Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mound site plume" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

On-Site Wastewater Treatment Systems: Mound System  

E-Print Network [OSTI]

Septic tank Pump tank Distribution pipe Sand Gravel Geotextile fabric On-site wastewater treatment systems Mound system Bruce Lesikar and Vance Weynand Associate Professor and Extension Agricultural Engineering Specialist, Extension Assistant... The Texas A&M University System L-5414 4-02 Figure 1: A mound system for distributing treated wastewater to the soil. A mound system for wastewater is a soil absorption system placed above the natural surface of the ground. Mound systems are used...

Lesikar, B.; Waynard, V.

2

Mound site environmental report for calendar year 1992  

SciTech Connect (OSTI)

The purpose of this report is to inform the public about the impact of Mound operations on the population and the environment. Mound is a government-owned facility operated by EG&G Mound Applied Technologies for the US Department of Energy (DOE). This integrated production, development, and research site performs work in support of DOE`s weapon and energy related programs, with emphasis on explosive, nuclear and energy technologies.

Bauer, L.R.

1993-07-01T23:59:59.000Z

3

Renewed Importance of the Mound Site Annual Institutional Controls...  

Office of Environmental Management (EM)

and the environment. The U.S. Department of Energy (DOE) Office of Legacy Management (LM) completed its 2014 annual institutional controls (IC) assessment of the Mound site in...

4

Analysis of Subsidence Data for the Bryan Mound Site, Texas  

SciTech Connect (OSTI)

The elevation change data measured at the Bryan Mound Strategic Petroleum Reserve (SPR) site over the last 16+ years has been studied and a model utilized to project elevation changes into the future. The subsidence rate at Bryan Mound is low in comparison with other Strategic Petroleum Reserve sites and has decreased with time due to the maintenance of higher operating pressures and the normal decrease in creep closure rate of caverns with time. However, the subsidence at the site is projected to continue. A model was developed to project subsidence values 20 years into the future; no subsidence related issues are apparent from these projections.

Bauer, Stephen J.

1999-07-01T23:59:59.000Z

5

DOE - Office of Legacy Management -- Mound Site  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePA 3003A AEC OreOhio Mound, Ohio,

6

DOE - Office of Legacy Management -- Mound Site  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown SiteOhioMissouriMaywood Site -

7

On-Site Wastewater Treatment Systems: Mound System  

E-Print Network [OSTI]

A mound system is a soil absorption system placed above the natural surface of the ground. The system distributes treated wastewater into the soil. This publication discusses the design and maintenance of mound systems....

Lesikar, Bruce J.

2002-04-22T23:59:59.000Z

8

Transition and Closeout of the Former DOE Mound Plant Site: Lessons Learned  

SciTech Connect (OSTI)

The U.S. Department of Energy's (DOE's) Office of Environmental Management (EM) manages the Miamisburg Closure Project (MCP) by cleaning up the Mound site, located in Miamisburg, Ohio, to specific environmental standards, conveying all excess land parcels to the Miamisburg Mound Community Improvement Corporation, and transferring all continuing DOE post-closure responsibilities to the Office of Legacy Management (LM). Presently, the EM cleanup contract of the Mound site with CH2M Hill Mound Inc. is scheduled for completion on March 31, 2006. LM manages the Mound transition efforts and also post-closure responsibilities at other DOE sites via a contract with the S.M. Stoller Corporation. The programmatic transfer from EM to LM is scheduled to take place on October 1, 2006. The transition of the Mound site has required substantial integration and coordination between the EM and LM. Several project management principles have been implemented to help facilitate the transfer of programmatic responsibility. As a result, several lessons learned have been identified to help streamline and improve integration and coordination of the transfer process. Lessons learned from the Mound site transition project are considered a work in progress and have been summarized according to a work breakdown structure for specific functional areas in the transition schedule. The functional areas include program management, environmental, records management, information technology, property management, stakeholder and regulatory relations, procurement, worker pension and benefits, and project closeout. Specific improvements or best practices have been recognized and documented by the Mound transition team. The Mound site is one of three major cleanup sites within the EM organization scheduled for completion in 2006. EM, EM cleanup contractor, LM, and LM post-closure contractor have identified lessons learned during the transition and closure of the Mound site. The transition effort from environmental cleanup to post-closure operations is complex and requires creative and innovative solutions. Future environmental cleanups can benefit from the lessons learned gained by DOE and contractor organizations. (authors)

Carpenter, C. P. [U.S. Department of Energy Office of Legacy Management, Research Ridge 4, MS-K09, 3600 Collins Ferry Road, Morgantown, WV 26507 (United States); Marks, M. L.; Smiley, S.L. [U.S. Department of Energy Office of Environmental Management, Chiquita Building, 250 E. 5 th Street, Cincinnati, OH 45202 (United States); Gallaher, D. M. [S.M. Stoller Corporation, 955 Mound Road, Miamisburg, OH 45342 (United States)

2006-07-01T23:59:59.000Z

9

Treatment of Mercury Contaminated Oil from the Mound Site  

SciTech Connect (OSTI)

Over one thousand gallons of tritiated oil, at various contamination levels, are stored in the Main Hill Tritium Facility at the Miamisburg Environmental Management Project (MEMP), commonly referred to as Mound Site. This tritiated oil is to be characterized for hazardous materials and radioactive contamination. Most of the hazardous materials are expected to be in the form of heavy metals, i.e., mercury, silver, lead, chromium, etc, but transuranic materials and PCBs could also be in some oils. Waste oils, found to contain heavy metals as well as being radioactively contaminated, are considered as mixed wastes and are controlled by Resource Conservation and Recovery Act (RCRA) regulations. The SAMMS (Self-Assembled Mercaptan on Mesoporous Silica) technology was developed by the Pacific Northwest National Laboratory (PNNL) for removal and stabilization of RCRA metals (i.e., lead, mercury, cadmium, silver, etc.) and for removal of mercury from organic solvents. The SAMMS material is based on self-assembly of functionalized monolayers on mesoporous oxide surfaces. The unique mesoporous oxide supports provide a high surface area, thereby enhancing the metal-loading capacity. SAMMS material has high flexibility in that it binds with different forms of mercury, including metallic, inorganic, organic, charged, and neutral compounds. The material removes mercury from both organic wastes, such as pump oils, and from aqueous wastes. Mercury-loaded SAMMS not only passes TCLP tests, but also has good long-term durability as a waste form because: (1) the covalent binding between mercury and SAMMS has good resistance in ion-exchange, oxidation, and hydrolysis over a wide pH range and (2) the uniform and small pore size of the mesoporous silica prevents bacteria from solubilizing the bound mercury.

Klasson, KT

2000-11-09T23:59:59.000Z

10

Analysis of cavern stability at the Bryan Mound SPR site.  

SciTech Connect (OSTI)

This report presents computational analyses that simulate the structural response of caverns at the Strategic Petroleum Reserve Bryan Mound site. The cavern field comprises 20 caverns. Five caverns (1, 2, 4, and 5; 3 was later plugged and abandoned) were acquired from industry and have unusual shapes and a history dating back to 1946. The other 16 caverns (101-116) were leached according to SPR standards in the mid-1980s and have tall cylindrical shapes. The history of the caverns and their shapes are simulated in a 3-D geomechanics model of the site that predicts deformations, strains, and stresses. Future leaching scenarios due to oil drawdowns using fresh water are also simulated by increasing the volume of the caverns. Cavern pressures are varied in the model to capture operational practices in the field. The results of the finite element model are interpreted to provide information on the current and future status of subsidence, well integrity, and cavern stability. The most significant result in this report is relevant to caverns 1, 2, and 5. The caverns have non-cylindrical shapes and have potential regions where the surrounding salt may be damaged during workover procedures. During a workover the normal cavern operating pressure is lowered to service a well. At this point the wellhead pressures are atmospheric. When the workover is complete, the cavern is repressurized. The resulting elastic stresses are sufficient to cause tension and large deviatoric stresses at several locations. With time, these stresses relax to a compressive state due to salt creep. However, the potential for salt damage and fracturing exists. The analyses predict tensile stresses at locations with sharp-edges in the wall geometry, or in the case of cavern 5, in the neck region between the upper and lower lobes of the cavern. The effects do not appear to be large-scale, however, so the only major impact is the potential for stress-induced salt falls in cavern 5, potentially leading to hanging string damage. Caverns 1 and 2 have no significant issues regarding leachings due to drawdowns; cavern 5 may require a targeted leaching of the neck region to improve cavern stability and lessen hanging string failure potential. The remaining caverns have no significant issues regarding cavern stability and may be safely enlarged during subsequent oil drawdowns. Well strains are significant and consequently future remedial actions may be necessary. Well strains certainly suggest the need for appropriate monitoring through a well-logging program. Subsidence is currently being monitored; there are no issues identified regarding damage from surface subsidence or horizontal strain to surface facilities.

Ehgartner, Brian L.; Sobolik, Steven Ronald

2009-04-01T23:59:59.000Z

11

Conversion of the Bryan Mound geological site characterization reports to a three-dimensional model.  

SciTech Connect (OSTI)

The Bryan Mound salt dome, located near Freeport, Texas, is home to one of four underground crude oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the Bryan Mound site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary units, mapped faults, and the 20 oil-storage caverns at the site. This work provides an internally consistent geologic model of the Bryan Mound site that can be used in support of future work.

Stein, Joshua S.; Rautman, Christopher Arthur

2005-04-01T23:59:59.000Z

12

Evaluation of brine disposal from the Bryan Mound site of the strategic petroleum reserve program. Final report  

SciTech Connect (OSTI)

On March 10, 1980, the Department of Energy's Strategic Petroleum Reserve Program began leaching the Bryan Mound salt dome and discharging the resulting brine into the coastal waters off Freeport, Texas. During the months of March and April, a team of scientists and engineers from Texas A and M University conducted an intensive environmental study of the area surrounding the diffuser site. A pipeline has been laid from the Bryan Mound site to a location 12.5 statute miles (20 km) offshore. The last 3060 ft (933 m) of this pipeline is a 52-port diffuser through which brine can be discharged at a maximum rate of 680,000 barrels per day. Initially, 16 ports were open which permitted a maximum discharge rate of 350,000 barrels per day and a continuous brine discharge was achieved on March 13, 1980. The purpose of this report is to describe the findings of the project team during the intensive postdisposal study period of March and April, 1980. The major areas of investigation are physical oceanography, analysis of the discharge plume, water and sediment quality, nekton, benthos, phytoplankton, zooplankton, and data management.

Case, Robert J.; Chittenden, Jr, Mark E.; Harper, Jr, Donald E.; Kelly, Jr, Francis J.; Loeblich, Laurel A.; McKinney, Larry D.; Minello, Thomas J.; Park, E. Taisoo; Randall, Robert E.; Slowey, J. Frank

1981-01-01T23:59:59.000Z

13

EIS-0302: Transfer of the Heat Source/Radioisotope Thermoelectric Generator Assembly and Test Operations From the Mound Site  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's proposed transfer of the Heat Source/Radioisotope Thermoelectric Generator (HS/RTG) operations at the Mound Site near Miamisburg, Ohio, to an alternative DOE site.

14

Strategic Petroleum Reserve (SPR) additional geologic site characterization studies, Bryan Mound Salt Dome, Texas  

SciTech Connect (OSTI)

This report revises the original report that was published in 1980. Some of the topics covered in the earlier report were provisional and it is now practicable to reexamine them using new or revised geotechnical data and that obtained from SPR cavern operations, which involves 16 new caverns. Revised structure maps and sections show interpretative differences as compared with the 1980 report and more definition in the dome shape and caprock structural contours, especially a major southeast-northwest trending anomalous zone. The original interpretation was of westward tilt of the dome, this revision shows a tilt to the southeast, consistent with other gravity and seismic data. This interpretation refines the evaluation of additional cavern space, by adding more salt buffer and allowing several more caverns. Additional storage space is constrained on this nearly full dome because of low-lying peripheral wetlands, but 60 MMBBL or more of additional volume could be gained in six or more new caverns. Subsidence values at Bryan Mound are among the lowest in the SPR system, averaging about 11 mm/yr (0.4 in/yr), but measurement and interpretation issues persist, as observed values are about the same as survey measurement accuracy. Periodic flooding is a continuing threat because of the coastal proximity and because peripheral portions of the site are at elevations less than 15 ft. This threat may increase slightly as future subsidence lowers the surface, but the amount is apt to be small. Caprock integrity may be affected by structural features, especially the faulting associated with anomalous zones. Injection wells have not been used extensively at Bryan Mound, but could be a practicable solution to future brine disposal needs. Environmental issues center on the areas of low elevation that are below 15 feet above mean sea level: the coastal proximity and lowland environment combined with the potential for flooding create conditions that require continuing surveillance.

Neal, J.T. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Magorian, T.R.; Ahmad, S. [Acres International Corp., Amherst, NY (United States)] [Acres International Corp., Amherst, NY (United States)

1994-11-01T23:59:59.000Z

15

A review and assessment of variable density ground water flow effects on plume formation at UMTRA project sites  

SciTech Connect (OSTI)

A standard assumption when evaluating the migration of plumes in ground water is that the impacted ground water has the same density as the native ground water. Thus density is assumed to be constant, and does not influence plume migration. This assumption is valid only for water with relatively low total dissolved solids (TDS) or a low difference in TDS between water introduced from milling processes and native ground water. Analyses in the literature suggest that relatively minor density differences can significantly affect plume migration. Density differences as small as 0.3 percent are known to cause noticeable effects on the plume migration path. The primary effect of density on plume migration is deeper migration than would be expected in the arid environments typically present at Uranium Mill Tailings Remedial Action (UMTRA) Project sites, where little or no natural recharge is available to drive the plume into the aquifer. It is also possible that at some UMTRA Project sites, a synergistic affect occurred during milling operations, where the mounding created by tailings drainage (which created a downward vertical gradient) and the density contrast between the process water and native ground water acted together, driving constituents deeper into the aquifer than either process would alone. Numerical experiments were performed with the U.S. Geological Survey saturated unsaturated transport (SUTRA) model. This is a finite-element model capable of simulating the effects of variable fluid density on ground water flow and solute transport. The simulated aquifer parameters generally are representative of the Shiprock, New Mexico, UMTRA Project site where some of the highest TDS water from processing has been observed.

NONE

1995-01-01T23:59:59.000Z

16

Chemistry and mineralogy of samples from the strategic petroleum reserve Bryan Mound site  

SciTech Connect (OSTI)

The goal of the Strategic Petroleum Reserve (SPR) program is to protect the United States from a temporary cutoff of imported crude oil by stockpiling a reserve of oil in caverns in Gulf Coast salt domes. Some suitable caverns already exist as a result of solution mining activities by commercial mining companies. Most of the caverns for the program, however, will be solution mined specifically for the SPR program. The tasks assigned to Sandia National Laboratories include conducting a geotechnical program and providing interim technical support for the leaching of the first five caverns in the Bryan Mound, Texas, salt dome. This report describes chemical, mineralogical and petrological work done at Sandia as of May 1, 1980 in support of Bryan Mound activities. Samples of Bryan Mound salt cores, sidewall samples and drill cuttings have been subjected to chemical, mineralogical and petrographic analysis. Halite (NaCl) was the major mineral in all samples with anhydrite (CaSO/sub 4/) a common accessory. Minor or trace sylvite (KCl) and quartz (SiO/sub 2/) were detected in some sidewall samples. Other minor minerals found in drill cuttings included quartz; mixed carbonates of Fe, Ca and Mg; and several iron oxides. Possibly the carbonates are reaction products with the basic drilling mud or possibly pieces of caprock which contaminated the cuttings. The iron oxides were probably produced by corrosion of the drill stem or bit. Densities of several core samples were determined and insoluble residue was counted for radioactivity.

Bild, R. W.

1980-08-01T23:59:59.000Z

17

Microsoft Word - LEGAL NOTICE for Mound Site 2011 CERCLA Five.doc  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$ EGcGand Surface WaterthroughLEGAL NOTICE for Mound

18

THE ROLE OF LAND USE IN ENVIRONMENTAL DECISION MAKING AT THREE DOE MEGA-CLEANUP SITES FERNALD & ROCKY FLATS & MOUND  

SciTech Connect (OSTI)

This paper explores the role that future land use decisions have played in the establishment of cost-effective cleanup objectives and the setting of environmental media cleanup levels for the three major U.S. Department of Energy (DOE) sites for which cleanup has now been successfully completed: the Rocky Flats, Mound, and Fernald Closure Sites. At each site, there are distinct consensus-building histories throughout the following four phases: (1) the facility shut-down and site investigation phase, which took place at the completion of their Cold War nuclear-material production missions; (2) the decision-making phase, whereby stakeholder and regulatory-agency consensus was achieved for the future land-use-based environmental decisions confronting the sites; (3) the remedy selection phase, whereby appropriate remedial actions were identified to achieve the future land-use-based decisions; and (4) the implementation phase, whereby the selected remedial actions for these high-profile sites were implemented and successfully closed out. At each of the three projects, there were strained relationships and distrust between the local community and the DOE as a result of site contamination and potential health effects to the workers and local residents. To engage citizens and interested stakeholder groups - particularly in the role of final land use in the decision-making process, the site management teams at each respective site developed new public-participation strategies to open stakeholder communication channels with site leadership, technical staff, and the regulatory agencies. This action proved invaluable to the success of the projects and reaching consensus on appropriate levels of cleanup. With the implementation of the cleanup remedies now complete, each of the three DOE sites have become models for future environmental-remediation projects and associated decision making.

JEWETT MA

2011-01-14T23:59:59.000Z

19

Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 3, Bryan Mound Site, Texas.  

SciTech Connect (OSTI)

Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 3 focuses on the Bryan Mound SPR site, located in southeastern Texas. Volumes 1, 2, and 4, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Big Hill SPR site, Texas, and the West Hackberry SPR site, Louisiana. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

Rautman, Christopher Arthur; Lord, Anna Snider

2007-09-01T23:59:59.000Z

20

Offshore oceanographic and environmental monitoring services for the Strategic Petroleum Reserve. Volume I. Appendices. Annual report for the Bryan Mound Site, September 1982-August 1983  

SciTech Connect (OSTI)

The Department of Energy's Strategic Petroleum Reserve Program began leaching the Bryan Mound salt dome and discharging brine into the coastal waters offshore of Freeport, Texas on March 10, 1980. This report describes the findings of a team of Texas A and M University scientists and engineers who have conducted a study to evaluate the effects of the Bryan Mound brine discharge on the marine environment. The study addresses the areas of physical oceanography, analysis of the discharge plume, water and sediment quality, nekton, benthos and data management. It focuses on the period from September 1982 through August 1983. The ambient physical environment and its temporal and spatial variability were studied by means of continuously recording in situ current/conductivitiy/temperature meters and twelve, one-day synoptic hydrographic cruises. The quarterly water and sediment quality data show a small increase in salinity, sodium and chloride ions occurs in the bottom waters and sediment pore waters near the diffuser relative to those values measured at stations farther away. Data from the brine plume study for this reporting study show the largest areal extent within the +1 o/oo above ambient salinity contour was 40.0 km/sup 2/ which occurred on August 11, 1983. It appears that brine disposal at Bryan Mound has had neglible if any influence on the nekton community surrounding the diffuser. The benthic quarterly data from 26 stations, including 7 collections made after the diffuser outflow rate was increased to 1,000,000 barrels/day, show the total numbers of species at the diffuser station were higher than most other nearfield stations as well as many farfield stations in both the pre- and post-1,000,000 barrels/day brine flow periods. 138 references, 175 figures, 53 tables.

None

1984-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "mound site plume" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Mound Site, Ohio, Site F A C T S H E E T Site Description and History  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*.MSE Cores TubaySite, Ohio, Site F A C T

22

Analysis of dissolved benzene plumes and methyl tertiary butyl ether (MTBE) plumes in ground water at leaking underground fuel tank (LUFT) sites  

SciTech Connect (OSTI)

The 1990 Clean Air Act Amendments mandate the addition of oxygenates to gasoline products to abate air pollution. Currently, many areas of the country utilize oxygenated or reformulated fuel containing 15- percent and I I-percent MTBE by volume, respectively. This increased use of MTBE in gasoline products has resulted in accidental point source releases of MTBE containing gasoline products to ground water. Recent studies have shown MTBE to be frequently detected in samples of shallow ground water from urban areas throughout the United States (Squillace et al., 1995). Knowledge of the subsurface fate and transport of MTBE in ground water at leaking underground fuel tank (LUFT) sites and the spatial extent of MTBE plumes is needed to address these releases. The goal of this research is to utilize data from a large number of LUFT sites to gain insights into the fate, transport, and spatial extent of MTBE plumes. Specific goals include defining the spatial configuration of dissolved MTBE plumes, evaluating plume stability or degradation over time, evaluating the impact of point source releases of MTBE to ground water, and attempting to identify the controlling factors influencing the magnitude and extent of the MTBE plumes. We are examining the relationships between dissolved TPH, BTEX, and MTBE plumes at LUFT sites using parallel approaches of best professional judgment and a computer-aided plume model fitting procedure to determine plume parameters. Here we present our initial results comparing dissolved benzene and MTBE plumes lengths, the statistical significance of these results, and configuration of benzene and MTBE plumes at individual LUFT sites.

Happel, A.M.; Rice, D. [Lawrence Livermore National Lab., CA (United States); Beckenbach, E. [California Univ., Berkeley, CA (United States); Savalin, L.; Temko, H.; Rempel, R. [California State Water Resources Control Board, Sacramento, CA (United States); Dooher, B. [California Univ., Los Angeles, CA (United States)

1996-11-01T23:59:59.000Z

23

Recent Site-Wide Transport Modeling Related to the Carbon Tetrachloride Plume at the Hanford Site  

SciTech Connect (OSTI)

Carbon tetrachloride transport in the unconfined aquifer system at the Hanford Site has been the subject of follow-on studies since the Carbon Tetrachloride Innovative Treatment Remediation Demonstration (ITRD) Program was completed in FY 2002. These scoping analyses were undertaken to provide support for strategic planning and guidance for the more robust modeling needed to obtain a final record of decision (ROD) for the carbon tetrachloride plume in the 200 West Area. This report documents the technical approach and the results of these follow-on, site-wide scale-modeling efforts. The existing site-wide groundwater model was used in this effort. The work extended that performed as part of the ITRD modeling study in which a 200 West Area scale submodel was developed to examine arrival concentrations at an arbitrary boundary between the 200 E and 200 W areas. These scoping analyses extended the analysis to predict the arrival of the carbon tetrachloride plume at the Columbia River. The results of these analyses illustrate the importance of developing field-scale estimates of natural attenuation parameters, abiotic degradation rate and soil/water equilibrium sorption coefficient, for carbon tetrachloride. With these parameters set to zero, carbon tetrachloride concentrations will exceed the compliance limit of 5 ?g/L outside the 200 Area Plateau Waste Management Area, and the aquifer source loading and area of the aquifer affected will continue to grow until arrival rates of carbon tetrachloride equal source release rates, estimated at 33 kg/yr. Results of this scoping analysis show that the natural attenuation parameters are critical in predicting the future movement of carbon tetrachloride from the 200 West Area. Results also show the significant change in predictions between continual source release from the vadose zone and complete source removal.

Bergeron, Marcel P.; Cole, C R.

2005-11-01T23:59:59.000Z

24

Application Of ERT For Tracking CO2 Plume Growth And Movement At The SECARB Cranfield Site  

SciTech Connect (OSTI)

Electrical Resistance Tomography (ERT) installed to track the development of an injected subsurface CO{sub 2} plume at the SECARB Cranfield, MS. sequestration site will be the deepest subsurface application of this method to date. ERT utilizes vertical arrays of electrodes, usually in a cross-well arrangement, to perform four-electrode measurements of changes in the spatial distribution of electrical resistance within a subsurface formation. Because a formation containing super-critical CO{sub 2} is approximately five times as resistive as its surroundings, significant resistance changes are anticipated during plume growth and movement within a brine-filled formation. ERT has also been shown to be quite sensitive to CO{sub 2} saturation changes. The Cranfield ERT electrode arrays will be emplaced at a depth exceeding 10,000 ft. (3280 m); the system design and installation must address significant challenges associated with both the depth and borehole conditions including temperatures of 258 F (126 C), pressures exceeding 5000 psi and a groundwater pH of 3. In addition, the system must allow co-located emplacement and concurrent operation with other monitoring techniques that utilize the same boreholes. ERT electrode and cabling will be attached to the outside of the well casing, allowing free access to the interior of the well, which is required by some of the other monitoring techniques being fielded. We will highlight these design challenges along with preliminary simulations indicating the anticipated level of imaging and the advantages of applying the technique in conjunction with other methods (such as cross-well seismics) to more accurately track the properties, location and movement of CO{sub 2} plumes.

Carrigan, C R; Ramirez, A L; Newmark, R L; Aines, R; Friedmann, S J

2009-04-27T23:59:59.000Z

25

Persistence of uranium groundwater plumes: Contrasting mechanisms at two DOE sites in the groundwater-river interaction zone  

SciTech Connect (OSTI)

We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and that are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 µg/L or 0.126 µmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (< one pore volume). At the Rifle site, slow oxidation of naturally reduced, contaminant U(IV) in the saturated zone and a continuous influx of U(VI) from natural, up-gradient sources influences plume persistence. Rate-limited mass transfer and surface complexation also control U(VI) migration velocity in the sub-oxic Rifle groundwater. Flux of U(VI) from the vadose zone at the Rifle site may be locally important, but it is not the dominant process that sustains the plume. A wide range in microbiologic functional diversity exists at both sites. Strains of Geobacter and other metal reducing bacteria are present at low natural abundance that are capable of enzymatic U(VI) reduction in localized zones of accumulated detrital organic carbon or after organic carbon amendment. Major differences between the sites include the geochemical nature of residual, contaminant U; the rates of current kinetic processes (both biotic and abiotic) influencing U(VI) solid-liquid distribution; the presence of detrital organic matter and the resulting spatial heterogeneity in microbially-driven redox properties; and the magnitude of groundwater hydrologic dynamics controlled by river-stage fluctuations, geologic structures, and aquifer hydraulic properties. The comparative analysis of these sites provides important guidance to the characterization, understanding, modeling, and remediation of groundwater contaminant plumes influenced by surface water interaction that are common world-wide.

Zachara, John M.; Long, Philip E.; Bargar, John; Davis, James A.; Fox, Patricia M.; Fredrickson, Jim K.; Freshley, Mark D.; Konopka, Allan; Liu, Chongxuan; McKinley, James P.; Rockhold, Mark L.; Williams, Kenneth H.; Yabusaki, Steven B.

2013-04-01T23:59:59.000Z

26

Geology of Damon Mound Salt Dome, Texas  

SciTech Connect (OSTI)

Geological investigation of the stratigraphy, cap-rock characteristics, deformation and growth history, and growth rate of a shallow coastal diapir. Damon Mound salt dome, located in Brazoria County, has salt less than 600 feet and cap rock less than 100 feet below the surface; a quarry over the dome provides excellent exposures of cap rock as well as overlying Oligocene to Pleistocene strata. These conditions make it ideal as a case study for other coastal diapirs that lack bedrock exposures. Such investigations are important because salt domes are currently being considered by chemical waste disposal companies as possible storage and disposal sites. In this book, the author reviews previous research, presents additional data on the subsurface and surface geology at Damon Mound, and evaluates Oligocene to post-Pleistocene diapir growth.

Collins, E.W.

1989-01-01T23:59:59.000Z

27

INDEPENDENT TECHNICAL REVIEW OF THE BUILDING 100 PLUME, FORMER DOE PINELLAS SITE (YOUNG - RAINEY STAR CENTER), LARGO, FLORIDA  

SciTech Connect (OSTI)

Contaminated groundwater associated with Building 100 at the Young-Rainey Science, Technology, and Research Center, formerly the DOE Pinellas plant, is the primary remedial challenge that remains to be addressed at the site. Currently, Building 100 is an active industrial facility that is now owned and operated by the Pinellas county government. Groundwater samples collected from monitoring wells recently installed near the southern boundary of the site suggest that contaminated groundwater has migrated off the plant site. In response to the challenges presented by the Building 100 plume, the Office of Legacy Management (LM) requested assistance from the DOE Office of Groundwater and Soil Remediation (EM-32) to provide a review team to make technical recommendations so that they can efficiently and effectively address characterization and remediation of the plume. The review team was unanimous in the conclusion that a dynamic strategy that combines a phased implementation of direct push samplers, sensors, and tools can be used to better delineate the extent of contamination, control plume migration, and rapidly remediate the contaminated groundwater at the site. The initial efforts of the team focused on reviewing the site history and data, organizing the information into a conceptual model, identifying appropriate technologies, and recommending an integrated strategy. The current groundwater data from the site indicate a two-lobed plume extending to the east and south. To the east vinyl chloride is the primary contaminant of concern, to the south, vinyl chloride and cis1, 2-DCE are the primary contaminants. The limited data that are available suggest that reductive dechlorination of the TCE is already occurring but is not sufficient to prevent offsite migration of low concentrations of TCE daughter products. The team recommends that DOE pursue a strategy that builds on the natural cleansing capacity of the subsurface with reductive methods including biostimulation and/or bioaugmentation to provide a sustainable remediation system within the flow path of the plume. Additional data will be required to implement this approach and will include: (1) Better delineation of the nature and extent of contamination; (2) Demonstration the plume is currently stable or shrinking; and (3) Demonstration the full reductive dechlorination is occurring. The technical team recommends that DOE use a phased approach to identify residual contamination and to provide rapid installation of remedies. Matrices of characterization and remediation sensors, technologies, and tools were developed by the team in order to match the specific conditions and requirements of the site. The team provides a specific example of remedy that includes the incorporation of a dynamic characterization strategy moving from minimally invasive to more aggressive field techniques, the consideration of multiple complementary remediation approaches based on a spatiotemporally phased approach keyed to the different demands of different parts of the plume, and the integration and sequencing of the characterization and remediation activities.

Eddy-Dilek, C.; Rossabi, J.; Amidon, M.; Riha, B.; Kaback, D.

2010-07-30T23:59:59.000Z

28

Finding of No Significant Impact and Final Environmental Assessment for the Future Location of Heat Source/Radioisotope Power System Assembly and Testing and Operations Currently Located at the Mound Site  

SciTech Connect (OSTI)

The U.S. Department of Energy (the Department) has completed an Environmental Assessment for the Future Location of the Heat Source/Radioisotope Power System Assembly and Test. Operations Currently Located at the Mound Site. Based on the analysis in the environmental assessment, the Department has determined that the proposed action, the relocation of the Department's heat source and radioisotope power system operations, does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the ''National Environmental Policy Act'' of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required, and the Department is issuing this Finding of No Significant Impact (FONSI).

N /A

2002-08-30T23:59:59.000Z

29

Environmental survey preliminary report, Mound Plant, Miamisburg, Ohio  

SciTech Connect (OSTI)

This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Mound Plant, conducted August 18 through 29, 1986. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the Mound Plant. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the Mound Plant, and interviews with site personnel. The Survey found no environmental problems at the Mound Plant that represent an immediate threat to human life. The environmental problems identified at the Mound Plant by the Survey confirm that the site is confronted with a number of environmental problems which are by and large a legacy from past practices at a time when environmental problems were less well understood. Theses problems vary in terms of their magnitude and risk, as described in this report. Although the sampling and analysis performed by the Mound Plant Survey will assist in further identifying environmental problems at the site, a complete understanding of the significance of some of the environmental problems identified requires a level of study and characterization that is beyond the scope of the Survey. Actions currently under way or planned at the site, particularly the Phase II activities of the Comprehensive Environmental Analysis and Response Program (CEARP) as developed and implemented by the Albuquerque Operations Office, will contribute toward meeting this requirement. 85 refs., 24 figs., 20 tabs.

Not Available

1987-03-01T23:59:59.000Z

30

Plant Mounds as Concentration and Stabilization Agents for Actinide Soil Contaminants in Nevada  

SciTech Connect (OSTI)

Plant mounds or blow-sand mounds are accumulations of soil particles and plant debris around the base of shrubs and are common features in deserts in the southwestern United States. An important factor in their formation is that shrubs create surface roughness that causes wind-suspended particles to be deposited and resist further suspension. Shrub mounds occur in some plant communities on the Nevada Test Site, the Nevada Test and Training Range (NTTR), and Tonopah Test Range (TTR), including areas of surface soil contamination from past nuclear testing. In the 1970s as part of early studies to understand properties of actinides in the environment, the Nevada Applied Ecology Group (NAEG) examined the accumulation of isotopes of Pu, 241Am, and U in plant mounds at safety experiment and storage-transportation test sites of nuclear devices. Although aerial concentrations of these contaminants were highest in the intershrub or desert pavement areas, the concentration in mounds were higher than in equal volumes of intershrub or desert pavement soil. The NAEG studies found the ratio of contaminant concentration of actinides in soil to be greater (1.6 to 2.0) in shrub mounds than in the surrounding areas of desert pavement. At Project 57 on the NTTR, 17 percent of the area was covered in mounds while at Clean Slate III on the TTR, 32 percent of the area was covered in mounds. If equivalent volumes of contaminated soil were compared between mounds and desert pavement areas at these sites, then the former might contain as much as 34 and 62 percent of the contaminant inventory, respectively. Not accounting for radionuclides associated with shrub mounds would cause the inventory of contaminants and potential exposure to be underestimated. In addition, preservation of shrub mounds could be important part of long-term stewardship if these sites are closed by fencing and posting with administrative controls.

D.S. Shafer; J. Gommes

2009-02-03T23:59:59.000Z

31

EIS-0014: Mound Facility, Miamisburg, Ohio  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy prepared this EIS to assess the environmental implications of its continuing and future programs at the Mound Facility (formerly designated Mound Laboratory), located in Miamisburg, Ohio.

32

THE USE OF GROUND-PENETRATING RADAR FOR ARCHAEOLOGY: DETERMINING SITE FORMATION PROCESSES AND SUBSURFACE FEATURES ON TUTUILA ISLAND, AMERICAN SAMOA  

E-Print Network [OSTI]

, ceremonial mound (i.e. star mound) construction details were easily seen in radar profiles. Ground penetrating radar has the potential to yield significant details about such mounds, with no physical impact to the site....

Welch, Daniel

2006-07-11T23:59:59.000Z

33

Evapotranspiration And Geochemical Controls On Groundwater Plumes At Arid Sites: Toward Innovative Alternate End-States For Uranium Processing And Tailings Facilities  

SciTech Connect (OSTI)

Management of legacy tailings/waste and groundwater contamination are ongoing at the former uranium milling site in Tuba City AZ. The tailings have been consolidated and effectively isolated using an engineered cover system. For the existing groundwater plume, a system of recovery wells extracts contaminated groundwater for treatment using an advanced distillation process. The ten years of pump and treat (P&T) operations have had minimal impact on the contaminant plume – primarily due to geochemical and hydrological limits. A flow net analysis demonstrates that groundwater contamination beneath the former processing site flows in the uppermost portion of the aquifer and exits the groundwater as the plume transits into and beneath a lower terrace in the landscape. The evaluation indicates that contaminated water will not reach Moenkopi Wash, a locally important stream. Instead, shallow groundwater in arid settings such as Tuba City is transferred into the vadose zone and atmosphere via evaporation, transpiration and diffuse seepage. The dissolved constituents are projected to precipitate and accumulate as minerals such as calcite and gypsum in the deep vadose zone (near the capillary fringe), around the roots of phreatophyte plants, and near seeps. The natural hydrologic and geochemical controls common in arid environments such as Tuba City work together to limit the size of the groundwater plume, to naturally attenuate and detoxify groundwater contaminants, and to reduce risks to humans, livestock and the environment. The technical evaluation supports an alternative beneficial reuse (“brownfield”) scenario for Tuba City. This alternative approach would have low risks, similar to the current P&T scenario, but would eliminate the energy and expense associated with the active treatment and convert the former uranium processing site into a resource for future employment of local citizens and ongoing benefit to the Native American Nations.

Looney, Brian B.; Denham, Miles E.; Eddy-Dilek, Carol A.; Millings, Margaret R.; Kautsky, Mark

2014-01-08T23:59:59.000Z

34

Mound Site Community Involvement Plan 2012  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*.MSE Cores Tubay

35

Environmental Aspects of Two Volatile Organic Compound Groundwater Treatment Designs at the Rocky Flats Site - 13135  

SciTech Connect (OSTI)

DOE's Rocky Flats Site in Colorado is a former nuclear weapons production facility that began operations in the early 1950's. Because of releases of hazardous substances to the environment, the federally owned property and adjacent offsite areas were placed on the CERCLA National Priorities List in 1989. The final remedy was selected in 2006. Engineered components of the remedy include four groundwater treatment systems that were installed before closure as CERCLA-accelerated actions. Two of the systems, the Mound Site Plume Treatment System and the East Trenches Plume Treatment System, remove low levels of volatile organic compounds using zero-valent iron media, thereby reducing the loading of volatile organic compounds in surface water resulting from the groundwater pathway. However, the zero-valent iron treatment does not reliably reduce all volatile organic compounds to consistently meet water quality goals. While adding additional zero-valent iron media capacity could improve volatile organic compound removal capability, installation of a solar powered air-stripper has proven an effective treatment optimization in further reducing volatile organic compound concentrations. A comparison of the air stripper to the alternative of adding additional zero-valent iron capacity to improve Mound Site Plume Treatment System and East Trenches Plume Treatment System treatment based on several key sustainable remediation aspects indicates the air stripper is also more 'environmentally friendly'. These key aspects include air pollutant emissions, water quality, waste management, transportation, and costs. (authors)

Michalski, Casey C.; DiSalvo, Rick; Boylan, John [Stoller LMS Team, 11025 Dover Street, Suite 1000, Westminster, CO 80021 (United States)] [Stoller LMS Team, 11025 Dover Street, Suite 1000, Westminster, CO 80021 (United States)

2013-07-01T23:59:59.000Z

36

Placing Refuge: Shell Mounds and the Archaeology of Colonial Encounters in the San Francisco Bay Area, California  

E-Print Network [OSTI]

fragment unIDed seed unIDed shell/testa Wood (g) Residue (g)Shellfishing, and the Shell Mound Archaic. In Engendering1991b Normative Thinking and Shell-Bearing Sites. In

Schneider, Tsim Duncan

2010-01-01T23:59:59.000Z

37

Investigation of the Strontium-90 Contaminant Plume along the Shoreline of the Columbia River at the 100-N Area of the Hanford Site  

SciTech Connect (OSTI)

Efforts are underway to remediate strontium-laden groundwater to the Columbia River at the 100-N Area of the Hanford Site. Past practices of the 100-N reactor liquid waste disposal sites has left strontium-90 sorbed onto sediments which is a continuing source of contaminant discharge to the river. The Remediation Task of the Science and Technology Project assessed the interaction of groundwater and river water at the hyporheic zone. Limited data have been obtained at this interface of contaminant concentrations, geology, groundwater chemistry, affects of river stage and other variables that may affect strontium-90 release. Efforts were also undertaken to determine the extent, both laterally and horizontally, of the strontium-90 plume along the shoreline and to potentially find an alternative constituent to monitor strontium-90 that would be more cost effective and could possibly be done under real time conditions. A baseline of strontium-90 concentrations along the shoreline was developed to help assess remediation technologies.

Mendoza, Donaldo P.; Patton, Gregory W.; Hartman, Mary J.; Spane, Frank A.; Sweeney, Mark D.; Fritz, Brad G.; Gilmore, Tyler J.; Mackley, Rob D.; Bjornstad, Bruce N.; Clayton, Ray E.

2007-10-01T23:59:59.000Z

38

EIS-0001: Strategic Petroleum Reserve, Bryan Mound Salt Dome, Brazoria County, Texas  

Broader source: Energy.gov [DOE]

The Strategic Petroleum Reserve prepared this SEIS to address the environmental impacts of construction and operation of two types of brine disposal systems and a new water supply system. This EIS supplements FES 76/77-6, Bryan Mound Storage Site.

39

Autonomous underwater vehicle (AUV) mapping reveals coral mound distribution, morphology, and oceanography in deep water of the  

E-Print Network [OSTI]

. The AUV technology reveals the oceanographic environ- ment, the morphology of the mounds and their spatial distribution in unprecedented detail. Most importantly, these new data question some of the existing paradigms (Figure 1) during the site survey for Ocean Drilling Program (ODP) Leg 166 [Anselmetti et al., 2000

Alvarez, Pedro J.

40

Plutonium working group report on environmental, safety and health vulnerabilities associated with the Department`s plutonium storage. Volume II, part 7: Mound working group assessment team report  

SciTech Connect (OSTI)

This is the report of a visit to the Mound site by the Working Group Assessment Team (WGAT) to assess plutonium vulnerabilities. Purposes of the visit were: to review results of the site`s self assessment of current practices for handling and storing plutonium; to conduct an independent assessment of these practices; to reconcile differences and assemble a final list of vulnerabilities; to calculate consequences and probability for each vulnerability; and to issue a report to the Working Group. This report, representing completion of the Mound visit, will be compiled along with those from all other sites with plutonium inventories as part of a final report to the Secretary of Energy.

NONE

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "mound site plume" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Integrated study of Mississippian Lodgepole Waulsortian Mounds, Williston Basin, USA  

SciTech Connect (OSTI)

Waulsortian-type carbonate buildups in the Mississippian Lodgepole Formation, Williston Basin, constitute prolific oil reservoirs. Since the initial discovery in 1993, five fields have been discovered: Dickinson Field (Lodgepole pool); Eland Field; Duck Creek Field, Versippi Field; and Hiline Field. Cumulative production (October, 1995) is 2.32 million barrels of oil and 1.34 BCF gas, with only 69,000 barrels of water. Oil gravity ranges from 41.4 to 45.3 API. Both subsurface cores from these fields as well as outcrop (Bridget Range, Big Snowy and Little Belt Mountains, Montana) are composed of facies representing deposition in mound, reworked mound, distal reworked mound, proximal flank, distal flank, and intermound settings. Porosity values within the mound and reworked mound facies are up to 15%; permeability values (in places fracture-enhanced) are up to tens of Darcies. Geometries of the mounds are variable. Mound thicknesses in the subsurface range from approximately 130-325 feet (40-100 meters); in outcrop thicknesses range from less than 30 ft (9 m) to over 250 ft (76 m). Subsurface areal dimensions range from approximately 0.5 x 1.0 mi (0.8 x 1.6 km) to 3.5 x 5.5 mi (5.6 x 8.8 km). Integration of seismic data with core and well-log models sheds light on the exploration for Lodgepole mounds. Seismic modeling of productive mounds in the Dickinson and Eland fields identifies characteristics useful for exploration, such as local thickening of the Lodgepole to Three Forks interval. These observations are confirmed in reprocessed seismic data across Eland field and on regional seismic data. Importantly, amplitude versus offset modeling identifies problems with directly detecting and identifying porosity within these features with amplitude analyses. In contrast, multicomponent seismic data has great potential for imaging these features and quantifying porous zones within them.

