Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mountain development icimod" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

International Centre for Integrated Mountain Development (ICIMOD) | Open  

Open Energy Info (EERE)

Centre for Integrated Mountain Development (ICIMOD) Centre for Integrated Mountain Development (ICIMOD) Jump to: navigation, search Name International Centre for Integrated Mountain Development (ICIMOD) Agency/Company /Organization International Centre for International Mountain Development (ICIMOD) Resource Type Training materials, Lessons learned/best practices Website http://www.icimod.org/ Country Afghanistan, Bangladesh, Bhutan, China, India, Myanmar, Nepal, Pakistan UN Region Southern Asia, Western Asia References ICIMOD[1] International Centre for Integrated Mountain Development (ICIMOD) Screenshot "The International Centre for Integrated Mountain Development, ICIMOD, is a regional knowledge development and learning centre serving the eight regional member countries of the Hindu Kush-Himalayas - Afghanistan,

2

Mountain Association for Community Economic Development - Solar...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heater Loan Program Mountain Association for Community Economic Development - Solar Water Heater Loan Program Eligibility Commercial Residential Savings For Heating &...

3

Mountain Association for Community Economic Development - Solar Water  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mountain Association for Community Economic Development - Solar Mountain Association for Community Economic Development - Solar Water Heater Loan Program Mountain Association for Community Economic Development - Solar Water Heater Loan Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Solar Water Heating Program Info Funding Source Kentucky Solar Partnership (KSP) State Kentucky Program Type Local Loan Program Rebate Amount 100% of equipment and installation cost Provider Kentucky Solar Partnership The Kentucky Solar Partnership (KSP) and the Mountain Association for Community Economic Development (MACED) partner to offer low interest loans for the installation of solar water heaters. Loans cover the full equipment and installation cost. Flexible rate loans and terms are available. They

4

Mountain  

U.S. Energy Information Administration (EIA) Indexed Site

Biodiesel (B100) Production by Petroleum Administration for Defense District (PADD)" Biodiesel (B100) Production by Petroleum Administration for Defense District (PADD)" "(million gallons)" "Period","PADD",,,,,,,,,,"U.S." ,"East Coast (PADD 1)",,"Midwest (PADD 2)",,"Gulf Coast (PADD 3)",,"Rocky Mountain (PADD 4)",,"West Coast (PADD 5)" 2011 "January",3,,30,,1,,0,,1,,35.355469 "February",3,,32,,4,,0,,1,,40.342355 "March",3,,47,,6,,0,,2,,59.59017 "April",3,,54,,10,,0,,3,,71.0517 "May",4,,58,,11,,0,,4,,77.196652 "June",4,,56,,14,,0,,7,,81.39104 "July",5,,65,,17,,0,,5,,91.679738 "August",5,,66,,20,,0,,5,,95.484891 "September",6,,65,,20,,0,,6,,95.880151 "October",7,,73,,22,,0,,4,,105.342474

5

Reservoir Simulation Used to Plan Diatomite Developement in Mountainous Region  

E-Print Network (OSTI)

In Santa Barbara County, Santa Maria Pacific (an exploration and production company) is expanding their cyclic steam project in a diatomite reservoir. The hilly or mountainous topography and cut and fill restrictions have interfered with the company's ideal development plan. The steep hillsides prevent well pad development for about 22 vertical well locations in the 110 well expansion plan. Conventional production performs poorly in the area because the combination of relatively low permeability (1-10 md) and high viscosity (~220 cp) at the reservoir temperature. Cyclic steam injection has been widely used in diatomite reservoirs to take advantage of the diatomite rocks unique properties and lower the viscosity of the oil. Some companies used deviated wells for cyclic steam injection, but Santa Maria Pacific prefers the use only vertical wells for the expansion. Currently, the inability to create well pads above 22 vertical well target locations will result in an estimated $60,000,000 of lost revenue over a five year period. The target locations could be developed with unstimulated deviated or horizontal wells, but expected well rates and expenses have not been estimated. In this work, I use a thermal reservoir simulator to estimate production based on five potential development cases. The first case represents no development other than the cyclic wells. This case is used to calibrate the model based on the pilot program performance and serves as a reference point for the other cases. Two of the cases simulate a deviated well with and without artificial lift next to a cyclic well, and the final two cases simulate a horizontal well segment with and without artificial lift next to a cyclic well. The deviated well with artificial lift results in the highest NPV and profit after five years. The well experienced pressure support from the neighboring cyclic well and performed better with the cyclic well than without it. Adding 22 deviated wells with artificial lift will increase the project's net profit by an estimated $7,326,000 and NPV by $2,838,000 after five years.

Powell, Richard

2012-08-01T23:59:59.000Z

6

Mountain Association for Community Economic Development- Energy Efficient Enterprise Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

The Mountain Association for Community Economic Development (MACED) offers loans to small and mid-sized businesses, non-profits, schools and municipalities to improve energy efficiency through its...

7

The Influence of Vegetation on the Development and Structure of Mountain Waves  

Science Conference Proceedings (OSTI)

The influence of vegetative cover on the development of mountain waves is analyzed using a two-dimensional meso-? model. The model includes a detailed representation of surface fluxes and friction that evolve in time as the incoming solar ...

Romualdo Romero; Sergio Alonso; Everett C. Nickerson; Clemente Ramis

1995-10-01T23:59:59.000Z

8

Natural Gas in the Rocky Mountains: Developing Infrastructure  

Reports and Publications (EIA)

This Supplement to EIA's Short-Term Energy Outlook analyzes current natural gas production, pipeline and storage infrastructure in the Rocky Mountains, as well as prospective pipeline projects in these States. The influence of these factors on regional prices and price volatility is examined.

Information Center

2007-09-20T23:59:59.000Z

9

Several TOUGH2 Modules Developed for Site Characterization Studies of Yucca Mountain  

E-Print Network (OSTI)

Unsaturated Zone Model of Yucca Mountain, Nevada. Lawrencestudies of Yucca Mountain. The model formulations arebeing used in the Yucca Mountain project. Pruess, K . ,

Wu, Yu-Shu; Pruess, Karsten

1998-01-01T23:59:59.000Z

10

Development of discrete flow paths in unsaturated fractures at Yucca Mountain  

E-Print Network (OSTI)

into drifts at Yucca Mountain. Journal of Contaminantof infiltration for the Yucca Mountain Area, Nevada, U. S.matrix properties, Yucca Mountain, Nevada, U.S. Geological

Bodvarsson, G.S.; Wu, Yu-Shu; Zhang, Keni

2002-01-01T23:59:59.000Z

11

Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 9, Index  

Science Conference Proceedings (OSTI)

This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules.

NONE

1988-12-01T23:59:59.000Z

12

Boundary Layer Energy Transport and Cumulus Development over a Heated Mountain: An Observational Study  

Science Conference Proceedings (OSTI)

Aircraft and surface measurements of the boundary layer transport of mass and moisture toward an isolated, heated mountain are presented. The data were collected around the Santa Catalina Mountains in Arizona, 20–30 km in diameter, during the ...

J. Cory Demko; Bart Geerts; Qun Miao; Joseph A. Zehnder

2009-01-01T23:59:59.000Z

13

Site Characterization Plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 3, Part A: Chapters 6 and 7  

Science Conference Proceedings (OSTI)

This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 218 figs., 50 tabs.

NONE

1988-12-01T23:59:59.000Z

14

Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 1, Part A: Chapters 1 and 2  

Science Conference Proceedings (OSTI)

This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 750 refs., 123 figs., 42 tabs.

NONE

1988-12-01T23:59:59.000Z

15

Tennessee Valley Authority Buffalo Mountain Wind Power Project Development: U.S. Department of Energy - EPRI Wind Turbine Verificati on Program  

Science Conference Proceedings (OSTI)

This report describes the development experience at the Tennessee Valley Authority (TVA) Buffalo Mountain Wind Power Project located near Oliver Springs, Tennessee. The lessons learned from the project will be valuable to other utilities or companies planning similar wind projects.

2003-03-24T23:59:59.000Z

16

Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada; Volume 3  

SciTech Connect

In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization.

NONE

1986-05-01T23:59:59.000Z

17

Dynamical Model Simulation of the Morning Boundary Layer Development in Deep Mountain Valleys  

Science Conference Proceedings (OSTI)

A dry, two-dimensional version of the Colorado State University Multi-dimensional Cloud/Mesoscale Model was used to study the cross-valley evolution of the wind and temperature structures in an idealized east-west oriented mountain valley. Two ...

David C. Bader; Thomas B. Mckee

1983-03-01T23:59:59.000Z

18

Environmental assessment: Yucca Mountain Site, Nevada Research and Development Area, Nevada; Volume 2  

SciTech Connect

In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that is is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization.

1986-05-01T23:59:59.000Z

19

Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada; Volume 1  

SciTech Connect

In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guideline for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EA), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as of five sites suitable for characterization.

NONE

1986-05-01T23:59:59.000Z

20

The Development and Application of Reactive Transport Modeling Techniques to Study Radionuclide Migration at Yucca Mountain, NV  

SciTech Connect

Yucca Mountain, Nevada has been chosen as a possible site for the first high level radioactive waste repository in the United States. As part of the site investigation studies, we need to make scientifically rigorous estimations of radionuclide migration in the event of a repository breach. Performance assessment models used to make these estimations are computationally intensive. We have developed two reactive transport modeling techniques to simulate radionuclide transport at Yucca Mountain: (1) the selective coupling approach applied to the convection-dispersion-reaction (CDR) model and (2) a reactive stream tube approach (RST). These models were designed to capture the important processes that influence radionuclide migration while being computationally efficient. The conventional method of modeling reactive transport models is to solve a coupled set of multi-dimensional partial differential equations for the relevant chemical components in the system. We have developed an iterative solution technique, denoted the selective coupling method, that represents a versatile alternative to traditional uncoupled iterative techniques and the filly coupled global implicit method. We show that selective coupling results in computational and memory savings relative to these approaches. We develop RST as an alternative to the CDR method for solving large two- or three-dimensional reactive transport simulations for cases in which one is interested in predicting the flux across a specific control plane. In the RST method, the multidimensional problem is reduced to a series of one-dimensional transport simulations along streamlines. The key assumption with RST is that mixing at the control plane approximates the transverse dispersion between streamlines. We compare the CDR and RST approaches for several scenarios that are relevant to the Yucca Mountain Project. For example, we apply the CDR and RST approaches to model an ongoing field experiment called the Unsaturated Zone Transport Test.

Hari Selvi Viswanathan

1999-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "mountain development icimod" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Approach to developing a ground-motion design basis for facilities important to safety at Yucca Mountain  

SciTech Connect

The Department of Energy has proposed a methodology for developing a ground-motion design basis for prospective facilities at Yucca Mountain that are important to safety. The methodology utilizes a quasi-deterministic construct that is designed to provide a conservative, robust, and reproducible estimate of ground motion that has a one-in-ten chance of occurring during the preclosure period. This estimate is intended to define a ground-motion level for which the seismic design would ensure minimal disruption to operations; engineering analyses to ensure safe performance in the unlikely event that the design basis is exceeded are a part of the proposed methodology. 8 refs.

King, J.L.

1990-04-01T23:59:59.000Z

22

Site characterization plan overview: Yucca Mountain site, Nevada Research and Development Area, Nevada  

SciTech Connect

To help the public better understand both the SCP and the site characterization program, the DOE has prepared this overview and the SCP Public Handbook. The overview presents summaries of selected topics covered in the SCP; it is not a substitute for the SCP. The organization of the overview is similar to that of the SCP itself, with brief descriptions of the Yucca Mountain site, the repository, and the containers in which the waste would be packaged, followed by a discussion of the characterization program to be carried out at the Yucca Mountain site. This overview is intended primarily for those persons who want to understand the general scope and basis of the site-characterization program, the activities to be conducted, and the facilities to be constructed without spending the time necessary to become familiar with all of the technical details presented in the SCP. For the readers of the SCP, the overview will be useful as a general guide to the plan. The SCP Public Handbook is a short document that contains brief descriptions of the SCP process and the contents of the SCP. It also explains how the public can submit comments on the SCP and lists the libraries and reading rooms at which the SCP is available. 9 refs., 18 tabs.

NONE

1988-12-01T23:59:59.000Z

23

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 2  

Science Conference Proceedings (OSTI)

The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. Chapter 3 summarizes present knowledge of the regional and site hydrologic systems. The purpose of the information presented is to (1) describe the hydrology based on available literature and preliminary site-exploration activities that have been or are being performed and (2) provide information to be used to develop the hydrologic aspects of the planned site characterization program. Chapter 4 contains geochemical information about the Yucca Mountain site. The chapter references plan for continued collection of geochemical data as a part of the site characterization program. Chapter 4 describes and evaluates data on the existing climate and site meterology, and outlines the suggested procedures to be used in developing and validating methods to predict future climatic variation. 534 refs., 100 figs., 72 tabs.

NONE

1988-01-01T23:59:59.000Z

24

STRATEGIC PLAN FOR COORDINATING RURAL INTELLIGENT TRANSPORTATION SYSTEM (ITS) TRANSIT DEVELOPMENT IN THE GREAT SMOKY MOUNTAINS NATIONAL PARK  

NLE Websites -- All DOE Office Websites (Extended Search)

256 256 STRATEGIC PLAN FOR COORDINATING RURAL INTELLIGENT TRANSPORTATION SYSTEM (ITS) TRANSIT DEVELOPMENT IN THE GREAT SMOKY MOUNTAINS NATIONAL PARK L. F. Truett (TRUETTLF@ORNL.GOV) S. M. Chin (CHINS@ORNL.GOV) E. C. P. Chang (ECC2005@ORNL.GOV) November 2002 Prepared for the FEDERAL TRANSIT ADMINISTRATION U.S. DEPARTMENT OF TRANSPORTATION Washington, D.C. 20590 Prepared by the Center for Transportation Analysis OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6073 managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-00OR22725 Coordination of Transit Concepts in GSMNP page iii, 11/12/02 STRATEGIC PLAN FOR COORDINATING RURAL INTELLIGENT TRANSPORTATION SYSTEM (ITS) TRANSIT DEVELOPMENT IN THE

25

Site characterization plan overview: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Consultation Draft  

SciTech Connect

The consultation draft of the site characterization plan is a lengthy document that describes in considerable detail the program that will be conducted to characterize the geologic, hydrologic, and other conditions relevant to the suitability of the site for a repository. The overview presented here consists of brief summaries of important topics covered in the consultation draft of the site-characterization plan; it is not a substitute for the site-characterization plan. The arrangement of the overview is similar to that of the plan itself, with brief descriptions of the disposal system -- the site, the repository, and the waste package -- preceding the discussion of the characterization program to be carried out at the Yucca Mountain site. It is intended primarily for the management staff of organizations involved in the DOE`s repository program -- staff who might wish to understand the general scope of the site-characterization program, the activities to be conducted, and the facilities to be constructed rather than the technical details of site characterization. 22 figs., 1 tab.

NONE

1988-01-01T23:59:59.000Z

26

Current Status and Potential Impacts Regarding the Proposed Development of a Rail Line to the Yucca Mountain Nuclear Waste Repository  

Science Conference Proceedings (OSTI)

This paper provides a description of the current status regarding the proposed development of a rail line to the Yucca Mountain Nuclear Waste Repository in Nye County, Southern Nevada, which includes potential impacts analyzed during the National Environmental Policy Act (NEPA) process, and the subsequent creation of an Environmental Impact Statement (EIS) for the rail line. Potential impacts are addressed within the context of impacts to natural and human environmental resources found within the geographic area of the proposed federal project. Potential impacts to these resources have been fully analyzed in the Rail Alignment Draft EIS (DEIS). This paper includes a summary of the potential impacts analyzed in the DEIS. Examples of potential impacts include land use conflicts, air quality, water use, and impacts to biological and cultural resources, among others. In conclusion: Based on its obligations under the NWPA and its decision to select the mostly rail scenario for the transportation of spent nuclear fuel and high-level radioactive waste, DOE needs to ship these materials by rail in Nevada to a repository at Yucca Mountain. DOE prepared the Rail Alignment EIS to provide the background, data, information, and analyses to help decision makers and the public understand the potential environmental impacts that could result from constructing and operating a railroad for shipment of spent nuclear fuel, high-level radioactive waste, and other materials from an existing rail line in Nevada to a repository at Yucca Mountain. This railroad would consist of a rail line, railroad operations support facilities, and other related infrastructure. DOE will use the Rail Alignment EIS to decide whether to construct and operate the proposed railroad, and if so, to: - Select a rail alignment (Caliente rail alignment or Mina rail alignment) in which to construct the railroad; - Select the common segments and alternative segments within either a Caliente rail alignment or a Mina rail alignment. The Department would use the selected common segments and alternative segments to identify the public lands to be included in right-of-way applications; - Decide where to construct proposed railroad operations support facilities; - Decide whether to restrict use of the rail line to DOE trains, or whether to allow commercial shippers to operate over the rail line; and - Determine what mitigation measures to implement. (authors)

Lanthrum, G. [U.S. Department of Energy, Office of Civilian Radioactive Waste Management, Washington, DC (United States); Gunnerson, J. [Booz Allen Hamilton, Las Vegas, NV (United States)

2008-07-01T23:59:59.000Z

27

YUCCA MOUNTAIN SITE DESCRIPTION  

SciTech Connect

The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

A.M. Simmons

2004-04-16T23:59:59.000Z

28

YUCCA MOUNTAIN SITE DESCRIPTION  

SciTech Connect

The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

A.M. Simmons

2004-04-16T23:59:59.000Z

29

Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV  

Science Conference Proceedings (OSTI)

This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M&O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes.

I. Wong

2004-11-05T23:59:59.000Z

30

Investigations of a Winter Mountain Storm in Utah. Part II: Mesoscale Structure, Supercooled Liquid Water Development, and Precipitation Processes  

Science Conference Proceedings (OSTI)

A comprehensive analysis of a deep winter storm system during its passage over the Tushar Mountains of southwestern Utah is reported. The case study, drawn from the 1985 Utah/NOAA cooperative weather modification experiment, is divided into ...

Kenneth Sassen; Arlen W. Huggins; Alexis B. Long; Jack B. Snider; Rebecca J. Meitín

1990-06-01T23:59:59.000Z

31

Green Mountain Energy RFP  

NLE Websites -- All DOE Office Websites (Extended Search)

PROPOSALS PROPOSALS GREEN MOUNTAIN ENERGY COMPANY TIM SMITH VP OF ORIGINATION AND BUSINESS DEVELOPMENT 550 WESTLAKE PARK BOULEVARD ROOM 172 HOUSTON, TEXAS 77079 281-366-5124 DATE ISSUED: JANUARY 21, 2005 DUE DATE & TIME FOR RESPONSES: FRIDAY, MARCH 3, 2005 @ 11:00 A.M. CENTRAL TIME RFP NOTICE GREEN MOUNTAIN ENERGY COMPANY IS REQUESTING PROPOSALS FROM GENERATORS AND MARKETERS OF RENEWABLE ENERGY CREDITS, RENEWABLE ENERGY ATTRIBUTES OR 'GREEN TAGS' ("RECs") ASSOCIATED WITH THE GENERATION OF ELECTRICITY FROM RENEWABLE RESOURCES. ANY QUESTIONS REGARDING THIS REQUEST FOR PROPOSAL SHOULD BE DIRECTED TO TIM SMITH, GREEN MOUNTAIN ENERGY COMPANY, 281-366-5124 or tim.smith@greenmountain.com. Upon signing this page the organization certifies that they have read and agree to

32

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act  

Science Conference Proceedings (OSTI)

The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended by the Secretary of Energy and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared by the US Department of Energy (DOE) in accordance with the requirements of the Nulcear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of the site characterization plan are oulined, and compliance with applicable regulations is discussed.

NONE

1988-01-01T23:59:59.000Z

33

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 6  

Science Conference Proceedings (OSTI)

The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

NONE

1988-01-01T23:59:59.000Z

34

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 7  

Science Conference Proceedings (OSTI)

The Yucca Mountain site in Neavada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining hte geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare and environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

NONE

1988-01-01T23:59:59.000Z

35

Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 2, Part A: Chapters 3, 4, and 5  

SciTech Connect

This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1--5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 575 refs., 84 figs., 68 tabs.

NONE

1988-12-01T23:59:59.000Z

36

Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 4, Part B: Chapter 8, Sections 8.0 through 8.3.1.4  

Science Conference Proceedings (OSTI)

This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 74 figs., 32 tabs.

NONE

1988-12-01T23:59:59.000Z

37

Georgia Mountain | Open Energy Information  

Open Energy Info (EERE)

Georgia Mountain Georgia Mountain Jump to: navigation, search Name Georgia Mountain Facility Georgia Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner All Earth Renewables Developer All Earth Renewables Energy Purchaser Green Mountain Power Location Milton VT Coordinates 44.662351°, -73.067991° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.662351,"lon":-73.067991,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

38

Effects of energy development on air quality in the Rocky Mountain West. [Environmental effects of coal and oil shale development  

SciTech Connect

Future need for fossil fuels may lead to an exploitation of Western coal and oil shale at the expense of the traditional clean air and clear skies of the West. This report evaluates the prospects for future changes in western air quality, the constraints imposed on western energy development by air quality regulations, and the impacts of that development.

Hinman, G.W.; Leonard, E.M.

1977-01-01T23:59:59.000Z

39

The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes  

Science Conference Proceedings (OSTI)

The step-mountain eta model has shown a surprising skill in forecasting severe storms. Much of the credit for this should be given to the Betts and Miller (hereafter referred to as BM) convection scheme and the Mellor-Yamada (hereafter referred ...

Zaviša I. Janji?

1994-05-01T23:59:59.000Z

40

Mountain-eering University of Trento Spin off  

E-Print Network (OSTI)

Mountain-eering University of Trento Spin off www.mountain-eering.com Contacts Mountain-eering srl-mail: info@mountain-eering.com web site: www.mountain-eering.com Administrative Office via Giusti, 10 - 38122 Trento (Italy) #12;Company data Full legal name:· Mountain eering srl. Legal form of incorporation:· Ltd

Note: This page contains sample records for the topic "mountain development icimod" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Laurel Mountain | Open Energy Information  

Open Energy Info (EERE)

Mountain Mountain Jump to: navigation, search Name Laurel Mountain Facility Laurel Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AES Corp. Developer AES Corp. Energy Purchaser Merchant Location Belington WV Coordinates 39.00702933°, -79.88500357° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.00702933,"lon":-79.88500357,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

42

Spruce Mountain | Open Energy Information  

Open Energy Info (EERE)

Mountain Mountain Jump to: navigation, search Name Spruce Mountain Facility Spruce Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Patriot Renewables Developer Patriot Renewables Energy Purchaser Energy New England Location Bryant Pond ME Coordinates 44.43443869°, -70.55286884° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.43443869,"lon":-70.55286884,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

43

Finding of No Significant Impact and Final Environmental Assessment of Three Site Development Projects at the National Renewable Energy Laboratory South Table Mountain Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF NO SIGNIFICANT IMPACT AND FINDING OF NO SIGNIFICANT IMPACT AND FINAL ENVIRONMENTAL ASSESSMENT OF THREE SITE DEVELOPMENT PROJECTS AT THE NATIONAL RENEWABLE ENERGY LABORATORY SOUTH TABLE MOUNTAIN SITE July 2007 U . S . D e p a r t m e n t o f E n e r g y G o l d e n F i e l d O f f i c e N a t i o n a l R e n e w a b l e E n e r g y L a b o r a t o r y 1 6 1 7 C o l e B o u l e v a r d G o l d e n , C o l o r a d o 8 0 4 0 1 DOE/EA-1573 Final Environmental Assessment of Three Site Development Projects at the National Renewable Energy Laboratory South Table Mountain Site i TABLE OF CONTENTS ACRONYMS AND ABBREVIATIONS ....................................................................................................iv EXECUTIVE SUMMARY ..........................................................................................................................

44

POTENTAIL HABITAT MOUNTAIN PLOVERS  

E-Print Network (OSTI)

in the Yucca Mountain region has been studied using two approaches: a geological approach that examines Yucca Mountain [Andrews et al., 2007]. In this paper we report on an exercise to verify the computer. These benchmarks targeted the particular case of earthquake rupture on a normal fault at Yucca Mountain, Nevada

45

Mountain View Grand | Open Energy Information  

Open Energy Info (EERE)

Grand Grand Jump to: navigation, search Name Mountain View Grand Facility Mountain View Grand Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Mountain View Grand Developer Sustainable Energy Developments Energy Purchaser Mountain View Grand Location Mountain View Grand Resort & Spa NH Coordinates 44.397987°, -71.590306° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.397987,"lon":-71.590306,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

46

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 1  

Science Conference Proceedings (OSTI)

The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in acordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and eveloping a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing prinicples, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed. 880 refs., 130 figs., 25 tabs.

NONE

1988-01-01T23:59:59.000Z

47

Final Systems Development Report for the Clark County Socioeconomic Impact Assessment of the Proposed High-Level Nuclear Waste Repository at Yucca Mountain, NV  

SciTech Connect

The Systems Development Report represents the third major step in the Clark County Socioeconomic Impact Assessment of the Proposed High-Level Nuclear Waste Repository at Yucca Mound Nevada. The first of these steps was to forge a Research Design that would serve as a guide for the overall research process. The second step was the construction of the Base Case, the purpose of which was to describe existing conditions in Clark County in the specified analytic areas of Economic-Demographic/Fiscal, Emergency Planning and Management, Transportation and Sociocultural analysis. The base case description will serve as a basis for assessing changes in these topic areas that might result from the Yucca Mountain project. These changes will be assessed by analyzing conditions with and without repository development in the county. Prior to performing such assessments, however, the snapshot type of data found in the base case must be operationalized or systematized to allow for more dynamic data utilization. In other words, a data system that can be used to analyze the consequences of the introduction of different variables (or variable values) in the Clark County context must be constructed. Such a system must be capable of being updated through subsequent data collection and monitoring efforts to both provide a rolling base case and supply information necessary to construct trend analyses. For example, during the Impact Assessment phase of the study process, the without repository analysis is accomplished by analyzing growth for the county given existing conditions and likely trends. These data are then compared to the with Yucca Mountain project conditions anticipated for the county. Similarly, once the emergency planning management and response needs associated with the repository are described, these needs will be juxtaposed against existing (and various future) capacity(ies) in order to determine the nature and magnitude of impacts in this analytic area. Analogous tasks will be performed for the other analytic areas detailed in the Base Case and outlined below.

NONE

1992-06-18T23:59:59.000Z

48

Information Request Yucca Mountain Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2008 , 2008 TO: Sue Tierney, Phil Niedzielski-Eichner, Skila Harris FROM: Chris Kouts SUBJECT: Information Request As requested, enclosed is the additional information you requested last week regarding use of engineered barriers. Please let me know if you need additional information or have any questions. A,4- -/0 7 The Suitability of the Yucca Mountain Site and the Issue of Natural Barriers as the Principal Barriers for Demonstrating Safety This paper addresses two issues that are frequently raised concerning the suitability of the Yucca Mountain site for development as a repository. The first issue is that the Yucca Mountain site is technically unsound and that an engineered barrier system is required because the site is not capable of protecting public health and safety. The second issue is

49

Cemex Black Mountain Quarry | Open Energy Information  

Open Energy Info (EERE)

Mountain Quarry Mountain Quarry Jump to: navigation, search Name Cemex Black Mountain Quarry Facility Cemex Black Mountain Quarry Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Foundation Windpower Developer Foundation Windpower Energy Purchaser Cemex Black Mountain Quarry Location Apple Valley CA Coordinates 34.622028°, -117.111833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.622028,"lon":-117.111833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

50

Kibby Mountain II | Open Energy Information  

Open Energy Info (EERE)

Kibby Mountain II Kibby Mountain II Jump to: navigation, search Name Kibby Mountain II Facility Kibby Mountain II Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under Construction Owner TransCanada Power Mktg Ltd Developer TransCanada Power Mktg Ltd Location Kibby Mountain ME Coordinates 45.354154°, -70.65412° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.354154,"lon":-70.65412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

51

Yucca Mountain Archival Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain Archival Documents Yucca Mountain Archival Documents Yucca Mountain Archival Documents Yucca Mountain Archival Documents From the Former Office of Civilian Radioactive Waste Management President Obama and the Department of Energy are working to restart America's nuclear industry to help meet our energy and climate challenges and create thousands of new jobs. The Administration is fully committed to ensuring that long-term storage obligations for nuclear waste are met. The President has made clear that Yucca Mountain is not an option for waste storage. The Blue Ribbon Commission on America's Nuclear Future, led by Congressman Lee Hamilton and General Brent Scowcroft, has conducted a comprehensive review of policies for managing the back end of the nuclear fuel cycle, and has offered recommendations for developing a safe,

52

White Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

White Mountains Geothermal Area White Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: White Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Hampshire Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

53

Yucca Mountain Exploratory Studies Facilities: Construction status; Extended summary  

SciTech Connect

This paper discusses the progress to date on the construction planning development of the Yucca Mountain Site Characterization Project Exploratory Studies Facilities (ESF).

Allan, J. [Morrison-Knudsen Corp. (United States); Leonard, T.M. [Reynolds Electrical and Engineering Co., Inc., Las Vegas, NV (United States)

1992-09-01T23:59:59.000Z

54

Pages that link to "Aeromagnetic Survey At Blue Mountain Area...  

Open Energy Info (EERE)

wikiSpecial:WhatLinksHereAeromagneticSurveyAtBlueMountainArea(FairbankEngineering,2004)" Special pages About us Disclaimers Energy blogs Developer services...

55

Pages that link to "Aeromagnetic Survey At Blue Mountain Area...  

Open Energy Info (EERE)

wikiSpecial:WhatLinksHereAeromagneticSurveyAtBlueMountainArea(FairbankEngineering,2003)" Special pages About us Disclaimers Energy blogs Developer services...

56

GreenMountain Engineering LLC | Open Energy Information  

Open Energy Info (EERE)

GreenMountain Engineering LLC GreenMountain Engineering LLC Jump to: navigation, search Name GreenMountain Engineering, LLC Place San Francisco, California Zip 94107 Product Consulting firm specializing in clean technology product design and manufacturing development. References GreenMountain Engineering, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. GreenMountain Engineering, LLC is a company located in San Francisco, California . References ↑ "GreenMountain Engineering, LLC" Retrieved from "http://en.openei.org/w/index.php?title=GreenMountain_Engineering_LLC&oldid=346101" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

57

Mountainous | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Mountainous Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Mountainous Dictionary.png Mountainous: A geothermal areal located in terrain characterized by rugged and steep topography with high relief Other definitions:Wikipedia Reegle Topographic Features List of topographic features commonly encountered in geothermal resource areas: Mountainous Horst and Graben Shield Volcano Flat Lava Dome Stratovolcano Cinder Cone Caldera Depression Resurgent Dome Complex The interior of Iceland holds a vast expanse of mountainous geothermal areas, one of the more famous areas is landmannalaugar, Iceland. Photo by

58

Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 5, Part B: Chapter 8, Sections 8.3.1.5 through 8.3.1.17  

Science Conference Proceedings (OSTI)

This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the SOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules.

NONE

1988-12-01T23:59:59.000Z

59

Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 8, Part B: Chapter 8, Sections 8.4 through 8.7; Glossary and Acronyms  

SciTech Connect

This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Section 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 88 figs., 42 tabs.

NONE

1988-12-01T23:59:59.000Z

60

Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 6, Part B: Chapter 8, Sections 8.3.2 through 8.3.4.4  

Science Conference Proceedings (OSTI)

This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 35 figs., 70 tabs.

NONE

1988-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "mountain development icimod" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Green Mountain Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Green Mountain Wind Farm Green Mountain Wind Farm Facility Green Mountain Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer National Wind Power Energy Purchaser Green Mountain Energy Company Location Somerset County PA Coordinates 39.850753°, -79.066629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.850753,"lon":-79.066629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

62

Pillar Mountain II | Open Energy Information  

Open Energy Info (EERE)

Pillar Mountain II Pillar Mountain II Jump to: navigation, search Name Pillar Mountain II Facility Pillar Mountain II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Kodiak Electric Assoc. Developer Kodiak Electric Assoc. Energy Purchaser Kodiak Electric Assoc. Location Kodiak AK Coordinates 57.78667872°, -152.4434781° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.78667872,"lon":-152.4434781,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

63

Mountain Home Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Mountain Home Wind Farm Mountain Home Wind Farm Jump to: navigation, search Name Mountain Home Wind Farm Facility Mountain Home Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer John Deere Wind Energy Purchaser Idaho Power Location Elmore County ID Coordinates 43.268356°, -116.167939° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.268356,"lon":-116.167939,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

64

Mountaineer Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Mountaineer Wind Energy Center Mountaineer Wind Energy Center Jump to: navigation, search Name Mountaineer Wind Energy Center Facility Mountaineer Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Atlantic Renewable Energy Energy Purchaser Exelon Location Thomas WV Coordinates 39.163081°, -79.554516° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.163081,"lon":-79.554516,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

65

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area (Redirected from Socorro Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

66

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area (Redirected from Jemez Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

67

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act  

SciTech Connect

Chapter six describes the basis for facility design, the completed facility conceptual design, the completed analytical work relating to the resolution of design issues, and future design-related work. The basis for design and the conceptual design information presented in this chapter meet the requirements of the Nuclear Waste Policy Act of 1982, for a conceptual repository design that takes into account site-specific requirements. This information is presented to permit a critical evaluation of planned site characterization activities. Chapter seven describes waste package components, emplacement environment, design, and status of research and development that support the Nevada Nuclear Waste Storage Investigation (NNWSI) Project. The site characterization plan (SCP) discussion of waste package components is contained entirely within this chapter. The discussion of emplacement environment in this chapter is limited to considerations of the environment that influence, or which may influence, if perturbed, the waste packages and their performance (particularly hydrogeology, geochemistry, and borehole stability). The basis for conceptual waste package design as well as a description of the design is included in this chapter. The complete design will be reported in the advanced conceptual design (ACD) report and is not duplicated in the SCP. 367 refs., 173 figs., 68 tabs.

