to be evaluated as a potential site for the development of a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. If the site is determined to be suitable for repository development and construction is authorized, the repository at the Yucca Mountain site is planned to be constructed in unsaturated tuff at a depth of about 250 meters below land surface and at a distance of about 250 meters above the water table. The intent of locating a repository in a thick unsaturated-zone geohydrologic setting, such as occurs at Yucca Mountain under the arid to semi-arid climatic conditions that currently prevail in the region, is to provide a natural setting for the repository system in which little ground water will be available to contact emplaced waste or to transport radioactive material from the repository to the biosphere. In principle, an unsaturated-zone repository will be vulnerable to water entry from both above and below. Consequently, a major effort within the site-characterization program at the Yucca Mountain site is concerned with identifying and evaluating those features, events, and processes, such as increased net infiltration or water-table rise, whose presence or future occurrence could introduce water into a potential repository at the site in quantities sufficient to compromise the waste-isolation capability of the repository system.

  13. Geologic evolution of the Jemez Mountains and their potential for future volcanic activity

    SciTech Connect (OSTI)

    Burton, B.W.

    1982-01-01

    Geophysical and geochemical data and the geologic history of the Rio Grande rift and the vicinity of the Jemez Mountains are summarized to determine the probability of future volcanic activity in the Los Alamos, New Mexico area. The apparent cyclic nature of volcanism in the Jemez Mountains may be related to intermittent thermal inputs into the volcanic system beneath the region. The Jemez lineament, an alignment of late Cenozoic volcanic centers that crosses the rift near Los Alamos, has played an important role in the volcanic evolution of the Jemez Mountains. Geophysical data suggest that there is no active shallow magma body beneath the Valles caldera, though magma probably exists at about 15 km beneath this portion of the rift. The rate of volcanism in the Jemez Mountains during the last 10 million years has been 5 x 10/sup -9//km/sup 2//y. Lava or ash flows overriding Laboratory radioactive waste disposal sites would have little potential to release radionuclides to the environment. The probability of a new volcano intruding close enough to a radioactive waste disposal site to effect radionuclide release is 2 x 10/sup -7//y.

  14. Oxidized organic functional groups in aerosol particles from forest emissions measured at mid-mountain and high- elevation mountain sites in Whistler, BC

    E-Print Network [OSTI]

    Schwartz, Rachel E.

    2010-01-01

    in Aerosol Particles from a Mountain Forest Site and theirin the Sierra Nevada Mountains of California, J. Geophys.in Aerosol Particles from a Mountain Forest Site and their

  15. Evaluating cumulative ascent: Mountain biking meets Mandelbrot

    E-Print Network [OSTI]

    D. C. Rapaport

    2011-03-10

    The problem of determining total distance ascended during a mountain bike trip is addressed. Altitude measurements are obtained from GPS receivers utilizing both GPS-based and barometric altitude data, with data averaging used to reduce fluctuations. The estimation process is sensitive to the degree of averaging, and is related to the well-known question of determining coastline length. Barometric-based measurements prove more reliable, due to their insensitivity to GPS altitude fluctuations.

  16. SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

    SciTech Connect (OSTI)

    Perry, F. V.; Crowe, G. A.; Valentine, G. A.; Bowker, L. M.

    1997-09-23

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The distribution of Pliocene and Quaternary basaltic volcanic centers is evaluated with respect to tectonic models for detachment, caldera, regional and local rifting, and the Walker Lane structural zone. Geophysical data are described for the YMR and are used as an aid to understand the distribution of past basaltic volcanic centers and possible future magmatic processes. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be greater than 10{sup -7} events per year. Bounding probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Arnargosa Valley and Crater Flat. The results of simulation modeling are used to assess the sensitivity of the disruption probability for the location of northeast boundaries of volcanic zones near the Yucca Mountain site. A new section on modeling of radiological releases associated with surface and subsurface magmatic activity has been added to chapter 6. The modeling results are consistent with past total system performance assessments that show future volcanic and magmatic events are not significant components of repository performance and volcanism is not a prio

  17. Seismicity in the Vicinity of Yucca Mountain, Nevada, for the Period October 1, 2002, to September 30, 2003

    SciTech Connect (OSTI)

    Smith, Ken; von Seggern, David

    2007-12-04

    Earthquake activity in the Yucca Mountain from October 1, 2002 through September 30, 2003 (FY03) is assessed and compared with previous activity in the region. FY03 is the first reporting year since the 1992 M 5.6 Little Skull Mountain earthquake with no earthquakes greater than M 3.0 within 65 km of Yucca Mountain. In addition, FY03 includes the fewest number of earthquakes greater than M 2.0 in any reporting year since the LSM event. With 3075 earthquakes in the catalog, FY03 represents the second largest number of earthquakes (second to FY02) since FY96 when digital seismic network operations began. The largest event during FY03 was M 2.78 in eastern NTS and there were only 8 earthquakes greater than M 2.0.

  18. A Mountain-Scale Thermal Hydrologic Model for Simulating Fluid Flow and Heat Transfer in Unsaturated Fractured Rock

    E-Print Network [OSTI]

    Wu, Yu-Shu; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, Gudmundur S.

    2005-01-01

    Studies Using the Yucca Mountain Unsaturated Zone Model,Unsaturated Zone at Yucca Mountain, Nevada, to Thermal LoadUnsaturated Zone, Yucca Mountain, Nevada, Water-Resources

  19. Chytridiomycosis and the Mountain Yellow Legged Frog: studies of physiological factors that influence disease in Rana muscosa.

    E-Print Network [OSTI]

    Stice, Mary Jennifer

    2009-01-01

    dendrobatidis infection in the mountain yellow legged frog (Chytridiomycosis in the Mountain Yellow Legged Frog Ranapeptide defenses of the mountain yellow frog (Rana muscosa).

  20. The Influence of Proposed Repository Thermal Load on Multiphase Flow and Heat Transfer in the Unsaturated Zone of Yucca Mountain

    E-Print Network [OSTI]

    Wu, Y.-S.; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, G.S.

    2006-01-01

    Studies Using the Yucca Mountain Unsaturated Zone Model,Unsaturated Zone at Yucca Mountain, Nevada, to Thermal LoadLarge Block Test at Yucca Mountain, Nevada, Water Resources

  1. Dynamic coupling of volcanic CO2 flow and wind at the Horseshoe Lake tree kill, Mammoth Mountain, CA

    E-Print Network [OSTI]

    Lewicki, J.L.; Hilley, G.E.; Tosha, T.; Aoyagi, R.; Yamamoto, K.; Benson, S.M.

    2006-01-01

    dioxide beneath Mammoth Mountain, California, Seismol. Res.unrest beneath Mammoth Mountain, California, J. Volcanol.emission at Mammoth Mountain, California, Earth Planet. Sci.

  2. The use of TOUGH2/iTOUGH2 in support of the Yucca Mountain Project: Successes and limitations

    E-Print Network [OSTI]

    Bodvarsson, G.S.; Birkholzer, J.T.; Finsterle, S.; Liu, H.H.; Rutqvist, J.; Wu, Y.S.

    2003-01-01

    Large Block Test at Yucca Mountain, Nevada, Water Resourcesthe Unsaturated Zone, Yucca Mountain, Ne- vada. LBL-20553.emplace- ment drift at Yucca Mountain. J. of Contam. Hydrol-

  3. Sensitivity Analysis Of Hydrological Parameters In Modeling Flow And Transport In The Unsaturated Zone Of Yucca Mountain

    E-Print Network [OSTI]

    Zhang, Keni; Wu, Yu-Shu; Houseworth, James E

    2006-01-01

    Unsaturated Zone of Yucca Mountain Keni Zhang, Yu-Shu Wu,volcanic deposits at Yucca Mountain have been intensivelyhydraulic properties, Yucca Mountain Introduction Site

  4. Uncertainties in coupled thermal-hydrological processes associated with the drift scale test at Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Mukhopadhyay, Sumitra; Tsang, Y.W.

    2002-01-01

    Scale Test at Yucca Mountain, Nevada S. Mukhopadhyay * , Y.waste repository at Yucca Mountain, Nevada. The Drift Scalerock; Radioactive waste; Yucca Mountain, Nevada Introduction

  5. Modeling thermal-hydrological response of the unsaturated zone at Yucca Mountain, Nevada, to thermal load at a potential repository

    E-Print Network [OSTI]

    Haukwa, C.B.; Wu, Yu-Shu; Bodvarsson, G.S.

    2002-01-01

    Repository at Yucca Mountain. In Materials Research Societystudies using the Yucca Mountain unsaturated zone model.Unsaturated Zone, Yucca Mountain, Nevada. Water Resources

  6. Characterization of Spatial Variability of Hydrogeologic Properties for Unsaturated Flow in the Fractured Rocks at Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Zhou, Quanlin; Bodvarsson, Gudmundur S.; Liu, Hui-Hai; Oldenburg, Curtis M.

    2002-01-01

    using matrix properties , Yucca Mountain, Nevada, USGS Waterof hydrogeologic units at Yucca Mountain, Nevada, U.S.Unsaturated Zone, Yucca Mountain, Nevada . Water-Resources

  7. Modeling coupled thermal-hydrological-chemical processes in the unsaturated fractured rock of Yucca Mountain, Nevada: Heterogeneity and seepage

    E-Print Network [OSTI]

    Mukhopadhyay, Sumit; Sonnenthal, Eric L.; Spycher, Nicolas

    2005-01-01

    emplacement drift at Yucca Mountain. Journal of ContaminantScale Heater Test at Yucca Mountain. International Journalemplacement tunnels at Yucca Mountain, Nevada. Journal of

  8. Possible regional tectonic controls on mammalian evolution in western North America

    E-Print Network [OSTI]

    Barnosky, Anthony D.

    sedimentary deposits to characterize the topographic evolution of the southern Columbia Plateau/Snake River Plain and northern Rocky Mountain regions during the Yellowstone hotspot passage, with the ultimate goal

  9. Simon Fraser University Athletics & Recreation Employment Opportunity Head Instructor -Mountain Madness & Outdoor Adventures

    E-Print Network [OSTI]

    Kavanagh, Karen L.

    - Mountain Madness & Outdoor Adventures Position Title: Head Instructor - Mountain Madness & Outdoor camp, Mountain Madness and Outdoor Adventures. Both camps are full day, one week camps; Mountain Madness is for children 8-11 years and Outdoor Adventures is for children 11-14 years. Mountain Madness

  10. Boundary Layer Energy Transport and Cumulus Development over a Heated Mountain: An Observational Study

    E-Print Network [OSTI]

    Geerts, Bart

    Boundary Layer Energy Transport and Cumulus Development over a Heated Mountain: An Observational an isolated, heated mountain are presented. The data were collected around the Santa Catalina Mountains congestus to cumulonimbus development over the mountain. Flights in the boundary layer around the mountain

  11. Time-Domain Electromagnetics At Glass Mountain Area (Cumming...

    Open Energy Info (EERE)

    Time-Domain Electromagnetics At Glass Mountain Area (Cumming And Mackie, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain...

  12. Ground Gravity Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Ground Gravity Survey At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground...

  13. Static Temperature Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Static Temperature Survey At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  14. Aerial Photography At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Aerial Photography At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial...

  15. Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Blue...

  16. Reflection Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Reflection Survey At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection...

  17. Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Blue...

  18. Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank Engineering Ltd, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  19. Self Potential At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Self Potential At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential...

  20. Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  1. Field Mapping At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Field Mapping At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At...

  2. Geology and Temperature Gradient Surveys Blue Mountain Geothermal...

    Open Energy Info (EERE)

    Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  3. Electrical Resistivity and Self-Potential Surveys Blue Mountain...

    Open Energy Info (EERE)

    Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  4. Rocky Mountain Power- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power provides incentives for residential customers in Idaho to install energy efficient equipment in participating homes. Rebates are available for qualified appliances,...

  5. Rocky Mountain Power- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers the Home Energy Savings Program for their residential Wyoming customers to improve the energy efficiency of their homes. Incentives are available for energy efficient...

  6. Rocky Mountain Power- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power provides incentives for residential customers to increase the energy efficiency of homes through the Home Energy Savings Program. Rebates are available through this program for...

  7. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  8. Geophysical Setting of the Blue Mountain Geothermal Area, North...

    Open Energy Info (EERE)

    Geophysical Setting of the Blue Mountain Geothermal Area, North-Central Nevada and Its Relationship to a Crustal-Scale Fracture Associated with the Inception of the Yellowstone...

  9. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank & Ross, 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient...

  10. Hyperspectral Imaging At Blue Mountain Geothermal Area (Calvin...

    Open Energy Info (EERE)

    Hyperspectral Imaging At Blue Mountain Geothermal Area (Calvin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral...

  11. Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Ross...

    Open Energy Info (EERE)

    Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Ross, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Dipole-Dipole...

  12. Conceptual Model At Blue Mountain Geothermal Area (Faulds & Melosh...

    Open Energy Info (EERE)

    Conceptual Model At Blue Mountain Geothermal Area (Faulds & Melosh, 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At...

  13. Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann...

    Open Energy Info (EERE)

    Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Data At Blue...