Kupecz, J.A.; Arestad, J.F.; Blott, J. E. [Kupecz and Associates, Ltd., Denver, CO (United States)

1996-06-01T23:59:59.000Z

42

Fractal-Mound Growth of Pentacene Thin Films  

E-Print Network [OSTI]

The growth mechanism of pentacene film formation on SiO2 substrate was investigated with a combination of atomic force microscopy measurements and numerical modeling. In addition to the diffusion-limited aggregation (DLA) that has already been shown to govern the growth of the ordered pentacene thin films, it is shown here for the first time that the Schwoebel barrier effect steps in and disrupts the desired epitaxial growth for the subsequent layers, leading to mound growth. The terraces of the growing mounds have a fractal dimension of 1.6, indicating a lateral DLA shape. This novel growth morphology thus combines horizontal DLA-like growth with vertical mound growth.

Serkan Zorba; Yonathan Shapir; Yongli Gao

2006-10-19T23:59:59.000Z

43

EA-1239: Disposition of Mound Plant's South Property, Miamisburg, Ohio  

Broader source: Energy.gov [DOE]

DOE prepared an EA for the proposed title transfer of 123 acres of land referred to as the “South Property” at the Miamisburg Environmental Management Project Mound Plant in Miamisburg, Ohio.

44

Detecting environmental impacts on metapopulations of mound spring invertebrates  

E-Print Network [OSTI]

Detecting environmental impacts on metapopulations of mound spring invertebrates Assessing environmental impacts on metapopulations. We assume that the probability of colonisation decreases to detect environmental impacts on metapopulations with small numbers of patches. D 2001 Elsevier Science

Queensland, University of

45

EA-1001: Commercialization of the Mound Plant, Golden, Colorado  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to commercialize surplus facilities such as the U.S. Department of Energy's Mound Plant in Miamisburg, Ohio.  Commercialization will make...

46

On-Site Wastewater Treatment Systems: Mound Systems (Spanish)  

E-Print Network [OSTI]

Tanque s?ptico Tanque bomba Tela geotextil Tubo de distribuci?n Arena Grava L-5414S 4-02 Figure 1: Un sistema de mont?culo para distribuir aguas negras tratadas al suelo. U n sistema de mont?culo para el tratamiento de aguas negras es un sistema de... campo de absorci?n colocado encima de la superficie natural del suelo. Los sistemas de mont?culo se utilizan para distribuir las aguas negras en lugares donde hay muy poca tierra antes de llegar a las aguas subterr?neas, suelos impermeables o lechos de...

Lesikar, Bruce J.

2002-04-18T23:59:59.000Z

47

Reindustrialization Workshop Held at Mound Site | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromComments on NBPSiting Guidelines |RegulatoryWatchdogFiscal

48

Renewed Importance of the Mound Site Annual Institutional Controls  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromComments on NBPSitingPresentationEnergy Renewables

49

Test fire environmental testing operations at Mound Applied Technologies  

SciTech Connect (OSTI)

This paper describes Mound Laboratory`s environmental testing operations. The function of environmental testing is to perform quality environmental (thermal, mechanical, spin, resistance, visual) testing/conditioning of inert/explosive products to assure their compliance with specified customer acceptance criteria. Capabilities, organization, equipment specifications, and test facilities are summarized.

NONE

1992-03-01T23:59:59.000Z

50

Focused risk assessment: Mound Plant, Miami-Erie Canal Operable Unit 4  

SciTech Connect (OSTI)

In 1969, an underground waste line at Mound Plant ruptured and released plutonium-238 in a dilute nitric acid solution to the surrounding soils. Most of the acid was neutralized by the native soils. The plutonium, which in a neutral solution is tightly sorbed onto clay particles, remained within the spill area. During remediation, a severe storm eroded some of the contaminated soil. Fine grained plutonium-contaminated clay particles were carried away through the natural drainage courses to the remnants of the Miami-Erie Canal adjacent to Mound Plant, and then into the Great Miami River. This focused risk assessment considers exposure pathways relevant to site conditions, including incidental ingestion of contaminated soils, ingestion of drinking water and fish, and inhalation of resuspended soils and sediments. For each potential exposure pathway, a simplified conceptual model and exposure scenarios have been used to develop conservative estimates of potential radiation dose equivalents and health risks. The conservatism of the dose and risk estimates provides a substantive margin of safety in assuring that the public health is protected.

Rogers, D.R.; Dunning, D.F.

1994-09-29T23:59:59.000Z

51

Mound-ACT*DE*CON{sup SM} feasibility study. Phase 2: Final report  

SciTech Connect (OSTI)

A portion of the abandoned Miami-Erie Canal paralleling the Greater Miami River receives the runoff and storm-water discharge from Mound Laboratory. In 1969, a low-level plutonium leak contaminated sediment as far away as 1.5 mi from the Mound site along the old canal system. An estimated one million cubic feet of sediment requires remediation. The technology being evaluated for the remediation of the low-level plutonium-238 contamination of the sediment involves two processes: washing the sediments with ACT*DE*CON{sup SM} solution to dissolve the contaminant, followed by extraction of the solution and processing with the MAG*SEP{sup SM} process to concentrate the contaminant and allow reuse of the ACT*DE*CON{sup SM} solution. The processes are being optimized for pilot-scale and field demonstration. Phase 2 of the project primarily involved identification at the laboratory scale of the optimal ACT*DE*CON{sup SM} formulation, identification of the ion-exchanger and MAG*SEP{sup SM} particles, verification of the plutonium mobility in the treated soil, and evaluation of other process parameters according to a series of tasks.

NONE

1994-12-01T23:59:59.000Z

52

Flower Mound, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHome Kyoung's pictureFlintFlower Mound,

53

West Hackberry Strategic Petroleum Reserve site brine disposal monitoring, Year I report. Volume V. Supporting data for estuarine hydrology, discharge plume analysis, chemical oceanography, biological oceanography, and data management. Final report  

SciTech Connect (OSTI)

This project centers around the Strategic Petroleum Site (SPR) known as the West Hackberry salt dome which located in southwestern Louisiana, and which is designed to store 241 million barrels of crude oil. Oil storage caverns are formed by injecting water into salt deposits, and pumping out the resulting brine. Studies described in this report were designed as follow-on studies to three months of pre-discharge characterization work, and include data collected during the first year of brine leaching operations. The objectives were to: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significant adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. Volume V contains appendices for the following: supporting data for estuarine hydrology and hydrography; supporting data analysis of discharge plume; supporting data for water and sediment chemistry; CTD/DO and pH profiles during biological monitoring; supporting data for nekton; and supporting data for data management.

DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

1983-02-01T23:59:59.000Z

54

Saturated Zone Plumes in Volcanic Rock: Implications for Yucca Mountain  

SciTech Connect (OSTI)

This paper presents a literature survey of the occurrences of radionuclide plumes in saturated, fractured rocks. Three sites, Idaho National laboratory, Hanford, and Oak Ridge are discussed in detail. Results of a modeling study are also presented showing that the length to width ratio of a plume starting within the repository footprint at the Yucca Mountain Project site, decreases from about 20:1 for the base case to about 4:1 for a higher value of transverse dispersivity, indicating enhanced lateral spreading of the plume. Due to the definition of regulatory requirements, this lateral spreading does not directly impact breakthrough curves at the 18 km compliance boundary, however it increases the potential that a plume will encounter reducing conditions, thus significantly retarding the transport of sorbing radionuclides.

S. Kelkar; R. Roback; B. Robinson; G. Srinivasan; C. Jones; P. Reimus

2006-02-14T23:59:59.000Z

55

Blue Mounds, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:formBlue Energy Address: Box 29068 1950BlueEnergyMounds,

56

Mound Museum Volunteers: Preserving a Laboratory's Legacy | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department of EnergyDepartmentJulyRefineryEnergy Mound

57

Mound Plant Director's Final Findings and Orders, October 4, 1995  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010 Printing and Mail ManagersforRobert G.EnterprisesMound

58

Colloid Formation at Waste Plume Fronts  

SciTech Connect (OSTI)

Highly saline and caustic tank waste solutions containing radionuclides and toxic metals have leaked into sediments at U. S. Department of Energy (DOE) facilities such as the Hanford Site (Washington State). Colloid transport is frequently invoked to explain migration of radionuclides and metals in the subsurface. To understand colloid formation during interactions between highly reactive fluids and sediments and its impact on contaminant transport, we simulated tank waste solution (TWS) leakage processes in laboratory columns at ambient and elevated (70 C) temperatures. We found that maximum formation of mobile colloids occurred at the plume fronts (hundreds to thousands times higher than within the plume bodies or during later leaching). Concentrations of suspended solids were as high as 3 mass%, and their particle-sizes ranged from tens of nm to a few {micro}m. Colloid chemical composition and mineralogy depended on temperature. During infiltration of the leaked high Na{sup +} waste solution, rapid and completed Na{sup +} replacement of exchangeable Ca{sup 2+} and Mg{sup 2+} from the sediment caused accumulation of these divalent cations at the moving plume front. Precipitation of supersaturated Ca{sup 2+}/Mg{sup 2+}-bearing minerals caused dramatic pH reduction at the plume front. In turn, the reduced pH caused precipitation of other minerals. This understanding can help predict the behavior of contaminant trace elements carried by the tank waste solutions, and could not have been obtained through conventional batch studies.

Wan, Jiamin; Tokunaga, Tetsu K.; Saiz, Eduardo; Larsen, Joern T.; Zheng, Zuoping; Couture, Rex A.

2004-05-22T23:59:59.000Z

59

Are reefs and mud mounds really so different? Rachel Wood ,1  

E-Print Network [OSTI]

Are reefs and mud mounds really so different? Rachel Wood ,1 Department of Earth Sciences-1223-333-450. E-mail address: rw43@esc.cam.ac.uk (R. Wood). 1 Current address: Schlu¨mberger Cambridge Research). While mud mounds are now accepted to be rigid, framework reefs (see Pratt, 1982; 1995; Webb, 1996; Wood

60

Updated Conceptual Model for the 300 Area Uranium Groundwater Plume  

SciTech Connect (OSTI)

The 300 Area uranium groundwater plume in the 300-FF-5 Operable Unit is residual from past discharge of nuclear fuel fabrication wastes to a number of liquid (and solid) disposal sites. The source zones in the disposal sites were remediated by excavation and backfilled to grade, but sorbed uranium remains in deeper, unexcavated vadose zone sediments. In spite of source term removal, the groundwater plume has shown remarkable persistence, with concentrations exceeding the drinking water standard over an area of approximately 1 km2. The plume resides within a coupled vadose zone, groundwater, river zone system of immense complexity and scale. Interactions between geologic structure, the hydrologic system driven by the Columbia River, groundwater-river exchange points, and the geochemistry of uranium contribute to persistence of the plume. The U.S. Department of Energy (DOE) recently completed a Remedial Investigation/Feasibility Study (RI/FS) to document characterization of the 300 Area uranium plume and plan for beginning to implement proposed remedial actions. As part of the RI/FS document, a conceptual model was developed that integrates knowledge of the hydrogeologic and geochemical properties of the 300 Area and controlling processes to yield an understanding of how the system behaves and the variables that control it. Recent results from the Hanford Integrated Field Research Challenge site and the Subsurface Biogeochemistry Scientific Focus Area Project funded by the DOE Office of Science were used to update the conceptual model and provide an assessment of key factors controlling plume persistence.

Zachara, John M.; Freshley, Mark D.; Last, George V.; Peterson, Robert E.; Bjornstad, Bruce N.

2012-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "mound site plume" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Lucky Mound field: A new Mississippian Sherwood shoreline field  

SciTech Connect (OSTI)

Lucky Mound field produces oil and gas from the Sherwood interval of the Mississippian Mission Canyon Formation. Presently, eight wells are producing with development ongoing. Extensive coring, testing, logging, and petrographic evaluations throughout the field have allowed for detailed analysis of reservoir characteristics and paleoenvironmental interpretation. Sherwood shoreline fields typically produce from reservoir-quality packstones and grainstones trapped by a lateral facies changes into impermeable dolomite and anhydrite. At Lucky Mound, packstones, grainstones, and a productive dolomite facies all contribute to the producing interval. The productive dolomite facies is generally found in the upper portion of the Sherwood along the eastern margin of the field. Porosity as high as 22% and permeability values up to 16 md are present in the dolomite facies. These dolomites are the result of complete to partial replacement of micrite. In addition, the dolomitization process has enhanced intercrystalline and intraparticle porosity throughout the Sherwood interval. Pore types present include vuggy, intergranular, intraparticle, and intercrystalline. Pore occluding and replacive cements include fibrous calcite, prismatic calcite spar, baroque dolomite, anhydrite, celestite, pyrite, and chert. An understanding of carbonate depositional environments, diagenetic processes, Williston basin structural development, and Sherwood reservoir behavior is essential in the exploration for new Sherwood fields.

Fisher, R.W. (Balcron Oil, Billings, MT (United States)); Hendricks, M.L. (Hendricks and Associates, Inc., Denver, CO (United States))

1991-06-01T23:59:59.000Z

62

DETECTION OF HISTORICAL PIPELINE LEAK PLUMES USING NON-INTRUSIVE SURFACE-BASED GEOPHYSICAL TECHNIQUES AT THE HANFORD NUCLEAR SITE WASHINGTON USA  

SciTech Connect (OSTI)

Historical records from the Department of Energy Hanford Nuclear Reservation (in eastern WA) indicate that ruptures in buried waste transfer pipelines were common between the 1940s and 1980s, which resulted in unplanned releases (UPRs) of tank: waste at numerous locations. A number of methods are commercially available for the detection of active or recent leaks, however, there are no methods available for the detection of leaks that occurred many years ago. Over the decades, leaks from the Hanford pipelines were detected by visual observation of fluid on the surface, mass balance calculations (where flow volumes were monitored), and incidental encounters with waste during excavation or drilling. Since these detection methods for historic leaks are so limited in resolution and effectiveness, it is likely that a significant number of pipeline leaks have not been detected. Therefore, a technology was needed to detect the specific location of unknown pipeline leaks so that characterization technologies can be used to identify any risks to groundwater caused by waste released into the vadose zone. A proof-of-concept electromagnetic geophysical survey was conducted at an UPR in order to image a historical leak from a waste transfer pipeline. The survey was designed to test an innovative electromagnetic geophysical technique that could be used to rapidly map the extent of historical leaks from pipelines within the Hanford Site complex. This proof-of-concept test included comprehensive testing and analysis of the transient electromagnetic method (TEM) and made use of supporting and confirmatory geophysical methods including ground penetrating radar, magnetics, and electrical resistivity characterization (ERC). The results for this initial proof-of-concept test were successful and greatly exceeded the expectations of the project team by providing excellent discrimination of soils contaminated with leaked waste despite the interference from an electrically conductive pipe.

SKORSKA MB; FINK JB; RUCKER DF; LEVITT MT

2010-12-02T23:59:59.000Z

63

Representative Atmospheric Plume Development for Elevated Releases  

SciTech Connect (OSTI)

An atmospheric explosion of a low-yield nuclear device will produce a large number of radioactive isotopes, some of which can be measured with airborne detection systems. However, properly equipped aircraft may not arrive in the region where an explosion occurred for a number of hours after the event. Atmospheric conditions will have caused the radioactive plume to move and diffuse before the aircraft arrives. The science behind predicting atmospheric plume movement has advanced enough that the location of the maximum concentrations in the plume can be determined reasonably accurately in real time, or near real time. Given the assumption that an aircraft can follow a plume, this study addresses the amount of atmospheric dilution expected to occur in a representative plume as a function of time past the release event. The approach models atmospheric transport of hypothetical releases from a single location for every day in a year using the publically available HYSPLIT code. The effective dilution factors for the point of maximum concentration in an elevated plume based on a release of a non-decaying, non-depositing tracer can vary by orders of magnitude depending on the day of the release, even for the same number of hours after the release event. However, the median of the dilution factors based on releases for 365 consecutive days at one site follows a power law relationship in time, as shown in Figure S-1. The relationship is good enough to provide a general rule of thumb for estimating typical future dilution factors in a plume starting at the same point. However, the coefficients of the power law function may vary for different release point locations. Radioactive decay causes the effective dilution factors to decrease more quickly with the time past the release event than the dilution factors based on a non-decaying tracer. An analytical expression for the dilution factors of isotopes with different half-lives can be developed given the power law expression for the non-decaying tracer. If the power-law equation for the median dilution factor, Df, based on a non-decaying tracer has the general form Df=a?×t?^(-b) for time t after the release event, then the equation has the form Df=e^(-?t)×a×t^(-b) for a radioactive isotope, where ? is the decay constant for the isotope.

Eslinger, Paul W.; Lowrey, Justin D.; McIntyre, Justin I.; Miley, Harry S.; Prichard, Andrew W.

2014-03-03T23:59:59.000Z

64

Development and Evaluation of a State-of-the-Science Reactive Plume  

E-Print Network [OSTI]

for plume rise, plume visibility, and stack opacity (5). Examples of other reactive plume models include

Zhang, Yang

65

Calculating the probability of injected carbon dioxide plumes encountering faults  

SciTech Connect (OSTI)

One of the main concerns of storage in saline aquifers is leakage via faults. In the early stages of site selection, site-specific fault coverages are often not available for these aquifers. This necessitates a method using available fault data to estimate the probability of injected carbon dioxide encountering and migrating up a fault. The probability of encounter can be calculated from areal fault density statistics from available data, and carbon dioxide plume dimensions from numerical simulation. Given a number of assumptions, the dimension of the plume perpendicular to a fault times the areal density of faults with offsets greater than some threshold of interest provides probability of the plume encountering such a fault. Application of this result to a previously planned large-scale pilot injection in the southern portion of the San Joaquin Basin yielded a 3% and 7% chance of the plume encountering a fully and half seal offsetting fault, respectively. Subsequently available data indicated a half seal-offsetting fault at a distance from the injection well that implied a 20% probability of encounter for a plume sufficiently large to reach it.

Jordan, P.D.

2011-04-01T23:59:59.000Z

66

Bryan Mound SPR cavern 113 remedial leach stage 1 analysis.  

SciTech Connect (OSTI)

The U.S. Strategic Petroleum Reserve implemented the first stage of a leach plan in 2011-2012 to expand storage volume in the existing Bryan Mound 113 cavern from a starting volume of 7.4 million barrels (MMB) to its design volume of 11.2 MMB. The first stage was terminated several months earlier than expected in August, 2012, as the upper section of the leach zone expanded outward more quickly than design. The oil-brine interface was then re-positioned with the intent to resume leaching in the second stage configuration. This report evaluates the as-built configuration of the cavern at the end of the first stage, and recommends changes to the second stage plan in order to accommodate for the variance between the first stage plan and the as-built cavern. SANSMIC leach code simulations are presented and compared with sonar surveys in order to aid in the analysis and offer projections of likely outcomes from the revised plan for the second stage leach.

Rudeen, David Keith [GRAM, Inc., Albuquerque, NM; Weber, Paula D.; Lord, David L.

2013-08-01T23:59:59.000Z

67

Simulation of the Visual Effects of Power Plant Plumes1  

E-Print Network [OSTI]

Simulation of the Visual Effects of Power Plant Plumes1 2 Evelyn F. Treiman, / 3 David B. Champion-fired power plant with six 500 MW coal-fired power plants located at hypothetical sites in southeastern Utah coal-fired power plants are greater than those from oil or natural gas. If we must use more coal, how

Standiford, Richard B.

68

Effects of site preparation for afforestation on soil properties and greenhouse gas emission   

E-Print Network [OSTI]

Forest plantations in the UK are often established on seasonally waterlogged peaty gley soils which often require site preparation (drainage and mounding) to lower the water table and prepare planting positions. Substantial ...

Mojeremane, Witness

2009-01-01T23:59:59.000Z

69

Modeling Leaking Gas Plume Migration  

SciTech Connect (OSTI)

In this study, we obtain simple estimates of 1-D plume propagation velocity taking into account the density and viscosity contrast between CO{sub 2} and brine. Application of the Buckley-Leverett model to describe buoyancy-driven countercurrent flow of two immiscible phases leads to a transparent theory predicting the evolution of the plume. We obtain that the plume does not migrate upward like a gas bubble in bulk water. Rather, it stretches upward until it reaches a seal or until the fluids become immobile. A simple formula requiring no complex numerical calculations describes the velocity of plume propagation. This solution is a simplification of a more comprehensive theory of countercurrent plume migration that does not lend itself to a simple analytical solution (Silin et al., 2006). The range of applicability of the simplified solution is assessed and provided. This work is motivated by the growing interest in injecting carbon dioxide into deep geological formations as a means of avoiding its atmospheric emissions and consequent global warming. One of the potential problems associated with the geologic method of sequestration is leakage of CO{sub 2} from the underground storage reservoir into sources of drinking water. Ideally, the injected green-house gases will stay in the injection zone for a geologically long time and eventually will dissolve in the formation brine and remain trapped by mineralization. However, naturally present or inadvertently created conduits in the cap rock may result in a gas leak from primary storage. Even in supercritical state, the carbon dioxide viscosity and density are lower than those of the indigenous formation brine. Therefore, buoyancy will tend to drive the CO{sub 2} upward unless it is trapped beneath a low permeability seal. Theoretical and experimental studies of buoyancy-driven supercritical CO{sub 2} flow, including estimation of time scales associated with plume evolution, are critical for developing technology, monitoring policy, and regulations for carbon dioxide geologic sequestration protecting the sources of potable water.

Silin, Dmitriy; Patzek, Tad; Benson, Sally M.

2007-08-20T23:59:59.000Z

70

Coastal pollution hazards in southern California observed by SAR imagery: stormwater plumes, wastewater plumes,  

E-Print Network [OSTI]

, wastewater plumes, and natural hydrocarbon seeps Paul M. DiGiacomo a,*, Libe Washburn b , Benjamin Holt Abstract Stormwater runoff plumes, municipal wastewater plumes, and natural hydrocarbon seeps are important; Slicks; Southern California; Synthetic aperture radar; Wastewater, plumes 1. Introduction The rapidly

Washburn, Libe

71

Characteristics of pimple mounds associated with the Morey soil of southeast Texas  

E-Print Network [OSTI]

of the intermound are clay loam but have insufficient illuvial clay to be termed argillic, The intermound surface orgar ic matter content is 3. 8/. The entire intermound profile is calcareous and one deep Bt hor- izon is calcic. The pH ranges from 7. 6... BAA, and Bl horizon in the mound soil. The Bt horizons beneath the mound are argillic and range in texture from silt loam to clay loam. The argillic B&A horizon is at the same elevation as the surface of the intermound. The organic matter content...

Carty, David Jerome

1980-01-01T23:59:59.000Z

72

Solar-Powered Air Stripping at the Rocky Flats Site, Colorado - 12361  

SciTech Connect (OSTI)

The U.S. Department of Energy's Rocky Flats Site (the Site), near Denver, Colorado, is a former nuclear weapons facility that was constructed beginning in 1951. With the end of the Cold War, the Site was cleaned up and closed in 2005. Four gravity-driven groundwater treatment systems were installed during cleanup, and their continued operation was incorporated into the final remedy for the Site. All utilities, including electrical power, were removed as part of this closure, so all Site electrical power needs are now met with small solar-powered systems. The Mound Site Plume Treatment System (MSPTS) was installed in 1998 as an innovative system based on zero-valent iron (ZVI). Groundwater flow from the Mound source area containing elevated concentrations of volatile organic compounds (VOCs), primarily in the tetrachloroethene (PCE)-trichloroethene (TCE) family of chlorinated solvents, is intercepted by a collection trench and routed to twin ZVI treatment cells. Later, in 2005, remediation of VOC-contaminated soils at a second up-gradient source area included adding an electron donor to the backfill to help stimulate biodegradation. This reduced concentrations of primary constituents but caused down-gradient groundwater to contain elevated levels of recalcitrant degradation byproducts, particularly cis-1,2-dichloroethene and vinyl chloride. A gravel drain installed as part of the 2005 remediation directs contaminated groundwater from this second source area to the MSPTS for treatment. This additional contaminant load, coupled with correspondingly reduced residence time within the ZVI media due to the increased flow rate, resulted in reduced treatment effectiveness. Elevated concentrations of VOCs were then detected in MSPTS effluent, as well as in surface water at the downstream performance monitoring location for the MSPTS. Subsequent consultations with the Site regulators led to the decision to add a polishing component to reduce residual VOCs in MSPTS effluent. Initially, several alternatives such as commercial air strippers and cascade aerators were evaluated; resulting cost estimates exceeded $100,000. After several simpler alternatives were considered and prototype testing was conducted, the existing effluent metering manhole was converted to house a spray-nozzle based, solar-powered air stripper, at a cost of approximately $20,000. About two-thirds of this cost was for the solar power system, which was initially designed to only provide power for 12 hours per day. Performance data are being collected and adjustments made to optimize the design, determine maintenance requirements, and establish power needs for continuous operation. Analytical data confirm the air stripper is sharply reducing concentrations of residual contaminants. (authors)

Boylan, John A. [S.M. Stoller Corporation, Rocky Flats Site, 11025 Dover Street, Suite 1000, Westminster, Colorado 80021 (United States)

2012-07-01T23:59:59.000Z

73

Plasma plume MHD power generator and method  

DOE Patents [OSTI]

A method is described of generating power at a situs exposed to the solar wind which comprises creating at separate sources at the situs discrete plasma plumes extending in opposed directions, providing electrical communication between the plumes at their source and interposing a desired electrical load in the said electrical communication between the plumes.

Hammer, J.H.

1993-08-10T23:59:59.000Z

74

Plasma plume MHD power generator and method  

DOE Patents [OSTI]

Highly-conducting plasma plumes are ejected across the interplanetary magnetic field from a situs that is moving relative to the solar wind, such as a spacecraft or an astral body, such as the moon, having no magnetosphere that excludes the solar wind. Discrete plasma plumes are generated by plasma guns at the situs extending in opposite directions to one another and at an angle, preferably orthogonal, to the magnetic field direction of the solar wind plasma. The opposed plumes are separately electrically connected to their source by a low impedance connection. The relative movement between the plasma plumes and the solar wind plasma creates a voltage drop across the plumes which is tapped by placing the desired electrical load between the electrical connections of the plumes to their sources. A portion of the energy produced may be used in generating the plasma plumes for sustained operation.

Hammer, James H. (Livermore, CA)

1993-01-01T23:59:59.000Z

75

Floral succession and isotopic diagenesis of the Anahuac Formation at Damon Mound, Texas  

E-Print Network [OSTI]

The Anahuac Formation at Damon Mound, Texas includes a fault block of the Heterostegina limestone (Oligocene), raised to the surface by Cenozoic salt tectonism. Four cores drilled into the reef complex by Dresser Minerals (29-77, 19-77, 19- A-77...

De Freest, Eric Scott

1993-01-01T23:59:59.000Z

76

Conceptual design report for site drainage control  

SciTech Connect (OSTI)

The Mound Plant (Mound), located in Miamisburg, Ohio, is a Department of Energy (DOE) development and production facility performing support work for DOE`s weapons and energy-related programs. EG&G Mound Applied Technologies, Inc. (EG&G) is the Operating Contractor (OC) for this Government-Owned, Contractor-Operated (GOCO) facility. The work performed at Mound emphasizes nuclear energy and explosives technology. Mound is currently implementing an Environmental, Safety & Health (ES&H) Upgrades Program designed to protect its employees, the public, and the environment from adverse effects caused by facility activities. The first project of this multiphase program is now in the final stages of construction, and the second project is currently under design. Four additional projects, one of which is presented in this report, are in the conceptual design stage. At Mound, 22 soil zones have become contaminated with radioactive material. These zones cover approximately 20 percent of the total area of developed property at the site. During a storm event, the rainwater washes contaminated soil from these zones into the storm sewer system. These radioactive contaminants may then be discharged along with the stormwater into the Great Miami River via the Miami Erie Canal. This conceptual design report (CDR), Site Drainage Control, the fourth project in the ES&H program, describes a project that will provide improvements and much needed repairs to inadequate and deteriorating portions of the storm drainage system on the developed property. The project also will provide a stormwater retention facility capable of storing the stormwater runoff, from the developed property, resulting from a 100-year storm event. These improvements will permit the effective control and monitoring of stormwater to prevent the spread of radioactive contaminants from contaminated soil zones and will provide a means to collect and contain accidental spills of hazardous substances.

Hunter, M.R.

1996-07-01T23:59:59.000Z

77

Contaminant plumes containment and remediation focus area. Technology summary  

SciTech Connect (OSTI)

EM has established a new approach to managing environmental technology research and development in critical areas of interest to DOE. The Contaminant Plumes Containment and Remediation (Plumes) Focus Area is one of five areas targeted to implement the new approach, actively involving representatives from basic research, technology implementation, and regulatory communities in setting objectives and evaluating results. This document presents an overview of current EM activities within the Plumes Focus Area to describe to the appropriate organizations the current thrust of the program and developing input for its future direction. The Plumes Focus Area is developing remediation technologies that address environmental problems associated with certain priority contaminants found at DOE sites, including radionuclides, heavy metals, and dense non-aqueous phase liquids (DNAPLs). Technologies for cleaning up contaminants of concern to both DOE and other federal agencies, such as volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), and other organics and inorganic compounds, will be developed by leveraging resources in cooperation with industry and interagency programs.

NONE

1995-06-01T23:59:59.000Z

78

Microsoft Word - S07757_2011 Mound IC Report  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledo SiteTonawandaUniversity of Doc. No.256IC

79

Microsoft Word - S07757_2011 Mound IC Report  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledo SiteTonawandaUniversity of Doc. No.256IC1 Doc.

80

Microsoft Word - S07757_2011 Mound IC Report  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledo SiteTonawandaUniversity of Doc. No.256IC1 Doc.

Note: This page contains sample records for the topic "mound site plume" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Microsoft Word - S07757_2011 Mound IC Report  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledo SiteTonawandaUniversity of Doc. No.256IC1

82

DOE - Office of Legacy Management -- Mound_Benefits  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown SiteOhioMissouriMaywood Site -Ohio >

83

DIRECT MEASUREMENT OF MERCURY REACTIONS IN COAL POWER PLANT PLUMES  

SciTech Connect (OSTI)

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Program Area of Interest: No.5--Environmental and Water Resources. The project team includes the Electric Power Research Institute (EPRI) as the contractor and the University of North Dakota Energy & Environmental Research Center (EERC) and Frontier Geosciences as subcontractors. Wisconsin Energies and its Pleasant Prairie Power Plant acted as host for the field-testing portion of the research. The project is aimed at clarifying the role, rates, and end results of chemical transformations that may occur to mercury that has been emitted from elevated stacks of coal-fired electric power plants. Mercury emitted from power plants emerges in either its elemental, divalent, or particulate-bound form. Deposition of the divalent form is more likely to occur closer to the source than that of the other two forms, due to its solubility in water. Thus, if chemical transformations occur in the stack emissions plume, measurements in the stack may mischaracterize the fate of the material. Initial field and pilot plant measurements have shown significant and rapid chemical reduction of divalent to elemental mercury may occur in these plumes. Mercury models currently assume that the chemical form of mercury occurring in stacks is the same as that which enters the free atmosphere, with no alteration occurring in the emissions plume. Recent data indicate otherwise, but need to be evaluated at full operating scale under field conditions. Prestbo and others have demonstrated the likelihood of significant mercury chemical reactions occurring in power plant plumes (Prestbo et al., 1999; MDNR-PPRP, 2000; EERC, 2001). This experiment will thus increase our understanding of mercury atmospheric chemistry, allowing informed decisions regarding source attribution. The experiment was carried out during the period August 22-September 5, 2003. The experimental site was the Pleasant Prairie Power Plant in Pleasant Prairie, Wisconsin, just west of Kenosha. The experiment involved using an aircraft to capture emissions and document chemistry changes in the plume. While using the airplane for sampling, supplemental fast-response sensors for NOx, connected to data loggers, were used to gauge entry and exit times and transect intervals through plume emissions material. The Frontier Geosciences Static Plume Dilution Chamber (SPDC) was employed simultaneously adjacent to the stack to correlate its findings with the aircraft sampling, as well as providing evaluation of the SPDC as a rapid, less costly sampler for mercury chemistry. A complementary stack plume method, the Dynamic Plume Dilution (DPD) was used in the latter portion of the experiment to measure mercury speciation to observe any mercury reduction reaction with respect to both the reaction time (5 to 30 seconds) and dilution ratio. In addition, stack sampling using the ''Ontario Hydro'' wet chemistry method and continuous mercury monitors (CMM) were used to establish the baseline chemistry in the stack. Comparisons among stack, SPDC, DPD and aircraft measurements allow establishment of whether significant chemical changes to mercury occur in the plume, and of the verisimilitude of the SPDC and DPD methods. This progress report summarizes activities during a period of results review from the stack/aircraft subcontractor, data analysis and synthesis, and preparation and presentation of preliminary results to technical and oversight meetings.

Leonard Levin

2006-06-01T23:59:59.000Z

84

Dickinson field lodgepole reservoir: Significance of this Waulsortian-type mound to exploration in the Williston Basin  

SciTech Connect (OSTI)

Conoco`s No. 74 Dickinson State well, a deep test in Dickinson Field, Stark County, North Dakota, was completed in early 1993 capable of producing over 2,000 BOPD. It represents the first commercial oil production from the Lower Mississippian Lodgepole Formation in the U.S. portion of the Williston Basin. Three additional oil producers have now been completed and this Lodgepole discovery is fully developed. The producing reservoir, at depths of 9,700 to 10,000 ft, is a Waulsortian-type mound approximately 300 ft thick with a characteristic faunal assemblage of bryozoans and crinoids. The mound has an areal extent of slightly more than 1 square mile. Similar Waulsortian-type mounds have been recognized in rocks of Paleozoic age around the world, but have only been reported in the Williston Basin during the past decade. Such mounds are shallow to deep water deposits, tend to develop over structurally or topographically-positive areas, and may form by algal or by current action in conjunction with baffling action caused by bryozoans. The prolific nature of the Conoco discovery, plus several more-recent excellent mound discoveries in this same area, have caused renewed drilling and leasing activity. These events have also encouraged a review of existing seismic data, the shooting of new 3-D seismic programs and re-analysis of wells previously drilled through the Lodgepole Formation for evidence of similar mounds elsewhere in the basin.

Johnson, M.S. [Rocky Mountain Association of Geologists, Denver, CO (United States)

1995-07-01T23:59:59.000Z

85

Comparison of vegetation found on equal age spoil mounds in Robertson County, Texas  

E-Print Network [OSTI]

abiotic variables MOUND VARIABLE GRAVEL SAND SILT CLAY O. M. SLOPE EL ? , 52Q** ? . 7P9** . 623** . 776** . 173 . 6P9** SLOPE O. M. CLAY SILT SAND ? . 562** ? . 273* -. 622** ? . 742*a . 725** , 792** , 4P9** ? . 963** 975** . 741...** , 6pp** 55p** , 315** . 354** SLOPE O. M. CLAY SILT SAND GRAVEL SAND SILT CLAY O. M. SLOPE ? . 217 . 020 ? . 047 . 028 ? . 221 . 283* ? . 466** . 071 ? . 462** ? . 206 . 415** . 268 . 433** . 066 -, 5P7** ? . 260 ? . 635e...

Mayes, Thorpe Ambrose

2012-06-07T23:59:59.000Z

86

POTENTIAL IMPACT OF BLENDING RESIDUAL SOLIDS FROM TANKS 18/19 MOUNDS WITH TANK 7 OPERATIONS  

SciTech Connect (OSTI)

High level waste tanks 18F and 19F have residual mounds of waste which may require removal before the tanks can be closed. Conventional slurry pump technology, previously used for waste removal and tank cleaning, has been incapable of removing theses mounds from tanks 18F and 19F. A mechanical cleaning method has been identified that is potentially capable of removing and transferring the mound material to tank 7F for incorporation in a sludge batch for eventual disposal in high level waste glass by the Defense Waste Processing Facility. The Savannah River National Laboratory has been requested to evaluate whether the material transferred from tanks 18F/19F by the mechanical cleaning technology can later be suspended in Tank 7F by conventional slurry pumps after mixing with high level waste sludge. The proposed mechanical cleaning process for removing the waste mounds from tanks 18 and 19 may utilize a high pressure water jet-eductor that creates a vacuum to mobilize solids. The high pressure jet is also used to transport the suspended solids. The jet-eductor system will be mounted on a mechanical crawler for movement around the bottom of tanks 18 and 19. Based on physical chemical property testing of the jet-eductor system processed IE-95 zeolite and size-reduced IE-95 zeolite, the following conclusions were made: (1) The jet-eductor system processed zeolite has a mean and median particle size (volume basis) of 115.4 and 43.3 microns in water. Preferential settling of these large particles is likely. (2) The jet-eductor system processed zeolite rapidly generates settled solid yield stresses in excess of 11,000 Pascals in caustic supernates and will not be easily retrieved from Tank 7 with the existing slurry pump technology. (3) Settled size-reduced IE-95 zeolite (less than 38 microns) in caustic supernate does not generate yield stresses in excess of 600 Pascals in less than 30 days. (4) Preferential settling of size-reduced zeolite is a function of the amount of sludge and the level of dilution for the mixture. (5) Blending the size-reduced zeolite into larger quantities of sludge can reduce the amount of preferential settling. (6) Periodic dilution or resuspension due to sludge washing or other mixing requirements will increase the chances of preferential settling of the zeolite solids. (7) Mixtures of Purex sludge and size-reduced zeolite did not produce yield stresses greater than 200 Pascals for settling times less than thirty days. Most of the sludge-zeolite blends did not exceed 50 Pascals. These mixtures should be removable by current pump technology if sufficient velocities can be obtained. (8) The settling rate of the sludge-zeolite mixtures is a function of the ionic strength (or supernate density) and the zeolite- sludge mixing ratio. (9) Simulant tests indicate that leaching of Si may be an issue for the processed Tank 19 mound material. (10) Floating zeolite fines observed in water for the jet-eductor system and size-reduced zeolite were not observed when the size-reduced zeolite was blended with caustic solutions, indicating that the caustic solutions cause the fines to agglomerate. Based on the test programs described in this report, the potential for successfully removing Tank 18/19 mound material from Tank 7 with the current slurry pump technology requires the reduction of the particle size of the Tank 18/19 mound material.

Eibling, R; Erich Hansen, E; Bradley Pickenheim, B

2007-03-29T23:59:59.000Z

87

Test of Department of Energy Strategic Petroleum Reserve cavern Bryan Mound 1  

SciTech Connect (OSTI)

This document reports the cavern integrity test of cavern Bryan Mound 1 conducted between May 23 and June 14, 1985. The test included pressurization with oil to near maximum test gradient, depressuring to maximum operating gradient, and doing nitrogen leak tests of the two cavern entry wells. Test results indicate nitrogen loss rates from the wells of 133 bbl/yr from 1A and 660 bbl/yr from 1. These nitrogen loss rates can reasonably be assumed to correspond to a total cavern oil loss rate of 79 bbl/yr, compared to the DOE goal of 100 bbl/yr of oil per cavern. 6 refs., 9 figs.

Goin, K.L.

1985-12-01T23:59:59.000Z

88

Propagation of an atmospheric pressure plasma plume  

SciTech Connect (OSTI)

The ''plasma bullet'' behavior of atmospheric pressure plasma plumes has recently attracted significant interest. In this paper, a specially designed plasma jet device is used to study this phenomenon. It is found that a helium primary plasma can propagate through the wall of a dielectric tube and keep propagating inside the dielectric tube (secondary plasma). High-speed photographs show that the primary plasma disappears before the secondary plasma starts to propagate. Both plumes propagate at a hypersonic speed. Detailed studies on the dynamics of the plasma plumes show that the local electric field induced by the charges on the surface of the dielectric tube plays an important role in the ignition of the secondary plasma. This indicates that the propagation of the plasma plumes may be attributed to the local electric field induced by the charges in the bulletlike plasma volume.

Lu, X.; Xiong, Q.; Xiong, Z.; Hu, J.; Zhou, F.; Gong, W.; Xian, Y.; Zou, C.; Tang, Z.; Jiang, Z.; Pan, Y. [College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

2009-02-15T23:59:59.000Z

89

A modeling of buoyant gas plume migration  

SciTech Connect (OSTI)

This work is motivated by the growing interest in injecting carbon dioxide into deep geological formations as a means of avoiding its atmospheric emissions and consequent global warming. Ideally, the injected greenhouse gas stays in the injection zone for a geologic time, eventually dissolves in the formation brine and remains trapped by mineralization. However, one of the potential problems associated with the geologic method of sequestration is that naturally present or inadvertently created conduits in the cap rock may result in a gas leakage from primary storage. Even in a supercritical state, the carbon dioxide viscosity and density are lower than those of the formation brine. Buoyancy tends to drive the leaked CO{sub 2} plume upward. Theoretical and experimental studies of buoyancy-driven supercritical CO{sub 2} flow, including estimation of time scales associated with plume evolution and migration, are critical for developing technology, monitoring policy, and regulations for safe carbon dioxide geologic sequestration. In this study, we obtain simple estimates of vertical plume propagation velocity taking into account the density and viscosity contrast between CO{sub 2} and brine. We describe buoyancy-driven countercurrent flow of two immiscible phases by a Buckley-Leverett type model. The model predicts that a plume of supercritical carbon dioxide in a homogeneous water-saturated porous medium does not migrate upward like a bubble in bulk water. Rather, it spreads upward until it reaches a seal or until it becomes immobile. A simple formula requiring no complex numerical calculations describes the velocity of plume propagation. This solution is a simplification of a more comprehensive theory of countercurrent plume migration (Silin et al., 2007). In a layered reservoir, the simplified solution predicts a slower plume front propagation relative to a homogeneous formation with the same harmonic mean permeability. In contrast, the model yields much higher plume propagation estimates in a high-permeability conduit like a vertical fracture.

Silin, D.; Patzek, T.; Benson, S.M.