NONE

1988-01-01T23:59:59.000Z

68

Mountain Air | Open Energy Information  

Open Energy Info (EERE)

Air Air Jump to: navigation, search Name Mountain Air Facility Mountain Air Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Terna Energy Developer Terna Energy Energy Purchaser Idaho Power Location Hammett ID Coordinates 42.98719519°, -115.3985024° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.98719519,"lon":-115.3985024,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

69

February 14, 2002: Yucca Mountain | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

14, 2002: Yucca Mountain 14, 2002: Yucca Mountain February 14, 2002: Yucca Mountain February 14, 2002: Yucca Mountain February 14, 2002 Secretary Abraham formally recommends to President Bush that the Yucca Mountain site in Nevada be developed as the nation's first long-term geologic repository for high-level radioactive waste. "I have considered whether sound science supports the determination that the Yucca Mountain site is scientifically and technically suitable for the development of a repository," the Secretary informs the President. "I am convinced that it does. The results of this extensive investigation and the external technical reviews of this body of scientific work give me confidence for the conclusion, based on sound scientific principles, that a repository at

70

Mountain | OpenEI  

Open Energy Info (EERE)

Mountain Mountain Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 28, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA Mountain Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - Mountain- Reference Case (xls, 74.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

71

Observations of Mountain Wave–Induced Precipitation Shadows over Northeast Pennsylvania  

Science Conference Proceedings (OSTI)

WSR-88D depictions of two mountain wave–induced precipitation shadows observed near the Wyoming Valley of northeast Pennsylvania are presented. These mountain waves developed in similar synoptic environments that featured a strong south to ...

Raymond H. Brady; Jeff S. Waldstreicher

2001-06-01T23:59:59.000Z

72

Yucca Mountain | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain Yucca Mountain Yucca Mountain Addthis Fuel assembly for production of nuclear power 1 of 13 Fuel assembly for production of nuclear power Nuclear fuel pellets 2 of 13 Nuclear fuel pellets Aerial view of north end of the Yucca Mountain crest in February 1993 3 of 13 Aerial view of north end of the Yucca Mountain crest in February 1993 View of the first curve in the main drift of the Exploratory Studies Facility in October 1995 4 of 13 View of the first curve in the main drift of the Exploratory Studies Facility in October 1995 Aerial view of the crest of Yucca Mountain 5 of 13 Aerial view of the crest of Yucca Mountain Location of Yucca Mountain, Nevada 6 of 13 Location of Yucca Mountain, Nevada A scientist uses ultra-violet light to study how fluids move through rock

73

A Theoretical Study of Mountain Barrier Jets over Sloping Valleys  

Science Conference Proceedings (OSTI)

A shallow-water model is developed to examine the dynamics of mountain-barrier jets over a mesoscale sloping valley between two mountain ridges. In this model, the cold air trapped in the valley is represented by a shallow-water layer that is ...

Qin Xu; Ming Liu; Douglas L. Westphal

2000-05-01T23:59:59.000Z

74

Livelihood Assets Atlas Mountainous Districts of NWFP (Pakistan)  

E-Print Network (OSTI)

Livelihood Assets Atlas Mountainous Districts of NWFP (Pakistan) April 2009 SDPISustainable Mountainous Districts of NWFP (Pakistan) Abid Qaiyum Suleri, Babar Shahbaz, Sahab Haq Rana Nazir Mehmood and Gulbaz Ali Khan Sustainable Development Policy Institute 20 Hill Road, F-6/3, Islamabad - Pakistan www

Richner, Heinz

75

Augusta Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Augusta Mountains Geothermal Area Augusta Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Augusta Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

76

San Antonio Mountain Experiment (SAMEX)  

Science Conference Proceedings (OSTI)

The San Antonio Mountain Experiment (SAMEX) involves a 3325 m. conically shaped, isolated mountain in north-central New Mexico where hourly observations of temperature, relative humidity, wind speed, wind direction, and precipitation are being ...

Morris H. McCutchan; Douglas G. Fox; R. William Furman

1982-10-01T23:59:59.000Z

77

Moving Beyond the Yucca Mountain  

E-Print Network (OSTI)

of Energy in characterizing a site at Yucca Mountain, Nevada, as a possible location for a permanent to a decision by the Secretary of Energycurrently scheduled for 2001on whether to recommend the Yucca Mountain a clear description of how a Yucca Mountain repository would perform over thousands of years and how

78

Chocolate Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chocolate Mountains Geothermal Area Chocolate Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chocolate Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Map: Chocolate Mountains Geothermal Area Chocolate Mountains Geothermal Area Location Map Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: Phase II - Resource Exploration and Confirmation Coordinates: 33.352°, -115.353° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.352,"lon":-115.353,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

79

List of Yucca Mountain Archival Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

List of Yucca Mountain Archival Documents List of Yucca Mountain Archival Documents List of Yucca Mountain Archival Documents March 10, 2004 EIS-0250-SA-01: Supplement Analysis Geologic Repository for the Disposal of Spent Nuclear and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada March 1, 2004 Nuclear Waste Policy Act Document on the Nuclear Waste Policy Act of 1982 An Act to provide for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel, to establish a program of research, development, and demonstration regarding the disposal of high-level radioactive waste and spent nuclear fuel, and for other purposes. April 1, 2003 Final Report of theIgneous Consequences Peer Review Panel A report for the DOE on the Yucca Mountain Project.

80

Bald Mountain Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Bald Mountain Geothermal Project Bald Mountain Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Bald Mountain Geothermal Project Project Location Information Coordinates 40.365833333333°, -120.2425° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.365833333333,"lon":-120.2425,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "mountain development icimod" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Florida Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Florida Mountains Geothermal Area Florida Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Florida Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

82

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

83

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

84

Weapons test seismic investigations at Yucca Mountain  

Science Conference Proceedings (OSTI)

Yucca Mountain, located on and adjacent to the Nevada Test Site, is being characterized as part of an ongoing effort to identify a potential high-level nuclear waste repository. This site will be subjected to seismic ground motions induced by underground nuclear explosions. A knowledge of expected ground motion levels from these tests will enable the designers to provide for the necessary structural support in the designs of the various components of the repository. The primary objective of the Weapons Test Seismic Investigation project is to develop a method to predict the ground motions expected at the repository site as a result of future weapons tests. This paper summarizes the data base presently assembled for the Yucca Mountain Project, characteristics of expected ground motions, and characterization of the two-dimensional seismic properties along paths between Yucca Mountain and the testing areas of the Nevada Test Site.

Phillips, J.S.; Shephard, L.E.; Walck, M.C.

1991-01-01T23:59:59.000Z

85

Modeling studies of mountain-scale radionuclide transport in the unsaturated zone at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Investigations at Yucca Mountain - The Potential Repositoryin the Unsaturated Zone, Yucca Mountain, Nevada, ResourcesIN THE UNSATURATED ZONE AT YUCCA MOUNTAIN, NEVADA George J.

Moridis, George J.; Seol, Yongkoo; Wu, Yu-Shu

2003-01-01T23:59:59.000Z

86

Evolution of the unsaturated zone testing at Yucca Mountain  

E-Print Network (OSTI)

INTO DRIFTS AT YUCCA MOUNTAIN." JOURNAL OF CONTAMINANTFRACTURES AT YUCCA MOUNTAIN." JOURNAL OF CONTAMINANTPneumatic Testing at Yucca Mountain." International Journal

Wang, J.S.Y.; Bodvarsson, G.S.

2002-01-01T23:59:59.000Z

87

BLM Battle Mountain District Office | Open Energy Information  

Open Energy Info (EERE)

Battle Mountain District Office Jump to: navigation, search Logo: BLM Battle Mountain District Office Name BLM Battle Mountain District Office Short Name Battle Mountain Parent...

88

Rocky Mountain Customers  

NLE Websites -- All DOE Office Websites (Extended Search)

RM Home About RM Contact RM Customers Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates Rocky Mountain Region's Customer list Use the filters above the customer list to refine your search. Click the "Clear" to reset the list. Western's full list of customers is available on the Western's Customer Web page. Customer Name Customer Type State Region Project Arapahoe and Roosevelt National Forests Federal Agencies CO RM LAP Arkansas River Power Authority Municipalities CO RM/CRSP LAP/SLIP Burlington, City of Municipalities CO RM LAP Cheyenne Mountain Air Force Base Federal Agencies CO RM LAP Clay Center, City of Municipalities KS RM LAP Denver Water Board Municipalities CO RM LAP

89

Development of the utilization of combustible gas produced in existing sanitary landfills: effects of corrosion at the Mountain View, CA Landfill Gas-Recovery Plant  

DOE Green Energy (OSTI)

Corrosion of equipment has occurred at the Mountain View, California Landfill Gas Recovery Plant. Corrosion is most severe on compressor valve seats and cages, tubes in the first and second stages of the interstage gas cooler, and first and second stage piping and liquid separators. Corrosion occurs because the raw landfill gas contains water, carbon dioxide, and oxygen. Some corrosion may also result from trace concentrations of organic acids present in the landfill gas. Corrosion of the third stage compressor, cooler, and piping does not occur because the gas is dehydrated immediately prior to the third stage. Controlling corrosion is necessary to maintain the mechanical integrity of the plant and to keep the cost of the gas competitive with natural gas. Attempts to reduce corrosion rates by injecting a chemical inhibitor have proved only partially successful. Recommendations for dealing with corrosion include earlier dehydration of the gas, selection of special alloys in critical locations, chemical inhibition, and regular plant inspections.

Not Available

1982-10-01T23:59:59.000Z

90

Mesoscale Modeling for Mountain Weather Forecasting Over the Himalayas  

Science Conference Proceedings (OSTI)

Severe weather has a more calamitous effect in the mountainous region-because the terrain is complex and the economy is poorly developed and fragile. Such weather systems occurring on a small spatiotemporal scale invite application of models with ...

Someshwar Das; S. V. Singh; E. N. Rajagopal; Robert Gall

2003-09-01T23:59:59.000Z

91

Observations of Liquid Water in Orographic Clouds over Elk Mountain  

Science Conference Proceedings (OSTI)

The relatively simple orographic clouds forming in winter over Elk Mountain, Wyoming provided useful opportunities for field studies of cloud formation and of ice crystal development. In this paper, the observations of cloud droplet populations ...

Marcia K. Politovich; Gabor Vali

1983-05-01T23:59:59.000Z

92

Topography and Radiation Exchange of a Mountainous Watershed  

Science Conference Proceedings (OSTI)

This report deals with the radiation exchange of a complex terrain. A relatively simple network for computing topographic parameters global radiation, and net radiation of a mountainous terrain was developed and applied to a forested Appalachian ...

Hailiang Fu; Stanislaw J. Tajchman; James N. Kochenderfer

1995-04-01T23:59:59.000Z

93

The Dynamics of Mountain-Wave-Induced Rotors  

Science Conference Proceedings (OSTI)

The development of rotor flow associated with mountain lee waves is investigated through a series of high-resolution simulations with the nonhydrostatic Coupled Ocean–Atmospheric Mesoscale Prediction System (COAMPS) model using free-slip and no-...

James D. Doyle; Dale R. Durran

2002-01-01T23:59:59.000Z

94

Yucca Mountain Total System Performance Assessment, Phase 3  

Science Conference Proceedings (OSTI)

This report discusses recent developments of EPRI's Total System Performance Assessment (TSPA) model applied to the candidate spent fuel and high-level radioactive waste (HLW) disposal site at Yucca Mountain, Nevada. Building on earlier work where a probability-based methodology was developed, the report details the recent modifications to the EPRI TSPA code, IMARC, applied to Yucca Mountain. The report also includes performance analyses using IMARC, identifies key technical components important to Yucca...

1996-12-02T23:59:59.000Z

95

Delaware Mountain Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Delaware Mountain Wind Farm Delaware Mountain Wind Farm Jump to: navigation, search Name Delaware Mountain Wind Farm Facility Delaware Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer American National Wind Power/Orion Energy Energy Purchaser Lower Colorado River Authority Location Culberson County TX Coordinates 31.670717°, -104.739534° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.670717,"lon":-104.739534,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

96

Hueco Mountain Wind Ranch | Open Energy Information  

Open Energy Info (EERE)

Hueco Mountain Wind Ranch Hueco Mountain Wind Ranch Jump to: navigation, search Name Hueco Mountain Wind Ranch Facility Hueco Mountain Wind Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner El Paso Electric Co Developer Cielo Wind Power Energy Purchaser El Paso Electric Co Location El Paso County TX Coordinates 31.6966°, -106.295° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.6966,"lon":-106.295,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

97

Microsoft Word - BlueMountainGeotherm_FONSI_FinalDrft v3 Clean...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF NO SIGNIFICANT IMPACT DEPARTMENT OF ENERGY LOAN GUARANTEE FOR NEVADA GEOTHERMAL POWER'S BLUE MOUNTAIN GEOTHERMAL DEVELOPMENT PROJECT IN HUMBOLDT AND PERSHING...

98

BRMF Georgia Mountain Biofuels | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon BRMF Georgia Mountain Biofuels Jump to: navigation, search Name BRMFGeorgia Mountain Biofuels Place Clayton,...

99

Mountain Wind | Open Energy Information  

Open Energy Info (EERE)

Mountain Wind Mountain Wind Jump to: navigation, search Mountain Wind is a wind farm located in Uinta County, Wyoming. It consists of 67 turbines and has a total capacity of 140.7 MW. It is owned by Edison Mission Group.[1] Based on assertions that the site is near Fort Bridger, its approximate coordinates are 41.318716°, -110.386418°.[2] References ↑ http://www.wsgs.uwyo.edu/Topics/EnergyResources/wind.aspx ↑ http://www.res-americas.com/wind-farms/operational-/mountain-wind-i-wind-farm.aspx Retrieved from "http://en.openei.org/w/index.php?title=Mountain_Wind&oldid=132229" Category: Wind Farms What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

100

Biosphere Modeling and Dose Assessment for Yucca Mountain  

Science Conference Proceedings (OSTI)

This report develops a biosphere model appropriate for use in calculating doses to hypothetical individuals living in the far future in the vicinity of Yucca Mountain, Nevada. Doses are assumed to arise from potential releases from a spent fuel and high-level radioactive waste (HLW) disposal facility located beneath Yucca Mountain. The model provides guidance on approaches to dealing with the biosphere appropriate for site suitability and licensing assessments.

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "mountain development icimod" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Back The Pico Mountain  

NLE Websites -- All DOE Office Websites (Extended Search)

Photos Photos *Pubs summary *Status *Inside view *Go Back The Pico Mountain free tropospheric station Richard Honrath, Michigan Tech (reh@mtu.edu) Paulo Fialho, University of the Azores (fialho.paulo@gmail.com) Detlev Helmig, University of Colorado Gracioso Pico *Photos *Pubs summary *Status *Inside view *Go Back View from sea level; Station height 2225 m Winter Station is usually above the MBL [Kleissl et al., 2007] *Photos *Pubs summary *Status *Inside view *Go Back Ideal location to sample impacts on the remote atmosphere -160 -140 -120 -100 -80 -60 -40 -20 0 20 0 10 20 30 40 50 60 70 80 90 Note haze layer from Quebec wildfires * Dominant transport patterns bring - Aged North American anthropogenic emissions. - Aged biomass burning emissions from boreal North America and Siberia. - Tropical North Atlantic air. - (African, European flow). * Note haze layer from Quebec wildfires *Photos

102

Iron Mountain Electromagnetic Results  

SciTech Connect

Iron Mountain Mine is located seventeen miles northwest of Redding, CA. After the completion of mining in early 1960s, the mine workings have been exposed to environmental elements which have resulted in degradation in water quality in the surrounding water sheds. In 1985, the EPA plugged ore stoops in many of the accessible mine drifts in an attempt to restrict water flow through the mine workings. During this process little data was gathered on the orientation of the stoops and construction of the plugs. During the last 25 years, plugs have begun to deteriorate and allow acidic waters from the upper workings to flow out of the mine. A team from Idaho National Laboratory (INL) performed geophysical surveys on a single mine drift and 3 concrete plugs. The project goal was to evaluate several geophysical methods to determine competence of the concrete plugs and orientation of the stopes.

Gail Heath

2012-07-01T23:59:59.000Z

103

MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM)MODELS  

SciTech Connect

This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used to support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrologic properties, flow and transport. The mountain-scale THM model addresses changes in permeability due to mechanical and thermal disturbances in stratigraphic units above and below the repository host rock. The THM model focuses on evaluating the changes in UZ flow fields arising out of thermal stress and rock deformation during and after the thermal period (the period during which temperatures in the mountain are significantly higher than ambient temperatures).

Y.S. Wu

2005-08-24T23:59:59.000Z

104

Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain,  

Open Energy Info (EERE)

Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain, Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain, Humboldt County, Nevada Abstract Shallow exploration drilling on the west flank of Blue Mountain discovered sub economic gold mineralization and a spatially associated active geothermal system. The gold mineralization is an unusual example of an acid sulfate type epithermal system developed in pre Tertiary sedimentary host rocks. The geothermal system is largely unexplored but is unusual in that surface manifestation s typically associated with active geothermal system are not present. Authors Andrew J. Parr and Timothy J. Percival

105

Technical Report Confirms Reliability of Yucca Mountain Technical Work |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Report Confirms Reliability of Yucca Mountain Technical Technical Report Confirms Reliability of Yucca Mountain Technical Work Technical Report Confirms Reliability of Yucca Mountain Technical Work February 17, 2006 - 11:59am Addthis WASHINGTON, DC - The Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM) today released a report confirming the technical soundness of infiltration modeling work performed by U.S. Geological Survey (USGS) employees. "The report makes clear that the technical basis developed by the USGS has a strong conceptual foundation and is corroborated by independently-derived scientific conclusions, and provides a solid underpinning for the 2002 site recommendation," said OCRWM's Acting Director Paul Golan. "We are committed to opening Yucca Mountain based only on sound science. The work

106

ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA Energy Efficiency and Conservation Block Grant Program Location: Tribe ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA ND American Recovery and Reinvestment Act: Proposed Action or Project Description The Turtle Mountain Band of Chippewa Indians of North Dakota propose to 1) explore the potential for wind energy development on the Reservation by soliciting expertise from an engineering company to determine the best option for tapping wind energy on the reservation for its public buildings and seek legal expertise to study legal barriers that may exist; 2) conduct energy audits and a feasibility study to determine if several sizeable public buildings have the potential to be sites for either district heating or a

107

Maine Mountain Power | Open Energy Information  

Open Energy Info (EERE)

Maine Mountain Power Maine Mountain Power Place Yarmouth, Maine Zip 4096 Sector Wind energy Product Wind farm development company focused on projects in Maine. It is a subsidiary of Endless Energy Corporation. Coordinates 41.663318°, -70.198987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.663318,"lon":-70.198987,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

108

mountain region | OpenEI  

Open Energy Info (EERE)

mountain region mountain region Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 8, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption mountain region Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - Mountain- Reference Case (xls, 297.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

109

Flow Acceleration and Mountain Drag*  

Science Conference Proceedings (OSTI)

Dynamic explanations of mountain drag usually invoke viscous effects and/or wave momentum flux by either Rossby or internal gravity waves. This paper explores an alternative mechanism in terms of the unsteadiness of the incident flow. The ...

Peter R. Bannon

1985-12-01T23:59:59.000Z

110

Holy Mother of Chiri Mountain: A Female Mountain Spirit in Korea  

E-Print Network (OSTI)

Female Mountain Spirit in Korea by Maya Stiller UCLA Centera Female Mountain Spirit in Korea by Maya Stiller I n hisfemale mountain spirits in Korea, James Grayson argues that

Stiller, Maya

2011-01-01T23:59:59.000Z

111

Seepage into drifts in unsaturated fractured rock at Yucca Mountain  

E-Print Network (OSTI)

Fractured Rock at Yucca Mountain Jens Birkholzer, Guomin Lrepository site at Yucca Mountain, Nevada, as it is locatedclimate conditions at Yucca Mountain. The numerical study is

Birkholzer, Jens; Li, Guomin; Tsang, Chin-Fu; Tsang, Yvonne

1998-01-01T23:59:59.000Z

112

Information Request Yucca Mountain Site | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information Request Yucca Mountain Site Information Request Yucca Mountain Site The Suitability of the Yucca Mountain Site and the Issue of Natural Barriers as the Principal...

113

2013 Annual Planning Summary for the Rocky Mountain Oilfield...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Oilfield Testing Center 2013 Annual Planning Summary for the Rocky Mountain Oilfield Testing Center 2013 Annual Planning Summary for the Rocky Mountain Oilfield...

114

A mountain-scale model for characterizing unsaturated flow and transport in fractured tuffs of Yucca Mountain  

E-Print Network (OSTI)

to Fault Zones at Yucca Mountain, Nevada, International2003c. Calibration of Yucca Mountain Unsaturated Zone FlowUnsaturated Zone, Yucca Mountain, Nevada, Water-Resources

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.

2003-01-01T23:59:59.000Z

115

Pine Mountain Builders | Open Energy Information  

Open Energy Info (EERE)

Pine Mountain Builders Pine Mountain Builders Place Pine Mountain, GA Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Pine Mountain Builders is a company located in Pine Mountain, GA. References Retrieved from "http://en.openei.org/w/index.php?title=Pine_Mountain_Builders&oldid=379448" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 1863719699

116

Testing to evaluate the suitability of waste forms developed for electrometallurgically treated spent sodium-bonded nuclear fuel for disposal in the Yucca Mountain reporsitory.  

Science Conference Proceedings (OSTI)

The results of laboratory testing and modeling activities conducted to support the development of waste forms to immobilize wastes generated during the electrometallurgical treatment of spent sodium-bonded nuclear fuel and their qualification for disposal in the federal high-level radioactive waste repository are summarized in this report. Tests and analyses were conducted to address issues related to the chemical, physical, and radiological properties of the waste forms relevant to qualification. These include the effects of composition and thermal treatments on the phase stability, radiation effects, and methods for monitoring product consistency. Other tests were conducted to characterize the degradation and radionuclide release behaviors of the ceramic waste form (CWF) used to immobilize waste salt and the metallic waste form (MWF) used to immobilize metallic wastes and to develop models for calculating the release of radionuclides over long times under repository-relevant conditions. Most radionuclides are contained in the binder glass phase of the CWF and in the intermetallic phase of the MWF. The release of radionuclides from the CWF is controlled by the dissolution rate of the binder glass, which can be tracked using the same degradation model that is used for high-level radioactive waste (HLW) glass. Model parameters measured for the aqueous dissolution of the binder glass are used to model the release of radionuclides from a CWF under all water-contact conditions. The release of radionuclides from the MWF is element-specific, but the release of U occurs the fastest under most test conditions. The fastest released constituent was used to represent all radionuclides in model development. An empirical aqueous degradation model was developed to describe the dependence of the radionuclide release rate from a MWF on time, pH, temperature, and the Cl{sup -} concentration. The models for radionuclide release from the CWF and MWF are both bounded by the HLW glass degradation model developed for use in repository licensing, and HLW glass can be used as a surrogate for both CWF and MWF in performance assessment calculations. Test results indicate that the radionuclide release from CWF and MWF is adequately described by other relevant performance assessment models, such as the models for the solution chemistries in breached waste packages, dissolved concentration limits, and the formation of radionuclide-bearing colloids.

Ebert, W. E.

2006-01-31T23:59:59.000Z

117

Review of Yucca Mountain Disposal Criticality Studies  

SciTech Connect

The U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management, submitted a license application for construction authorization of a deep geologic repository at Yucca Mountain, Nevada, in June of 2008. The license application is currently under review by the U.S. Nuclear Regulatory Commission. However,on March 3, 2010 the DOE filed a motion requesting withdrawal of the license application. With the withdrawal request and the development of the Blue Ribbon Commission to seek alternative strategies for disposing of spent fuel, the status of the proposed repository at Yucca Mountain is uncertain. What is certain is that spent nuclear fuel (SNF) will continue to be generated and some long-lived components of the SNF will eventually need a disposition path(s). Strategies for the back end of the fuel cycle will continue to be developed and need to include the insights from the experience gained during the development of the Yucca Mountain license application. Detailed studies were performed and considerable progress was made in many key areas in terms of increased understanding of relevant phenomena and issues regarding geologic disposal of SNF. This paper reviews selected technical studies performed in support of the disposal criticality analysis licensing basis and the use of burnup credit. Topics include assembly misload analysis, isotopic and criticality validation, commercial reactor critical analyses, loading curves, alternative waste package and criticality control studies, radial burnup data and effects, and implementation of a conservative application model in the criticality probabilistic evaluation as well as other information that is applicable to operations regarding spent fuel outside the reactor. This paper summarizes the work and significant accomplishments in these areas and provides a resource for future, related activities.

Scaglione, John M [ORNL; Wagner, John C [ORNL

2011-01-01T23:59:59.000Z

118

Timber Mountain Precipitation Monitoring Station  

SciTech Connect

A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in fiscal year 2011.

Lyles Brad,McCurdy Greg,Chapman Jenny,Miller Julianne

2012-01-01T23:59:59.000Z

119

Frozen Ground 9 PERMAFROST HAZARDS IN MOUNTAINS  

E-Print Network (OSTI)

of potentially hazardous processes in regions with mountain permafrost. Buildings and utilities may be dam- aged for the maintenance or construction of high- mountain infrastructure. Increasing rockfall activity and a number

Kääb, Andreas

120

Rime Mushrooms on Mountains: Description, Formation, and Impacts on Mountaineering  

Science Conference Proceedings (OSTI)

Rime mushrooms, commonly called ice mushrooms, are large bulbous or mushroom-shaped accretions of hard rime that build up on the upwind side of mountain summits and ridges and on windward rock faces. This paper reviews the characteristics of rime ...

C. David Whiteman; Rolando Garibotti

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "mountain development icimod" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Armenia Mountain Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

Armenia Mountain Wind Energy Project Armenia Mountain Wind Energy Project Jump to: navigation, search Name Armenia Mountain Wind Energy Project Facility Armenia Mountain Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AES Armenia Mountain Wind Developer AES Energy Purchaser Old Dominion Electric Location Tioga and Bradford Counties PA Coordinates 41.763272°, -76.842613° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.763272,"lon":-76.842613,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

122

Geothermal Literature Review At White Mountains Area (Goff & Decker, 1983)  

Open Energy Info (EERE)

White Mountains Area (Goff & Decker, 1983) White Mountains Area (Goff & Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At White Mountains Area (Goff & Decker, 1983) Exploration Activity Details Location White Mountains Area Exploration Technique Geothermal Literature Review Activity Date Usefulness useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems in which promising EGS sites occur. References Fraser Goff, Edward R. Decker (1983) Candidate Sites For Future Hot Dry Rock Development In The United States Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_White_Mountains_Area_(Goff_%26_Decker,_1983)&oldid=510828

123

Modeling-Computer Simulations At White Mountains Area (Goff & Decker, 1983)  

Open Energy Info (EERE)

White Mountains Area (Goff & Decker, 1983) White Mountains Area (Goff & Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At White Mountains Area (Goff & Decker, 1983) Exploration Activity Details Location White Mountains Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems in which promising EGS sites occur. References Fraser Goff, Edward R. Decker (1983) Candidate Sites For Future Hot Dry Rock Development In The United States Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_White_Mountains_Area_(Goff_%26_Decker,_1983)&oldid=387355"

124

Buffalo Mountain Wind Energy Center I | Open Energy Information  

Open Energy Info (EERE)

Buffalo Mountain Wind Energy Center I Buffalo Mountain Wind Energy Center I Facility Buffalo Mountain Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Tennessee Valley Authority Developer EnXco Energy Purchaser Tennessee Valley Authority Location Anderson County TN Coordinates 36.115822°, -84.333742° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.115822,"lon":-84.333742,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

125

Zuni Mountains Nm Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Zuni Mountains Nm Geothermal Area Zuni Mountains Nm Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Zuni Mountains Nm Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

126

Mountain Association for Community Economic Development - Energy...  

Open Energy Info (EERE)

is also financing available to pay for training, certification, travel and exams for installers of energy efficient and renewable energy systems. Commercial loans are made...

127

Mountain Association for Community Economic Development - Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Appliances & Electronics Manufacturing Design & Remodeling Windows, Doors, & Skylights...

128

Rocky Mountain carbonate spring deposit development.  

E-Print Network (OSTI)

??Relict Holocene carbonate spring deposits containing diverse biotic and abiotic depositional textures are present at Fall Creek cold sulphur springs, Alberta, Fairmont Hot Springs, British… (more)

Rainey, Dustin

2009-01-01T23:59:59.000Z

129

Mountain Association for Community Economic Development - How...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Commercial Lighting Lighting Insulation Water Heating Program Information Kentucky Program Type Utility...

130

Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data  

SciTech Connect

Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical r

Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

2007-06-25T23:59:59.000Z

131

Magma Dynamics at Yucca Mountain, Nevada  

Science Conference Proceedings (OSTI)

Small-volume basaltic volcanic activity at Yucca Mountain has been identified as one of the potential events that could lead to release of radioactive material from the U.S. Department of Energy (DOE) designated nuclear waste repository at Yucca Mountain. Release of material could occur indirectly as a result of magmatic dike intrusion into the repository (with no associated surface eruption) by changing groundwater flow paths, or as a result of an eruption (dike intrusion of the repository drifts, followed by surface eruption of contaminated ash) or volcanic ejection of material onto the Earth's surface and the redistribution of contaminated volcanic tephra. Either release method includes interaction between emplacement drifts and a magmatic dike or conduit, and natural (geologic) processes that might interrupt or halt igneous activity. This analysis provides summary information on two approaches to evaluate effects of disruption at the repository by basaltic igneous activity: (1) descriptions of the physical geometry of ascending basaltic dikes and their interaction with silicic host rocks similar in composition to the repository host rocks; and (2) a summary of calculations developed to quantify the response of emplacement drifts that have been flooded with magma and repressurized following blockage of an eruptive conduit. The purpose of these analyses is to explore the potential consequences that could occur during the full duration of an igneous event.

D. Krier

2005-08-29T23:59:59.000Z

132

Evaluation of the Proposed High-Level Radioactive Waste Repository at Yucca Mountain Using Total System Performance Assessment: Phase 6  

Science Conference Proceedings (OSTI)

A successful license application for the candidate spent-fuel and high-level waste repository at Yucca Mountain depends on a robust demonstration of long-term safety. This report presents EPRI's evaluation of, and makes a case for, the suitability of the Yucca Mountain repository using a Total System Performance Assessment (TSPA). The report discusses factors that make the Yucca Mountain repository system suitable for continued development and initiation of the licensing process. Information in this Phas...

2002-02-28T23:59:59.000Z

133

Conceptual evaluation of the potential role of fractures in unsaturated processes at Yucca Mountain  

E-Print Network (OSTI)

of Process Models, Yucca Mountain, Nevada. U.S. GeologicalUnsaturated Zone Model of Yucca Mountain, Nevada. J. Contam.Studies Facility, Yucca Mountain Project. Yucca Mountain,

Hinds, Jennifer J.; Bodvarsson, Gudmundur S.; Nieder-Westermann, Gerald H.

2002-01-01T23:59:59.000Z

134

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

ALLIED OIL & TOOL POWERJET SLOTTING TOOL ALLIED OIL & TOOL POWERJET SLOTTING TOOL JANUARY 10, 1996 FC9522 / 95DT3 ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS ALLIED OIL & TOOL POWERJET SLOTTING TOOL Prepared for: INDUSTRY PUBLICATION Prepared by: RALPH SCHULTE RMOTC Project Engineer January 11, 1996 551103/9522:jb CONTENTS Page Summary .......................................................................................................................2 Introduction.....................................................................................................................2 Description of Operations...................................................................................................3 Figure 1 ..........................................................................................................5

135

The hydrology of Yucca Mountain  

Science Conference Proceedings (OSTI)

Yucca Mountain, located in southern Nevada in the Mojave Desert, is being considered as a geologic repository for high-level radioactive waste. Although the site is arid, previous studies indicate net infiltration rates of 5-10 mm yr(-1) under current climate conditions. Unsaturated flow of water through the mountain generally is vertical and rapid through the fractures of the welded tuffs and slow through the matrix of the nonwelded tuffs. The vitric-zeolitic boundary of the nonwelded tuffs below the potential repository, where it exists, causes perching and substantial lateral flow that eventually flows through faults near the eastern edge of the potential repository and recharges the underlying groundwater system. Fast pathways are located where water flows relatively quickly through the unsaturated zone to the water table. For the bulk of the water a large part of the travel time from land surface to the potential repository horizon (similar to 300 m below land surface) is through the interlayered, low fracture density, nonwelded tuff where flow is predominantly through the matrix. The unsaturated zone at Yucca Mountain is being modeled using a three-dimensional, dual-continuum numerical model to predict the results of measurements and observations in new boreholes and excavations. The interaction between experimentalists and modelers is providing confidence in the conceptual model and the numerical model and is providing researchers with the ability to plan further testing and to evaluate the usefulness or necessity of further data collection.