  14. Review of Yucca Mountain Disposal Criticality Studies

    SciTech Connect (OSTI)

    Scaglione, John M [ORNL] [ORNL; Wagner, John C [ORNL] [ORNL

    2011-01-01

    The U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management, submitted a license application for construction authorization of a deep geologic repository at Yucca Mountain, Nevada, in June of 2008. The license application is currently under review by the U.S. Nuclear Regulatory Commission. However,on March 3, 2010 the DOE filed a motion requesting withdrawal of the license application. With the withdrawal request and the development of the Blue Ribbon Commission to seek alternative strategies for disposing of spent fuel, the status of the proposed repository at Yucca Mountain is uncertain. What is certain is that spent nuclear fuel (SNF) will continue to be generated and some long-lived components of the SNF will eventually need a disposition path(s). Strategies for the back end of the fuel cycle will continue to be developed and need to include the insights from the experience gained during the development of the Yucca Mountain license application. Detailed studies were performed and considerable progress was made in many key areas in terms of increased understanding of relevant phenomena and issues regarding geologic disposal of SNF. This paper reviews selected technical studies performed in support of the disposal criticality analysis licensing basis and the use of burnup credit. Topics include assembly misload analysis, isotopic and criticality validation, commercial reactor critical analyses, loading curves, alternative waste package and criticality control studies, radial burnup data and effects, and implementation of a conservative application model in the criticality probabilistic evaluation as well as other information that is applicable to operations regarding spent fuel outside the reactor. This paper summarizes the work and significant accomplishments in these areas and provides a resource for future, related activities.

  15. Mineralogic summary of Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Bish, D.L.; Vaniman, D.T.

    1985-10-01

    Quantitative x-ray powder diffraction analysis of tuffs and silicic lavas, using matrix-flushing techniques, has been used to obtain a model of three-dimensional mineral distributions at Yucca Mountain, Nevada. This method of analysis is especially useful in tuff, where the most abundant phases are commonly too fine grained for optical determination. The three-dimensional distributions of primary glass and of tridymite are particularly well constrained. Vitric nonwelded glasses occur above and below the welded devitrified Topopah Spring Member, but the glass in the lower nonwelded vitric zone is progressively altered to zeolites to the east where the zone is closer to the static water level. The zeolites clinoptilolite, mordenite, heulandite, and erionite have all been found at Yucca Mountain, but only mordenite and clinoptilolite are abundant and can be mapped between many drill holes and at many depths. Heulandite distribution is also mappable, but only below the densely welded devitrified part of the Topopah Storing Member. Erionite has been confirmed only once, as a fracture coating. There is a fairly continuous smectite-rich interval immediately above the basal vitrophyre of the Topopah Spring Member, but no evidence suggests that the smectites can provide information on the paleogroundwater table. There are at least four mappable zeolitized zones in Yucca Mountain, and the thicker zones tend to coincide with intervals that retained glass following early tuff devitrification. Problems in extrapolation occur where zones of welding pinch out. No phillipsite has been found, and some samples previously reported to contain phillipsite or erionite were reexamined with negative results. The deeper alteration to albite and analcime was not sampled in every drill hole, and the distribution of these phases is difficult to map.

  16. The Occurrence of Erionite at Yucca Mountain

    SciTech Connect (OSTI)

    NA

    2004-07-01

    The naturally-occurring zeolite mineral erionite has a fibrous morphology and is a known human carcinogen (inhalation hazard). Erionite has been found typically in very small quantities and restricted occurrences in the course of mineralogic characterization of Yucca Mountain as a host for a high-level nuclear waste repository. The first identification of erionite was made in 1984 on the basis of morphology and chemical composition and later confirmed by X-ray diffraction analysis. It was found in the lower vitrophyre (Tptpv3) of the Topopah Spring Tuff in a borehole sidewall sample. Most erionite occurrences identified at Yucca Mountain are in the Topopah Spring Tuff, within an irregular zone of transition between the lower boundary of devitrified tuff and underlying glassy tuff. This zone is fractured and contains intermingled devitrified and vitric tuff. In 1997, a second host of erionite mineralization was identified in the Exploratory Studies Facility within and adjacent to a high-angle fracture/breccia zone transgressing the boundary between the lowermost devitrified tuff (Tpcplnc) and underlying moderately welded vitric tuff (Tpcpv2) of the Tiva Canyon Tuff. The devitrified-vitric transition zones where erionite is found tend to have complex secondary-mineral assemblages, some of very localized occurrence. Secondary minerals in addition to erionite may include smectite, heulandite-clinoptilolite, chabazite, opal-A, opal-CT, cristobalite, quartz, kenyaite, and moganite. Incipient devitrification within the Topopah Spring Tuff transition zone includes patches that are highly enriched in potassium feldspar relative to the precursor volcanic glass. Geochemical conditions during glass alteration may have led to local evolution of potassium-rich fluids. Thermodynamic modeling of zeolite stability shows that erionite and chabazite stability fields occur only at aqueous K concentrations much higher than in present Yucca Mountain waters. The association of erionite with opal-A, opal-CT, and moganite suggests that erionite formed at a high silica activity.

  17. Mountain Parks Electric, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformationOliver, Pennsylvania: EnergyPark, Georgia: EnergyMountain

  18. Kibby Mountain II | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItronKanoshKetchikan Public Utilities JumpKibby Mountain II

  19. Maine Mountain Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump|Soda LakeMahoningMountain

  20. Bald Mountain Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColorado State OfficeBailey County ElecBald Mountain

  1. Cemex Black Mountain Quarry | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,Thermal Gradient Holes JumpHills WindBlack Mountain Quarry

  2. Pillar Mountain II | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, Blue Mountain GeothermalPilger Estates

  3. Pine Mountain Builders | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, Blue Mountain GeothermalPilgerPima County,Builders Jump

  4. Tell President Obama About Coal River Mountain Coal River Mountain and the Heathrow Airport runway remind me how important it is to

    E-Print Network [OSTI]

    Hansen, James E.

    Tell President Obama About Coal River Mountain Coal River Mountain and the Heathrow Airport runway remind me how important it is to keep our eye on the ball. Coal River Mountain is the site of an absurdity. I learned about Coal River Mountain from students at Virginia Tech last fall. They were concerned

  5. Seismicity in the Vicinity of Yucca Mountain, Nevada, for the Period October 1, 2003 to September 30, 2004

    SciTech Connect (OSTI)

    von Seggern, David; Smith, Ken

    2007-10-15

    This report describes the seismicity and earthquake monitoring activities within the Yucca Mountain region during fiscal year 2004 (FY2004 - October 1, 2003, through September 30, 2004) based on operation of the Southern Great Basin Digital Seismic Network (SGBDSN). Network practices and earthquake monitoring conducted at the Nevada Seismological Laboratory (NSL) under DOE directives for prior fiscal years are covered in similar yearly reports (see references). Real-time systems, including regional data telemetry and data management at NSL, provide for the automatic determination of earthquake locations and magnitudes and notification of important earthquakes in the region to UNR staff and DOE management. All waveform and meta-data, including automatic locations, phase arrival information, and analyst reviewed information, are managed through a relational database system allowing quick and reliable evaluation and analysis of ongoing earthquake activity near Yucca Mountain. This network, which contains weak-motion and strong-motion instrumentation, addresses the seismic hazard of the Yucca Mountain area by providing accurate earthquake magnitudes for earthquake recurrence estimates, spatial hypocentral control to very low magnitudes for identifying and assessing active faults and verifying tectonic models, true ground motions over the complete range of expected earthquake amplitudes for developing predictive models, and earthquake source information for characterizing active faulting. The Nevada Seismological Laboratory operated a 30-station monitoring network within a ring of approximately 50 km radius around Yucca Mountain during FY2004. This year showed the second-lowest seismic moment rate in the NTS and Yucca Mountain region for any fiscal year reporting period since prior to the 1992 M 5.6 Little Skull Mountain (LSM) earthquake. A total of 2180 earthquakes were located for FY2004. The largest event during FY2004 was M 2.99 and there were only 12 earthquakes greater than M 2.00. This is the second year since the LSM event that no M ? 3.00 earthquake was recorded within 65 km of Yucca Mountain. (FY2003 was the first.) For FY2004, focal mechanisms were developed for 24 earthquakes. These focal mechanisms show predominantly strike-slip motion with a tension axis oriented WNW-ESE. Four earthquakes in FY2004 were within 10 km of Yucca Mountain, all having M < 0. A total of 31 earthquakes have occurred in this immediate zone around Yucca Mountain since the digital network operations started in October 1995. Activity in the Death Valley area was monitored by several analog stations still maintained in conjunction with the Yucca Mountain monitoring. There is continuing aftershock activity in the zone of the 1993 M 6.1 Eureka Valley and 1999 M 5.6 Scotty’s Junction earthquakes. Overall, the seismicity level of the Death Valley area is significantly greater than that in the vicinity of Yucca Mountain.

  6. Mountain Sheep in the Sky: Orion's Belt in Great Basin Mythology

    E-Print Network [OSTI]

    Fowler, Catherine S

    1995-01-01

    2, pp. 146-152 (1995). Mountain Sheep in the Sky: Orion'sNevada, Reno, NV 89557-0006. Mountain Sheep in the Sky is ain the great himt for the Mountain Sheep. Muhwinti, Leader (

  7. Techno-Orientalism with Chinese Characteristics: Maureen F. McHugh’s China Mountain Zhang

    E-Print Network [OSTI]

    Fan, Christopher T.

    2015-01-01

    china.html. ———. China Mountain Zhang. New York: Doherty,Ethnicity and Gender: China Mountain Zhang’s Transcendent2011), 285. McHugh, China Mountain Zhang, 6. Betsy Pei Chih

  8. Biomass burning contribution to black carbon in the Western United States Mountain Ranges

    E-Print Network [OSTI]

    2011-01-01

    the Western United States Mountain Ranges Y. H. Mao 1,2 , Q.the Western United States Mountain Ranges applications in USthe Western United States Mountain Ranges biomass burning in

  9. Multiphysics processes in partially saturated fracture rock: Experiments and models from Yucca Mountain

    E-Print Network [OSTI]

    Rutqvist, J.

    2014-01-01

    of decay heat at Yucca Mountain, in Scientific Basis forThermal Test at Yucca Mountain. ACC: MOL.19980507.0359,Unit Evaluation at Yucca Mountain, Nevada Test Site: Summary

  10. Analysis of thermal-hydrologic-mechanical behavior near an emplacementd rift at Yucca Mountain

    E-Print Network [OSTI]

    Rutqvist, Jonny; Tsang, Chin-Fu

    2002-01-01

    zone model of Y u c c a Mountain, Nevada. J. of Contam.at Y u c c a Mountain—the potential repository for high-Studies Facility Y u c c a Mountain, Nevada. Rock Mechanics

  11. Postglacial adjustment of steep, low-order drainage basins, Canadian Rocky Mountains

    E-Print Network [OSTI]

    Johnson, Edward A.

    Postglacial adjustment of steep, low-order drainage basins, Canadian Rocky Mountains T. Hoffmann,1 sediment flux in mountain systems. An important, but not well constrained, aspect of Pleistocene glacial for mountain headwaters (with basin area

  12. Rocky Mountain Spotted Fever in a patient treated with anti-TNF-alpha inhibitors

    E-Print Network [OSTI]

    Mays, Rana M; Gordon, Rachel A; Durham, K Celeste; LaPolla, Whitney J; Tyring, Stephen K

    2013-01-01

    SJ, Paddock CD. Rocky Mountain spotted fever: a clinician'sand Prevention. Rocky Mountain Spotted Fever . http://Demma LJ, et al. Rocky mountain spotted fever in the United

  13. Conditions of Metamorphism in Lower-Plate Rocks at Bare Mountain, Nevada--

    E-Print Network [OSTI]

    Hoisch, Thomas D.

    1 Chapter B Conditions of Metamorphism in Lower-Plate Rocks at Bare Mountain, Nevada-- Implications........................................................................................................................ 4 General Geology of Bare Mountain................................................................. 16 North-Central, Northeastern, and Eastern Bare Mountain

  14. Geostatistical Mapping of Mountain Precipitation Incorporating Autosearched Effects of Terrain and Climatic Characteristics

    E-Print Network [OSTI]

    Texas at San Antonio, University of

    Geostatistical Mapping of Mountain Precipitation Incorporating Autosearched Effects of Terrain 2004, in final form 30 March 2005) ABSTRACT Hydrologic and ecologic studies in mountainous terrain mountain precipitation using only precipi- tation gauge data. The ASOADeK model considers both

  15. Quaternary geologic and geomorphic framework for neotectonic analysis of the northeastern Franklin Mountains, El Paso, Texas 

    E-Print Network [OSTI]

    Scherschel, Craig A.

    1995-01-01

    The Quaternary geology and geomorphology of a 45 km2 area along the northeastern Franklin Mountains near El Paso, Texas was characterized as part of a paleoseismic evaluation of the East Franklin Mountains fault. The East Franklin Mountains fault...

  16. Modeling Unsaturated Flow and Transport Processes in Fractured Tuffs of Yucca Mountain

    E-Print Network [OSTI]

    Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.

    2003-01-01

    zone site-scale model, Yucca Mountain Site Characterizationsite-scale model, Yucca Mountain Project Milestone 3GLM105M,unsaturated zone, Yucca Mountain, Nevada. Water-Resources

  17. Analyzing flow patterns in unsaturated fractured rock of Yucca Mountain using an integrated modeling approach

    E-Print Network [OSTI]

    Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

    2008-01-01

    repository at Yucca Mountain, Journal of Hydrology, 209,near a fault zone at Yucca Mountain, SAND87-7070, Sandiasite-scale model of Yucca Mountain, Nevada, LBL-37356,

  18. A site scale model for modeling unsaturated zone processes at Yucca Mountain, Nevada

    E-Print Network [OSTI]

    1997-01-01

    Unsaturated Zone Model of Yucca Mountain, Nevada, for theZone Trocesses at yucca Mountain, N G. S. Bodvarsson, Y. S.unsaturated zone at Yucca Mountain, Nevada, as a permanent

  19. Numerical analysis of thermal-hydrological conditions in the single heater test at Yucca Mountain

    E-Print Network [OSTI]

    Birkholzer, Jens T.; Tsang, Yvonne W.