2008-12-01T23:59:59.000Z

90

Hydrogeophysical investigations of the former S-3 ponds contaminant plumes, Oak Ridge Integrated Field  

E-Print Network [OSTI]

Hydrogeophysical investigations of the former S-3 ponds contaminant plumes, Oak Ridge Integrated. Hubbard4 , T. L. Mehlhorn5 , and D. B. Watson5 ABSTRACT At the Oak Ridge Integrated Field Research Challenge site, near Oak Ridge, Tennessee, contaminants from the former S-3 ponds have infiltrated

Hubbard, Susan

91

Determination of transport parameters of coincident inorganic and organic plumes in the Savannah River Plant M-Area, Aiken, South Carolina  

E-Print Network [OSTI]

to chloride plumes in glacial outwash at Babylon, New York (Kelley, 1985) and in basalt flow-tops at the Hanford site in Washington state (LaVenue and Domenico, 1986). It has also been applied to chloride (Fryar, 1986) and sodium (Londergan, 1987) plumes... from the production buildings to the disposal sites. In addition, the solvent storage tank located behind production building 321-M is a source of contamination by metal degreasers. Sodium and l, l, l-trichloroethane plumes emanating from the M...

Cauffman, Toya Lyn

1987-01-01T23:59:59.000Z

92

Innovative Strategy For Long Term Monitoring Of Metal And Radionuclide Plumes  

SciTech Connect (OSTI)

Many government and private industry sites that were once contaminated with radioactive and chemical wastes cannot be cleaned up enough to permit unrestricted human access. The sites will require long term management, in some cases indefinitely, leaving site owners with the challenge of protecting human health and environmental quality at these "legacy" sites. Long-term monitoring of groundwater contamination is one of the largest projected costs in the life cycle of environmental management at the Savannah River Site, the larger DOE complex, and many large federal and private sites. There is a need to optimize the performance and manage the cost of long term surveillance and monitoring at their sites. Currently, SRNL is initiating a pilot field test using alternative protocols for long term monitoring of metals and radionuclides. A key component of the approach is that monitoring efforts are focused on measurement of low cost metrics related to hydrologic and chemical conditions that control contaminant migration. The strategy combines careful monitoring of hydrologic boundary conditions with measurement of master variables such as chemical surrogates along with a smaller number of standard well analyses. In plumes contaminated with metals, master variables control the chemistry of the groundwater system, and include redox variables (ORP, DO, chemicals), pH, specific conductivity, biological community (breakdown/decay products), and temperature. Significant changes in these variables will result in conditions whereby the plume may not be stable and therefore can be used to predict possible plume migration. Conversely, concentration measurements for all types of contaminants in groundwater are a lagging indicator plume movement - major changes contaminant concentrations indicate that contamination has migrated. An approach based on measurement of master variables and explicit monitoring of hydrologic boundary conditions combined with traditional metrics should lead to improved monitoring while simultaneously reducing costs. This paradigm is being tested at the SRS F-Area where an innovative passive remedial system is being monitored and evaluated over the long term prior to traditional regulatory closure. Contaminants being addressed at this site are uranium, strontium-90, iodine-129, and tritium. We believe that the proposed strategies will be more effective in early identification of potential risks; these strategies will also be cost effective because controlling variables are relatively simple to measure. These variables also directly reflect the evolution of the plume through time, so that the monitoring strategy can be modified as the plume 'ages'. This transformational long-term monitoring paradigm will generate large cost savings to DOE, other federal agencies and industry and will provide improved performance and leading indicators of environmental management performance.

Eddy-Dilek, Carol; Millings, Margaret R.; Looney, Brian B.; Denham, Miles E.

2014-01-08T23:59:59.000Z

93

Entrainment in two coalescing axisymmetric turbulent plumes  

E-Print Network [OSTI]

process in environmental and indus- trial applications. The air circulation in a ventilated enclosure with multiple heat sources, e.g. offices with electronic equipment and humans, is regulated by the dynamics of tur- bulent buoyant plumes that rise... disturbances near the free surface) and a long weir was positioned near the free surface to keep it at the same location throughout the experiment. A pump withdrew water at the bottom of the tank. The two plume sources were located in the upper part of the tank...

Cenedese, Claudia; Linden, P. F.

2014-07-11T23:59:59.000Z

94

Test of Department of Energy Strategic Petroleum Reserve Cavern Bryan Mound 104. [Salt cavern entry wells  

SciTech Connect (OSTI)

This document reports the certification test of Cavern Bryan Mound 104 conducted between September 19 and November 9, 1984. The test included pressurization with oil to near maximum test gradient, depressuring to maximum operating gradient, and doing nitrogen leak tests of the three cavern entry wells. Test results indicate nitrogen loss rates from the wells of 35 bbl/y from 104A, 19 bbl/y from 104B, and 0 bbl/y from 104C. These nitrogen loss rates can reasonably be assumed to correspond to a total cavern oil loss rate of 5.4 bbl/y, which is well within the DOE acceptance criterion of 100 bbl/y of oil per cavern. The final phase of the nitrogen leak test was observed by a representative of the Texas Railroad Commission. 7 refs., 10 figs., 2 tabs.

Goin, K.L.

1985-05-01T23:59:59.000Z

95

The Hydrothermal Outflow Plume of Valles Caldera, New Mexico...  

Open Energy Info (EERE)

Plume of Valles Caldera, New Mexico, and a Comparison with Other Outflow Plumes Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: The Hydrothermal...

96

Relative Abundance Measurements in Plumes and Interplumes  

E-Print Network [OSTI]

We present measurements of relative elemental abundances in plumes and interplumes. Plumes are bright, narrow structures in coronal holes that extend along open magnetic field lines far out into the corona. Previous work has found that in some coronal structures the abundances of elements with a low first ionization potential (FIP) 10 eV). We have used EIS spectroscopic observations made on 2007 March 13 and 14 over an ~24 hour period to characterize abundance variations in plumes and interplumes. To assess their elemental composition, we have used a differential emission measure (DEM) analysis, which accounts for the thermal structure of the observed plasma. We have used lines from ions of iron, silicon, and sulfur. From these we have estimated the ratio of the iron and silicon FIP bias relative to that for sulfur. From the results, we have created FIP-bias-ratio maps. We find that the FIP-bias ratio is sometimes higher in plumes than in interplumes and that this enhancement can be time dependent. These res...

Guennou, Chloé; Savin, Daniel Wolf

2015-01-01T23:59:59.000Z

97

Plume collimation for laser ablation electrospray ionization mass spectrometry  

DOE Patents [OSTI]

In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

Vertes, Akos; Stolee, Jessica A.

2014-09-09T23:59:59.000Z

98

Passive remote smoke plume opacity sensing: a technique  

SciTech Connect (OSTI)

A new passive technique for the remote measurement of the visual opacity of plumes emerging from smokestacks is presented. It is based on the detection of the attenuation of the polarized component of Rayleigh-scattered background skylight as it traverses a smoke plume. A two-color difference measurement of the polarization of skylight through the plume is compared with a similar measurement of the unattenuated sky-light adjacent to the plume. This method is independent of the intrinsic brightness of the plume resulting from the scattering of sunlight and cancels white-light polarization effects of plume-scattered radiation. A prototype instrument incorporating this method has been successfully field tested on an EPA smoke school generator and a power plant stack plume.

Lilenfeld, P.; Woker, G.; Stern, R.; McVay, L.

1981-03-01T23:59:59.000Z

99

Modeling basin- and plume-scale processes of CO2 storage for full-scale deployment  

SciTech Connect (OSTI)

Integrated modeling of basin- and plume-scale processes induced by full-scale deployment of CO{sub 2} storage was applied to the Mt. Simon Aquifer in the Illinois Basin. A three-dimensional mesh was generated with local refinement around 20 injection sites, with approximately 30 km spacing. A total annual injection rate of 100 Mt CO{sub 2} over 50 years was used. The CO{sub 2}-brine flow at the plume scale and the single-phase flow at the basin scale were simulated. Simulation results show the overall shape of a CO{sub 2} plume consisting of a typical gravity-override subplume in the bottom injection zone of high injectivity and a pyramid-shaped subplume in the overlying multilayered Mt. Simon, indicating the important role of a secondary seal with relatively low-permeability and high-entry capillary pressure. The secondary-seal effect is manifested by retarded upward CO{sub 2} migration as a result of multiple secondary seals, coupled with lateral preferential CO{sub 2} viscous fingering through high-permeability layers. The plume width varies from 9.0 to 13.5 km at 200 years, indicating the slow CO{sub 2} migration and no plume interference between storage sites. On the basin scale, pressure perturbations propagate quickly away from injection centers, interfere after less than 1 year, and eventually reach basin margins. The simulated pressure buildup of 35 bar in the injection area is not expected to affect caprock geomechanical integrity. Moderate pressure buildup is observed in Mt. Simon in northern Illinois. However, its impact on groundwater resources is less than the hydraulic drawdown induced by long-term extensive pumping from overlying freshwater aquifers.

Zhou, Q.; Birkholzer, J.T.; Mehnert, E.; Lin, Y.-F.; Zhang, K.

2009-08-15T23:59:59.000Z

100

Geostatistical Analyses of the Persistence and Inventory of Carbon Tetrachloride in the 200 West Area of the Hanford Site  

SciTech Connect (OSTI)

This report documents two separate geostatistical studies performed by researchers from Pacific Northwest National Laboratory to evaluate the carbon tetrachloride plume in the groundwater on the Hanford Site.

Murray, Christopher J.; Bott, Yi-Ju; Truex, Michael J.

2007-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "mound site plume" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Safety Oversight of Decommissioning Activities at DOE Nuclear Sites  

SciTech Connect (OSTI)

The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

Zull, Lawrence M.; Yeniscavich, William [Defense Nuclear Facilities Safety Board, 625 Indiana Ave., NW, Suite 700, Washington, DC 20004-2901 (United States)

2008-01-15T23:59:59.000Z

102

Dynamics of femtosecond laser produced tungsten nanoparticle plumes  

SciTech Connect (OSTI)

We investigated the expansion features of femtosecond laser generated tungsten nanoparticle plumes in vacuum. Fast gated images showed distinct two components expansion features, viz., plasma and nanoparticle plumes, separated by time of appearance. The persistence of plasma and nanoparticle plumes are ?500 ns and ?100 ?s, respectively, and propagating with velocities differed by 25 times. The estimated temperature of the nanoparticles showed a decreasing trend with increasing time and space. Compared to low-Z materials (e.g., Si), ultrafast laser ablation of high-Z materials like W provides significantly higher nanoparticle yield. A comparison between the nanoparticle plumes generated by W and Si is also discussed along with other metals.

Harilal, S. S.; Hassanein, A. [Center for Materials Under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)] [Center for Materials Under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Farid, N. [Center for Materials Under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States) [Center for Materials Under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); School of Physics and Optical Engineering, Dalian University of Technology, Dalian 116024 (China); Kozhevin, V. M. [Ioffe Physics Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation)] [Ioffe Physics Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation)

2013-11-28T23:59:59.000Z

103

Paducah Gaseous Diffusion Plant Northwest Plume interceptor system evaluation  

SciTech Connect (OSTI)

The Paducah Gaseous Diffusion Plant (PGDP) recently installed an interceptor system consisting of four wells, evenly divided between two well fields, to contain the Northwest Plume. As stated in the Northwest Plume Record of Decision (ROD), groundwater will be pumped at a rate to reduce further contamination and initiate control of the northwest contaminant plume. The objective of this evaluation was to determine the optimum (minimal) well field pumping rates required for plume hotspot containment. Plume hotspot, as defined in the Northwest Plume ROD and throughout this report, is that portion of the plume with trichloroethene (TCE) concentrations greater than 1,000 {micro}g/L. An existing 3-dimensional groundwater model was modified and used to perform capture zone analyses of the north and south interceptor system well fields. Model results suggest that the plume hotspot is not contained at the system design pumping rate of 100 gallons per minute (gal/min) per well field. Rather, the modeling determined that north and south well field pumping rates of 400 and 150 gal/min, respectively, are necessary for plume hotspot containment. The difference between the design and optimal pumping rates required for containment can be attributed to the discovery of a highly transmissive zone in the vicinity of the two well fields.

Laase, A.D.; Clausen, J.L.

1998-07-01T23:59:59.000Z

104

Algorithms and analysis for underwater vehicle plume tracing.  

SciTech Connect (OSTI)

The goal of this research was to develop and demonstrate cooperative 3-D plume tracing algorithms for miniature autonomous underwater vehicles. Applications for this technology include Lost Asset and Survivor Location Systems (L-SALS) and Ship-in-Port Patrol and Protection (SP3). This research was a joint effort that included Nekton Research, LLC, Sandia National Laboratories, and Texas A&M University. Nekton Research developed the miniature autonomous underwater vehicles while Sandia and Texas A&M developed the 3-D plume tracing algorithms. This report describes the plume tracing algorithm and presents test results from successful underwater testing with pseudo-plume sources.

Byrne, Raymond Harry; Savage, Elizabeth L. (Texas A& M University, College Station, TX); Hurtado, John Edward (Texas A& M University, College Station, TX); Eskridge, Steven E.

2003-07-01T23:59:59.000Z

105

Field determination of dispersivity of comingling plumes  

E-Print Network [OSTI]

12. Series of iterat1on d1agrams constructed between C4 and C2 at center1ine distances A-D. 32 IOCO 360 IOO I- 10 cc ILI IL cy WELLS X c)(em) 45720 I06660 226600 289560 Cy/Cy a02 O. I 2 0. 33 0. 41 yy = 6000 cm. y& ~ 22000 cm...FIELO DETERMINATION OF OISPERSIVITY OF COMINGLING PLUMES A Thesis by VAN ALAN KELLEY Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SC1ENCE May 19B5 Major...

Kelley, Van Alan

1985-01-01T23:59:59.000Z

106

SCFA lead lab technical assistance at Lawrence Berkeley National Laboratory: Baseline review of three groundwater plumes  

SciTech Connect (OSTI)

During the closeout session, members of the technical assistance team conveyed to the site how impressed they were at the thoroughness of the site's investigation and attempts at remediation. Team members were uniformly pleased at the skilled detection work to identify sources, make quick remediation decisions, and change course when a strategy did not work well. The technical assistance team also noted that, to their knowledge, this is the only DOE site at which a world-class scientist has had primary responsibility for the environmental restoration activities. This has undoubtedly contributed to the successes observed and DOE should take careful note. The following overall recommendations were agreed upon: (1) The site has done a phenomenal job of characterization and identifying and removing source terms. (2) Technologies selected to date are appropriate and high impact, e.g. collection trenches are an effective remedial strategy for this complicated geology. The site should continue using technology that is adapted to the site's unique geology, such as the collection trenches. (3) The site should develop a better way to determine the basis of cleanup for all sites. (4) The sentinel well system should be evaluated and modified, if needed, to assure that the sentinel wells provide coverage to the current site boundary. Potential modifications could include installation, abandonment or relocation of wells based on the large amount of data collected since the original sentinel well system was designed. (5) Modeling to assist in remedial design and communication should continue. (6) The site should develop a plan to ensure institutional memory. (7) The most likely possibility for improving closure to 2006 is by removing the residual source of the Old Town plume and establishing the efficacy of remediation for the 51/64 plume.

Hazen, Terry; et al.

2002-09-26T23:59:59.000Z

107

SRS reactor stack plume marking tests  

SciTech Connect (OSTI)

Tests performed in 105-K in 1987 and 1988 demonstrated that the stack plume can successfully be made visible (i.e., marked) by introducing smoke into the stack breech. The ultimate objective of these tests is to provide a means during an emergency evacuation so that an evacuee can readily identify the stack plume and evacuate in the opposite direction, thus minimizing the potential of severe radiation exposure. The EPA has also requested DOE to arrange for more tests to settle a technical question involving the correct calculation of stack downwash. New test canisters were received in 1988 designed to produce more smoke per unit time; however, these canisters have not been evaluated, because normal ventilation conditions have not been reestablished in K Area. Meanwhile, both the authorization and procedure to conduct the tests have expired. The tests can be performed during normal reactor operation. It is recommended that appropriate authorization and procedure approval be obtained to resume testing after K Area restart.

Petry, S.F.

1992-03-01T23:59:59.000Z

108

Hydrothermal plume dynamics on Europa: Implications for chaos formation  

E-Print Network [OSTI]

Hydrothermal plume dynamics on Europa: Implications for chaos formation Jason C. Goodman,1 Geoffrey December 2003; accepted 12 January 2004; published 20 March 2004. [1] Hydrothermal plumes may a liquid ocean to the base of its ice shell. This process has been implicated in the formation of chaos

Pierrehumbert, Raymond

109

Anaerobic Methane Oxidation in a Landfill-Leachate Plume  

E-Print Network [OSTI]

Anaerobic Methane Oxidation in a Landfill-Leachate Plume E T H A N L . G R O S S M A N , * , L U I, and methane, and (2) negligible oxygen, nitrate, and sulfate concentrations. Methane concentrations and stable carbon isotope (13C) values suggest anaerobic methane oxidation was occurring within the plume and at its

Grossman, Ethan L.

110

Ocean and Plume Science and Management Forum January 24, 2014  

E-Print Network [OSTI]

was needed on both the table and draft management questions to prepare a package of materials for scientific1 Ocean and Plume Science and Management Forum January 24, 2014 Northwest Power and Conservation of the Ocean and Plume Science and Management Forum and led a round of introductions. The October 24, 2013

111

Stochastic mapping for chemical plume source localization with application to autonomous hydrothermal vent discovery  

E-Print Network [OSTI]

This thesis presents a stochastic mapping framework for autonomous robotic chemical plume source localization in environments with multiple sources. Potential applications for robotic chemical plume source localization ...

Jakuba, Michael Vavrousek, 1976-

2006-01-01T23:59:59.000Z

112

Entrainment and mixing properties of multiphase plumes: Experimental studies on turbulence and scalar structure of a bubble plume  

E-Print Network [OSTI]

, the velocity and concentration field measurements using the developed two-phase PIV and LIF methods are applied for a bubble plume in a density-stratified ambient. The turbulent flow characteristics induced by a bubble plume in a stratified ambient water...

Seol, Dong Guan

2009-05-15T23:59:59.000Z

113

A method to attenuate U(VI) mobility in acidic waste plumes using humic acids  

SciTech Connect (OSTI)

Acidic uranium (U) contaminated plumes have resulted from acid-extraction of plutonium during the Cold War and from U mining and milling operations. A sustainable method for in-situ immobilization of U under acidic conditions is not yet available. Here, we propose to use humic acids (HAs) for in-situ U immobilization in acidic waste plumes. Our laboratory batch experiments show that HA can adsorb onto aquifer sediments rapidly, strongly and practically irreversibly. Adding HA greatly enhanced U adsorption capacity to sediments at pH below 5.0. Our column experiments using historically contaminated sediments from the Savannah River Site under slow flow rates (120 and 12 m/y) show that desorption of U and HA were non-detectable over 100 pore-volumes of leaching with simulated acidic groundwaters. Upon HA-treatment, 99% of the contaminant [U] was immobilized at pH < 4.5, compared to 5% and 58% immobilized in the control columns at pH 3.5 and 4.5, respectively. These results demonstrated that HA-treatment is a promising in-situ remediation method for acidic U waste plumes. As a remediation reagent, HAs are resistant to biodegradation, cost effective, nontoxic, and easily introducible to the subsurface.

Wan, J.; Dong, W.; Tokunaga, T.K.

2011-02-01T23:59:59.000Z

114

CHAPTER 8: GROUNDWATER PROTECTION 1998 SITE ENVIRONMENTAL REPORT8-31  

E-Print Network [OSTI]

, such as PCE, have been released to the ground in the vicinity of the CSF. Eighteen wells are used to monitor in the OU IV plume near the 1977 spill site are TCA, PCE, DCE, TCE, toluene, ethylbenzene, and xylenes in the vicinity of the CSF (primarily PCE). The toluene/ ethylbenzene/xylene component of the plume is highly

115

Sulfur dioxide oxidation and plume formation at cement kilns  

SciTech Connect (OSTI)

Results of source sampling at the Glens Falls cement kiln in Glens Falls, N.Y., are reported for sulfur oxides, ammonia, hydrochloric acid, oxygen, and moisture content. The origin of a detached, high-opacity, persistent plume originating from the cement kiln stack is investigated. It is proposed that this plume is due to ammonium salts of SOx and sulfuric acid that have been formed in condensed water droplets in the plume by the pseudocatalytic action of ammonia. (1 diagram, 1 graph, 22 references, 7 tables)

Dellinger, B.; Grotecloss, G.; Fortune, C.R.; Cheney, J.L.; Homolya, J.B.

1980-10-01T23:59:59.000Z

116

Time resolved Nomarski interferometery of laser produced plasma plumes P. Hough a,  

E-Print Network [OSTI]

diagnostic studies of the plasma plume have focussed on late times (>100 ns) in the lifecycle of the plume (lifecycle of the plume as it determines the future lifecycle [12]. We report here a study of electron density profiles in laser generated Zn plasma plumes

Harilal, S. S.

117

Asymmetry of Columbia River tidal plume fronts David A. Jay a,  

E-Print Network [OSTI]

or northern side and mark a transition from supercritical to subcritical flow for up to 12 h after high water plume water mass. This vorticitycontrols the transition of the tidal plume front to a subcritical state plume may overlie newly upwelled waters, these fronts can mix nutrients into the plume. Symmetry would

Hickey, Barbara

118

Ozone production in transpacific Asian pollution plumes and implications for ozone air quality in California  

E-Print Network [OSTI]

Ozone production in transpacific Asian pollution plumes and implications for ozone air quality in transpacific Asian pollution plumes, and the implications for ozone air quality in California, by using pollution plumes. Strong dilution of Asian pollution plumes takes place during entrainment in the U

Park, Rokjin

119

Behavior of buoyant moist plumes in turbulent atmospheres  

E-Print Network [OSTI]

A widely applicable computational model of buoyant moist plumes in turbulent atmospheres has been constructed. To achieve this a one dimensional Planetary Boundary Layer (P.B.L.) model has been developed to account for ...

Hamza, Redouane

1981-01-01T23:59:59.000Z

120

Linking Europa's plume activity to tides, tectonics, and liquid water  

E-Print Network [OSTI]

Much of the geologic activity preserved on Europa's icy surface has been attributed to tidal deformation, mainly due to Europa's eccentric orbit. Although the surface is geologically young (30 - 80 Myr), there is little information as to whether tidally-driven surface processes are ongoing. However, a recent detection of water vapor near Europa's south pole suggests that it may be geologically active. Initial observations indicated that Europa's plume eruptions are time-variable and may be linked to its tidal cycle. Saturn's moon, Enceladus, which shares many similar traits with Europa, displays tidally-modulated plume eruptions, which bolstered this interpretation. However, additional observations of Europa at the same time in its orbit failed to yield a plume detection, casting doubt on the tidal control hypothesis. The purpose of this study is to analyze the timing of plume eruptions within the context of Europa's tidal cycle to determine whether such a link exists and examine the inferred similarities and...

Rhoden, Alyssa R; Roth, Lorenz; Retherford, Kurt

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mound site plume" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Particulate dispersion apparatus for the validation of plume models  

E-Print Network [OSTI]

improved sampling equipment and provide a reliable, reproducible basis for experimental validation of predictions from plume dispersion models. The device constructed and demonstrated in this project is a controllable point source able to disperse dry...

Bala, William D

2001-01-01T23:59:59.000Z

122

ablation plumes produced: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

observed jet and plume relationship are discussed. N. -E. Raouafi; G. J. D. Petrie; A. A. Norton; C. J. Henney; S. K. Solanki 2008-06-18 83 Modeling and Control of Steerable...

123

Stereoscopic Polar Plume Reconstructions from Stereo/Secchi Images  

E-Print Network [OSTI]

We present stereoscopic reconstructions of the location and inclination of polar plumes of two data sets based on the two simultaneously recorded images taken by the EUVI telescopes in the SECCHI instrument package onboard the \\emph{STEREO (Solar TErrestrial RElations Observatory)} spacecraft. The ten plumes investigated show a superradial expansion in the coronal hole in 3D which is consistent with the 2D results. Their deviations from the local meridian planes are rather small with an average of $6.47^{\\circ}$. By comparing the reconstructed plumes with a dipole field with its axis along the solar rotation axis, it is found that plumes are inclined more horizontally than the dipole field. The lower the latitude is, the larger is the deviation from the dipole field. The relationship between plumes and bright points has been investigated and they are not always associated. For the first data set, based on the 3D height of plumes and the electron density derived from SUMER/\\emph{SOHO} Si {\\sc viii} line pair, ...

Feng, L; Solanki, S K; Wilhelm, K; Wiegelmann, T; Podlipnik, B; Howard, R A; Plunkett, S P; Wuelser, J P; Gan, W Q; 10.1088/0004-637X/700/1/292

2009-01-01T23:59:59.000Z

124

Operations and Maintenance (O&M) Plan for the U.S. Department of Energy Miamisburg, Ohio, Site (Mound Site)  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*.MSE Cores" _August 4,Operations and

125

INDEPENDENT TECHNICAL REVIEW OF THE FOCUSED FEASIBILITY STUDY AND PROPOSED PLAN FOR DESIGNATED SOLID WASTE MANAGEMENT UNITS CONTRIBUTING TO THE SOUTHWEST GROUNDWATER PLUME AT THE PADUCAH GASEOUS DIFFUSION PLANT  

SciTech Connect (OSTI)

The U. S. Department of Energy (DOE) is currently developing a Proposed Plan (PP) for remediation of designated sources of chlorinated solvents that contribute contamination to the Southwest (SW) Groundwater Plume at the Paducah Gaseous Diffusion Plant (PGDP), in Paducah, KY. The principal contaminants in the SW Plume are trichloroethene (TCE) and other volatile organic compounds (VOCs); these industrial solvents were used and disposed in various facilities and locations at PGDP. In the SW plume area, residual TCE sources are primarily in the fine-grained sediments of the Upper Continental Recharge System (UCRS), a partially saturated zone that delivers contaminants downward into the coarse-grained Regional Gravel Aquifer (RGA). The RGA serves as the significant lateral groundwater transport pathway for the plume. In the SW Plume area, the four main contributing TCE source units are: (1) Solid Waste Management Unit (SWMU) 1 / Oil Landfarm; (2) C-720 Building TCE Northeast Spill Site (SWMU 211A); (3) C-720 Building TCE Southeast Spill Site (SWMU 211B); and (4) C-747 Contaminated Burial Yard (SWMU 4). The PP presents the Preferred Alternatives for remediation of VOCs in the UCRS at the Oil Landfarm and the C-720 Building spill sites. The basis for the PP is documented in a Focused Feasibility Study (FFS) (DOE, 2011) and a Site Investigation Report (SI) (DOE, 2007). The SW plume is currently within the boundaries of PGDP (i.e., does not extend off-site). Nonetheless, reasonable mitigation of the multiple contaminant sources contributing to the SW plume is one of the necessary components identified in the PGDP End State Vision (DOE, 2005). Because of the importance of the proposed actions DOE assembled an Independent Technical Review (ITR) team to provide input and assistance in finalizing the PP.

Looney, B.; Eddy-Dilek, C.; Amidon, M.; Rossabi, J.; Stewart, L.

2011-05-31T23:59:59.000Z

126

Jet plume injection and combustion system for internal combustion engines  

DOE Patents [OSTI]

An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

Oppenheim, Antoni K. (Kensington, CA); Maxson, James A. (Berkeley, CA); Hensinger, David M. (Albany, CA)

1993-01-01T23:59:59.000Z

127

Waves generated in the plasma plume of helicon magnetic nozzle  

SciTech Connect (OSTI)

Experimental measurements have shown that the plasma plume created in a helicon plasma device contains a conical structure in the plasma density and a U-shaped double layer (US-DL) tightly confined near the throat where plasma begins to expand from the source. Recently reported two-dimensional particle-in-cell simulations verified these density and US-DL features of the plasma plume. Simulations also showed that the plasma in the plume develops non-thermal feature consisting of radial ion beams with large densities near the conical surface of the density structure. The plasma waves that are generated by the radial ion beams affecting the structure of the plasma plume are studied here. We find that most intense waves persist in the high-density regions of the conical density structure, where the transversely accelerated ions in the radial electric fields in the plume are reflected setting up counter-streaming. The waves generated are primarily ion Bernstein modes. The nonlinear evolution of the waves leads to magnetic field-aligned striations in the fields and the plasma near the conical surface of the density structure.

Singh, Nagendra; Rao, Sathyanarayan; Ranganath, Praveen [Department of Electrical and Computer Engineering, University of Alabama, Huntsville, Alabama 35899 (United States)

2013-03-15T23:59:59.000Z

128

Jet plume injection and combustion system for internal combustion engines  

DOE Patents [OSTI]

An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

1993-12-21T23:59:59.000Z

129

Hydrogeologic analysis of remedial alternatives for the solar ponds plume, RFETS  

SciTech Connect (OSTI)

The focus of this paper is to develop a conceptual model and a hydrogeologic analysis plan for remedial alternatives being considered for the remediation of a ground water contaminant plume consisting of chiefly nitrate and uranium. The initial step in this process was to determine the adequacy of the existing data from the vast database of site information. Upon concluding that the existing database was sufficient to allow for the development of a conceptual model and then constructing the conceptual model, a hydrogeologic analysis plan was developed to evaluate several alternatives for plume remediation. The plan will be implemented using a combination of analytical and simple numerical ground water flow and contaminant transport models. This allows each portion of the study to be addressed using the appropriate tool, without having to develop a large three-dimensional numerical ground water flow and transport model, thereby reducing project costs. The analysis plan will consist of a preliminary phase of screening analyses for each of the remedial alternative scenarios, and a second phase of more comprehensive and in-depth analyses on a selected subset of remedial alternative scenarios. One of the alternatives which will be analyzed is phytoremediation (remediation of soil and ground water via uptake of chemicals by plants) because of the potential for relatively low capital and operation and maintenance costs, passive nature, and potential to provide long-term protection of the surface water. The results of these hydrogeological analyses will be factored into the selection of the preferred remedial alternative, or combination of alternatives, for the contaminant plume.

McLane, C.F. III; Whidden, J.A. [McLane Environmental, L.L.C., Princeton, NJ (United States); Hopkins, J.K. [Rocky Mountain Remediation Services, Los Alamos, NM (United States)

1998-07-01T23:59:59.000Z

130

Wet processing of palladium for use in the tritium facility at Westinghouse, Savannah River, SC. Preparation of palladium using the Mound Muddy Water process  

SciTech Connect (OSTI)

Palladium used at Savannah River for tritium storage is currently obtained from a commercial source. In order to better understand the processes involved in preparing this material, Savannah River is supporting investigations into the chemical reactions used to synthesize this material and into the conditions necessary to produce palladium powder that meets their specifications. This better understanding may help to guarantee a continued reliable source for this material in the future. As part of this evaluation, a work-for-others contract between Westinghouse Savannah River Company and the Ames Laboratory Metallurgy and Ceramics Program was initiated. During FY98, the process for producing palladium powder developed in 1986 by Dan Grove of Mound Applied Technologies (USDOE) was studied to understand the processing conditions that lead to changes in morphology in the final product. This report details the results of this study of the Mound Muddy Water process, along with the results of a round-robin analysis of well-characterized palladium samples that was performed by Savannah River and Ames Laboratory. The Mound Muddy Water process is comprised of three basic wet chemical processes, palladium dissolution, neutralization, and precipitation, with a number of filtration steps to remove unwanted impurity precipitates.

Baldwin, D.P.; Zamzow, D.S.

1998-11-10T23:59:59.000Z

131

Studies of the Kuwait oil fire plume during midsummer 1991  

SciTech Connect (OSTI)

This paper reports aircraft observations of the Kuwait oil fire plume conducted during the period July 31-August 17, 1991. During this study the plume was transported almost exclusively to the south of Kuwait over the Persian Gulf and the Arabian Peninsula. The plume base was generally found to be well above the surface, in some cases as high as 1-2 km; plume tops did not exceed 5 km. Aerosol mass (based on measured aerosol constituents) in the central section of the plume, ca. 150-200 km downwind of the source region, was found to be >500 {mu}g/m{sup 3}, with number densities in the size range (approximate) 0.2 < d < 3 {mu}m (where d is diameter) as high as 30,000/cm{sup 3}. The aerosol was composed of (in order of approximate contribution to mass) inorganic salts, elemental carbon, and organic carbon. Sodium chloride constituted a surprisingly large component of the soluble inorganic mass. The aerosol particles appeared to function as good cloud condensation nuclei, with a large fraction of accumulation mode particles (by number) activated at a supersaturation of 0.6%. Under conditions in which the plume was relatively compact, transmittance of solar radiation to the surface was only 10-20%. Plume albedo was observed to be as low as 2-3% close to the source region, consistent with the high elemental-carbon concentrations present in the plume. Trace gas concentrations were consistent with fuel composition and with current knowledge of atmospheric chemical processes. Sulfur dioxide concentrations close to the source region were found to be as high as 300-400 ppb. The emissions factor for S (expressed as a percentage) was estimated to be 1.8%, which is consistent with estimates of a fuel sulfur content of 2-2.5%. SO{sub 2} was found to be only slowly oxidized (<1%/h). Nitrogen oxide concentrations were found to be quite low (<50 ppb near the source, decreasing to 1-2 ppb well downwind), which is consistent with a crude oil nitrogen source. 32 refs., 15 figs., 7 tabs.

Daum, P.H.; Al-Sunaid, A.; Busness, K.M.; Hales, J.M.; Mazurek, M. [Brookhaven National Lab., Upton, NY (United States)

1993-09-20T23:59:59.000Z

132

Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume  

E-Print Network [OSTI]

to 15 detected in the non-oil contaminated samples. The alkBappeared to be dominant in all oil plume samples (Fig. S2).signal intensities. All oil plume samples clustered together

Lu, Z.

2012-01-01T23:59:59.000Z

133

Direct Measurement of Mercury Reactions In Coal Power Plant Plumes  

SciTech Connect (OSTI)

Recent field and pilot-scale results indicate that divalent mercury emitted from power plants may rapidly transform to elemental mercury within the power plant plumes. Simulations of mercury chemistry in plumes based on measured rates to date have improved regional model fits to Mercury Deposition Network wet deposition data for particular years, while not degrading model verification fits for remaining years of the ensemble. The years with improved fit are those with simulated deposition in grid cells in the State of Pennsylvania that have matching MDN station data significantly less than the model values. This project seeks to establish a full-scale data basis for whether or not significant reduction or oxidation reactions occur to mercury emitted from coal-fired power plants, and what numerical redox rate should apply for extension to other sources and for modeling of power plant mercury plumes locally, regionally, and nationally. Although in-stack mercury (Hg) speciation measurements are essential to the development of control technologies and to provide data for input into atmospheric fate and transport models, the determination of speciation in a cooling coal combustion plume is more relevant for use in estimating Hg fate and effects through the atmosphere. It is mercury transformations that may occur in the plume that determine the eventual rate and patterns of mercury deposited to the earth's surface. A necessary first step in developing a supportable approach to modeling any such transformations is to directly measure the forms and concentrations of mercury from the stack exit downwind to full dispersion in the atmosphere. As a result, a study was sponsored by EPRI and jointly funded by EPRI, the U.S Department of Energy (DOE), and the Wisconsin Department of Administration. The study was designed to further our understanding of plume chemistry. The study was carried out at the We Energies Pleasant Prairie Power Plant, Pleasant Prairie, Wisconsin, just west of Kenosha. Aircraft and ground measurements support the occurrence of a reduction in the fraction of reactive gaseous mercury (RGM) (with a corresponding increase in elemental mercury) as part of the Total Gaseous Mercury (TGM) emitted from the Pleasant Prairie stack. This occurrence is based on comparison of the RGM concentrations in the plume (at standard conditions) compared to the RGM in the stack. There was found to be a 44% drop in the fraction of RGM between the stack exit and the first sampling arc and a 66% reduction from the stack to the 5-mile sampling arc, with no additional drop between the 5- and 10-mile arcs. Smaller-scale experiments in both test chambers and pilot-scale coal combustor exhaust streams have indicated the presence of rapid and relatively complete reduction reactions converting divalent into elemental mercury within power plant plumes prior to full dispersion in the atmosphere. These measurements, however, have been unable to identify whether the reactions occur during plume rise from physical to virtual stack height (during positive thermal buoyancy). The presence, rate, completeness, ubiquity, and dependence on source characteristics of these reactions, however, must be demonstrated in plume environments associated with fully operational power plants. That requirement, to capture either the reactions or the reaction products of chemistry that may be occurring very close to stack exits in highly turbulent environments, constrains the precision and reproducibility with which such full-scale experiments can be carried out. The work described here is one of several initial steps required to test whether, and in what direction, such rapid mercury redox reactions might be occurring in such plumes.

Leonard Levin

2005-12-31T23:59:59.000Z

134

Ebb Tide Dynamics and Spreading of a Large River Plume4 Ryan M. McCabe*  

E-Print Network [OSTI]

and Bruland 2006) since light may be readily8 available. Additionally, plumes provide a method for horizontal

Hickey, Barbara

135

Environmental assessment of the brine pipeline replacement for the Strategic Petroleum Reserve Bryan Mound Facility in Brazoria County, Texas  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0804, for the proposed replacement of a deteriorated brine disposal pipeline from the Strategic Petroleum Reserve (SPR) Bryan Mound storage facility in Brazoria County, Texas, into the Gulf of Mexico. In addition, the ocean discharge outfall would be moved shoreward by locating the brine diffuser at the end of the pipeline 3.5 miles offshore at a minimum depth of 30 feet. The action would occur in a floodplain and wetlands; therefore, a floodplain/wetlands assessment has been prepared in conjunction with this EA. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 USC. 4321, et seg.). Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and the Department is issuing this Finding of No Significant Impact (FONSI). This FONSI also includes a Floodplain Statement of Findings in accordance with 10 CFR Part 1022.

Not Available

1993-09-01T23:59:59.000Z

136

The dynamics of the Mississippi River plume: Impact of topography, wind and offshore forcing  

E-Print Network [OSTI]

The dynamics of the Mississippi River plume: Impact of topography, wind and offshore forcing of topography, winddriven and eddydriven circulation on the offshore removal of plume waters. A realistically that the offshore removal is a frequent plume pathway. Eastward winddriven currents promote large freshwater

Miami, University of

137

CLOSE ASSOCIATION OF AN EXTREME-ULTRAVIOLET SUNSPOT PLUME WITH DEPRESSIONS IN THE SUNSPOT RADIO EMISSION  

E-Print Network [OSTI]

a plume in the sunspot umbra on both observing dates. The plume appears brightest in emission lines formed at temperatures between 1:6 Ă? 105 and 5:0 Ă? 105 K. Radio emission from the sunspot umbra is dominated by thermal gyroemission from the plume, which accounts for radio brightness temperatures umbra on both

White, Stephen

138

Microphysical and radiative evolution of aerosol plumes over the tropical North Atlantic Ocean  

E-Print Network [OSTI]

Microphysical and radiative evolution of aerosol plumes over the tropical North Atlantic Ocean] Over the tropical North Atlantic Ocean in the summer, plumes of aerosol extend from Saharan Africa to the Caribbean. The microphysical and radiative evolution of such plumes is studied using a Lagrangian column

Russell, Lynn

139

Dynamics and internal structure of the Hawaiian plume Cinzia G. Farnetani a,  

E-Print Network [OSTI]

Dynamics and internal structure of the Hawaiian plume Cinzia G. Farnetani a, , Albrecht W. Hofmann Available online 1 May 2010 Editor: Y. Ricard Keywords: plume dynamics Hawaii HSDP mantle heterogeneities A thorough understanding of the internal structure of the Hawaiian plume conduit requires to link geochemical

Farnetani, Cinzia G.

140

Bioremediation of Uranium Plumes with Nano-scale  

E-Print Network [OSTI]

(IV) (UO2[s], uraninite) Anthropogenic · Release of mill tailings during uranium mining - MobilizationBioremediation of Uranium Plumes with Nano-scale Zero-valent Iron Angela Athey Advisers: Dr. Reyes Undergraduate Student Fellowship Program April 15, 2011 #12;Main Sources of Uranium Natural · Leaching from

Fay, Noah

Note: This page contains sample records for the topic "mound site plume" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

MICROBIAL AMMONIA OXIDATION IN DEEP-SEA HYDROTHERMAL PLUMES  

E-Print Network [OSTI]

MICROBIAL AMMONIA OXIDATION IN DEEP-SEA HYDROTHERMAL PLUMES A DISSERTATION SUBMITTED;ABSTRACT Autotrophic ammonia oxidation has been documented for the first time in deep- sea hydrothermal autotrophic ammonia oxidation at ~ 91 nM d-1 , and potentially produces de novo organic carbon at a rate (0

Luther, Douglas S.

142

RESEARCH ARTICLE Optical plume velocimetry: a new flow measurement technique  

E-Print Network [OSTI]

hydrothermal systems Timothy J. Crone Ă? Russell E. McDuff Ă? William S. D. Wilcock Received: 5 November 2007 that fluid flow rates in mid- ocean ridge hydrothermal systems may be strongly influ- enced by mechanical that are transitioning between jet-like and plume-like behavior. List of symbols A area of jet nozzle, m2 B initial

Wilcock, William

143

Anaerobic Methane Oxidation in a Landfill-Leachate Plume  

E-Print Network [OSTI]

wells ranging in depth from 1.3 to 11 m that were oriented parallel to the flow path. The center of the leachate plume was characterized by (1) high alkalinity and elevated concentrations of total dissolved organic carbon, reduced iron, and methane...

Grossman, E. L.; Cifuentes, L. A.; Cozzarelli, I. M.