Flint, A.L.; Flint, L.E.; Bodvarsson, G.S.; Kwicklis, E.M.; Fabryka-Martin, J.M.

2000-12-04T23:59:59.000Z

136

Word images as policy instruments: Lessons from the Yucca Mountain Controversey  

Science Conference Proceedings (OSTI)

A study is described which explores word images which have developed about nuclear issues by Nevadans. The study is based on results of a survey conducted regarding issues related to the Yucca Mountain repository.

Conary, J.S.; Soden, D.L.; Carns, D.E.

1993-08-01T23:59:59.000Z

137

The Interaction of Katabatic Flow and Mountain Waves. Part II: Case Study Analysis and Conceptual Model  

Science Conference Proceedings (OSTI)

Via numerical analysis of detailed simulations of an early September 1993 case night, the authors develop a conceptual model of the interaction of katabatic flow in the nocturnal boundary layer with mountain waves (MKI). A companion paper (Part I)...

Gregory S. Poulos; James E. Bossert; Thomas B. McKee; Roger A. Pielke Sr.

2007-06-01T23:59:59.000Z

138

Breakup of Temperature Inversions in Deep Mountain Valleys: Part II. Thermodynamic Model  

Science Conference Proceedings (OSTI)

A thermodynamic model is developed to simulate the evolution of vertical temperature structure during the breakup of nocturnal temperature inversions in mountain valleys. The primary inputs to the model are the valley floor width, sidewall ...

C. David Whiteman; Thomas B. McKee

1982-03-01T23:59:59.000Z

139

Small-Hydroelectricity and Landscape Change in the Bitterroot Mountains: Public Perceptions and Attitudes.  

E-Print Network (OSTI)

??Newman, Chad, M.A. December 2007 Geography Small-Hydroelectricity and Landscape Change in the Bitterroot Mountains: Public Perceptions and Attitudes Chairperson: Dr. David D. Shively The development… (more)

Newman, Chad E

2008-01-01T23:59:59.000Z

140

Modeling of Mountain-Valley Wind Fields in the Southern San Joaquin Valley, California  

Science Conference Proceedings (OSTI)

A dry three-dimensional mesoscale model was used to study the diurnal cycle of mountain-valley winds in the southern San Joaquin Valley during a summer day. A scheme for interpolating potential temperature was developed to provide hourly ...

Gary E. Moore; Christopher Daly; Mei-Kao Liu; Shi-Jian Huang

1987-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "mountain development icimod" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Regional-Scale Flows in Mountainous Terrain. Part II: Simplified Numerical Experiments  

Science Conference Proceedings (OSTI)

A series of two- and three-dimensional idealized numerical experiments are conducted to examine the effects of different physical processes upon the development of the thermally driven regional-scale circulations over mountainous terrain ...

James E. Bossert; William R. Cotton

1994-07-01T23:59:59.000Z

142

A Mesoscale Analysis Method for Surface Potential Temperature in Mountainous and Coastal Terrain  

Science Conference Proceedings (OSTI)

A technique is developed to anisotropically spread surface observations in steep valleys. The goal is to create an improved objective analysis for the lowest, terrain-following numerical weather prediction (NWP) model level in mountainous ...

Xingxiu Deng; Roland Stull

2005-02-01T23:59:59.000Z

143

NEPA Yucca Mountain Downloads | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEPA Yucca Mountain Downloads NEPA Yucca Mountain Downloads NEPA Yucca Mountain Downloads October 24, 2008 EIS-0250: Notice of Intent to Prepare a Supplement to the Environmental Impact Statement Geologic Repository for the Disposal of Spent Nuclear Fuel and High-level Radioactive Waste at Yucca Mountain, Nye County, Nevada October 10, 2008 EIS-0369: Floodplain Statement of Finding Rail Alignment for the Construction and Operation of a Railroad in Nevada to a Geologic Repository at Yucca Mountain, Nye County, Nevada October 10, 2008 EIS-0369: Record of Decision and Floodplain Statement of Findings Nevada Rail Alignment for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada June 2, 2008 EIS-0250-S2: Final Supplemental Environmental Impact Statement

144

Black Mountain Insulation | Open Energy Information  

Open Energy Info (EERE)

Insulation Insulation Jump to: navigation, search Name Black Mountain Insulation Place United Kingdom Sector Carbon Product UK-based manufacturer of sheeps wool insulation which has a low carbon footprint than traditional glassfiber insulation. Website http://www.blackmountaininsula References Black Mountain Insulation Website[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Black Mountain Insulation is a company located in United Kingdom. It was formerly known as Ochre Natural Insulation Company. [2] References ↑ "Black Mountain Insulation Website" ↑ http://www.companiesintheuk.co.uk/ltd/black-mountain-insulation Retrieved from "http://en.openei.org/w/index.php?title=Black_Mountain_Insulation&oldid=391648

145

The Influence of Groundwater Flow on Thermal Regimes in Mountainous Terrain  

DOE Green Energy (OSTI)

Active circulation of cool groundwater in mountainous terrain can cause an advective disturbance of the thermal regime. This factor complicates interpretation of data collected in geothermal exploration programs. An isothermal free-surface model has been developed which provides qualitative insight into the nature of an advective disturbance as it is affected by topography, permeability and climate. A fully coupled model of fluid and heat transfer is being developed for quantitative study of idealized mountain hydrothermal systems.

Forster, Craig; Smith, Leslie

1986-01-21T23:59:59.000Z

146

Scientific and Technical Priorities at Yucca Mountain  

Science Conference Proceedings (OSTI)

Following completion of the site characterization and site recommendation phases, the Department of Energy (DOE) is moving to prepare and submit a license application to initiate construction of the geologic repository at Yucca Mountain. This report provides background on how the project arrived at this juncture in its history and detailed information on EPRI's Yucca Mountain-related activities during calendar year 2003. The report assesses the relative risk-importance of various Yucca Mountain system co...

2003-12-15T23:59:59.000Z

147

Green Mountain Energy Company | Open Energy Information  

Open Energy Info (EERE)

Mountain Energy Company Place Texas Utility Id 7554 Utility Location Yes Ownership R NERC Location TRE NERC ERCOT Yes Activity Retail Marketing Yes References EIA Form EIA-861...

148

Volcanism Studies: Final Report for the Yucca Mountain Project  

SciTech Connect

This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is defined and described as one of many alternative models of the structural controls of the distribution of Plio-Quaternary basalt centers in the YMR. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be > than about 7 x 10{sup {minus}8} events yr{sup {minus}1} . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption probability to the location of northeast boundaries of volcanic zones near the Yucca Mountain si

Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

1998-12-01T23:59:59.000Z

149

Volcanism Studies: Final Report for the Yucca Mountain Project  

Science Conference Proceedings (OSTI)

This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is defined and described as one of many alternative models of the structural controls of the distribution of Plio-Quaternary basalt centers in the YMR. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be > than about 7 x 10{sup {minus}8} events yr{sup {minus}1} . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption probability to the location of northeast boundaries of volcanic zones near the Yucca Mountain si

Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

1998-12-01T23:59:59.000Z

150

Mountain View IV | Open Energy Information  

Open Energy Info (EERE)

IV IV Facility Mountain View IV Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AES Wind Generation Developer AES Wind Generation Energy Purchaser Southern California Edison Co Location White Water CA Coordinates 33.95475187°, -116.7015839° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.95475187,"lon":-116.7015839,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

151

Drum Mountain Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Drum Mountain Geothermal Project Project Location Information Coordinates 39.544722222222°, -112.91611111111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.544722222222,"lon":-112.91611111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

152

White Mountain Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: White Mountain Geothermal Project Project Location Information Coordinates 44.571666666667°, -114.47916666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.571666666667,"lon":-114.47916666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

153

Turtle Mountain Community College Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Community College Wind Farm Community College Wind Farm Jump to: navigation, search Name Turtle Mountain Community College Wind Farm Facility Turtle Mountain Community College Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Turtle Mountain Community College Developer Distributed Gen Energy Purchaser Turtle Mountain Community College Location St. John ND Coordinates 48.884703°, -99.751936° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.884703,"lon":-99.751936,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

154

Goat Mountain Phase I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Goat Mountain Phase I Wind Farm Goat Mountain Phase I Wind Farm Jump to: navigation, search Name Goat Mountain Phase I Wind Farm Facility Goat Mountain Phase I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Cielo/Edison Mission Group Developer Cielo/Edison Mission Group Energy Purchaser Market Location North of San Angelo TX Coordinates 31.908696°, -100.824122° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.908696,"lon":-100.824122,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

155

Goat Mountain Phase II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Goat Mountain Phase II Wind Farm Goat Mountain Phase II Wind Farm Jump to: navigation, search Name Goat Mountain Phase II Wind Farm Facility Goat Mountain Phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Cielo/Edison Mission Group Developer Cielo/Edison Mission Group Energy Purchaser Market Location North of San Angelo TX Coordinates 31.910008°, -100.869355° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.910008,"lon":-100.869355,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

156

Uranium and Neptunium Desorption from Yucca Mountain Alluvium  

SciTech Connect

Uranium and neptunium were used as reactive tracers in long-term laboratory desorption studies using saturated alluvium collected from south of Yucca Mountain, Nevada. The objective of these long-term experiments is to make detailed observations of the desorption behavior of uranium and neptunium to provide Yucca Mountain with technical bases for a more realistic and potentially less conservative approach to predicting the transport of adsorbing radionuclides in the saturated alluvium. This paper describes several long-term desorption experiments using a flow-through experimental method and groundwater and alluvium obtained from boreholes along a potential groundwater flow path from the proposed repository site. In the long term desorption experiments, the percentages of uranium and neptunium sorbed as a function of time after different durations of sorption was determined. In addition, the desorbed activity as a function of time was fit using a multi-site, multi-rate model to demonstrate that different desorption rate constants ranging over several orders of magnitude exist for the desorption of uranium from Yucca Mountain saturated alluvium. This information will be used to support the development of a conceptual model that ultimately results in effective K{sub d} values much larger than those currently in use for predicting radionuclide transport at Yucca Mountain.

C.D. Scism; P.W. Reimus; M. Ding; S.J. Chipera

2006-03-16T23:59:59.000Z

157

Engineering in a mountain resort town  

E-Print Network (OSTI)

This Record of Study (ROS) summarizes the experiences and lessons learned while serving as an intern with Peak Land Consultants (PLC) in Vail, Colorado. The objectives of the internship were designed to provide benefits to myself, the United States Air Force Academy, and PLC. The first objective was to develop a business plan for a similar company in a mountain community. This provides a useful tool to begin a second career after retirement from the Air Force. The second objective was to build lesson plans based on the experience at PLC for the Air Force Academy cadets. Through the use of real engineering examples and by integrating civil engineering subjects across the curriculum, Air Force Academy cadets will be better prepared for their professional life as a civil engineer. The last objective was to provide PLC with an objective management review. The management review highlighted good practices and provided recommendations for further improvement in areas such as marketing, communication, project management, training, and company goals. Each one of the objectives was tested. The business plan was provided to a loan officer at Wells Fargo bank. The loan officer remarked that the plan was well researched. He also indicated that the bank was willing to provide a loan for the business. This positive result indicated that the objective to develop a business plan for a similar company in a mountain community was met. The second objective to build lesson plans for the Air Force Academy was also met. These plans were presented to a senior class in April 07. The cadets liked the idea of seeing how an engineer solves problems in the private sector. In addition, the cadets recognized the usefulness of AutoCAD in solving problems in their other classes. Finally, the objective for providing a management review of PLC also proved to be successful. PLC has already implemented a number of recommendations from the review and is using the review to build new company and employee goals.

Waters, Eric W.

2007-12-01T23:59:59.000Z

158

Application of natural analogues in the Yucca Mountain project - overview  

E-Print Network (OSTI)

Contractor) 2000. Yucca Mountain Site Description. TDR-CRW-in silicic tuff from Yucca Mountain, Nevada. Clays and ClayHazard Analysis for Yucca Mountain, Nevada. BA0000000-01717-

Simmons, Ardyth M.

2003-01-01T23:59:59.000Z

159

Drift Natural Convection and Seepage at the Yucca Mountain Repository  

E-Print Network (OSTI)

2 A Simulation Code for Yucca Mountain Transport Processes:List of Figures Yucca Mountain location, southwest1 Introduction 1.1 Yucca Mountain Repository . . . . 1.1.1

Halecky, Nicholaus Eugene

2010-01-01T23:59:59.000Z

160

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

SAM III PROJECT SAM III PROJECT Sandia National laboratories Prepared for: Project File Documentation Prepared by: MICHAEL J. TAYLOR Project Manager March 31, 1998 JO 850200 : FC 970009 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a demonstration of the Surface Area Modulation Downhole Telemetry System (SAM 111) at the Department of Energy's Naval Petroleum Reserve No. 3 (NPR-3), in partnership with Sandia National Laboratories (SNL). The project encompassed the testing of a real-time wireless telemetry system in a simulated Measurement-While-Drilling (MWD) environment. A Surface Area Modulation (SAM) technique demonstrated data transmission rates greater than present techniques, in a deployment mode which requires

Note: This page contains sample records for the topic "mountain development icimod" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Yucca Mountain and The Environment  

Science Conference Proceedings (OSTI)

The Yucca Mountain Project places a high priority on protecting the environment. To ensure compliance with all state and federal environmental laws and regulations, the Project established an Environmental Management System. Important elements of the Environmental Management System include the following: (1) monitoring air, water, and other natural resources; (2) protecting plant and animal species by minimizing land disturbance; (3) restoring vegetation and wildlife habitat in disturbed areas; (4) protecting cultural resources; (5) minimizing waste, preventing pollution, and promoting environmental awareness; and (6) managing of hazardous and non-hazardous waste. Reducing the impacts of Project activities on the environment will continue for the duration of the Project.

NA

2005-04-12T23:59:59.000Z

162

Mercury Vapor At Socorro Mountain Area (Kooten, 1987) | Open...  

Open Energy Info (EERE)

Mercury Vapor At Socorro Mountain Area (Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Socorro Mountain Area...

163

Department of Energy Files Motion to Withdraw Yucca Mountain...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Files Motion to Withdraw Yucca Mountain License Application Department of Energy Files Motion to Withdraw Yucca Mountain License Application March 3, 2010 - 12:00am Addthis...

164

Motion to Withdraw from Yucca Mountain application | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Motion to Withdraw from Yucca Mountain application Motion to Withdraw from Yucca Mountain application DOE's withdraws it's pending license application for a permanent geologic...

165

Magnetotellurics At Mcgee Mountain Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Magnetotellurics At Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Mcgee Mountain Area (DOE...

166

Core Analysis At Mcgee Mountain Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Mcgee Mountain Area (DOE GTP) Exploration Activity Details Location Mcgee Mountain Area Exploration Technique Core Analysis Activity Date Usefulness not indicated DOE-funding...

167

Hydroprobe At Mcgee Mountain Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Hydroprobe At Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hydroprobe At Mcgee Mountain Area (DOE GTP)...

168

Ground Gravity Survey At Mcgee Mountain Area (DOE GTP) | Open...  

Open Energy Info (EERE)

Ground Gravity Survey At Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Mcgee Mountain...

169

Numerical Simulation of Slope and Mountain Flows  

Science Conference Proceedings (OSTI)

Early descriptive models of mountain-valley circulations indicated that the mountain flow (i.e., the along-valley axis component out of the valley) is a true three-dimensional phenomenon. According to these descriptions, at night shallow-down ...

Richard T. McNider; Roger A. Pielke

1984-10-01T23:59:59.000Z

170

Turtle Mountain Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Turtle Mountain Wind Farm Turtle Mountain Wind Farm Facility Turtle Mountain Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Turtle Mountain Chippewa Energy Purchaser Turtle Mountain Chippewa Location Belcourt ND Coordinates 48.839486°, -99.745145° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.839486,"lon":-99.745145,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

171

Geothermal Energy Resource Investigations, Chocolate Mountains Aerial  

Open Energy Info (EERE)

Investigations, Chocolate Mountains Aerial Investigations, Chocolate Mountains Aerial Gunnery Range, Imperial Valley, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Energy Resource Investigations, Chocolate Mountains Aerial Gunnery Range, Imperial Valley, California Details Activities (5) Areas (1) Regions (0) Abstract: The US Navy's Geothermal Program Office (GPO), has conducted geothermal exploration in the Chocolate Mountains Aerial Gunnery Range (CMAGR) since the mid-1970s. At this time, the focus of the GPO had been on the area to the east of the Hot Mineral Spa KGRA, Glamis and areas within the Chocolate Mountains themselves. Using potential field geophysics, mercury surveys and geologic mapping to identify potential anomalies related to recent hydrothermal activity. After a brief hiatus starting in

172

Yucca Mountain Press Conference | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain Press Conference Yucca Mountain Press Conference Yucca Mountain Press Conference June 3, 2008 - 12:51pm Addthis Remarks as Prepared for Delivery for Secretary Bodman Thank you all for being here. I'm pleased to announce that this morning the Department of Energy submitted a license application to the U.S. Nuclear Regulatory Commission seeking authorization to build America's first national repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. We are confident that the NRC's rigorous review process will validate that the Yucca Mountain repository will provide for the safe disposal of spent nuclear fuel and high-level radioactive waste in a way that protects human health and our environment. This application represents the culmination of over 20 years of work by

173

Drum Mountain Geothermal Project (3) | Open Energy Information  

Open Energy Info (EERE)

Development Project: Drum Mountain Geothermal Project (3) Development Project: Drum Mountain Geothermal Project (3) Project Location Information Coordinates The following coordinate was not recognized: 39.32.41" N, 112°55'1" W.The following coordinate was not recognized: 39.32.41" N, 112°55'1" W. Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

174

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

NOVERFLO (SMART CABLE) NOVERFLO (SMART CABLE) LIQUID LEAK DETECTION SYSTEM FEBRUARY 12, 1996 FC9535/96ET3 RMOTC TEST REPORT NOVERFLO LIQUID LEAK DETECTION SYSTEM (SMART CABLE) Prepared for: INDUSTRY PUBLICATION Prepared by: RALPH SCHULTE RMOTC Project Engineer February 12, 1996 650200/9535:jb CONTENTS Page Summary 1 Introducation 1 NPR-3 Map 2 Description of Operations 3 1 st Test 3 2 nd Test 3 3 rd Test 4 4 th Test 5 Concluding Remarks 5 Acknowledgements 6 Rocky Mountain Oilfield Testing Center Technical Report Noverflo Liquid Leak Detection System (Smart Cable) Summary As part of RMOTC's continuing mission to support and strengthen the domestic oil and gas industry by allowing testing by individual inventors and commercial companies to evaluate their products and technology, RMOTC

175

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

AUTOMATIC SHUTDOWN VALVE AUTOMATIC SHUTDOWN VALVE CAMBRIA VALVE CORPORATION OCTOBER 17, 1995 FC9536/95ET1 RMOTC TEST REPORT Automatic Shutdown Valve Cambria Valve Corporation Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR RMOTC Project Manager October 17, 1995 551103/9536:jb TABLE OF CONTENTS Page Introduction 1 Figure 1 2 Test Details 3 Table 1 4 Conclusions 5 Acknowledgments 5 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of an Automatic Shutdown Valve (ASDV) for hydraulic systems at the Naval Petroleum Reserve No. 3 (NPR- 3). The Cambria Valve Corporation (CVC) manufactures the 3-Port ASDV that is designed to automatically shut down the flow of fluid through a hydraulic system in the event of a ruptured line and safely redirect flow to a bypass system. The CVC ASDV effectively demonstrated its

176

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

AUTOMATED THREE-PHASE CENTRIFUGE PROJECT AUTOMATED THREE-PHASE CENTRIFUGE PROJECT MARCH 30, 1998 FC9535/96ET5 RMOTC TEST REPORT AUTOMATED THREE-PHASE CENTRIFUGE PROJECT Centech, Inc. Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR Project Manager March 30, 1998 850200/650200/650201:9583 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of an Automated ThreePhase Centrifuge at the Department of Energy's Naval Petroleum Reserve No. 3 (NPR-3). Centech, Inc. has manufactured a three-phase centrifuge which has been retrofitted with a PCbased, fuzzy-logic, automated control system, by Los Alamos National Laboratory. The equipment is designed to automatically process tank-bottom wastes within operator-prescribed limits of Basic

177

Step-Out Drilling Results at Blue Mountain, Nevada | Open Energy  

Open Energy Info (EERE)

Step-Out Drilling Results at Blue Mountain, Nevada Step-Out Drilling Results at Blue Mountain, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Step-Out Drilling Results at Blue Mountain, Nevada Abstract Step-out drilling targets based on a detailed structural model at Blue Mt. Nevada have led to high permeability entries in a well offset 1.2 km west of the developing field at Blue Mountain,Nevada. This well, 58-15, targeted shallow and deep entries based on a model with faults in the hanging wall and in the underlying range front fault zone. Drilling results showed that both zones were permeable. The deep target showed up in several productive fractures at relatively high temperatures. This result supports the general conceptual model of upflow from depth on Piedmont faults. The purpose of

178

Slim Holes At Blue Mountain Area (Warpinski, Et Al., 2004) | Open Energy  

Open Energy Info (EERE)

Blue Mountain Area (Warpinski, Et Al., Blue Mountain Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Blue Mountain Area Exploration Technique Slim Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects Retrieved from "http://en.openei.org/w/index.php?title=Slim_Holes_At_Blue_Mountain_Area_(Warpinski,_Et_Al.,_2004)&oldid=387371" Categories: Exploration Activities DOE Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

179

Weekly Rocky Mountains (PADD 4) Operable Crude Oil Distillation ...  

U.S. Energy Information Administration (EIA)

Weekly Rocky Mountains (PADD 4) Operable Crude Oil Distillation Capacity (Thousand Barrels per Calendar Day)

180

Mountain Wind II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Facility Mountain Wind II Facility Mountain Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group Developer Edison Mission Group Energy Purchaser PacifiCorp Location WY Coordinates 41.275629°, -110.539488° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.275629,"lon":-110.539488,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "mountain development icimod" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Modeling studies of mountain-scale radionuclide transport in the unsaturated zone at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Wu, and G.S. Bodvarsson, Radionuclide Transport Models Underdaughters of certain radionuclides. Increasing infiltrationOF MOUNTAIN-SCALE RADIONUCLIDE TRANSPORT IN THE UNSATURATED

Moridis, George J.; Seol, Yongkoo; Wu, Yu-Shu

2003-01-01T23:59:59.000Z

182

Turbulent Kinetic Energy Budgets over Mountainous Terrain  

Science Conference Proceedings (OSTI)

The objective of this study is to describe the characteristics of the airflow and turbulence structure over mountainous terrain. Turbulent characteristics of the airflow were measured using well-instrumented aircraft. The shear, buoyancy, ...

Theodore S. Karacostas; John D. Marwitz

1980-02-01T23:59:59.000Z

183

Ice Crystal Production by Mountain Surfaces  

Science Conference Proceedings (OSTI)

Evidence is presented for a process of ice crystal generation in supercooled orographic clouds in contact with snow-covered mountain surfaces. Comparisons of the crystal concentrations at the surface with aircraft sampling indicate that the “...

David C. Rogers; Gabor Vali

1987-09-01T23:59:59.000Z

184

Mountain Torque Events at the Tibetan Plateau  

Science Conference Proceedings (OSTI)

The interaction of large-scale wave systems with the Tibetan Plateau (TP) is investigated by regressing pressure, potential temperature, winds, precipitation, and selected fluxes in winter onto the three components Toi of this massif’s mountain ...

Joseph Egger; Klaus-Peter Hoinka

2008-02-01T23:59:59.000Z

185

On the Diurnal Variation of Mountain Waves  

Science Conference Proceedings (OSTI)

The diurnal variation of mountain waves and wave drag associated with flow past mesoscale ridges has been examined using the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) and an analytical boundary layer (BL) model. The wave drag ...

Qingfang Jiang; James D. Doyle

2008-04-01T23:59:59.000Z

186

April 25, 1997: Yucca Mountain exploratory drilling  

Energy.gov (U.S. Department of Energy (DOE))

April 25, 1997Workers complete drilling of the five-mile long, horseshoe-shaped exploratory tunnel through Yucca Mountain at the proposed high-level nuclear waste repository in Nevada.

187

Anelastic Semigeostrophic Flow over a Mountain Ridge  

Science Conference Proceedings (OSTI)

Scale analysis indicates that five nondimensional parameters (R02 ?, ? ? and k?) characterize the disturbance generated by the steady flow of a uniform wind (U0, V0) incident on a mountain ridge of width a in an isothermal, uniformly rotating, ...

Peter R. Bannon; Pe-Cheng Chu

1988-03-01T23:59:59.000Z

188

Microsoft Word - IceMountainFinal.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Tumbled-down boulders, called talus, on Ice Mountain's north- western slope collect ice during the winter. In the summer, cold air flows out of vents in the base of the talus,...

189

Mountain Torque and Rossby Wave Radiation  

Science Conference Proceedings (OSTI)

Planetary-scale orography exerts a substantial pressure drag on the atmosphere. This drag appears to be partially balanced by the convergence of momentum transports by Rossby waves induced by these mountains. Simple models of this process are ...

Joseph Egger

1998-09-01T23:59:59.000Z

190

Mountain Forces and the Atmospheric Energy Budget  

Science Conference Proceedings (OSTI)

Although mountains are generally thought to exert forces on the atmosphere, the related transfers of energy between earth and atmosphere are not represented in standard energy equations of the atmosphere. It is shown that the axial rotation of the ...

Joseph Egger

2011-11-01T23:59:59.000Z

191

Daytime heat transfer processes over mountainous terrain  

Science Conference Proceedings (OSTI)

The daytime heat transfer mechanisms over mountainous terrain are investigated by means of large-eddy simulations over idealized valleys. Two- and three-dimensional topographies, corresponding to infinite and finite valleys, are used in order to ...

Juerg Schmidli

192

Radiation environment at high-mountains stations and onboard spacecraft  

SciTech Connect

Radiation environment has been studied at high-mountain observatories and onboard spacecraft. The most important contribution to this environment at high-mountain observatories represents cosmic radiation component. We have been studied this environment in two high-mountain observatories: one situated on the top of Lomnicky Stit, High Tatras, Slovakia, and another one close to the top of Moussala, Rila, Bulgaria (Basic Environment Observatory--BEO). The studies have been performed using: an energy deposition spectrometer with a Si-diode (MDU) developed at BAS, Sofia, permitting to estimate non-neutron as well as neutron component of the radiation field; other active equipment designated to measure natural radiation background, and thermoluminescent detectors as passive dosimeters. Basic dosimetry characteristics of these fields are presented, analyzed, and discussed; they are also compared with the estimation of cosmic radiation component as published in the Report of UNSCEAR 2000. Measuring instruments mentioned above, together with an LET spectrometer based on chemically etched track detectors have been also used to characterize radiation environment onboard spacecraft, particularly International Space Station. They have been exposed on the surface and/or inside a phantom. Some of results obtained are presented, and discussed.

Spurny, Frantisek; Ploc, Ondrej; Jadrmickova, Iva [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Prague (Czech Republic)

2008-08-07T23:59:59.000Z

193

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

MECHANICAL SLIMHOLE TESTING SYSTEM (MSTS) MECHANICAL SLIMHOLE TESTING SYSTEM (MSTS) SLIMHOLE DRILL STEM TESTER APRIL, 1995 FC9524/95DT4 MSTS Test in Casper Wyoming April 19,1995 Background MSTS EXP-2 was shipped back to SPT for modifications and re-testing. A 4-1/2" cased well at the Rocky Mountain Oilfield Testing Center (RMOTC) in Casper Wyoming was selected. The well conditions were: Casper Well Deviation 0 Casing 4-1/2" 10.5#/ft Test depth 5380 ft BHT NOT Tubing 2-3/8" 4.7#/ft Formation Fluid Water & Oil Kill Fluid 10#/gal brine The MSTS was tested with a single 3.06" Dowell packer which was set at 5380 ft, approximately 80 off bottom. The test string was configured: MSTS EXP-2 with Inflate recorder - HPR-D Formation Gage - HPR-D Single packer, Dowell 3.06 TFV - 12 inch stroke no cam 900 ft of 2-3/8" 4.7 #/ft tubing (3000 #)

194

Wave Ducting in a Stratified Shear Flow over a Two-Dimensional Mountain. Part I: General Linear Criteria  

Science Conference Proceedings (OSTI)

A linear theory for wave ducting is developed by solving a three-layer, steady-state nonrotating flow over a two-dimensional mountain analytically. The reflection coefficient (Ref), transmission coefficient, and the strongest horizontal wind ...

Ting-An Wang; Yuh-Lang Lin

1999-02-01T23:59:59.000Z

195

A Stochastic Conceptual Modeling Approach for Examining the Effects of Climate Change on Streamflows in Mountain Basins  

Science Conference Proceedings (OSTI)

This study presents a modeling approach for examining how changes in climate affect streamflow in mesoscale mountain basins dominated by snowmelt runoff. A conceptual snowmelt-runoff model was developed that is forced by daily time series of ...

Peter R. Furey; Stephanie K. Kampf; Jordan S. Lanini; Andre Q. Dozier

2012-06-01T23:59:59.000Z

196

Investigation of Upstream Boundary Layer Influence on Mountain Wave Breaking and Lee Wave Rotors Using a Large-Eddy Simulation  

Science Conference Proceedings (OSTI)

Interactions between a turbulent boundary layer and nonlinear mountain waves are explored using a large-eddy simulation model. Simulations of a self-induced critical layer, which develop a stagnation layer and a strong leeside surface jet, are ...

Craig M. Smith; Eric D. Skyllingstad

2009-10-01T23:59:59.000Z

197

Momentum Flux and Flux Divergence of Gravity Waves in Directional Shear Flows over Three-Dimensional Mountains  

Science Conference Proceedings (OSTI)

Linear mountain wave theory is used to derive the general formulas of the gravity wave momentum flux (WMF) and its vertical divergence that develop in directionally sheared flows with constant vertical shear. Height variations of the WMF and its ...

Xin Xu; Yuan Wang; Ming Xue

2012-12-01T23:59:59.000Z

198

An Intense, Quasi-Steady Thunderstorm over Mountainous Terrain. Part II: Doppler Radar Observations of the Storm Morphological Structure  

Science Conference Proceedings (OSTI)

An analysis of an intense, quasi-steady thunderstorm which developed over mountainous terrain is presented. This storm, extensively analyzed using multiple Doppler radar and surface mesonet data, formed within an environment having strong low-...

Kevin R. Knupp; William R. Cotton

1982-02-01T23:59:59.000Z

199

Assessment of Incident-Free Transport for Transport of Spent Nuclear Fuel to Yucca Mountain Using RADTRAN 5.5  

Science Conference Proceedings (OSTI)

This report evaluates the incident-free radiological impacts associated with the transportation of spent nuclear fuel to the proposed Yucca Mountain repository using the RADTRAN 5.5 computer code developed by Sandia National Laboratories.

2005-09-28T23:59:59.000Z

200

Formation of the Convective Lines off the Mountainous Coast of Southeastern Taiwan: A Case Study of 3 January 2004  

Science Conference Proceedings (OSTI)

Convective lines frequently occurring off the mountainous coast of southeastern Taiwan under weakly synoptically forced weather conditions are one of the most well-known mesoscale phenomena in Taiwan. These lines usually develop close to the ...

Cheng-Ku Yu; Ying-Hsun Hsieh

2009-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "mountain development icimod" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Analyzing flow patterns in unsaturated fractured rock of Yucca Mountain using an integrated modeling approach  

E-Print Network (OSTI)

zone site-scale model, Yucca Mountain Site Characterizationzone site- scale model, Yucca Mountain Project Milestonelateral diversion at Yucca Mountain, Nevada, Water Resources

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

2008-01-01T23:59:59.000Z

202

Modeling water seepage into heated waste emplacement drifts at Yucca Mountain  

E-Print Network (OSTI)

into drifts at Yucca Mountain, Journal of ContaminantEMPLACEMENT DRIFTS AT YUCCA MOUNTAIN Jens Birkholzer, Sumitfor nuclear waste at Yucca Mountain, Nevada. Heating of rock

Birkholzer, Jens; Mukhopadhyay, Sumitra; Tsang, Yvonne

2003-01-01T23:59:59.000Z

203

Calibration of Yucca Mountain unsaturated zone flow and transport model using porewater chloride data  

E-Print Network (OSTI)

of hydrogeologic units at Yucca Mountain, Nevada. U.S.infiltration for the Yucca Mountain Area, Nevada. Milestonethe unsaturated zone at Yucca Mountain, Nevada. J. Contam.

Liu, Jianchun; Sonnenthal, Eric L.; Bodvarsson, Gudmundur S.

2002-01-01T23:59:59.000Z

204

Characterization and Prediction of Subsurface Pneumatic Pressure Variations at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Group Exposed at Yucca Mountain, Nevada, U. S. Geologicalunsaturated zone, Yucca Mountain, Nevada, Water Resourcesgeologic map of Yucca Mountain, Nye County, Nevada, with

Ahlers, C. Fredrik; Finsterle, Stefan; Bodvarsson, Gudmundur S.