    1998-01-01

    Single Heater Test at Yucca Mountain, LBNL-39789, E.O. Law­Single Heater Test at Yucca Mountain Jens T. Birkholzer andwaste repository at Yucca Mountain. The heating phase of the

  20. Yucca Mountain Climate Technical Support Representative

    SciTech Connect (OSTI)

    Sharpe, Saxon E

    2007-10-23

    The primary objective of Project Activity ORD-FY04-012, “Yucca Mountain Climate Technical Support Representative,” was to provide the Office of Civilian Radioactive Waste Management (OCRWM) with expertise on past, present, and future climate scenarios and to support the technical elements of the Yucca Mountain Project (YMP) climate program. The Climate Technical Support Representative was to explain, defend, and interpret the YMP climate program to the various audiences during Site Recommendation and License Application. This technical support representative was to support DOE management in the preparation and review of documents, and to participate in comment response for the Final Environmental Impact Statement, the Site Recommendation Hearings, the NRC Sufficiency Comments, and other forums as designated by DOE management. Because the activity was terminated 12 months early and experience a 27% reduction in budget, it was not possible to complete all components of the tasks as originally envisioned. Activities not completed include the qualification of climate datasets and the production of a qualified technical report. The following final report is an unqualified summary of the activities that were completed given the reduced time and funding.

  1. Numerical simulation of the truss spar 'Horn Mountain' using COUPLE 

    E-Print Network [OSTI]

    Theckum Purath, Basil

    2006-08-16

    A truss spar, named as Horn Mountain, was deployed in the Gulf of Mexico in 1,650 m of water, approximately 150 km southeast of New Orleans in June 2002. Horn Mountain is operated by British Petroleum (B.P.). Extensive field measurements were made...

  2. Climate Change in Mountain Ecosystems Areas of Current Research

    E-Print Network [OSTI]

    Climate Change in Mountain Ecosystems Areas of Current Research · Glacier Research · Snow Initiative Glacier Research A Focus on Mountain Ecosystems Climate change is widely acknowledged to be having in the western U.S. and the Northern Rockies in particular are highly sensitive to climate change. In fact

  3. Deep Blue No.1-A Slimhole Geothermal Discovery At Blue Mountain...

    Open Energy Info (EERE)

    Area (Fairbank & Niggemann, 2004) Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank &...

  4. Dynamic Pricing with Limited Supply Moshe Babaioff, Microsoft Research Silicon Valley, Mountain View CA, USA

    E-Print Network [OSTI]

    Fiat, Amos

    Dynamic Pricing with Limited Supply Moshe Babaioff, Microsoft Research Silicon Valley, Mountain University, Ithaca NY, USA Aleksandrs Slivkins, Microsoft Research Silicon Valley, Mountain View CA, USA We

  5. The Gemini Observatory Science Operations Plan Phil Puxley, Fred Gillett, Matt Mountain and Doug Simons

    E-Print Network [OSTI]

    The Gemini Observatory Science Operations Plan Phil Puxley, Fred Gillett, Matt Mountain and Doug Gemini Observatory Science Operations Plan Phil Puxley, Fred Gillett, Matt Mountain and Doug Simons

  6. Two-phase unsaturated flow at Yucca Mountain, Nevada - A Report on Current Understanding

    SciTech Connect (OSTI)

    Pruess, K.

    1998-08-01

    The U.S. civilian nuclear waste program is unique in its focus on disposal of high-level wastes in the unsaturated zone (UZ), above the water table. The potential repository site currently under investigation is located in a semi-arid region of the southwestern U.S. at Yucca Mountain, Nevada. The geology of the site consists of layered sequences of faulted, fractured, and bedded tuffs. The groundwater table is approximately 600 m beneath the land surface, while the proposed repository horizon is at a nominal depth of approximately 375 m. In this kind of environment, two-phase flow is not just a localized perturbation to natural conditions, as in the saturated zone, but is the predominant mode of water and gas flow. The purpose of this report is to review the current understanding of gas and water flow, and mass transport, in the unique hydrogeologic environment of Yucca Mountain. Characteristics of the Yucca Mountain site are examined, and concepts and mathematical modeling approaches are described for variably saturated flow in thick unsaturated zones of fractured rock. The paper includes a brief summary of the disposal concept and repository design, as developed by a team of engineering contractors to the U.S. Department of Energy (DOE), with strong participation from the DOE National Laboratories.

  7. Impact of Quaternary Climate on Seepage at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    J.F. Whelan; J.B. Paces; L.A. Neymark; A.K. Schmitt; M. Grove

    2006-03-17

    Uranium-series ages, oxygen-isotopic compositions, and uranium contents were determined in outer growth layers of opal and calcite from 0.5- to 3-centimeter-thick mineral coatings hosted by lithophysal cavities in the unsaturated zone at Yucca Mountain, Nevada, the proposed site of a permanent repository for high-level radioactive waste. Micrometer-scale growth layering in the minerals was imaged using a cathodoluminescence detector on a scanning electron microscope. Determinations of the chemistry, ages, and delta oxygen-18 values of the growth layers were conducted by electron microprobe analysis and secondary ion mass spectrometry techniques at spatial resolutions of 1 to about 20 micrometers ({micro}m) and 25 to 40 micrometers, respectively. Growth rates for the last 300 thousand years (k.y.) calculated from about 300 new high-resolution uranium-series ages range from approximately 0.5 to 1.5 {micro}m/k.y. for 1- to 3-centimeter-thick coatings, whereas coatings less than about I-centimeter-thick have growth rates less than 0.5 {micro}m/k.y. At the depth of the proposed repository, correlations of uranium concentration and delta oxygen-18 values with regional climate records indicate that unsaturated zone percolation and seepage water chemistries have responded to changes in climate during the last several hundred thousand years.

  8. Criteria for the recognition of pedogenic/supergene and nonpedogenic/hypogene deposits and their relationship to the origin of calcite/opal deposits at Yucca Mountain. Special report No. 14

    SciTech Connect (OSTI)

    Hill, C.A.; Schluter, C.M.; Monger, H.C.

    1993-10-01

    This study is part of the research program of the Yucca Mountain Project intended to provide the State of Nevada with a detailed assessment of the geology and geochemistry of Yucca Mountain and adjacent regions. The purpose of this report is to try and establish criteria for the recognition of pedogenic/supergene deposits of calcite/opal versus non-pedogenic/hypogene deposits of calcite/opal. Far from being of esoteric concern, this subject is of paramount importance to the pedogenic-hypogene debate which rages around the suitability of Yucca Mountain as a high-level radioactive waste repository site.

  9. Characterize Framework for Igneous Activity at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    F. Perry; R. Youngs

    2004-10-14

    The purpose of this scientific analysis report is threefold: (1) Present a conceptual framework of igneous activity in the Yucca Mountain region (YMR) consistent with the volcanic and tectonic history of this region and the assessment of this history by experts who participated in the probabilistic volcanic hazard analysis (PVHA) (CRWMS M&O 1996 [DIRS 100116]). Conceptual models presented in the PVHA are summarized and applied in areas in which new information has been presented. Alternative conceptual models are discussed, as well as their impact on probability models. The relationship between volcanic source zones defined in the PVHA and structural features of the YMR are described based on discussions in the PVHA and studies presented since the PVHA. (2) Present revised probability calculations based on PVHA outputs for a repository footprint proposed in 2003 (BSC 2003 [DIRS 162289]), rather than the footprint used at the time of the PVHA. This analysis report also calculates the probability of an eruptive center(s) forming within the repository footprint using information developed in the PVHA. Probability distributions are presented for the length and orientation of volcanic dikes located within the repository footprint and for the number of eruptive centers (conditional on a dike intersecting the repository) located within the repository footprint. (3) Document sensitivity studies that analyze how the presence of potentially buried basaltic volcanoes may affect the computed frequency of intersection of the repository footprint by a basaltic dike. These sensitivity studies are prompted by aeromagnetic data collected in 1999, indicating the possible presence of previously unrecognized buried volcanoes in the YMR (Blakely et al. 2000 [DIRS 151881]; O'Leary et al. 2002 [DIRS 158468]). The results of the sensitivity studies are for informational purposes only and are not to be used for purposes of assessing repository performance.

  10. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

  11. State geothermal commercialization programs in ten Rocky Mountain states. Semi-annual progress report, July-December 1979

    SciTech Connect (OSTI)

    Griffith, J.L. (comp.)

    1980-08-01

    The activities and findings of the ten state teams participating in the Rocky Mountain Basin and Range Regional Hydrothermal Commercialization Program for the period are described. A summary of the state projects, compilation of project accomplishments, summary of findings, and a description of the major conclusions and recommendations are presented. Also included are chapters on the commercialization activities carried out by individual teams in each state: Arizona, Colorado, Idaho, Montana, Nevada, New-Mexico, North Dakota, South Dakota, Utah, and Wyoming. (MHR)

  12. Breach of the northern Rocky Mountain geoclimatic barrier: initiation of range

    E-Print Network [OSTI]

    Aukema, Brian

    ORIGINAL ARTICLE Breach of the northern Rocky Mountain geoclimatic barrier: initiation of range expansion by the mountain pine beetle Honey-Marie C. de la Giroday1,2 , Allan L. Carroll3 and Brian H is to examine the historical breach of the geoclimatic barrier of the Rocky Mountains by the mountain pine

  13. CHANGES IN FIRE REGIMES AND THE SUCCESSIONAL STATUS OF TABLE MOUNTAIN PINE (Pinus pungens Lamb.)

    E-Print Network [OSTI]

    Grissino-Mayer, Henri D.

    CHANGES IN FIRE REGIMES AND THE SUCCESSIONAL STATUS OF TABLE MOUNTAIN PINE (Pinus pungens Lamb and encouragement concerning Table Mountain pine in Great Smoky Mountains National Park, and the National Park Service for providing invaluable Table Mountain pine stand data. I wish to thank Charles Smart

  14. Rayleigh-Taylor instability, lithospheric dynamics, surface topography at convergent mountain belts, and gravity anomalies

    E-Print Network [OSTI]

    Kraus, Mary

    Rayleigh-Taylor instability, lithospheric dynamics, surface topography at convergent mountain belts sign. For the range of wavelengths appropriate for convergent mountain belts (~150­600 km), calculated for wave numbers relevant to mountain belts. For essentially all mountain belts, however, measured free

  15. Evaluating Regional Patterns in Nitrate Sources to Watersheds in

    E-Print Network [OSTI]

    Elliott, Emily M.

    ) and NH3 (ammonia) from energy generation activities, transportation, industry, and agricul- tural Mountains in recent years for a variety of reasons (4­6), including increases in motor vehicle emissions which have offset reductions in NOx emissions from fossil-fuel burning industries (7) and regional

  16. The 1989 Earthquake Swarm Beneath Mammoth Mountain, California...

    Open Energy Info (EERE)

    Activity Abstract Mammoth Mountain is a 50,000- to 200,000-year-old cumulovolcano standing on the southwestern rim of Long Valley in eastern California. On 4 May 1989, two M ...

  17. Precambrian Research 132 (2004) 127 Integrated Ediacaran chronostratigraphy, Wernecke Mountains,

    E-Print Network [OSTI]

    Narbonne, Guy

    2004-01-01

    -water succession amenable to detailed sequence stratigraphy. Integrated lithostratigraphy, chemostratigraphy, biostratigraphy and sedimentology partitions the Wernecke Mountains succes- sion into five depositional sequences these strata to be correlated with other Ediacaran successions worldwide. Integrating sequence stratigraphy

  18. Viability Assessment of a Repository at Yucca Mountain

    Broader source: Energy.gov [DOE]

    The Viability Assessment of a Repository at Yucca Mountain describes the nuclear waste problem and explains why the United States and other nations are considering deep geologic disposal as the solution.

  19. Rocky Mountain Power- New Homes Program for Builders

    Broader source: Energy.gov [DOE]

    The Rocky Mountain Power ENERGY STAR New Homes program offers cash incentives to contractors who build energy-efficient homes. To qualify for this incentive, the new home must meet the Version 2.5...

  20. The National Repository at Yucca Mountain, Russ Dyer

    Office of Environmental Management (EM)

    of Energy submitted an application to the U.S. Nuclear Regulatory Commission for a license to construct a repository at Yucca Mountain 3 SBBB-GeneralBriefing070808Rev1.ppt...

  1. Geologic evolution of Iron Mountain, central Mojave Desert, California

    E-Print Network [OSTI]

    Boettcher, Stefan S.; Walker, J. Douglas

    1993-04-01

    Geologic mapping, structural analysis, petrologic study, and U-Pb geochronology at Iron Mountain, 20 km southwest of Barstow, California, place important constraints on the paleogeographic affinities of metasedimentary rocks in the area and provide...

  2. Economics, Mathematics, Statistics MONTANA STATE UNIVERSITY BOZEMAN MOUNTAINS & MINDS

    E-Print Network [OSTI]

    Dyer, Bill

    Economics, Mathematics, Statistics MONTANA STATE UNIVERSITY BOZEMAN MOUNTAINS & MINDS Economics The Department of Agricultural Economics and Economics offers a broad education involving the domestic, and for graduate study in economics and in related fields including business administra- tion, finance, public

  3. CLIMATE-FIRE RELATIONSHIPS IN THE SOUTHERN APPALACHIAN MOUNTAINS 

    E-Print Network [OSTI]

    Baker, Ralph C.