2002-01-01T23:59:59.000Z

144

Trace gas measurements in the Kuwait oil fire smoke plume  

SciTech Connect (OSTI)

The authors report trace gas measurements made both inside and outside the Kuwait oil-fire smoke plume during a flight of an instrumented research aircraft on May 30, 1991. Concentrations of SO{sub 2}, CO, and NO{sub x} averaged vertically and horizontally throughout the plume 80 km downwind of Kuwait City were 106, 127, and 9.1 parts per billion by volume (ppbv), respectively, above background concentrations. With the exception of SO{sub 2}, trace gas concentrations were far below typical US urban levels and primary national ambient air quality standards. Ambient ozone was titrated by NO in the dark, dense core of the smoke plume close to the fires, and photochemical ozone production was limited to the diffuse edge of the plume. Photochemical O{sub 3} production was noted throughout the plume at a distance of 160 km downwind of Kuwait City, and averaged 2.3 ppbv per hour during the first 3 hours of transport. Little additional photochemical production was noted at a downwind range of 340 km. The fluxes of sulfur dioxide, carbon monoxide, and reactive nitrogen from the roughly 520 fires still burning on May 30, 1991 are estimated at 1.4 x 10{sup 7} kg SO{sub 2}/d, 6.9 x 10{sup 6} kg CO/d, and 2.7 x 10{sup 5} kg N/d, respectively. Generally low concentrations of CO and NO{sub x} indicate that the combustion was efficient and occurred at low temperatures. Low total nonmethane hydrocarbon concentrations suggest that the volatile components of the petroleum were burned efficiently. 37 refs., 4 figs., 4 tabs.

Luke, W.T.; Kok, G.L.; Schillawski, R.D.; Zimmerman, P.R.; Greenberg, J.P.; Kadavanich, M. [National Center for Atmospheric Research, Boulder, CO (United States)

1992-09-20T23:59:59.000Z

145

Complexity of Groundwater Contaminants at DOE Sites  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is responsible for the remediation and long-term stewardship of one of the world's largest groundwater contamination portfolios, with a significant number of plumes containing various contaminants, and considerable total mass and activity. As of 1999, the DOE's Office of Environmental Management was responsible for remediation, waste management, or nuclear materials and facility stabilization at 144 sites in 31 states and one U.S. territory, out of which 109 sites were expected to require long-term stewardship. Currently, 19 DOE sites are on the National Priority List. The total number of contaminated plumes on DOE lands is estimated to be 10,000. However, a significant number of DOE sites have not yet been fully characterized. The most prevalent contaminated media are groundwater and soil, although contaminated sediment, sludge, and surface water also are present. Groundwater, soil, and sediment contamination are present at 72% of all DOE sites. A proper characterization of the contaminant inventory at DOE sites is critical for accomplishing one of the primary DOE missions -- planning basic research to understand the complex physical, chemical, and biological properties of contaminated sites. Note that the definitions of the terms 'site' and 'facility' may differ from one publication to another. In this report, the terms 'site,' 'facility' or 'installation' are used to identify a contiguous land area within the borders of a property, which may contain more than one plume. The term 'plume' is used here to indicate an individual area of contamination, which can be small or large. Even though several publications and databases contain information on groundwater contamination and remediation technologies, no statistical analyses of the contaminant inventory at DOE sites has been prepared since the 1992 report by Riley and Zachara. The DOE Groundwater Data Base (GWD) presents data as of 2003 for 221 groundwater plumes at 60 DOE sites and facilities. Note that Riley and Zachara analyzed the data from only 18 sites/facilities including 91 plumes. In this paper, we present the results of statistical analyses of the data in the GWD as guidance for planning future basic and applied research of groundwater contaminants within the DOE complex. Our analyses include the evaluation of a frequency and ranking of specific contaminants and contaminant groups, contaminant concentrations/activities and total contaminant masses and activities. We also compared the results from analyses of the GWD with those from the 1992 report by Riley and Zachara. The difference between our results and those summarized in the 1992 report by Riley and Zachara could be caused by not only additional releases, but also by the use of modern site characterization methods, which more accurately reveal the extent of groundwater contamination. Contaminated sites within the DOE complex are located in all major geographic regions of the United States, with highly variable geologic, hydrogeologic, soil, and climatic conditions. We assume that the information from the 60 DOE sites included in the GWD are representative for the whole DOE complex. These 60 sites include the major DOE sites and facilities, such as Rocky Flats Environmental Technology Site, Colorado; Idaho National Laboratory, Idaho; Savannah River Site, South Carolina; Oak Ridge Reservation, Tennessee; and Hanford Reservation, Washington. These five sites alone ccount for 71% of the value of the remediation work.

Hazen, T.C.; Faybishenko, B.; Jordan, P.

2010-12-03T23:59:59.000Z

146

Hanford Site Groundwater Monitoring for Fiscal Year 2005  

SciTech Connect (OSTI)

This report is one of the major products and deliverables of the Groundwater Remediation and Closure Assessment Projects detailed work plan for FY 2006, and reflects the requirements of The Groundwater Performance Assessment Project Quality Assurance Plan (PNNL-15014). This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2005 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the west-central part of the Hanford Site. Hexavalent chromium is present in plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas. Technetium-99 and uranium plumes exceeding standards are present in the 200 Areas. A uranium plume underlies the 300 Area. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Resource Conservation and Recovery Act of 1976 groundwater monitoring continued at 25 waste management areas during fiscal year 2005: 15 under interim or final status detection programs and data indicate that they are not adversely affecting groundwater, 8 under interim status groundwater quality assessment programs to assess contamination, and 2 under final status corrective-action programs. During calendar year 2005, drillers completed 27 new monitoring wells, and decommissioned (filled with grout) 115 unneeded wells. Vadose zone monitoring, characterization, and remediation continued in fiscal year 2005. Remediation and associated monitoring continued at a soil-vapor extraction system in the 200 West Area, which removes gaseous carbon tetrachloride from the vadose zone. DOE uses geophysical methods to monitor potential movement of contamination beneath former waste sites.

Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

2006-02-28T23:59:59.000Z

147

Numerical modeling of plasma plume evolution against ambient background gas in laser blow off experiments  

SciTech Connect (OSTI)

Two dimensional numerical modelling based on simplified hydrodynamic evolution for an expanding plasma plume (created by laser blow off) against an ambient background gas has been carried out. A comparison with experimental observations shows that these simulations capture most features of the plasma plume expansion. The plume location and other gross features are reproduced as per the experimental observation in quantitative detail. The plume shape evolution and its dependence on the ambient background gas are in good qualitative agreement with the experiment. This suggests that a simplified hydrodynamic expansion model is adequate for the description of plasma plume expansion.

Patel, Bhavesh G.; Das, Amita; Kaw, Predhiman; Singh, Rajesh; Kumar, Ajai [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

2012-07-15T23:59:59.000Z

148

Spatially resolved U(VI) partitioning and speciation: Implications for plume scale behavior of contaminant U in the Hanford vadose zone  

SciTech Connect (OSTI)

A saline-alkaline brine containing high concentrations of U(VI) was accidentally spilled at the Hanford Site in 1951, introducing 10 tons of U into sediments under storage tank BX-102. U concentrations in the deep vadose zone and groundwater plumes increase with time, yet how the U has been migrating is not fully understood. We simulated the spill event in laboratory soil columns, followed by aging, and obtained spatially resolved U partitioning and speciation along simulated plumes. We found after aging, at apparent steady state, that the pore aqueous phase U concentrations remained surprisingly high (up to 0.022 M), in close agreement with the recently reported high U concentrations (up to 0.027 M) in the vadose zone plume (1). The pH values of aged pore liquids varying from 10 to 7, consistent with the measured pH of the field borehole sediments varying from 9.5 to 7.4 (2), from near the plume source to the plume front. The direct measurements of aged pore liquids together with thermodynamic calculations using a Pitzer approach revealed that UO{sub 2}(CO{sub 3}){sub 3} {sup 4-} is the dominant aqueous U species within the plume body (pH 8-10), while Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3} and CaUO{sub 2}(CO{sub 3}){sub 3}{sup 2-} are also significant in the plume front vicinity (pH 7-8), consistent with that measured from field borehole porewaters (3). U solid phase speciation varies at different locations along the plume flow path and even within single sediment grains, because of location dependent pore and micropore solution chemistry. Our results suggest that high geochemical stability of UO{sub 2}(CO{sub 3}){sub 3}{sup 4-} in the original carbonate and sodium rich waste solution permits its continues migration and the field observed increases of U concentrations in the vadose zone and groundwater.

Wan, Jiamin; Kim, Yongman; Tokunaga, Tetsu K.; Wang, Zheming; Dixit, Suvasis; Steefel, Carl; Saiz, Eduardo; Kunz, Martin; Tamura, Nobumichi

2009-02-01T23:59:59.000Z

149

Closure Report for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

Corrective Action Unit (CAU) 107 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Low Impact Soil Sites' and consists of the following 15 Corrective Action Sites (CASs), located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site: CAS 01-23-02, Atmospheric Test Site - High Alt; CAS 02-23-02, Contaminated Areas (2); CAS 02-23-03, Contaminated Berm; CAS 02-23-10, Gourd-Amber Contamination Area; CAS 02-23-11, Sappho Contamination Area; CAS 02-23-12, Scuttle Contamination Area; CAS 03-23-24, Seaweed B Contamination Area; CAS 03-23-27, Adze Contamination Area; CAS 03-23-28, Manzanas Contamination Area; CAS 03-23-29, Truchas-Chamisal Contamination Area; CAS 04-23-02, Atmospheric Test Site T4-a; CAS 05-23-06, Atmospheric Test Site; CAS 09-23-06, Mound of Contaminated Soil; CAS 10-23-04, Atmospheric Test Site M-10; and CAS 18-23-02, U-18d Crater (Sulky). Closure activities were conducted from February through April 2009 according to the FFACO (1996; as amended February 2008) and Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 107 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2009). The corrective action alternatives included No Further Action and Closure in Place with Administrative Controls. Closure activities are summarized.

NSTec Environmental Restoration

2009-06-01T23:59:59.000Z

150

MULTICOMPONENT SEISMIC ANALYSIS AND CALIBRATION TO IMPROVE RECOVERY FROM ALGAL MOUNDS: APPLICATION TO THE ROADRUNNER/TOWAOC AREA OF THE PARADOX BASIN, UTE MOUNTAIN UTE RESERVATION, COLORADO  

SciTech Connect (OSTI)

This report describes the results made in fulfillment of contract DE-FG26-02NT15451, ''Multicomponent Seismic Analysis and Calibration to Improve Recovery from Algal Mounds: Application to the Roadrunner/Towaoc Area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado''. Optimizing development of highly heterogeneous reservoirs where porosity and permeability vary in unpredictable ways due to facies variations can be challenging. An important example of this is in the algal mounds of the Lower and Upper Ismay reservoirs of the Paradox Basin in Utah and Colorado. It is nearly impossible to develop a forward predictive model to delineate regions of better reservoir development, and so enhanced recovery processes must be selected and designed based upon data that can quantitatively or qualitatively distinguish regions of good or bad reservoir permeability and porosity between existing well control. Recent advances in seismic acquisition and processing offer new ways to see smaller features with more confidence, and to characterize the internal structure of reservoirs such as algal mounds. However, these methods have not been tested. This project will acquire cutting edge, three-dimensional, nine-component (3D9C) seismic data and utilize recently-developed processing algorithms, including the mapping of azimuthal velocity changes in amplitude variation with offset, to extract attributes that relate to variations in reservoir permeability and porosity. In order to apply advanced seismic methods a detailed reservoir study is needed to calibrate the seismic data to reservoir permeability, porosity and lithofacies. This will be done by developing a petrological and geological characterization of the mounds from well data; acquiring and processing the 3D9C data; and comparing the two using advanced pattern recognition tools such as neural nets. In addition, should the correlation prove successful, the resulting data will be evaluated from the perspective of selecting alternative enhanced recovery processes, and their possible implementation. The work is being carried out on the Roadrunner/Towaoc Fields of the Ute Mountain Ute Tribe, located in the southwestern corner of Colorado. Although this project is focused on development of existing resources, the calibration established between the reservoir properties and the 3D9C seismic data can also enhance exploration success. During the time period covered by this report, the majority of the project effort has gone into the permitting, planning and design of the 3D seismic survey, and to select a well for the VSP acquisition. The business decision in October, 2002 by WesternGeco, the projects' seismic acquisition contractor, to leave North America, has delayed the acquisition until late summer, 2003. The project has contracted Solid State, a division of Grant Geophysical, to carry out the acquisition. Moreover, the survey has been upgraded to a 3D9C from the originally planned 3D3C survey, which should provide even greater resolution of mounds and internal mound structure.

Paul La Pointe; Claudia Rebne; Steve Dobbs

2003-07-10T23:59:59.000Z

151

Method and device for controlling plume during laser welding  

DOE Patents [OSTI]

A method and apparatus for enhancing the weldment of a laser welding system is provided. The laser weld plume control device includes a cylindrical body defining an upside-down cone cavity; the upper surface of the body circumscribes the base of the cone cavity, and the vertex of the cone cavity forms an orifice concentrically located with respect to the laser beam and the plume which forms as a result of the welding operation. According to the method of the invention, gas is directed radially inward through inlets in the upper surface of the body into and through channels in the wall of the body and finally through the orifice of the body, and downward onto the surface of the weldment. The gas flow is then converted by the orifice of the device from radial flow to an axisymmetric gas jet flowing away from the weldment surface in a direction perpendicular to the surface and opposite to that of the laser.

Fuerschbach, Phillip W. (Tijeras, NM); Jellison, James L. (Albuquerque, NM); Keicher, David M. (Albuquerque, NM); Oberkampf, William L. (Albuquerque, NM)

1991-01-01T23:59:59.000Z

152

Aerosol size distribution evolution in large area fire plumes  

SciTech Connect (OSTI)

Large fires are significant seasonal contributors to western visibility reduction. We have found that the relative concentration of supermicron size particles (assumed to be a mixture of mechanically generated particles by high winds associated with large fires and low density chain aggregates from coagulation in the fire) and high turbulence in fire plumes can radically change the aerosol sizes in the fire plume. This is especially important for aerosols with high visibility reduction and long range transport potential. This calculation was done with a 10 level one dimensional model with parameterized vertical and horizontal diffusion, sedimentation and coagulation. The optical effects of the evolving concentration and size distributions were modeled using Mie scattering and absorption assumptions.

Porch, W.M.; Penner, J.E.

1986-09-01T23:59:59.000Z

153

Environmental Assessment for the Operation of the Glass Melter Thermal Treatment Unit at the US Department of Energy`s Mound Plant, Miamisburg, Ohio  

SciTech Connect (OSTI)

The glass melter would thermally treat mixed waste (hazardous waste contaminated with radioactive constituents largely tritium, Pu-238, and/or Th-230) that was generated at the Mound Plant and is now in storage, by stabilizing the waste in glass blocks. Depending on the radiation level of the waste, the glass melter may operate for 1 to 6 years. Two onsite alternatives and seven offsite alternatives were considered. This environmental assessment indicates that the proposed action does not constitute a major Federal action significantly affecting the human environment according to NEPA, and therefore the finding of no significant impact is made, obviating the need for an environmental impact statement.

NONE

1995-06-01T23:59:59.000Z

154

Atomic mass dependent electrostatic diagnostics of colliding laser plasma plumes  

SciTech Connect (OSTI)

The behaviours of colliding laser plasma plumes (C{sub p}) compared with single plasma plumes (S{sub p}) are investigated for 14 different atomic mass targets. A Faraday cup, situated at the end of a drift tube (L = 0.99 m), is employed to record the time-of-flight (TOF) current traces for all elements and both plume configurations, for a fixed laser intensity of I{sub p} = 4.2 × 10{sup 10} W cm{sup ?2} (F = 0.25 kJ cm{sup ?2}). The ratio of the peak current from the C{sub p} relative to twice that from the S{sub p} is designated as the peak current ratio while the ratio of the integrated charge yield from the C{sub p} relative to twice that from the S{sub p} is designated as the charge yield ratio. Variation of the position of the Faraday cup within the drift tube (L = 0.33, 0.55, and 0.99 m) in conjunction with a lower laser fluence (F = 0.14 kJ cm{sup ?2}) facilitated direct comparison of the changing TOF traces from both plasma configurations for the five lightest elements studied (C, Al, Si, Ti, and Mn). The results are discussed in the frame of laser plasma hydrodynamic modelling to approximate the critical recombination distance L{sub CR}. The dynamics of colliding laser plasma plumes and the atomic mass dependence trends observed are presented and discussed.

Yeates, P. [National Centre for Plasma Science and Technology (NCPST), Dublin City University (DCU), Dublin 7 (Ireland)] [National Centre for Plasma Science and Technology (NCPST), Dublin City University (DCU), Dublin 7 (Ireland); Fallon, C. [School of Physical Sciences, Dublin City University (DCU), Dublin 7 (Ireland)] [School of Physical Sciences, Dublin City University (DCU), Dublin 7 (Ireland); Kennedy, E. T.; Costello, J. T. [National Centre for Plasma Science and Technology (NCPST), Dublin City University (DCU), Dublin 7 (Ireland) [National Centre for Plasma Science and Technology (NCPST), Dublin City University (DCU), Dublin 7 (Ireland); School of Physical Sciences, Dublin City University (DCU), Dublin 7 (Ireland)

2013-09-15T23:59:59.000Z

155

A Numerical Study of the Mid-field River Plume  

E-Print Network [OSTI]

estuary and plume . . . . . . 12 1.2.1 The Merrimack River estuary . . . . . . . . . . . . . . . . . . 13 1.2.2 The Merrimack near-field . . . . . . . . . . . . . . . . . . . . 13 1.2.3 Offshore mid-field forcings . . . . . . . . . . . . . . . . . . . . 17... is shown in the right panels. . . . 28 viii 3.1 Merrimack River estuary and shelf domain. Grid spans approximately 10 km up the estuary from the mouth to 20 km offshore into the Gulf of Maine. Grid spacing is 40 m at the estuary mouth and 100 m...

Cole, Kelly Lynne

2014-04-02T23:59:59.000Z

156

Correlation of plume opacity with particles and sulfates from boilers  

SciTech Connect (OSTI)

The effects of emission concentrations of particulate matters and sulfates on plume opacity are investigated by in situ measurements. The studies are conducted for three processes of two coal-fired plants and one oil-fired that are all equipped with electrostatic precipitators. Flue-gas sampling and analysis include the concentrations of particles and total water soluble sulfates, particle size distribution, and flue-gas composition; while in-stack and out-of-stack opacities are determined by a transmissometer and certified smoke inspectors, respectively. Experimental results show that plume opacity outside the stack linearly correlates well with the in-stack opacity. The mixing of hot flue gas with cold ambient air would result in the condensation of hygroscopic sulfuric acid aerosols and an increase about 1.6% out of typical 15--25% measured opacity. An empirical equation similar to the Beer-Lambert-Bouger form is derived for predicting the plume opacity in terms of the stack diameter and the concentrations of particles and total water soluble sulfates. Good comparisons are achieved between predictions by the empirical equation and other available field data.

Lou, J.C.; Lee, M.; Chen, K.S. [National Sun Yat-Sen Univ., Kaohsiung (Taiwan, Province of China). Inst. of Environmental Engineering

1997-07-01T23:59:59.000Z

157

Plume opacity investigation at a stoker-fired power generating station  

SciTech Connect (OSTI)

A public utility contacted the Conoco Coal Research Division through Consolidation Coal Company and requested technical assistance in determining the cause of a high plume opacity at one of their stoker-fired power generating stations. The sporadic occurrence of a high opacity plume (>20%) had been reported for several years. Although the utility was burning low sulfur coal, sulfuric acid mist had been suspected as the cause of the plume opacity; therefore, anhydrous ammonia had been injected into the flue gas at the ESP inlet plenums to control the plume opacity with some degree of success. However, for the last two years, the high plume opacity has occurred more frequently. The possible causes of the high plume opacity investigated were: 1) organic species emissions, 2) particulate mass loading, 3) particle size distribution, and 4) sulfuric acid emissions. The investigation included detailed sampling inside the boiler, stack, and plume areas. It was determined that the major cause of the high plume opacity was submicron particle growth at the stack exit due to sulfuric acid/water condensation. The larger particles more efficiently scattered light which resulted in the visible plume at the stack exit. The organic emissions and particulate mass loading in the stack flue gas had minimal effect on the high plume opacity. The fly ash size distribution would also have had minimal effect if the sulfuric acid had not been present.

Lewis, G.H.

1987-01-01T23:59:59.000Z

158

Coherent Structures in Turbulent Flows: Experimental Studies on the Turbulence of Multiphase Plumes and Tidal Vortices  

E-Print Network [OSTI]

Width viii wb Slip Velocity x Horizontal Direction y Vertical Direction ? Entrainment Coefficient ? Circulation ?E Circulation in Boundary Layer ?S Starting-jet Circulation ? Boundary Layer Width ? Dissipation ? Kolmogorov Length Scale... representing the plume center and the dotted line marking the plume edge in subplot (b) ................................................ 28 2.7 Example of the vortex circulation (a) and enstrophy (b) versus position in the plume for a single velocity...

Bryant, Duncan Burnette

2011-08-08T23:59:59.000Z

159

FW: Mark Sogge USGS -subsea oil plume Marcia K McNutt 0 mark_sogge  

E-Print Network [OSTI]

Mark - FW: Mark Sogge USGS - subsea oil plume t Marcia K McNutt 0 mark_sogge Cc: Catherine Cesnik - subsea oil plume Just got a heads-up that a USGS employee is getting involved in the subsea oil plume is the Flagstaff Field Center Chief of Staff. This is the first I've heard of any USGS involvement in the subsea

Fleskes, Joe

160

Properties of solar polar coronal plumes constrained by Ultraviolet Coronagraph Spectrometer data  

E-Print Network [OSTI]

We investigate the plasma dynamics (outflow speed and turbulence) inside polar plumes. We compare line profiles (mainly of \\ion{O}{6}) observed by the UVCS instrument on SOHO at the minimum of solar cycle 22-23 with model calculations. We consider Maxwellian velocity distributions with different widths in plume and inter-plume regions. Electron densities are assumed to be enhanced in plumes and to approach inter-plume values with increasing height. Different combinations of the outflow and turbulence velocity in the plume regions are considered. We compute line profiles and total intensities of the \\ion{H}{1} Ly$\\alpha$ and the \\ion{O}{6} doublets. The observed profile shapes and intensities are reproduced best by a small solar wind speed at low altitudes in plumes that increases with height to reach ambient inter-plume values above roughly 3-4 $R_\\sun$ combined with a similar variation of the width of the velocity distribution of the scattering atoms/ions. We also find that plumes very close to the pole give narrow profiles at heights above 2.5 $R_\\sun$, which are not observed. This suggests a tendency for plumes to be located away from the pole. We find that the inclusion of plumes in the model computations provides an improved correspondence with the observations and confirms previous results showing that published UVCS observations in polar coronal holes can be roughly reproduced without the need for large temperature anisotropy. The latitude distributions of plumes and magnetic flux distributions are studied by analyzing data from different instruments on SOHO and with SOLIS.

N. -E. Raouafi; J. W. Harvey; S. K. Solanki

2007-03-29T23:59:59.000Z

Note: This page contains sample records for the topic "mound site plume" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Time resolved optical diagnostics of ZnO plasma plumes in air  

SciTech Connect (OSTI)

We report dynamical evolution of laser ablated ZnO plasma plumes using interferometry and shadowgraphy; 2-D fast imaging and optical emission spectroscopy in air ambient at atmospheric pressure. Recorded interferograms using Nomarski interferometer and shadowgram images at various time delays show the presence of electrons and neutrals in the ablated plumes. The inference drawn from sign change of fringe shifts is consistent with two dimensional images of the plume and optical emission spectra at varying time delays with respect to ablating pulse. Zinc oxide plasma plumes are created by focusing 1.06 ?m radiation on to ZnO target in air and 532 nm is used as probe beam.

Gupta, Shyam L.; Singh, Ravi Pratap; Thareja, Raj K. [Department of Physics, Indian Institute of Technology Kanpur, Kanpur - 208016 (U. P.) (India)] [Department of Physics, Indian Institute of Technology Kanpur, Kanpur - 208016 (U. P.) (India)

2013-10-15T23:59:59.000Z

162

http://www.em.doe.gov/Pages/groundwaterReport.aspx?plumeCode...  

Office of Environmental Management (EM)

East Plume) Remediation Contractor: Unknown Report Last Updated: 2009 Contaminants Halogenated VOCsSVOCs Present? No Fuel Present? No Metals Present? No Isotopes Present? No...

163

http://www.em.doe.gov/Pages/groundwaterReport.aspx?plumeCode...  

Office of Environmental Management (EM)

West Plume) Remediation Contractor: SM Stoller Corp Report Last Updated: 2009 Contaminants Halogenated VOCsSVOCs Present? Yes VOC Name Concentration (ppb) Regulatory Driver...

164

MOUND Environmental Restoration Program  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$ EGcG ENERGYELIkNATIONHEALXH:LTS-S,:?' _.JMOUND

165

Monsanto MOUND FACILITY  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$ EGcGandSherwood,ThirdHallam,TubaDecemberMonsanto .

166

Mound History and Information  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$ EGcGandSherwood,ThirdHallam,TubaDecemberMonsanto

167

Mound Transition Schedule  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$ EGcGandSherwood,ThirdHallam,TubaDecemberMonsanto

168

Hanford Site Groundwater Monitoring for Fiscal Year 2000  

SciTech Connect (OSTI)

This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2000 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath each of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. RCRA groundwater monitoring continued during fiscal year 2000. Vadose zone monitoring, characterization, remediation, and several technical demonstrations were conducted in fiscal year 2000. Soil gas monitoring at the 618-11 burial ground provided a preliminary indication of the location of tritium in the vadose zone and in groundwater. Groundwater modeling efforts focused on 1) identifying and characterizing major uncertainties in the current conceptual model and 2) performing a transient inverse calibration of the existing site-wide model. Specific model applications were conducted in support of the Hanford Site carbon tetrachloride Innovative Treatment Remediation Technology; to support the performance assessment of the Immobilized Low-Activity Waste Disposal Facility; and in development of the System Assessment Capability, which is intended to predict cumulative site-wide effects from all significant Hanford Site contaminants.

Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

2001-03-01T23:59:59.000Z

169

ENZYME ACTIVITY PROBE AND GEOCHEMICAL ASSESSMENT FOR POTENTIAL AEROBIC COMETABOLISM OF TRICHLOROETHENE IN GROUNDWATER OF THE NORTHWEST PLUME, PADUCAH GASEOUS DIFFUSION PLANT, KENTUCKY  

SciTech Connect (OSTI)

The overarching objective of the Paducah Gaseous Diffusion Plant (PGDP) enzyme activity probe (EAP) effort is to determine if aerobic cometabolism is contributing to the attenuation of trichloroethene (TCE) and other chlorinated solvents in the contaminated groundwater beneath PGDP. The site-specific objective for the EAP assessment is to identify if key metabolic pathways are present and expressed in the microbial community--namely the pathways that are responsible for degradation of methane and aromatic (e.g. toluene, benzene, phenol) substrates. The enzymes produced to degrade methane and aromatic compounds also break down TCE through a process known as cometabolism. EAPs directly measure if methane and/or aromatic enzyme production pathways are operating and, for the aromatic pathways, provide an estimate of the number of active organisms in the sampled groundwater. This study in the groundwater plumes at PGDP is a major part of a larger scientific effort being conducted by Interstate Technology and Regulatory Council (ITRC), U.S. Department of Energy (DOE) Office of Environmental Management (EM), Savannah River National Laboratory (SRNL), and North Wind Inc. in which EAPs are being applied to contaminated groundwater from diverse hydrogeologic and plume settings throughout the U.S. to help standardize their application as well as their interpretation. While EAP data provide key information to support the site specific objective for PGDP, several additional lines of evidence are being evaluated to increase confidence in the determination of the occurrence of biodegradation and the rate and sustainability of aerobic cometabolism. These complementary efforts include: (1) Examination of plume flowpaths and comparison of TCE behavior to 'conservative' tracers in the plume (e.g., {sup 99}Tc); (2) Evaluation of geochemical conditions throughout the plume; and (3) Evaluation of stable isotopes in the contaminants and their daughter products throughout the plume. If the multiple lines of evidence support the occurrence of cometabolism and the potential for the process to contribute to temporal and spatial attenuation of TCE in PGDP groundwater, then a follow-up enzyme probe microcosm study to better estimate biological degradation rate(s) is warranted.

Looney, B; M. Hope Lee, M; S. K. Hampson, S

2008-06-27T23:59:59.000Z

170

Measuring and Modeling Fault Density for Plume-Fault Encounter Probability Estimation  

SciTech Connect (OSTI)

Emission of carbon dioxide from fossil-fueled power generation stations contributes to global climate change. Storage of this carbon dioxide within the pores of geologic strata (geologic carbon storage) is one approach to mitigating the climate change that would otherwise occur. The large storage volume needed for this mitigation requires injection into brine-filled pore space in reservoir strata overlain by cap rocks. One of the main concerns of storage in such rocks is leakage via faults. In the early stages of site selection, site-specific fault coverages are often not available. This necessitates a method for using available fault data to develop an estimate of the likelihood of injected carbon dioxide encountering and migrating up a fault, primarily due to buoyancy. Fault population statistics provide one of the main inputs to calculate the encounter probability. Previous fault population statistics work is shown to be applicable to areal fault density statistics. This result is applied to a case study in the southern portion of the San Joaquin Basin with the result that the probability of a carbon dioxide plume from a previously planned injection had a 3% chance of encountering a fully seal offsetting fault.

Jordan, P.D.; Oldenburg, C.M.; Nicot, J.-P.

2011-05-15T23:59:59.000Z

171

Plume Image Profiling of UV Laser Desorbed Biomolecules  

SciTech Connect (OSTI)

An experimental system, based upon the techniques of UV and IR laser desorption with time of flight mass spectrometry, has been constructed to enable the production and characterization of neutral biomolecular targets. The feasibility of the laser desorption technique for the purpose of radiation interaction experiments is investigated here. Fluorescent dye tagging and laser induced fluorescence imaging has been used to help characterize the laser produced plumes of biomolecules revealing their spatial density profiles and temporal evolution. Peak target thicknesses of 2x10{sup 12} molecules cm{sup -2} were obtained 30 {mu}s after laser desorption.

Merrigan, T. L.; Hunniford, C.A.; McCullough, R. W. [Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, UK, BT7 1NN (United Kingdom); Timson, D. J. [School of Biological Sciences, Queen's University Belfast, Belfast, UK, BT9 7BL (United Kingdom); Catney, M. [Andor Technology plc., 7 Millennium Way, Springvale Business Park, Belfast, UK, BT12 7AL (United Kingdom)

2008-12-08T23:59:59.000Z

172

Multicomponent Seismic Analysis and Calibration to Improve Recovery from Algal Mounds: Application to the Roadrunner/Towaoc area of the Paradox Basin, UTE Mountain UTE Reservation, Colorado  

SciTech Connect (OSTI)

The goals of this project were: (1) To enhance recovery of oil contained within algal mounds on the Ute Mountain Ute tribal lands. (2) To promote the use of advanced technology and expand the technical capability of the Native American Oil production corporations by direct assistance in the current project and dissemination of technology to other Tribes. (3) To develop an understanding of multicomponent seismic data as it relates to the variations in permeability and porosity of algal mounds, as well as lateral facies variations, for use in both reservoir development and exploration. (4) To identify any undiscovered algal mounds for field-extension within the area of seismic coverage. (5) To evaluate the potential for applying CO{sub 2} floods, steam floods, water floods or other secondary or tertiary recovery processes to increase production. The technical work scope was carried out by: (1) Acquiring multicomponent seismic data over the project area; (2) Processing and reprocessing the multicomponent data to extract as much geological and engineering data as possible within the budget and time-frame of the project; (3) Preparing maps and data volumes of geological and engineering data based on the multicomponent seismic and well data; (4) Selecting drilling targets if warranted by the seismic interpretation; (5) Constructing a static reservoir model of the project area; and (6) Constructing a dynamic history-matched simulation model from the static model. The original project scope covered a 6 mi{sup 2} (15.6 km{sup 2}) area encompassing two algal mound fields (Towaoc and Roadrunner). 3D3C seismic data was to acquired over this area to delineate mound complexes and image internal reservoir properties such as porosity and fluid saturations. After the project began, the Red Willow Production Company, a project partner and fully-owned company of the Southern Ute Tribe, contributed additional money to upgrade the survey to a nine-component (3D9C) survey. The purpose of this upgrade to nine components was to provide additional shear wave component data that might prove useful in delineating internal mound reservoir attributes. Also, Red Willow extended the P-wave portion of the survey to the northwest of the original 6 mi{sup 2} (15.6 km{sup 2}) 3D9C area in order to extend coverage further to the northwest to the Marble Wash area. In order to accomplish this scope of work, 3D9C seismic data set covering two known reservoirs was acquired and processed. Three-dimensional, zero-offset vertical seismic profile (VSP) data was acquired to determine the shear wave velocities for processing the sh3Dseismic data. Anisotropic velocity, and azimuthal AVO processing was carried out in addition to the conventional 3D P-wave data processing. All P-, PS- and S-wave volumes of the seismic data were interpreted to map the seismic response. The interpretation consisted of conventional cross-plots of seismic attributes vs. geological and reservoir engineering data, as well as multivariate and neural net analyses to assess whether additional resolution on exploration and engineering parameters could be achieved through the combined use of several seismic variables. Engineering data in the two reservoirs was used to develop a combined lithology, structure and permeability map. On the basis of the seismic data, a well was drilled into the northern mound trend in the project area. This well, Roadrunner No.9-2, was brought into production in late April 2006 and continues to produce modest amounts of oil and gas. As of the end of August 2007, the well has produced approximately 12,000 barrels of oil and 32,000 mcf of gas. A static reservoir model was created from the seismic data interpretations and well data. The seismic data was tied to various markers identified in the well logs, which in turn were related to lithostratigraphy. The tops and thicknesses of the various units were extrapolated from well control based upon the seismic data that was calibrated to the well picks. The reservoir engineering properties were available from a number of wel

Joe Hachey

2007-09-30T23:59:59.000Z

173

Nuclear thermal rocket plume interactions with spacecraft. Final report  

SciTech Connect (OSTI)

This is the first study that has treated the Nuclear Thermal Rocket (NTR) effluent problem in its entirety, beginning with the reactor core, through the nozzle flow, to the plume backflow. The summary of major accomplishments is given below: (1) Determined the NTR effluents that include neutral, ionized and radioactive species, under typical NTR chamber conditions. Applied an NTR chamber chemistry model that includes conditions and used nozzle geometries and chamber conditions typical of NTR configurations. (2) Performed NTR nozzle flow simulations using a Navier-Stokes solver. We assumed frozen chemistry at the chamber conditions and used nozzle geometries and chamber conditions typical of NTR configurations. (3) Performed plume simulations using a Direct Simulation Monte Carlo (DSMC) code with chemistry. In order to account for radioactive trace species that may be important for contamination purposes we developed a multi-weighted DSMC methodology. The domain in our simulations included large regions downstream and upstream of the exit. Inputs were taken from the Navier-Stokes solutions.

Mauk, B.H. [Johns Hopkins Univ., Laurel, MD (United States); Gatsonis, N.A.; Buzby, J.; Yin, X. [Worcester Polytechnic Inst., MA (United States). Mechanical Engineering Department

1997-05-01T23:59:59.000Z

174

A tandem mirror hybrid plume plasma propulsion facility  

SciTech Connect (OSTI)

A concept in electrodeless plasma propulsion, which is also capable of delivering a variable Isp, is presented. The concept involves a three-stage system of plasma injection, heating, and subsequent ejection through a magnetic nozzle. The nozzle produces the hybrid plume by the coaxial injection of hypersonic neutral gas. The gas layer, thus formed, protects the material walls from the hot plasma and, through increased collisions, helps detach it from the diverging magnetic field. The physics of this concept is evaluated numerically through full spatial and temporal simulations; these explore the operating characteristics of such a device over a wide region of parameter space. An experimental facility to study the plasma dynamics in the hybrid plume was built. The device consists of a tandem mirror operating in an asymmetric mode. A later upgrade of this system will incorporate a cold plasma injector at one end of the machine. Initial experiments involve the full characterization of the operating envelope, as well as extensive measurements of plasma properties at the exhaust. The results of the numerical simulations are described.

Chang-Diaz, F.R.; Yang, T.F.; Krueger, W.A.; Peng, S.; Urbahn, J.; Yao, X.; Griffin, D.

1988-01-01T23:59:59.000Z

175

On the rise of turbulent plumes: Quantitative effects of variable entrainment for submarine hydrothermal vents, terrestrial  

E-Print Network [OSTI]

, it is also essential to estimate the radioactive release into the atmosphere [Manins, 1985] and to evaluate by a factor of 2. In the paleo-Martian atmosphere, existing models overestimate plume heights by 14­27%. In the current atmosphere of Venus, the maximum height reached by a volcanic plume is also found to be smaller

Kaminski, Edouard

176

Ice Shelf Water plume flow beneath Filchner-Ronne Ice Shelf, Antarctica  

E-Print Network [OSTI]

Ice Shelf Water plume flow beneath Filchner-Ronne Ice Shelf, Antarctica Paul R. Holland,1 Daniel L Filchner- Ronne Ice Shelf, Antarctica and its underlying ocean cavity. Ice Shelf Water (ISW) plumes are initiated by the freshwater released from a melting ice shelf and, if they rise, may become supercooled

Feltham, Daniel

177

Linkages between coastal runoff and the Florida Keys ecosystem: A study of a dark plume event  

E-Print Network [OSTI]

of a dark water plume from near Charlotte Harbor, Florida, to the Dry Tortugas in the Florida Keys in mid, respectively. The dark color became increasingly dominated by colored dissolved organic matter, toward the DryLinkages between coastal runoff and the Florida Keys ecosystem: A study of a dark plume event

178

Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia  

E-Print Network [OSTI]

Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia), Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia, J. Geophys. Res., 116, D08207, doi:10.1029/2010JD015148. 1. Introduction [2] Peat and deforestation fires

Zender, Charles

179

The Effects of Rotation and Ice Shelf Topography on Frazil-Laden Ice Shelf Water Plumes  

E-Print Network [OSTI]

, Antarctica. In addition, it is found that the model only produces reasonable marine ice formation rates whenThe Effects of Rotation and Ice Shelf Topography on Frazil-Laden Ice Shelf Water Plumes PAUL R of the dynamics and thermodynamics of a plume of meltwater at the base of an ice shelf is presented. Such ice

Feltham, Daniel

180

Gas Plume Species Identification in LWIR Hyperspectral Imagery by Regression Analyses  

E-Print Network [OSTI]

Gas Plume Species Identification in LWIR Hyperspectral Imagery by Regression Analyses by David Title of Thesis: Gas Plume Species Identification in LWIR Hyperspectral Imagery by Regression Analyses I in whole or in part. Any reproduction will not be for commercial use or profit. Signature Date ii #12;Gas

Salvaggio, Carl

Note: This page contains sample records for the topic "mound site plume" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Internal structure and expansion dynamics of laser ablation plumes into ambient gases  

E-Print Network [OSTI]

Internal structure and expansion dynamics of laser ablation plumes into ambient gases S. S. Harilal 13 December 2002 The effect of ambient gas on the expansion dynamics of the plasma generated by laser together with time resolved emission diagnostics, a triple structure of the plume was observed

Harilal, S. S.

182

Asymmetry of Tidal Plume Fronts in an Eastern Boundary Current Regime  

E-Print Network [OSTI]

water mass. This vorticity controls the transition of the tidal plume 2 #12;front to a subcritical state bulge, which in turn is embedded in far-field plume and coastal waters. Because of the mixing caused on its upwind or northern side) and marks a transition from supercritical to subcritical flow for 6

Jay, David

183

Ambient gas effects on the dynamics of laser-produced tin plume expansion  

E-Print Network [OSTI]

Ambient gas effects on the dynamics of laser-produced tin plume expansion S. S. Harilal,a Beau O in the development of an extreme ultraviolet lithographic light source. An ambient gas that is transparent to 13.5 nm and deceleration of plume species, the addition of ambient gas leads to other events such as double peak formation

Tillack, Mark

184

Dynamics of femtosecond laser produced tungsten nanoparticle plumes S. S. Harilal,1  

E-Print Network [OSTI]

Dynamics of femtosecond laser produced tungsten nanoparticle plumes S. S. Harilal,1 N. Farid,1,2 A tungsten nanoparticle plumes in vacuum. Fast gated images showed distinct two components expansion features.1063/1.4833564] I. INTRODUCTION Nanoparticle production and application research is an area of significant

Harilal, S. S.

185

Hanford Site ground-water monitoring for 1994  

SciTech Connect (OSTI)

This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

1995-08-01T23:59:59.000Z

186

Southwest Plume Cleanup at Paducah Site to Start by Summer 2013 |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOEEnergy32.1 (OctoberChallenges | Department

187

Tritium And Iodine Plumes on the U.S. Department of Energy Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2TopoPortalBRDF Effects in Satellite Retrieval ofMay

188

Tritium And Iodine Plumes on the U.S. Department of Energy Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2TopoPortalBRDF Effects in Satellite Retrieval

189

Development and application of a microcomputer based model for acid plume opacity  

SciTech Connect (OSTI)

Many stationary sources discharge visible emission into the atmosphere. A visible plume can be a problem either from the viewpoint of particulate emission standards or of aesthetics and public concern. In recent years, with the installation of high efficiency particulate emission control devices on utility and industrial boilers, detached plumes have become more of a problem because formerly the emission of primary particulate matter obscured and/or served as a condensing surface for the condensable material. In order to better understand the phenomenon of detached plumes, a model is formulated to describe in mathematical terms the relationship between the particle suspension leaving the stack and the particulate composition of the plume as it evolves downwind of the stack. This model provides a means of relating parameters that govern plum opacity which is not feasible from a monitoring standpoint. Input parameters can be put into the model to investigate the effects on resulting plume opacity levels.

Lee, K.T. (National Cheng Kung Univ., (TW))

1987-01-01T23:59:59.000Z

190

Relation between plasma plume density and gas flow velocity in atmospheric pressure plasma  

SciTech Connect (OSTI)

We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and copper foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. To study the properties of the plasma plume, the plasma plume current is estimated from the difference in currents on the circuit, and the drift velocity is measured using a photodetector. The relation of the plasma plume density n{sub plu}, which is estimated from the current and the drift velocity, and the gas flow velocity v{sub gas} is examined. It is found that the dependence of the density on the gas flow velocity has relations of n{sub plu} ? log(v{sub gas}). However, the plasma plume density in the laminar flow is higher than that in the turbulent flow. Consequently, in the laminar flow, the density increases with increasing the gas flow velocity.