1998-01-01T23:59:59.000Z

205

Multiple-point statistical prediction on fracture networks at Yucca Mountain  

E-Print Network (OSTI)

on fracture networks at Yucca Mountain Xiaoyan Liu 1 ,systems, such as at Yucca Mountain, water flow rate andflow field behavior at the Yucca Mountain waste repository

Liu, X.Y

2010-01-01T23:59:59.000Z

206

Temporal Damping Effect of the Yucca Mountain Fractured Unsaturated Rock on Transient Infiltration Pulses  

E-Print Network (OSTI)

unsaturated zone at Yucca Mountain. J. of Cont. Hydrol. ,2003b. Calibration of Yucca Mountain unsaturated zone flowthe unsaturated zone, Yucca Mountain, USGS Water Resources

Zhang, Keni; Wu, Yu-Shu; Pan, Lehua

2005-01-01T23:59:59.000Z

207

Effect of small-scale fractures on flow and transport processes at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Transport Processes at Yucca Mountain, Nevada Yu-Shu Wu, H.matrix interaction in Yucca Mountain site characterizationthe Unsaturated Zone of Yucca Mountain, Nevada, Journal of

Wu, Yu-Shu; Liu, H.H.; Bodvarsson, G.S.

2002-01-01T23:59:59.000Z

208

Massively parallel computing simulation of fluid flow in the unsaturated zone of Yucca Mountain, Nevada  

E-Print Network (OSTI)

Central Block Area, Yucca Mountain, Nye County, Nevada. Mapunsaturated zone, Yucca Mountain, Nevada. Water-Resourcesisotope distributions at Yucca Mountain. Sandia National

Zhang, Keni; Wu, Yu-Shu; Bodvarsson, G.S.

2001-01-01T23:59:59.000Z

209

Fluid flow and reactive transport around potential nuclear waste emplacement tunnels at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Unsaturated Zone at Yucca Mountain, Nevada. U.S. Geologicalzone model at Yucca Mountain, Nevada. J. Contaminantinvesti- gations at Yucca Mountain - the potential

Spycher, N.F.; Sonnenthal, E.L.; Apps, J.A.

2002-01-01T23:59:59.000Z

210

Experimental and numerical simulation of dissolution and precipitation: Implications for fracture sealing at Yucca Mountain, Nevada  

E-Print Network (OSTI)

FRACTURE SEALING AT YUCCA MOUNTAIN, NEVADA Patrick F. Dobsonpotential repository at Yucca Mountain, Nevada, would reducewas flowed through crushed Yucca Mountain tuff at 94°C. The

Dobson, Patrick F.; Kneafsey, Timothy J.; Sonnenthal, Eric L.; Spycher, Nicolas; Apps, John A.

2001-01-01T23:59:59.000Z

211

Deep Blue No 1- A Slimhole Geothermal Discovery At Blue Mountain...  

Open Energy Info (EERE)

DOI: Unavailable Core Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) Blue Mountain Geothermal...

212

Sequential evaluation of the potential geologic repository site at Yucca Mountain, Nevada, USA  

SciTech Connect

This paper discusses the changes that are planned for the characterization program at Yucca Mountain due to budget changes. Yucca Mountain is the only site being studied in the US for a geologic repository. Funding for the site characterization program at Yucca Mountain program was cut by roughly one half from the 1994 projected budget to complete three major milestones. These project milestones included: (1) a time-phased determination of site suitability, and if a positive finding, (2) completion of an Environmental Impact Statement, and (3) preparation of a License Application to the US NRC to authorize repository construction. In reaction, Yucca Mountain Site Characterization Project has shifted from parallel development of these milestones to a sequenced approach with the site suitability evaluation being replaced with a management assessment. Changes to the regulatory structure for the disposal program are under consideration by DOE and the NRC. The possibility for NRC and Doe to develop a site-specific regulatory structure follows from the National Energy Policy Act of 1992 that authorized the US EPA to develop a site specific environmental standard for Yucca Mountain.

Bjerstedt, T.W.

1996-12-31T23:59:59.000Z

213

Mcgee Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mcgee Mountain Geothermal Area Mcgee Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mcgee Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (7) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8,"lon":-118.87,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

214

Tungsten Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Tungsten Mountain Geothermal Area Tungsten Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Tungsten Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (4) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6751,"lon":-117.6945,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

Green Mountain Power Corp | Open Energy Information  

Open Energy Info (EERE)

Green Mountain Power Corp Green Mountain Power Corp Jump to: navigation, search Name Green Mountain Power Corp Place Vermont Service Territory Vermont Website www.greenmountainpower.co Green Button Landing Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 7601 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now!

216

Drum Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Drum Mountain Geothermal Area Drum Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Drum Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.544722222222,"lon":-112.91611111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

217

Sand Mountain Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Mountain Electric Coop Mountain Electric Coop Jump to: navigation, search Name Sand Mountain Electric Coop Place Alabama Utility Id 16629 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Drainage Pumping Station LS - Outdoor Lighting Service Lighting RS - Residential Service Residential Schedule GSA - General Power Service - Part 1 Commercial Schedule GSA - General Power Service - Part 2 Commercial Schedule GSA - General Power Service - Part 3 Commercial Schedule GSB Commercial Schedule GSD Commercial

218

EA-1440-S1: National Renewable Energy Laboratory's South Table Mountain  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

440-S1: National Renewable Energy Laboratory's South Table 440-S1: National Renewable Energy Laboratory's South Table Mountain Complex, Golden Field Office, National Renewable Energy Laboratory EA-1440-S1: National Renewable Energy Laboratory's South Table Mountain Complex, Golden Field Office, National Renewable Energy Laboratory SUMMARY ThIs EA evaluates the potential environmental impact of a DOE proposal that consists of three site development projects at the National Renewable Energy Laboratory's (NREL) South Table Mountain (STM) site at Golden, Colorado: Construction of the Research Support Facilities (RSF), a new office building or multi-building office complex; Installation of Phase 1 of planned Site Infrastructure Improvements (Phase 1 of Full Site Development); Upgrades to the Thermochemical User Facility (TCUF), TCUF

219

Seismicity in the Vicinity of Yucca Mountain, Nevada, for the Period October 1, 2004 to September 30, 2006  

Science Conference Proceedings (OSTI)

This report describes earthquake activity within approximately 65 km of Yucca Mountain site during the October 1, 2004 to September 30, 2006 time period (FY05-06). The FY05-06 earthquake activity will be compared with the historical and more recent period of seismic activity in the Yucca Mountain region. The relationship between the distribution of seismicity and active faults, historical patterns of activity, and rates of earthquakes (number of events and their magnitudes) are important components in the assessment of the seismic hazard for the Yucca Mountain site. Since October 1992 the University of Nevada has compiled a catalog of earthquakes in the Yucca Mountain area. Seismicity reports have identified notable earthquake activity, provided interpretations of the seismotectonics of the region, and documented changes in the character of earthquake activity based on nearly 30 years of site-characterization monitoring. Data from stations in the seismic network in the vicinity of Yucca Mountain is collected and managed at the Nevada Seismological Laboratory (NSL) at the University of Nevada Reno (UNR). Earthquake events are systematically identified and cataloged under Implementing Procedures developed in compliance with the Nevada System of Higher Education (NSHE) Quality Assurance Program. The earthquake catalog for FY05-06 in the Yucca Mountain region submitted to the Yucca Mountain Technical Data Management System (TDMS) forms the basis of this report.

Smith, Ken

2007-11-26T23:59:59.000Z

220

The Sensitivity of Mountain Snowpack Accumulation to Climate Warming  

Science Conference Proceedings (OSTI)

Controls on the sensitivity of mountain snowpack accumulation to climate warming (?S) are investigated. This is accomplished using two idealized, physically based models of mountain snowfall to simulate snowpack accumulation for the Cascade ...

Justin R. Minder

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "mountain development icimod" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

New Yucca Mountain Repository Design to be Simpler, Safer and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Yucca Mountain Repository Design to be Simpler, Safer and More Cost-Effective New Yucca Mountain Repository Design to be Simpler, Safer and More Cost-Effective untitled More...

222

Flow and Mixing in New Mexico Mountain Cumuli  

Science Conference Proceedings (OSTI)

Convection and cloud formation over mountains during weak winds and strong insolation were studied using an instrumented aircraft. Previous studies in cloudless situations had shown the existence of convergence over the mountain range at low ...

David J. Raymond; Marvin H. Wilkening

1982-10-01T23:59:59.000Z

223

Dongbai Mountain Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Dongbai Mountain Wind Power Co Ltd Jump to: navigation, search Name Dongbai Mountain Wind Power Co Ltd Place Zhejiang Province, China Sector Wind energy Product Dongyang-based wind...

224

Environment/Health/Safety (EHS): ISSM: Mountain Lion Sightings  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Safeguards & Security Management Integrated Safeguards & Security Management Home ISSM Plan Security at LBNL Clearance Holders Export Control International Visitors Security Updates Contact Us CI Awareness Security and Emergency Operations Website Mountain Lion Sightings Mountain Lion Adult Mountain Lion Cub Mountain Lion Adult Mountain Lion Cub Updated 11/19/2012: Mountain lions generally exist where deer are found. Warning signs have been placed at walkways and gate entrances. As a precaution, the use of isolated stairs/walkways at dusk, night, or dawn is discouraged. To limit an interaction with a mountain lion, avoid hiking or jogging in the undeveloped areas of the lab alone or at dawn, dusk or night. If you see a mountain lion, immediately call 7-911 from any Lab phone or 911 from any cell phone. Go to http://www.dfg.ca.gov/keepmewild/lion.html

225

Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) Exploration...

226

Ground Gravity Survey At Blue Mountain Area (Fairbank Engineering...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Blue Mountain Area (Fairbank Engineering, 2006) Exploration Activity...

227

THERMAL PROPERTIES OF GABLE MOUNTAIN BASALT CORES HANFORD NUCLEAR RESERVATION  

E-Print Network (OSTI)

1974. 7. Atlantic Richfield Hanford Company, Research andGABLE MOUNTAIN BASALT CORES HANFORD NUCLEAR RESERVATION L.

Martinez-Baez, L.F.

2011-01-01T23:59:59.000Z

228

Rocky Mountain (PADD 4) Exports of Normal Butane-Butylene ...  

U.S. Energy Information Administration (EIA)

Normal Butane/Butylene Supply and Disposition; Rocky Mountain (PADD 4) Exports of Crude Oil and Petroleum Products ...

229

Rocky Mountain (PADD 4) Refinery Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

Rocky Mountain (PADD 4) Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

230

Evaluation of the Candidate High-Level Radioactive Waste Repository at Yucca Mountain Using Total System Performance Assessment: Phase 5  

Science Conference Proceedings (OSTI)

A successful license application for the candidate spent-fuel and high level waste (HLW) repository at Yucca Mountain depends on a robust demonstration of long-term safety. This report presents EPRI's independent review to identify any conservatisms in the U.S. Depawrtment of Energy's (DOE's) Phase 5 Yucca Mountain Total System Performance Assessment (TSPA). The review specifically identifies key facility components, makes recommendations regarding technical development work priorities, and evaluates ove...

2000-11-21T23:59:59.000Z

231

Yucca Mountain Site Characterization Project technical data catalog; Yucca Mountain Site Characterization Project  

Science Conference Proceedings (OSTI)

The June 1, 1985, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. Each new publication of the Technical Data Catalog supersedes the previous edition.

NONE

1992-09-30T23:59:59.000Z

232

Holy Mother of Chiri Mountain: A Female Mountain Spirit in Korea  

E-Print Network (OSTI)

was highly popular with pilgrims throughout the Chos?n dy-su witnessed several groups of pilgrims travelling to theon the custom of local pilgrim- ages to Chiri Mountain and

Stiller, Maya

2011-01-01T23:59:59.000Z

233

Surface Pressure and Mountain Drag for Transient Airflow over a Mountain Ridge  

Science Conference Proceedings (OSTI)

The linear problem of rotating, stratified, adiabatic, hydrostatic, Boussinesq airflow over a mountain ridge is solved analytically for the case where the spatially uniform, normally incident airflow is the sum of a steady and sinusoidally ...

Peter R. Bannon; Joseph A. Zehnder

1985-12-01T23:59:59.000Z

234

Mcgee Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mcgee Mountain Geothermal Area Mcgee Mountain Geothermal Area (Redirected from Mcgee Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mcgee Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (7) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8,"lon":-118.87,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Revision 2 Yucca Mountain Review Plan  

E-Print Network (OSTI)

The Yucca Mountain Review Plan provides guidance for the U.S. Nuclear Regulatory Commission staff to evaluate a U.S. Department of Energy license application for a geologic repository. It is not a regulation and does not impose regulatory requirements. The licensing criteria are contained in the U.S. Code of Federal Regulations (CFR) Title 10, Part 63

unknown authors

2003-01-01T23:59:59.000Z

236

GREEN MOUNTAIN BATTALION ROTC ALUMNI ASSOCIATION  

E-Print Network (OSTI)

level leadership! Strong subordinate leaders make for great organizations; not everyone can "make Society (elite scholar-leader organization). We sponsored Team entry to the Walter N. Levy Challenge to update and renovate the Green Mountain Battalion Fallen Heroes Memorial located in the ROTC HQ (601 N

Hayden, Nancy J.

237

Tungsten Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Tungsten Mountain Geothermal Area Tungsten Mountain Geothermal Area (Redirected from Tungsten Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Tungsten Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (4) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6751,"lon":-117.6945,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

238

Blue Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blue Mountain Geothermal Area Blue Mountain Geothermal Area (Redirected from Blue Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blue Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (15) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41,"lon":-118.13,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

239

Products of an Artificially Induced Hydrothermal System at Yucca Mountain  

DOE Green Energy (OSTI)

Studies of mineral deposition in the recent geologic past at Yucca Mountain, Nevada, address competing hypotheses of hydrothermal alteration and deposition from percolating groundwater. The secondary minerals being studied are calcite-opal deposits in fractures and lithophysal cavities of ash-flow tuffs exposed in the Exploratory Studies Facility (ESF), a 7.7-km tunnel excavated by the Yucca Mountain Site Characterization Project within Yucca Mountain. An underground field test in the ESF provided information about the minerals deposited by a short-lived artificial hydrothermal system and an opportunity for comparison of test products with the natural secondary minerals. The heating phase lasted nine months, followed by a nine-month cooling period. Natural pore fluids were the only source of water during the thermal test. Condensation and reflux of water driven away from the heater produced fluid flow in certain fractures and intersecting boreholes. The mineralogic products of the thermal test are calcite-gypsum aggregates of less than 4-micrometer crystals and amorphous silica as glassy scale less than 0.2 mm thick and as mounds of tubules with diameters less than 0.7 micrometers. The minute crystal sizes of calcite and gypsum from the field test are very different from the predominantly coarser calcite crystals (up to cm scale) in natural secondary-mineral deposits at the site. The complex micrometer-scale textures of the amorphous silica differ from the simple forms of opal spherules and coatings in the natural deposits, even though some natural spherules are as small as 1 micrometer. These differences suggest that the natural minerals, especially if they were of hydrothermal origin, may have developed coarser or simpler forms during subsequent episodes of dissolution and redeposition. The presence of gypsum among the test products and its absence from the natural secondary-mineral assemblage may indicate a higher degree of evaporation during the test than during the deposition of natural calcite-opal deposits.

S. Levy

2000-08-07T23:59:59.000Z

240

Chemical evolution of a high-level magma system: the Black Mountain volcanic center, southern Nevada  

DOE Green Energy (OSTI)

A comprehensive study of stratigraphically controlled samples of both lavas and ash-flow tuffs from the Black Mountain volcanic center enables us to evaluate magmatic processes. The results of this study are used to: (1) determine how this high-level magma system developed; (2) compare this system with other similar systems; and (3) correlate ash-flow sheets using their chemical characteristics.

Vogel, T.A.; Noble, D.C.; Younker, L.W.

1983-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "mountain development icimod" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Norwegian-Type and Cold Front Aloft–Type Cyclones East of the Rocky Mountains  

Science Conference Proceedings (OSTI)

Conventional data and mesoscale model simulations are used to analyze two cyclones that developed east of the Rocky Mountains in June and November 1998. Both cyclones formed when a Pacific cold front overtook a lee trough/dryline east of the ...

John D. Locatelli; Ralph D. Schwartz; Mark T. Stoelinga; Peter V. Hobbs

2002-02-01T23:59:59.000Z

242

Viability Assessment of a Repository at Yucca Mountain | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Viability Assessment of a Repository at Yucca Mountain Viability Assessment of a Repository at Yucca Mountain Viability Assessment of a Repository at Yucca Mountain Summary The Viability Assessment of a Repository at Yucca Mountain describes the nuclear waste problem and explains why the United States and other nations are considering deep geologic disposal as the solution. The overview describes why the Unites States is considering Yucca Mountain and how a monitored geologic repository would work in the mountain. It presents a repository design, an assessment of its expected performance, and an evaluation of the possible effects on people living near Yucca Mountain. Also presented is the work remaining to be completed prior to a license application, along with the estimated cost of building and operating a

243

A Preliminary Structural Model for the Blue Mountain Geothermal Field,  

Open Energy Info (EERE)

Structural Model for the Blue Mountain Geothermal Field, Structural Model for the Blue Mountain Geothermal Field, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Preliminary Structural Model for the Blue Mountain Geothermal Field, Humboldt County, Nevada Abstract The Blue Mountain geothermal field is a blind geothermalprospect (i.e., no surface hot springs) along the west flank of BlueMountain in southern Humboldt County, Nevada. Developmentwells in the system have high flow rates and temperatures above190°C at depths of ~600 to 1,070 m. Blue Mountain is a small~8-km-long east-tilted fault block situated between the EugeneMountains and Slumbering Hills. The geothermal field occupiesthe intersection between a regional NNE- to ENE-striking,west-dipping

244

Woodward Mountain I & II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

I & II Wind Farm I & II Wind Farm Jump to: navigation, search Name Woodward Mountain I & II Wind Farm Facility Woodward Mountain Wind Ranch I and II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Cielo Wind Power/Renewable Energy Systems Energy Purchaser TXU Electric & Gas Location Pecos County TX Coordinates 30.970703°, -102.396491° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.970703,"lon":-102.396491,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

245

Mountain View Power Partners I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

I Wind Farm I Wind Farm Jump to: navigation, search Name Mountain View Power Partners I Wind Farm Facility Mountain View Power Partners I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MDU Resources Developer SeaWest Energy Purchaser L.A. Department of Water Resources Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

246

King Mountain Wind Ranch I | Open Energy Information  

Open Energy Info (EERE)

Ranch I Ranch I Jump to: navigation, search Name King Mountain Wind Ranch I Facility King Mountain Wind Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Cielo Wind Power/Renewable Energy Systems Energy Purchaser Texas-New Mexico Power- Reliant Energy- Austin Energy Location Upton County TX Coordinates 31.280873°, -102.195861° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.280873,"lon":-102.195861,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

247

Kibby Mountain Phase I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Phase I Wind Farm Phase I Wind Farm Jump to: navigation, search Name Kibby Mountain Phase I Wind Farm Facility Kibby Mountain Phase I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner TransCanada Power Mktg Ltd Developer TransCanada Power Mktg Ltd Location Kibby Township ME Coordinates 43.973144°, -71.030844° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.973144,"lon":-71.030844,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

248

Test concept for waste package environment tests at Yucca Mountain  

SciTech Connect

The Nevada Nuclear Waste Storage Investigations Project is characterizing a tuffaceous rock unit at Yucca Mountain, Nevada to evaluate its suitability for a repository for high level radioactive waste. The candidate repository horizon is a welded, devitrified tuff bed located at a depth of about 300 m in the unsaturated zone, over 100 m above the water table. As part of the project, Lawrence Livermore National Laboratory is responsible for designing the waste packages and for assessing their expected performance in the repository environment. The primary region of interest to package design and performance assessment is the portion of the rock mass within a few meters of waste emplacement holes. Hydrologic mechanisms active in this unsaturated near-field environment, along with thermal and mechanical phenomena that influence the hydrology, need to be understood well enough to confirm the basis of the waste package designs and performance assessment. Large scale in situ tests (called waste package environment tests) are being planned in order to develop this understanding and to provide data sets for performance assessment model validation (Yow, 1985). Exploratory shafts and limited underground facilities for in-situ testing will be constructed at Yucca Mountain during site characterization. Multiple waste package environment tests are being planned for these facilities to represent horizontal and vertical waste emplacement configurations in the repository target horizon. These approximately half-scale tests are being designed to investigate rock mass hydrologic conditions during a cycle of thermal loading.

Yow, J.L. Jr.

1987-06-01T23:59:59.000Z

249

Rail Access to Yucca Mountain: Critical Issues  

SciTech Connect

The proposed Yucca Mountain repository site currently lacks rail access. The nearest mainline railroad is almost 100 miles away. Absence of rail access could result in many thousands of truck shipments of spent nuclear fuel and high-level radioactive waste. Direct rail access to the repository could significantly reduce the number of truck shipments and total shipments. The U.S. Department of Energy (DOE) identified five potential rail access corridors, ranging in length from 98 miles to 323 miles, in the Final Environmental Impact Statement (FEIS) for Yucca Mountain. The FEIS also considers an alternative to rail spur construction, heavy-haul truck (HHT) delivery of rail casks from one of three potential intermodal transfer stations. The authors examine the feasibility and cost of the five rail corridors, and DOE's alternative proposal for HHT transport. The authors also address the potential for rail shipments through the Las Vegas metropolitan area.

Halstead, R. J.; Dilger, F.; Moore, R. C.

2003-02-25T23:59:59.000Z

250

Rocky Mountain Institute | Open Energy Information  

Open Energy Info (EERE)

Institute Institute Jump to: navigation, search Logo: Rocky Mountain Institute Name Rocky Mountain Institute Address 1820 Folsom Street Place Boulder, Colorado Zip 80302 Region Rockies Area Coordinates 40.01838°, -105.262323° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.01838,"lon":-105.262323,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

251

ROCKY MOUNTAIN OILFIELD TESTING CENTER MICROTURBINE PROJECT  

NLE Websites -- All DOE Office Websites (Extended Search)

MICROTURBINE PROJECT MICROTURBINE PROJECT Stacy & Stacy Consulting, LLC March 31, 1998 ROCKY MOUNTAIN OILFIELD TESTING CENTER MICROTURBINE PROJECT Stacy & Stacy Consulting, LLC Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR Project Manager March 31, 1998 JO 850200 : FC 980009 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a demonstration of gas-fired, integrated microturbine systems at the Department of Energy's Naval Petroleum Reserve No. 3 (NPR-3), in partnership with Stacy & Stacy Consulting, LLC (Stacy & Stacy). The project encompassed the testing of two gas microturbine systems at two oil-production wellsites. The microturbine-generators were fueled directly by casinghead gas to power their beam-pumping-unit motors. The system at well 47-A-34 utilized the casinghead sweet gas (0-ppm

252

Predicting the Future at Yucca Mountain  

Science Conference Proceedings (OSTI)

This paper summarizes a climate-prediction model funded by the DOE for the Yucca Mountain nuclear waste repository. Several articles in the open literature attest to the effects of the Global Ocean Conveyor upon paleoclimate, specifically entrance and exit from the ice age. The data shows that these millennial-scale effects are duplicated on the microscale of years to decades. This work also identifies how man may have influenced the Conveyor, affecting global cooling and warming for 2,000 years.

J. R. Wilson

1999-07-01T23:59:59.000Z

253

Mountain home known geothermal resource area: an environmental analysis  

DOE Green Energy (OSTI)

The Mountain Home KGRA encompasses an area of 3853 hectares (ha) at the foot of the Mount Bennett Hills in Elmore County, Idaho. The site is associated with an arid climate and high winds that generate an acute dust problem. The KGRA lies adjacent to the northwest-southeast trending fault zone that reflects the northern boundary of the western Snake River Plain graben. Data indicate that a careful analysis of the subsidence potential is needed prior to extensive geothermal development. Surface water resources are confined to several small creeks. Lands are utilized for irrigated farmlands and rangeland for livestock. There are no apparent soil limitations to geothermal development. Sage grouse and mule deer are the major species of concern. The potential of locating significant heritage resources other than the Oregon Trail or the bathhouse debris appears to be relatively slight.

Spencer, S.G.; Russell, B.F. (eds.)

1979-09-01T23:59:59.000Z

254

Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project  

SciTech Connect

This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE`s Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ``current information`` or ``available evidence.``

Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C. [Science Applications International Corp., Las Vegas, NV (United States); Ballou, L.B.; Revelli, M.A. [Lawrence Livermore National Lab., CA (United States); Ducharme, A.R.; Shephard, L.E. [Sandia National Labs., Albuquerque, NM (United States); Dudley, W.W.; Hoxie, D.T. [Geological Survey, Denver, CO (United States); Herbst, R.J.; Patera, E.A. [Los Alamos National Lab., NM (United States); Judd, B.R. [Decision Analysis Co., Portola Valley, CA (United States); Docka, J.A.; Rickertsen, L.D. [Weston Technical Associates, Washington, DC (United States)

1992-01-01T23:59:59.000Z

255

Potentially disruptive hydrologic features, events and processes at the Yucca Mountain Site, Nevada  

SciTech Connect

Yucca Mountain, Nevada, has been selected by the United States to be evaluated as a potential site for the development of a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. If the site is determined to be suitable for repository development and construction is authorized, the repository at the Yucca Mountain site is planned to be constructed in unsaturated tuff at a depth of about 250 meters below land surface and at a distance of about 250 meters above the water table. The intent of locating a repository in a thick unsaturated-zone geohydrologic setting, such as occurs at Yucca Mountain under the arid to semi-arid climatic conditions that currently prevail in the region, is to provide a natural setting for the repository system in which little ground water will be available to contact emplaced waste or to transport radioactive material from the repository to the biosphere. In principle, an unsaturated-zone repository will be vulnerable to water entry from both above and below. Consequently, a major effort within the site-characterization program at the Yucca Mountain site is concerned with identifying and evaluating those features, events, and processes, such as increased net infiltration or water-table rise, whose presence or future occurrence could introduce water into a potential repository at the site in quantities sufficient to compromise the waste-isolation capability of the repository system.

Hoxie, D.T.

1995-04-01T23:59:59.000Z

256

Modeling coupled thermal-hydrological-chemical processes in the unsaturated fractured rock of Yucca Mountain, Nevada: Heterogeneity and seepage  

E-Print Network (OSTI)

emplacement drift at Yucca Mountain. Journal of ContaminantScale Heater Test at Yucca Mountain. International Journalemplacement tunnels at Yucca Mountain, Nevada. Journal of

Mukhopadhyay, Sumit; Sonnenthal, Eric L.; Spycher, Nicolas

2005-01-01T23:59:59.000Z

257

The use of TOUGH2/iTOUGH2 in support of the Yucca Mountain Project: Successes and limitations  

E-Print Network (OSTI)

emplace- ment drifts at Yucca Mountain, Proceedings: TOUGHLarge Block Test at Yucca Mountain, Nevada, Water Resourcesthe Unsaturated Zone, Yucca Mountain, Ne- vada. LBL-20553.

Bodvarsson, G.S.; Birkholzer, J.T.; Finsterle, S.; Liu, H.H.; Rutqvist, J.; Wu, Y.S.

2003-01-01T23:59:59.000Z

258

Estimation of host rock thermal conductivities using the temperature data from the drift-scale test at Yucca Mountain, Nevada  

E-Print Network (OSTI)

the Drift Scale Test at Yucca Mountain, Nevada, Journal ofunsaturated model of Yucca Mountain, Nevada, Journal ofE. , and Spycher, N. , Yucca Mountain single heater test

Mukhopadhyay, Sumitra; Tsang, Y.W.

2008-01-01T23:59:59.000Z

259

The Influence of Proposed Repository Thermal Load on Multiphase Flow and Heat Transfer in the Unsaturated Zone of Yucca Mountain  

E-Print Network (OSTI)

Studies Using the Yucca Mountain Unsaturated Zone Model,Unsaturated Zone at Yucca Mountain, Nevada, to Thermal LoadLarge Block Test at Yucca Mountain, Nevada, Water Resources

Wu, Y.-S.; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, G.S.

2006-01-01T23:59:59.000Z

260

Characterization of Spatial Variability of Hydrogeologic Properties for Unsaturated Flow in the Fractured Rocks at Yucca Mountain, Nevada  

E-Print Network (OSTI)

using matrix properties , Yucca Mountain, Nevada, USGS Waterof hydrogeologic units at Yucca Mountain, Nevada, U.S.Unsaturated Zone, Yucca Mountain, Nevada . Water-Resources

Zhou, Quanlin; Bodvarsson, Gudmundur S.; Liu, Hui-Hai; Oldenburg, Curtis M.

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mountain development icimod" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Uncertainties in coupled thermal-hydrological processes associated with the drift scale test at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Scale Test at Yucca Mountain, Nevada S. Mukhopadhyay * , Y.waste repository at Yucca Mountain, Nevada. The Drift Scalerock; Radioactive waste; Yucca Mountain, Nevada Introduction

Mukhopadhyay, Sumitra; Tsang, Y.W.

2002-01-01T23:59:59.000Z

262

A Mountain-Scale Thermal Hydrologic Model for Simulating Fluid Flow and Heat Transfer in Unsaturated Fractured Rock  

E-Print Network (OSTI)

Studies Using the Yucca Mountain Unsaturated Zone Model,Unsaturated Zone at Yucca Mountain, Nevada, to Thermal LoadUnsaturated Zone, Yucca Mountain, Nevada, Water-Resources

Wu, Yu-Shu; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, Gudmundur S.

2005-01-01T23:59:59.000Z

263

Sensitivity Analysis Of Hydrological Parameters In Modeling Flow And Transport In The Unsaturated Zone Of Yucca Mountain  

E-Print Network (OSTI)

Unsaturated Zone of Yucca Mountain Keni Zhang, Yu-Shu Wu,volcanic deposits at Yucca Mountain have been intensivelyhydraulic properties, Yucca Mountain Introduction Site

Zhang, Keni; Wu, Yu-Shu; Houseworth, James E

2006-01-01T23:59:59.000Z

264

Modeling thermal-hydrological response of the unsaturated zone at Yucca Mountain, Nevada, to thermal load at a potential repository  

E-Print Network (OSTI)

Repository at Yucca Mountain. In Materials Research Societystudies using the Yucca Mountain unsaturated zone model.Unsaturated Zone, Yucca Mountain, Nevada. Water Resources

Haukwa, C.B.; Wu, Yu-Shu; Bodvarsson, G.S.

2002-01-01T23:59:59.000Z

265

Public Interaction and Educational Outreach on the Yucca Mountain Project  

Science Conference Proceedings (OSTI)

In July 2002, the U.S. Congress approved Yucca Mountain in Nevada as the nation's first long-term geologic repository site for spent nuclear fuel and high-level radioactive waste. This major milestone for the country's high-level radioactive waste disposal program comes after more than twenty years of scientific study and intense public interaction and outreach. This paper describes public interaction and outreach challenges faced by the U.S. Department of Energy's (DOE) Yucca Mountain Project in the past and what additional communication strategies may be instituted following the July 2002 approval by the U.S. Congress to develop the site as the nation's first long-term geologic repository for spent nuclear fuel and high-level radioactive waste. The DOE public involvement activities were driven by two federal regulations--the National Environmental Policy Act (NEPA) and the Nuclear Waste Policy Act (NWPA) of 1982, as amended. The NEPA required that DOE hold public hearings at key points in the development of an Environmental Impact Statement (EIS) and the NWPA required the agency to conduct public hearings in the vicinity of the site prior to making a recommendation regarding the site's suitability. The NWPA also provided a roadmap for how DOE would interact with affected units of government, which include the state of Nevada and the counties surrounding the site. Because the Department anticipated and later received much public interest in this high-profile project, the agency decided to go beyond regulatory-required public involvement activities and created a broad-based program that implemented far-reaching public interaction and outreach tactics. Over the last two decades, DOE informed, educated, and engaged a myriad of interested local, national, and international parties using various traditional and innovative approaches. The Yucca Mountain Project's intensive public affairs initiatives were instrumental in involving the public, which in turn resulted in thousands of comments on various aspects of the program. These comments were considered in the development of the EIS and weighed in the Secretary of Energy's decision to recommend the site.

A. Benson; Y. Riding

2002-11-14T23:59:59.000Z

266

Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sand Mountain Electric Cooperative - Residential Heat Pump Loan Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Alabama Program Type Utility Loan Program Rebate Amount 7% interest rate 5 or 10 year pay schedule maximum of $12,000 Provider Sand Mountain Electric Cooperative The Sand Mountain Electric Cooperative offers a heat pump loan program to eligible residential members. To qualify, members must have had power with Sand Mountain Electric Cooperative for at least one year, have the home electric bill and deeds in the same name, and pass a credit check. Heat pumps must be installed by a [http://www.smec.coop/heatpumpcontractors.htm

267

Green Mountain Energy Renewable Rewards Program (Texas) | Open...  

Open Energy Info (EERE)

is offered by a retail electric provider (REP); available to customers throughout the state where Green Mountain Energy offers retail electric service. Meter Aggregation Not...

268

Observation Wells At Blue Mountain Area (Warpinski, Et Al., 2004...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Blue Mountain Area (Warpinski, Et Al., 2004) Exploration Activity Details Location...