    2011-01-11

    This study is meant to explain the fire regime of the southern Appalachian Mountain Range of the southeastern United States by analyzing spatial statistics and climate-fire relationships. The spatial statistics were created by obtaining...

  4. Pennsylvanian and Permian Fusulinids of the Ferguson Mountain Area

    E-Print Network [OSTI]

    Seamons, Kent E.

    SLADE Humble Oil Company, Salt Lake City, Utah ABSTRACT.--Thestratigraphic section at Ferguson Mountain. The area is accessible via U. S. Highway 50, south- west from Wendover. The base and top of the measured

  5. Mountain-Scale Coupled Processes (TH/THC/THM)

    SciTech Connect (OSTI)

    P. Dixon

    2004-02-09

    The purpose of this Model Report is to document the development of the Mountain-Scale Thermal-Hydrological (TH), Thermal-Hydrological-Chemical (THC), and Thermal-Hydrological-Mechanical (THM) Models and evaluate the effects of coupled TH/THC/THM processes on mountain-scale UZ flow at Yucca Mountain, Nevada. This Model Report was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.12.7), and was developed in accordance with AP-SIII.10Q, Models. In this Model Report, any reference to ''repository'' means the nuclear waste repository at Yucca Mountain, and any reference to ''drifts'' means the emplacement drifts at the repository horizon. This Model Report provides the necessary framework to test conceptual hypotheses for analyzing mountain-scale hydrological/chemical/mechanical changes and predict flow behavior in response to heat release by radioactive decay from the nuclear waste repository at the Yucca Mountain site. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH Model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH Model captures mountain-scale three dimensional (3-D) flow effects, including lateral diversion at the PTn/TSw interface and mountain-scale flow patterns. The Mountain-Scale THC Model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrological properties, flow and transport. The THM Model addresses changes in permeability due to mechanical and thermal disturbances in stratigraphic units above and below the repository host rock. The Mountain-Scale THM Model focuses on evaluating the changes in 3-D UZ flow fields arising out of thermal stress and rock deformation during and after the thermal periods.

  6. The Pahrump Valley Museum Yucca Mountain History Exhibit - 12389

    SciTech Connect (OSTI)

    Voegele, Michael; McCracken, Robert [Consultant, Nye County Nuclear Waste Repository Project Office (United States); Herrera, Troy [Sambooka Group, Reno, NV. (United States)

    2012-07-01

    As part of its management of the Yucca Mountain project, the Department of Energy maintained several information centers to provide public access to information about the status of the Yucca Mountain project. Those information centers contained numerous displays, historical information, and served as the location for the Department's outreach activities. As the Department of Energy dealt with reduced budgets in 2009 following the Obama Administration's intent to terminate the program, it shut down its information centers. Nye County considered it important to maintain a public information center where people would be able to find information about what was happening with the Yucca Mountain project. Initially the Nye County assumed responsibility for the information center in Pahrump; eventually the County made a decision to move that information center into an expansion of the existing Pahrump Valley Museum. Nye County undertook an effort to update the information about the Yucca Mountain project and modernize the displays. A parallel effort to create a source of historical information where people could find out about the Yucca Mountain project was undertaken. To accompany the Yucca Mountain exhibits in the Pahrump Valley Museum, Nye County also sponsored a series of interviews to document, through oral histories, as much information about the Yucca Mountain project as could be found in these interviews. The paper presents an overview of the Yucca Mountain exhibits in the Pahrump Valley Museum, and the accompanying oral histories. An important conclusion that can be drawn from the interviews is that construction of a repository in Nevada should have been conceptualized as but the first step in transforming the economy of central Nevada by turning part of the Nevada National Security Site and adjoining area into a world-class energy production and energy research center. (authors)

  7. Structural analysis of the Sheep Mountain anticline, Bighorn Basin, Wyoming 

    E-Print Network [OSTI]

    Hennier, Jeffrey Hugh

    1984-01-01

    in the Phosphoria Formation at the northwest plunge of Sheep Mountain. 38 10 Pi diagram plot of bedding attitudes in the Mowry Shale at the extreme northwest plunge of Sheep Mountain . 40 A. Photograph of flatirons formed in weathered Phosphoria beds along... sedimentalogical transition zone or hinge line extended from Mexico through the western U. S. to Canada, separating the deeply subsiding Cordilleran geosynclinal trough to the west in Idaho and Utah from stable cratonic shelf to the east in Wyoming (Thomas...

  8. Bibliography of publications related to the Yucca Mountain Site Characterization Project prepared by U.S. Geological Survey personnel through April 1991

    SciTech Connect (OSTI)

    Glanzman, V.M.

    1991-11-01

    Personnel of the US Geological Survey have participated in nuclear-waste management studies in the State of Nevada since the mid-1970`s. A bibliography of publications prepared principally for the US Department of Energy Yucca Mountain Site Characterization Project (formerly Nevada Nuclear Waste Storage Investigations) through April 1991 contains 475 entries in alphabetical order. The listing includes publications prepared prior to the inception of the Nevada Nuclear Waste Storage Investigations Project in April 1977 and selected publications of interest to the Yucca Mountain region. 480 refs.

  9. Mercury audit at Rocky Mountain Arsenal

    SciTech Connect (OSTI)

    Smith, S.M.; Jensen, M.K. [Oak Ridge National Lab., TN (United States); Anderson, G.M. [Rocky Mountain Arsenal, Denver, CO (United States)

    1994-02-01

    This report presents the results of an environmental compliance audit to identify potential mercury-containing equipment in 261 building and 197 tanks at the Rocky Mountain Arsenal (RMA). The RMA, located near Denver, Colorado, is undergoing clean up and decommissioning by the Department of the Army. Part of the decommissioning procedure is to ensure that all hazardous wastes are properly identified and disposed of. The purpose of the audit was to identify any mercury spills and mercury-containing instrumentation. The audit were conducted from April 7, 1992, through July 16, 1992, by a two-person team. The team interviewed personnel with knowledge of past uses of the buildings and tanks. Information concerning past mercury spills and the locations and types of instrumentation that contain mercury proved to be invaluable for an accurate survey of the arsenal. The team used a Jerome{reg_sign} 431-X{trademark} Mercury Vapor Analyzer to detect spills and confirm locations of mercury vapor. Twelve detections were recorded during the audit and varied from visible mercury spills to slightly elevated readings in the corners of rooms with past spills. The audit also identified instrumentation that contained mercury. All data have been incorporated into a computerized data base that is compatible with the RMA data base.

  10. Room at the Mountain: Estimated Maximum Amounts of Commercial Spent Nuclear Fuel Capable of Disposal in a Yucca Mountain Repository

    SciTech Connect (OSTI)

    Kessler, John H. [Electric Power Research Institute - EPRI, 3420 Hillview Avenue, Palo Alto, California 94304 (United States); Kemeny, John [University of Arizona, Tucson AZ 85721 (United States); King, Fraser [Integrity Corrosion Consulting, Ltd., 6732 Silverview Drive NW, Calgary, Alberta (Canada); Ross, Alan M. [Alan M. Ross and Associates, 1061 Gray Fox Circle Pleasanton, CA 94566 (Canada); Ross, Benjamen [Disposal Safety, Inc., Bethesda, MD 20814 (United States)

    2006-07-01

    The purpose of this paper is to present an initial analysis of the maximum amount of commercial spent nuclear fuel (CSNF) that could be emplaced into a geological repository at Yucca Mountain. This analysis identifies and uses programmatic, material, and geological constraints and factors that affect this estimation of maximum amount of CSNF for disposal. The conclusion of this initial analysis is that the current legislative limit on Yucca Mountain disposal capacity, 63,000 MTHM of CSNF, is a small fraction of the available physical capacity of the Yucca Mountain system assuming the current high-temperature operating mode (HTOM) design. EPRI is confident that at least four times the legislative limit for CSNF ({approx}260,000 MTHM) can be emplaced in the Yucca Mountain system. It is possible that with additional site characterization, upwards of nine times the legislative limit ({approx}570,000 MTHM) could be emplaced. (authors)

  11. Modeling of coupled heat transfer and reactive transport processes in porous media: Application to seepage studies at Yucca Mountain, Nevad a

    E-Print Network [OSTI]

    Mukhopadhyay, S.; Sonnenthal, E.L.; Spycher, N.

    2008-01-01

    Fractured Rock of Yucca Mountain, Nevada: Heterogeneity andfractured rocks of Yucca Mountain have been extensivelyHydrothermal Flow at Yucca Mountain, Part I: Modeling and

  12. Response to "Analysis of the Treatment, by the U.S. Department of Energy, of the FEP Hydrothermal Activity in the Yucca Mountain Performance Assessment" by Yuri Dublyansky

    E-Print Network [OSTI]

    Houseworth, J.E.

    2010-01-01

    Mineral Formation at Yucca Mountain, Nevada. ” Geochimica etand Heat Flow Near Yucca Mountain, Nevada: Some Tectonic andNuclear Waste Site, Yucca Mountain, Nevada, USA: Pedogenic,

  13. Modeling of coupled heat transfer and reactive transport processes in porous media: Application to seepage studies at Yucca Mountain, Nevad a

    E-Print Network [OSTI]

    Mukhopadhyay, Sumit; Sonnenthal, Eric L.; Spycher, Nicolas

    2008-01-01

    Fractured Rock of Yucca Mountain, Nevada: Heterogeneity andFractured Rocks at Yucca Mountain: Model Validation UsingFractured Rocks at Yucca Mountain, In: Faybishenko B,

  14. Evaluating the Moisture Conditions in the Fractured Rock at Yucca Mountain: The Impact of Natural Convection Processes in Heated Emplacement Drifts

    E-Print Network [OSTI]

    Birkholzer, J.T.; Webb, S.W.; Halecky, N.; Peterson, P.F.; Bodvarsson, G.S.

    2005-01-01

    THE FRACTURED ROCK AT YUCCA MOUNTAIN: THE IMPACT OF NATURALgeologic repository at Yucca Mountain, Nevada, will stronglyWaste Emplacement Drifts at Yucca Mountain, Nevada, Nuclear

  15. CX-008706: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Tunk Mountain Radio Station Upgrade CX(s) Applied: B1.19 Date: 05/30/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  16. Corrective Action Investigation Plan for Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada with Errata and ROTC 1, Rev. No. 0

    SciTech Connect (OSTI)

    John McCord; Marutzky, Sam

    2004-12-01

    This Corrective Action Investigation Plan (CAIP) was developed for Corrective Action Unit (CAU) 99, Rainier Mesa/Shoshone Mountain. The CAIP is a requirement of the ''Federal Facility Agreement and Consent Order'' (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD) (FFACO, 1996). The FFACO addresses environmental restoration activities at U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) facilities and sites including the underground testing area(s) of the Nevada Test Site (NTS). This CAIP describes the investigation activities currently planned for the Rainier Mesa/Shoshone Mountain CAU. These activities are consistent with the current Underground Test Area (UGTA) Project strategy described in Section 3.0 of Appendix VI, Revision No. 1 (December 7, 2000) of the FFACO (1996) and summarized in Section 2.1.2 of this plan. The Rainier Mesa/Shoshone Mountain CAU extends over several areas of the NTS (Figure 1-1) and includes former underground nuclear testing locations in Areas 12 and 16. The area referred to as ''Rainier Mesa'' includes the geographical area of Rainier Mesa proper and the contiguous Aqueduct Mesa. Figure 1-2 shows the locations of the tests (within tunnel complexes) conducted at Rainier Mesa. Shoshone Mountain is located approximately 20 kilometers (km) south of Rainier Mesa, but is included within the same CAU due to similarities in their geologic setting and in the nature and types of nuclear tests conducted. Figure 1-3 shows the locations of the tests conducted at Shoshone Mountain. The Rainier Mesa/Shoshone Mountain CAU falls within the larger-scale Rainier Mesa/Shoshone Mountain Investigation Area, which also includes the northwest section of the Yucca Flat CAU as shown in Figure 1-1. Rainier Mesa and Shoshone Mountain lie adjacent to the Timber Mountain Caldera Complex and are composed of volcanic rocks that erupted from the caldera as well as from more distant sources. This has resulted in a layered volcanic stratigraphy composed of thick deposits of welded and nonwelded ash-flow tuff and lava flows. These deposits are proximal to the source caldera and are interstratified with the more distal facies of fallout tephra and bedded reworked tuff from more distant sources. In each area, a similar volcanic sequence was deposited upon Paleozoic carbonate and siliciclastic rocks that are disrupted by various thrust faults, normal faults, and strike-slip faults. In both Rainier Mesa (km) to the southwest, and Tippipah Spring, 4 km to the north, and the tunnel complex is dry. Particle-tracking simulations performed during the value of information analysis (VOIA) (SNJV, 2004b) indicate that most of the regional groundwater that underlies the test locations at Rainier Mesa and Shoshone Mountain eventually follows similar and parallel paths and ultimately discharges in Death Valley and the Amargosa Desert. Particle-tracking simulations conducted for the regional groundwater flow and risk assessment indicated that contamination from Rainier Mesa and Shoshone Mountain were unlikely to leave the NTS during the 1,000-year period of interest (DOE/NV, 1997a). It is anticipated that CAU-scale modeling will modify these results somewhat, but it is not expected to radically alter the outcome of these previous particle-tracking simulations within the 1,000-year period of interest. The Rainier Mesa/Shoshone Mountain CAIP describes the corrective action investigation (CAI) to be conducted at the Rainier Mesa/Shoshone Mountain CAU to evaluate the extent of contamination in groundwater due to the underground nuclear testing. The CAI will be conducted by the UGTA Project, which is part of the NNSA/NSO Environmental Restoration Project (ERP). The purpose and scope of the CAI are presented in this section, followed by a summary of the entire document.