Yambe, Kiyoyuki; Taka, Shogo; Ogura, Kazuo [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan)] [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan)

2014-04-15T23:59:59.000Z

191

Recommendations to the NRC for review criteria for alternative methods of low-level radioactive waste disposal: Task 2b: Earth-mounded concrete bunkers  

SciTech Connect (OSTI)

The US Army Engineers Waterways Experiment Station (WES) and US Army Engineer Division, Huntsville (HNDED) have developed general design criteria and specific design review criteria for the earth-mounded concrete bunker (EMCB) alternative method of low-level radioactive waste (LLW) disposal. An EMCB is generally described as a reinforced concrete vault placed below grade, underneath a tumulus, surrounded by filter-blanket and drainage zones. The tumulus is covered over with a low permeability cover layer and top soil with vegetation. Eight major review criteria categories have been developed ranging from the loads imposed on the EMCB structure through material quality and durability considerations. Specific design review criteria have been developed in detail for each of the eight major categories. 63 refs., 13 figs., 2 tabs.

Denson, R.H.; Bennett, R.D.; Wamsley, R.M.; Bean, D.L.; Ainsworth, D.L.

1988-01-01T23:59:59.000Z

192

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery: Reducing Chromium in

193

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery: Reducing Chromium

194

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery: Reducing

195

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery: Reducing

196

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery: Reducing

197

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery: Reducing

198

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery: Reducing

199

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery: Reducing

200

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery: Reducing

Note: This page contains sample records for the topic "mound site plume" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery: Reducing

202

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery: Reducing

203

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery: Reducing

204

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery: Reducing

205

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery: Reducing

206

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery: Reducing

207

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery: Reducing

208

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery: Reducing

209

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery: Reducing5.jpg Gallery: 618-10

210

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery: Reducing5.jpg Gallery:

211

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery: Reducing5.jpg Gallery:

212

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery: Reducing5.jpg Gallery:

213

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery: Reducing5.jpg

214

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery: Reducing5.jpgFaciltiy_Screen

215

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery:

216

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery:HX Pump and Treat.jpg Gallery:

217

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery:HX Pump and Treat.jpg

218

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery:HX Pump and Treat.jpg Now

219

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery:HX Pump and Treat.jpg

220

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery:HX Pump and Treat.jpgRetired

Note: This page contains sample records for the topic "mound site plume" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery:HX Pump and Treat.jpgRetired W

222

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery:HX Pump and Treat.jpgRetired

223

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery:HX Pump and

224

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery:HX Pump and8-13-10.jpg

225

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery:HX Pump

226

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery:HX Pumpprep for lift

227

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery:HX Pumpprep for lift28.jpg

228

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery:HX Pumpprep for

229

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery:HX Pumpprep for44.jpg Gallery:

230

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery:HX Pumpprep for44.jpg

231

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery:HX Pumpprep

232

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery:HX Pumpprep1.jpg Gallery:

233

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery:HX Pumpprep1.jpg Gallery:6.jpg

234

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery:HX Pumpprep1.jpg

235

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg Gallery:HX

236

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg

237

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg5.jpg Gallery: Cocooning K East Reactor

238

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg5.jpg Gallery: Cocooning K East

239

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg5.jpg Gallery: Cocooning K

240

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg5.jpg Gallery: Cocooning K

Note: This page contains sample records for the topic "mound site plume" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg5.jpg Gallery: Cocooning K

242

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg5.jpg Gallery: Cocooning K

243

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg5.jpg Gallery: Cocooning

244

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg5.jpg Gallery: Cocooning

245

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg5.jpg Gallery:

246

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg5.jpg Gallery:

247

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg5.jpg Gallery:

248

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The13_gw_plume.jpg5.jpg

249

Importance of vertical mixing for additional sources of nitrate and iron to surface waters of the Columbia River plume  

E-Print Network [OSTI]

of the Columbia River plume: Implications for biology Maeve C. Lohan a,*, Kenneth W. Bruland b a Institute

Hickey, Barbara

250

Method and means for a spatial and temporal probe for laser-generated plumes based on density gradients  

DOE Patents [OSTI]

A method and means are disclosed for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived. 15 figs.

Yeung, E.S.; Chen, G.

1990-05-01T23:59:59.000Z

251

Coupling of Realistic Real Estimates with Genomics for Assessing Contaminant Attenuation and Long-Term Plume Containment  

SciTech Connect (OSTI)

Coupling of Realistic Real Estimates with Genomics for Assessing Contaminant Attenuation and Long-Term Plume Containment

Roland L. Crawford

2006-12-13T23:59:59.000Z

252

Technical Review Report for the Mound 1KW Package Safety Analysis Report for Packaging Waiver for the Use of Modified Primary Containment Vessel (PCV)  

SciTech Connect (OSTI)

This Technical Review Report (TRR) documents the review, performed by the Lawrence Livermore National Laboratory (LLNL) staff, at the request of the U.S. Department of Energy (DOE), on the Waiver for the Use of Modified Primary Containment Vessels (PCV). The waiver is to be used to support a limited number of shipments of fuel for the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) Project in support of the National Aeronautics and Space Administration's (NASA's) Mars Science Laboratory (MSL) mission. Under the waiver, an inventory of existing national security PCVs will be converted to standard PCVs. Both types of PCVs are currently approved for use by the Office of Nuclear Energy. LLNL has previously reviewed the national security PCVs under Mound 1KW Package Safety Analysis Report for Packaging, Addendum No. 1, Revision c, dated June 2007 (Addendum 1). The safety analysis of the package is documented in the Safety Analysis Report for Packaging (SARP) for the Mound 1KW Package (i.e., the Mound 1KW SARP, or the SARP) where the standard PCVs have been reviewed by LLNL. The Mound 1KW Package is certified by DOE Certificate of Compliance (CoC) number USA/9516/B(U)F-85 for the transportation of Type B quantities of plutonium heat source material. The waiver requests an exemption, claiming safety equivalent to the requirements specified in 10 CFR 71.12, Specific Exemptions, and will lead to a letter amendment to the CoC. Under the waiver, the Office of Radioisotope Power Systems, NE-34, is seeking an exemption from 10 CFR 71.19(d)(1), Previously Approved Package,[5] which states: '(d) NRC will approve modifications to the design and authorized contents of a Type B package, or a fissile material package, previously approved by NRC, provided--(1) The modifications of a Type B package are not significant with respect to the design, operating characteristics, or safe performance of the containment system, when the package is subjected to the tests specified in {section}71.71 and 71.73.' The LLNL staff had previously reviewed a request from Idaho National Laboratory (INL) to reconfigure national security PCVs to standard PCVs. With a nominal 50% reduction in both the height and the volume, the LLNL staff initially deemed the modifications to be significant, which would not be allowed under the provisions of 10 CFR 71.19(d)(1)--see above. As a follow-up, the DOE requested additional clarification from the Nuclear Regulatory Commission (NRC). The NRC concluded that the reconfiguration would be a new fabrication, and that an exemption to the regulations would be required to allow its use, as per the requirements specified in 10 CFR 71.19(c)(1), Previously Approved Package: '(c) A Type B(U) package, a Type B(M) package, or a fissile material package previously approved by the NRC with the designation '-85' in the identification number of the NRC CoC, may be used under the general license of {section}71.17 with the following additional conditions: (1) Fabrication of the package must be satisfactorily completed by December 31, 2006, as demonstrated by application of its model number in accordance with 71.85(c).' Although the preferred approach toward the resolution of this issue would be for the applicant to submit an updated SARP, the applicant has stated that the process of updating the Model Mound 1KW Package SARP is a work that is in progress, but that the updated SARP is not yet ready for submittal. The applicant has to provide a submittal, proving that the package meets the '-96' requirements of International Atomic Energy Agency (IAEA) Safety Standards Series No. TS-R-1, in order to fabricate approved packagings after December 31, 2006. The applicant has further stated that all other packaging features, as described in the currently approved Model Mound 1KW Package SARP, remain unchanged. This report documents the LLNL review of the waiver request. The specific review for each SARP Chapter is documented.

West, M; Hafner, R

2008-05-05T23:59:59.000Z

253

Site Feeds - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System OutagesNewsMaterialsX-rayOur‹Simulation,Site

254

Site Screening, Site Selection,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2)Sharing Smartversatileplatform chemical.OfficeScreening, Site

255

A comparison of plume dispersion characteristics at RFP using different stability class determination methods  

SciTech Connect (OSTI)

In the course of recent calculations of population dose using Rocky Flats Plant (RFP) meteorological statistics for the last several years, we have discovered interesting associations. It is the intent of this paper to communicate these to other workers in the field. In order to determine the potential dose to a person at the RFP site boundary from a source of radioactive effluent, it is necessary to account for atmospheric dispersion of the effluent. Often, a bounding calculation, using a ``worst case`` meteorological condition, is performed. We were interested, however, in using a more typical, or likely, condition. To do so, we used data derived from measurements at the RFP meteorological tower. These measurements include 15 minute samples of wind speed, wind direction, and temperatures at 10 meters, 25 meters and 60 meters above ground. We took these data for the complete period for which they are quality assured, March, 1989 through January, 1993, and used them in a simple computer program to develop dose statistics by repeated application of Gaussian plume dispersion.

Jordan, H.; Peterson, V.L.

1993-06-01T23:59:59.000Z

256

Measurement of polynuclear aromatic hydrocarbon concentrations in the plume of Kuwait oil well fires  

SciTech Connect (OSTI)

Following their retreat from Kuwait during February and March of 1991, the Iraqi Army set fire to over 500 oil wells dispersed throughout the Kuwait oil fields. During the period of sampling from July to August 1991, it was estimated that between 3.29 {times} 10{sup 6} barrels per day of crude oil were combusted. The resulting fires produced several plumes of black and white smoke that coalesced to form a composite ``super`` plume. Because these fires were uncontrolled, significant quantities of organic materials were dispersed into the atmosphere and drifted throughout the Middle East. The organic particulants associated with the plume of the oil well fires had a potential to be rich in polynuclear aromatic hydrocarbon (PAH) compounds. Based on the extreme mutagenic and carcinogenic activities of PAHs found in laboratory testing, a serious health threat to the population of that region potentially existed. Furthermore, the Kuwait oil fire plumes represented a unique opportunity to study the atmospheric chemistry associated with PAHs in the plume. If samples were collected near the plume source and from the plume many kilometers downwind from the source, comparisons could be made to better understand atmospheric reactions associated with particle-bound and gas-phase PAHs. To help answer health-related concerns and to better understand the fate and transport of PAHs in an atmospheric environment, a sampling and analysis program was developed.

Olsen, K.B.; Wright, C.W.; Veverka, C. [Pacific Northwest Lab., Richland, WA (United States); Ball, J.C. [Ford Motor Co., Dearborn, MI (United States). Scientific Research Lab.; Stevens, R. [US Environmental Protection Agency (United States). Atmospheric Research and Exposure Assessment Lab.

1995-03-01T23:59:59.000Z

257

Strategic Petroleum Reserve site environmental report for calendar year 1997  

SciTech Connect (OSTI)

The purpose of this Site Environmental Report (SER) is to characterize site environmental management performance, confirm compliance with environmental standards and requirements, and highlight significant programs and efforts for the US Department of Energy (DOE) Strategic Petroleum Reserve (SPR). The SER, provided annually in accordance with DOE order 5400.1, serves the public by summarizing monitoring data collected to assess how the SPR impacts the environment. The SER provides a balanced synopsis of non-radiological monitoring and regulatory compliance data and affirms that the SPR has been operating within acceptable regulatory limits. Included in this report is a describe of each site`s environment, an overview of the SPR environmental program, and a recapitulation of special environmental activities and events associated with each SPR site during 1997. Two of these highlights include decommissioning of the Weeks Island site, involving the disposition of 11.6 million m{sup 3} (73 million barrels) of crude oil inventory, as well as the degasification of over 12.6 million m{sup 3} (79.3 million barrels) of crude oil inventory at the Big Hill and Bryan Mound facilities.

NONE

1998-11-01T23:59:59.000Z

258

Penetration of buoyancy driven current due to a wind forced river plume  

E-Print Network [OSTI]

The long term response of a plume associated with freshwater penetration into ambient, ocean water under upwelling favorable winds is studied using the Regional Ocean Modeling System (ROMS) in an idealized domain. Three different cases were examined...

Baek, Seong-Ho

2009-05-15T23:59:59.000Z

259

Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume  

SciTech Connect (OSTI)

The Deepwater Horizon oil spill in the Gulf of Mexico is the deepest and largest offshore spill in U.S. history and its impacts on marine ecosystems are largely unknown. Here, we showed that the microbial community functional composition and structure were dramatically altered in a deep-sea oil plume resulting from the spill. A variety of metabolic genes involved in both aerobic and anaerobic hydrocarbon degradation were highly enriched in the plume compared to outside the plume, indicating a great potential for intrinsic bioremediation or natural attenuation in the deep-sea. Various other microbial functional genes relevant to carbon, nitrogen, phosphorus, sulfur and iron cycling, metal resistance, and bacteriophage replication were also enriched in the plume. Together, these results suggest that the indigenous marine microbial communities could play a significant role in biodegradation of oil spills in deep-sea environments.

Lu, Z.; Deng, Y.; Nostrand, J.D. Van; He, Z.; Voordeckers, J.; Zhou, A.; Lee, Y.-J.; Mason, O.U.; Dubinsky, E.; Chavarria, K.; Tom, L.; Fortney, J.; Lamendella, R.; Jansson, J.K.; D?haeseleer, P.; Hazen, T.C.; Zhou, J.

2011-06-15T23:59:59.000Z

260

Ambient gas effects on the dynamics of laser-produced tin plume expansion  

E-Print Network [OSTI]

mitigation in a laser-produced tin plasma is one of the mostambient pressure, the tin species with kinetic Downloaded 19Sn + species ejected by the tin plume exhibits a Downloaded

Harilal, S S; O'Shay, B; Tillac, M S; Tao, Y

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mound site plume" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Effects of buoyancy source composition on multiphase plume behavior in stratification  

E-Print Network [OSTI]

Experiments are performed where a dense multiphase plume is released vertically in a salinity stratified ambient. The constituent phase composition of the initial buoyancy flux can be dense brine, particles, or a mixture ...

Chow, Aaron C. (Aaron Chunghin), 1978-

2004-01-01T23:59:59.000Z

262

Numerical and analytical studies of single and multiphase starting jets and plumes  

E-Print Network [OSTI]

Multiphase starting jets and plumes are widely observed in nature and engineering systems. An environmental engineering example is open-water disposal of sediments. The present study numerically simulates such starting ...

Wang, Ruo-Qian

2014-01-01T23:59:59.000Z

263

Framework for multi-vehicle adaptive sampling of jets and plumes in coastal zones  

E-Print Network [OSTI]

This thesis presents a framework for the sampling of thermal and effluent jets and plumes using multiple autonomous surface vehicles. The framework was developed with the goal of achieving rapid and accurate in-situ ...

Gildner, Matthew Lee

2013-01-01T23:59:59.000Z

264

Molecular Measurements of the Deep-Sea Oil Plume in the Gulf...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in...

265

Geochemical heterogeneity in the Hawaiian plume : constraints from Hawaiian volcanoes and Emperor seamounts  

E-Print Network [OSTI]

The 6000-km long, age-progressive linear Hawaii-Emperor Chain is one of the best defined hotspot tracks. This hotspot track plays an important role in the plume hypothesis. In this research, geochemical data on the ...

Huang, Shichun

2005-01-01T23:59:59.000Z

266

CAUSE OF A MULTI-SPECIES RADIOIODINE PLUME THAT IS INCREASING IN CONCENTRATION  

SciTech Connect (OSTI)

Field and laboratory studies were carried out to understand the cause for steady increases in {sup 129}I concentrations emanating from radiological seepage basins located on the Savannah River Site. The basins were closed in 1988 by adding limestone and blast furnace slag and then capping with a RCRA low permeability engineered cover. Groundwater {sup 129}I concentrations in a well near the seepage basin in 1993 were 200 pCi L{sup -1} and are presently between 400 and 1000 pCi L{sup -1}. Iodine speciation in the plume was not uniform. Near the source, the iodine was comprised of 86% iodide, 2% iodate, and 12% organo-iodine (total activity = 178 pCi L{sup -1}). Whereas, groundwater iodine speciation 365 m down stream (25 m up stream from a wetland) was 0% iodide, 93% iodate, and 7% organo iodine. Batch desorption studies demonstrated that high concentrations of {sup 129}I could be incrementally desorbed from an archived seepage basin sediment sample by raising the pH. Batch sorption studies showed that iodate, IO{sub 3}{sup -}, sorbed more strongly than iodide, I{sup -}, to a subsurface clayey sediment, but equally well as iodide to a subsurface sandy sediment and a wetland sediment. Placing an organic-rich wetland sediment, but not nearby mineral sediments, under reducing (or microaerobic) conditions resulted in a large decrease in iodide K{sub d} values (from 73 to 10 mL g{sup -1}) and iodate K{sub d} values (from 80 to 7 mL g{sup -1}). Between pH and reduction-oxidation potential, it appears that pH seems to have a stronger influence on iodide and iodate sorption to mineral sediment. This may not be true for sediments containing higher concentrations of organic matter, such as the 7.6% organic matter sediment used in this study. First order calculations based on desorption studies with seepage basin sediments indicate that the modest increase of 0.7 pH units detected in the study site groundwater over the last 17 years since closure of the seepage basin may be sufficient to produce the observed increased groundwater {sup 129}I concentrations. Groundwater monitoring of the plume at the F-Area seepage basin has shown that the migration of many of the high risk radionuclides originally present at this complex site has been attenuated. However, {sup 129}I continues to leave the source at a rate that may have been exacerbated by the initial remediation efforts. This study underscores the important of identifying the appropriate in situ stabilization technologies for all contaminants present at a source term, especially if their geochemical behaviors differ.

Kaplan, D.

2010-09-30T23:59:59.000Z

267

Noninvasive Contaminant Site Characterization Using Geophysical Induced Polarization  

SciTech Connect (OSTI)

Results of aspects of a broad foundational study of time domain IP (TDIP) and spectral IP (SIP) for contaminant site characterization are presented. This ongoing study encompassed laboratory studies of coupled effects of rock/soil microgeometry and contaminant chemistry on induced polarization (IP), an investigation of electromagnetic coupling (EMC) noise and development of 3D modeling and inversion codes. SIP requires extensions to higher frequencies (above the typical 100Hz threshold) and EMC becomes the major limitation for field implementation, because conventional correction methods are inadequate at required higher frequencies. A proposed methodology is outlined, based on a model of all EMC components, that addresses the EMC problem by coupling IP and electromagnetic induction in modeling and inversion. Examples of application of IP and SIP to contaminant mapping and detection for TDIP and SIP will be presented for FS-12 plume at Massachusetts Military Reservation and a suspected DNAPL plume at Savannah River Site.

Morgan, F.D.; Sogade, J.; Lesmes, D.; Coles, D.; Vichabian, Y.; Scira-Scappuzzo, F.; Shi, W.; Vandiver, A.; Rodi, W.

2003-03-27T23:59:59.000Z

268

Remotely operated excavator needs assessment/site visit summary  

SciTech Connect (OSTI)

The Uranium in Soils Integrated Demonstration requested an assessment of soil excavation needs relative to soil remediation. The following list identifies the DOE sites assessed: Mound Laboratory, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, Nevada Test Site, Lawrence Livermore National Laboratory, Rocky Flats Plant, Los Alamos National Laboratory, Sandia National Laboratory, Idaho National Engineering Laboratory, Hanford Site, and Fernald Site. The reviewed sites fall into one or more of the following three categories: production, EPA National Priorities List, or CERCLA (superfund) designation. Only three of the sites appear to have the need for a remotely operated excavator rope. Hanford and Idaho Falls have areas of high-level radioactive contamination either buried or in/under buildings. The Fernald site has a need for remote operated equipment of different types. It is their feeling that remote equipment can be used to remove the health dangers to humans by removing them from the area. Most interviewees stated that characterization technologies needs are more immediate concern over excavation. In addition, the sites do not have similar geographic conditions which would aid in the development of a generic precision excavator. The sites visited were not ready to utilize or provide the required design information necessary to draft a performance specification. This creates a strong case against the development of one type of ROPE for use at these sites. Assuming soil characterization technology/methodology is improved sufficiently to allow accurate and real time field characterization then development of a precision excavator might be pursued based on FEMP needs, since the FEMP`s sole scope of work is remediation. The excavator could then be used/tested and then later modified for other sites as warranted.

Straub, J.; Haller, S.; Worsley, R. [Westinghouse Environmental Management Co. of Ohio, Cincinnati, OH (United States); King, M. [THETA Technology Inc. (United States)

1992-12-02T23:59:59.000Z

269

TRACKING SITE  

Energy Science and Technology Software Center (OSTI)

003235MLTPL00 AASG Geothermal Data submissions tracking application and site.  https://github.com/usgin/aasgtrack 

270

Site observational work plan for the UMTRA project site at Shiprock, New Mexico  

SciTech Connect (OSTI)

The site observational work plan (SOWP) for the Shiprock, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project Site is the initial document for developing site-specific activities to achieve regulatory compliance in the UMTRA Ground Water Project. The regulatory framework used to select the proposed ground water compliance strategies is presented along with a discussion of the relationship of this SOWP to other UMTRA Ground Water Project programmatic documents. The Shiprock site consists of two, interconnected hydrogeologic systems: the terrace system and the floodplain system. Separate compliance strategies are proposed for these two systems. The compliance strategy for the terrace aquifer is no remediation with the application of supplemental standards based on classification of the terrace aquifer as having Class III (limited-use) ground water. The compliance strategy for the floodplain aquifer is active remediation using a subsurface biological barrier. These strategies were selected by applying site-specific data to the compliance framework developed in the UMTRA Ground Water programmatic environmental impact statement (PEIS) (DOE, 1994a). The site conceptual model indicates that milling-related contamination has impacted the ground water in the terrace and floodplain aquifers. Ground water occurs in both aquifers in alluvium and in fractures in the underlying Cretaceous age Mancos Shale. A mound of ground water related to fluids from the milling operations is thought to exist in the terrace aquifer below the area where settling ponds were in use during the mill operations. Most of the water occurring in the floodplain aquifer is from recharge from the San Juan River.

Not Available

1994-09-01T23:59:59.000Z

271

Biogeochemical Considerations Related To The Remediation Of I-129 Plumes  

SciTech Connect (OSTI)

The objectives of this report were to: provide a current state of the science of radioiodine biogeochemistry relevant to its fate and transport at the Hanford Site; conduct a review of Hanford Site data dealing with groundwater {sup 129}I; and identify critical knowledge gaps necessary for successful selection, implementation, and technical defensibility in support of remediation decisions.

Kaplan, D. I. [Savannah River Site (SRS), Aiken, SC (United States); Yeager, C. [Los Alamos National Laboratory , Los Alamos, NM (United States); Denham, M. E. [Savannah River Site (SRS), Aiken, SC (United States); Zhang, S. [Texas A& amp; M University, Galveston, TX (United States); Xu, C. [Texas A& amp; M University, Galveston, TX (United States); Schwehr, K. A. [Texas A& amp; M University, Galveston, TX (United States); Li, H. P. [Texas A& amp; M University, Galveston, TX (United States); Brinkmeyer, R. [Texas A& amp; M University, Galveston, TX (United States); Santschi, P. H. [Texas A& amp; M University, Galveston, TX (United States)

2012-09-24T23:59:59.000Z

272

Ground water elevation monitoring at the Uranium Mill Tailings Remedial Action Salt Lake City, Utah, Vitro processing site  

SciTech Connect (OSTI)

In February 1994, a ground water level monitoring program was begun at the Vitro processing site. The purpose of the program was to evaluate how irrigating the new golf driving range affected ground water elevations in the unconfined aquifer. The program also evaluated potential impacts of a 9-hole golf course planned as an expansion of the driving range. The planned golf course expansion would increase the area to be irrigated and, thus, the water that could infiltrate the processing site soil to recharge the unconfined aquifer. Increased water levels in the aquifer could alter the ground water flow regime; contaminants in ground water could migrate off the site or could discharge to bodies of surface water in the area. The potential effects of expanding the golf course have been evaluated, and a report is being prepared. Water level data obtained during this monitoring program indicate that minor seasonal mounding may be occurring in response to irrigation of the driving range. However, the effects of irrigation appear small in comparison to the effects of precipitation. There are no monitor wells in the area that irrigation would affect most; that data limitation makes interpretations of water levels and the possibility of ground water mounding uncertain. Limitations of available data are discussed in the conclusion.

NONE

1995-04-01T23:59:59.000Z

273

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Streamlined Approach for Environmental Restoration Plan covers activities associated with Corrective Action Unit (CAU) 107 of the Federal Facility Agreement and Consent Order (FFACO, 1996 [as amended February 2008]). CAU 107 consists of the following Corrective Action Sites (CASs) located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site. (1) CAS 01-23-02, Atmospheric Test Site - High Alt; (2) CAS 02-23-02, Contaminated Areas (2); (3) CAS 02-23-03, Contaminated Berm; (4) CAS 02-23-10, Gourd-Amber Contamination Area; (5) CAS 02-23-11, Sappho Contamination Area; (6) CAS 02-23-12, Scuttle Contamination Area; (7) CAS 03-23-24, Seaweed B Contamination Area; (8) CAS 03-23-27, Adze Contamination Area; (9) CAS 03-23-28, Manzanas Contamination Area; (10) CAS 03-23-29, Truchas-Chamisal Contamination Area; (11) CAS 04-23-02, Atmospheric Test Site T4-a; (12) CAS 05-23-06, Atmospheric Test Site; (13) CAS 09-23-06, Mound of Contaminated Soil; (14) CAS 10-23-04, Atmospheric Test Site M-10; and (15) CAS 18-23-02, U-18d Crater (Sulky). Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, engineering drawings, field screening, analytical results, and the results of data quality objectives process (Section 3.0), closure in place with administrative controls or no further action will be implemented for CAU 107. CAU 107 closure activities will consist of verifying that the current postings required under Title 10 Code of Federal Regulations (CFR) Part 835 are in place and implementing use restrictions (URs) at two sites, CAS 03-23-29 and CAS 18-23-02. The current radiological postings combined with the URs are adequate administrative controls to limit site access and worker dose.

NSTec Environmental Restoration

2008-09-30T23:59:59.000Z

274

Remediation of overlapping benzene/MTBE and MTBE-only plumes: A case study  

SciTech Connect (OSTI)

Two overlapping dissolved hydrocarbon plumes were identified in the shallow water-bearing zone at a commercial vehicle service and fueling facility. Plume 1 originated from a pre-1993 gasoline product line/dispenser leak. This plume contained a relatively common mix of benzene, toluene, ethylbenzene, xylenes (BTEX), and methyl tert-butyl ether (MTBE); benzene and MTBE were identified as the Plume 1 contaminants of concern based on their detection at approximately 200 {mu}g/l each, which exceeded regulatory guidance. Plume 2, which was detected in the tank cavity during UST removal, resulted from gasoline line leaks/underground storage tank overfills. Although the majority of impacted soils in both the dispenser and tank cavity areas were removed during UST excavation, rainfall during impacted soil removal mobilized the MTBE contained in the soils to groundwater. As a result, Plume 2 contained approximately 900 {mu}g/l MTBE while BTEX compounds were non-detect. Although the impacted zone sustained an approximate yield of only 0.3 gallon per minute, Pennsylvania regulations dictate that this zone must be treated as an aquifer. The failure of remediating gasoline plumes using pump-and-treat has been predominantly due to BTEX`s tendency to adsorb onto soil, creating a residual-phase product layer which acts as a continuing source of dissolved-phase BTEX. Based on this experience, most groundwater and remediation professionals reject pump-and-treat as a viable remedial option, except in situations where controlling groundwater movement is the predominant goal.

Carpenter, P.L. [TolTest, Inc., Pittsburgh, PA (United States); Vinch, C.A. [Ryder Transportation Services, Lawrenceville, NJ (United States)

1997-12-31T23:59:59.000Z

275

REMOTE DETECTION OF RADIOACTIVE PLUMES USING MILLIMETER WAVE TECHNOLOGY  

SciTech Connect (OSTI)

The reprocessing of spent nuclear fuel, a common method for manufacturing weapons-grade special nuclear materials, is accompanied by the release of fi ssion products trapped within the fuel. One of these fi ssion products is a radioactive isotope of Krypton (Kr-85); a pure ?- emitter with a half-life of 10.72 years. Due to its chemical neutrality and relatively long half life, nearly all of the Kr-85 is released into the surrounding air during reprocessing, resulting in a concentration of Kr-85 near the source that is several orders of magnitude higher than the typical background (atmospheric) concentrations. This high concentration of Kr-85 is accompanied by a proportionately high increase in air ionization due to the release of beta radiation from Kr-85 decay. Millimeter wave (MMW) sensing technology can be used to detect the presence of Kr-85 induced plumes since a high concentration of ions in the air increases the radar cross section due to a combination of atmospheric phenomena. Possible applications for this technology include the remote sensing of reprocessing activities across national borders bolstering global anti-proliferation initiatives. The feasibility of using MMW radar technology to uniquely detect the presence of Kr-85 can be tested using commercial ion generators or sealed radioactive sources in the laboratory. In this paper we describe our work to derive an ion dispersion model that will describe the spatial distribution of ions from Kr-85 and other common lab sources. The types and energies of radiation emitted by isotopes Co-60 and Cs-137 were researched, and these parameters were incorporated into these dispersion models. Our results can be compared with the results of MMW detection experiments in order to quantify the relationship between radar cross section and air ionization as well as to further calibrate the MMW detection equipment.

Barnowski, R.; Chien; H.; Gopalsami, N.

2009-01-01T23:59:59.000Z

276

An experimental and computational study of moderately underexpanded rocket exhaust plumes in a co-flowing hypersonic free stream  

SciTech Connect (OSTI)

Rocket plume exhaust structures are aerodynamically and thermochemically very complex and the prediction of plume properties such as temperature, velocity, pressure, chemical species concentrations and turbulence properties is a formidable task as there are no definitive models for viscous and chemical effects. Contemporary computational techniques are still in their infancy and cannot yet reliably predict plume properties. Only through validation of computer codes using experimental data, can computational models be developed to the point where they can be confidently used as design and predictive tools. The motivation for this study was to acquire well defined data for rocket plumes at low altitude hypersonic flight conditions so that the above issues could be investigated.

Morris, N.; Buttsworth, D.; Jones, T.; Brescianini, C. [Univ. of Oxford (United Kingdom)]|[Macquarie Univ., Sydney (Australia)

1995-09-01T23:59:59.000Z

277

Shifting the Paradigm for Long Term Monitoring at Legacy Sites to Improve Performance while Reducing Cost  

SciTech Connect (OSTI)

A major issue facing many government and private industry sites that were previously contaminated with radioactive and chemical wastes is that often the sites cannot be cleaned up enough to permit unrestricted human access. These sites will require long-term management, in some cases indefinitely, leaving site owners with the challenge of protecting human health and environmental quality in a cost effective manner. Long-term monitoring of groundwater contamination is one of the largest projected costs in the life cycle of environmental management at the Savannah River Site (SRS), the larger DOE complex, and many large federal and private sites. Currently, most monitoring strategies are focused on laboratory measurements of contaminants measured in groundwater samples collected from wells. This approach is expensive, and provides limited and lagging information about the effectiveness of cleanup activities and the behavior of the residual contamination. Over the last twenty years, DOE and other federal agencies have made significant investments in the development of various types of sensors and strategies that would allow for remote analysis of contaminants in groundwater, but these approaches do not promise significant reductions in risk or cost. Scientists at SRS have developed a new paradigm to simultaneously improve the performance of long term monitoring systems while lowering the overall cost of monitoring. This alternative approach incorporates traditional point measurements of contaminant concentration with measurements of controlling variables including boundary conditions, master variables, and traditional plume/contaminant variables. Boundary conditions are the overall driving forces that control plume movement and therefore provide leading indication to changes in plume stability. These variables include metrics associated with meteorology, hydrology, hydrogeology, and land use. Master variables are the key variables that control the chemistry of the groundwater system, and include redox variables (ORP, DO, chemicals), pH, specific conductivity, biological community (breakdown/decay products), and temperature. A robust suite of relatively inexpensive tools is commercially available to measure these variables. Traditional plume/contaminant variables are various measures of contaminant concentration including traditional analysis of chemicals in groundwater samples. An innovative long term monitoring strategy has been developed for acidic or caustic groundwater plumes contaminated with metals and/or radionuclides. Not only should the proposed strategy be more effective at early identification of potential risks, this strategy should be significantly more cost effective because measurement of controlling boundary conditions and master variables is relatively simple. These variables also directly reflect the evolution of the plume through time, so that the monitoring strategy can be modified as the plume 'ages'. This transformational long-term monitoring paradigm will generate significant cost savings to DOE, other federal agencies and industry and will provide improved performance and leading indicators of environmental management performance.

Eddy-Dilek, Carol A.; Looney, Brian B.; Seaman, John; Kmetz, Thomas

2013-01-10T23:59:59.000Z

278

Hanford Site Groundwater Monitoring for Fiscal Year 2003  

SciTech Connect (OSTI)

This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2003 (October 2002 through September 2003) on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Concentrations of tritium, nitrate, and some other contaminants continued to exceed drinking water standards in groundwater discharging to the river in some locations. However, contaminant concentrations in river water remained low and were far below standards. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Hanford Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. Uranium exceeds standards in the 300 Area in the south part of the Hanford Site. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the ''Comprehensive Environmental Response, Compensation, and Liability Act'' is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. ''Resource Conservation and Recovery Act'' groundwater monitoring continued at 24 waste management areas during fiscal year 2003: 15 under interim or final status detection programs and data indicate that they are not adversely affecting groundwater; 7 under interim status groundwater quality assessment programs to assess contamination; and 2 under final status corrective-action programs. During calendar year 2003, drillers completed seven new RCRA monitoring wells, nine wells for CERCLA, and two wells for research on chromate bioremediation. Vadose zone monitoring, characterization, and remediation continued in fiscal year 2003. Remediation and associated monitoring continued at a soil-vapor extraction system in the 200 West Area, which removes gaseous carbon tetrachloride from the vadose zone. Soil vapor also was sampled to locate carbon tetrachloride sites with the potential to impact groundwater in the future. DOE uses geophysical methods to monitor potential movement of contamination beneath single-shell tank farms. During fiscal year 2003, DOE monitored selected boreholes within each of the 12 single-shell tank farms. In general, the contaminated areas appeared to be stable over time. DOE drilled new boreholes at the T Tank Farm to characterize subsurface contamination near former leak sites. The System Assessment Capability is a set of computer modules simulating movement of contaminants from waste sites through the vadose zone and groundwater. In fiscal year 2003, it was updated with the addition of an atmospheric transport module and with newer versions of models including an updated groundwater flow and transport model.

Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

2004-04-12T23:59:59.000Z

279

High opacity white plumes from coal-fired and oil-fired sources  

SciTech Connect (OSTI)

In recent years, with the installation of high efficiency particulate emission control devices on utility and industrial boilers, high-opacity white plumes have become more of a problem because formerly the emissions of primary particulate matter obscured and/or served as a condensing surface for the condensable material. The problem common to some of these installations is the violation of opacity standards due to the presence of a high-opacity persistent plume that emits from the stack. Oil fired boilers violating opacity standards typically comply with mass emission standards while coal fired boilers typically violate visual emission standards when simultaneously violating mass emission standards. The investigation reported here focuses on the atypical case when in-situ transmissometer measurements show compliance but plume opacity as measured by Reference Method 9 or LIDAR exceeds opacity standards. This case comes about due to gas phase reactions that produce fine aerosols, vapor phase condensation and physical agglomeration of sub-micron sized clusters and particles. The plume opacity control technology applicable to these aerosols which are created and/or grown in white plume is discussed in this paper.

Lee, K.T. (National Cheng Kung Univ. (TW))

1988-01-01T23:59:59.000Z

280

Diagnostic probes for particle and molecule distributions in laser-generated plumes  

SciTech Connect (OSTI)

Laser microprobe analysis (LMA) offers good spatial and depth resolution for solid sampling of virtually any material. Coupled with numerous optical spectroscopic and mass spectrometric detection methods, LMA is a powerful analytical tool. Yet, fundamental understanding of the interaction between the laser and the sample surface leading to the formation of the high temperature plasma (plume) is far from complete. To better understand the process of plume formation, an imaging method based on acousto-optic laser beam deflection has been coupled with light scattering methods and absorption methods to record temporal and spatial maps of the particle and molecule distributions in the plume with good resolution. Because particles can make up a major fraction of the vaporized material under certain operating conditions, they can reflect a large loss of atomic signal for elemental analysis, even when using auxiliary excitation to further vaporized the particles. Characterization of the particle size distributions in plumes should provide insight into the vaporization process and information necessary for studies of efficient particle transfer. Light scattering methods for particle size analysis based on the Mie Theory are used to determine the size of particles in single laser-generated plumes. The methods used, polarization ratio method and dissymmetry ratio method, provide good estimates of particle size with good spatial and temporal resolution for this highly transient system. Large particles, on the order of 0.02-0.2{mu}m in radius, were observed arising directly from the sample surface and from condensation.

Kimbrell, S.M.

1990-10-17T23:59:59.000Z

Note: This page contains sample records for the topic "mound site plume" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hanford Site groundwater monitoring for fiscal year 1996  

SciTech Connect (OSTI)

This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems.

Hartman, M.J.; Dresel, P.E.; Borghese, J.V. [eds.] [and others] [eds.; and others

1997-02-01T23:59:59.000Z

282

Hanford Site ground-water monitoring for 1993  

SciTech Connect (OSTI)

This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

1994-09-01T23:59:59.000Z

283

Optical probe investigation of laser ablated carbon plasma plume in nitrogen ambient  

SciTech Connect (OSTI)

We report the study of carbon plasma produced using 1064 nm laser in nitrogen ambient at atmospheric pressure using 2-dimensional fast imaging of ablated plume, optical emission spectroscopy, and optical probe at 532 nm for interferometry and shadowgraphy. The dominance of C{sub 2} and CN molecules over ionic species at later stages of expanding carbon plasma plume is reported. The observed ring structure in shadowgrams and change in the direction of fringe shift from positive to negative in recorded interferograms are correlated with the relative abundance of different species in the plasma plume as function of time delay with respect to ablating pulse. An agreement in observed onset time of formation of clusters/atomic species or low ionic species using different diagnostic techniques has been reported.

Singh, Ravi Pratap; Gupta, Shyam L.; Thareja, Raj K. [Department of Physics, Indian Institute of Technology Kanpur, Kanpur-208016 Uttar Pradesh (India)] [Department of Physics, Indian Institute of Technology Kanpur, Kanpur-208016 Uttar Pradesh (India)

2013-12-15T23:59:59.000Z

284

NUCLEAR NON-PROLIFERATION-TASK 1: Deployable Plume and Aerosol Release Prediction and Tracking System  

SciTech Connect (OSTI)

This contract was awarded in response to a proposal in which a deployable plume and aerosol release prediction and tracking system would be designed, fabricated, and tested. The system would gather real time atmospheric data and input it into a real time atmospheric model that could be used for plume predition and tracking. The system would be able to be quickly deployed by aircraft to points of interest or positioned for deployment by vehicles. The system would provide three dimensional (u, v, and w) wind vector data, inversion height measurements, surface wind information, classical weather station data, and solar radiation. The on-board real time computer model would provide the prediction of the behavior of plumes and released aerosols.

John Kleppe, Ph.D., William Norris, Ph.D., Mehdi Etezada, Ph.D., P.E.

2006-07-19T23:59:59.000Z

285

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Streamlined Approach for Environmental Restoration Plan covers activities associated with Corrective Action Unit (CAU) 107 of the Federal Facility Agreement and Consent Order (1996 [as amended February 2008]). CAU 107 consists of the following Corrective Action Sites (CASs) located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site. {sm_bullet} CAS 01-23-02, Atmospheric Test Site - High Alt{sm_bullet} CAS 02-23-02, Contaminated Areas (2){sm_bullet} CAS 02-23-03, Contaminated Berm{sm_bullet} CAS 02-23-10, Gourd-Amber Contamination Area{sm_bullet} CAS 02-23-11, Sappho Contamination Area{sm_bullet} CAS 02-23-12, Scuttle Contamination Area{sm_bullet} CAS 03-23-24, Seaweed B Contamination Area{sm_bullet} CAS 03-23-27, Adze Contamination Area{sm_bullet} CAS 03-23-28, Manzanas Contamination Area{sm_bullet} CAS 03-23-29, Truchas-Chamisal Contamination Area{sm_bullet} CAS 04-23-02, Atmospheric Test Site T4-a{sm_bullet} CAS 05-23-06, Atmospheric Test Site{sm_bullet} CAS 09-23-06, Mound of Contaminated Soil{sm_bullet} CAS 10-23-04, Atmospheric Test Site M-10{sm_bullet} CAS 18-23-02, U-18d Crater (Sulky) Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, engineering drawings, field screening, analytical results, and the results of data quality objectives process (Section 3.0), closure in place with administrative controls or no further action will be implemented for CAU 107.

NSTec Environmental Restoration

2009-03-31T23:59:59.000Z

286

US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 4, Site specific---Ohio through South Carolina  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance Act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provides site-specific information on DOE`s mixed waste streams and a general review of available and planned treatment facilities for mixed wastes at the following five Ohio facilities: Battelle Columbus Laboratories; Fernald Environmental Management Project; Mound Plant; Portsmouth Gaseous Diffusion Plant; and RMI, Titanium Company.

Not Available

1993-04-01T23:59:59.000Z

287

Dissolved methane distributions and air-sea flux in the plume of a massive seep field, Coal Oil Point, California  

E-Print Network [OSTI]

Dissolved methane distributions and air-sea flux in the plume of a massive seep field, Coal Oil coastal ocean near Coal Oil Point, Santa Barbara Channel, California. Methane was quantified in the down current surface water at 79 stations in a 280 km2 study area. The methane plume spread over an area of $70

Washburn, Libe

288

Plume heat flow is much lower than CMB heat flow Eric Mittelstaedt a,*, Paul J. Tackley a,b  

E-Print Network [OSTI]

to follow a power-law size distribution, estimated a plume heat flux as high as 35% of surface heat fluxPlume heat flow is much lower than CMB heat flow Eric Mittelstaedt a,*, Paul J. Tackley a, of the heat conducted across the CMB. Here this assumption is explored using numerical convection models

Tackley, Paul J.