269

Self Potential At Blue Mountain Area (Fairbank Engineering, 2008) | Open  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Self Potential At Blue Mountain Area (Fairbank Engineering, 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential At Blue Mountain Area (Fairbank Engineering, 2008) Exploration Activity Details Location Blue Mountain Area Exploration Technique Self Potential Activity Date Usefulness not indicated DOE-funding Unknown Notes Geophysical surveys that have been conducted specifically for the geothermal program at Blue Mountain include a self-potential (SP) survey, and additional IP/electrical resistivity traversing. These surveys were conducted under a cooperative program between Noramex Corporation and the Energy and Geosciences Institute (EGI), University of Utah, with funding

270

Earth Tidal Analysis At Marysville Mountain Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Mountain Geothermal Area (1984) Mountain Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Marysville Mountain Geothermal Area (1984) Exploration Activity Details Location Marysville Mountain Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1984 Usefulness useful DOE-funding Unknown Exploration Basis Determine porosity of the reservoir Notes The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be

271

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

MICROBIAL PRODUCTION STIMULATION MARCH 31, 1998 FC970010 ROCKY MOUNTAIN OILFIELD TESTING CENTER Microbial Production Stimulation for: D. Michael Dennis Geomicrobial Technologies,...

272

Green Mountain Power - Solar GMP | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of electricity generated by the system. This credit is available to all customers of Green Mountain Power. The incentive does not have a specified duration or expiration date....

273

Thermal Gradient Holes At Mcgee Mountain Area (DOE GTP) | Open...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Mcgee Mountain Area (DOE GTP) Exploration Activity Details Location...

274

EIS-0445: American Electric Power Service Corporation's Mountaineer...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: American Electric Power Service Corporation's Mountaineer Commercial Scale Carbon Capture and Storage Demonstration, New Haven, Mason County, West Virginia EIS-0445: American...

275

Rocky Mountain E&P Technology Transfer Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Rocky Mountain E&P Technology Transfer Workshop August 4, 2003 Table of Contents Disclaimer Papers and Presentations Disclaimer This report was prepared as an account of work...

276

Microsoft Word - Interim Use of Scott Mountain Communications...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clearance Memorandum Cynthia Rounds Project Manager - TPC-TPP-4 Proposed Action: Interim Use of Scott Mountain Communications Site Budget Information: Work Order 00004688, Task 04...

277

Modeling-Computer Simulations At White Mountains Area (Goff ...  

Open Energy Info (EERE)

Modeling-Computer Simulations At White Mountains Area (Goff & Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer...

278

Modeling-Computer Simulations At Chocolate Mountains Area (Alm...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Modeling-Computer Simulations At Chocolate Mountains Area (Alm, Et Al., 2010) Jump to: navigation,...

279

Rocky Mountain (PADD 4) Product Supplied of Normal Butane ...  

U.S. Energy Information Administration (EIA)

Normal Butane/Butylene Supply and Disposition; Product Supplied for Normal Butane/Butylene ; Rocky Mountain (PADD 4) Product Supplied for Crude Oil ...

280

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

DYNAMOMETER DYNAMOMETER Sandia National Laboratories FEBRUARY 10, 1998 FC9514 / 95PT6 ROCKY MOUNTAIN OILFIELD TESTING CENTER Sandia Lab Downhole Dynamometer PROJECT TEST RESULTS February 10, 1998 Michael R. Tyler Project Manager Abstract This test involved the use of Downhole Dynamometer Tools (DDT) that were developed by Albert Engineering and the Sandia National Laboratory. The five (5) Downhole Dynamometers (DDT) were installed in the rod string of well 13-A-21 at predetermined intervals. The DDT tools are equipped with strain gauges and programmable clocks. The tools were place in the well and removed after the data had been gathered. The data gathering is pre-programmed to occur when pumped-off conditions are obtained in the well. This information then reflects the true conditions found downhole in a well in a pumped-

Note: This page contains sample records for the topic "mountain development icimod" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Drum Mountain Geothermal Project (2) | Open Energy Information  

Open Energy Info (EERE)

Project (2) Project (2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Drum Mountain Geothermal Project (2) Project Location Information Coordinates 39.544722222222°, -112.91611111111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.544722222222,"lon":-112.91611111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

282

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

DYNAMOTER DYNAMOTER Sandia National Laboratories FEBRUARY 10, 1998 FC9542 / 96PT11 ROCKY MOUNTAIN OILFIELD TESTING CENTER Sandia Lab Downhole Dynamometer PROJECT TEST RESULTS February 10, 1998 Michael R. Tyler Project Manager Abstract This test involved the use of Downhole Dynamometer Tools (DDT) that were developed by Albert Engineering and the Sandia National Laboratory. The five (5) Downhole Dynamometers (DDT) were installed in the rod string of well 13-A-21 at predetermined intervals. The DDT tools are equipped with strain gauges and programmable clocks. The tools were place in the well and removed after the data had been gathered. The data gathering is pre-programmed to occur when pumped-off conditions are obtained in the well. This information then reflects the true conditions found downhole in a well in a pumped-off state.

283

Mountain View Power Partners III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Power Partners III Wind Farm Power Partners III Wind Farm Facility Mountain View Power Partners III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner PPM Energy Inc Developer PPM Energy Inc Energy Purchaser San Diego Gas & Electric Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

284

Buffalo Mountain Wind Energy Center II | Open Energy Information  

Open Energy Info (EERE)

II II Facility Buffalo Mountain Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser Tennessee Valley Authority Location Anderson County TN Coordinates 36.115822°, -84.333742° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.115822,"lon":-84.333742,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

285

Mountain View Power Partners II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Power Partners II Wind Farm Power Partners II Wind Farm Facility Mountain View Power Partners II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MDU Resources Developer SeaWest Energy Purchaser L.A. Department of Water Resources Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Green Mountain Energy Wind Farm II | Open Energy Information  

Open Energy Info (EERE)

II II Facility AMP-Ohio/Green Mountain Energy Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Ohio Municipal Electric Generation Agency Joint Venture 6 Developer AMP Ohio Energy Purchaser Ohio Municipal Electric Generation Agency Joint Venture 6 Location Bowling Green OH Coordinates 41.374909°, -83.738093° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.374909,"lon":-83.738093,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Green Mountain Energy Wind Farm I | Open Energy Information  

Open Energy Info (EERE)

I I Facility AMP-Ohio/Green Mountain Energy Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Bowling Green Developer AMP Ohio Energy Purchaser Bowling Green Location Bowling Green OH Coordinates 41.374909°, -83.738093° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.374909,"lon":-83.738093,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

Mountain Wind I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

I Wind Farm I Wind Farm Facility Mountain Wind I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group Developer Edison Mission Group Energy Purchaser PacifiCorp Location WY Coordinates 41.275629°, -110.539488° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.275629,"lon":-110.539488,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

289

Tell President Obama About Coal River Mountain Coal River Mountain and the Heathrow Airport runway remind me how important it is to  

E-Print Network (OSTI)

Tell President Obama About Coal River Mountain Coal River Mountain and the Heathrow Airport runway remind me how important it is to keep our eye on the ball. Coal River Mountain is the site of an absurdity. I learned about Coal River Mountain from students at Virginia Tech last fall. They were concerned

Hansen, James E.

290

A site scale model for modeling unsaturated zone processes at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Unsaturated Zone Model of Yucca Mountain, Nevada, for theZone Trocesses at yucca Mountain, N G. S. Bodvarsson, Y. S.unsaturated zone at Yucca Mountain, Nevada, as a permanent

1997-01-01T23:59:59.000Z

291

Influence of faults on groundwater flow and transport at Yucca Mountain, Nevada  

E-Print Network (OSTI)

test well USW H- 6, Yucca Mountain area, Nye County, Nevada,by test well UE- 25p#1, Yucca Mountain Area, Nye County,assessment for Yucca Mountain-SNL second interation (TSPA-

Cohen, Andrew J.B.; Sitar, Nicholas

1999-01-01T23:59:59.000Z

292

Numerical analysis of thermal-hydrological conditions in the single heater test at Yucca Mountain  

E-Print Network (OSTI)

Single Heater Test at Yucca Mountain, LBNL-39789, E.O. Law­Single Heater Test at Yucca Mountain Jens T. Birkholzer andwaste repository at Yucca Mountain. The heating phase of the

Birkholzer, Jens T.; Tsang, Yvonne W.

1998-01-01T23:59:59.000Z

293

Modeling Unsaturated Flow and Transport Processes in Fractured Tuffs of Yucca Mountain  

E-Print Network (OSTI)

zone site-scale model, Yucca Mountain Site Characterizationsite-scale model, Yucca Mountain Project Milestone 3GLM105M,unsaturated zone, Yucca Mountain, Nevada. Water-Resources

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.

2003-01-01T23:59:59.000Z

294

Estimating Wind Velocities in Mountain Lee Waves Using Sailplane Flight Data  

Science Conference Proceedings (OSTI)

Mountain lee waves are a form of atmospheric gravity wave that is generated by flow over mountain topography. Mountain lee waves are of considerable interest, because they can produce drag that affects the general circulation, windstorms, and ...

R. P. Millane; G. D. Stirling; R. G. Brown; N. Zhang; V. L. Lo; E. Enevoldson; J. E. Murray

2010-01-01T23:59:59.000Z

295

Overview of the Yucca Mountain Licensing Process  

SciTech Connect

This paper presents an overview of the licensing process for a Yucca Mountain repository for high-level radioactive waste and spent nuclear fuel. The paper discusses the steps in the licensing proceeding, the roles of the participants, the licensing and hearing requirements contained in the Code of Federal Regulations. A description of the Nuclear Regulatory Commission (NRC) staff acceptance and compliance reviews of the Department of Energy (DOE) application for a construction authorization and a license to receive and possess high-level radioactive waste and spent nuclear fuel is provided. The paper also includes a detailed description of the hearing process.

M. Wisenburg

2004-05-03T23:59:59.000Z

296

Yucca MountainTransportation: Private Sector Perspective  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation: Transportation: Private Sector "Lessons Learned" US Transport Council David Blee Executive Director dblee@ustransportcouncil.org DOE Transportation External Coordination (TEC) Working Group April 4, 2005 Phoenix, Arizona US Transport Council -- DOE TEC 4/4/05 2 US Transport Council Formed in 2002 during the Yucca Mountain Ratification debate to provide factual information on nuclear materials transportation, experience, safety & emergency planning Comprised of 24 member companies from the transport sector including suppliers and customers Principal focus is transport education, policy and business commerce related to nuclear materials transport US Transport Council -- DOE TEC 4/4/05 3 USTC Members AREVA BNFL, Inc Burns & Roe Cameco

297

Microsoft Word - BlueMountainGeotherm_FONSI_FinalDrft v3 Clean_4-26-10 Clean  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BLUE MOUNTAIN BLUE MOUNTAIN GEOTHERMAL DEVELOPMENT PROJECT HUMBOLDT COUNTY, NEVADA PERSHING COUNTY, NEVADA DECEMBER 2007 EA NUMBER: NV-020-08-01 Lead Agency: BUREAU OF LAND MANAGEMENT Winnemucca Field Office 5100 E. Winnemucca Blvd. Winnemucca, Nevada 89445 Project Applicant: NEVADA GEOTHERMAL POWER COMPANY 900-409 Granville Street Vancouver, BC V6C 1T2 It is the mission of the Bureau of Land Management to sustain the health, diversity, and productivity of the public lands for the use and enjoyment of present and future generations. BLM·NV·WN·ES·OB·01·1310 NV·020-08-EA-Ol ENVIRONMENTAL ASSESSMENT BLUE MOUNTAIN GEOTHERMAL DEVELOPMENT PROJECT TABLE OF CONTENTS Page LIST OF TABLES ........................................................................................................................ IV

298

Flow Test At Mcgee Mountain Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Mcgee Mountain Area (DOE GTP) Exploration Activity Details Location Mcgee Mountain...

299

2-M Probe At Mcgee Mountain Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At Mcgee Mountain Area (DOE GTP) Exploration Activity...

300

Estimating Fractional Snow Cover in Mountain Environments with Fuzzy Classification  

Science Conference Proceedings (OSTI)

The disproportionate amount of water runoff from mountains to surrounding arid and semiarid lands has generated much research in snow water equivalent (SWE) modeling. A primary input in SWE models is snow covered area (SCA) which is generally obtained ... Keywords: Fuzzy Classification, GIS, Landsat ETM+, Mountain Environments, Recursive Partitioning, Remote Sensing, Snow Covered Area, Snow Water Equivalent

Clayton J. Whitesides; Matthew H. Connolly

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "mountain development icimod" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

MOUNTAIN WEATHER PREDICTION: PHENOMENOLOGICAL CHALLENGES AND FORECAST METHODOLOGY  

E-Print Network (OSTI)

MOUNTAIN WEATHER PREDICTION: PHENOMENOLOGICAL CHALLENGES AND FORECAST METHODOLOGY Michael P. Meyers of the American Meteorological Society Mountain Weather and Forecasting Monograph Draft from Friday, May 21, 2010 of weather analysis and forecasting in complex terrain with special emphasis placed on the role of humans

Steenburgh, Jim

302

Yucca Mountain Climate Technical Support Representative  

SciTech Connect

The primary objective of Project Activity ORD-FY04-012, “Yucca Mountain Climate Technical Support Representative,” was to provide the Office of Civilian Radioactive Waste Management (OCRWM) with expertise on past, present, and future climate scenarios and to support the technical elements of the Yucca Mountain Project (YMP) climate program. The Climate Technical Support Representative was to explain, defend, and interpret the YMP climate program to the various audiences during Site Recommendation and License Application. This technical support representative was to support DOE management in the preparation and review of documents, and to participate in comment response for the Final Environmental Impact Statement, the Site Recommendation Hearings, the NRC Sufficiency Comments, and other forums as designated by DOE management. Because the activity was terminated 12 months early and experience a 27% reduction in budget, it was not possible to complete all components of the tasks as originally envisioned. Activities not completed include the qualification of climate datasets and the production of a qualified technical report. The following final report is an unqualified summary of the activities that were completed given the reduced time and funding.

Sharpe, Saxon E

2007-10-23T23:59:59.000Z

303

Blue Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Blue Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blue Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (15) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41,"lon":-118.13,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

304

Glass Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Glass Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Glass Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (3) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7,"lon":-121.45,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

305

Green Mountain Energy Renewable Rewards Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mountain Energy Renewable Rewards Program Mountain Energy Renewable Rewards Program Green Mountain Energy Renewable Rewards Program < Back Eligibility Residential Savings Category Bioenergy Buying & Making Electricity Water Solar Wind Program Info State Texas Program Type Net Metering Provider Green Mountain Energy '''''Texas does not have statewide net metering as the term is generally understood. However, retail electricity providers in Texas are permitted, but not required, to compensate customers for electricity produced by distributed renewable energy generation systems and exported to the electric grid. The program described below operates in a fashion similar to net metering and has similar customer benefits up to a certain point.''''' Green Mountain Energy Company, a retail provider of green electricity,

306

List of Yucca Mountain Archival Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

List of Yucca Mountain Archival Documents List of Yucca Mountain Archival Documents List of Yucca Mountain Archival Documents March 3, 2010 Motion to Withdraw from Yucca Mountain application DOE's withdraws it's pending license application for a permanent geologic repository at Yucca Mountain, Nevada. December 30, 2008 Office of Civilian Radioactive Waste Management-Quality Assurance Requirements and Description A report detailling the requirements and description of the Quality Assurance program. December 9, 2008 The Report To The President And The Congress By The Secretary Of Energy On The Need For A Second Repository This report is prepared pursuant to Section 161 of the Nuclear Waste Policy Act of 1982, which requires the Secretary of Energy to report to the President and to the Congress on or after January 1, 2007, but not later

307

DOE Marks Milestone in Submitting Yucca Mountain License Application |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marks Milestone in Submitting Yucca Mountain License Marks Milestone in Submitting Yucca Mountain License Application DOE Marks Milestone in Submitting Yucca Mountain License Application June 3, 2008 - 12:51pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced submittal of a license application (LA) to the U.S. Nuclear Regulatory Commission (NRC) seeking authorization to construct America's first repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. The 8,600 page application describes DOE's plan to safely isolate spent nuclear fuel and high-level radioactive waste in tunnels deep underground at Yucca Mountain, a remote ridge on federally controlled land in the Mojave Desert 90 miles northwest of Las Vegas. Currently, the waste is stored at 121 temporary locations in 39 states

308

Geophysical Studies in the Vicinity of Blue Mountain and Pumpernickel  

Open Energy Info (EERE)

the Vicinity of Blue Mountain and Pumpernickel the Vicinity of Blue Mountain and Pumpernickel Valley near Winnemucca, North-Central Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical Studies in the Vicinity of Blue Mountain and Pumpernickel Valley near Winnemucca, North-Central Nevada Abstract From May 2008 to September 2009, the U.S. Geological Survey (USGS) collected data from more than 660 gravity stations, 100 line-km of truck-towed magnetometer traverses, and 260 physical-property sites in the vicinity of Blue Mountain and Pumpernickel Valley, northern Nevada (fig. 1). Gravity, magnetic, and physical-property data were collected to study regional crustal structures as an aid to understanding the geologic framework of the Blue Mountain and Pumpernickel Valley areas, which in

309

Preliminary Notice of Violation, Rocky Mountain Remediation Services -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Remediation Rocky Mountain Remediation Services - EA-97-04 Preliminary Notice of Violation, Rocky Mountain Remediation Services - EA-97-04 June 6, 1997 Preliminary Notice of Violation issued to Rocky Mountain Remediation Services related to a Radioactive Material Release during Trench Remediation at the Rocky Flats Environmental Technology Site, (EA-97-04) This letter refers to the Department of Energy's (DOE) evaluation of noncompliances associated with the dispersal of radioactive material during the remediation of trenches. Preliminary Notice of Violation, Rocky Mountain Remediation Services - EA-97-04 More Documents & Publications Preliminary Notice of Violation, Kaiser-Hill Company - EA-97-03 Consent Order, Kaiser-Hill Company, LLC - EA 98-03 Preliminary Notice of Violation , Rocky Flats Environmental Technology Site

310

Yucca Mountain Science and Engineering Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report describes the results of scientific and engineering studies of the Yucca Mountain site, the waste forms to be disposed, the repository and waste package designs, and the results of the most recent assessments of the long-term performance of the potential repository. The scientific investigations include site characterization studies of the geologic, hydrologic, and geochemical environment, and evaluation of how conditions might evolve over time. These analyses considered a range of processes that would operate in and around the potential repository. Since projections of performance for 10,000 years are inherently uncertain, the uncertainties associated with analyses and

311

DOE Announces Yucca Mountain License Application Schedule | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain License Application Schedule Yucca Mountain License Application Schedule DOE Announces Yucca Mountain License Application Schedule July 19, 2006 - 3:13pm Addthis New Director Ward Sproat Testifies on Revised Timeline WASHINGTON, DC - The Department of Energy (DOE) today announced that it will submit a license application to the Nuclear Regulatory Commission (NRC) for a nuclear waste repository at Yucca Mountain, Nevada, no later than June 30, 2008. The Department also announced that if requested legislative changes are enacted, the repository will be able to accept spent nuclear fuel and high-level waste starting in early 2017. Announcing a schedule for submitting a license application is another step in the Department's mission to provide stability, clarity and predictability in moving the Yucca Mountain Project forward as quickly as

312

Department of Energy Files Motion to Withdraw Yucca Mountain License  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Files Motion to Withdraw Yucca Mountain Files Motion to Withdraw Yucca Mountain License Application Department of Energy Files Motion to Withdraw Yucca Mountain License Application March 3, 2010 - 12:00am Addthis WASHINGTON, D.C. - The U.S. Department of Energy today filed a motion with the Nuclear Regulatory Commission to withdraw the license application for a high-level nuclear waste repository at Yucca Mountain with prejudice. "President Obama is fully committed to ensuring that the Nation meets our long-term storage obligations for nuclear waste," said Department of Energy General Counsel Scott Blake Harris. "In light of the decision not to proceed with the Yucca Mountain nuclear waste repository, the President directed Secretary Chu to establish the Blue Ribbon Commission on America's

313

Rocky Mountain Power - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - Net Metering Rocky Mountain Power - Net Metering Rocky Mountain Power - Net Metering < Back Eligibility Agricultural Commercial Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Idaho Program Type Net Metering Provider Rocky Mountain Power Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has a net-metering tariff on file with the Idaho Public Utilities Commission (PUC). The framework of the utilities' net-metering programs is similar, in that each utility: (1) offers net

314

Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering,  

Open Energy Info (EERE)

Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering, Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering, 2005) Exploration Activity Details Location Blue Mountain Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Geophysical surveys that have been conducted specifically for the geothermal program at Blue Mountain include a self-potential (SP) survey, and additional IP/electrical resistivity traversing. These surveys were conducted under a cooperative program between Noramex Corporation and the Energy and Geosciences Institute (EGI), University of Utah, with funding

315

Static Temperature Survey At Blue Mountain Area (Fairbank Engineering,  

Open Energy Info (EERE)

Static Temperature Survey At Blue Mountain Area (Fairbank Engineering, Static Temperature Survey At Blue Mountain Area (Fairbank Engineering, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Blue Mountain Area (Fairbank Engineering, 2010) Exploration Activity Details Location Blue Mountain Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes Using a precision thermistor probe, EGI, University of Utah, obtained detailed temperature logs of eleven new mineral exploration holes drilled at Blue Mountain. The holes, ranging in depth from 99 to 244 meters (325 to 800 feet), were drilled in areas to the northeast, northwest and southwest of, and up to distances of two kilometers from, the earlier mineral exploration drill holes that encountered hot artesian flows. Unfortunately,

316

Yucca Mountain Science and Engineering Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report describes the results of scientific and engineering studies of the Yucca Mountain site, the waste forms to be disposed, the repository and waste package designs, and the results of the most recent assessments of the long-term performance of the potential repository. The scientific investigations include site characterization studies of the geologic, hydrologic, and geochemical environment, and evaluation of how conditions might evolve over time. These analyses considered a range of processes that would operate in and around the potential repository. Since projections of performance for 10,000 years are inherently uncertain, the uncertainties associated with analyses and

317

Rocky Mountain Power - Energy FinAnswer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - Energy FinAnswer Rocky Mountain Power - Energy FinAnswer Rocky Mountain Power - Energy FinAnswer < Back Eligibility Agricultural Commercial Construction Industrial Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Maximum Rebate Retrofit: 50% of eligible measure cost Lighting Energy Savings Limit: 50%-75% of savings Program Info State Utah Program Type Utility Rebate Program Rebate Amount 0.12/kWh annual energy savings + 50/kW average monthly on-peak demand savings Provider Rocky Mountain Power Rocky Mountain Power's Energy FinAnswer program provides cash incentives to help its commercial and industrial customers improve the efficiency of their existing facilities and build new facilities that are significantly

318

DOE Defends Its Motion to Withdraw Yucca Mountain Application | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Defends Its Motion to Withdraw Yucca Mountain Application Defends Its Motion to Withdraw Yucca Mountain Application DOE Defends Its Motion to Withdraw Yucca Mountain Application May 27, 2010 - 2:22pm Addthis Today, the United States Department of Energy filed with the NRC's Atomic Safety and Licensing Board a reply brief making clear that its motion to withdraw the pending application to license the Yucca Mountain geologic repository is authorized by the Atomic Energy Act (AEA) and consistent with the Nuclear Waste Policy Act (NWPA). As today's filing details, the AEA vests the Department with broad authority over the disposal of spent nuclear fuel and high-level radioactive waste. The NWPA does not strip the Department of that authority or otherwise compel the Department to go forward with the construction of the Yucca Mountain repository. Rather, the

319

EIS-0445: American Electric Power Service Corporation's Mountaineer  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: American Electric Power Service Corporation's Mountaineer 5: American Electric Power Service Corporation's Mountaineer Commercial Scale Carbon Capture and Storage Demonstration, New Haven, Mason County, West Virginia EIS-0445: American Electric Power Service Corporation's Mountaineer Commercial Scale Carbon Capture and Storage Demonstration, New Haven, Mason County, West Virginia Summary This EIS evaluates the environmental impacts of a proposal to provide financial assistance for the construction and operation of a project proposed by American Electric Power Service Corporation (AEP). DOE selected tbis project for an award of financial assistance through a competitive process under the Clean Coal Power Initiative (CCPI) Program. AEP's Mountaineer Commercial Scale Carbon Capture and Storage Project (Mountaineer CCS II Project) would construct a commercial scale

320

Cuttings Analysis At Jemez Mountain Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area (1976) Jemez Mountain Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Jemez Mountain Geothermal Area (1976) Exploration Activity Details Location Jemez Mountain Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Retrieved from "http://en.openei.org/w/index.php?title=Cuttings_Analysis_At_Jemez_Mountain_Geothermal_Area_(1976)&oldid=473910

Note: This page contains sample records for the topic "mountain development icimod" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DOE - Office of Legacy Management -- Rocky Mountain Research Laboratories -  

Office of Legacy Management (LM)

Rocky Mountain Research Rocky Mountain Research Laboratories - CO 06 FUSRAP Considered Sites Site: ROCKY MOUNTAIN RESEARCH LABORATORIES (CO.06 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 1020 Yuma Street , Denver , Colorado CO.06-1 Evaluation Year: Circa 1987 CO.06-3 Site Operations: Processed beryllium on a pilot scale. CO.06-1 Site Disposition: Eliminated - No indication of radioactive materials handled at the site CO.06-2 Radioactive Materials Handled: No Primary Radioactive Materials Handled: None Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP CO.06-2 Also see Documents Related to ROCKY MOUNTAIN RESEARCH LABORATORIES CO.06-1 - Rocky Mountain Research Letter; Burton to Smith; Subject:

322

DOE Defends Its Motion to Withdraw Yucca Mountain Application | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Its Motion to Withdraw Yucca Mountain Application Its Motion to Withdraw Yucca Mountain Application DOE Defends Its Motion to Withdraw Yucca Mountain Application May 27, 2010 - 2:22pm Addthis Today, the United States Department of Energy filed with the NRC's Atomic Safety and Licensing Board a reply brief making clear that its motion to withdraw the pending application to license the Yucca Mountain geologic repository is authorized by the Atomic Energy Act (AEA) and consistent with the Nuclear Waste Policy Act (NWPA). As today's filing details, the AEA vests the Department with broad authority over the disposal of spent nuclear fuel and high-level radioactive waste. The NWPA does not strip the Department of that authority or otherwise compel the Department to go forward with the construction of the Yucca Mountain repository. Rather, the

323

Factors driving wind power development in the United States  

E-Print Network (OSTI)

1: CUMULATIVE U.S. WIND ENERGY CAPACITY policies and broadof wind energy development, resource potential, and policythe state’s tax policy, the Mountaineer Wind Energy Center

Bird, Lori A.; Parsons, Brian; Gagliano, Troy; Brown, Matthew H.; Wiser, Ryan H.; Bolinger, Mark

2003-01-01T23:59:59.000Z

324

20th-century variations in area of cirque glaciers and glacierets, Rocky Mountain National Park, Rocky Mountains,  

E-Print Network (OSTI)

, Rocky Mountains, Colorado, USA Matthew J. HOFFMAN,1 Andrew G. FOUNTAIN,2 Jonathan M. ACHUFF3 1 maps and aerial and ground-based photographs for the small cirque glaciers and glacierets of Rocky Mountain National Park in the northern Front Range of Colorado, USA, indicates modest change during the 20

Fountain, Andrew G.

325

EPRI Yucca Mountain Total System Performance Assessment Code (IMARC) Version 10  

Science Conference Proceedings (OSTI)

Since 1989, EPRI has been conducting independent assessments of the proposed deep geologic repository for the disposal of spent nuclear fuel (SNF) and high level radioactive waste (HLW) at Yucca Mountain, Nevada. EPRI pioneered application of the total system performance assessment (TSPA) approach for evaluating performance of geologic repository systems on a probabilistic basis. Along the way, EPRI developed the Integrated Multiple Assumptions and Release Code (IMARC) as its primary analytical tool for ...

2009-06-30T23:59:59.000Z

326

Testimony of Greg Friedman Yucca Mountain  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environment and the Economy Environment and the Economy of the Committee on Energy and Commerce U.S. House of Representatives FOR RELEASE ON DELIVERY 1:00 PM Wednesday, June 1, 2011 1 Mr. Chairman and members of the Subcommittee, I am pleased to be here at your request to testify on matters relating to the Department of Energy's Yucca Mountain Project. As you know, issues surrounding the termination of the Project have been widely publicized. They directly impact the Department's responsibilities to manage legacy waste generated from nuclear weapons production and to accept and dispose of spent nuclear fuel emanating from commercial nuclear reactors. The United States has invested nearly 30 years of effort and expended over $15 billion to

327

Mountain Parks Electric, Inc | Open Energy Information  

Open Energy Info (EERE)

Parks Electric, Inc Parks Electric, Inc Jump to: navigation, search Name Mountain Parks Electric, Inc Place Colorado Utility Id 13050 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial: Large Power Peak-Shaving Rate (Primary Service) Commercial Commercial: Large Power Peak-Shaving Rate (Secondary Service) Commercial Commercial: Large Power Rate Commercial Commercial: Small Power Rate Commercial General Service (Residential): Time-of-Use Rate Rate A Residential General Service (Residential): Time-of-Use Rate, Rate B Residential

328

Rocky Mountain Humane Investing | Open Energy Information  

Open Energy Info (EERE)

Humane Investing Humane Investing Jump to: navigation, search Name Rocky Mountain Humane Investing Place Allenspark, Colorado Zip 80510 Product Allenspark-based investment management firm prioritising Socially Responsible Investing (SRI). Coordinates 40.19472°, -105.525719° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.19472,"lon":-105.525719,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

329

Aquarious Mountain Area, Arizona: APossible HDR Prospect  

DOE Green Energy (OSTI)

Exploration for Hot Dry Rock (HDR) requires the ability to delineate areas of thermal enhancement. It is likely that some of these areas will exhibit various sorts of anomalous conditions such as seismic transmission delays, low seismic velocities, high attenuation of seismic waves, high electrical conductivity in the crust, and a relatively shallow depth to Curie point of Magnetization. The Aquarius Mountain area of northwest Arizona exhibits all of these anomalies. The area is also a regional Bouguer gravity low, which may indicate the presence of high silica type rocks that often have high rates of radioactive heat generation. The one deficiency of the area as a HDR prospect is the lack of a thermal insulating blanket.

West, F.G.; Laughlin, A.W.

1979-05-01T23:59:59.000Z

330

Rocky Mountain Basins Produced Water Database  

DOE Data Explorer (OSTI)

Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

331

Geological map of Bare Mountain, Nye County, Nevada  

SciTech Connect

Bare Mountain comprises the isolated complex of mountain peaks southeast of the town of Beatty in southern Nye County, Nevada. This small mountain range lies between the alluvial basins of Crater Flat to the east and the northern Amargosa Desert to the southwest. The northern boundary of the range is less well defined, but for this report, the terrane of faulted Miocene volcanic rocks underlying Beatty Mountain and the unnamed hills to the east are considered to be the northernmost part of Bare Mountain. The southern tip of the mountain range is at Black Marble, the isolated hill at the southeast corner of the map. The main body of the range, between Fluorspar Canyon and Black Marble, is a folded and complexly faulted, but generally northward-dipping (or southward-dipping and northward-overturned), sequence of weakly to moderately metamorphosed upper Proterozoic and Paleozoic marine strata, mostly miogeoclinal (continental shelf) rocks. The geology of Bare Mountain is mapped at a scale of 1:24,000.

Monsen, S.A.; Carr, M.D.; Reheis, M.C.; Orkild, P.P.

1992-12-31T23:59:59.000Z

332

Repository site data report for unsaturated tuff, Yucca Mountain, Nevada  

Science Conference Proceedings (OSTI)

The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

1985-11-01T23:59:59.000Z

333

Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank  

Open Energy Info (EERE)

5) 5) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank Engineering, 2005) Exploration Activity Details Location Blue Mountain Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Geophysical surveys that have been conducted specifically for the geothermal program at Blue Mountain include a self-potential (SP) survey, and additional IP/electrical resistivity traversing. These surveys were conducted under a cooperative program between Noramex Corporation and the Energy and Geosciences Institute (EGI), University of Utah, with funding support from the DOE's Office of Geothermal Technology (DOE/OGT).

334

Rocky Mountain Power - FinAnswer Express | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express < Back Eligibility Agricultural Commercial Construction Industrial Savings Category Other Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Design & Remodeling Windows, Doors, & Skylights Program Info State Idaho Program Type Utility Rebate Program Rebate Amount '''New Construction/Major Renovation Only''' Interior Lighting: $0.08/kwh annual energy savings LED Fixture (Exterior): $100 Induction Fixture (Exterior): $125 CFL Wallpack (Exterior): $30 Lighting Control (Exterior): $70 '''Retrofit Only''' Fluorescent Fixture Upgrades: $5-$20/fixture

335

Program on Technology Innovation: Room at the Mountain  

Science Conference Proceedings (OSTI)

This report provides a preliminary analysis of the physical capacity of Yucca Mountain for the disposal of additional commercial spent nuclear fuel (CSNF). The result of this examination is that the current legislative limit on Yucca Mountain disposal capacity, 70,000 MTU of a combination of CSNF, DOE, and defense wastes (63,000 MTU CSNF; 7000 MTU or equivalent of DOE and defense wastes) is a small fraction of the actual available physical capacity of the Yucca Mountain system. EPRI is confident that at ...