  17. Exploration and Resource Assessment at Mountain Home Air Force Base, Idaho Using an Integrated Team Approach

    SciTech Connect (OSTI)

    Joseph C. Armstrong; Robert P. Breckenridge; Dennis L. Nielson; John W. Shervais; Thomas R. Wood

    2012-10-01

    The U.S. Air Force is facing a number of challenges as it moves into the future, one of the biggest being how to provide safe and secure energy to support base operations. A team of scientists and engineers met at Mountain Home Air Force Base near Boise, Idaho, to discuss the possibility of exploring for geothermal resources under the base. The team identified that there was a reasonable potential for geothermal resources based on data from an existing well. In addition, a regional gravity map helped identify several possible locations for drilling a new well. The team identified several possible sources of funding for this well—the most logical being to use U.S. Department of Energy funds to drill the upper half of the well and U.S. Air Force funds to drill the bottom half of the well. The well was designed as a slimhole well in accordance with State of Idaho Department of Water Resources rules and regulations. Drilling operations commenced at the Mountain Home site in July of 2011 and were completed in January of 2012. Temperatures increased gradually, especially below a depth of 2000 ft. Temperatures increased more rapidly below a depth of 5500 ft. The bottom of the well is at 5976 ft, where a temperature of about 140°C was recorded. The well flowed artesian from a depth below 5600 ft, until it was plugged off with drilling mud. Core samples were collected from the well and are being analyzed to help understand permeability at depth. Additional tests using a televiewer system will be run to evaluate orientation and directions at fractures, especially in the production zone. A final report on the well exploitation will be forthcoming later this year. The Air Force will use it to evaluate the geothermal resource potential for future private development options at Mountain Home AFB.

  18. Mountain Home Air Force Base, Idaho Geothermal Resource Assessment and Future Recommendations

    SciTech Connect (OSTI)

    Joseph C. Armstrong; Robert P. Breckenridge; Dennis L. Nielson; John W. Shervais; Thomas R. Wood

    2013-03-01

    The U.S. Air Force is facing a number of challenges as it moves into the future, one of the biggest being how to provide safe and secure energy to support base operations. A team of scientists and engineers met at Mountain Home Air Force Base in early 2011 near Boise, Idaho, to discuss the possibility of exploring for geothermal resources under the base. The team identified that there was a reasonable potential for geothermal resources based on data from an existing well. In addition, a regional gravity map helped identify several possible locations for drilling a new well. The team identified several possible sources of funding for this well—the most logical being to use U.S. Department of Energy funds to drill the upper half of the well and U.S. Air Force funds to drill the bottom half of the well. The well was designed as a slimhole well in accordance with State of Idaho Department of Water Resources rules and regulations. Drilling operations commenced at the Mountain Home site in July of 2011 and were completed in January of 2012. Temperatures increased gradually, especially below a depth of 2000 ft. Temperatures increased more rapidly below a depth of 5500 ft. The bottom of the well is at 5976 ft, where a temperature of about 140°C was recorded. The well flowed artesian from a depth below 5600 ft, until it was plugged off with drilling mud. Core samples were collected from the well and are being analyzed to help understand permeability at depth. Additional tests using a televiewer system will be run to evaluate orientation and directions at fractures, especially in the production zone. A final report on the well exploitation will be forthcoming later this year. The Air Force will use it to evaluate the geothermal resource potential for future private development options at Mountain Home Air Force Base. In conclusion, Recommendation for follow-up efforts include the following:

  19. Origins of secondary silica within Yucca Mountain, Nye County, southwestern Nevada

    SciTech Connect (OSTI)

    Moscati, R.J.; Whelan, J.F.

    1996-09-01

    The accuracy of predictions of the hydrologic response of Yucca Mountain to future climate depends largely on how well relations between past climate and hydrology can be resolved. To advance this reconstruction, secondary minerals in and near Yucca Mountain, deposited by ground waters that originated both as surficial recharge at Yucca Mountain and from regional aquifers, are being studied to determine past ground-water sources and chemistries. Preliminary data on stable oxygen isotopes indicate that, although silica (opal, quartz, and chalcedony) and calcite and have formed in similar settings and from somewhat similar fluids, the authors have found no compelling evidence of coprecipitation or formation from identical fluids. If verified by further analyses, this precludes the use of silica-calcite mineral pairs for precise geothermometry. The preliminary data also indicate that opal and calcite occurrences in pedogenic and unsaturated-zone settings are invariably compatible with formation under modern ambient surface or subsurface temperatures. Silica and calcite stable-isotope studies are being integrated with soil geochemical modeling. This modeling will define the soil geochemical condition (climate) leading to opal or calcite deposition and to the transfer functions that may apply at the meteorologic soil unsaturated-zone interfaces. Additional study of pedogenic and unsaturated-zone silica is needed to support these models. The hypothesis that the transformation of vapor-phase tridymite to quartz requires saturated conditions is being tested through stable oxygen-isotope studies of lithophysal tridymite/quartz mixtures. Should this hypothesis be verified, mineralogic analysis by X-ray diffraction theoretically would permit reconstruction of past maximum water-table elevations.

  20. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A. [Los Alamos National Lab., NM (United States); Wells, S. [Univ. of California, Riverside, CA (United States); Bowker, L.; Finnegan, K. [Univ. of Nevada, Las Vegas, NV (United States); Geissman, J.; McFadden, L.

    1995-02-01

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report.

  1. Field trip guide to selected outcrops, Arbuckle Mountains, Oklahoma

    SciTech Connect (OSTI)

    1991-11-17

    The Arbuckle Mountains, named for Brigadier General Matthew Arbuckle, are located in south-central Oklahoma. The formations that comprise the Arbuckle Mountains have been extensively studied for hydrocarbon source rock and reservoir rock characteristics that can be applied to the subsurface in the adjacent Anadarko and Ardmore basins. Numerous reports and guidebooks have been written concerning the Arbuckle Mountains. A few important general publications are provided in the list of selected references. The purpose of this handout is to provide general information on the geology of the Arbuckle Mountains and specific information on the four field trip stops, adapted from the literature. The four stops were at: (1) Sooner Rock and Sand Quarry; (2) Woodford Shale; (3) Hunton Anticline and Hunton Quarry; and (4) Tar Sands of Sulfur Area. As part of this report, two papers are included for more detail: Paleomagnetic dating of basinal fluid migration, base-metal mineralization, and hydrocarbon maturation in the Arbuckle Mountains, Oklahoma and Laminated black shale-bedded chert cyclicity in the Woodford Formation, southern Oklahoma.

  2. Yucca Mountain Site Characterization Project Technical Data Catalog; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    1992-06-30

    The June 1, 1985 DOE/NRC Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. This edition of the Technical Data Catalog supersedes the edition dated March 31, 1992.

  3. Performance predictions for mechanical excavators in Yucca Mountain tuffs; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Ozdemir, L.; Gertsch, L.; Neil, D.; Friant, J.

    1992-09-01

    The performances of several mechanical excavators are predicted for use in the tuffs at Yucca Mountain: Tunnel boring machines, the Mobile Miner, a roadheader, a blind shaft borer, a vertical wheel shaft boring machine, raise drills, and V-Moles. Work summarized is comprised of three parts: Initial prediction using existing rock physical property information; Measurement of additional rock physical properties; and Revision of the initial predictions using the enhanced database. The performance predictions are based on theoretical and empirical relationships between rock properties and the forces-experienced by rock cutters and bits during excavation. Machine backup systems and excavation design aspects, such as curves and grades, are considered in determining excavator utilization factors. Instanteous penetration rate, advance rate, and cutter costs are the fundamental performance indicators.

  4. Sensitivity Analysis Of Hydrological Parameters In Modeling Flow And Transport In The Unsaturated Zone Of Yucca Mountain

    E-Print Network [OSTI]

    Zhang, Keni; Wu, Yu-Shu; Houseworth, James E

    2006-01-01

    Unsaturated Zone of Yucca Mountain Keni Zhang, Yu-Shu Wu,volcanic deposits at Yucca Mountain have been intensivelythe spatial domain of the mountain. This paper reports on a

  5. A classification of channel-reach morphology in mountain drainage basins synthesizes stream morphologies into seven distinct reach types

    E-Print Network [OSTI]

    Montgomery, David R.

    ABSTRACT A classification of channel-reach morphology in mountain drainage basins synthesizes channel condition and response potential in mountain drainage basins. Field investigations demonstrate mountain channels and their lowland counterparts (e.g., Surell, 1841; Dana, 1850; Shaler, 1891

  6. Coupled Analysis of Change in Fracture Permeability during the Cooling Phase of the Yucca Mountain Drift Scale Test

    E-Print Network [OSTI]

    Rutqvist, J.

    2008-01-01

    mechanical analysis of the Yucca Mountain Drift Scale Test –scale heater test at Yucca Mountain, Nevada, USA. In.t J.and Cooling at the Yucca Mountain Drift Scale Test. In.t J.

  7. The Influence of Proposed Repository Thermal Load on Multiphase Flow and Heat Transfer in the Unsaturated Zone of Yucca Mountain

    E-Print Network [OSTI]

    Wu, Y.-S.; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, G.S.

    2006-01-01

    and Heat Flow Near Yucca Mountain, Nevada: Some Tectonic andLarge Block Test at Yucca Mountain, Nevada, Water Resourcesthe Drift Scale Test at Yucca Mountain, Nevada, Journal of

  8. Evaluating Flake Assemblage and Stone Tool Distributions at a Large Western Stemmed Tradition Site Near Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Haynes, Gregory M

    1996-01-01

    investigations at Yucca Mountain for the U. S. Department ofTRADITION SITE NEAR YUCCA MOUNTAIN lo: Special PublicationsLithic Quarry Near Yucca Mountain, Nye Coimty, Nevada. Las

  9. Preliminary 3-D site-scale studies of radioactive colloid transort in the unsaturated zone at Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Moridis, G.J.; Hu, Q.; Wu, Y.-S.; Bodvarsson, G.S.

    2001-01-01

    into drifts at Yucca Mountain. ” J. Contam. Hydrol. , 38(1–pneumatic response at Yucca Mountain, Nevada. J. Contam.unsaturated zone model of Yucca Mountain, Nevada. J. Contam.

  10. A Conceptual and Numerical Model for Thermal-Hydrological-Chemical Processes in the Yucca Mountain Drift Scale Test

    E-Print Network [OSTI]

    Sonnenthal, Eric L.; Spycher, Nicolas F.; Conrad, Mark; Apps, John

    2003-01-01

    of the unsaturated zone at Yucca Mountain, NV from three-Scale Heater Test. Yucca Mountain Project Level 4 MilestoneReport, Chapter 6. Yucca Mountain Project Level 4 Milestone

  11. Regional-Scale Climate Change: Observations and Model Simulations

    SciTech Connect (OSTI)

    Raymond S. Bradley; Henry F. Diaz

    2010-12-14

    This collaborative proposal addressed key issues in understanding the Earthâ??s climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, and we conducted studies of changes in phonological indicators based on various climatic thresholds.

  12. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    SciTech Connect (OSTI)

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-06-25

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical r

  13. Age constraints on fluid inclusions in calcite at Yucca Mountain

    SciTech Connect (OSTI)

    Neymark, Leonid A.; Amelin, Yuri V.; Paces, James B.; Peterman, Zell E.; Whelan, Joseph F.

    2001-04-29

    The {sup 207}Pb/{sup 235}U ages for 14 subsamples of opal or chalcedony layers younger than calcite formed at elevated temperature range between 1.88 {+-} 0.05 and 9.7 {+-} 1.5 Ma with most values older than 6-8 Ma. These data indicate that fluids with elevated temperatures have not been present in the unsaturated zone at Yucca Mountain since about 1.9 Ma and most likely since 6-8 Ma. Discordant U-Pb isotope data for chalcedony subsamples representing the massive silica stage in the formation of the coatings are interpreted using a model of the diffusive loss of U decay products. The model gives an age estimate for the time of chalcedony formation around 10-11 Ma, which overlaps ages of clay minerals formed in tuffs below the water table at Yucca Mountain during the Timber Mountain thermal event.