289

A numerical study of mass transfer of ozone dissolution in bubble plumes with an Euler-Lagrange Method  

E-Print Network [OSTI]

, as a model problem for a water purification system. The effect of bubble diameter and plume structure on mass are widely observed and exploited in engineering applications, with water purification using ozone bubble the mass transfer process of ozone dissolution in a bubble plume inside a rectangular water tank

Huang, Huaxiong

290

A model study of tide-and wind-induced mixing in the Columbia River Estuary and plume  

E-Print Network [OSTI]

A model study of tide- and wind-induced mixing in the Columbia River Estuary and plume Parker Mac Article history: Received 5 April 2007 Received in revised form 30 January 2008 Accepted 10 March 2008 Keywords: Mathematical models River plumes Estuarine dynamics Energy budget a b s t r a c t A numerical

Hickey, Barbara

291

Effects of Ambient Velocity Shear on Nonlinear Internal Waves and Associated Mixing at the Columbia River Plume Front  

E-Print Network [OSTI]

distinct water masses: (a) source water at the lift-off point, and (b) the tidal, (c) re-circulating, and (d) far-field plumes [Horner-Devine et al, 2008]. The tidal plume is the water from the most recent front transitions from supercritical to subcritical conditions [Nash and Moum, 2005; Jay et al., 2008

Hickey, Barbara

292

Hit from both sides: tracking industrial and volcanic plumes in Mexico City with surface measurements and OMI SO2 retrievals during the MILAGRO field campaign  

E-Print Network [OSTI]

Large sulfur dioxide plumes were measured in the Mexico City Metropolitan Area (MCMA) during the MILAGRO field campaign. This paper seeks to identify the sources of these plumes and the meteorological processes that affect ...

de Foy, B.

293

Daily dispersion model calculations of the Kuwait oil fire smoke plume  

SciTech Connect (OSTI)

The Atmospheric Release Advisory Capability (ARAC) provided daily forecasts of the position and spatial character of the Kuwait oil fire smoke plume to the NSF-coordinated research aircraft missions in the Persian Gulf. ARAC also provided daily plume dispersion products to various nations in the Persian Gulf region under the auspices of the World Meteorological Organization for a period of nearly 5 months. Forecasted three dimensional winds were provided to ARAC from the US Air Force Global Weather Central's Relocatable Wind Model (RWM). The RWM winds were spaced approximately 90 km in the horizontal and were located at the surface, 1000 ft., 2000 ft, 5000 ft and every 5000 ft up to 30,000 ft elevation. The forecast periods were 0, 6, 24, and 36 hours from both 0000 and 1200 UTC. A wind field model (MATHEW) corrected for terrain influences on the wind. The smoke plume was dispersed using a three dimensional particle-in-cell code (ADPIC) with buoyant plume rise capability. Multiple source locations were used to represent the burning oil fields. Improved estimates of the source term and emission factors for the smoke were incorporated into the ADPIC calculations as the field measurement data were made available.

Ellis, J.S.; Foster, C.S.; Foster, K.T.; Sullivan, T.J. (Lawrence Livermore National Lab., CA (United States)); Baskett, R.L.; Nasstrom, J.S.; Schalk, W.W. III (EG and G Energy Measurements, Inc., Pleasanton, CA (United States)); Greenly, G.D. (IT Corp., Irvine, CA (United States))

1992-03-26T23:59:59.000Z

294

Daily dispersion model calculations of the Kuwait oil fire smoke plume  

SciTech Connect (OSTI)

The Atmospheric Release Advisory Capability (ARAC) provided daily forecasts of the position and spatial character of the Kuwait oil fire smoke plume to the NSF-coordinated research aircraft missions in the Persian Gulf. ARAC also provided daily plume dispersion products to various nations in the Persian Gulf region under the auspices of the World Meteorological Organization for a period of nearly 5 months. Forecasted three dimensional winds were provided to ARAC from the US Air Force Global Weather Central`s Relocatable Wind Model (RWM). The RWM winds were spaced approximately 90 km in the horizontal and were located at the surface, 1000 ft., 2000 ft, 5000 ft and every 5000 ft up to 30,000 ft elevation. The forecast periods were 0, 6, 24, and 36 hours from both 0000 and 1200 UTC. A wind field model (MATHEW) corrected for terrain influences on the wind. The smoke plume was dispersed using a three dimensional particle-in-cell code (ADPIC) with buoyant plume rise capability. Multiple source locations were used to represent the burning oil fields. Improved estimates of the source term and emission factors for the smoke were incorporated into the ADPIC calculations as the field measurement data were made available.

Ellis, J.S.; Foster, C.S.; Foster, K.T.; Sullivan, T.J. [Lawrence Livermore National Lab., CA (United States); Baskett, R.L.; Nasstrom, J.S.; Schalk, W.W. III [EG and G Energy Measurements, Inc., Pleasanton, CA (United States); Greenly, G.D. [IT Corp., Irvine, CA (United States)

1992-03-26T23:59:59.000Z

295

Investigation of the formation of a Portland Cement plant detached plume  

SciTech Connect (OSTI)

A gaseous and particulate-source emissions sampling program was conducted at a Portland Cement production plant in Rapid City, South Dakota. The study was conducted to determine the cause of the formation of an opaque detached plume from the plants' dry process kiln. The instack opacity of the emissions was less than 10% while the opacity of the plume five to ten stack diameters from the mouth of the stack was in excess of 40%, thus giving an appearance of a detached plume. The sampling and analysis program included particulate emissions measurements, particle sizing and composition, and measurements of gaseous and particle ammonia, chloride, fluoride, and sulfur dioxide. Extensive process materials sampling and analysis were also conducted. Based on the resulting data, one conclusion is that the opaque detached plume is the result of ammonium chloride particles formed by the reaction of gaseous ammonia and hydrochloric acid. It was also found that the ammonia in the cement plant was generated from the shale portion of the raw products when the raw product was passed through the heat exchanger.

Cheney, J.L.; Knapp, K.T.

1986-05-01T23:59:59.000Z

296

Optimal design of pump-and-treat systems under uncertain hydraulic conductivity and plume distribution  

E-Print Network [OSTI]

Optimal design of pump-and-treat systems under uncertain hydraulic conductivity and plume of the cleanup by pump-and-treat of polluted shallow aquifers. In the problem being investigated, hydraulic accordingly the design of the pump-and-treat system for the remainder of the remedial process. The study

Bau, Domenico A.

297

Modeling benzene plume elongation mechanisms exerted by ethanol using RT3D with a general  

E-Print Network [OSTI]

E10 gasoline (i.e., a blend with 10% vol/vol ethanol/ gasoline) showed that mean benzene plume of E10 gasoline (10% vol/vol ethanol), which compares favorably to field observations. For low benzene Act requirements. The widespread use of ethanol in gasoline has led to an increase in its potential

Alvarez, Pedro J.

298

The Fluid Mechanics of Arthropod Sniffing in Turbulent Odor Plumes M.A.R. Koehl  

E-Print Network [OSTI]

The Fluid Mechanics of Arthropod Sniffing in Turbulent Odor Plumes M.A.R. Koehl Department on the speed at which they are moved through the surrounding fluid. Therefore, antennule flicking of a hair-bearing arthropod antennule with the surrounding fluid affects the temporal patterns of odor

Koehl, Mimi

299

Weathering and the Fallout Plume of Heavy Oil from Strong Petroleum  

E-Print Network [OSTI]

, transportation, and use of heavier oils (1). One concern stemming from increased offshore oil activityWeathering and the Fallout Plume of Heavy Oil from Strong Petroleum Seeps Near Coal Oil Point, CA C://pubs.acs.org/est. The Coal Oil Point (COP) seeps offshore Goleta, CA, are estimated to release 20-25 tons of oil daily

Fabrikant, Sara Irina

300

Impact of Ethanol on Benzene Plume Lengths: Microbial and Modeling Studies  

E-Print Network [OSTI]

Impact of Ethanol on Benzene Plume Lengths: Microbial and Modeling Studies Rula A. Deeb1 ; Jonathan with Federal Clean Air Act requirements for carbon monoxide and ozone attainment, ethanol is being considered as a replacement for MTBE. The objective of this study is to evaluate the potential impact of ethanol on benzene

Alvarez, Pedro J.

Note: This page contains sample records for the topic "mound site plume" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Cloud Formation in the Plumes of Solar Chimney Power Generation Facilities: A Modeling Study  

E-Print Network [OSTI]

for a proposed solar chimney facility in southwestern Australia. A range of temperatures and updraft velocities technology for converting solar energy into electricity that has shown promise in recent years is the so1 Cloud Formation in the Plumes of Solar Chimney Power Generation Facilities: A Modeling Study

Nenes, Athanasios

302

Detection of Wastewater Plumes from the 15 N Isotopic Composition of  

E-Print Network [OSTI]

Detection of Wastewater Plumes from the 15 N Isotopic Composition of Groundwater, Algae that a main source of nutrient loading is due to wastewater contamination of groundwater within the watershed via septic systems and wastewater treatment facilities. 5 Mya arenaria were collected at each

Vallino, Joseph J.

303

Showmaker-Levy 9 and plume-forming collisions on Earth  

SciTech Connect (OSTI)

Computational models for the July, 1994 collision of comet Shoemaker-Levy 9 with Jupiter have provided a framework for interpreting the observational data. Imaging, photometry, and spectroscopy data from ground-based, Hubble Space Telescope, and Galileo spacecraft instruments are consistent with phenomena that were dominated by the generation of incandescent fireballs that were ballistically ejected to high altitudes, where they formed plumes that subsequently collapsed over large areas of Jupiter`s atmosphere. Applications of similar computational models to collisions into Earth`s atmosphere show that a very similar sequence of events should take place for NEO impacts with energies as low as 3 megatons, recurring on 100 year timescales or less. This result suggests that the 1908 Tunguska event was a plume-forming atmospheric explosion, and that some of the phenomena associated with it might be related to the ejection and collapse of a high plume. Hazards associated with plume growth and collapse should be included in the evaluation of the impact threat to Earth, and opportunities should be sought for observational validation of atmospheric impact models by exploiting data already being collected from the natural flux of multi-kiloton to megaton sized objects that constantly enter Earth`s atmosphere on annual to decadal timescales.

Boslough, M.B.E.; Crawford, D.A.

1995-12-31T23:59:59.000Z

304

A one-dimensional model of vertical gas plume migration through a heterogeneous porous medium  

E-Print Network [OSTI]

A one-dimensional model of vertical gas plume migration through a heterogeneous porous medium and consequent global warming. Ideally, the injected greenhouse gas stays in the injection zone for a geologic or inadvertently created conduits in the cap rock may result in a gas leakage from primary storage. Even

Patzek, Tadeusz W.

305

METHANE IN HYDROTF{ERMAL PLUMES ALONG TFIEEAST PACIFIC RISE, 28-32"5  

E-Print Network [OSTI]

METHANE IN HYDROTF{ERMAL PLUMES ALONG TFIEEAST PACIFIC RISE, 28-32"5 A TFMSISSUBMITTEDEPR. Molar ratiosof methane/manganesein plumesover segmentW3 indicatedmethanedid not covary with manganese,nor did methanecovarywith any otherhydrothermaltracersuchasnephelometryor heatanomalyon this segment.Methane

Luther, Douglas S.

306

Sediment transport and topographic evolution of a coupled river and river plume system  

E-Print Network [OSTI]

plume area, and (2) during high flows the water surface is drawn down to sea level, resulting in spatial boundary conditions owing to their small (subcritical) Froude numbers (i.e., Fr is water depth). The Froude number in open-channel flow describes the speed of water flow relative

307

Measurements of Outflow Velocities in On-Disk Plumes from EIS Hinode Observations  

E-Print Network [OSTI]

The contribution of plumes to the solar wind has been subject to hot debate in the past decades. The EUV Imaging Spectrometer (EIS) on board Hinode provides a unique means to deduce outflow velocities at coronal heights via direct Doppler shift measurements of coronal emission lines. Such direct Doppler shift measurements were not possible with previous spectrometers. We measure the outflow velocity at coronal heights in several on-disk long-duration plumes, which are located in coronal holes and show significant blue shifts throughout the entire observational period. In one case, a plume is measured 4 hours apart. The deduced outflow velocities are consistent, suggesting that the flows are quasi-steady. Furthermore, we provide an outflow velocity profile along the plumes, finding that the velocity corrected for the line-of-sight effect can reach 10 km s$^{-1}$ at 1.02 $R_{\\odot}$, 15 km s$^{-1}$ at 1.03 $R_{\\odot}$, and 25 km s$^{-1}$ at 1.05 $R_{\\odot}$. This clear signature of steady acceleration, combined...

Fu, Hui; Li, Bo; Huang, Zhenghua; Jiao, Fangran; Mou, Chaozhou

2014-01-01T23:59:59.000Z

308

Continuous Plume Monitoring Using Wireless Sensors: Proof of Concept in Intermediate Scale Tank  

E-Print Network [OSTI]

managers and planners. Groundwater monitoring is an important component in the design of strategies is used to build and calibrate groundwater flow and transport models to pre- dict plume behavior resulting from the spatial vari- ability of soil properties cannot be fully characterized using only

Han, Qi "Chee"

309

Superfund Record of Decision (EPA Region 6): Hardage/Criner Site, McClain County, Oklahoma (First remedial action, amendment), November 1989  

SciTech Connect (OSTI)

The Hardage/Criner site is in an agricultural area near Criner, McClain County, in central Oklahoma. The site is situated in the North Criner Creek drainage basin. From 1972 to 1980 the site was operated under a State permit for the disposal of industrial wastes including paint sludges and solids, ink solvents, tire manufacturing wastes, oils, other solvents, cyanides, and plating wastes sludges. Waste disposal practices have resulted in the contamination of approximately 70 acres of ground water. A 1986 Record of Decision was never implemented due to protracted litigation. The 1989 ROD Amendment provides a comprehensive site remedy addressing both source control and ground water remediation and takes into consideration recently enacted land disposal restrictions. Source control remediation includes installation of liquid extraction wells to pump out free liquids currently pooled in the three waste areas and any liquids released from drums buried in the mounds, followed by offsite treatment.

Not Available

1989-11-22T23:59:59.000Z

310

Investigation of the September 13, 2011, Fatality at the Strategic...  

Broader source: Energy.gov (indexed) [DOE]

September 13, 2011, Fatality at the Strategic Petroleum Reserve Bryan Mound Site Investigation of the September 13, 2011, Fatality at the Strategic Petroleum Reserve Bryan Mound...

311

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary MonizSite Public Tours Hanford Site

312

Post-closure permit application for the Upper East Fork Poplar Creek hydrogeologic regime at the Y-12 Plant: New Hope Pond and Eastern S-3 ponds plume. Revision 2  

SciTech Connect (OSTI)

The intent of this Post-Closure, Permit Application (PCPA) is to satisfy the post-closure permitting requirements of the Tennessee Department of Environment and Conservation (TDEC) Rule 1200-1-11. This application is for the entire Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), which is within the Bear Creek Valley (BCV). This PCPA has been prepared to include the entire East Fork Regime because, although there are numerous contaminant sources within the regime, the contaminant plumes throughout the East Fork Regime have coalesced and can no longer be distinguished as separate plumes. This PCPA focuses on two recognized Resource Conservation and Recovery Act (RCRA) interim status units: New Hope Pond (NHP) and the eastern S-3 Ponds plume. This PCPA presents data from groundwater assessment monitoring throughout the regime, performed since 1986. Using this data, this PCPA demonstrates that NHP is not a statistically discernible source of groundwater contaminants and that sites upgradient of NHP are the likely sources of groundwater contamination seen in the NHP vicinity. As such, this PCPA proposes a detection monitoring program to replace the current assessment monitoring program for NHP.

NONE

1995-02-01T23:59:59.000Z

313

Groundwater flow and tritium migration in coastal plain sediments, Savannah River Site, South Carolina  

SciTech Connect (OSTI)

Groundwater modeling was performed to assess groundwater flow and contaminant migration for a tritium plume at the Savannah River Site (SRS). The study supports the Corrective Measures Study and Interim Action Plan regulatory documents for the Old Radioactive Waste Burial Ground (ORWBG). Modeling scenarios were designed to provide data for an economic analysis of alternatives, and subsequently evaluate the effectiveness of the selected remedial technologies for tritium reduction to surface waters. Scenarios assessed include no action, vertical and surface barriers, pump-treat-reinject, and vertical recirculation wells. Hydrostratigraphic units in the area consist of fluvial, deltaic, and shallow marine sand, mud, and calcareous sediments that exhibit abrupt facies changes over short distances. The complex heterogeneity of the sediments, along with characterization data, and tritium contaminant source data required a three-dimensional model be developed in order to accurately illustrate the size, shape and orientation of the plume. Results demonstrate that the shallow confining zone in the region controls the migration path of the plume. The size and shape of the plume were modeled in three-dimensions using detailed core, geophysical and cone-penetrometer data, depth-discrete contaminant data, monitoring well data, and seepline/surface water samples. Three-dimensional tritium plume maps were created for the >20,000, >500 and >50 pCi/ml concentration levels. The three-dimensional plume maps and volumetric calculations indicate that 63 percent of the total activity and 12 percent of the volume above 50 pCi/ml resides in a layer less than 6-m thick riding on top of the shallow confining zone.

Harris, M.K. [Westinghouse Savannah River Company, Aiken, SC (United States); Flach, G.P.; Thayer, P.A. [Univ. of North Carolina (United States)

1998-05-01T23:59:59.000Z

314

The Office of Site Closure: Progress in the Face of Challenges  

SciTech Connect (OSTI)

The Office of Site Closure (OSC) was formed in November 1999 when the Department of Energy's (DOE's) Office of Environmental Management (EM) reorganized to focus specifically on site cleanup and closure. OSC's objective is to achieve safe and cost-effective cleanups and closures that are protective of our workers, the public, and the environment, now and in the future. Since its inception, OSC has focused on implementing a culture of safe closure, with emphasis in three primary areas: complete our responsibility for the Closure Sites Rocky Flats, Mound, Fernald, Ashtabula, and Weldon Spring; complete our responsibility for cleanup at sites where the DOE mission has been completed (examples include Battelle King Avenue and Battelle West Jefferson in Columbus, and General Atomics) or where other Departmental organizations have an ongoing mission (examples include the Brookhaven, Livermore, or Los Alamos National Laboratories, and the Nevada Test Site); and create a framework a nd develop specific business closure tools that will help sites close, such as guidance for and decisions on post-contract benefit liabilities, records retention, and Federal employee incentives for site closure. This paper discusses OSC's 2001 progress in achieving site cleanups, moving towards site closure, and developing specific business closure tools to support site closure. It describes the tools used to achieve progress towards cleanup and closure, such as the application of new technologies, changes in contracting approaches, and the development of agreements between sites and with host states. The paper also identifies upcoming challenges and explores options for how Headquarters and the sites can work together to address these challenges. Finally, it articulates OSC's new focus on oversight of Field Offices to ensure they have the systems in place to oversee contractor activities resulting in site cleanups and closures.

Fiore, J. J.; Murphie, W. E.; Meador, S. W.

2002-02-26T23:59:59.000Z

315

Shifting the Paradigm for Long Term Monitoring at Legacy Sites to Improve Performance while Reducing Costs - 13422  

SciTech Connect (OSTI)

A major issue facing many government and private industry sites that were previously contaminated with radioactive and chemical wastes is that often the sites cannot be cleaned up enough to permit unrestricted human access. These sites will require long-term management, in some cases indefinitely, leaving site owners with the challenge of protecting human health and environmental quality in a cost effective manner. Long-term monitoring of groundwater contamination is one of the largest projected costs in the life cycle of environmental management at the Savannah River Site (SRS), the larger DOE complex, and many large federal and private sites. Currently, most monitoring strategies are focused on laboratory measurements of contaminants measured in groundwater samples collected from wells. This approach is expensive, and provides limited and lagging information about the effectiveness of cleanup activities and the behavior of the residual contamination. Over the last twenty years, DOE and other federal agencies have made significant investments in the development of various types of sensors and strategies that would allow for remote analysis of contaminants in groundwater, but these approaches do not promise significant reductions in risk or cost. Scientists at SRS have developed a new paradigm to simultaneously improve the performance of long term monitoring systems while lowering the overall cost of monitoring. This alternative approach incorporates traditional point measurements of contaminant concentration with measurements of controlling variables including boundary conditions, master variables, and traditional plume/contaminant variables. Boundary conditions are the overall driving forces that control plume movement and therefore provide leading indication to changes in plume stability. These variables include metrics associated with meteorology, hydrology, hydrogeology, and land use. Master variables are the key variables that control the chemistry of the groundwater system, and include redox variables (ORP, DO, chemicals), pH, specific conductivity, biological community (breakdown/decay products), and temperature. A robust suite of relatively inexpensive tools is commercially available to measure these variables. Traditional plume/contaminant variables are various measures of contaminant concentration including traditional analysis of chemicals in groundwater samples. An innovative long term monitoring strategy has been developed for acidic or caustic groundwater plumes contaminated with metals and/or radionuclides. Not only should the proposed strategy be more effective at early identification of potential risks, this strategy should be significantly more cost effective because measurement of controlling boundary conditions and master variables is relatively simple. These variables also directly reflect the evolution of the plume through time, so that the monitoring strategy can be modified as the plume 'ages'. This transformational long-term monitoring paradigm will generate significant cost savings to DOE, other federal agencies and industry and will provide improved performance and leading indicators of environmental management performance. (authors)

Eddy-Dilek, Carol A; Looney, Brian B. [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States); Gaughan, Thomas; Kmetz, Thomas [Savannah River Nuclear Solutions, LLC (United States)] [Savannah River Nuclear Solutions, LLC (United States); Seaman, John [Savannah River Ecology Laboratory (United States)] [Savannah River Ecology Laboratory (United States)

2013-07-01T23:59:59.000Z

316

The development of surface barriers at the Hanford Site  

SciTech Connect (OSTI)

Engineered barriers are being developed to isolate wastes disposed of near the earth`s surface at the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. Much of the waste that would be disposed of by in-place stabilization currently is located in relatively shallow subsurface structures such as solid waste burial grounds, tanks, vaults, and cribs. Unless protected in some way, the wastes could be transported to the accessible environment via the following pathways: plant, animal, and human intrusion; water infiltration; erosion; and the exhalation of noxious gases. Permanent isolation surface barriers have been proposed to protect wastes disposed of ``in place`` from the transport pathways identified previously (Figure 1). The protective barrier consists of a variety of different materials (e.g., fine soil, sand, gravel, riprap, asphalt, etc.) placed in layers to form an above-grade mound directly over the waste zone. Surface markers are being considered for placement around the periphery of the waste sites to inform future generations of the nature and hazards of the buried wastes. In addition, throughout the protective barrier, subsurface markers could be placed to warn any inadvertent human intruders of the dangers of the buried wastes (Figure 2).

Wing, N.R. [Westinghouse Hanford Co., Richland, WA (United States); Gee, G.W. [Pacific Northwest Lab., Richland, WA (United States)

1994-03-01T23:59:59.000Z

317

A little here, a little there, a fairly big problem everywhere: Small quantity site transuranic waste disposition alternatives  

SciTech Connect (OSTI)

Small quantities of transuranic (TRU) waste represent a significant challenge to the waste disposition and facility closure plans of several sites in the Department of Energy (DOE) complex. This paper presents the results of a series of evaluations, using a systems engineering approach, to identify the preferred alternative for dispositioning TRU waste from small quantity sites (SQSs). The TRU waste disposition alternatives evaluation used semi-quantitative data provided by the SQSs, potential receiving sites, and the Waste Isolation Pilot Plant (WIPP) to select and recommend candidate sites for waste receipt, interim storage, processing, and preparation for final disposition of contact-handled (CH) and remote-handled (RH) TRU waste. The evaluations of only four of these SQSs resulted in potential savings to the taxpayer of $33 million to $81 million, depending on whether mobile systems could be used to characterize, package, and certify the waste or whether each site would be required to perform this work. Small quantity shipping sites included in the evaluation included the Battelle Columbus Laboratory (BCL), University of Missouri Research Reactor (MURR), Energy Technology Engineering Center (ETEC), and Mound Laboratory. Candidate receiving sites included the Idaho National Engineering and Environmental Laboratory (INEEL), the Savannah River Site (SRS), Los Alamos National Laboratory (LANL), Oak Ridge (OR), and Hanford. At least 14 additional DOE sites having TRU waste may be able to save significant money if cost savings are similar to the four evaluated thus far.

D. Luke; D. Parker; J. Moss; T. Monk (INEEL); L. Fritz (DOE-ID); B. Daugherty (SRS); K. Hladek (WM Federal Services Hanford); S. Kosiewicx (LANL)

2000-02-27T23:59:59.000Z

318

A Little Here, A Little There, A Fairly Big Problem Everywhere: Small Quantity Site Transuranic Waste Disposition Alternatives  

SciTech Connect (OSTI)

Small quantities of transuranic (TRU) waste represent a significant challenge to the waste disposition and facility closure plans of several sites in the Department of Energy (DOE) complex. This paper presents the results of a series of evaluations, using a systems engineering approach, to identify the preferred alternative for dispositioning TRU waste from small quantity sites (SQSs). The TRU waste disposition alternatives evaluation used semi-quantitative data provided by the SQSs, potential receiving sites, and the Waste Isolation Pilot Plant (WIPP) to select and recommend candidate sites for waste receipt, interim storage, processing, and preparation for final disposition of contact-handled (CH) and remote-handled (RH) TRU waste. The evaluations of only four of these SQSs resulted in potential savings to the taxpayer of $33 million to $81 million, depending on whether mobile systems could be used to characterize, package, and certify the waste or whether each site would be required to perform this work. Small quantity shipping sites included in the evaluation included the Battelle Columbus Laboratory (BCL), University of Missouri Research Reactor (MURR), Energy Technology Engineering Center (ETEC), and Mound. Candidate receiving sites included the Idaho National Engineering and Environmental Laboratory (INEEL), the Savannah River Site (SRS), Los Alamos National Laboratory (LANL), Oak Ridge (OR), and Hanford. At least 14 additional DOE sites having TRU waste may be able to save significant money if cost savings are similar to the four evaluated thus far.

Luke, Dale Elden; Parker, Douglas Wayne; Moss, J.; Monk, Thomas Hugh; Fritz, Lori Lee; Daugherty, B.; Hladek, K.; Kosiewicx, S.

2000-03-01T23:59:59.000Z

319

Sulfate formation in oil-fired power plant plumes. Volume 1. Parameters affecting primary sulfate emissions and a model for predicting emissions and plume opacity. Final report  

SciTech Connect (OSTI)

High sulfuric acid emissions with concomitant acid smuts and plume opacity concerns at oil fired utility boilers has been associated with combustion of high sulfur-, high vanadium-containing fuel. The purpose of this program was to elucidate the mechanisms responsible for the formation of flue gas H/sub 2/SO/sub 4/ and metal sulfates (MSO/sub 4/) and to determine the extent by which operating and controls parameters as well as the composition of the fuel affected those emissions. More than 200 flue gas measurements were made at a number of oil fired units and one coal fired unit, providing emissions levels of SO/sub 2/, H/sub 2/SO/sub 4/, MSO/sub 4/, total suspended particulate, and NO/sub x/. Parameters shown to significantly affect H/sub 2/SO/sub 4/ and MSO/sub 4/ emissions were furnace O/sub 2/ level, sulfur and vanadium content of the fuel, the amount of corrosion inhibitor added to the oil, power level, and the composition of the fly ash. Correlations were developed which related the H/sub 2/SO/sub 4/ and MSO/sub 4/ emissions at oil fired units with the parameters above; predictions of emissions appear to be accurate to within +-25%. Based on limited data from the literature, the correlations were extended to include a means for predicting plume opacity and in-stack opacity. Recommendations for controlling the levels of H/sub 2/SO/sub 4/ and MSO/sub 4/ emissions as well as maintaining utility units in compliance with opacity regulations were made. Future research needs were indicated, including more studies relating H/sub 2/SO/sub 4/ levels in flue gas with plume opacity and emissions studies at coal fired units. 85 references, 27 figures, 23 tables.

Dietz, R.N.; Wieser, R.F.

1983-11-01T23:59:59.000Z

320

Strategic Petroleum Reserve Site Environmental Report for calendar year 1994  

SciTech Connect (OSTI)

The purpose of this Site Environmental Report (SER) is to characterize site environmental management performance, confirm compliance with environmental standards and requirements, and highlight significant programs and efforts. The SER, provided annually in accordance with Department of Energy DOE Order 5400.1, serves the public by summarizing monitoring data collected to assess how the Strategic Petroleum Reserve (SPR) impacts the environment. This report (SER) provides a balanced synopsis of non-radiological monitoring and regulatory compliance data and affirms that the SPR has been operating within acceptable regulatory limits. Included in this report is a description of each site`s environment, an overview of the SPR environmental program, and a recapitulation of special environmental activities and events associated with each SPR site during 1994. Two of these highlights include decommissioning of the Weeks Island facility (disposition of 73 million barrels of crude oil inventory) as well as the degasification of up to 144 million barrels of crude oil inventory at the Bayou Choctaw, Big Hill, Bryan Mound, and West Hackberry facilities. The decision to decommission the Weeks Island facility is a result of diminishing mine integrity from ground water intrusion. Degasifying the crude oil is required to reduce potentially harmful emissions that would occur during oil movements. With regard to still another major environmental action, 43 of the original 84 environmental findings from the 1992 DOE Tiger Team Assessment were closed by the end of 1994. Spills to the environment, another major topic, indicates a positive trend. Total volume of oil spilled in 1994 was only 39 barrels, down from 232 barrels in 1993, and the total volume of brine spilled was only 90 barrels, down from 370 barrels in 1993. The longer term trend for oil and brine spills has declined substantially from 27 in 1990 down to nine in 1994.

NONE

1995-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "mound site plume" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Strategic petroleum reserve site environmental report for calendar year 1995  

SciTech Connect (OSTI)

The purpose of this Site Environmental Report (SER) is to characterize site environmental management performance, confirm compliance with environmental standards and requirements, and highlight significant programs and efforts. Included in this report is a description of each site`s environment, an overview of the Strategic Petroleum Reserve (SPR) environmental program, and a recapitulation of special environmental activities and events associated with each SPR site during 1995. Two of these highlights include decommissioning of 3 the weeks Island facility, involving the disposition of 11.6 million m{sup 3} (73 million barrels) of crude oil inventory, as well as the degasification of over 4.5 million m{sup 3} (30 million barrels) of crude oil inventory at the Bryan Mound and West Hackberry facilities. The decision to decommission the weeks Island facility is a result of diminishing mine integrity from ground water intrusion. Transfer of Weeks Island oil began in November, 1995 with 2.0 million m{sup 3} (12.5 million barrels) transferred by December 31, 1995. Degasifying the crude oil is a major pollution prevention initiative because it will reduce potentially harmful emissions that would occur during oil movements by three or more orders of magnitude. Spills to the environment, another major topic, indicates a positive trend. There were only two reportable oil and three reportable brine spills during 1995, down from a total of 10 reportable spills in 1994. Total volume of oil spilled in 1995 was 56.3 m{sup 3} (354 barrels), and the total volume of brine spilled was 131.1 m{sup 3} (825 barrels). The longer term trend for oil and brine spills has declined substantially from 27 in 1990 down to five in 1995. All of the spills were reported to appropriate agencies and immediately cleaned up, with no long term impacts observed.

NONE

1996-05-31T23:59:59.000Z

322

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary Moniz atfacilityrecovery Waste Site

323

Site Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Success Stories ContactSite Map

324

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery:Act-funded KPER TV14 WhiteShimkus CongressmanSite

325

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200 Wlocalplywoodroadship Shipping Mixed,sites 212R

326

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200 Wlocalplywoodroadship Shipping Mixed,sites

327

Site Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted forHighlightsSeminarsSiliconSite Map TUNL pdf's | FAS pdf's | HTML |

328

Sacandaga Site  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28Sacandaga Site Certification tp2ket

329

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery: VPPDR ReactorFFTF PRCGrip Get aSite visit EdBoard3

330

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery: VPPDR ReactorFFTF PRCGrip Get aSite visit

331

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery: VPPDR ReactorFFTF PRCGrip Get aSite visitARRA

332

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery: VPPDR ReactorFFTF PRCGrip Get aSite

333

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery: VPPDR ReactorFFTF PRCGrip Get aSiteSubcontract for

334

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery: VPPDR ReactorFFTF PRCGrip Get aSiteSubcontract

335

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery: VPPDR ReactorFFTFIrrigationBasin Waste Site

336

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery: VPPDR ReactorFFTFIrrigationBasin Waste SiteReactor

337

Formation of ozone and growth of aerosols in young smoke plumes from biomass burning: 1. Lagrangian parcel studies  

E-Print Network [OSTI]

We have developed a new model of the gas- and aerosol-phase chemistry of biomass burning smoke plumes called Aerosol Simulation Program (ASP). Here we use ASP combined with a Lagrangian parcel model to simulate the chemistry ...

Alvarado, Matthew James

338

Study of the spatial coherence of high order harmonic radiation generated from pre-formed plasma plumes  

SciTech Connect (OSTI)

A study of the spatial coherence of the high order harmonic radiation generated by the interaction of 45 fs Ti:sapphire laser beam with carbon (graphite) plasma plume has been carried out using Young's double slit interferometry. It is observed that the spatial coherence varies with harmonic order, laser focal spot size in plasma plume, and peaks at an optimal spot size. It is also observed that the spatial coherence is higher when the laser pulse is focused before the plasma plume than when focused after the plume, and it decreases with increase in the harmonic order. The optimum laser parameters and the focusing conditions to achieve good spatial coherence with high harmonic conversion have been identified, which is desirable for practical applications of the harmonic radiation.

Kumar, M.; Singhal, H.; Chakera, J. A.; Naik, P. A.; Khan, R. A.; Gupta, P. D. [Laser Plasma Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013, M.P. (India)

2013-07-21T23:59:59.000Z

339

Origin of geochemical heterogeneity in the mantle : constraints from volcanism associated with Hawaiian and Kerguelen mantle plumes  

E-Print Network [OSTI]

Lavas derived from long-lived mantle plumes provide important information of mantle compositions and the processes that created the geochemical heterogeneity within the mantle. Kerguelen and Hawaii are two long-lived mantle ...

Xu, Guangping

2007-01-01T23:59:59.000Z

340

High-quality electron beam from laser wake-field acceleration in laser produced plasma plumes  

SciTech Connect (OSTI)

Generation of highly collimated ({theta}{sub div}{approx}10 mrad), quasi-monoenergetic electron beam with peak energy 12 MeV and charge {approx}50 pC has been experimentally demonstrated from self-guided laser wake-field acceleration (LWFA) in a plasma plume produced by laser ablation of solid nylon (C{sub 12}H{sub 22}N{sub 2}O{sub 2}){sub n} target. A 7 TW, 45 fs Ti:sapphire laser system was used for LWFA, and the plasma plume forming pulse was derived from the Nd:YAG pump laser of the same system. The results show that a reproducible, high quality electron beam could be produced from this scheme which is simple, low cost and has the capability for high repetition rate operation.

Sanyasi Rao, Bobbili; Moorti, Anand; Rathore, Ranjana; Ali Chakera, Juzer; Anant Naik, Prasad; Dass Gupta, Parshotam [Laser Plasma Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)] [Laser Plasma Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

2013-06-10T23:59:59.000Z

Note: This page contains sample records for the topic "mound site plume" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Determination of transport parameters from coincident chloride and tritium plumes at the Idaho National Engineering Laboratory  

E-Print Network [OSTI]

-radioactive waste, but rad1onuclides are often toxic at far lower concentrations than are hazardous non-radi oacti ve speci es (Freeze and Cherry, 1979). Most radioactive waste, in terms of activity, is generated at vari ous stages of what Freeze and Cherry...DETERMINATION OF TRANSPORT PARAMETERS FROM COINCIDENT CHLORIDE AND TRITIUM PLUMES AT THE IDAHO NATIONAL ENGINEERING LABORATORY A Thesis by ALAN ERNEST FRYAR Submitted to the Graduate College of Texas A&M University in partial fulfillment...

Fryar, Alan Ernest

1986-01-01T23:59:59.000Z

342

A study of exhaust plume interactions with external flow by the hydraulic analogy  

E-Print Network [OSTI]

Research Office, United States Army, Grant No. DA-ERO-78-G-028, The Aeronautical Research Institute of Sweden, Bromma, Sweden, November, 1984 Nyberg, S. E. , and Agrell, J. , "Effects of Control Fins and Angle of Attack on Plume Afterbody Flow... Simulations, " Final Technical Report, European Research Office, United States Army, Contract No. DAJA-81-C-1213, The Aeronautical Research Institute of Sweden, Bromma, Sweden, November, 1984. Page, R. H. , "A Theory for Incipient Separation, " Qftg[t80]g...

Lawton, Stephen Hayes

1989-01-01T23:59:59.000Z

343

Weld seam tracking and lap weld penetration monitoring using the optical spectrum of the weld plume  

SciTech Connect (OSTI)

Joining of dissimilar materials is a long standing problem in manufacturing, with many tricks and special techniques developed to successfully join specific pairs of materials. Often, these special techniques impose stringent requirements on the process such as precise control of process parameters to achieve the desired joint characteristics. Laser welding is one of the techniques which has had some success in welding dissimilar metal alloys, and appears to be a viable process for these materials. Minimal heat input limits differential thermal expansion, and the small weld pool allows precise control of alloy mixing in the fusion zone. Obtaining optimal weld performance requires accurate monitoring and control of absorbed laser power and weld focus position. In order to monitor the laser welding process, the authors have used a small computer controlled optical spectrometer to observe the emission from the weld plume. Absorbed laser power can be related to the temperature of the weld pool surface and the plume above the weld. Focus position relative to the joint can easily be seen by the proportion of elements from each material existing in the plume. This monitor has been used to observe and optimize the performance of butt and lap welds between dissimilar alloys, where each alloy contains at least one element not found in the other alloy. Results will be presented for a copper-steel butt joint and a lap weld between stainless and low alloy steels.

Mueller, R.E. [Univ. of Waterloo, Ontario (Canada); Hopkins, J.A.; Semak, V.V.; McCay, M.H. [Univ. of Tennessee, Tullahoma, TN (United States)

1996-12-31T23:59:59.000Z

344

Plume dispersion sensitivity to upper-level wind variations in a Chilean coastal environment  

SciTech Connect (OSTI)

Government and industry leaders in Chile are concerned with the impact of coastal smelter emissions on the air quality of surrounding communities and the inland capitol city of Santiago. The smelter emissions contain large amounts of sulfur and heavy metals. Because several large smelters are located along the coast, an air quality modeling system must be able to handle flow in both a coastal and mountainous environment. Linked seabreeze and mountain-induced slope flows which change in time and space have been best handled using prognostic numerical models. We are using a prognostic mesoscale meteorological model (HOTMAC - Higher-Order Turbulence Model for Atmospheric Circulation) linked to a random walk/puff model (RAPTAD - Random Particle Transport and Dispersion) in order to simulate plume transport over hundreds of kilometers. In this paper, we test the sensitivity of plume dispersion to variations in the prescribed wind direction. These tests were motivated by our desire to evaluate the effect of the uncertainties inherent in rawinsonde wind measurements and large-scale weather wind-field forecasts, which are often used as input to meteorological models, as well as to develop a climatology of plume transport direction based on prevailing wind direction.

Michael J. Brown; Brown, M.J.; Williams, M.D.

1996-02-01T23:59:59.000Z

345

Propagation dynamics of laterally colliding plasma plumes in laser-blow-off of thin film  

SciTech Connect (OSTI)

We report a systematic investigation of two plume interactions at different spatial separation (3-7?mm) in laser-blow-off. The plasmas plumes are created using Laser-blow-off (LBO) scheme of a thin film. The fast imaging technique is used to record the evolution of seed plasmas and the interaction zone which is formed as a result of interaction of the two seed plasmas. Time resolved optical emission spectroscopy is used to study evolution of optical emissions of the species present in the different regions of the plasmas. Neutral Li emissions (Li I 670.8?nm (2s {sup 2}S{sub 1/2} ? 2p {sup 2}P{sub 3/2,1/2}) and Li I 610.3?nm (2p {sup 2}P{sub 3/2,1/2} ? 3d {sup 2}D{sub 3/2,5/2})) are dominant in the plasmas but significant differences are observed in the emission and estimated plasma parameters of the seed and the interaction zone. The transport of plasma species from the seed plasmas to the interaction zone is discussed in the terms of plume divergence, kinetic energy of particles, and ion acoustic speed. An attempt is made to understand the formation and dynamics of the interaction zone in the colliding LBO seed plasmas.

Kumar, Bhupesh; Singh, R. K.; Sengupta, Sudip; Kaw, P. K.; Kumar, Ajai, E-mail: ajai@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

2014-08-15T23:59:59.000Z

346

Dynamics of laser-blow-off induced Li plume in confined geometry  

SciTech Connect (OSTI)

Dynamics of Li plasma plume created by laser-blow-off technique in air ambient is reported. Plasma plume dynamics and its optical emission are investigated in planar and confined geometries using time resolved shadowgraph imaging and optical emission spectroscopy. Significant differences in the plasma characteristics in confined geometry are quantitatively investigated by comparing the plasma parameters (temperature and density) in free expansion and confined geometry configurations. Dynamics and physical parameters of the primary as well as the reflected shock waves (in confined geometry) and their interactions with expanding plasma are briefly addressed. A large enhancement in the emission intensities of Li I 610.3 nm (2p {sup 2}P{sub 1/2,3/2}? 3d {sup 2}P{sub 3/2,5/2}) and 670.8 nm (2s {sup 2}S{sub 1/2}? 2p {sup 2}P{sub 1/2,3/2}) is correlated with the shock wave dynamics in the two geometries. Strong self reversal in the neutral emission infers an increase in the population density of neutrals within the confined plasma plume.

Kumar, Bhupesh; Singh, R K; Kumar, Ajai [Institute for Plasma Research, Bhat, Gandhinagar-382 428 (India)] [Institute for Plasma Research, Bhat, Gandhinagar-382 428 (India)

2013-08-15T23:59:59.000Z

347

Uranium Contamination in the Subsurface Beneath the 300 Area, Hanford Site, Washington  

SciTech Connect (OSTI)

This report provides a description of uranium contamination in the subsurface at the Hanford Site's 300 Area. The principal focus is a persistence plume in groundwater, which has not attenuated as predicted by earlier remedial investigations. Included in the report are chapters on current conditions, hydrogeologic framework, groundwater flow modeling, and geochemical considerations. The report is intended to describe what is known or inferred about the uranium contamination for the purpose of making remedial action decisions.