2006-05-31T23:59:59.000Z

336

Rocky Mountain Power - New Homes Program for Builders | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - New Homes Program for Builders Rocky Mountain Power - New Homes Program for Builders Rocky Mountain Power - New Homes Program for Builders < Back Eligibility Construction Installer/Contractor Multi-Family Residential Residential Savings Category Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Windows, Doors, & Skylights Program Info State Utah Program Type Utility Rebate Program Rebate Amount '''New Construction Whole Home Options''' Home Performance ENERGY STAR Version 3 Certified Home: $500 (Single Family); $200 (Multifamily) ENERGY STAR Version 3 Certified Home: $250 (Single Family); $150 (Multifamily)

337

DOE to Send Proposed Yucca Mountain Legislation to Congress | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 6, 2007 - 10:28am March 6, 2007 - 10:28am Addthis WASHINGTON, DC - Secretary of Energy Samuel W. Bodman announced today he will send to the U.S. Congress a legislative proposal to enhance the nation's ability to manage and dispose of commercial spent nuclear fuel and Defense high-level radioactive waste. "This legislative proposal reflects the Administration's strong commitment to advancing the development of the Yucca Mountain repository, while seeking to provide stability, clarity and predictability in moving the project forward," Secretary Bodman said. "Nuclear power is a clean, reliable domestic source of energy that currently represents approximately 20 percent of the nation's energy supply. The Yucca Mountain repository is critical to the nation's current and future energy and national security

338

Copper Mountain Expansion I and II Solar Power Plant | Open Energy  

Open Energy Info (EERE)

Expansion I and II Solar Power Plant Expansion I and II Solar Power Plant Jump to: navigation, search Name Copper Mountain Expansion I and II Solar Power Plant Facility Copper Mountain Expansion I and II Sector Solar Facility Type Photovoltaic Developer First Solar/Sempra Location Boulder City, Nevada Coordinates 35.9785911°, -114.8324851° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.9785911,"lon":-114.8324851,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

339

Analysis and Mapping of Vegetation and Habitat for the Hart Mountain National Antelope Refuge  

Science Conference Proceedings (OSTI)

The Lakeview, Oregon, office of the U.S. Fish and Wildlife Service (USFWS) contracted Pacific Northwest National Laboratory to classify vegetation communities on Hart Mountain National Antelope Refuge in northeastern Nevada. The objective of the mapping project was to provide USFWS refuge biologists and planners with detailed vegetation and habitat information that can be referenced to make better decisions regarding wildlife resources, fuels and fire risk, and land management. This letter report describes the datasets and methods used to develop vegetation cover type and shrub canopy cover maps for the Hart Mountain National Antelope Refuge. The two map products described in this report are 1) a vegetation cover classification that provides updated information on the vegetation associations occurring on the refuge and 2) a map of shrub canopy cover based on high-resolution images and field data.

Tagestad, Jerry D.

2010-06-01T23:59:59.000Z

340

SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT  

SciTech Connect

This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The distribution of Pliocene and Quaternary basaltic volcanic centers is evaluated with respect to tectonic models for detachment, caldera, regional and local rifting, and the Walker Lane structural zone. Geophysical data are described for the YMR and are used as an aid to understand the distribution of past basaltic volcanic centers and possible future magmatic processes. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be greater than 10{sup -7} events per year. Bounding probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Arnargosa Valley and Crater Flat. The results of simulation modeling are used to assess the sensitivity of the disruption probability for the location of northeast boundaries of volcanic zones near the Yucca Mountain site. A new section on modeling of radiological releases associated with surface and subsurface magmatic activity has been added to chapter 6. The modeling results are consistent with past total system performance assessments that show future volcanic and magmatic events are not significant components of repository performance and volcanism is not a prio

FV PERRY, GA CROWE, GA VALENTINE AND LM BOWKER

1997-09-23T23:59:59.000Z

Note: This page contains sample records for the topic "mountain development icimod" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT  

Science Conference Proceedings (OSTI)

This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The distribution of Pliocene and Quaternary basaltic volcanic centers is evaluated with respect to tectonic models for detachment, caldera, regional and local rifting, and the Walker Lane structural zone. Geophysical data are described for the YMR and are used as an aid to understand the distribution of past basaltic volcanic centers and possible future magmatic processes. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be greater than 10{sup -7} events per year. Bounding probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Arnargosa Valley and Crater Flat. The results of simulation modeling are used to assess the sensitivity of the disruption probability for the location of northeast boundaries of volcanic zones near the Yucca Mountain site. A new section on modeling of radiological releases associated with surface and subsurface magmatic activity has been added to chapter 6. The modeling results are consistent with past total system performance assessments that show future volcanic and magmatic events are not significant components of repository performance and volcanism is not a prio

FV PERRY, GA CROWE, GA VALENTINE AND LM BOWKER

1997-09-23T23:59:59.000Z

342

Engineered barrier system and waste package design concepts for a potential geologic repository at Yucca Mountain  

Science Conference Proceedings (OSTI)

We are using an iterative process to develop preliminary concept descriptions for the Engineered Barrier System and waste-package components for the potential geologic repository at Yucca Mountain. The process allows multiple design concepts to be developed subject to major constraints, requirements, and assumptions. Involved in the highly interactive and interdependent steps of the process are technical specialists in engineering, metallic and nonmetallic materials, chemistry, geomechanics, hydrology, and geochemistry. We have developed preliminary design concepts that satisfy both technical and nontechnical (e.g., programmatic or policy) requirements.

Short, D.W.; Ruffner, D.J.; Jardine, L.J.

1991-10-01T23:59:59.000Z

343

Yucca Mountain Site Characterization Project: Technical Data Catalog quarterly supplement  

Science Conference Proceedings (OSTI)

The March 21, 1993, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1993, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1994.

NONE

1994-03-31T23:59:59.000Z

344

Yucca Mountain Site Characterization Project technical data catalog: Quarterly supplement  

SciTech Connect

The Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where the data may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed-in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and distributed in the month following the end of each quarter. A complete revision to the catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1994, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1995.

NONE

1994-12-31T23:59:59.000Z

345

Geothermometry At Socorro Mountain Area (Armstrong, Et Al., 1995) | Open  

Open Energy Info (EERE)

Geothermometry At Socorro Mountain Area (Armstrong, Et Al., 1995) Geothermometry At Socorro Mountain Area (Armstrong, Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Socorro Mountain Area (Armstrong, Et Al., 1995) Exploration Activity Details Location Socorro Mountain Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Corresponding Socorro caldera Carboniferous rocks were studied in the field in 1988-1992-Renault later completed geochemistry and silica-crystallite geothermometry, Armstrong petrographic analysis and cathodoluminescence, Oscarson SEM studies, and John Repetski (USGS, Reston, Virgina) conodont stratigraphy and color and textural alteration as guides to the carbonate rocks' thermal history. The carbonate-rock classification used in this

346

Two Independent Assessments Find the Department of Energy's Yucca Mountain  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Two Independent Assessments Find the Department of Energy's Yucca Two Independent Assessments Find the Department of Energy's Yucca Mountain Project is on Track Two Independent Assessments Find the Department of Energy's Yucca Mountain Project is on Track December 13, 2007 - 4:44pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) Director of the Office of Civilian Radioactive Waste Management (OCRWM) today released two independent assessments addressing areas critical to the overall success of the Yucca Mountain repository program. These assessments, which include an independent review of the OCRWM Quality Assurance (QA) Program and an independent review of its engineering processes and procedures, have concluded that the Yucca Mountain Project's current QA and engineering processes and procedures are consistent with standard nuclear industry

347

City of White Mountain, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Mountain, Alaska (Utility Company) Mountain, Alaska (Utility Company) Jump to: navigation, search Name City of White Mountain Place Alaska Utility Id 20535 Utility Location Yes Ownership M Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Commercial Residential Rate Residential Average Rates Residential: $0.7230/kWh Commercial: $0.7470/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_White_Mountain,_Alaska_(Utility_Company)&oldid=410426"

348

Rock Sampling At Florida Mountains Area (Brookins, 1982) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Rock Sampling At Florida Mountains Area (Brookins, 1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Florida Mountains Area (Brookins, 1982) Exploration Activity Details Location Florida Mountains Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Radiogenic heat production analysis from U,Th,K concentrations. References D. G. Brookins (1982) Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In The Precambrian And Younger Silicic Rocks Of The Zuni And Florida Mountains, New Mexico (Usa)

349

Two Independent Assessments Find the Department of Energy's Yucca Mountain  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Assessments Find the Department of Energy's Yucca Independent Assessments Find the Department of Energy's Yucca Mountain Project is on Track Two Independent Assessments Find the Department of Energy's Yucca Mountain Project is on Track December 13, 2007 - 4:44pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) Director of the Office of Civilian Radioactive Waste Management (OCRWM) today released two independent assessments addressing areas critical to the overall success of the Yucca Mountain repository program. These assessments, which include an independent review of the OCRWM Quality Assurance (QA) Program and an independent review of its engineering processes and procedures, have concluded that the Yucca Mountain Project's current QA and engineering processes and procedures are consistent with standard nuclear industry

350

Reflection Survey At Blue Mountain Area (Fairbank Engineering, 2007) | Open  

Open Energy Info (EERE)

Blue Mountain Area (Fairbank Engineering, 2007) Blue Mountain Area (Fairbank Engineering, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Blue Mountain Area (Fairbank Engineering, 2007) Exploration Activity Details Location Blue Mountain Area Exploration Technique Reflection Survey Activity Date Usefulness useful DOE-funding Unknown Notes A high-resolution seismic reflection survey was conducted by Utah Geophysical, Inc. (1990) along four widely spaced survey lines normal to range front fault sets. The survey was designed primarily to detect silicified zones or zones of argillic alteration, and faulting, to depths of about 300 meters (1000 feet), as part of the precious metals exploration program. One interpretation of the data showed discrete, high-angle faults

351

Inversion Breakup in Small Rocky Mountain and Alpine Basins  

Science Conference Proceedings (OSTI)

Comparisons are made between the postsunrise breakup of temperature inversions in two similar closed basins in very different climate settings, one in the eastern Alps and one in the Rocky Mountains. The small, high-altitude, limestone sinkholes ...

C. David Whiteman; Bernhard Pospichal; Stefan Eisenbach; Philipp Weihs; Craig B. Clements; Reinhold Steinacker; Erich Mursch-Radlgruber; Manfred Dorninger

2004-08-01T23:59:59.000Z

352

Aeromagnetic Survey At Blue Mountain Area (Fairbank Engineering, 2003) |  

Open Energy Info (EERE)

Blue Mountain Area (Fairbank Blue Mountain Area (Fairbank Engineering, 2003) Exploration Activity Details Location Blue Mountain Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The airborne magnetometer and VLF-EM surveys carried out by Aerodat Limited, in 1988, covered the western flank of Blue Mountain including most of the geothermal lease area. The interpreted data (total field magnetic contours; calculated vertical magnetic gradient) indicate parallel sets of northerly, northeasterly, and northwesterly-trending structures that correspond well with the major fault sets identified from geologic mapping and interpreted drilling sections. Also, an elongate northerly-trending area of low magnetic gradient coincides closely with the area of intense

353

Geology and Temperature Gradient Surveys Blue Mountain Geothermal  

Open Energy Info (EERE)

Geology and Temperature Gradient Surveys Blue Mountain Geothermal Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Abstract Triassic argillite and sandstone of the Grass Valley Formation and phyllitic mudstone of the overlying Raspberry Formation, also of Triassic age, host a blind geothermal system under exploration by Blue Mountain Power Company Inc. with assistance from the Energy & Geoscience Institute. Geologically young, steeply dipping, open fault sets, striking N50-60°E,N50-60°W, and N-S intersect in the geothermal zone providing deep permeability over a wide area. Extensive silicification andhydro

354

Snowflake White Mountain Power Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Snowflake White Mountain Power Biomass Facility Snowflake White Mountain Power Biomass Facility Jump to: navigation, search Name Snowflake White Mountain Power Biomass Facility Facility Snowflake White Mountain Power Sector Biomass Owner Renegy Location Snowflake, Arizona Coordinates 34.5133698°, -110.0784491° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.5133698,"lon":-110.0784491,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

355

Rocky Mountain (PADD 4) Refinery and Blender Net Production of ...  

U.S. Energy Information Administration (EIA)

Rocky Mountain (PADD 4) Refinery and Blender Net Production of Normal Butane (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8

356

Waves on a Marine Inversion Undergoing Mountain Leeside Wind Shear  

Science Conference Proceedings (OSTI)

Inland penetration of a shallow layer of marine air is a common occurrence along the coast of southern California. The marine air generally is confined to the coastal basin by surrounding mountains and a capping inversion. Air above the inversion ...

William T. Sommers

1981-06-01T23:59:59.000Z

357

Mesoscale Snowfall Prediction and Verification in Mountainous Terrain  

Science Conference Proceedings (OSTI)

Short-term forecasting of precipitation often relies on meteorological radar coverage to provide information on the intensity, extent, and motion of approaching mesoscale features. However, in significant portions of mountainous regions, radar ...

Melanie Wetzel; Michael Meyers; Randolph Borys; Ray McAnelly; William Cotton; Andrew Rossi; Paul Frisbie; David Nadler; Douglas Lowenthal; Stephen Cohn; William Brown

2004-10-01T23:59:59.000Z

358

Wave–Turbulence Interactions in a Breaking Mountain Wave  

Science Conference Proceedings (OSTI)

The mean and turbulent structures in a breaking mountain wave are considered through an ensemble of high-resolution (essentially large-eddy simulation) wave-breaking calculations. Of particular interest are the turbulent heat and momentum fluxes ...

Craig C. Epifanio; Tingting Qian

2008-10-01T23:59:59.000Z

359

Large-Amplitude Mountain Wave Breaking over Greenland  

Science Conference Proceedings (OSTI)

A large-amplitude mountain wave generated by strong southwesterly flow over southern Greenland was observed during the Fronts and Atlantic Storm-Track Experiment (FASTEX) on 29 January 1997 by the NOAA G-IV research aircraft. Dropwindsondes ...

James D. Doyle; Melvyn A. Shapiro; Qingfang Jiang; Diana L. Bartels

2005-09-01T23:59:59.000Z

360

Rocky Mountain (PADD 4) Foreign Crude Oil Refinery Receipts by ...  

U.S. Energy Information Administration (EIA)

Rocky Mountain (PADD 4) Foreign Crude Oil Refinery Receipts by Tank Cars (Rail) (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8

Note: This page contains sample records for the topic "mountain development icimod" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A New Look at Snowpack Trends in the Cascade Mountains  

Science Conference Proceedings (OSTI)

This study examines the changes in Cascade Mountain spring snowpack since 1930. Three new time series facilitate this analysis: a water-balance estimate of Cascade snowpack from 1930 to 2007 that extends the observational record 20 years earlier ...

Mark T. Stoelinga; Mark D. Albright; Clifford F. Mass

2010-05-01T23:59:59.000Z

362

Energy Flux and Wavelet Diagnostics of Secondary Mountain Waves  

Science Conference Proceedings (OSTI)

In recent years, aircraft data from mountain waves have been primarily analyzed using velocity and temperature power spectrum and momentum flux estimation. Herein it is argued that energy flux wavelets (i.e., pressure–velocity wavelet cross-...

Bryan K. Woods; Ronald B. Smith

2010-11-01T23:59:59.000Z

363

Australian Winter Mountain Storm Clouds: Precipitation Augmentation Potential  

Science Conference Proceedings (OSTI)

Two Australian winter mountain storm field research projects were conducted by the Commonwealth Scientific and Industrial Research Organisation Division of Atmospheric Research and the Desert Research Institute Atmospheric Sciences Center in the ...

Alexis B. Long; Elizabeth J. Carter

1996-09-01T23:59:59.000Z

364

Pressure Perturbations and Upslope Flow over a Heated, Isolated Mountain  

Science Conference Proceedings (OSTI)

Surface and upper-air data, collected as part of the Cumulus Photogrammetric, In Situ, and Doppler Observations (CuPIDO) experiment during the 2006 monsoon season around the Santa Catalina Mountains in southeast Arizona, are used to study the ...

Bart Geerts; Qun Miao; J. Cory Demko

2008-11-01T23:59:59.000Z

365

The Interaction of Simulated Squall Lines with Idealized Mountain Ridges  

Science Conference Proceedings (OSTI)

Numerical simulations of squall lines traversing sinusoidal mountain ridges are performed using the Advanced Regional Prediction System cloud-resolving model. Precipitation and updraft strength are enhanced through orographic ascent as a squall ...

Jeffrey Frame; Paul Markowski

2006-07-01T23:59:59.000Z

366

The Penetration of Mountain Waves into the Middle Atmosphere  

Science Conference Proceedings (OSTI)

A linear nonhydrostatic model of gravity waves forced by a bell-shaped ridge is used to investigate the penetration of mountain waves into the stratosphere and mesosphere during winter and fall. Gravity waves with horizontal scales less than 30 ...

Mark R. Schoeberl

1985-12-01T23:59:59.000Z

367

Do Breaking Mountain Waves Deceierate the Local Mean Flow?  

Science Conference Proceedings (OSTI)

Numerical simulations are examined in order to determine the local mean flow response to the generation, propagation, and breakdown of two-dimensional mountain waves. Realistic and idealized cases are considered, and in all instances the pressure ...

Dale R. Durran

1995-11-01T23:59:59.000Z

368

Rocky Mountain Power - Residential Energy Efficiency Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for contractor) Duct Sealing: 275 - 375 (75 for contractor) Windows: 1sq. ft. Insulation: 0.15 - 0.60sq. ft. Rocky Mountain Power offers the Home Energy Savings Program...

369

Density of Freshly Fallen Snow in the Central Rocky Mountains  

Science Conference Proceedings (OSTI)

New snow density distributions are presented for six measurement sites in the mountains of Colorado and Wyoming. Densities were computed from daily measurements of new snow depth and water equivalent from snow board cores. All data were measured ...

Arthur Judson; Nolan Doesken

2000-07-01T23:59:59.000Z

370

INTER-MOUNTAIN BASINS SHALE BADLAND extent exaggerated for display  

E-Print Network (OSTI)

INTER-MOUNTAIN BASINS SHALE BADLAND R.Rondeau extent exaggerated for display ACHNATHERUM HYMENOIDES HERBACEOUS ALLIANCE Achnatherum hymenoides Shale Barren Herbaceous Vegetation ARTEMISIA BIGELOVII SHRUBLAND ALLIANCE Leymus salinus Shale Sparse Vegetation Overview: This widespread ecological system

371

Program on Technology Innovation: Room at the Mountain  

Science Conference Proceedings (OSTI)

Projected expansion of nuclear power beyond the year 2014 will result in the need for commercial spent nuclear fuel (CSNF) management options in addition to the currently legislated CSNF storage capacity at the proposed Yucca Mountain geological repository. At present, 70,000 MTHM of storage capacity has been authorized, with a projection that 63,000 MTHM would be used for CSNF. This report extends preliminary analyses of the maximum physical capacity of the Yucca Mountain repository, presented in EPRI r...

2007-06-29T23:59:59.000Z

372

Mountain-Wave Drag in the Stratosphere and Mesosphere Inferred from Observed Winds and a Simple Mountain-Wave Parameterization Scheme  

Science Conference Proceedings (OSTI)

A daily analysis of mountain-wave propagation through observed, global wind, and temperature fields in January and August is presented. Winds and temperatures are obtained from the daily 18-level NMC Climate Analysis Center. Mountain-wave ...

Julio T. Bacmeister

1993-02-01T23:59:59.000Z

373

Mercury audit at Rocky Mountain Arsenal  

Science Conference Proceedings (OSTI)

This report presents the results of an environmental compliance audit to identify potential mercury-containing equipment in 261 building and 197 tanks at the Rocky Mountain Arsenal (RMA). The RMA, located near Denver, Colorado, is undergoing clean up and decommissioning by the Department of the Army. Part of the decommissioning procedure is to ensure that all hazardous wastes are properly identified and disposed of. The purpose of the audit was to identify any mercury spills and mercury-containing instrumentation. The audit were conducted from April 7, 1992, through July 16, 1992, by a two-person team. The team interviewed personnel with knowledge of past uses of the buildings and tanks. Information concerning past mercury spills and the locations and types of instrumentation that contain mercury proved to be invaluable for an accurate survey of the arsenal. The team used a Jerome{reg_sign} 431-X{trademark} Mercury Vapor Analyzer to detect spills and confirm locations of mercury vapor. Twelve detections were recorded during the audit and varied from visible mercury spills to slightly elevated readings in the corners of rooms with past spills. The audit also identified instrumentation that contained mercury. All data have been incorporated into a computerized data base that is compatible with the RMA data base.

Smith, S.M.; Jensen, M.K. [Oak Ridge National Lab., TN (United States); Anderson, G.M. [Rocky Mountain Arsenal, Denver, CO (United States)

1994-02-01T23:59:59.000Z

374

Modeling of coupled heat transfer and reactive transport processes in porous media: Application to seepage studies at Yucca Mountain, Nevad a  

E-Print Network (OSTI)

Fractured Rock of Yucca Mountain, Nevada: Heterogeneity andfractured rocks of Yucca Mountain have been extensivelyHydrothermal Flow at Yucca Mountain, Part I: Modeling and

Mukhopadhyay, S.; Sonnenthal, E.L.; Spycher, N.

2008-01-01T23:59:59.000Z

375

Evaluating the Moisture Conditions in the Fractured Rock at Yucca Mountain: The Impact of Natural Convection Processes in Heated Emplacement Drifts  

E-Print Network (OSTI)

THE FRACTURED ROCK AT YUCCA MOUNTAIN: THE IMPACT OF NATURALgeologic repository at Yucca Mountain, Nevada, will stronglyWaste Emplacement Drifts at Yucca Mountain, Nevada, Nuclear

Birkholzer, J.T.; Webb, S.W.; Halecky, N.; Peterson, P.F.; Bodvarsson, G.S.

2005-01-01T23:59:59.000Z

376

Response to "Analysis of the Treatment, by the U.S. Department of Energy, of the FEP Hydrothermal Activity in the Yucca Mountain Performance Assessment" by Yuri Dublyansky  

E-Print Network (OSTI)

Mineral Formation at Yucca Mountain, Nevada. ” Geochimica etand Heat Flow Near Yucca Mountain, Nevada: Some Tectonic andNuclear Waste Site, Yucca Mountain, Nevada, USA: Pedogenic,

Houseworth, J.E.

2010-01-01T23:59:59.000Z

377

State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, January-July 1981  

SciTech Connect

The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. For each state (Colorado, Montana, New Mexico, North and South Dakota, Utah, and Wyoming), prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are also covered, and findings and recommendations are given for each state. Some background information about the program is provided. (LEW)

Lunis, B.C.; Toth, W.J. (comps.)

1982-05-01T23:59:59.000Z

378

State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1981  

SciTech Connect

The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. The period covered is July through December 1981. Background information is provided, program objectives and the technical approach used are discussed, and the benefits of the program are described. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized.

Lunis, B.C. (ed.)

1982-08-01T23:59:59.000Z

379

Shallow infiltration processes in arid watersheds at Yucca Mountain, Nevada  

Science Conference Proceedings (OSTI)

A conceptual model of shallow infiltration processes at Yucca Mountain, Nevada, was developed for use in hydrologic flow models to characterize net infiltration (the penetration of the wetting front below the zone influenced by evapotranspiration). The model categorizes the surface of the site into four infiltration zones. These zones were identified as ridgetops, sideslopes, terraces, and active channels on the basis of water-content changes with depth and time. The maximum depth of measured water-content change at a specific site is a function of surface storage capacity, the timing and magnitude of precipitation, evapotranspiration, and the degree of saturation of surficial materials overlying fractured bedrock. Measured water-content profiles for the four zones indicated that the potential for net infiltration is higher when evapotranspiration is low (i.e winter, cloudy periods), where surface concentration of water is likely to occur (i.e. depressions, channels), where surface storage capacity is low, and where fractured bedrock is close to the surface.

Flint, L.E.; Flint, A.L. Hevesi, J.A. [Geological Survey, Mercury, NV (United States)

1994-12-31T23:59:59.000Z

380

Seismicity in the Vicinity of Yucca Mountain, Nevada, for the Period October 1, 2003 to September 30, 2004  

SciTech Connect

This report describes the seismicity and earthquake monitoring activities within the Yucca Mountain region during fiscal year 2004 (FY2004 - October 1, 2003, through September 30, 2004) based on operation of the Southern Great Basin Digital Seismic Network (SGBDSN). Network practices and earthquake monitoring conducted at the Nevada Seismological Laboratory (NSL) under DOE directives for prior fiscal years are covered in similar yearly reports (see references). Real-time systems, including regional data telemetry and data management at NSL, provide for the automatic determination of earthquake locations and magnitudes and notification of important earthquakes in the region to UNR staff and DOE management. All waveform and meta-data, including automatic locations, phase arrival information, and analyst reviewed information, are managed through a relational database system allowing quick and reliable evaluation and analysis of ongoing earthquake activity near Yucca Mountain. This network, which contains weak-motion and strong-motion instrumentation, addresses the seismic hazard of the Yucca Mountain area by providing accurate earthquake magnitudes for earthquake recurrence estimates, spatial hypocentral control to very low magnitudes for identifying and assessing active faults and verifying tectonic models, true ground motions over the complete range of expected earthquake amplitudes for developing predictive models, and earthquake source information for characterizing active faulting. The Nevada Seismological Laboratory operated a 30-station monitoring network within a ring of approximately 50 km radius around Yucca Mountain during FY2004. This year showed the second-lowest seismic moment rate in the NTS and Yucca Mountain region for any fiscal year reporting period since prior to the 1992 M 5.6 Little Skull Mountain (LSM) earthquake. A total of 2180 earthquakes were located for FY2004. The largest event during FY2004 was M 2.99 and there were only 12 earthquakes greater than M 2.00. This is the second year since the LSM event that no M ? 3.00 earthquake was recorded within 65 km of Yucca Mountain. (FY2003 was the first.) For FY2004, focal mechanisms were developed for 24 earthquakes. These focal mechanisms show predominantly strike-slip motion with a tension axis oriented WNW-ESE. Four earthquakes in FY2004 were within 10 km of Yucca Mountain, all having M < 0. A total of 31 earthquakes have occurred in this immediate zone around Yucca Mountain since the digital network operations started in October 1995. Activity in the Death Valley area was monitored by several analog stations still maintained in conjunction with the Yucca Mountain monitoring. There is continuing aftershock activity in the zone of the 1993 M 6.1 Eureka Valley and 1999 M 5.6 Scotty’s Junction earthquakes. Overall, the seismicity level of the Death Valley area is significantly greater than that in the vicinity of Yucca Mountain.

von Seggern, David; Smith, Ken

2007-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "mountain development icimod" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Revised potentiometric-surface map, Yucca Mountain and vicinity, Nevada  

SciTech Connect

The revised potentiometric-surface map presented in this report updates earlier maps of the Yucca Mountain area using mainly 1988 average water levels. Because of refinements in the corrections to the water-level measurements, these water levels have increased accuracy and precision over older values. The small-gradient area to the southeast of Yucca Mountain is contoured with a 0.25-meter interval and ranges in water-level altitude from 728.5 to 73 1.0 meters. Other areas with different water levels, to the north and west of Yucca Mountain, are illustrated with shaded patterns. The potentiometric surface can be divided into three regions: (1) A small-gradient area to the southeast of Yucca Mountain, which may be explained by flow through high-transmissivity rocks or low ground-water flux through the area; (2) A moderate-gradient area, on the western side of Yucca Mountain, where the water-level altitude ranges from 775 to 780 meters, and appears to be impeded by the Solitario Canyon Fault and a splay of that fault; and (3) A large-gradient area, to the north-northeast of Yucca Mountain, where water level altitude ranges from 738 to 1,035 meters, possibly as a result of a semi-perched groundwater system. Water levels from wells at Yucca Mountain were examined for yearly trends using linear least-squares regression. Data from five wells exhibited trends which were statistically significant, but some of those may be a result of slow equilibration of the water level from drilling in less permeable rocks. Adjustments for temperature and density changes in the deep wells with long fluid columns were attempted, but some of the adjusted data did not fit the surrounding data and, thus, were not used.

Ervin, E.M.; Luckey, R.R.; Burkhardt, D.J.

1994-12-01T23:59:59.000Z

382

Construction features of the exploratory shaft at Yucca Mountain  

SciTech Connect

The Exploratory Shaft (ES) at Yucca Mountain is planned to be constructed during 1985 and 1986 as part of the detailed site characterization for one of three sites which may be selected as candidates for location of a high-level radioactive waste repository. Conventional mining methods will be used for the shaft sinking phase of the ES project. The ES will be comprised of surface support facilities, a 1480-ft-deep circular shaft lined with concrete to a finished inside diameter of 12 ft, lateral excavations and test installations extending up to 200 ft from the shaft, and long lateral borings extending up to 2300 ft from the shaft. The estimated time for sinking the shaft to a total depth of about 1480 ft and completing the lateral excavations and borings is about two years. The major underground development planned for the primary test level at a depth of 1200 ft consists of the equivalent of 1150 ft of 15- by 15-ft drift. The total volume of rock to be removed from the shaft proper and the lateral excavations totals about 1/2 million cubic feet. Construction equipment for the shaft and underground excavation phases consists of conventional mine hoisting equipment, shot hole and rock bolt drilling jumbos, mucking machines, and hauling machines. The desire to maintain relatively uniform and even walls in selected shaft and drift intervals will require that controlled blasting techniques be employed. Certain lateral boring operations associated with tests to be conducted in the underground development may pose some unusual problems or require specialized equipment. One of the operations is boring and lining a 30-in.-diam by 600-ft-long horizontal hole with a boring machine being developed under the direction of Sandia National Laboratories. Another special operation is coring long lateral holes (500 to 2000 ft) with minimum use of liquid circulating fluids. 8 figures.

Adair, G.W.; Fiore, J.N.

1984-12-31T23:59:59.000Z

383

Performance Confirmation for the Candidate Yucca Mountain High-Level Nuclear Waste Repository: Final Report -- December 2001  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) secretary, the President, and Congress may soon consider whether to allow the DOE to proceed into the formal licensing process with the Yucca Mountain high-level nuclear waste repository site. A long-term research and development (R&D) and performance confirmation program can provide substantially more confidence that the correct decisions are being made at each stage of repository development. It is necessary, however, to make sure that the confirmation program will, ...

2001-12-13T23:59:59.000Z

384

Strategic Basis for License Application Planning for a Potential Yucca Mountain Repository  

SciTech Connect

If Yucca Mountain, Nevada is designated as the site for development of a geologic repository for disposal of spent nuclear fuel and high-level radioactive waste, the Department of Energy (DOE) must obtain Nuclear Regulatory Commission (NRC) approval first for repository construction, then for an operating license, and, eventually, for repository closure and decommissioning. The licensing criteria defined in Code of Federal Regulations, Title 10, Part 63 (10 CFR Part 63) establish the basis for these NRC decisions. Submittal of a license application (LA) to the NRC for authorization to construct a repository at the Yucca Mountain site is, at this point, only a potential future action by the DOE. The policy process defined in the Nuclear Waste Policy Act (NWPA), as amended, for recommendation and designation of Yucca Mountain as a repository site makes it difficult to predict whether or when the site might be designated. The DOE may only submit a LA to the NRC if the site designation takes effect. In spite of this uncertainty, the DOE must take prudent and appropriate action now, and over the next several years, to prepare for development and timely submittal of a LA. This is particularly true given the need for the DOE to develop, load, and certify the operation of its electronic information system to provide access to its relevant records as part of the licensing support network (LSN) in compliance with NRC requirements six months prior to LA submittal. The DOE must also develop a LA, which is a substantially different document from those developed to support a Site Recommendation (SR) decision. The LA must satisfy NRC licensing criteria and content requirements, and address the acceptance criteria defined by the NRC in its forthcoming Yucca Mountain Review Plan (YMRP). The content of the LA must be adequate to facilitate NRC acceptance and docketing for review, and the LA and its supporting documents must provide the documented basis for the NR C findings required for a construction authorization. The LA must also support a licensing proceeding before an Atomic Safety and Licensing Board panel prior to NRC action on any decision to authorize construction. The DOE has established a strategic basis for planning that is intended to provide the framework for development of an integrated plan for activities leading to preparation and submittal of a LA.

Newberry, C. M.; Brocoum, S. J.; Gamble, R. P.; Murray, R. C.; Cline, M.