  14. UNCOVERING BURIED VOLCANOES: NEW DATA FOR PROBABILISTIC VOLCANIC HAZARD ASSESSMENT AT YUCCA MOUNTAIN

    SciTech Connect (OSTI)

    F.V. Perry

    2005-10-13

    Basaltic volcanism poses a potential hazard to the proposed Yucca Mountain nuclear waste repository because multiple episodes of basaltic volcanism have occurred in the Yucca Mountain region (YMR) in the past 11 Ma. Intervals between eruptive episodes average about 1 Ma. Three episodes have occurred in the Quaternary at approximately 1.1 Ma (5 volcanoes), 350 ka (2 volcanoes), and 80 ka (1 volcano). Because Yucca Mountain lies within the Basin and Range Province, a significant portion of the pre-Quaternary volcanic history of the YMR may be buried in alluvial-filled basins. An exceptionally high-resolution aeromagnetic survey and subsequent drilling program sponsored by the U.S. Department of Energy (DOE) began in 2004 and is gathering data that will enhance understanding of the temporal and spatial patterns of Pliocene and Miocene volcanism in the region (Figure 1). DOE has convened a ten-member expert panel of earth scientists that will use the information gathered to update probabilistic volcanic hazard estimates originally obtained by expert elicitation in 1996. Yucca Mountain is a series of north-trending ridges of eastward-tilted fault blocks that are bounded by north to northeast-trending normal faults. Topographic basins filled with up to 500 m of alluvium surround it to the east, south and west. In the past several decades, nearly 50 holes have been drilled in these basins, mainly for Yucca Mountain Project Site Characterization and the Nye County Early Warning Drilling Program. Several of these drill holes have penetrated relatively deeply buried (300-400 m) Miocene basalt; a Pliocene basalt dated at 3.8 Ma was encountered at a relatively shallow depth (100 m) in the northern Amargosa Desert (Anomaly B in Figure 1). The current drilling program is the first to specifically target and characterize buried basalt. Based on the new aeromagnetic survey and previous air and ground magnetic surveys (Connor et al. 2000; O'Leary et al. 2002), at least eight drill holes are planned with the goal of sampling each geographic subpopulation of magnetic anomalies in the region (Figure 1). This will result in a more complete characterization of the location, age, volume and composition of buried basaltic features for the purpose of updating the volcanic hazard assessment. Smith and Keenan (2005) suggested that volcanic hazard estimates might be 1-2 orders of magnitude higher than estimated by the DOE expert elicitation in 1996, based on (1) a proposed relationship between recurrence rates in the YMR and the Reveille-Lunar Crater volcanic field to the north, and (2) the implication that a number of so-far-undiscovered buried volcanoes would have a significant impact on hazard estimates. This article presents the new aeromagnetic data and an interpretation of the data that suggests magnetic anomalies nearest the proposed repository site represent buried Miocene basalt that will likely have only a minor impact on the volcanic hazard.

  15. The interaction of katabatic winds and mountain waves

    SciTech Connect (OSTI)

    Poulos, G.S.

    1997-01-01

    The variation in the oft-observed, thermally-forced, nocturnal katabatic winds along the east side of the Rocky Mountains can be explained by either internal variability or interactions with various other forcings. Though generally katabatic flows have been studied as an entity protected from external forcing by strong thermal stratification, this work investigates how drainage winds along the Colorado Front Range interact with, in particular, topographically forced mountain waves. Previous work has shown, based on measurements taken during the Atmospheric Studies in Complex Terrain 1993 field program, that the actual dispersion in katabatic flows is often greater than reflected in models of dispersion. The interaction of these phenomena is complicated and non-linear since the amplitude, wavelength and vertical structure of mountain waves developed by flow over the Rocky Mountain barrier are themselves partly determined by the evolving atmospheric stability in which the drainage flows develop. Perturbations to katabatic flow by mountain waves, relative to their more steady form in quiescent conditions, are found to be caused by both turbulence and dynamic pressure effects. The effect of turbulent interaction is to create changes to katabatic now depth, katabatic flow speed, katabatic jet height and, vertical thermal stratification. The pressure effect is found to primarily influence the variability of a given katabatic now through the evolution of integrated column wave forcing on surface pressure. Variability is found to occur on two scales, on the mesoscale due to meso-gamma scale mountain wave evolution, and on the microscale, due to wave breaking. Since existing parameterizations for the statically stable case are predominantly based on nearly flat terrain atmospheric measurements under idealized or nearly quiescent conditions, it is no surprise that these parameterizations often contribute to errors in prediction, particularly in complex terrain.

  16. 9 M.y. record of southern Nevada climate from Yucca Mountain secondary minerals

    SciTech Connect (OSTI)

    Whelan, J.F.; Moscati, R.J.

    1998-12-01

    Yucca Mountain, Nevada, is presently the object of intense study as a potential permanent repository for the Nation`s high-level radioactive wastes. The mountain consists of a thick sequence of volcanic tuffs within which the depth to water table ranges from 500 to 700 meters below the land surface. This thick unsaturated zone (UZ), which would host the projected repository, coupled with the present day arid to semi-arid climate, is considered a favorable attribute of the site. Evaluation of the site includes defining the relation between climate variability, as the input function or driver of site- and regional-scale ground-water flow, and the possible future transport and release of radionuclides to the accessible environment. Secondary calcite and opal have been deposited in the UZ by meteoric waters that infiltrated through overlying soils and percolated through the tuffs. The oxygen isotopic composition ({delta}{sup 18}O values) of these minerals reflect contemporaneous meteoric waters and the {delta}{sup 13}C values reflect soil organic matter, and hence the resident plant community, at the time of infiltration. Recent U/Pb age determinations of opal in these occurrences, coupled with the {delta}{sup 13}C values of associated calcite, allow broadbrush reconstructions of climate patterns during the past 9 M.y.

  17. Chemical analyses of rocks, minerals, and detritus, Yucca Mountain--Preliminary report, special report No. 11

    SciTech Connect (OSTI)

    Hill, C.A.; Livingston, D.E.

    1993-09-01

    This chemical analysis study is part of the research program of the Yucca Mountain Project intended to provide the State of Nevada with a detailed assessment of the geology and geochemistry of Yucca Mountain and adjacent regions. This report is preliminary in the sense that more chemical analyses may be needed in the future and also in the sense that these chemical analyses should be considered as a small part of a much larger geological data base. The interpretations discussed herein may be modified as that larger data base is examined and established. All of the chemical analyses performed to date are shown in Table 1. There are three parts to this table: (1) trace element analyses on rocks (limestone and tuff) and minerals (calcite/opal), (2) rare earth analyses on rocks (tuff) and minerals (calcite/opal), and (3) major element analyses + CO{sub 2} on rocks (tuff) and detritus sand. In this report, for each of the three parts of the table, the data and its possible significance will be discussed first, then some overall conclusions will be made, and finally some recommendations for future work will be offered.

  18. Interagency Visitor Center at Santa Monica Mountains National Recreation Area

    High Performance Buildings Database

    Calabasas, CA This project was to develop the first visitor center for the Santa Monica Mountains National Recreation Area located in the Los Angeles, California area. The previous visitor center was across from a shopping mall in rental space at park headquarters in Thousand Oaks. The new facility is centrally located in the park at a much more appropriate natural and cultural resource setting. It is a partnership project with the Mountains Recreation and Conservation Authority, which is a local land conservation and park agency. It is also a joint facility with California State Parks.

  19. The Proposed Yucca Mountain Repository From A Corrosion Perspective

    SciTech Connect (OSTI)

    J.H. Payer

    2005-03-10

    Corrosion is a primary determinant of waste package performance at the proposed Yucca Mountain Repository and will control the delay time for radionuclide transport from the waste package. Corrosion is the most probable and most likely degradation process that will determine when packages will be penetrated and the shape size and distribution of those penetrations. The general issues in corrosion science, materials science and electrochemistry are well defined, and the knowledge base is substantial for understanding corrosion processes. In this paper, the Yucca Mountain Repository is viewed from a corrosion perspective.

  20. Max-Min characterization of the mountain pass energy level for a class of variational problems

    E-Print Network [OSTI]

    Jacopo Bellazzini; Nicola Visciglia

    2009-09-01

    We provide a max-min characterization of the mountain pass energy level for a family of variational problems. As a consequence we deduce the mountain pass structure of solutions to suitable PDEs, whose existence follows from classical minimization argument.

  1. The Gemini 8M Telescopes Project M. Mountain, F. Gillett, R. Kurz

    E-Print Network [OSTI]

    The Gemini 8­M Telescopes Project M. Mountain, F. Gillett, R. Kurz Gemini Telescopes Project, 950 N. Cherry Ave., Tucson AZ 85719 Gemini Preprint # 5 #12; The Gemini 8­M Telescopes Project Matt Mountain

  2. Passage of chronic wasting disease prion into transgenic mice expressing Rocky Mountain elk

    E-Print Network [OSTI]

    Passage of chronic wasting disease prion into transgenic mice expressing Rocky Mountain elk (Cervus). Subsequently, the disease was diagnosed in black-tailed deer, Rocky Mountain elk (Williams & Young, 1982, 1992

  3. The Gemini Observatory Science Operations Plan Phil Puxley, Fred Gillett, Matt Mountain and Doug Simons

    E-Print Network [OSTI]

    The Gemini Observatory Science Operations Plan Phil Puxley, Fred Gillett, Matt Mountain and Doug; The Gemini Observatory Science Operations Plan Phil Puxley, Fred Gillett, Matt Mountain and Doug Simons

  4. Morphological taxonomy, DNA barcoding, and species diversity in southern Rocky Mountain headwater streams

    E-Print Network [OSTI]

    Zamudio, Kelly R.

    Morphological taxonomy, DNA barcoding, and species diversity in southern Rocky Mountain headwater and Conditions #12;MOLECULAR APPROACHES IN FRESHWATER ECOLOGY Morphological taxonomy, DNA barcoding, and species: diversity, elevation, DNA barcoding, taxonomy, aquatic insect, EPT, southern Rocky Mountain Elevation

  5. OPEN POSITION: Entomological Taxonomist and Research Associate Improving our understanding of the elevational biodiversity gradient of Rocky Mountain National Park

    E-Print Network [OSTI]

    Ishida, Yuko

    of the elevational biodiversity gradient of Rocky Mountain National Park: arthropod diversity and conservation Range, including from Rocky Mountain National Park. The taxonomic groups of most interest include

  6. Solar Decathlon Team Using Appalachian Mountain History to Model Home of the Future

    Broader source: Energy.gov [DOE]

    See how Appalachian State University used traditional mountain life architecture to design their 2011 Solar Decathlon home.

  7. Mountain Lion 'MmJUN7-r946 WQDOS HOLE, MASS

    E-Print Network [OSTI]

    mm ^m' ''AzM. Mountain Lion 'MmJUN7-r946 WQDOS HOLE, MASS CIRCULAR 6 FISH AND WILDLIFE SERVICE U. S For sale by the Superintendent of Documents Washinston 25, D. C. : Price 5 cents #12;MOUNTAIN LION TRAPPING Service nPHE AMERICAN MOUNTAIN LION (Felis concolor) is one of J- the largest predatory animals

  8. THE RISE OF MOUNTAIN RANGES AND THE EVOLUTION OF HUMANS: A CAUSAL RELATION?

    E-Print Network [OSTI]

    Baker, Andrew J.

    THE RISE OF MOUNTAIN RANGES AND THE EVOLUTION OF HUMANS: A CAUSAL RELATION? PETER MOLNAR' of essentially all major mountain ranges of the worl'd, albeit each with respect to a different frame, an evolution quantified well by an exponential increase in cranial capacity. Apparently, the rise of mountains

  9. FECAL DNA ANALYSIS AND RISK ASSESSMENT OF MOUNTAIN LION PREDATION OF BIGHORN SHEEP

    E-Print Network [OSTI]

    Ernest, Holly

    FECAL DNA ANALYSIS AND RISK ASSESSMENT OF MOUNTAIN LION PREDATION OF BIGHORN SHEEP HOLLY B. ERNEST Avenue, Davis, CA 95616, USA Abstract: We analyzed fecal DNA to identify individual mountain lions (Puma) in the Peninsular Ranges of California from 1993­1999. We identified 18 different mountain lions at 26 bighorn sheep

  10. Impact of non-hydrostatic effects and trapped lee waves on mountain wave drag

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    Impact of non-hydrostatic effects and trapped lee waves on mountain wave drag in directionally effects and trapped lee waves on mountain wave drag in directionally sheared flow. Quarterly Journal;AcceptedArticle Impact of non-hydrostatic effects and trapped lee waves on mountain wave drag

  11. Conflicts and Issues Related to Mountain Biking in the National Forests: A Multimethodological Approach1

    E-Print Network [OSTI]

    Conflicts and Issues Related to Mountain Biking in the National Forests: A Multimethodological for the tremendous increase in mountain biking on the National Forests is the myriad of opportu nities available, but should be pursued through a community decision approach. Increased participation by mountain bikes

  12. Testing Hypotheses of Vicariance in the Agamid Lizard Laudakia caucasia from Mountain Ranges

    E-Print Network [OSTI]

    Schulte, Jim

    NOTE Testing Hypotheses of Vicariance in the Agamid Lizard Laudakia caucasia from Mountain Ranges- ing Iranian plates on which the L. caucasia species group is endemic, producing mountain barriers Sea; (3) the Kopet-Dagh and Balkhan mountains of Turkmenistan and northeast Iran rise to the east

  13. Statistical Classification of Black-Capped (Poecile Atricapillus) and Mountain Chickadee (Poecile Gambeli) Call Notes

    E-Print Network [OSTI]

    Dawson, Michael

    Statistical Classification of Black-Capped (Poecile Atricapillus) and Mountain Chickadee (Poecile. Sturdy University of Alberta Both black-capped (Poecile atricapillus) and mountain chickadees (Poecile. Black-capped and mountain non-D notes were summarized as a set of 9 features and then analyzed by linear

  14. Existence and L estimates of some mountain-pass type solutions

    E-Print Network [OSTI]

    Lisbon, University of

    Existence and L estimates of some mountain-pass type solutions J. M. Gomes Abstract We prove, the Mountain Pass Theorem of Ambrosetti and Rabinowitz (see [10]) has provided existence and multiplicity. The characterization of Mountain Pass type solutions became itself a sub- ject of interest. As examples one may cite

  15. G-TEAMS at Mountain View High School Jennifer Hendryx, Mathias Reynolds

    E-Print Network [OSTI]