Peterson, Robert E.; Rockhold, Mark L.; Serne, R. Jeffrey; Thorne, Paul D.; Williams, Mark D.

2008-02-29T23:59:59.000Z

348

Prioritization and accelerated remediation of groundwater contamination in the 200 Areas of the Hanford Site, Washington  

SciTech Connect (OSTI)

The Hanford Site, operated by the US Department of Energy (DOE), occupies about 1,450 km{sup 2} (560 mi{sup 2}) of the southeastern part of Washington State north of the confluence of the Yakima and Columbia Rivers. The Hanford Site is organized into numerically designated operational areas. The 200 Areas, located near the center of the Hanford Site, encompasses the 200 West, East and North Areas and cover an area of over 40 km{sup 2}. The Hanford Site was originally designed, built, and operated to produce plutonium for nuclear weapons using production reactors and chemical reprocessing plants. Operations in the 200 Areas were mainly related to separation of special nuclear materials from spent nuclear fuel and contain related chemical and fuel processing and waste management facilities. Large quantities of chemical and radioactive waste associated with these processes were often disposed to the environment via infiltration structures such as cribs, ponds, ditches. This has resulted in over 25 chemical and radionuclide groundwater plumes, some of which have reached the Columbia River. An Aggregate Area Management Study program was implemented under the Hanford Federal Facility Agreement and Consent Order to assess source and groundwater contamination and develop a prioritized approach for managing groundwater remediation in the 200 Areas. This included a comprehensive evaluation of existing waste disposal and environmental monitoring data and the conduct of limited field investigations (DOE-RL 1992, 1993). This paper summarizes the results of groundwater portion of AAMS program focusing on high priority contaminant plume distributions and the groundwater plume prioritization process. The objectives of the study were to identify groundwater contaminants of concern, develop a conceptual model, refine groundwater contaminant plume maps, and develop a strategy to expedite the remediation of high priority contaminants through the implementation of interim actions.

Wittreich, C.D.; Ford, B.H.

1993-04-01T23:59:59.000Z

349

Post-Closure Challenges of U.S. Department of Energy Sites in Desert Environments of the Southwestern United States - 12095  

SciTech Connect (OSTI)

U.S. Department of Energy (DOE) sites located in harsh desert environments of the Four Corners region of the southwestern United States require diligence and continual maintenance to ensure the remediation systems function as designed to protect human health and the environment. The geology and climate of this area create issues that are unique to these sites. Geologic formations contain naturally occurring constituents that are often the same as the residual contaminants remaining from historical milling activities at the sites. Although annual precipitation is low, when precipitation events occur they can be of extreme intensity, resulting in erosion and flooding that can quickly destroy infrastructure and rapidly change site conditions. Winds can cause sand storms and sand mounding that effect site features. These challenging environmental conditions, along with the remote locations of the sites, require active management beyond what was originally envisioned for uranium disposal sites to address concerns in a safe and cost-effective manner. The unique environment of the Four Corners region creates many challenges to the LTSM of LM sites in southwestern United States. The remediation efforts and approaches to infrastructure have to be specifically structured to work in this environment. Often, the systems and structures have to be modified based on lessons learned on how to best adapt to these difficult conditions and remote locations. These sites require continual maintenance and additional efforts compared to many other LM sites. (authors)

Gil, April; Steckley, Deborah [U.S. Department of Energy Office of Legacy Management (United States); Gauthier, Cassie; Miller, David [S.M. Stoller Company, Contractor to the U.S. Department of Energy (United States)

2012-07-01T23:59:59.000Z

350

Hanford Site groundwater monitoring for Fiscal Year 1997  

SciTech Connect (OSTI)

This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1997 on the Hanford Site, Washington. Soil-vapor extraction continued in the 200-West Area to remove carbon tetrachloride from the vadose zone. Characterization and monitoring of the vadose zone comprised primarily spectral gamma logging, soil-vapor monitoring, and analysis and characterization of sediments sampled below a vadose-zone monitoring well. Source-term analyses for strontium-90 in 100-N Area vadose-zone sediments were performed using recent groundwater-monitoring data and knowledge of strontium`s ion-exchange properties. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1996 and June 1997. Water levels near the Columbia River increased during this period because the river stage was unusually high. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-1,2-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level.

Hartman, M.J.; Dresel, P.E. [eds.] [and others] [eds.; and others

1998-02-01T23:59:59.000Z

351

Site Monitoring Area Maps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to the Site Monitoring Area (SMA) The Site Monitoring Area sampler Control measures (best management practices) installed at the Site Monitoring Area Structures such as...

352

Results of Tritium Tracking and Groundwater Monitoring at the Hanford Site 200 Area State-Approved Land Disposal Site-FY1999  

SciTech Connect (OSTI)

The Hanford Site 200 Area Effluent Treatment Facility (ETF) processes contaminated liquids derived from Hanford Site facilities. The clean water generated by these processes is occasionally enriched in tritium and is discharged to the 200 Area State Approved Land Disposal Site (SALDS). Groundwater monitoring for tritium and other constituents is required by the state-issued permit at 21 wells surrounding the facility. During FY 1999, average tritium activities in most wells declined from average activities in 1998. The exception was deep well 69948-77C, where tritium results were at an all-time high (77,000 pCi/L) as a result of the delayed penetration of effluent deeper into the aquifer. Of the 12 constituents with permit enforcement limits, which are monitored in SALDS proximal wells, all were within limits during FY 1999. Water level measurements in nearby wells indicate that a small hydraulic mound exists around the SALDS facility as a result of discharges. This feature is directing groundwater flow radially outward a short distance before the regional northeasterly flow predominates. Evaluation of this condition indicates that the network is currently adequate for tracking potential effects of the SALDS on the groundwater. Recommendations include the discontinuation of ammonia, benzene, tetrahydrofuran, and acetone from the regular groundwater constituent list; designating background well 299-W8-1 as a tritium-tracking well only, and the use of quadruplicate averages of field pH, instead of a single laboratory measurement, as a permit compliance parameter.

Barnett, D.B.

1999-10-20T23:59:59.000Z

353

Site Analysis Shadow Analysis Site Objectives  

E-Print Network [OSTI]

On ­ Site Rainwater Collection o Composting Toilets o Green Roof o Indigenous Landscape - Wetlands Building

Kyte, Michael

354

Estimating Plume Volume for Geologic Storage of CO2 in Saline Aquifers  

SciTech Connect (OSTI)

Typically, when a new subsurface flow and transport problem is first being considered, very simple models with a minimal number of parameters are used to get a rough idea of how the system will evolve. For a hydrogeologist considering the spreading of a contaminant plume in an aquifer, the aquifer thickness, porosity, and permeability might be enough to get started. If the plume is buoyant, aquifer dip comes into play. If regional groundwater flow is significant or there are nearby wells pumping, these features need to be included. Generally, the required parameters tend to be known from pre-existing studies, are parameters that people working in the field are familiar with, and represent features that are easy to explain to potential funding agencies, regulators, stakeholders, and the public. The situation for geologic storage of carbon dioxide (CO{sub 2}) in saline aquifers is quite different. It is certainly desirable to do preliminary modeling in advance of any field work since geologic storage of CO{sub 2} is a novel concept that few people have much experience with or intuition about. But the parameters that control CO{sub 2} plume behavior are a little more daunting to assemble and explain than those for a groundwater flow problem. Even the most basic question of how much volume a given mass of injected CO{sub 2} will occupy in the subsurface is non-trivial. However, with a number of simplifying assumptions, some preliminary estimates can be made, as described below. To make efficient use of the subsurface storage volume available, CO{sub 2} density should be large, which means choosing a storage formation at depths below about 800 m, where pressure and temperature conditions are above the critical point of CO{sub 2} (P = 73.8 bars, T = 31 C). Then CO{sub 2} will exist primarily as a free-phase supercritical fluid, while some CO{sub 2} will dissolve into the aqueous phase.

Doughty, Christine

2008-07-11T23:59:59.000Z

355

The Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFC Focused on Hanford’s 300 Area Uranium Plume Quality Assurance Project Plan  

SciTech Connect (OSTI)

The purpose of the project is to conduct research at an Integrated Field-Scale Research Challenge Site in the Hanford Site 300 Area, CERCLA OU 300-FF-5 (Figure 1), to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The project will investigate a series of science questions posed for research related to the effect of spatial heterogeneities, the importance of scale, coupled interactions between biogeochemical, hydrologic, and mass transfer processes, and measurements/approaches needed to characterize a mass-transfer dominated system. The research will be conducted by evaluating three (3) different hypotheses focused on multi-scale mass transfer processes in the vadose zone and groundwater, their influence on field-scale U(VI) biogeochemistry and transport, and their implications to natural systems and remediation. The project also includes goals to 1) provide relevant materials and field experimental opportunities for other ERSD researchers and 2) generate a lasting, accessible, and high-quality field experimental database that can be used by the scientific community for testing and validation of new conceptual and numerical models of subsurface reactive transport.

Fix, N. J.

2008-01-31T23:59:59.000Z

356

http://www.em.doe.gov/Pages/groundwaterReport.aspx?plumeCode=17  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolationsRio Blanco Responsible DOEShiprockEast Plume)

357

http://www.em.doe.gov/Pages/groundwaterReport.aspx?plumeCode=17  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolationsRio Blanco Responsible DOEShiprockEast Plume)Legacy

358

http://www.em.doe.gov/Pages/groundwaterReport.aspx?plumeCode=17  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolationsRio Blanco Responsible DOEShiprockEastWest Plume)

359

http://www.em.doe.gov/Pages/groundwaterReport.aspx?plumeCode=10  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley Responsible DOE Office: Office of Environmental Management Plume

360

Natural and Enhanced Attenuation of Soil and Groundwater at the Monument Valley, Arizona, DOE Legacy Waste Site—10281  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), the Navajo Nation, and the University of Arizona are exploring natural and enhanced attenuation remedies for groundwater contamination at a former uranium-ore processing site near Monument Valley, Arizona. DOE removed radioactive tailings from the Monument Valley site in 1994. Nitrate and ammonium, waste products of the milling process, remain in an alluvial groundwater plume spreading from the soil source where tailings were removed. Planting and irrigating two native shrubs, fourwing saltbush and black greasewood, markedly reduced both nitrate and ammonium in the source area over an 8-year period. Total nitrogen dropped from 350 mg/kg in 2000 to less than 200 mg/kg in 2008. Most of the reduction is attributable to irrigation-enhanced microbial denitrification rather than plant uptake. However, soil moisture and percolation flux monitoring show that the plantings control the soil water balance in the source area, preventing additional leaching of nitrogen compounds. Enhanced denitrification and phytoremediation also look promising for plume remediation. Microcosm experiments, nitrogen isotopic fractionation analysis, and solute transport modeling results suggest that (1) up to 70 percent of nitrate in the plume has been lost through natural denitrification since the mill was closed in 1968, and (2) injection of ethanol may accelerate microbial denitrification in plume hot spots. A field-scale ethanol injection pilot study is underway. Landscape-scale remote sensing methods developed for the project suggest that transpiration from restored native phreatophyte populations rooted in the aquifer could limit further expansion of the plume. An evaluation of landfarm phytoremediation, the irrigation of native shrub plantings with high nitrate water pumped from the alluvial aquifer, is also underway.

Waugh, W.J. [S.M. Stoller Corporation, Grand Junction, CO; Miller, D.E. [S.M. Stoller Corporation, Grand Junction, CO; Morris, S.A. [S.M. Stoller Corporation, Grand Junction, CO; Sheader, L.R. [S.M. Stoller Corporation, Grand Junction, CO; Glenn, E.P. [University of Arizona, Tucson, AZ; Moore, D. [University of Arizona, Tucson, AZ; Carroll, K.C. [University of Arizona, Tucson, AZ; Benally, L. [Navajo Nation, Window Rock, AZ; Roanhorse, M. [Navajo Nation, Window Rock, AZ; Bush, R.P. [U.S. Department of Energy, Grand Junction, CO; none,

2010-03-07T23:59:59.000Z

Note: This page contains sample records for the topic "mound site plume" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Systematic studies of two-color pump-induced high-order harmonic generation in plasma plumes  

SciTech Connect (OSTI)

High-order harmonic generation (HHG) has been studied in various laser-produced plasma plumes using a two-color orthogonally polarized beam with a 12:1 energy ratio between the fundamental and second-harmonic (SH) components. The influence of the relative phase between the fundamental and SH waves on the HHG efficiency has been investigated. Odd and even harmonic generation in plasma plumes containing nanoparticles, fullerenes, carbon nanotubes, and other samples was optimized. The effect of the variation in the SH intensity on the HHG conversion efficiency in carbon aerogel and silver plasma plumes has also been studied. It is shown that by increasing the SH intensity, one can generate only even harmonics by suppressing the odd harmonics.

Ganeev, R. A. [Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Institute of Electronics, Akademgorodok, 33, Dormon Yoli Street, Tashkent 100125 (Uzbekistan); Singhal, H.; Naik, P. A.; Chakera, J. A.; Vora, H. S.; Khan, R. A.; Gupta, P. D. [Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

2010-11-15T23:59:59.000Z

362

Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume  

SciTech Connect (OSTI)

Hydrothermal venting associated with mid-ocean ridge volcanism is globally widespread. This venting is responsible for a dissolved iron flux to the ocean that is approximately equal to that associated with continental riverine runoff. For hydrothermal fluxes, it has long been assumed that most of the iron entering the oceans is precipitated in inorganic forms. However, the possibility of globally significant fluxes of iron escaping these mass precipitation events and entering open-ocean cycles is now being debated, and two recent studies suggest that dissolved organic ligands might influence the fate of hydrothermally vented metals. Here we present spectromicroscopic measurements of iron and carbon in hydrothermal plume particles at the East Pacific Rise mid-ocean ridge. We show that organic carbon-rich matrices, containing evenly dispersed iron(II)-rich materials, are pervasive in hydrothermal plume particles. The absence of discrete iron(II) particles suggests that the carbon and iron associate through sorption or complexation. We suggest that these carbon matrices stabilize iron(II) released from hydrothermal vents in the region, preventing its oxidation and/or precipitation as insoluble minerals. Our findings have implications for deep-sea biogeochemical cycling of iron, a widely recognized limiting nutrient in the oceans.

Toner, Brandy M.; Fakra, Sirine C.; Manganini, Steven J.; Santelli, Cara M.; Marcus, Matthew A.; Moffett, James W.; Rouxel, Olivier; German, Christopher R.; Edwards, Katrina J.

2008-09-20T23:59:59.000Z

363

Intrinsic bioremediation of a BTEX and MTBE plume under mixed aerobic/denitrifying conditions  

SciTech Connect (OSTI)

A shallow Coastal Plain aquifer in rural Sampson Country, North Carolina, has been contaminated with petroleum hydrocarbon from a leaking underground storage tank containing gasoline.An extensive field characterization has been performed to define the horizontal and vertical distribution of soluble gasoline components and indicator parameters. A plume of dissolved methyl tert-butyl ether (MTBE) and the aromatic hydrocarbons benzene, toluene, ethylbenzene, and xylene isomers (BTEX) is present in the aquifer and has migrated over 600 ft from the source area. Background dissolved oxygen concentrations range from 7 to 8 mg/L, and nitrate concentrations range from 5 to 22 mg/L as N due to extensive fertilization of fields surrounding the spill. In the center of the BTEX plume, oxygen concentrations decline to less than 1 mg/L while nitrate concentrations remain high. The total mass flux of MTBE and all BTEX components decline with distance downgradient relative to a conservative tracer (chloride). At the source, the total BTEX concentration exceeds 75 mg/L while 130 ft downgradient, total BTEX concentrations are less than 4.9 mg/L, a 15-fold reduction. Toluene and ethylbenzene decline most rapidly followed by m-p-xylene, o-xylene and finally benzene. Biodegradation of TEX appears to be enhanced by the excess nitrate present in the aquifer while benzene biodegradation appears to be due to strictly aerobic processes.

Borden, R.C.; Daniel, R.A. [North Carolina State Univ., Raleigh, NC (United States). Civil Engineering Dept.

1995-09-01T23:59:59.000Z

364

The blue plume population in dwarf spheroidal galaxies: genuine blue stragglers or young stellar population?  

E-Print Network [OSTI]

Abridged... Blue stragglers (BSS) are thought to be the product of either primordial or collisional binary systems. In the context of dwarf spheroidal galaxies it is hard to firmly disentangle a genuine BSS population from young main sequence (MS) stars tracing a ~1-2 Gyr old star forming episode. Assuming that their blue plume populations are made of BSS, we estimate the BSS frequency for 8 Local Group non star-forming dwarf galaxies, using a compilation of ground and space based photometry. Our results can be summarized as follows: (i) The BSS frequency in dwarf galaxies, at any given Mv, is always higher than that in globular clusters of similar luminosities; (ii) the BSS frequency for the lowest luminosity dwarf galaxies is in excellent agreement with that observed in the Milky Way halo; and most interestingly (iii) derive a statistically significant anti-correlation between the BSS frequency and the galaxy Mv. The low density, almost collision-less, environments of our dwarf galaxy sample allow us to infer (i) their very low dynamical evolution; (ii) a negligible production of collisional BSS; and consequently (iii) that their blue plumes are mainly made of primordial binaries. The dwarf galaxies anti-correlation can be used as a discriminator: galaxies obeying the anti-correlation are more likely to possess genuine primordial BSS rather than young main sequence stars.

Y. Momany; E. V. Held; I. Saviane; S. Zaggia; L. Rizzi; M. Gullieuszik

2007-04-11T23:59:59.000Z

365

Pacific Northwest Laboratory Gulfstream I measurements of the Kuwait oil-fire plume, July--August 1991  

SciTech Connect (OSTI)

In 1991, the Pacific Northwest Laboratory conducted a series of aircraft measurements to determine pollutant and radiative properties of the smoke plume from oil fires in Kuwait. This work was sponsored by the US Department emanating of Energy, in cooperation with several other agencies as part of an extensive effort coordinated by the World Meteorological Organization, to obtain a comprehensive data set to assess the characteristics of the plume and its environmental impact. This report describes field measurement activities and introduces the various data collected, but provides only limited analyses of these data. Results of further data analyses will be presented in subsequent open-literature publications.

Busness, K.M.; Hales, J.M.; Hannigan, R.V.; Thorp, J.M.; Tomich, S.D.; Warren, M.J. (Pacific Northwest Lab., Richland, WA (United States)); Al-Sunaid, A.A. (Saudi ARAMCO, Dhahran (Saudi Arabia)); Daum, P.H.; Mazurek, M. (Brookhaven National Lab., Upton, NY (United States))

1992-11-01T23:59:59.000Z

366

Waste and cost reduction using dual wall reverse circulation drilling with multi-level groundwater sampling for contaminant plume delineation  

SciTech Connect (OSTI)

This paper describes the drilling and sampling methods used to delineate a groundwater contaminant plume at the Paducah Gaseous Diffusion Plant (PGDP) during the Groundwater Monitoring IV characterization. The project was unique in that it relied upon dual wall reverse circulation drilling instead of the traditional hollow stem auger method. The Groundwater Monitoring program sought to characterize the boundaries, both vertically and horizontally, of the northeast plume which contains both {sup 99}Tc and trichloroethene. This paper discusses the strengths and weaknesses of the drilling method used by investigators.

Smuin, D.R.

1995-12-01T23:59:59.000Z

367

GROUDWATER REMEDIATION AT THE 100-HR-3 OPERABLE UNIT HANFORD SITE WASHINGTON USA - 11507  

SciTech Connect (OSTI)

The 100-HR-3 Groundwater Operable Unit (OU) at the Hanford Site underlies three former plutonium production reactors and the associated infrastructure at the 100-D and 100-H Areas. The primary contaminant of concern at the site is hexavalent chromium; the secondary contaminants are strontium-90, technetium-99, tritium, uranium, and nitrate. The hexavalent chromium plume is the largest plume of its type in the state of Washington, covering an area of approximately 7 km{sup 2} (2.7 mi{sup 2}) with concentrations greater than 20 {micro}g/L. Concentrations range from 60,000 {micro}g/L near the former dichromate transfer station in the 100-D Area to large areas of 20 to 100 {micro}g/L across much of the plume area. Pump-and-treat operations began in 1997 and continued into 2010 at a limited scale of approximately 200 gal/min. Remediation of groundwater has been fairly successful in reaching remedial action objectives (RAOs) of 20 {micro}g/L over a limited region at the 100-H, but less effective at 100-D. In 2000, an in situ, permeable reactive barrier was installed downgradient of the hotspot in 100-D as a second remedy. The RAOs are still being exceeded over a large portion of the area. The CH2M HILL Plateau Remediation Company was awarded the remediation contract for groundwater in 2008 and initiated a remedial process optimization study consisting of modeling and technical studies intended to enhance the remediation. As a result of the study, 1,400 gal/min of expanded treatment capacity are being implemented. These new systems are designed to meet 2012 and 2020 target milestones for protection of the Columbia River and cleanup of the groundwater plumes.

SMOOT JL; BIEBESHEIMER FH; ELUSKIE JA; SPILIOTOPOULOS A; TONKIN MJ; SIMPKIN T

2011-01-12T23:59:59.000Z

368

Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 1, Bayou Choctaw site, Louisiana.  

SciTech Connect (OSTI)

Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 1 focuses on the Bayou Choctaw SPR site, located in southern Louisiana. Volumes 2, 3, and 4, respectively, present images for the Big Hill SPR site, Texas, the Bryan Mound SPR site, Texas, and the West Hackberry SPR site, Louisiana. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

Rautman, Christopher Arthur; Lord, Anna Snider

2007-10-01T23:59:59.000Z

369

Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 2, Big Hill Site, Texas.  

SciTech Connect (OSTI)

Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 2 focuses on the Big Hill SPR site, located in southeastern Texas. Volumes 1, 3, and 4, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Bryan Mound SPR site, Texas, and the West Hackberry SPR site, Louisiana. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

Rautman, Christopher Arthur; Lord, Anna Snider

2007-08-01T23:59:59.000Z

370

Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 4, West Hackberry site, Louisiana.  

SciTech Connect (OSTI)

Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 4 focuses on the West Hackberry SPR site, located in southwestern Louisiana. Volumes 1, 2, and 3, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Big Hill SPR site, Texas, and the Bryan Mound SPR site, Texas. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

Rautman, Christopher Arthur; Lord, Anna Snider

2007-09-01T23:59:59.000Z

371

Environmental Assessment and Finding of No Significant Impact: Interim Measures for the Mixed Waste Management Facility Groundwater at the Burial Ground Complex at the Savannah River Site  

SciTech Connect (OSTI)

The U. S. Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed interim measures for the Mixed Waste Management Facility (MW) groundwater at the Burial Ground Complex (BGC) at the Savannah River Site (SRS), located near Aiken, South Carolina. DOE proposes to install a small metal sheet pile dam to impound water around and over the BGC groundwater seepline. In addition, a drip irrigation system would be installed. Interim measures will also address the reduction of volatile organic compounds (VOCS) from ''hot-spot'' regions associated with the Southwest Plume Area (SWPA). This action is taken as an interim measure for the MWMF in cooperation with the South Carolina Department of Health and Environmental Control (SCDHEC) to reduce the amount of tritium seeping from the BGC southwest groundwater plume. The proposed action of this EA is being planned and would be implemented concurrent with a groundwater corrective action program under the Resource Conservation and Recovery Act (RCRA). On September 30, 1999, SCDHEC issued a modification to the SRS RCRA Part B permit that adds corrective action requirements for four plumes that are currently emanating from the BGC. One of those plumes is the southwest plume. The RCRA permit requires SRS to submit a corrective action plan (CAP) for the southwest plume by March 2000. The permit requires that the initial phase of the CAP prescribe a remedy that achieves a 70-percent reduction in the annual amount of tritium being released from the southwest plume area to Fourmile Branch, a nearby stream. Approval and actual implementation of the corrective measure in that CAP may take several years. As an interim measure, the actions described in this EA would manage the release of tritium from the southwest plume area until the final actions under the CAP can be implemented. This proposed action is expected to reduce the release of tritium from the southwest plume area to Fourmile Branch between 25 to 35 percent. If this proposed action is undertaken and its effectiveness is demonstrated, it may become a component of the final action in the CAP. This document was prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended; the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR 1500-1508); and the DOE Regulations for Implementing NEPA (10 CFR 1021). NEPA requires the assessment of environmental consequences of Federal actions that may affect the quality of the human environment. Based on the potential for impacts described herein, DOE will either publish a Finding of No Significant Impact (FONSI) or prepare an environmental impact statement (EM).

N /A

1999-12-08T23:59:59.000Z

372

Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on Hanford’s 300 Area Uranium Plume January 2010 to January 2011  

SciTech Connect (OSTI)

The Integrated Field Research Challenge (IFRC) at the Hanford Site 300 Area uranium (U) plume addresses multi-scale mass transfer processes in a complex subsurface hydrogeologic setting where groundwater and riverwater interact. A series of forefront science questions on reactive mass transfer focus research. These questions relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements and approaches needed to characterize and model a mass-transfer dominated system. The project was initiated in February 2007, with CY 2007, CY 2008, and CY 2009 progress summarized in preceding reports. A project peer review was held in March 2010, and the IFRC project has responded to all suggestions and recommendations made in consequence by reviewers and SBR/DOE. These responses have included the development of “Modeling” and “Well-Field Mitigation” plans that are now posted on the Hanford IFRC web-site. The site has 35 instrumented wells, and an extensive monitoring system. It includes a deep borehole for microbiologic and biogeochemical research that sampled the entire thickness of the unconfined 300 A aquifer. Significant, impactful progress has been made in CY 2010 including the quantification of well-bore flows in the fully screened wells and the testing of means to mitigate them; the development of site geostatistical models of hydrologic and geochemical properties including the distribution of U; developing and parameterizing a reactive transport model of the smear zone that supplies contaminant U to the groundwater plume; performance of a second passive experiment of the spring water table rise and fall event with a associated multi-point tracer test; performance of downhole biogeochemical experiments where colonization substrates and discrete water and gas samplers were deployed to the lower aquifer zone; and modeling of past injection experiments for model parameterization, deconvolution of well-bore flow effects, system understanding, and publication. We continued efforts to assimilate geophysical logging and 3D ERT characterization data into our site wide geophysical model, and have now implemented a new strategy for this activity to bypass an approach that was found unworkable. An important focus of CY 2010 activities has been infrastructure modification to the IFRC site to eliminate vertical well bore flows in the fully screened wells. The mitigation procedure was carefully evaluated and is now being implementated. A new experimental campaign is planned for early spring 2011 that will utilize the modified well-field for a U reactive transport experiment in the upper aquifer zone. Preliminary geophysical monitoring experiments of rainwater recharge in the vadose zone have been initiated with promising results, and a controlled infiltration experiment to evaluate U mobilization from the vadose zone is now under planning for the September 2011. The increasingly comprehensive field experimental results, along with the field and laboratory characterization, are leading to a new conceptual model of U(VI) flow and transport in the IFRC footprint and the 300 Area in general, and insights on the microbiological community and associated biogeochemical processes.

Zachara, John M.; Bjornstad, Bruce N.; Christensen, John N.; Conrad, Mark S.; Fredrickson, Jim K.; Freshley, Mark D.; Haggerty, Roy; Hammond, Glenn E.; Kent, Douglas B.; Konopka, Allan; Lichtner, Peter C.; Liu, Chongxuan; McKinley, James P.; Murray, Christopher J.; Rockhold, Mark L.; Rubin, Yoram; Vermeul, Vincent R.; Versteeg, Roelof J.; Ward, Anderson L.; Zheng, Chunmiao

2011-02-01T23:59:59.000Z

373

Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field-Scale Subsurface Research Challenge Site at Rifle, Colorado, Quality Assurance Project Plan  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is cleaning up and/or monitoring large, dilute plumes contaminated by metals, such as uranium and chromium, whose mobility and solubility change with redox status. Field-scale experiments with acetate as the electron donor have stimulated metal-reducing bacteria to effectively remove uranium [U(VI)] from groundwater at the Uranium Mill Tailings Site in Rifle, Colorado. The Pacific Northwest National Laboratory and a multidisciplinary team of national laboratory and academic collaborators has embarked on a research proposed for the Rifle site, the object of which is to gain a comprehensive and mechanistic understanding of the microbial factors and associated geochemistry controlling uranium mobility so that DOE can confidently remediate uranium plumes as well as support stewardship of uranium-contaminated sites. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Rifle Integrated Field-Scale Subsurface Research Challenge Project.

Fix, N. J.

2008-01-07T23:59:59.000Z

374

SUBCONTRACTOR SITE ACCESS GUIDELINES  

E-Print Network [OSTI]

.............................................................. 5 5. Projects with Off-site Parking Arrangements.................................................................................6 5.1 Initial Screening and Off-site Parking Process................................................................. 9 7.2 Substitute Contractors with Off-site Parking

Eisen, Michael

375

Hanford Site Groundwater Monitoring for Fiscal Year 1998  

SciTech Connect (OSTI)

This report presents the results of groundwater and vadose-zone monitoring and remediation for fiscal year (FY) 1998 on the Word Site, Washington. Soil-vapor extraction in the 200-West Area removed 777 kg of carbon tetrachloride in FY 1998, for a total of 75,490 kg removed since remediation began in 1992. Spectral gamma logging and evaluation of historical gross gamma logs near tank farms and liquid-disposal sites in the 200 Areas provided information on movement of contaminants in the vadose zone. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1997 and June 1998. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. One well completed in the basalt-confined aquifer beneath the 200-East Area exceeded the drinking water standard for technetium-99. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-l, Z-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level. Tetrachloroethylene exceeded its maximum contaminant level in several wells in the 300 Area for the first time since the 1980s. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous wells; they are believed to represent natural components of groundwater. Resource Conservation and Recovery Act of 1976 groundwater monitoring continued at 25 waste management areas during FY 1998: 17 under detection programs and data indicate that they are not adversely affecting groundwater, 6 under interim-status groundwater-quality-assessment programs to assess possible contamination, and 2 under final-status corrective-action programs. Groundwater remediation in the 100 Areas continued to reduce the amount of strontium-90 (100-N) and chromium (100-K, D, and H) reaching the Columbia River. Two systems in the 200-West Area operated to prevent the spread of carbon tetrachloride and technetide uranium plumes. Groundwater monitoring continued at these sites and at other sites where there is no active remediation. A three-dimensional, numerical groundwater model was applied to simulate radionuclide movement from sources in the 200 Areas following site closure in 2050. Contaminants will continue to move toward the southeast and north (through Gable Gap), but the areas with levels exceeding drinking water standards will diminish.

Hartman, M.J. [and others

1999-03-24T23:59:59.000Z

376

Hanford Site Groundwater Monitoring for Fiscal Year 1999  

SciTech Connect (OSTI)

This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 1999 on the US. Department of Energy's Hanford Site, Washington. Water-level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Measurements for site-wide maps were conducted in June in past years and are now measured in March to reflect conditions that are closer to average. Water levels over most of the Hanford Site continued to decline between June 1998 and March 1999. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of carbon-14, strontium-90, technetium-99, and uranium also exceeded drinking water standards in smaller plumes. Cesium-137 and plutonium exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in US Department of Energy Order 5400.5 were exceeded for plutonium, strontium-90, tritium, and uranium in small plumes or single wells. Nitrate and carbon tetrachloride are the most extensive chemical contaminants. Chloroform, chromium, cis-1,2dichloroethylene, cyanide, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous wells; however, in most cases, they are believed to represent natural components of groundwater. ''Resource Conservation and Recovery Act of 1976'' groundwater monitoring continued at 25 waste management areas during fiscal year 1999: 16 under detection programs and data indicate that they are not adversely affecting groundwater; 6 under interim status groundwater quality assessment programs to assess contamination; and 2 under final status corrective-action programs. Another site, the 120-D-1 ponds, was clean closed in fiscal year 1999, and monitoring is no longer required. Groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100 K, D, and H) and strontium-90 (100 N) reaching the Columbia River. The objective of two remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Groundwater monitoring continued at these sites and at other sites where there is no active remediation. Subsurface source characterization and vadose zone monitoring, soil-vapor monitoring, sediment sampling and characterization, and vadose zone remediation were conducted in fiscal year 1999. Baseline spectral gamma-ray logging at two single-shell tank farms was completed, and logging of zones at tank farms with the highest count rate was initiated. Spectral gamma-ray logging also occurred at specific retention facilities in the 200 East Area. These facilities are some of the most significant potential sources of remaining vadose zone contamination. Finally, remediation and monitoring of carbon tetradoride in the 200 West Area continued, with an additional 972 kilograms of carbon tetrachloride removed from the vadose zone in fiscal year 1999.

MJ Hartman; LF Morasch; WD Webber

2000-05-10T23:59:59.000Z

377

Hanford Site Development Plan  

SciTech Connect (OSTI)

The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs.

Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J. (Westinghouse Hanford Co., Richland, WA (USA)); Yancey, E.F. (Pacific Northwest Lab., Richland, WA (USA))

1990-01-01T23:59:59.000Z

378

Comparing the effects of various fuel alcohols on the natural attenuation of Benzene Plumes using a general substrate interaction model  

E-Print Network [OSTI]

and Environmental Engineering, Rice University, MS-317, 6100 Main St., Houston, TX 77005, USA a r t i c l e i n f o a b s t r a c t Article history: Received 30 October 2009 Received in revised form 26 January 2010 generalizations about the level of impact of specific fuel alcohols on benzene plume dynamics. © 2010 Elsevier B

Alvarez, Pedro J.

379

564 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 33, NO. 2, APRIL 2005 Experimental and Numerical Study of External Plume  

E-Print Network [OSTI]

nonequilibrium high-pressure plasma discharges char- acterized by intense radiation and high gas temperatures filled with high-purity helium gas. The anode and cathode are connected to a direct current (dc) power.1109/TPS.2005.845290 optical emission from the discharge plume are obtained, which are then Abel

Raja, Laxminarayan L.

380

Inorganic composition of fine particles in mixed mineral dustpollution plumes observed from airborne measurements during ACE-Asia  

E-Print Network [OSTI]

of the atmosphere (2419, 2427); 0345 Atmospheric Composition and Structure: Pollution--urban and regional (0305Inorganic composition of fine particles in mixed mineral dust­pollution plumes observed from of Earth and Atmospheric Science, Georgia Institute of Technology, Atlanta, Georgia, USA G. R. Carmichael

Weber, Rodney

Note: This page contains sample records for the topic "mound site plume" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

BIOGEOCHEMICAL GRADIENTS AS A FRAMEWORK FOR UNDERSTANDING WASTE SITE EVOLUTION  

SciTech Connect (OSTI)

The migration of biogeochemical gradients is a useful framework for understanding the evolution of biogeochemical conditions in groundwater at waste sites contaminated with metals and radionuclides. This understanding is critical to selecting sustainable remedies and evaluating sites for monitored natural attenuation, because most attenuation mechanisms are sensitive to geochemical conditions such as pH and redox potential. Knowledge of how gradients in these parameters evolve provides insights into the behavior of contaminants with time and guides characterization, remedy selection, and monitoring efforts. An example is a seepage basin site at the Savannah River Site in South Carolina where low-level acidic waste has seeped into groundwater. The remediation of this site relies, in part, on restoring the natural pH of the aquifer by injecting alkaline solutions. The remediation will continue until the pH up-flow of the treatment zone increases to an acceptable value. The time required to achieve this objective depends on the time it takes the trailing pH gradient, the gradient separating the plume from influxing natural groundwater, to reach the treatment zone. Predictions of this length of time will strongly influence long-term remedial decisions.

Denham, M; Karen Vangelas, K

2008-10-17T23:59:59.000Z

382

Observations of the Temperature Dependent Response of Ozone to NOx Reductions in an Urban Plume  

SciTech Connect (OSTI)

Observations of NO{sub x} in the Sacramento, CA region show that mixing ratios decreased by 30% between 2001 and 2008. Here we use an observation-based method to quantify net ozone production rates in the outflow from the Sacramento metropolitan region and examine the O{sub 3} decrease resulting from reductions in NO{sub x} emissions. This observational method does not rely on assumptions about detailed chemistry of ozone production, rather it is an independent means to verify and test these assumptions. We use an instantaneous steady-state model as well as a detailed 1-D plume model to aid in interpretation of the ozone production inferred from observations. In agreement with the models, the observations show that early in the plume, the NO{sub x} dependence for O{sub x} (O{sub x} = O{sub 3}+NO{sub 2}) production is strongly coupled with temperature, suggesting that temperature dependent biogenic VOC emissions can drive O{sub x} production between NO{sub x}-limited and NO{sub x}-suppressed regimes. As a result, NO{sub x} reductions were found to be most effective at higher temperatures over the 7 year period. We show that violations of the California 1-hour O{sub 3} standard (90 ppb) in the region have been decreasing linearly with decreases in NO{sub x} (at a given temperature) and predict that reductions of NO{sub x} concentrations (and presumably emissions) by an additional 30% (relative to 2007 levels) will eliminate violations of the state 1 hour standard in the region. If current trends continue, a 30% decrease in NO{sub x} is expected by 2012, and an end to violations of the 1 hour standard in the Sacramento region appears to be imminent.

LaFranchi, B W; Goldstein, A H; Cohen, R C

2011-01-25T23:59:59.000Z

383

Annual Report to the Bonneville Power Administration, Reporting Period: April 2008 - February 2009 [re: "Survival and Growth in the Columbia River Plume and north California Current"].  

SciTech Connect (OSTI)

We have made substantial progress toward our objectives outlined in our BPA supported proposal entitled 'Columbia River Basin Juvenile Salmonids: Survival and Growth in the Columbia River Plume and northern California Current' which we report on herein. During 2008, we were able to successfully conduct 3 mesoscale cruises. We also were able to conduct 7 biweekly predator cruises, along with substantial shore-based visual observations of seabirds. Detailed results of the mesoscale cruises are available in the Cruise Reports and summarized in the next section. We have taken a proactive approach to getting the results of our research to fisheries managers and the general public. We have begun to make annual predictions based on ocean conditions of the relative survival of juvenile coho and Chinook salmon well before they return as adults. This is based on both biological and physical indicators that we measure during our surveys or collect from outside data sources. Examples of our predictions for 2009 and 2010 are available on the following web site: http://www.nwfsc.noaa.gov/research/divisions/fed/oeip/a-ecinhome.cfm.

Northwest Fisheries Science Center, NOAA Fisheries; Cooperative Institute for Marine Resources Studies, Oregon State University; OGI School of Science & Engineering, Oregon Health Sciences University.

2009-07-17T23:59:59.000Z

384

Probabilistic evaluation of shallow groundwater resources at a hypothetical carbon sequestration site  

SciTech Connect (OSTI)

Carbon sequestration in geologic reservoirs is an important approach for mitigating greenhouse gases emissions to the atmosphere. This study first develops an integrated Monte Carlo method for simulating CO2 and brine leakage from carbon sequestration and subsequent geochemical interactions in shallow aquifers. Then, we estimate probability distributions of five risk proxies related to the likelihood and volume of changes in pH, total dissolved solids, and trace concentrations of lead, arsenic, and cadmium for two possible consequence thresholds. The results indicate that shallow groundwater resources may degrade locally around leakage points by reduced pH and increased total dissolved solids (TDS). The volumes of pH and TDS plumes are most sensitive to aquifer porosity, permeability, and CO2 and brine leakage rates. The estimated plume size of pH change is the largest, while that of cadmium is the smallest among the risk proxies. Plume volume distributions of arsenic and lead are similar to those of TDS. The scientific results from this study provide substantial insight for understanding risks of deep fluids leaking into shallow aquifers, determining the area of review, and designing monitoring networks at carbon sequestration sites.

Dai, Zhenxue; Keating, Elizabeth; Bacon, Diana H.; Viswanathan, Hari; Stauffer, Philip; Jordan, Amy B.; Pawar, Rajesh

2014-03-07T23:59:59.000Z

385

Initial Site-wide Groundwater remediation Strategy of the Hanford Site, WA: Its Application, Lessons Learned and Future Path forward  

SciTech Connect (OSTI)

In 1989, the Washington State Department of Ecology (Ecology), the U.S. Environmental Protection Agency (EPA), and the U.S. Department of Energy (DOE) formed an agreement to clean up the Hanford Site, located in the state of Washington. By 1995, the three parties developed an initial comprehensive site wide groundwater remediation strategy with a vision to address contaminated plumes of hazardous and radioactive waste. The Hanford Site has more than 170 square miles of contaminated groundwater. Almost half exceeds the state and federal drinking water standards. The plumes are often commingled. The remediation is challenged by limited technologies, poor understanding of conceptual models, and subsurface contaminant behavior. This paper briefly describes the basic principles of the initial strategy, its application, the results of the decade-long operation, and the future path forward. The initial strategy was based on a qualitative assessment to reduce immediate risk to human health and the environment; to support commonly held values of stakeholders, including tribal nations and the public; and to deploy available remediation technologies. Two different approaches were used for two distinct geographic, the river shore reactor areas and the central plateau few miles away. The strategy was to cleanup the major groundwater plumes in the reactor areas next to the Columbia River where chromium, strontium-90, and uranium already entering the river and to contain the plumes of chlorinated solvents and radionuclides in the central plateau. The strategy acknowledges the lack of cost-effective technologies to address the contaminants, and asked DOE to develop, test, and deploy cost-effective alternative technologies wherever applicable. After more than a decade, the results are mixed. While the pump and treat provided a meaningful approach to address certain contaminants, it was too small in scale. Efforts to scale up these operations enhance characterization, and to deployment innovative technologies are progressing; albeit slowly due to budget constraints. A number of innovative technologies were identified to address source control and groundwater remediation across the Hanford Site. In the 10 years since the initial strategy was developed, additional severe groundwater and vadose zone contaminations were discovered under the waste storage tanks on the central plateau and river corridor areas. These problems required changes to the strategy. Changes include complete integration of vadose zone and groundwater characterization and remediation activities and immediate needs for technologies to address the deep vadose zone source areas, as well as thick aquifer contamination - especially for chlorinated solvents and technetium-99. The successes of the initial strategy show that even a strategy based on incomplete information can make progress on difficult issues. The regulatory agencies identified these issues early and provided the needed direction to DOE to move forward with the overall mission of clean up. The cleanup of the Hanford site is a big challenge, not only for DOE, but also for the regulators, to ensure the tri-party agencies achieve the desired goals. (authors)

Goswami, D.; Hedges, J.; Whalen, C. [Nuclear Waste Program, Washington State Department of Ecology, WA (United States)

2007-07-01T23:59:59.000Z

386

PHP SCILAB | .. | 1 (Web Site) Web Site ,  

E-Print Network [OSTI]

PHP SCILAB | .. | 1 Chapter 1 , (Web Site) Web Site , (World Wide Web) : http://school.obec.go.th/borkruwitt/inter/internet01.gif HTML PHP,JavaScript,ASP PHP SCILAB AppServ PHP http://www.appservnetwork.com #12; PHP SCILAB | .. | 2 1. 2. Next 3. I

Kovintavewat, Piya

387

Three-dimensional representations of salt-dome margins at four active strategic petroleum reserve sites.  