2002-02-26T23:59:59.000Z

385

Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) |  

Open Energy Info (EERE)

Blue Mountain Area (Fairbank & Neggemann, 2004) Blue Mountain Area (Fairbank & Neggemann, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) Exploration Activity Details Location Blue Mountain Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown References Brian D. Fairbank, Kim V. Niggemann (2004) Deep Blue No 1- A Slimhole Geothermal Discovery At Blue Mountain, Humboldt County, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Thermal_Gradient_Holes_At_Blue_Mountain_Area_(Fairbank_%26_Neggemann,_2004)&oldid=386709" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link

386

Field trip guide to selected outcrops, Arbuckle Mountains, Oklahoma  

Science Conference Proceedings (OSTI)

The Arbuckle Mountains, named for Brigadier General Matthew Arbuckle, are located in south-central Oklahoma. The formations that comprise the Arbuckle Mountains have been extensively studied for hydrocarbon source rock and reservoir rock characteristics that can be applied to the subsurface in the adjacent Anadarko and Ardmore basins. Numerous reports and guidebooks have been written concerning the Arbuckle Mountains. A few important general publications are provided in the list of selected references. The purpose of this handout is to provide general information on the geology of the Arbuckle Mountains and specific information on the four field trip stops, adapted from the literature. The four stops were at: (1) Sooner Rock and Sand Quarry; (2) Woodford Shale; (3) Hunton Anticline and Hunton Quarry; and (4) Tar Sands of Sulfur Area. As part of this report, two papers are included for more detail: Paleomagnetic dating of basinal fluid migration, base-metal mineralization, and hydrocarbon maturation in the Arbuckle Mountains, Oklahoma and Laminated black shale-bedded chert cyclicity in the Woodford Formation, southern Oklahoma.

NONE

1991-11-17T23:59:59.000Z

387

A Conceptual and Numerical Model for Thermal-Hydrological-Chemical Processes in the Yucca Mountain Drift Scale Test  

E-Print Network (OSTI)

of the unsaturated zone at Yucca Mountain, NV from three-Scale Heater Test. Yucca Mountain Project Level 4 MilestoneReport, Chapter 6. Yucca Mountain Project Level 4 Milestone

Sonnenthal, Eric L.; Spycher, Nicolas F.; Conrad, Mark; Apps, John

2003-01-01T23:59:59.000Z

388

Preliminary 3-D site-scale studies of radioactive colloid transort in the unsaturated zone at Yucca Mountain, Nevada  

E-Print Network (OSTI)

into drifts at Yucca Mountain. ” J. Contam. Hydrol. , 38(1–pneumatic response at Yucca Mountain, Nevada. J. Contam.unsaturated zone model of Yucca Mountain, Nevada. J. Contam.

Moridis, G.J.; Hu, Q.; Wu, Y.-S.; Bodvarsson, G.S.

2001-01-01T23:59:59.000Z

389

Coupled Analysis of Change in Fracture Permeability during the Cooling Phase of the Yucca Mountain Drift Scale Test  

E-Print Network (OSTI)

mechanical analysis of the Yucca Mountain Drift Scale Test –scale heater test at Yucca Mountain, Nevada, USA. In.t J.and Cooling at the Yucca Mountain Drift Scale Test. In.t J.

Rutqvist, J.

2008-01-01T23:59:59.000Z

390

Evaluating Flake Assemblage and Stone Tool Distributions at a Large Western Stemmed Tradition Site Near Yucca Mountain, Nevada  

E-Print Network (OSTI)

Tradition Site Near Yucca Mountain, Nevada G R E G O R Y M .Institute near Yucca Mountain, Nevada, have revealed anlevel at the top of Yucca Mountain. Vegetation is typi- cal

Haynes, Gregory M

1996-01-01T23:59:59.000Z

391

Effects of Mountain Uplift on East Asian Summer Climate Investigated by a Coupled Atmosphere–Ocean GCM  

Science Conference Proceedings (OSTI)

To study the effects of progressive mountain uplift on East Asian summer climate, a series of coupled general circulation model (CGCM) experiments were performed. Eight different mountain heights were used: 0% (no mountain), 20%, 40%, 60%, 80%, ...

Akio Kitoh

2004-02-01T23:59:59.000Z

392

Performance predictions for mechanical excavators in Yucca Mountain tuffs; Yucca Mountain Site Characterization Project  

SciTech Connect

The performances of several mechanical excavators are predicted for use in the tuffs at Yucca Mountain: Tunnel boring machines, the Mobile Miner, a roadheader, a blind shaft borer, a vertical wheel shaft boring machine, raise drills, and V-Moles. Work summarized is comprised of three parts: Initial prediction using existing rock physical property information; Measurement of additional rock physical properties; and Revision of the initial predictions using the enhanced database. The performance predictions are based on theoretical and empirical relationships between rock properties and the forces-experienced by rock cutters and bits during excavation. Machine backup systems and excavation design aspects, such as curves and grades, are considered in determining excavator utilization factors. Instanteous penetration rate, advance rate, and cutter costs are the fundamental performance indicators.

Ozdemir, L.; Gertsch, L.; Neil, D.; Friant, J. [Colorado School of Mines, Golden, CO (United States). Earth Mechanics Inst.

1992-09-01T23:59:59.000Z

393

Cuttings Analysis At Marysville Mountain Geothermal Area (1976) | Open  

Open Energy Info (EERE)

Geothermal Area (1976) Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Marysville Mountain Geothermal Area (1976) Exploration Activity Details Location Marysville Mountain Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Retrieved from "http://en.openei.org/w/index.php?title=Cuttings_Analysis_At_Marysville_Mountain_Geothermal_Area_(1976)&oldid=473911"

394

Rocky Mountain Power - FinAnswer Express | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express < Back Eligibility Agricultural Commercial Construction Industrial Multi-Family Residential Savings Category Other Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Insulation Design & Remodeling Windows, Doors, & Skylights Program Info State Utah Program Type Utility Rebate Program Rebate Amount Interior Lighting: $0.08/kWh annual savings Induction Fixture (Exterior): $125/unit LED Outdoor/Roadway Fixture (Exterior): $100/unit CFL Wall Pack (Exterior): $30/unit Lighting Controls: $75/sensor Wall Insulation: $0.07/sq. ft. Roof Insulation: $0.05/sq. ft.

395

Interior Bureau of Land Management Battle Mountain District Office  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Department of the United States Department of the Interior Bureau of Land Management Battle Mountain District Office Battle Mountain Nevada November 19, 2010 Tonopah Field Office Tonopah, Nevada FES-10-57 N-86292 DOI-BLM-NVB020-2009-0104-EIS Tonopah Solar Energy, LLC Crescent Dunes Solar Energy Project Final Environmental Impact Statement Proposed Crescent Dunes Solar Energy Project: Final EIS| ii BLM Mission Statement It is the mission of the Bureau of Land Management to sustain the health, diversity, and productivity of the public lands for the use and enjoyment of present and future generations. BLM/NV/BM/EIS/10/30+1793 DOI No. FES 10-57 http://www.blm.gov/nv/stlenlfo/battle_mountain_field.html In Reply Refer To: N-86292 DOI-BLM-NVBO2O-2009-0 1 04-EIS 2800 (NVB0200) Dear

396

Rocky Mountain Power - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - Residential Energy Efficiency Rebate Program Rocky Mountain Power - Residential Energy Efficiency Rebate Program Rocky Mountain Power - Residential Energy Efficiency Rebate Program < Back Eligibility Installer/Contractor Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Utah Program Type Utility Rebate Program Rebate Amount Clothes Washers: up to $50 Dishwashers: $20 Refrigerator: $40 Freezer: $20 Electric Water Heaters: $50 CFL/LED Light Fixtures: $20/fixture Insulation: $0.15 - $0.65/sq. ft., plus potential bonus Windows: $0.50 - $2/sq. ft. Room Air Conditioners: $30 Duct Sealing/Insulation/Weatherization (Electric): up to $300

397

Thermohydrologic behavior and repository design at Yucca Mountain  

DOE Green Energy (OSTI)

Radioactive decay of nuclear waste emplaced at Yucca Mountain will produce an initial heat flux many times larger than the heat flux in some natural geothermal systems. This heat flux will change the thermal and hydrologic environment at Yucca Mountain significantly, affecting both the host rock and conditions within the emplacement tunnels (drifts). Understanding the thermohydrologic behavior in this coupled natural and engineered system is critical to the assessment of the viability of Yucca Mountain as a nuclear-waste repository site and for repository design decision-making. We report results from a study that uses our multi-scale modeling approach to explore the relationship between repository design, thermohydrologic behavior, and key repository performance measures.

Buscheck, T; Rosenberg, N D; Gansemer, J D; Sun, Y

2000-10-01T23:59:59.000Z

398

Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Abstract Self potential and electrical resistivity surveys have been completed at the Blue Mountain geothermal area to search for the source of thermal fluids discovered during drilling for mineral exploration, and to help characterize the geothermal resource. Two large SP anomalies are associated with the artesian thermal area and the area of highest temperature observed in drill holes. Two similar anomalies were mapped 1 to 3 km to the south

399

Jemez Mountains Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountains Elec Coop, Inc Jemez Mountains Elec Coop, Inc Jump to: navigation, search Name Jemez Mountains Elec Coop, Inc Place New Mexico Utility Id 9699 Utility Location Yes Ownership C NERC Location WECC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Power Service Industrial Large Power Service-TOU Industrial Municipal Service and Small School Service Commercial Municipal Service and Small School Service TOU Commercial Residential Service Residential Residential Time of Use Rates Residential Small Commercial Service Residential

400

Magnetotellurics At Socorro Mountain Area (Owens, Et Al., 2005) | Open  

Open Energy Info (EERE)

Owens, Et Al., 2005) Owens, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Socorro Mountain Area (Owens, Et Al., 2005) Exploration Activity Details Location Socorro Mountain Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes magneto-telluric surveys are pending for the near future when geochemical and surface geophysical surveys are complete. Results of this survey should verify the occurrence of low-resisitivity fluids and alteration at depth. References Lara Owens, Richard Baars, David Norman, Harold Tobin (2005) New Methods In Exploration At The Socorro Peak Kgra- A Gred Iii Project Retrieved from "http://en.openei.org/w/index.php?title=Magnetotellurics_At_Socorro_Mountain_Area_(Owens,_Et_Al.,_2005)&oldid=388765

Note: This page contains sample records for the topic "mountain development icimod" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

City of Kings Mountain, North Carolina (Utility Company) | Open Energy  

Open Energy Info (EERE)

Mountain, North Carolina (Utility Company) Mountain, North Carolina (Utility Company) Jump to: navigation, search Name City of Kings Mountain Place North Carolina Utility Id 10324 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Housing Authority Industrial Large General Service (>500kW) Commercial Large Industrial Service (>500kW) Industrial Medium General Service (100-500kW) Commercial Medium Industrial Service (100-500kW) Industrial Outdoor Lighting Service- 150W High Pressure Sodium- Urban, Existing Pole

402

Geothermal Drilling Success at Blue Mountain, Nevada | Open Energy  

Open Energy Info (EERE)

Drilling Success at Blue Mountain, Nevada Drilling Success at Blue Mountain, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Drilling Success at Blue Mountain, Nevada Abstract Exploration in a blind prospect has led to the confirmation of a geothermal resource at Blue Mt.Nevada. The latest results include drilling of three production wells into Piedmont faults. These wells produce from a 185 to 190°C dilute benign brine reservoir. Short flow tests have shown prolific flow rates and indications of reservoir continuity.Well entries have shown that system permeability is fault-dominated. This is confirmed by the results of seismic reflection imaging. Young faulting in the area includes intersecting range front faults that strike NW, NS, and NE. Exposure of

403

Rocky Mountain Power - FinAnswer Express | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express < Back Eligibility Agricultural Commercial Construction Industrial Installer/Contractor Savings Category Other Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Manufacturing Heat Pumps Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Windows, Doors, & Skylights Maximum Rebate Lighting Retrofit: 70% of project cost Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Custom: $0.10/annual kWh saved Interior Lighting: $0.08/kwh annual energy savings LED Fixture (Exterior): $100 Induction Fixture (Exterior): $125 Lighting Control (Exterior): $70 Air Conditioners and Heat Pumps: $50-$100/ton

404

Mountain View Electric Association, Inc - Energy Efficiency Credit Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mountain View Electric Association, Inc - Energy Efficiency Credit Mountain View Electric Association, Inc - Energy Efficiency Credit Program Mountain View Electric Association, Inc - Energy Efficiency Credit Program < Back Eligibility Agricultural Commercial Industrial Residential Savings Category Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate LED Street Lighting: $20,000 LED Refrigerated Case Lighting Retrofit: $3,000 Commercial Lighting Replacement: $20,000 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Geothermal Heat Pumps: $150/ton, additional $150 per unit for Energy Star units greater than 3 tons, additional $120 if attached to electric water heater Air-Source Heat Pump: $125 - $150/ton, additional $100 - $150 per unit for

405

Rocky Mountain Power - Energy FinAnswer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

70% project cost 70% project cost New Construction: 50% Lighting: 50%-75% of savings Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount $0.15/kWh annual energy savings + $50/kW average monthly demand savings Provider Rocky Mountain Power Rocky Mountain Power's Energy FinAnswer program provides incentives to help its customers improve the efficiency of existing facilities and build new facilities that are significantly more efficient than code. New construction and retrofit projects for all industrial facilities can participate as well as all new commercial projects and commercial retrofits in facilities larger than 20,000 square feet. Rocky Mountain Power will be involved from the beginning of the construction process. They will start by reviewing the facility plans and

406

Rocky Mountain Oilfield Testing Center | Open Energy Information  

Open Energy Info (EERE)

Oilfield Testing Center Oilfield Testing Center Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Rocky Mountain Oilfield Testing Center General Information Name Rocky Mountain Oilfield Testing Center Facility Rocky Mountain Oilfield Testing Center Sector Geothermal energy Location Information Coordinates 42.9724567°, -106.3160188° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.9724567,"lon":-106.3160188,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

407

Preparing to Submit a License Application for Yucca Mountain  

Science Conference Proceedings (OSTI)

In 1982, the U.S. Congress passed the Nuclear Waste Policy Act, a Federal law that established U.S. policy for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Congress amended the Act in 1987, directing the Department of Energy to study only Yucca Mountain, Nevada as the site for a permanent geologic repository. As the law mandated, the Department evaluated Yucca Mountain to determine its suitability as the site for a permanent geologic repository. Decades of scientific studies demonstrated that Yucca Mountain would protect workers, the public, and the environment during the time that a repository would be operating and for tens of thousands of years after closure of the repository. A repository at this remote site would also: preserve the quality of the environment; allow the environmental cleanup of Cold War weapons facilities; provide the nation with additional protection from acts of terrorism; and support a sound energy policy. Throughout the scientific evaluation of Yucca Mountain, there has been no evidence to disqualify Yucca Mountain as a suitable site for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Upon completion of site characterization, the Secretary of Energy considered the results and concluded that a repository at Yucca Mountain would perform in a manner that protects public health and safety. The Secretary recommended the site to the President in February 2002; the President agreed and recommended to Congress that the site be approved. The Governor of Nevada submitted a notice of disapproval, and both houses of Congress acted to override the disapproval. In July 2002, the President's approval allowed the Department to begin the process of submittal of a license application for Yucca Mountain as the site for the nation's first repository for spent nuclear fuel and high-level radioactive waste. Yucca Mountain is located on federal land in Nye County in southern Nevada, an arid region of the United States, approximately 100 miles (160 kilometers) northwest of Las Vegas (Figure 1). The location is remote from population centers, and there are no permanent residents within approximately 14 miles (23 km) of the site. Overall, Nye County has a population density of about two persons per square mile (two persons per 2.5 square km); in the vicinity of Yucca Mountain, it is significantly less. Yucca Mountain is a series of north-south-trending ridges extending approximately 25 miles (40 km), and consists of successive layers of fine-grained volcanic tuffs, millions of years old, underlain by older carbonate rocks. The alternating layers of welded and nonwelded volcanic tuffs have differing hydrologic properties that significantly impact the manner in which water moves through the mountain. The repository horizon will be in welded tuff located in the unsaturated zone, more than 1,000 feet (300 meters) above the water table in the present-day climate, and is expected to remain well above the water table during wetter future climate conditions. Future meteorology and climatology at Yucca Mountain are important elements in understanding the amount of water available to potentially interact with the waste.

W.J. Arthur; M.D. Voegele

2005-03-14T23:59:59.000Z

408

The vegetation of Yucca Mountain: Description and ecology  

Science Conference Proceedings (OSTI)

Vegetation at Yucca Mountain, Nevada, was monitored over a six-year period, from 1989 through 1994. Yucca Mountain is located at the northern limit of the Mojave Desert and is the only location being studied as a potential repository for high-level nuclear waste. Site characterization consists of a series of multidisciplinary, scientific investigations designed to provide detailed information necessary to assess the suitability of the Yucca Mountain Site as a repository. This vegetation description establishes a baseline for determining the ecological impact of site characterization activities; it porvides input for site characterization research and modeling; and it clarifies vegetation community dynamics and relationships to the physical environment. A companion study will describe the impact of site characterization of vegetation. Cover, density, production, and species composition of vascular plants were monitored at 48 Ecological Study Plots (ESPs) stratified in four vegetation associations. Precipitation, soil moisture, and maximum and minimum temperatures also were measured at each study plot.

NONE

1996-03-29T23:59:59.000Z

409

Age constraints on fluid inclusions in calcite at Yucca Mountain  

Science Conference Proceedings (OSTI)

The {sup 207}Pb/{sup 235}U ages for 14 subsamples of opal or chalcedony layers younger than calcite formed at elevated temperature range between 1.88 {+-} 0.05 and 9.7 {+-} 1.5 Ma with most values older than 6-8 Ma. These data indicate that fluids with elevated temperatures have not been present in the unsaturated zone at Yucca Mountain since about 1.9 Ma and most likely since 6-8 Ma. Discordant U-Pb isotope data for chalcedony subsamples representing the massive silica stage in the formation of the coatings are interpreted using a model of the diffusive loss of U decay products. The model gives an age estimate for the time of chalcedony formation around 10-11 Ma, which overlaps ages of clay minerals formed in tuffs below the water table at Yucca Mountain during the Timber Mountain thermal event.

Neymark, Leonid A.; Amelin, Yuri V.; Paces, James B.; Peterman, Zell E.; Whelan, Joseph F.

2001-04-29T23:59:59.000Z

410

City of Mountain Lake, Minnesota (Utility Company) | Open Energy  

Open Energy Info (EERE)

Mountain Lake Mountain Lake Place Minnesota Utility Id 13048 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png City Rates Commercial Commercial Commercial Industrial Industrial Residential- Rural Residential Residential- Urban Residential Average Rates Residential: $0.0957/kWh Commercial: $0.0842/kWh Industrial: $0.0804/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Mountain_Lake,_Minnesota_(Utility_Company)&oldid=40998

411

City of Mountain View, Missouri (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Mountain View Mountain View Place Missouri Utility Id 13057 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Residential Residential Average Rates Residential: $0.0810/kWh Commercial: $0.0807/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Mountain_View,_Missouri_(Utility_Company)&oldid=409985" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs What links here

412

Rocky Mountain Oilfield Testing Center RMOTC at the Naval Petroleum Reserve No. 3  

NLE Websites -- All DOE Office Websites (Extended Search)

RMOTC RMOTC The Rocky Mountain Oilfield Testing Center (RMOTC), is an operating oil field focusing on environmentally-balanced energy technologies and alternatives, and is the premiere energy testing and demonstration field in the nation. 3 3 * the opportunity to explore environmentally- balanced solutions to the nation's energy issues * opportunities to develop, demonstrate, and evaluate a variety of energy related technologies * a chance to collaborate with top professionals in the energy, environmental technology, and engineering fields * shared industry knowledge through technology transfer via reports, journal articles, and presentations Located within the Naval Petroleum Reserve No. 3 (NPR-3) near Casper, Wyoming, RMOTC offers: RMOTC Offers Solutions 4 4 The Administration and Engineering

413

Cost-Effective Cementitious Material Compatible with Yucca Mountain Repository Geochemistry  

SciTech Connect

The current plans for the Yucca Mountain (YM) repository project (YMP) use steel structures to stabilize the disposal drifts and connecting tunnels that are collectively over 100 kilometers in length. The potential exist to reduce the underground construction cost by 100s of millions of dollars and improve the repository's performance. These economic and engineering goals can be achieved by using the appropriate cementitious materials to build out these tunnels. This report describes the required properties of YM compatible cements and reviews the literature that proves the efficacy of this approach. This report also describes a comprehensive program to develop and test materials for a suite of underground construction technologies.

Dole, LR

2004-12-17T23:59:59.000Z

414

Yucca Mountain - U.S. Department of Energy's Brief in Support...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain - U.S. Department of Energy's Brief in Support of Review and Reversal of the Board's Ruling on the Motion to Withdraw Yucca Mountain - U.S. Department of Energy's...

415

A Modeling Study of Nonstationary Trapped Mountain Lee Waves. Part II: Nonlinearity  

Science Conference Proceedings (OSTI)

The generation of nonstationary trapped mountain lee waves through nonlinear wave dynamics without any concomitant change in the background flow is investigated by conducting two-dimensional mountain wave simulations. These simulations ...

Louisa B. Nance; Dale R. Durran

1998-04-01T23:59:59.000Z

416

The Role of Terrain and Pressure Stresses in Rocky Mountain Lee Cyclones  

Science Conference Proceedings (OSTI)

The earth–atmosphere exchange of storm absolute dynamic circulation by mountain-induced surface pressure stress and the response of the circulation in a Rocky Mountain Ice cyclone is examined. Surface pressure stresses that transfer horizontal ...

Alan C. Czarnetzki; Donald R. Johnson

1996-04-01T23:59:59.000Z

417

The Role of the Central Asian Mountains on the Midwinter Suppression of North Pacific Storminess  

Science Conference Proceedings (OSTI)

The role of the central Asian mountains on North Pacific storminess is examined using an atmospheric general circulation model by varying the height and the areas of the mountains. A series of model integrations show that the presence of the ...

Hyo-Seok Park; John C. H. Chiang; Seok-Woo Son

2010-11-01T23:59:59.000Z

418

Max-Min characterization of the mountain pass energy level for a class of variational problems  

E-Print Network (OSTI)

We provide a max-min characterization of the mountain pass energy level for a family of variational problems. As a consequence we deduce the mountain pass structure of solutions to suitable PDEs, whose existence follows from classical minimization argument.

Jacopo Bellazzini; Nicola Visciglia

2009-09-01T23:59:59.000Z

419

Max-Min characterization of the mountain pass energy level for a class of variational problems  

E-Print Network (OSTI)

We provide a max-min characterization of the mountain pass energy level for a family of variational problems. As a consequence we deduce the mountain pass structure of solutions to suitable PDEs, whose existence follows from classical minimization argument.

Bellazzini, Jacopo

2009-01-01T23:59:59.000Z

420

Evaluation of an Ecohydrologic-Process Model Approach to Estimating Annual Mountain-Block Recharge.  

E-Print Network (OSTI)

??Magruder, Ian, M.S., December 2006 Geology Evaluation of an Ecohydrologic-Process Model Approach to Estimating Annual Mountain-Block Recharge Chairperson: Dr. William Woessner Regional subsurface mountain-block recharge… (more)

Magruder, Ian Auguste

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mountain development icimod" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Three-Dimensional Numerical Model Simulations of Airflow Over Mountainous Terrain: A Comparison with Observations  

Science Conference Proceedings (OSTI)

Numerical simulations of airflow over two different choices of mountainous terrain and the comparisons of results with aircraft observations are presented. Two wintertime casts for flow over Elk Mountain, Wyoming where surface heating is assumed ...

Terry L. Clark; Robert Gall

1982-07-01T23:59:59.000Z

422

Climatic Controls on the Snowmelt Hydrology of the Northern Rocky Mountains  

Science Conference Proceedings (OSTI)

The northern Rocky Mountains (NRMs) are a critical headwaters region with the majority of water resources originating from mountain snowpack. Observations showing declines in western U.S. snowpack have implications for water resources and ...

Gregory T. Pederson; Stephen T. Gray; Toby Ault; Wendy Marsh; Daniel B. Fagre; Andrew G. Bunn; Connie A. Woodhouse; Lisa J. Graumlich

2011-03-01T23:59:59.000Z

423

Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Great Smoky Mountains Great Smoky Mountains National Park Turns to Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Google Bookmark Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Delicious Rank Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Digg Find More places to share Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on AddThis.com...

424

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

PETROLEUM MAGNETICS INTERNATIONAL PETROLEUM MAGNETICS INTERNATIONAL NOVEMBER 28, 1996 FC9520 / 95PT8 ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS PETROLEUM MAGNETIC INTERNATIONAL DOWNHOLE MAGNETS FOR SCALE CONTROL Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer November 28, 1995 650100/9520:jb ABSTRACT November 28, 1995 The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a field test on the Petroleum Magnetics International (PMI) downhole magnet, at the Naval Petroleum Reserve No. 3 (NPR- 3) located 35 miles north of Casper in Natrona County, Wyoming. PMI of Odessa, Texas, states that the magnets are designed to reduce scale and paraffin buildup on the rods, tubing

425

Blue Ridge Mountain Electric Membership Corporation - Water Heater Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Blue Ridge Mountain Electric Membership Corporation - Water Heater Rebate Program Blue Ridge Mountain Electric Membership Corporation - Water Heater Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Ventilation Manufacturing Heat Pumps Appliances & Electronics Water Heating Program Info State Georgia Program Type Utility Rebate Program Rebate Amount In-Home Energy Evaluation Program Windows: $500 Duct Repair: $500 Rehabilitation Work: $250 HVAC Replacement: $250/unit HVAC Tune-up: $150/unit Insulation: $500 Water Heater and Pipe Insulation: $50 Air Sealing: $500 Energy Right Program

426

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

TANK LEVEL GAUGING SYSTEM TANK LEVEL GAUGING SYSTEM JULY 25, 1996 FC9519 / 95PT7 ROCKY MOUNTAIN OILFIELD TESTING CENTER TANK LEVEL GAUGING SYSTEM DOUBLE M ELECTRIC Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer July 25, 1996 551103/9519:jb ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of a Tank Level Gauging System at the Naval Petroleum Reserve No. 3 (NPR-3). Double M. Electric manufactures the equipment that incorporates an optical-encoder sending unit, cellular communications, and software interface. The system effectively displayed its capabilities for remote monitoring and recording of tank levels.

427

Report on the Copper Mountain Conference on Multigrid Methods  

SciTech Connect

OAK B188 Report on the Copper Mountain Conference on Multigrid Methods. The Copper Mountain Conference on Multigrid Methods was held on April 11-16, 1999. Over 100 mathematicians from all over the world attended the meeting. The conference had two major themes: algebraic multigrid and parallel multigrid. During the five day meeting 69 talks on current research topics were presented as well as 3 tutorials. Talks with similar content were organized into sessions. Session topics included: Fluids; Multigrid and Multilevel Methods; Applications; PDE Reformulation; Inverse Problems; Special Methods; Decomposition Methods; Student Paper Winners; Parallel Multigrid; Parallel Algebraic Multigrid; and FOSLS.

2001-04-06T23:59:59.000Z

428

Evaluation of a Spent Fuel Repository at Yucca Mountain, Nevada  

Science Conference Proceedings (OSTI)

In June 2008, the U.S. Department of Energy (DOE) submitted a license application to the U.S. Nuclear Regulatory Commission (NRC) for the construction of a geologic repository at Yucca Mountain, Nevada, for the disposal of spent nuclear fuel and high-level radioactive waste. The license application was accepted for formal NRC review in September 2008. Throughout the more than 20-year history of the Yucca Mountain project, EPRI has performed independent assessments of key technical and scientific issues t...

2008-12-22T23:59:59.000Z

429

RWU 4201 Wildlife Ecology in Rocky Mountain Landscapes A Winter Survey Method for Detecting and  

E-Print Network (OSTI)

in the Pioneer, Anaconda-Pintler, Flint Creek, and Beaverhead mountain ranges in southwest Montana. We began

430

Site characterization progress report: Yucca Mountain, Nevada. Number 15, April 1--September 30, 1996  

SciTech Connect

During the second half of fiscal year 1996, activities at the Yucca Mountain Site Characterization Project (Project) supported the objectives of the revised Program Plan released this period by the Office of Civilian Radioactive Waste Management of the US Department of Energy (Department). Outlined in the revised plan is a focused, integrated program of site characterization, design, engineering, environmental, and performance assessment activities that will achieve key Program and statutory objectives. The plan will result in the development of a license application for repository construction at Yucca Mountain, if the site is found suitable. Activities this period focused on two of the three near-term objectives of the revised plan: updating in 1997 the regulatory framework for determining the suitability of the site for the proposed repository concept and providing information for a 1998 viability assessment of continuing toward the licensing of a repository. The Project has also developed a new design approach that uses the advanced conceptual design published during the last reporting period as a base for developing a design that will support the viability assessment. The initial construction phase of the Thermal Testing Facility was completed and the first phase of the in situ heater tests began on schedule. In addition, phase-one construction was completed for the first of two alcoves that will provide access to the Ghost Dance fault.

1997-04-01T23:59:59.000Z

431

Preliminary background ozone concentrations in the mountain and coastal areas of Bulgaria  

E-Print Network (OSTI)

the Govedartsi Valley on the northwest slope of Rila Mountain in southwest Bulgaria (Donev et al. 1996, 1998. These two wind regimes impact diel O3 con- centration patterns as discussed by Donev et al. (1996). A second part of Rila Mountain (Zeller et al. 1992, 1997; Donev et al. 1996, 1998, 1999), the highest mountain

432

Dynamic rupture through a branched fault2 configuration at Yucca Mountain and resulting3  

E-Print Network (OSTI)

for the District of Columbia Circuit, which remanded to the U.S. Environmental Protection Agency its Yucca Mountain). The design of surface facilities at Yucca Mountain should be an integrated part of the total waste, storage, and disposal) casks for transporting, storing, and disposing of spent fuel at Yucca Mountain

Dmowska, Renata

433

Limited hydrologic response to Pleistocene climate change in deep vadose zones --Yucca Mountain, Nevada  

E-Print Network (OSTI)

regulations for radiation releases from the planned permanent U.S. nuclear-waste repository in Yucca Mountain releases from the proposed U.S. nuclear-waste repository in Yucca Mountain, Nevada.1 E.P.A. recommended these guarantees for Yucca Mountain. Instead E.P.A. recommends changes both in the exposure-limits and in how

Holliday, Vance T.

434

Dynamic Rupture through a Branched Fault Configuration at Yucca Mountain, and Resulting Ground Motions  

E-Print Network (OSTI)

-term care. Now, after decades of expensive false starts, and with an uncertain future for Yucca Mountain Yucca Mountain can handle, even if the statutory limits on its capacity are doubled repository. Second, it is unclear whether Yucca Mountain will ever receive a license from the Nuclear

Bhat, Harsha S.

435

Surface-to-tunnel seismic tomography studies at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Dynamic Rupture through a Branched Fault Configuration at Yucca Mountain, and Resulting Ground of Yucca Mountain, Nevada, a potential site for a high-level radioactive waste repository. The Solitario km away from the SCF beneath the crest of Yucca Mountain, causing the repository site to experience

Korneev, Valeri A.

436

Board Oversight of the DOE's Scientific and Technical Activities at Yucca Mountain  

E-Print Network (OSTI)

Surface-to-tunnel seismic tomography studies at Yucca Mountain, Nevada Roland Gritto, Valeri A in the proposed nuclear waste repository area at Yucca Mountain, Nevada. A 5-km-long source line and a 3-km-long receiver line were located on top of Yucca Mountain ridge and inside the Exploratory Study Facility (ESF

437

Testing for fault activity at Yucca Mountain, Nevada, using independent GPS results from the BARGEN network  

E-Print Network (OSTI)

that will not support nesting Mountain Plovers. Included in these areas is a hilly section of yucca and sagebrushPOTENTAIL HABITAT FOR MOUNTAIN PLOVERS ON COLORADO SPRINGS UTILITIES PROPERTY A Report to Colorado Delivery Fort Collins, Colorado 80523-8002 #12;INTRODUCTION The Mountain Plover (Charadrius montanus

Blewitt, Geoffrey

438

A Radionuclide Transport Model for the Unsaturated Zone at Yucca Mountain Bruce A. Robinson  

E-Print Network (OSTI)

.S. Geological Survey #12;Yucca Mountain (arrow) in its regional setting. From lower left to upper right (toward southeast), Forty-Mile Wash (trending south), and Jackass Flat (JF, sandy-colored area east ofYucca Mountain). Between Yucca Mountain and theAmargosa River lie Crater Flat (CF) with its young volcanic centers (red

Lu, Zhiming

439

Climatological lightning characteristics of the Southern Rocky and Appalachian Mountain chains, a comparison of two distinct mountain effects  

E-Print Network (OSTI)

This study presents a high-resolution lightning climatology for southern portions of both the Rocky Mountains and the Appalachian Mountains. Data from the National Lightning Detection Network (NLDN) are analyzed to produce maps of average annual lightning flash density, positive flash density, percent positive flashes, median peak current, and multiplicity. Three-hourly increments are used to demonstrate the annual average diurnal evolution of flash density. Data are also divided into seasonal averages for the same three-hourly increments to describe the daily evolution of flash density for each of the four seasons: December-January-February, March-April-May, June-July-August, and September-October-November. The flash density analyses reveal opposite mountain-valley effects. In the Rocky Mountains, flash density enhancements occur over and near mountains and flash density minima occur in the valleys. In the Appalachians, the enhancements occur in the valleys, while minimums are noted over the mountains. The eastern edge of the Appalachian lightning suppression is determined to be a result of faster propagation of mountain-initiated convection. Weaker mountain breezes in the Appalachians are theorized to be the catalysts for this. The western edge of the suppression is the cumulative effect of consistent flash density gradients at the Appalachian's western slopes. A theory is presented which links this gradient to observations of high median peak currents. Statistical tests on flash density means show that the Appalachian suppression is significant. Multiple regressions predict lightning flash density from terrain characteristics. Vertical wind and thermodynamic profiles, horizontal temperature differences at summit levels, and average annual precipitation complete the study. From these data, a conceptual model is presented to describe the nature of the lightning evolution in each region, and explain the processes that lead to the end state. This study concludes that the differences between the patterns of lightning characteristics in the Southern Rockies and the Southern Appalachians are the cumulative effects of subtle differences in the diurnal evolution patterns. Furthermore, the Appalachian lightning suppression is a product of lightning propagation and storm evolution, rather than a suppression of convective initiation.