    Lega, Joceline

    G-TEAMS at Mountain View High School Jennifer Hendryx, Mathias Reynolds Who are we? Jennifer: Math teacher at Mountain View High school; teaches Alg. II, College Ready Math, and SpEd Alg. I. Goals in physics, Jennifer has been able to participate in Mountain View's Ac Dec as the science coach

  16. Mountain hydrology of the western United States Roger C. Bales,1

    E-Print Network [OSTI]

    Dozier, Jeff

    Mountain hydrology of the western United States Roger C. Bales,1 Noah P. Molotch,2,3 Thomas H. In the mountainous West and other similar areas worldwide, three pressing hydrologic needs stand out: first, modeling, and sensing the mountain environment that will improve understanding and prediction of hydrologic

  17. MOUNTAIN: A Translation-based Approach to Natural Language Generation for Dialog

    E-Print Network [OSTI]

    Black, Alan W

    MOUNTAIN: A Translation-based Approach to Natural Language Generation for Dialog Systems Brian, USA {blangner,awb}@cs.cmu.edu Abstract. This paper describes the Mountain language generation system a corpus of in-domain human responses, and show typical output of the Mountain system. The results of our

  18. Hybridization in the Catalina Island Mountain Mahogany (Cercocarpus traskiae):RAPD Evidence

    E-Print Network [OSTI]

    Rieseberg, Loren

    Hybridization in the Catalina Island Mountain Mahogany (Cercocarpus traskiae):RAPD Evidence LOREN H.S.A. Introduction The Catalina Island mountain mahogany is one of 10 species of shrubs and small trees (Lis 1992 1992). The Catalina Island mountain mahogany (C. traskiae East- wood) is one of the most distinctive

  19. A new branch of mountain pass solutions for the choreographical 3body problem

    E-Print Network [OSTI]

    A new branch of mountain pass solutions for the choreographical 3­body problem G. Arioli.terracini@unimib.it Abstract. We prove the existence of a new branch of solutions of Mountain Pass type for the periodic 3 on a bisection algorithm, we provide a numerical non­rigorous solution of Mountain Pass type for this problem

  20. Black-capped (Poecile atricapillus) and mountain chickadee (Poecile gambeli) contact call contains species, sex, and

    E-Print Network [OSTI]

    Dawson, Michael

    Black-capped (Poecile atricapillus) and mountain chickadee (Poecile gambeli) contact call contains black-capped and mountain chickadees, is among the most frequently produced call of each species of adult allopatric and sympatric black-capped and mountain chickadees in terms of nine acoustic features

  1. Climate change impacts on fire regimes and key ecosystem services in Rocky Mountain forests

    E-Print Network [OSTI]

    MacDonald, Lee

    Climate change impacts on fire regimes and key ecosystem services in Rocky Mountain forests Monique Collins, CO 80523-1476, USA b Rocky Mountain Tree-Ring Research, 2901 Moore Lane, Fort Collins, CO 80526 Mountains Climate change Fire regime Prescribed fire Ecosystem services a b s t r a c t Forests

  2. Golden Mountains The Altai Republic in the Russian Federation Kyoto University Research Reactor Institute Kobayashi Tooru

    E-Print Network [OSTI]

    Taskaev, Sergey Yur'evich

    1 Golden Mountains ­ The Altai Republic in the Russian Federation Kyoto University Research Reactor Institute Kobayashi Tooru It is said that Altai also means golden mountains. The development to these mountains easier especially during the warm summer season. Being geographically located at the central

  3. Ecological and allometric determinants of home-range size for mountain lions (Puma concolor)

    E-Print Network [OSTI]

    Beier, Paul

    Ecological and allometric determinants of home-range size for mountain lions (Puma concolor) INTRODUCTION Mountain lions (Puma concolor) are distributed through- out much of California, including the Sierra Nevada mountains, Coastal Ranges, eastern Sierran deserts and suburban areas. Despite our

  4. MONTANA OUTDOORS 3130 MARCH APRIL 2014 FWP.MT.GOV/MTOUTDOORS Why mountain bluebirds

    E-Print Network [OSTI]

    Duckworth, Renée

    MONTANA OUTDOORS 3130 MARCH APRIL 2014 FWP.MT.GOV/MTOUTDOORS TURF WAR TWIST Why mountain bluebirds are good for this species in western Montana valleys but don't benefit, in the long run, mountain bluebirds. Although mountain blue- birds also lost nesting sites, they had evolved to also use habitats at higher

  5. Solution of a mountain pass problem for the isomerization of a molecule with one

    E-Print Network [OSTI]

    Solution of a mountain pass problem for the isomerization of a molecule with one free atom Mathieu atom, the latter having two distinct possible stable positions. We then look for a mountain pass point of a mountain pass point without any as­ sumption on the molecules at infinity, improving our previous results

  6. United States Department of Agriculture Forest Rocky Mountain General Technical Report

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Rocky Mountain General Technical Report Service Development: Spring Mountains National Recreation Area Humboldt-Toiyabe National Forest #12;Available only development: Spring Mountains National Recreation Area, Humboldt-Toiyabe National Forest. Gen. Tech. Rep. RMRS

  7. LANDSLIDE-DRIVEN EROSION AND TOPOGRAPHIC EVOLUTION OF ACTIVE MOUNTAIN BELTS

    E-Print Network [OSTI]

    Weissel, Jeffrey K.

    LANDSLIDE-DRIVEN EROSION AND TOPOGRAPHIC EVOLUTION OF ACTIVE MOUNTAIN BELTS N. HOVIUS* Department a crucial role in the erosion and topographic evolution of active mountain belts. They drive the expansion from active mountain belts. Here, we illustrate these points with observations from the Southern Alps

  8. Large-Scale Flow Response to the Breaking of Mountain Gravity Waves

    E-Print Network [OSTI]

    Lott, Francois

    Large-Scale Flow Response to the Breaking of Mountain Gravity Waves François Lott, LMD, Ecole and synoptic impacts of mountain gravity waves breaking observations Some diagnostics tools Parameterization in weather prediction and climate models 3) Interaction between a front and an idealised mountain massive

  9. GRC Transactions, Vol. 32, 2008 Blue Mountain, Nevada, structural control, normal fault,

    E-Print Network [OSTI]

    Faulds, James E.

    GRC Transactions, Vol. 32, 2008 273 Keywords Blue Mountain, Nevada, structural control, normal fault, oblique slip, dilatant zone, Great Basin AbstrAct The Blue Mountain geothermal field is a blind geothermal prospect (i.e., no surface hot springs) along the west flank of Blue Mountain in southern Humboldt

  10. How does trench coupling lead to mountain building in the Subandes? A viscoelastoplastic finite element model

    E-Print Network [OSTI]

    Liu, Mian

    How does trench coupling lead to mountain building in the Subandes? A viscoelastoplastic finite cause of the Andean mountain building. The present-day crustal shortening in the Andes is clear from the cyclic trench coupling leads to long-term mountain building, which has been concentrated in the Subandes

  11. Coronas and iridescence in mountain wave clouds Joseph A. Shaw and Paul J. Neiman

    E-Print Network [OSTI]

    Shaw, Joseph A.

    Coronas and iridescence in mountain wave clouds Joseph A. Shaw and Paul J. Neiman We use Fraunhofer particle sizes required for interpreting photographs of coronas and iridescence in mountain wave clouds particles that might be unique to mountain wave clouds. Further- more, we see that the dominant colors

  12. Momentum flux estimates for South Georgia Island mountain waves in the stratosphere observed via satellite

    E-Print Network [OSTI]

    Alexander, M. Joan

    Momentum flux estimates for South Georgia Island mountain waves in the stratosphere observed via observations of mountain wave events in the stratosphere above South Georgia Island in the remote southern important drag forces on the circulation. Small island orography is generally neglected in mountain wave

  13. Weather observations on Whistler Mountain during five storms JULIE M. THERIAULT,1

    E-Print Network [OSTI]

    Houze Jr., Robert A.

    Weather observations on Whistler Mountain during five storms JULIE M. THE´RIAULT,1 KRISTEN L mountain ranges. The goal of this study is to investigate the wide range of meteorological conditions that generated precipitation on Whistler Mountain from 4­12 March 2010 during the SNOW-V10 field campaign. During

  14. Red Mountain is one of several hundred cinder cones within a swath of volcanic

    E-Print Network [OSTI]

    Red Mountain is one of several hundred cinder cones within a swath of volcanic landscape Mountain, whose tallest peak is 12,633 feet above sea level, the highest ele- vation in Arizona. Red Mountain rises about 1,000 feet above the surrounding landscape, and its crest is at 7,965 feet elevation

  15. Mountain Peak Identification in Visual Content Based on Coarse Digital Elevation Models

    E-Print Network [OSTI]

    Tagliasacchi, Marco

    Mountain Peak Identification in Visual Content Based on Coarse Digital Elevation Models Roman for the identification of mountain peaks in geo-tagged photos. The key tenet is to perform an edge- based matching of the position of mountain peaks with a coarse resolution DEM available in the corresponding ge- ographical area

  16. Determination of hydrologic pathways during snowmelt for alpine/subalpine basins, Rocky Mountain

    E-Print Network [OSTI]

    Ryan, Joe

    Determination of hydrologic pathways during snowmelt for alpine/subalpine basins, Rocky Mountain Abstract. Alpine/subalpine ecosystems in Rocky Mountain National Park may be sensitive to atmospherically with soil and vegetation. Because of this, waters draining granitic terrains, such as Rocky Mountain

  17. THE WHITE MOUNTAIN POLARIMETER TELESCOPE AND AN UPPER LIMIT ON COSMIC MICROWAVE BACKGROUND POLARIZATION

    E-Print Network [OSTI]

    Timbie, Peter

    THE WHITE MOUNTAIN POLARIMETER TELESCOPE AND AN UPPER LIMIT ON COSMIC MICROWAVE BACKGROUND. Wuensche5 Received 2007 June 10; accepted 2008 March 16 ABSTRACT The White Mountain Polarimeter (WMPol microwave background. WMPol is located at an altitude of 3880 m on a plateau in the White Mountains

  18. Supplemental Oxygen and Mountaineer Death Rates on Everest and K2

    E-Print Network [OSTI]

    Huey, Raymond B.

    Supplemental Oxygen and Mountaineer Death Rates on Everest and K2 To the Editor: The use of supplemental oxygen by Hima- layan mountaineers has been debated for more than 8 de- cades.1 Although sometimes- veal an impact of supplemental oxygen on survival because de- scending mountaineers are often near

  19. Late Quaternary geomorphology and soils in Crater Flat, Yucca Mountain area, southern Nevada

    E-Print Network [OSTI]

    Dorn, Ron

    Late Quaternary geomorphology and soils in Crater Flat, Yucca Mountain area, southern Nevada for a Crater Flat cation-leaching curve. This curve differs somewhat from a previous Yucca Mountain curve­10 from a previous ``surficial deposits'' stratigraphy used in the Yucca Mountain area. Although

  20. Limited hydrologic response to Pleistocene climate change in deep vadose zones --Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Reiners, Peter W.

    Limited hydrologic response to Pleistocene climate change in deep vadose zones -- Yucca Mountain paleohydrogeology paleoclimate U-series dating secondary ion mass spectrometry Yucca Mountain Understanding to Pleistocene climate change within a deep vadose zone in the eastern Mojave Desert at Yucca Mountain, Nevada

  1. Surface-to-tunnel seismic tomography studies at Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Korneev, Valeri A.

    Surface-to-tunnel seismic tomography studies at Yucca Mountain, Nevada Roland Gritto, Valeri A in the proposed nuclear waste repository area at Yucca Mountain, Nevada. A 5-km-long source line and a 3-km-long receiver line were located on top of Yucca Mountain ridge and inside the Exploratory Study Facility (ESF

  2. Sensitivity Study of Physical Limits on Ground Motion at Yucca Mountain

    E-Print Network [OSTI]

    Duan, Benchun

    Sensitivity Study of Physical Limits on Ground Motion at Yucca Mountain by Benchun Duan and Steven at Yucca Mountain, Nevada, and assess sensitivities due to uncertainties in fault geometry, off-fault rock ground-motion parameters (e.g., Bommer, 2002; Bommer et al., 2004). The 1998 PSHA for Yucca Mountain

  3. A Radionuclide Transport Model for the Unsaturated Zone at Yucca Mountain Bruce A. Robinson

    E-Print Network [OSTI]

    Lu, Zhiming

    A Radionuclide Transport Model for the Unsaturated Zone at Yucca Mountain Bruce A. Robinson Zhiming model calculations for radionuclide transport in the unsaturated zone at Yucca Mountain. The model developed by the Yucca Mountain Project based on calibrations to site data. The particle-tracking technique

  4. Dynamic Rupture through a Branched Fault Configuration at Yucca Mountain, and Resulting Ground Motions

    E-Print Network [OSTI]

    Dynamic Rupture through a Branched Fault Configuration at Yucca Mountain, and Resulting Ground of Yucca Mountain, Nevada, a potential site for a high-level radioactive waste repository. The Solitario km away from the SCF beneath the crest of Yucca Mountain, causing the repository site to experience

  5. Effect of viscoelastic postseismic relaxation on estimates of interseismic crustal strain accumulation at Yucca Mountain,

    E-Print Network [OSTI]

    Faulds, James E.

    of interseismic crustal strain accumulation at Yucca Mountain, Nevada William C. Hammond,1 Corné Kreemer,1 March 2010. [1] We estimate the longterm crustal strain rate at Yucca Mountain (YM), Nevada from GPS crustal strain accumulation at Yucca Mountain, Nevada, Geophys. Res. Lett., 37, L06307, doi:10.1029/2010GL

  6. THE INFLUENCE OF CATTLE GRAZING ON POCKET GOPHERS IN THE CENTRAL SIERRA NEVADA MOUNTAINS, CALIFORNIA

    E-Print Network [OSTI]

    Johnson, Matthew

    THE INFLUENCE OF CATTLE GRAZING ON POCKET GOPHERS IN THE CENTRAL SIERRA NEVADA MOUNTAINS shown to be negatively affected by cattle grazing, but effects of grazing on gophers in the Sierra Gopher, cattle grazing, Great Gray Owl, meadows, Mountain Pocket Gopher, Sierra Nevada Mountains, Strix

  7. The long runout of the Heart Mountain landslide: Heating, pressurization, and carbonate decomposition

    E-Print Network [OSTI]

    Einat, Aharonov

    The long runout of the Heart Mountain landslide: Heating, pressurization, and carbonate; accepted 8 July 2010; published 29 October 2010. [1] The Heart Mountain landslide of northwestern Wyoming emplacement of the Heart Mountain landslide that is independent of slide triggering. The mechanism

  8. Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project

    SciTech Connect (OSTI)

    Deanna Gilliland; Matthew Usher

    2011-12-31

    The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

  9. Valuation of mountain glaciation response on global warming

    SciTech Connect (OSTI)

    Ananicheva, M.D.; Davidovich, N.V.