Phillips, Stephen Edward

2001-01-01T23:59:59.000Z

440

American Electric Power (AEP): Mountaineer Carbon Dioxide Capture and Storage Demonstration (WITHDRAWN AT CONCLUSION OF PHASE 1)  

NLE Websites -- All DOE Office Websites (Extended Search)

American Electric Power (AEP): American Electric Power (AEP): Mountaineer Carbon Dioxide Capture and Storage Demonstration (WITHDRAWN AT CONCLUSION OF PHASE 1) Background A need exists to further develop carbon management technologies that capture and store or beneficially reuse carbon dioxide (CO 2 ) that would otherwise be emitted into the atmosphere from coal-based electric power generating facilities. Carbon capture, utilization and storage (CCUS) technologies offer great potential for reducing CO

Note: This page contains sample records for the topic "mountain development icimod" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

International Review Team Report: A Peer Review of the Yucca Mountain IMARC Total System Performance Assessment EPRI Model  

Science Conference Proceedings (OSTI)

Since 1989, EPRI has been conducting independent assessments of the proposed deep geologic repository for the disposal of spent nuclear fuel and high level radioactive waste at Yucca Mountain, Nevada. EPRI pioneered application of the total system performance assessment (TSPA) approach for evaluating performance of geologic repository systems on a probabilistic basis. Along the way, EPRI developed the Integrated Multiple Assumptions and Release Code (IMARC) as its primary analytical tool for TSPA-based e...

2009-04-22T23:59:59.000Z

442

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

PETRO-PLUG PETRO-PLUG BENTONITE PLUGGING JANUARY 27, 1998 Report No. RMOTC/97PT22 ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS PETRO-PLUG BENTONITE PLUGGING Prepared for: INDUSTRY PUBLICATION Prepared by: Michael R. Tyler RMOTC Project Manager January 27, 1998 Report No. RMOTC/96ET4 CONTENTS Page Technical Description ...................................................................................................... 1 Problem ............................................................................................................................ 1 Solution ............................................................................................................................ 2 Operation..........................................................................................................................

443

Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project  

Science Conference Proceedings (OSTI)

The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

Deanna Gilliland; Matthew Usher

2011-12-31T23:59:59.000Z

444

Sustaining mobile pastoralists in the mountains of northern Pakistan  

E-Print Network (OSTI)

Sustaining mobile pastoralists in the mountains of northern Pakistan Mobile pastoralism According-West Frontier Province), in northern Pakistan. But the provision of these goods and services is at risk payments for ecosystem services. Case studies featured here were conducted in: Pakistan, Tanzania

Richner, Heinz

445

Asymmetric Removal of Temperature Inversions in a High Mountain Valley  

Science Conference Proceedings (OSTI)

During July 1985 the transition from nighttime to daytime wind regimes was studied in a steep-sided, broad mountain valley at about 2200 m MSL, in southeastern Wyoming. An array of surface weather stations and plot balloon releases from several ...

Robert D. Kelly

1988-05-01T23:59:59.000Z

446

Natural gels in the Yucca Mountain Area, Nevada, USA  

SciTech Connect

Relict gels at Yucca Mountain include pore- and fracture-fillings of silica and zeolite related to diagenetic and hydrothermal alteration of vitric tuffs. Water-rich free gels in fractures at Rainier Mesa consist of smectite with or without silica-rich gel fragments. Gels are being studied for their potential role in transport of radionuclides from a nuclear-waste repository.

Levy, S.S.

1991-12-31T23:59:59.000Z

447

Mountain-Induced Convection under Fair Weather Conditions  

Science Conference Proceedings (OSTI)

Measurements of the structure of dry convection over an isolated mountain range heated by the sun are presented. Filter techniques are used to deduce those scales of motion of significance to the circulation. A two-scale process is observed in ...

David Raymond; Marvin Wilkening

1980-12-01T23:59:59.000Z

448

Communicating A Controversial and Complex Project to the Public: Yucca Mountain Tours - Real and Virtual Communication  

SciTech Connect

Since 1983, under the Nuclear Waste Policy Act of 1982, as amended (42 U.S.C. 10101 et seq.), the U.S. Department of Energy (the Department) has been investigating a site at Yucca Mountain, Nevada, to determine whether it is suitable for development as the nation's first repository for permanent geologic disposal of spent nuclear fuel and high-level radioactive waste. By far, the largest quantity of waste destined for geologic disposal is spent nuclear fuel from 118 commercial nuclear power reactors at 72 power plant sites and 1 commercial storage site across the United States. Currently, 104 of these reactors are still in operation and generate about 20 percent of the country's electricity. Under standard contracts that DOE executed with the utilities, DOE is to accept spent nuclear fuel from the utilities for disposal. Until that happens, the utilities must safely store their spent nuclear fuel in compliance with Nuclear Regulatory Commission regulations. As of December 1998, commercial spent nuclear fuel containing approximately 38,500 metric tons of heavy metal (MTHM) was stored in 33 states. The balance of the waste destined for geologic disposal in a repository is Department-owned spent nuclear fuel and high-level radioactive waste. The Department's spent nuclear fuel includes naval spent nuclear fuel and irradiated fuel from weapons production, domestic research reactors, and foreign research reactors. For disposal in a geologic repository, high-level radioactive waste would be processed into a solid glass form and placed into approximately 20,000 canisters. No liquid or hazardous wastes regulated under the Resource Conservation and Recovery Act of 1976 would be disposed of in a geologic repository. The difficulty in siting new facilities, particularly those designed as nuclear or nuclear-related facilities, is well documented. In this context, national boundaries are not significant distinguishing barriers. As one publication observed, ''Environmental activists, local residents and governmental officials are protesting proposed waste facilities from Taiwan to Texas''. Here in Nevada, Yucca Mountain is no exception. The Department's study of the Yucca Mountain site for possible development as a permanent repository for spent nuclear fuel and high-level radioactive waste has been criticized by many, for many reasons. The Yucca Mountain Project is both controversial and complex--a fact that makes communication with the public a challenge.

A.B. Benson; P.V. Nelson; M. d' Ouville

2000-03-01T23:59:59.000Z

449

Evolution of the conceptual model of unsaturated zone hydrology at yucca mountain, nevada  

SciTech Connect

Yucca Mountain is an arid site proposed for consideration as the United States' first underground high-level radioactive waste repository. Low rainfall (approximately 170 mm/yr) and a thick unsaturated zone (500-1000 m) are important physical attributes of the site because the quantity of water likely to reach the waste and the paths and rates of movement of the water to the saturated zone under future climates would be major factors in controlling the concentrations and times of arrival of radionuclides at the surrounding accessible environment. The framework for understanding the hydrologic processes that occur at this site and that control how quickly water will penetrate through the unsaturated zone to the water table has evolved during the past 15 yr. Early conceptual models assumed that very small volumes of water infiltrated into the bedrock (0.5-4.5 mm/yr, or 2-3 percent of rainfall), that much of the infiltrated water flowed laterally within the upper nonwelded units because o f capillary barrier effects, and that the remaining water flowed down faults with a small amount flowing through the matrix of the lower welded, fractured rocks. It was believed that the matrix had to be saturated for fractures to show. However, accumulating evidence indicated that infiltration rates were higher than initially estimated, such as infiltration modeling based on neutron borehole data, bomb-pulse isotopes deep in the mountain, perched water analyses and thermal analyses. Mechanisms supporting lateral diversion did not apply at these higher fluxes, and the flux calculated in the lower welded unit exceeded the conductivity of the matrix, implying vertical flow of water into the high permeability fractures of the potential repository host rock, and disequilibrium between matrix and fracture water potentials. The development of numerical modeling methods and parameter values evolved concurrently with the conceptual model in order to account for the observed field data, particularly fracture flow deep in the unsaturated zone. This paper presents the history of the evolution of conceptual models of hydrology and numerical models of unsaturated zone flow at Yucca Mountain, Nevada (Flint, A.L., Flint, L.E., Kwicklis, E.M., Bodvarsson, G.S., Fabryka-Martin, J.M., 2001. Hydrology of Yucca Mountain. Reviews of Geophysics in press). This retrospective is the basis for recommendations for optimizing the efficiency with which a viable and robust conceptual model can be developed for a complex site. (C) 2001 Elsevier Science B.V. All rights reserved. [References: 87

Flint, A. L.; Flint, L. E.; Bodvarsson, G. S.; Kwicklis, E. M.; Fabryka-Martin, J.

2001-02-01T23:59:59.000Z

450

Southern Nevada residents` views about the Yucca Mountain high-level nuclear waste repository and related issues: A comparative analysis of urban and rural survey data  

SciTech Connect

two separate surveys were undertaken in 1988 to ascertain southern Nevadans` views about the Yucca Mountain repository and related issues. The first of these studies focused on the attitudes and perceptions of residents in the Las Vegas metropolitan area. The second study addressed similar issues, but focused on the views of residents in six rural communities in three counties adjacent to the Yucca Mountain site. However, parallel findings from the two data sets have not been jointly analyzed in order to identify ways in which the views and orientations of residents in the rural and urban study areas may be similar or different. The purpose of this report is to develop and present a comparative assessment of selected issues addressed in the rural and urban surveys. Because both urban and rural populations would potentially be impacted by the Yucca Mountain repository, such an analysis will provide important insights into possible repository impacts on the well-being of residents throughout southern Nevada.

Krannich, R.S.; Little, R.L. [Utah State Univ., Logan, UT (United States); Mushkatel, A.; Pijawka, K.D.; Jones, P. [Arizona State Univ., Tempe, AZ (United States)

1991-10-01T23:59:59.000Z

451

YUCCA MOUNTAIN PROJECT RECOMMENDATION BY THE SECRETARY OF ENERGY REGARDING THE SUITABILITY OF THE YUCCA MOUNTAIN SITE FOR A REPOSITORY UNDER THE NUCLEAR WASTE POLICY ACT OF 1982  

Science Conference Proceedings (OSTI)

For more than half a century, since nuclear science helped us win World War II and ring in the Atomic Age, scientists have known that !he Nation would need a secure, permanent facility in which to dispose of radioactive wastes. Twenty years ago, when Congress adopted the Nuclear Waste Policy Act of 1982 (NWPA or ''the Act''), it recognized the overwhelming consensus in the scientific community that the best option for such a facility would be a deep underground repository. Fifteen years ago, Congress directed the Secretary of Energy to investigate and recommend to the President whether such a repository could be located safely at Yucca Mountain, Nevada. Since then, our country has spent billions of dollars and millions of hours of research endeavoring to answer this question. I have carefully reviewed the product of this study. In my judgment, it constitutes sound science and shows that a safe repository can be sited there. I also believe that compelling national interests counsel in favor of proceeding with this project. Accordingly, consistent with my responsibilities under the NWPA, today I am recommending that Yucca Mountain be developed as the site for an underground repository for spent fuel and other radioactive wastes. The first consideration in my decision was whether the Yucca Mountain site will safeguard the health and safety of the people, in Nevada and across the country, and will be effective in containing at minimum risk the material it is designed to hold. Substantial evidence shows that it will. Yucca Mountain is far and away the most thoroughly researched site of its kind in the world. It is a geologically stable site, in a closed groundwater basin, isolated on thousands of acres of Federal land, and farther from any metropolitan area than the great majority of less secure, temporary nuclear waste storage sites that exist in the country today. This point bears emphasis. We are not confronting a hypothetical problem. We have a staggering amount of radioactive waste in this country--nearly 100,000,000 gallons of high-level nuclear waste and more than 40,000 metric tons of spent nuclear fuel with more created every day. Our choice is not between, on the one hand, a disposal site with costs and risks held to a minimum, and, on the other, a magic disposal system with no costs or risks at all. Instead, the real choice is between a single secure site, deep under the ground at Yucca Mountain, or making do with what we have now or some variant of it--131 aging surface sites, scattered across 39 states. Every one of those sites was built on the assumption that it would be temporary. As time goes by. every one is closer to the limit of its safe life span. And every one is at least a potential security risk--safe for today, but a question mark in decades to come.

NA

2002-03-26T23:59:59.000Z

452

Exploration and Resource Assessment at Mountain Home Air Force Base, Idaho Using an Integrated Team Approach  

Science Conference Proceedings (OSTI)

The U.S. Air Force is facing a number of challenges as it moves into the future, one of the biggest being how to provide safe and secure energy to support base operations. A team of scientists and engineers met at Mountain Home Air Force Base near Boise, Idaho, to discuss the possibility of exploring for geothermal resources under the base. The team identified that there was a reasonable potential for geothermal resources based on data from an existing well. In addition, a regional gravity map helped identify several possible locations for drilling a new well. The team identified several possible sources of funding for this well—the most logical being to use U.S. Department of Energy funds to drill the upper half of the well and U.S. Air Force funds to drill the bottom half of the well. The well was designed as a slimhole well in accordance with State of Idaho Department of Water Resources rules and regulations. Drilling operations commenced at the Mountain Home site in July of 2011 and were completed in January of 2012. Temperatures increased gradually, especially below a depth of 2000 ft. Temperatures increased more rapidly below a depth of 5500 ft. The bottom of the well is at 5976 ft, where a temperature of about 140°C was recorded. The well flowed artesian from a depth below 5600 ft, until it was plugged off with drilling mud. Core samples were collected from the well and are being analyzed to help understand permeability at depth. Additional tests using a televiewer system will be run to evaluate orientation and directions at fractures, especially in the production zone. A final report on the well exploitation will be forthcoming later this year. The Air Force will use it to evaluate the geothermal resource potential for future private development options at Mountain Home AFB.

Joseph C. Armstrong; Robert P. Breckenridge; Dennis L. Nielson; John W. Shervais; Thomas R. Wood

2012-10-01T23:59:59.000Z

453

Mountain Home Air Force Base, Idaho Geothermal Resource Assessment and Future Recommendations  

SciTech Connect

The U.S. Air Force is facing a number of challenges as it moves into the future, one of the biggest being how to provide safe and secure energy to support base operations. A team of scientists and engineers met at Mountain Home Air Force Base in early 2011 near Boise, Idaho, to discuss the possibility of exploring for geothermal resources under the base. The team identified that there was a reasonable potential for geothermal resources based on data from an existing well. In addition, a regional gravity map helped identify several possible locations for drilling a new well. The team identified several possible sources of funding for this well—the most logical being to use U.S. Department of Energy funds to drill the upper half of the well and U.S. Air Force funds to drill the bottom half of the well. The well was designed as a slimhole well in accordance with State of Idaho Department of Water Resources rules and regulations. Drilling operations commenced at the Mountain Home site in July of 2011 and were completed in January of 2012. Temperatures increased gradually, especially below a depth of 2000 ft. Temperatures increased more rapidly below a depth of 5500 ft. The bottom of the well is at 5976 ft, where a temperature of about 140°C was recorded. The well flowed artesian from a depth below 5600 ft, until it was plugged off with drilling mud. Core samples were collected from the well and are being analyzed to help understand permeability at depth. Additional tests using a televiewer system will be run to evaluate orientation and directions at fractures, especially in the production zone. A final report on the well exploitation will be forthcoming later this year. The Air Force will use it to evaluate the geothermal resource potential for future private development options at Mountain Home Air Force Base. In conclusion, Recommendation for follow-up efforts include the following:

Joseph C. Armstrong; Robert P. Breckenridge; Dennis L. Nielson; John W. Shervais; Thomas R. Wood

2013-03-01T23:59:59.000Z

454

Physical processes and effects of magmatism in the Yucca Mountain region  

Science Conference Proceedings (OSTI)

This paper describes initial studies related to the effects of volcanism on performance of the proposed Yucca Mountain radioactive waste repository, and to the general processes of magmatism in the Yucca Mountain region. Volcanism or igneous activity can affect the repository performance by ejection of waste onto the earth`s surface (eruptive effects), or by subsurface effects of hydrothermal processes and altered hydrology if an intrusion occurs within the repository block. Initial, conservative calculations of the volume of waste that might be erupted during a small-volume basaltic eruption (such as those which occurred in the Yucca Mountain region) indicate that regulatory limits might be exceeded. Current efforts to refine these calculations, based upon field studies at analog sites, are described. Studies of subsurface effects are just beginning, and are currently focused on field studies of intrusion properties and contact metamorphism at deeply eroded analog sites. General processes of magmatism are important for providing a physical basis for predictions of future volcanic activity. Initial studies have focused on modeling basaltic magma chambers in conjunction with petrographic and geochemical studies. An example of the thermal-fluid dynamic evolution of a small basaltic sill is described, based on numerical simulation. Quantification of eruption conditions can provide valuable information on the overall magmatic system. We are developing quantitative methods for mapping pyroclastic facies of small basaltic centers and, in combination with two-phase hydrodynamic simulation, using this information to estimate eruption conditions. Examples of such hydrodynamic simulations are presented, along with comparison to an historical eruption in Hawaii.

Valentine, G.A.; Crowe, B.M. [Los Alamos National Lab., NM (United States); Perry, F.V. [New Mexico Univ., Albuquerque, New Mexico (USA). Dept. of Geology

1991-12-31T23:59:59.000Z

455

Experiment and analysis comparison in support of the Yucca Mountain Project  

SciTech Connect

Sandia National Laboratories, as a participant in the Yucca Mountain Project, administered by the Nevada Operations Office of the US Department of Energy, is in the process of evaluating a proposed site for geologic disposal of high-level nuclear wastes in the volcanic tuffs at Yucca Mountain, Nevada. In a repository, loads will be imposed on the rock mass as a result of excavation of the openings and heating of the rock by the nuclear waste. In an attempt to gain a better understanding of the thermal, mechanical, and thermomechanical response of fractured tuff, a series of experiments have been performed, and measurements have been taken in the welded and nonwelded tuffs at the G-Tunnel underground test facility at Rainier Mesa, Nevada. Comparisons between measured and calculated data of the G-Tunnel High-Pressure Flatjack Development Experiment are presented in this investigation. Calculated results were obtained from two dimensional finite element analysis using a recently developed compliant-joint rock-mass model. The purpose of this work was to assess the predictive capability of the model based on limited material property data for the G-Tunnel welded tuff. The results of this evaluation are discussed.

Chen, E.P.; Bauer, S.J.; Costin, L.S.; Hansen, F.D.

1991-01-01T23:59:59.000Z

456

Step-Mountain Technique Applied to an Atmospheric C-Grid Model, or How to Improve Precipitation near Mountains  

Science Conference Proceedings (OSTI)

Starting with Arakawa and Lamb’s second-order C-grid scheme, this paper describes the modifications made to the dynamics to create a C-grid atmospheric model with a variable number of cells for each vertical column. Where mountains exist, grid ...

Gary L. Russell

2007-12-01T23:59:59.000Z

457

Corrective Action Investigation Plan for Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada, Rev. No. 0  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) was developed for Corrective Action Unit (CAU) 99, Rainier Mesa/Shoshone Mountain. The CAIP is a requirement of the ''Federal Facility Agreement and Consent Order'' (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD) (FFACO, 1996). The FFACO addresses environmental restoration activities at U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) facilities and sites including the underground testing area(s) of the Nevada Test Site (NTS). This CAIP describes the investigation activities currently planned for the Rainier Mesa/Shoshone Mountain CAU. These activities are consistent with the current Underground Test Area (UGTA) Project strategy described in Section 3.0 of Appendix VI, Revision No. 1 (December 7, 2000) of the FFACO (1996) and summarized in Section 2.1.2 of this plan. The Rainier Mesa/Shoshone Mountain CAU extends over several areas of the NTS (Figure 1-1) and includes former underground nuclear testing locations in Areas 12 and 16. The area referred to as ''Rainier Mesa'' includes the geographical area of Rainier Mesa proper and the contiguous Aqueduct Mesa. Figure 1-2 shows the locations of the tests (within tunnel complexes) conducted at Rainier Mesa. Shoshone Mountain is located approximately 20 kilometers (km) south of Rainier Mesa, but is included within the same CAU due to similarities in their geologic setting and in the nature and types of nuclear tests conducted. Figure 1-3 shows the locations of the tests conducted at Shoshone Mountain. The Rainier Mesa/Shoshone Mountain CAU falls within the larger-scale Rainier Mesa/Shoshone Mountain Investigation Area, which also includes the northwest section of the Yucca Flat CAU as shown in Figure 1-1. Rainier Mesa and Shoshone Mountain lie adjacent to the Timber Mountain Caldera Complex and are composed of volcanic rocks that erupted from the caldera as well as from more distant sources. This has resulted in a layered volcanic stratigraphy composed of thick deposits of welded and nonwelded ash-flow tuff and lava flows. These deposits are proximal to the source caldera and are interstratified with the more distal facies of fallout tephra and bedded reworked tuff from more distant sources. In each area, a similar volcanic sequence was deposited upon Paleozoic carbonate and siliciclastic rocks that are disrupted by various thrust faults, normal faults, and strike-slip faults. In both Rainier Mesa (km) to the southwest, and Tippipah Spring, 4 km to the north, and the tunnel complex is dry. Particle-tracking simulations performed during the value of information analysis (VOIA) (SNJV, 2004b) indicate that most of the regional groundwater that underlies the test locations at Rainier Mesa and Shoshone Mountain eventually follows similar and parallel paths and ultimately discharges in Death Valley and the Amargosa Desert. Particle-tracking simulations conducted for the regional groundwater flow and risk assessment indicated that contamination from Rainier Mesa and Shoshone Mountain were unlikely to leave the NTS during the 1,000-year period of interest (DOE/NV, 1997a). It is anticipated that CAU-scale modeling will modify these results somewhat, but it is not expected to radically alter the outcome of these previous particle-tracking simulations within the 1,000-year period of interest. The Rainier Mesa/Shoshone Mountain CAIP describes the corrective action investigation (CAI) to be conducted at the Rainier Mesa/Shoshone Mountain CAU to evaluate the extent of contamination in groundwater due to the underground nuclear testing. The CAI will be conducted by the UGTA Project, which is part of the NNSA/NSO Environmental Restoration Project (ERP). The purpose and scope of the CAI are presented in this section, followed by a summary of the entire document.

John McCord

2004-12-01T23:59:59.000Z

458

Climate and the autumnal moth (Epirrita autumnata) at Mountain Birch (Betula pubecens ssp. czerepanovii) Treelines in northern Sweden.  

E-Print Network (OSTI)

The main objectives of this investigation were to determine the impact of climate on mountain birch (Betula pubecens ssp. czerepanovii (Orlova)) growth and to develop a regional chronology of autumnal moth outbreaks. To accomplish the objective, cores of mountain birch were taken from 21 sites in Norrbotten, Sweden. Tree-ring chronologies were developed for each site. Climatic influences were determined by correlating ring widths to climatic variables (average monthly temperature, average monthly precipitation and NAO). Outbreaks were recovered from the ring width indices using the non-host method with Scots pine (Pinus sylvestris (L.)) as the non-host. This method removes the climatic influence on growth to enhance other factors. Patterns of synchrony and regional outbreaks were detected using regression and cluster analysis techniques. The primary climatic influences on the tree ring growth of mountain birch are June and July temperatures; precipitation during October is of secondary importance. Climate explained 46% of yearly tree ring width variation. Outbreaks of the autumnal moth occur at varying time intervals depending on the scale of study. Intervals between outbreaks on the tree level are twice as long as at the plot level. On the regional scale plots within the same valley had more similar outbreak intervals and magnitudes of outbreaks. Elevation is a driver in determining the length of outbreaks and length between outbreaks. The percent monocormicity of a plot is also a determining factor of the length between outbreaks. This study is the first regional scale study on climate and outbreaks of the autumnal moth on mountain birch. The results complement research being conducted on autumnal moth larval densities and will help in modeling and assessing the effects of outbreaks with increasing climatic change.

Young, Amanda B.

2008-08-01T23:59:59.000Z

459

Climatic Forecasting of Net Infiltration at Yucca Mountain UsingAnalogue Meteorological Data  

SciTech Connect

At Yucca Mountain, NV, future changes in climatic conditionswill probably alter net infiltration, drainage below the bottom of theevapotranspiration zone within the soil profile, or flow across theinterface between soil and the densely welded part of the Tiva CanyonTuff. The objectives of this study were to: (i) develop a semiempiricalmodel and forecast average net infiltration rates, using the limitedmeteorological data from analog meteorological stations, for interglacial(present day), and future monsoon, glacial transition, and glacialclimates over the Yucca Mountain region; and (ii) corroborate thecomputed net infiltration ratesby comparing them with the empiricallyand numerically determined groundwater recharge and percolation ratesthrough the unsaturated zone from published data. This study approachedcalculations of net infiltration, aridity, and precipitationeffectiveness indices using a modified Budyko's water-balance model, withreference-surface potential evapotranspiration determined from theradiation-based Penman formula. Results of calculations show that netinfiltration rates are expected to generally increase from thepresent-day climate to monsoon climate, to glacial transition climate,and then to the glacial climate, following a power law relationshipbetween net infiltration and precipitation. The forecasting resultsindicate the overlap between the ranges of net infiltration for differentclimates. Forecasting of net infiltration for different climate states issubject to numerous uncertainties associated with selecting climateanalog sites, using relatively short analog meteorological records,neglecting the effects of vegetation and surface runoff and run-on on alocal scale, as well as possible anthropogenically induced climatechanges.

Faybishenko, Boris

2005-12-22T23:59:59.000Z

460

Chlorine-36 alidation Study at Yucca Mountain, Nevada  

SciTech Connect

The amount, spatial distribution, and velocity of water percolating through the unsaturated zone (UZ) at Yucca Mountain, Nevada, are important issues for assessing the performance of the proposed deep geologic repository for spent nuclear fuel and high-level radioactive waste. To help characterize the nature and history of UZ flow, isotopic studies were initiated in 1995, using rock samples collected from the Miocene ash-flow tuffs in the Exploratory Studies Facility (ESF), an 8-km-long tunnel constructed along the north-south extent of the repository block, and the Enhanced Characterization of the Repository Block (ECRB) Cross Drift, a 2.5-km-long tunnel constructed across the repository block (Figure 1-1, Sources: Modified from DOE 2002 [Figure 1-14] and USBR 1996). Scientists from Los Alamos National Laboratory (LANL) analyzed for chlorine-36 ({sup 36}Cl) in salts leached from whole-rock samples collected from tunnel walls and subsurface boreholes, and scientists from the U.S. Geological Survey (USGS) analyzed for isotopes of oxygen, carbon, uranium, lead, thorium, and strontium in secondary minerals collected from subsurface fractures and lithophysal cavities. Elevated values for ratios of {sup 36}Cl to total chloride ({sup 36}Cl/CL) at the level of the proposed repository indicated that small amounts of water carrying bomb-pulse {sup 36}Cl (i.e., {sup 36}Cl/Cl ratios greater than 1250 x 10{sup -15} resulting from {sup 36}Cl produced by atmospheric testing of nuclear devices during the 1950s and early 1960s) had percolated through welded and nonwelded tuffs to depths of 200 to 300 meters (m) beneath the land surface over the past 50 years. Because of the implications of short travel times to the performance of the proposed repository, the U.S. Department of Energy (DOE)/Office of Civilian Radioactive Waste Management (OCRWM), Office of Repository Development (ORD), decided to verify the {sup 36}Cl/Cl data with an independent validation study. DOE asked the USGS to design and implement a validation study that would include {sup 36}Cl and tritium ({sup 3}H) analyses. Core samples were taken from 50 new boreholes drilled across two zones in the ESF where a substantial number of samples with elevated {sup 36}Cl/Cl ratios had been identified previously. Also, core intervals from the Sample Management Facility (SMF) were acquired for water extraction and {sup 3H} analyses. This report documents the background and history of the validation study and presents the results of the {sup 36}Cl to total chloride ({sup 36}Cl/Cl) and {sup 3}H analyses.

J. Paces

2006-08-28T23:59:59.000Z

Note: This page contains sample records for the topic "mountain development icimod" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Aeromagnetic Survey At Blue Mountain Area (Fairbank Engineering, 2004) |  

Open Energy Info (EERE)

4) 4) Exploration Activity Details Location Blue Mountain Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The airborne magnetometer and VLF-EM surveys carried out by Aerodat Limited, in 1988, covered the western flank of Blue Mountain including most of the geothermal lease area. The interpreted data (total field magnetic contours; calculated vertical magnetic gradient) indicate parallel sets of northerly, northeasterly, and northwesterly-trending structures that correspond well with the major fault sets identified from geologic mapping and interpreted drilling sections. Also, an elongate northerly-trending area of low magnetic gradient coincides closely with the area of intense hydrothermal alteration associated with the prominent north-south range

462

NETL: Ambient Monitoring - Great Smoky Mountains National Park  

NLE Websites -- All DOE Office Websites (Extended Search)

Great Smoky Mountains Project (GSMP) Great Smoky Mountains Project (GSMP) Background Fine particle annual mass concentrations in the Tennessee Valley range from 14 to20 micrograms per cubic meter. All seven urban/suburban sites exceeded the annual PM2.5 standard; only the rural Lawrence County TN site remained below the 15 µg/m3 annual standard. None of the stations exceeded the 65 µg/m3 level of the 24-hour PM2.5 standard. Summer high-winter low seasonality is evident. The current FRM PM2.5 mass measurements under-estimate the contribution of volatile/semi-volatile nitrates and organic carbon species. The semi-volatile organic fraction is both highly variable and significant, and assessments of semi-volatile and non-volatile organic carbon fractions are needed when particle composition measurements are made, especially at urban sites.

463

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

AJUST A PUMP BEAM PUMPING UNIT AJUST A PUMP BEAM PUMPING UNIT FEBRUARY 19, 1997 FC9532 / 95EC1 ROCKY MOUNTAIN OILFIELD TESTING CENTER AJUST A PUMP TEST Rosemond Manufacturing, Inc. (RMI) Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR Project Manager February 19, 1997 650200/551107:9532 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of a Model-2000 Ajust A Pump system at the Naval Petroleum Reserve No. 3 (NPR-3). Rosemond Manufacturing, Inc. (RMI) manufactures compact beam-pumping units that incorporate energy-efficient gear boxes. The equipment is designed to reduce operating costs and minimize maintenance labor. This report documents the equipment performance and the results of the Ajust A Pump test. The purpose of the test was to demonstrate claims of energy efficiency and reduced labor requirements. The test showed

464

Signal Mountain, Tennessee: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Signal Mountain, Tennessee: Energy Resources Signal Mountain, Tennessee: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.1225727°, -85.3438488° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1225727,"lon":-85.3438488,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

465

Rocky Mountain Power - Energy FinAnswer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

50% of eligible measure cost 50% of eligible measure cost Lighting Energy Savings Limit: 50%-75% of savings Payback Cap: 1 year; if incentive brings the simple payback below one year, the incenive is reduced so the simple payback equals one year Program Info State Idaho Program Type Utility Rebate Program Rebate Amount $0.12/kWh annual energy savings + $50/kW average monthly on-peak demand savings Provider Rocky Mountain Power Rocky Mountain Power's Energy FinAnswer program provides incentives to help its customers improve the efficiency of existing facilities and build new facilities that are significantly more efficient than code. New construction and retrofit projects for all industrial facilities can participate as well as all new commercial projects and commercial retrofits in facilities larger than 20,000 square feet.

466

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

PERMANENT DOWNHOLE PRESSURE GAUGE PERMANENT DOWNHOLE PRESSURE GAUGE MARCH 15, 1998 FC9553/96PT16 ROCKY MOUNTAIN OILFIELD TESTING CENTER Sperry-Sun Permanent Downhole Pressure Gauge PROJECT TEST RESULTS March 16, 1998 Michael R. Tyler Project Manager Abstract The Sperry-Sun Downhole Permanent Pressure Gauge (DPPG) is a pressure gauge that is designed to remain in the well for long periods of time providing real time surface data on borehole pressures. The DPPG was field tested at the Rocky Mountain Oilfield Testing Center in well 63-TPX-10. The instrument was attached to the production string directly above a submersible pump. It was expected to monitor pressure draw-down and build-ups during normal production cycles. During the first two months of the test, the tool worked fine providing a pressure up survey that

467

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

MAG-WELL DOWNHOLE MAGNETIC FLUID CONDITIONERS MAG-WELL DOWNHOLE MAGNETIC FLUID CONDITIONERS APRIL 4,1995 FC9511 / 95PT5 ROCKY MOUNTAIN OILFIELD TESTING CENTER MAG-WELL DOWNHOLE MAGNETIC FLUID CONDITIONERS PROJECT TEST RESULTES Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer November 28, 1995 650100/9511:jb ABSTRACT November 28, 1995 The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a field test on the Mag-Well Downhole Magnetic Fluid Conditioners (MFCs), at the Naval Petroleum Reserve No. 3 (NPR- 3) located 35 miles north of Casper in Natrona County, Wyoming. Mag-Well, Inc., manufactures the MFCs, that are designed to reduce scale and paraffin buildup on the rods, tubing and downhole pump of producing oil wells. The Mag-Well magnetic tools failed to