    1997-12-31

    Quantitative estimates of main climatic parameters, influencing the glacier regime (summer air temperature and annual solid precipitation), and glaciologic characteristics (mass balance components, equilibrium line altitude and rate of air temperature at this height), received on the basis of the scenario for a climate development according to R. Wetherald and S. Manabe (1982) are submitted. The possible reaction of mountain glaciation on global warming is considered for two mountain countries: South-eastern Alaska and Pamir-Alay (Central Asia). In given paper we have tried to evaluate changes of the mountain glaciation regime for a time of CO{sub 2} doubling in the atmosphere, basing on the scenario of climate development and modern statistical relationships between climatic and glaciologic parameters. The GCM scenario of R. Wetherald and C. Manabe (GFDL model) which is made with respect of mountain territories is in the basis our calculations. As initial materials we used data of long-term observations and the maps of World Atlas of Snow and Ice Resources (WASIR).

  10. Management of Giant Sequoia on Mountain Home Demonstration

    E-Print Network [OSTI]

    : Established in 1946, the Mountain Home Demonstration State Forest, Tulare County, California, is managed campsites in Tulare County in central California. A unique characteristic of the For est is an extensive groves in the Sierra Nevada from Placer County south to Tulare County. Logging on what is now

  11. Links between climate, erosion, uplift, and topography during intracontinental mountain

    E-Print Network [OSTI]

    Watts, A. B. "Tony"

    Links between climate, erosion, uplift, and topography during intracontinental mountain building with a distinct orographic precipitation gradient, offers a natural experiment for exploring uplift, erosion that provide markers of rock uplift. This makes it possible to map the deformation of a former planar surface

  12. New Whole-House Solutions Case Study: Pine Mountain Builders

    SciTech Connect (OSTI)

    None

    2013-02-01

    Pine Mountain Builders achieved HERS scores as low as 59 and electric bills as low as $50/month with extensive air sealing (blower door tests = 1.0 to 1.8 ACH 50), R-3 XPS sheathing instead of OSB, and higher efficiency heat pumps.

  13. EIS-0417: South Mountain Freeway (Loop 202); Phoenix, Arizona

    Broader source: Energy.gov [DOE]

    Federal Highway Administration and Arizona Department of Transportation, with Western Area Power Administration as a cooperating agency, prepared an EIS that analyzes the potential environmental impacts of the proposed South Mountain Freeway (Loop 202) project in the Greater Metropolitan Phoenix Area.

  14. ForPeerReview Verification of Mountain Weather Information Service

    E-Print Network [OSTI]

    Birch, Cathryn

    ForPeerReview Verification of Mountain Weather Information Service forecasts for three upland areas in the UK Journal: Weather Manuscript ID: WEA-13-0098.R1 Wiley - Manuscript type: Research Article Date and Environment Birch, Cathryn; University of Leeds, School of Earth and Environment Monk, Geoffrey; The Weather

  15. Uranium and Neptunium Desorption from Yucca Mountain Alluvium

    SciTech Connect (OSTI)

    C.D. Scism; P.W. Reimus; M. Ding; S.J. Chipera

    2006-03-16

    Uranium and neptunium were used as reactive tracers in long-term laboratory desorption studies using saturated alluvium collected from south of Yucca Mountain, Nevada. The objective of these long-term experiments is to make detailed observations of the desorption behavior of uranium and neptunium to provide Yucca Mountain with technical bases for a more realistic and potentially less conservative approach to predicting the transport of adsorbing radionuclides in the saturated alluvium. This paper describes several long-term desorption experiments using a flow-through experimental method and groundwater and alluvium obtained from boreholes along a potential groundwater flow path from the proposed repository site. In the long term desorption experiments, the percentages of uranium and neptunium sorbed as a function of time after different durations of sorption was determined. In addition, the desorbed activity as a function of time was fit using a multi-site, multi-rate model to demonstrate that different desorption rate constants ranging over several orders of magnitude exist for the desorption of uranium from Yucca Mountain saturated alluvium. This information will be used to support the development of a conceptual model that ultimately results in effective K{sub d} values much larger than those currently in use for predicting radionuclide transport at Yucca Mountain.

  16. Rocky Mountain Power- Self-Direction Credit Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers a Self-Direction Credit program to its industrial and large commercial customers with annual electric usage of more than 5,000,000 kWh or a 1,000 kW peak load. Through...

  17. Rocky Mountain Power- Self-Direction Credit Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers a Self-Direction Credit program to its industrial and large commercial customers with annual electric usage of more than 5 million kWh or a peak load of 1,000 kW or more...

  18. Disturbance and Landscape Dynamics The Rocky Mountains, Lander's Peak, 1863

    E-Print Network [OSTI]

    Hansen, Andrew J.

    environment. (Pickett and White 1985) Defining and Quantifying Disturbance #12;Frequency - number a specified time. Defining and Quantifying Disturbance #12;Frequency: none Frequency: 250-500 yrs SeverityBioe 515 Disturbance and Landscape Dynamics #12;The Rocky Mountains, Lander's Peak, 1863 Albert

  19. Monitoring Groundwater Recharge In the Sierra Nevada Mountains For

    E-Print Network [OSTI]

    Monitoring Groundwater Recharge In the Sierra Nevada Mountains For Impact On Hydrologic Resources The Issue Snowmelt is a significant source of replenishing groundwater resources in the western United States. In addition, this groundwater recharge process is typically a major contributor to streamflow

  20. AEROSOL-PRECIPITATION INTERACTIONS IN THE SOUTHERN APPALACHIAN MOUNTAINS

    E-Print Network [OSTI]

    AEROSOL-PRECIPITATION INTERACTIONS IN THE SOUTHERN APPALACHIAN MOUNTAINS A Thesis by GINGER MARIE of the requirements for the degree of MASTER OF ARTS May 2011 Department of Geography and Planning #12;AEROSOL-PRECIPITATION and Graduate Studies #12;Copyright by Ginger Marie Kelly 2011 All Rights Reserved #12;iv ABSTRACT AEROSOL-PRECIPITATION

  1. Crustal structure of the Ouachita Mountains region from lithosphere seismic profiles 

    E-Print Network [OSTI]

    Kokkoros, George Fotios

    1989-01-01

    record 8. 0. Example of fitting lines to first-arrival events. 7 Raypaths and traveltime curves for s. horizontal two-layer model. 8 Raypaths and traveltime curves for a, dipping lay'er model. 9 Shotpoint 1. 3 record section. 10 Shotpoint 3. 3 record... of 2. 2 km beneath shot point 3. 3. A thin, low-velocity (2. 0 to 2. 2 km/s) surface layer, layer 1, was modeled from 20 to 30 km along the northern cross-section. This layer was inferred due to the absence of an observable first-arrival refraction...

  2. Picking up the pieces : transitional shelters for disaster relief in the northern mountainous regions of Pakistan

    E-Print Network [OSTI]

    Lee, Weifeng Victoria

    2006-01-01

    This thesis seeks to tackle a complex problem - disaster housing relief - from the angle of architecture design discipline and attempts to find a logical approach to solve such a problem via an in depth examination of a ...

  3. Investigation of Groundwater Flow in Foothill and Mountain regions using Heat Flow measurements

    E-Print Network [OSTI]

    Fogg, Graham E.; Trask, James C

    2009-01-01

    or shortly after drilling for each well. We performed one orGondola well dropped substantially as drilling progressed toft amsl. However, drilling of the peak well may have short-

  4. Investigation of Groundwater Flow in Foothill and Mountain regions using Heat Flow measurements

    E-Print Network [OSTI]

    Fogg, Graham E.; Trask, James C

    2009-01-01

    ambient conductive geothermal gradient = dT/dz = constant (state conductive geothermal gradient dT/dz due to ambientthan the conductive geothermal gradient 0.0073 C/ft in

  5. Investigation of Groundwater Flow in Foothill and Mountain regions using Heat Flow measurements

    E-Print Network [OSTI]

    Fogg, Graham E.; Trask, James C

    2009-01-01

    1965) Rates of Vertical Groundwater Movement Estimated fromCrystalline Rocks. Groundwater, Vol. 2, pp. 6-12. Dettinger,horizontal and vertical groundwater flow components. Water

  6. Investigation of Groundwater Flow in Foothill and Mountain regions using Heat Flow measurements

    E-Print Network [OSTI]

    Fogg, Graham E.; Trask, James C

    2009-01-01

    depth. Heavenly Gondola well: Hydraulic tests together withReferences Tables Hydraulic parameters for wells completedthe cost of standard hydraulic methods of well/aquifer yield

  7. ,"Mountain Region Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterMonthly","10/2015" ,"ReleaseVolumeVolume (MMcf)" ,"Click worksheet name orVolume (MMcf)"Natural

  8. ,"Mountain Regions Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterMonthly","10/2015" ,"ReleaseVolumeVolume (MMcf)" ,"Click worksheet name orVolume

  9. ,"Mountain Region Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA -Liquids

  10. ,"Mountain Regions Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA -LiquidsAnnual",2014 ,"Release

  11. Mountain Region Natural Gas in Underground Storage - Change in Working Gas

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar AprThousand Cubic Feet) DecadeYear2Cubicfrom Same

  12. Yucca Mountain Site Characterization Project technical data catalog; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    1992-09-30

    The June 1, 1985, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. Each new publication of the Technical Data Catalog supersedes the previous edition.

  13. HABITAT SELECTION BY MOUNTAIN SHEEP IN MOJAVE DESERT SCRUB LOUISR. BERNER,PAULR. KRAUSMAN,ANDMARK C. WALLACE

    E-Print Network [OSTI]

    Wallace, Mark C.

    HABITAT SELECTION BY MOUNTAIN SHEEP IN MOJAVE DESERT SCRUB .. .. LOUISR. BERNER,PAULR. KRAUSMAN use by 12-18 mountain sheep(Ovis canadensis nelsom)in a 320-ha enclosure betweenJune 1990and June 1991-collared mountain sheep. Mountain sheepusedmidslopes and drawassociationson the westside of the enclosure

  14. CYLINDER BUCKLING: THE MOUNTAIN PASS AS AN ORGANIZING JIRI HORAK, GABRIEL J. LORD, AND MARK A. PELETIER

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    CYLINDER BUCKLING: THE MOUNTAIN PASS AS AN ORGANIZING CENTER JIR´I HOR´AK, GABRIEL J. LORD of the sensitivity of the shell to imperfections. Key to obtaining this is the existence of a mountain pass point and then numerically compute example mountain pass solutions. Numerically the mountain pass solution with lowest energy

  15. COLORADO STATE UNIVERSITY CSU MOUNTAIN CAMPUS PLEASE READ THIS DOCUMENT COMPLETELY BEFORE SIGNING. ITS EFFECT IS TO RELEASE

    E-Print Network [OSTI]

    Schumacher, Russ

    COLORADO STATE UNIVERSITY ­ CSU MOUNTAIN CAMPUS PLEASE READ THIS DOCUMENT COMPLETELY BEFORE SIGNING MOUNTAIN CAMPUS, AND TO WAIVE ALL CLAIMS FOR DAMAGES OR LOSSES AGAINST THE UNIVERSITY WHICH MAY ARISE FROM University to participate in the First-Year Mountain Experience Outdoor Orientation at the CSU Mountain

  16. Regional Purchasing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * ImpactsandRegarding ConfinementRegional Partnerships

  17. Ute Mountain Ute Tribe Community-Scale Solar Feasibility Study

    SciTech Connect (OSTI)

    Rapp, Jim; Knight, Tawnie

    2014-01-30

    Parametrix Inc. conducted a feasibility study for the Ute Mountain Ute Tribe to determine whether or not a community-scale solar farm would be feasible for the community. The important part of the study was to find where the best fit for the solar farm could be. In the end, a 3MW community-scale solar farm was found best fit with the location of two hayfield sites.

  18. Rocky Mountain, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan: EnergyRocklin BiomassMountain, Oklahoma: Energy

  19. Signal Mountain, Tennessee: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity for LowInformationShoshoneEnergyMountain, Tennessee: Energy

  20. Pine Mountain, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) | Open EnergyPhoenicia,Creek,PilgrimGroveIslandMountain,