SciTech Connect (OSTI)

Existing paper-based site characterization models of salt domes at the four active U.S. Strategic Petroleum Reserve sites have been converted to digital format and visualized using modern computer software. The four sites are the Bayou Choctaw dome in Iberville Parish, Louisiana; the Big Hill dome in Jefferson County, Texas; the Bryan Mound dome in Brazoria County, Texas; and the West Hackberry dome in Cameron Parish, Louisiana. A new modeling algorithm has been developed to overcome limitations of many standard geological modeling software packages in order to deal with structurally overhanging salt margins that are typical of many salt domes. This algorithm, and the implementing computer program, make use of the existing interpretive modeling conducted manually using professional geological judgement and presented in two dimensions in the original site characterization reports as structure contour maps on the top of salt. The algorithm makes use of concepts of finite-element meshes of general engineering usage. Although the specific implementation of the algorithm described in this report and the resulting output files are tailored to the modeling and visualization software used to construct the figures contained herein, the algorithm itself is generic and other implementations and output formats are possible. The graphical visualizations of the salt domes at the four Strategic Petroleum Reserve sites are believed to be major improvements over the previously available two-dimensional representations of the domes via conventional geologic drawings (cross sections and contour maps). Additionally, the numerical mesh files produced by this modeling activity are available for import into and display by other software routines. The mesh data are not explicitly tabulated in this report; however an electronic version in simple ASCII format is included on a PC-based compact disk.

Rautman, Christopher Arthur; Stein, Joshua S.

2003-01-01T23:59:59.000Z

388

The Footprint of the CO[subscript 2] Plume during Carbon Dioxide Storage in Saline Aquifers: Storage Efficiency for Capillary Trapping at the Basin Scale  

E-Print Network [OSTI]

We study a sharp-interface mathematical model of CO[subscript 2] migration in deep saline aquifers, which accounts for gravity override, capillary trapping, natural groundwater flow, and the shape of the plume during the ...

Juanes, Ruben

389

Techniques and equipment used in contaminant detection at Hoe Creek underground coal gasification experimental site  

SciTech Connect (OSTI)

Data obtained from existing monitoring wells at an experimental coal gasification site indicated that local groundwater supplies were under risk from organic contaminants, particularly phenols. A more extensive monitoring system was installed. A drilling and open-hole sampling programme was devised to locate the edge of the contaminated area and indicate where additional monitoring wells were required. Geophysical logging was employed to determine the optimal position of gas-driven groundwater samplers/piezometers. The system successfully delineated the extent of the contaminant plume on 3 sides, but further work is required on the fourth side.

Davidson, S.C.

1984-01-01T23:59:59.000Z

390

Analysis of the injection process in direct injected natural gas engines. Part 1: Study of unconfined and in-cylinder plume behavior  

SciTech Connect (OSTI)

A study of natural gas (NG) direct injection (DI) processes has been performed using multidimensional computational fluid dynamics analysis. The purpose was to improve the understanding of mixing in DI NG engines. Calculations of injection into a constant-volume chamber were performed to document unconfined plume behavior. A full three-dimensional calculation of injection into a medium heavy-duty diesel engine cylinder was also performed to study plume behavior in engine geometries. The structure of the NG plume is characterized by a core of unmixed fuel confined to the near-field of the jet. This core contains the bulk of the unmixed fuel and is mixed by the turbulence generated by the jet shear layer. The NG plume development in the engine is dominated by combustion chamber surface interactions. A Coanda effect causes plume attachment to the cylinder head, which has a detrimental impact on mixing. Unconfined plume calculations with different nozzle hole sizes demonstrate that smaller nozzle holes are more effective at mixing the fuel and air.

Jennings, M.J.; Jeske, F.R. (Ricardo North America, Burr Ridge, IL (United States))

1994-10-01T23:59:59.000Z

391

Understanding plume splitting of laser ablated plasma: A view from ion distribution dynamics  

SciTech Connect (OSTI)

Plume splitting in low-pressure ambient air was understood in view of ion distribution dynamics from the laser ablated Al plasma (1064 nm 0.57 J/mm{sup 2}) by combining fast photography and spatially resolved spectroscopy. In the beginning, the spectral lines were mainly from the Al III ion. Then, the Bragg peak in stopping power of the ambient gas to Al III could be the dominant reason for the enhanced emission from the fast moving part, and the recombination of Al III to Al I-II ions near the target surface was response to the radiations from the slow moving/stationary part. As the ambient gas pressure increased, stopping distances of the Al III decreased, and radiation from the air ions became pronounced. The laser shadowgraph image at 1100 Pa indicated that the shock wave front located between the fast moving and slow moving parts. Electron densities of the fast moving plasma, which peaked at the plasma front, were on the order of 10{sup 16} cm{sup ?3}, and the electron temperatures were 2–3 eV.

Wu, Jian; Li, Xingwen; Wei, Wenfu; Jia, Shenli; Qiu, Aici [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Shaanxi 710049 (China)] [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Shaanxi 710049 (China)

2013-11-15T23:59:59.000Z

392

Processing of analogues of plume fallout in cold regions of Enceladus by energetic electrons  

E-Print Network [OSTI]

Enceladus, a small icy moon of Saturn, is one of the most remarkable bodies in the solar system. This moon is a geologically active object, and despite the lower temperatures on most of its surface, the geothermally heated south polar region presents geysers that spouts a plume made of water (approximately ninety percent), carbon dioxide, methane, ammonia, and methanol, among other molecules. Most of the upward-moving particles do not have the velocity to escape from the gravitational influence of the moon and fall back to the surface. The molecules in the ice are continuously exposed to ionizing radiation, such as UV and X-rays photons, cosmic rays, and electrons. Over time, the ionizing radiation promotes molecular bond rupture, destroying and also forming molecules, radicals, and fragments. We analyse the processing of an ice mixture analogue to the Enceladus fallout ice in cold resurfaced areas (north pole) by 1 keV electrons. The main goal is to search for complex species that have not yet been detected ...

Bergantini, A; Nair, B G; Mason, N J; Fraser, H J

2014-01-01T23:59:59.000Z

393

Uranium Geochemistry in Vadose Zone and Aquifer Sediments from the 300 Area Uranium Plume  

SciTech Connect (OSTI)

This report documents research conducted by the RCS Project to update the record of decision for the 300-FF-5 Operable Unit on the Hanford Site.

Zachara, John M.; Davis, Jim A.; Liu, Chongxuan; McKinley, James P.; Qafoku, Nik; Wellman, Dawn M.; Yabusaki, Steven B.

2005-07-21T23:59:59.000Z

394

Managing contaminated sites  

SciTech Connect (OSTI)

This book summarizes the generic principles of contaminated site management. The book walks the reader through contaminated site identification, risk assessment and the evaluation of remediation alternatives. The book is divided into two major sections, problem diagnosis and development of site restoration. In problem diagnosis, the general principles of site investigation are discussed, including the objectives and differences between tier 1,2, and 3 investigations. The principles of data collection and analysis are presented. A small quantitative discussion of statistical analysis is presented but in keeping with the objectives of the text is not sufficient comprehensive or detailed to provide much of a guide for the practitioner. Chapters on contaminant fate and transport processes and risk assessment help the reader understand the role of these issues in site investigation and remedial planning. A chapter is also included on elements of a site characterization activity, which summarizes some of the key considerations in conducting a site investigation.

Asante-Duah, D.K.

1997-12-31T23:59:59.000Z

395

Weeks Island brine diffuser site study: baseline conditions and environmental assessment technical report  

SciTech Connect (OSTI)

This technical report presents the results of a study conducted at two alternative brine diffuser sites (A and B) proposed for the Weeks Island salt dome, together with an analysis of the potential physical, chemical, and biological effects of brine disposal for this area of the Gulf of Mexico. Brine would result from either the leaching of salt domes to form or enlarge oil storage caverns, or the subsequent use of these caverns for crude oil storage in the Strategic Petroleum Reserve (SPR) program. Brine leached from the Weeks Island salt dome would be transported through a pipeline which would extend from the salt dome either 27 nautical miles (32 statute miles) for Site A, or 41 nautical miles (47 statute miles) for Site B, into Gulf waters. The brine would be discharged at these sites through an offshore diffuser at a sustained peak rate of 39 ft/sup 3//sec. The disposal of large quantities of brine in the Gulf could have a significant impact on the biology and water quality of the area. Physical and chemical measurements of the marine environment at Sites A and B were taken between September 1977 and July 1978 to correlate the existing environmental conditions with the estimated physical extent of tthe brine discharge as predicted by the MIT model (US Dept. of Commerce, 1977a). Measurements of wind, tide, waves, currents, and stratification (water column structure) were also obtained since the diffusion and dispersion of the brine plume are a function of the local circulation regime. These data were used to calculate both near- and far-field concentrations of brine, and may also be used in the design criteria for diffuser port configuration and verification of the plume model. Biological samples were taken to characterize the sites and to predict potential areas of impact with regard to the discharge. This sampling focused on benthic organisms and demersal fish. (DMC)

None

1980-12-12T23:59:59.000Z

396

Environmental assessment of ground water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming. Revision 0  

SciTech Connect (OSTI)

This document is an environmental assessment of the Spook, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project site. It analyzes the impacts of the U.S. Department of Energy (DOE) proposed action for ground water compliance. The proposed action is to comply with the U.S. Environmental Protection Agency (EPA) standards for the UMTRA Project sites (40 CFR Part 192) by meeting supplemental standards based on the limited use ground water at the Spook site. This proposed action would not require site activities, including ground water monitoring, characterization, or institutional controls. Ground water in the uppermost aquifer was contaminated by uranium processing activities at the Spook site, which is in Converse County, approximately 48 miles (mi) (77 kilometers [km]) northeast of Casper, Wyoming. Constituents from the site infiltrated and migrated into the uppermost aquifer, forming a plume that extends approximately 2500 feet (ft) (800 meters [m]) downgradient from the site. The principal site-related hazardous constituents in this plume are uranium, selenium, and nitrate. Background ground water in the uppermost aquifer at the site is considered limited use. It is neither a current nor a potential source of drinking water because of widespread, ambient contamination that cannot be cleaned up using treatment methods reasonably employed in public water supply systems (40 CFR {section} 192.11 (e)). Background ground water quality also is poor due to first, naturally occurring conditions (natural uranium mineralization associated with an alteration front), and second, the effects of widespread human activity not related to uranium milling operations (uranium exploration and mining activities). There are no known exposure pathways to humans, animals, or plants from the contaminated ground water in the uppermost aquifer because it does not discharge to lower aquifers, to the surface, or to surface water.

NONE

1996-03-01T23:59:59.000Z

397

Remediation cleanup options for the Hoe Creek UCG site  

SciTech Connect (OSTI)

The US Department of Energy must restore groundwater quality at the Hoe Creek, Wyoming, underground coal gasification site using the best proven practicable technology. Six alternative remediation methods are evaluated in this project: (1) excavation, (2) three variations of groundwater plume containment, (3) in situ vacuum extraction, (4) pump and treat using a defined pattern of pumping wells to obtain an effective matrix sweep, (5) in situ flushing using a surfactant, and (6) in situ bioremediation. Available site characterization data is insufficient to accurately project the cost of remediation. Several alternative hypothetical examples and associated costs are described in the text and in the appendices. However, not enough information is available to use these examples as a basis for comparison purposes. Before a cleanup method is selected, core borings should be taken to define the areal extent and depth of contaminated matrix material. Segments of these core borings should be analyzed for organic contaminants in the soil (e.g., benzene) and their relationship to the groundwater contamination. These analyses and subsequent treatability studies will show whether or not the contaminants can be effectively removed by surface on in situ volatilization, leached from the matrix using washing solutions, or removed by bioremediation. After this information is obtained, each technology should be evaluated with respect to cost and probability of success. A decision tree for implementing remediation cleanup at the Hoe Creek site is presented in this report. 26 refs., 11 figs., 3 tabs.

Nordin, J.; Griffin, W.; Chatwin, T.; Lindblom, S.; Crader, S.

1990-03-01T23:59:59.000Z

398

Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on Hanford’s 300 Area Uranium Plume  

SciTech Connect (OSTI)

The Integrated Field-Scale Subsurface Research Challenge (IFRC) at the Hanford Site 300 Area uranium (U) plume addresses multi-scale mass transfer processes in a complex hydrogeologic setting where groundwater and riverwater interact. A series of forefront science questions on mass transfer are posed for research which relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements and approaches needed to characterize and model a mass-transfer dominated system. The project was initiated in February 2007, with CY 2007 and CY 2008 progress summarized in preceding reports. The site has 35 instrumented wells, and an extensive monitoring system. It includes a deep borehole for microbiologic and biogeochemical research that sampled the entire thickness of the unconfined 300 A aquifer. Significant, impactful progress has been made in CY 2009 with completion of extensive laboratory measurements on field sediments, field hydrologic and geophysical characterization, four field experiments, and modeling. The laboratory characterization results are being subjected to geostatistical analyses to develop spatial heterogeneity models of U concentration and chemical, physical, and hydrologic properties needed for reactive transport modeling. The field experiments focused on: (1) physical characterization of the groundwater flow field during a period of stable hydrologic conditions in early spring, (2) comprehensive groundwater monitoring during spring to characterize the release of U(VI) from the lower vadose zone to the aquifer during water table rise and fall, (3) dynamic geophysical monitoring of salt-plume migration during summer, and (4) a U reactive tracer experiment (desorption) during the fall. Geophysical characterization of the well field was completed using the down-well Electrical Resistance Tomography (ERT) array, with results subjected to robust, geostatistically constrained inversion analyses. These measurements along with hydrologic characterization have yielded 3D distributions of hydraulic properties that have been incorporated into an updated and increasingly robust hydrologic model. Based on significant findings from the microbiologic characterization of deep borehole sediments in CY 2008, down-hole biogeochemistry studies were initiated where colonization substrates and spatially discrete water and gas samplers were deployed to select wells. The increasingly comprehensive field experimental results, along with the field and laboratory characterization, are leading to a new conceptual model of U(VI) flow and transport in the IFRC footprint and the 300 Area in general, and insights on the microbiological community and associated biogeochemical processes. A significant issue related to vertical flow in the IFRC wells was identified and evaluated during the spring and fall field experimental campaigns. Both upward and downward flows were observed in response to dynamic Columbia River stage. The vertical flows are caused by the interaction of pressure gradients with our heterogeneous hydraulic conductivity field. These impacts are being evaluated with additional modeling and field activities to facilitate interpretation and mitigation. The project moves into CY 2010 with ambitious plans for a drilling additional wells for the IFRC well field, additional experiments, and modeling. This research is part of the ERSP Hanford IFRC at Pacific Northwest National Laboratory.

Zachara, John M.; Bjornstad, Bruce N.; Christensen, John N.; Conrad, Mark E.; Fredrickson, Jim K.; Freshley, Mark D.; Haggerty, Roy; Hammon, Glenn; Kent, Douglas B.; Konopka, Allan; Lichtner, Peter C.; Liu, Chongxuan; McKinley, James P.; Murray, Christopher J.; Rockhold, Mark L.; Rubin, Yoram; Vermeul, Vincent R.; Versteeg, Roelof J.; Ward, Anderson L.; Zheng, Chunmiao

2010-02-01T23:59:59.000Z

399

FIREPLUME model for plume dispersion from fires: Application to uranium hexafluoride cylinder fires  

SciTech Connect (OSTI)

This report provides basic documentation of the FIREPLUME model and discusses its application to the prediction of health impacts resulting from releases of uranium hexafluoride (UF{sub 6}) in fires. The model application outlined in this report was conducted for the Draft Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted UF{sub 6}. The FIREPLUME model is an advanced stochastic model for atmospheric plume dispersion that predicts the downwind consequences of a release of toxic materials from an explosion or a fire. The model is based on the nonbuoyant atmospheric dispersion model MCLDM (Monte Carlo Lagrangian Dispersion Model), which has been shown to be consistent with available laboratory and field data. The inclusion of buoyancy and the addition of a postprocessor to evaluate time-varying concentrations lead to the current model. The FIREPLUME model, as applied to fire-related UF{sub 6} cylinder releases, accounts for three phases of release and dispersion. The first phase of release involves the hydraulic rupture of the cylinder due to heating of the UF{sub 6} in the fire. The second phase involves the emission of material into the burning fire, and the third phase involves the emission of material after the fire has died during the cool-down period. The model predicts the downwind concentration of the material as a function of time at any point downwind at or above the ground. All together, five fire-related release scenarios are examined in this report. For each scenario, downwind concentrations of the UF{sub 6} reaction products, uranyl fluoride and hydrogen fluoride, are provided for two meteorological conditions: (1) D stability with a 4-m/s wind speed, and (2) F stability with a 1-m/s wind speed.

Brown, D.F.; Dunn, W.E. [Univ. of Illinois, Champaign-Urbana, IL (United States). Dept. of Mechanical Engineering; Policastro, A.J.; Maloney, D. [Argonne National Lab., IL (United States)

1997-06-01T23:59:59.000Z

400

1999 Site Environmental Report  

SciTech Connect (OSTI)

The Site Environmental Report for Brookhaven National Laboratory for the calendar year 1999, as required by DOE Order 231.1.

NONE

2000-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "mound site plume" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Nevada National Security Site  

Broader source: Energy.gov [DOE]

HISTORYIn 1950, President Truman established what is now known as the Nevada National Security Site (NNSS) to perform nuclear weapons testing activities.  In support of national defense initiatives...

402

2001 SITE ENVIRONMENTAL REPORT  

SciTech Connect (OSTI)

THE SITE ENVIRONMENTAL REPORT FOR BROOKHAVEN NATIONAL LABORATORY FOR THE CALENDAR YEAR 2001, AS REQUIRED BY DOE ORDER 231.1.

BROOKHAVEN NATIONAL LABORATORY

2002-09-01T23:59:59.000Z

403

Enterprise Assessments Review, Savannah River Site 2014 Site...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Independent Oversight Inspection, Savannah River Site - January 2010 Independent Oversight Review, Savannah River Site Tritium Facilities - December...

404

Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on Hanford’s 300 Area Uranium Plume January 2011 to January 2012  

SciTech Connect (OSTI)

The Integrated Field Research Challenge (IFRC) at the Hanford Site 300 Area uranium (U) plume addresses multi-scale mass transfer processes in a complex subsurface biogeochemical setting where groundwater and riverwater interact. A series of forefront science questions on reactive mass transfer motivates research. These questions relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements and approaches needed to characterize and model a mass-transfer dominated biogeochemical system. The project was initiated in February 2007, with CY 2007, CY 2008, CY 2009, and CY 2010 progress summarized in preceding reports. A project peer review was held in March 2010, and the IFRC project acted upon all suggestions and recommendations made in consequence by reviewers and SBR/DOE. These responses have included the development of 'Modeling' and 'Well-Field Mitigation' plans that are now posted on the Hanford IFRC web-site, and modifications to the IFRC well-field completed in CY 2011. The site has 35 instrumented wells, and an extensive monitoring system. It includes a deep borehole for microbiologic and biogeochemical research that sampled the entire thickness of the unconfined 300 A aquifer. Significant, impactful progress has been made in CY 2011 including: (i) well modifications to eliminate well-bore flows, (ii) hydrologic testing of the modified well-field and upper aquifer, (iii) geophysical monitoring of winter precipitation infiltration through the U-contaminated vadose zone and spring river water intrusion to the IFRC, (iv) injection experimentation to probe the lower vadose zone and to evaluate the transport behavior of high U concentrations, (v) extended passive monitoring during the period of water table rise and fall, and (vi) collaborative down-hole experimentation with the PNNL SFA on the biogeochemistry of the 300 A Hanford-Ringold contact and the underlying redox transition zone. The modified well-field has functioned superbly without any evidence for well-bore flows. Beyond these experimental efforts, our site-wide reactive transport models (PFLOTRAN and eSTOMP) have been updated to include site geostatistical models of both hydrologic properties and adsorbed U distribution; and new hydrologic characterization measurements of the upper aquifer. These increasingly robust models are being used to simulate past and recent U desorption-adsorption experiments performed under different hydrologic conditions, and heuristic modeling to understand the complex functioning of the smear zone. We continued efforts to assimilate geophysical logging and 3D ERT characterization data into our site wide geophysical model, with significant and positive progress in 2011 that will enable publication in 2012. Our increasingly comprehensive field experimental results and robust reactive transport simulators, along with the field and laboratory characterization, are leading to a new conceptual model of U(VI) flow and transport in the IFRC footprint and the 300 Area in general, and insights on the microbiological community and associated biogeochemical processes influencing N, S, C, Mn, and Fe. Collectively these findings and higher scale models are providing a unique and unparalleled system-scale understanding of the biogeochemical function of the groundwater-river interaction zone.

Zachara, John M.; Bjornstad, Bruce N.; Christensen, John N.; Conrad, Mark S.; Fredrickson, Jim K.; Freshley, Mark D.; Haggerty, Roy; Hammond, Glenn E.; Kent, Douglas B.; Konopka, Allan; Lichtner, Peter C.; Liu, Chongxuan; McKinley, James P.; Murray, Christopher J.; Rockhold, Mark L.; Rubin, Yoram; Vermeul, Vincent R.; Versteeg, Roelof J.; Zheng, Chunmiao

2012-03-05T23:59:59.000Z

405

Site Energy Reduction Program  

E-Print Network [OSTI]

DuPont’s Sabine River Works site is the largest energy consuming location within DuPont. In the year 2000, each production area was encouraged to reduce energy costs. By 2003 site energy consumption was down 16% on an absolute basis and 12% on a BTU...

Jagen, P. R.

2007-01-01T23:59:59.000Z

406

Protein active sites, interaction  

E-Print Network [OSTI]

for active site identification ! Manual MSA and structure analysis ! Catalytic Site Atlas (homology-based) ! Evolutionary Trace (MSA subfamily- and family-wide conservation; phylogenetic tree and structure analysis) ! 3D", Bartlett et al. J Mol Biol. 2002 Nov 15;324(1):105-21. · "An evolutionary trace method defines binding

Sjölander, Kimmen

407

Savannah River Site's Site Specific Plan  

SciTech Connect (OSTI)

This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show the Environmental Restoration and Waste Management activities that were identified during the preparation of the Department of Energy-Headquarters (DOE-HQ) Environmental Restoration and Waste Management Five-Year Plan (FYP) for FY 1992--1996. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. The purpose of the SSP is to develop a baseline for policy, budget, and schedules for the DOE Environmental Restoration and Waste Management activities. The plan explains accomplishments since the Fiscal Year (FY) 1990 plan, demonstrates how present and future activities are prioritized, identifies currently funded activities and activities that are planned to be funded in the upcoming fiscal year, and describes future activities that SRS is considering.

Not Available

1991-08-01T23:59:59.000Z

408

Mound, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 Climate ZoneMontrose,Stanley CapitalNorthMoscow366295°,

409

Site decommissioning management plan  

SciTech Connect (OSTI)

The Nuclear Regulatory Commission (NRC) staff has identified 48 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC staff`s strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 48 sites and describes the status of decommissioning activities at the sites.

Fauver, D.N.; Austin, J.H.; Johnson, T.C.; Weber, M.F.; Cardile, F.P.; Martin, D.E.; Caniano, R.J.; Kinneman, J.D.

1993-10-01T23:59:59.000Z

410

The role of the gas/plasma plume and self-focusing in a gas-filled capillary discharge waveguide for high-power laser-plasma applications  

SciTech Connect (OSTI)

The role of the gas/plasma plume at the entrance of a gas-filled capillary discharge plasma waveguide in increasing the laser intensity has been investigated. Distinction is made between neutral gas and hot plasma plumes that, respectively, develop before and after discharge breakdown. Time-averaged measurements show that the on-axis plasma density of a fully expanded plasma plume over this region is similar to that inside the waveguide. Above the critical power, relativistic and ponderomotive self-focusing lead to an increase in the intensity, which can be nearly a factor of 2 compared with the case without a plume. When used as a laser plasma wakefield accelerator, the enhancement of intensity can lead to prompt electron injection very close to the entrance of the waveguide. Self-focusing occurs within two Rayleigh lengths of the waveguide entrance plane in the region, where the laser beam is converging. Analytical theory and numerical simulations show that, for a density of 3.0 × 10{sup 18} cm{sup ?3}, the peak normalized laser vector potential, a{sub 0}, increases from 1.0 to 1.85 close to the entrance plane of the capillary compared with a{sub 0} = 1.41 when the plume is neglected.

Ciocarlan, C. [Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow G4 0NG (United Kingdom) [Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Department of Nuclear Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, 76900 Bucharest-Magurele (Romania); Wiggins, S. M.; Islam, M. R.; Ersfeld, B.; Abuazoum, S.; Wilson, R.; Aniculaesei, C.; Welsh, G. H.; Vieux, G.; Jaroszynski, D. A. [Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow G4 0NG (United Kingdom)] [Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

2013-09-15T23:59:59.000Z

411

Preliminary Site Characterization Report, Rulsion Site, Colorado  

SciTech Connect (OSTI)

This report is a summary of environmental information gathered during a review of the documents pertaining to Project Rulison and interviews with personnel who worked on the project. Project Rulison was part of Operation Plowshare (a program designed to explore peaceful uses for nuclear devices). The project consisted of detonating a 43-kiloton nuclear device on September 10, 1969, in western Colorado to stimulate natural gas production. Following the detonation, a reentry well was drilled and several gas production tests were conducted. The reentry well was shut-in after the last gas production test and was held in standby condition until the general cleanup was undertaken in 1972. A final cleanup was conducted after the emplacement and testing wells were plugged in 1976. However, some surface radiologic contamination resulted from decontamination of the drilling equipment and fallout from the gas flaring during drilling operations. With the exception of the drilling effluent pond, all surface contamination at the Rulison Site was removed during the cleanup operations. All mudpits and other excavations were backfilled, and both upper and lower drilling pads were leveled and dressed. This report provides information regarding known or suspected areas of contamination, previous cleanup activities, analytical results, a review of the regulatory status, the site`s physical environment, and future recommendations for Project Ruhson. Based on this research, several potential areas of contamination have been identified. These include the drilling effluent pond and mudpits used during drilling operations. In addition, contamination could migrate in the gas horizon.

NONE

1996-08-01T23:59:59.000Z

412

Use of superposition and the extended pulse model to evaluate the contaminant transport parameters of variably source-loaded plumes  

E-Print Network [OSTI]

-vt O O W 2000 1000 cm 0 500 1000 cm OO x vt ~ cbservaticn ttclnts Figure 11. Plan view of the concentration plume ' 1 d' and inc u ing the source e decreased sour th it tio di gram a 1 ana yses are demarcated. or 39 1 5. 0 14. 0 3-5 13... and dedication to science have been a great source of inspiration to me. DEDICATION vii TABLE OF CONTENTS ABSTRACT ACKNOWLEDGEMENTS DEDICATION TABLE OF CONTENTS LIST OF FIGURES 1. INTRODUCTION 2. MATHEMATICAL CONSIDERATIONS 2. 1 The Advection...

Hankins, Donald Wayne

1988-01-01T23:59:59.000Z

413

Numerical modeling of multiphase plumes: a comparative study between two-fluid and mixed-fluid integral models  

E-Print Network [OSTI]

-field effects of a multiphase plume of liquid CO2 droplets in ocean water finds potential in estimating the environmental risks involved due to deep-ocean sequestration of greenhouse gases like carbon dioxide, which is one of the proposed alternatives (Liro... for the diffuser orifice diameter, air-flow rate and the number of such ports necessary to dissolve a measured quantity of air in a given time of operation will also be studied. 3.3. Case 3: CO2 Sequestration in the Ocean Sequestration of carbon dioxide and other...

Bhaumik, Tirtharaj

2005-11-01T23:59:59.000Z

414

TREATABILITY STUDY FOR EDIBLE OIL DEPLOYMENT FOR ENHANCED CVOC ATTENUATION FOR T-AREA, SAVANNAH RIVER SITE  

SciTech Connect (OSTI)

Groundwater beneath T-Area, a former laboratory and semiworks operation at the Department of Energy (DOE) Savannah River Site (SRS), is contaminated by chlorinated solvents (cVOCs). Since the contamination was detected in the 1980s, the cVOCs at T-Area have been treated by a combination of soil vapor extraction and groundwater pump and treat. The site received approval to temporarily discontinue the active groundwater treatment and implement a treatability study of enhanced attenuation - an engineering and regulatory strategy that has recently been developed by DOE and the Interstate Technology and Regulatory Council (ITRC 2007). Enhanced attenuation uses active engineering solutions to alter the target site in such a way that the contaminant plume will passively stabilize and shrink and to document that the action will be effective, timely, and sustainable. The paradigm recognizes that attenuation remedies are fundamentally based on a mass balance. Thus, long-term plume dynamics can be altered either by reducing the contaminant loading from the source or by increasing the rate of natural attenuation processes within all, or part of, the plume volume. The combination of technologies that emerged for T-Area included: (1) neat (pure) vegetable oil deployment in the deep vadose zone in the former source area, (2) emulsified vegetable oil deployment within the footprint of the groundwater plume, and (3) identification of attenuation mechanisms and rates for the distal portion of the plume. In the first part, neat oil spreads laterally forming a thin layer on the water table to intercept and reduce future cVOC loading (via partitioning) and reduce oxygen inputs (via biostimulation). In the second and third parts, emulsified oil forms active bioremediation reactor zones within the plume footprint to degrade existing groundwater contamination (via reductive dechlorination and/or cometabolism) and stimulates long-term attenuation capacity in the distal plume (via cometabolism). For TArea, the enhanced attenuation development process proved to be a powerful tool in developing a strategy that provides a high degree of performance while minimizing adverse collateral impacts of the remediation (e.g., energy use and wetland damage) and minimizing life-cycle costs. As depicted in Figure 1, Edible oil deployment results in the development of structured geochemical zones and serves to decrease chlorinated compound concentrations in two ways: (1) physical sequestration, which reduces effective aqueous concentration and mobility; and (2) stimulation of anaerobic, abiotic and cometabolic degradation processes. In the central deployment area, contaminant initially partitions into the added oil phase. Biodegradation of the added organic substrate depletes the aquifer of oxygen and other terminal electron acceptors and creates conditions conducive to anaerobic degradation processes. The organic substrate is fermented to produce hydrogen, which is used as an electron donor for anaerobic dechlorination by organisms such as Dehalococcoides. Daughter products leaving the central treatment zone are amenable to aerobic oxidation. Further, the organic compounds leaving the central deployment zone (e.g., methane and propane) stimulate and enhance down gradient aerobic cometabolism which degrades both daughter compounds and several parent cVOCs. Figure 1 depicts TCE concentration reduction processes (labeled in green) along with their corresponding breakdown products in a structured geochemical zone scenario. A consortium of bacteria with the same net effect of Dehalococcoides may be present in the structured geochemical zones leading to the degradation of TCE and daughter products. Figure 2 shows a schematic of the documented cVOC degradation processes in both the anaerobic and aerobic structured geochemical zones. Specific aerobic and anaerobic bacteria and their degradation pathways are also listed in the diagram and have either been confirmed in the field or the laboratory. See references in the bibliography in Section 11.

Riha, B.; Looney, B.; Noonkester, J.; Hyde, W.; Walker, R.

2012-05-15T23:59:59.000Z

415

Colorado, Processing Sites  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledo SiteTonawanda North SiteD&D

416

Three-Dimensional Groundwater Models of the 300 Area at the Hanford Site, Washington State  

SciTech Connect (OSTI)

Researchers at Pacific Northwest National Laboratory developed field-scale groundwater flow and transport simulations of the 300 Area to support the 300-FF-5 Operable Unit Phase III Feasibility Study. The 300 Area is located in the southeast portion of the U.S. Department of Energy’s Hanford Site in Washington State. Historical operations involving uranium fuel fabrication and research activities at the 300 Area have contaminated engineered liquid-waste disposal facilities, the underlying vadose zone, and the uppermost aquifer with uranium. The main objectives of this research were to develop numerical groundwater flow and transport models to help refine the site conceptual model, and to assist assessment of proposed alternative remediation technologies focused on the 300 Area uranium plume.

Williams, Mark D.; Rockhold, Mark L.; Thorne, Paul D.; Chen, Yousu

2008-09-01T23:59:59.000Z

417

Lessons learned: Needs for improving human health risk assessment at USDOE Sites  

SciTech Connect (OSTI)

Realistic health risk assessments were performed in a pilot study of three U.S. Department of Energy (USDOE) sites. These assessments, covering a broad spectrum of data and methods, were used to identify needs for improving future health risk assessments at USDOE sites. Topics receiving specific recommendations for additional research include: choice of distributions for Monte Carlo simulation; estimation of risk reduction; analysis of the U.S. Department of Agriculture Database on food and nutrient intakes; investigations on effects of food processing on contaminant levels; background food and environmental concentrations of contaminants; method for handling exposures to groundwater plumes, methods for analyzing less than lifetime exposure to carcinogens; and improvement of bioaccumulation factors.

Hamilton, L.D.; Holtzman, S.; Meinhold, A.F.; Morris, S.C.; Rowe, M.D. [Brookhaven National Lab., Upton, NY (United States); Daniels, J.I.; Layton, D.W.; Anspaugh, L.R. [Lawrence Livermore National Lab., CA (United States)

1993-09-01T23:59:59.000Z

418

300 Area Integrated Field-Scale Subsurface Research Challenge (IFRC) Field Site Management Plan  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) has established the 300 Area Integrated Field-Scale Subsurface Research Challenge (300 Area IFRC) on the Hanford Site in southeastern Washington State for the U.S. Department of Energy’s (DOE) Office of Biological and Environmental Research (BER) within the Office of Science. The project is funded by the Environmental Remediation Sciences Division (ERSD). The purpose of the project is to conduct research at the 300 IFRC to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The management approach for the 300 Area IFRC requires that a Field Site Management Plan be developed. This is an update of the plan to reflect the installation of the well network and other changes.

Freshley, Mark D.

2008-12-31T23:59:59.000Z

419

Hanford Site Cleanup Completion Framework - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary MonizSite Public ToursOfficial

420

Hanford Site Safety Standards - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary MonizSite Public

Note: This page contains sample records for the topic "mound site plume" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Hanford Site Voluntary Protection Program - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary MonizSite PublicAbout Us >Program

422

Site Manager Y-12 Site Office  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepare local students forStorm2 |Y-12 Site

423

VPP Hanford Site Champions Committee - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field EmissionFunctionalPortalV1 - March8,Hanford Site

424

Annual Site Environmental Report Paducah Site  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe OfficeUtility Fed.9-0s)Excel workbook (version 5.2) is aAUGUST 2014Site

425

Potential Release Sites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. Department of Energy, but some are located within the Los Alamos town boundaries, on private property, Los Alamos County property, or U.S. Forest Service land. Number of sites...

426

Site Energy Surveys  

E-Print Network [OSTI]

identified, screening is conducted to develop their economic attractiveness. This presentation reviews factors leading to the need for Site Energy Surveys, the objectives for conducting surveys, the approach utilized, considerations given to values...

Lockett, W., Jr.; Guide, J. J.

1981-01-01T23:59:59.000Z

427

ParaSITE  

E-Print Network [OSTI]

paraSITE proposes the appropriation of exterior ventilation systems on existing architecture to inflate pneumatic shelters that are designed for homeless people. This project involves the production of a series of inflatable ...

Rakowitz, Michael

1998-01-01T23:59:59.000Z

428

Plant Site Refrigeration Upgrade  

E-Print Network [OSTI]

Bayer Corporation operates a multi-division manufacturing facility in Bushy Park, South Carolina. Low temperature refrigeration (-4°F) is required by many of the chemical manufacturing areas and is provided by a Plant Site Refrigeration System...

Zdrojewski, R.; Healy, M.; Ramsey, J.

429

Smoke plumes from Kuwaiti oil fires as atmospheric experiment of opportunity: An early look. Final report, Mar-Oct 91  

SciTech Connect (OSTI)

This document sets in context the smoke plume phenomenology associated with the large number of oil fires lit by the Iraqi military in Kuwait in February 1991, and which are probably the worst man-made air pollution event in human history. Based on the simple phenomenology given here, and considered an unfortunate 'experiment of opportunity', the question is raised of what actions should be taken, and what one can hope to learn from these events. From the standpoint of SDIO, most of the basic physical elements of the fire and smoke phenomenology appear to be understood although there are some new effects and the initial quantitative predictions of the experts appear to differ significantly from the results of the detailed measurements. Many observations have been made. They require analysis followed by review and publication before being incorporated in the DoD integrated phenomenology models. This document represents an early look at the smoke plumes before most of the observations have been analyzed, reviewed, and published; its main function is to raise questions that should be addressed more carefully later.

Bauer, E.

1991-10-01T23:59:59.000Z

430

Distinctive plume formation in atmospheric Ar and He plasmas in microwave frequency band and suitability for biomedical applications  

SciTech Connect (OSTI)

Distinctive discharge formation in atmospheric Ar and He plasmas was observed in the microwave frequency band using coaxial transmission line resonators. Ar plasmas formed a plasma plume whereas He formed only confined plasmas. As the frequency increased from 0.9 GHz to 2.45 GHz, the Ar plasma exhibited contraction and filamentation, and the He plasmas were constricted. Various powers and gas flow rates were applied to identify the effect of the electric field and gas flow rate on plasma plume formation. The He plasmas were more strongly affected by the electric field than the Ar plasmas. The breakdown and sustain powers yielded opposite results from those for low-frequency plasmas (?kHz). The phenomena could be explained by a change in the dominant ionization process with increasing frequency. Penning ionization and the contribution of secondary electrons in sheath region reduced as the frequency increased, leading to less efficient ionization of He because its ionization and excitation energies are higher than those of Ar. The emission spectra showed an increase in the NO and N{sub 2} second positive band in both the Ar and He plasmas with increasing frequency whereas the hydroxyl radical and atomic O peaks did not increase with increasing frequency but were highest at particular frequencies. Further, the frequency effect of properties such as the plasma impedance, electron density, and device efficiency were presented. The study is expected to be helpful for determining the optimal conditions of plasma systems for biomedical applications.

Lee, H. Wk.; Kang, S. K.; Won, I. H.; Kim, H. Y.; Kwon, H. C.; Sim, J. Y.; Lee, J. K. [Department of Electrical Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)] [Department of Electrical Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

2013-12-15T23:59:59.000Z

431

Evaluation of natural attenuation processes for trichloroethylene and technetium-99 in the Northeast and Northwest plumes at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky  

SciTech Connect (OSTI)

NA processes such as biodegradation, sorption, dilution dispersion, advection, and possibly sorption and diffusion are occurring in the Northeast and Northwest plumes. However, the overall biological attenuation rate for TCE within the plumes is not sufficiently rapid to utilize as remedial option. The mobility and toxicity of {sup 99}Tc is not being reduced by attenuating processes within the Northwest Plume. The current EPA position is that NA is not a viable remedial approach unless destructive processes are present or processes are active which reduce the toxicity and mobility of a contaminant. Therefore, active remediation of the dissolved phase plumes will be necessary to reduce contaminant concentrations before an NA approach could be justified at PGDP for either plume. Possible treatment methods for the reduction of dissolved phase concentrations within the plumes are pump-and-treat bioaugmentation, biostimulation, or multiple reactive barriers. Another possibility is the use of a regulatory instrument such as an Alternate Concentration Limit (ACL) petition. Biodegradation of TCE is occurring in both plumes and several hypothesis are possible to explain the apparent conflicts with some of the geochemical data. The first hypothesis is active intrinsic bioremediation is negligible or so slow to be nonmeasurable. In this scenario, the D.O., chloride, TCE, and isotopic results are indicative of past microbiological reactions. It is surmised in this scenario, that when the initial TCE release occurred, sufficient energy sources were available for microorganisms to drive aerobic reduction of TCE, but these energy sources were rapidly depleted. The initial degraded TCE has since migrated to downgradient locations. In the second scenario, TCE anaerobic degradation occurs in organic-rich micro-environments within a generally aerobic aquifer. TCE maybe strongly absorbed to organic-rich materials in the aquifer matrix and degraded by local Immunities of microbes, perhaps even under anaerobic conditions. Chloride, generated by degradation in such microenvironment is released rapidly into the water, as is CO{sub 2}, from respiration of the microorganisms. TCE and its organic degradation products are retained on the aquifer matrix by sorption, and released more slowly into the groundwater. In this process, chloride produced from the microbial reaction may become separated in the plume from the residual TCE. This may explain why the chloride isotope ratio and dissolved TCE do not correlate with the DIC isotope ratio. The relationship between the {delta}{sup 37}Cl values of TCE and dissolved inorganic chloride is consistent with what would be expected from the degradation of TCE, but is complicated by the elevated levels of background chloride, presumably due to agriculture practice, and complex behavior of TCE in the aquifer.

Clausen, J.L.; Sturchio, N.C.; Heraty, L.J.; Huang, L.; Abrajano,T.

1997-11-25T23:59:59.000Z

432

INDEPENDENT TECHNICAL EVALUATION AND RECOMMENDATIONS FOR CONTAMINATED GROUNDWATER AT THE DEPARTMENT OF ENERGY OFFICE OF LEGACY MANAGEMENT RIVERTON PROCESSING SITE  

SciTech Connect (OSTI)

The U.S. Department of Energy Office of Legacy Management (DOE-LM) manages the legacy contamination at the Riverton, WY, Processing Site – a former uranium milling site that operated from 1958 to 1963. The tailings and associated materials were removed in 1988-1989 and contaminants are currently flushing from the groundwater. DOE-LM commissioned an independent technical team to assess the status of the contaminant flushing, identify any issues or opportunities for DOE-LM, and provide key recommendations. The team applied a range of technical frameworks – spatial, temporal, hydrological and geochemical – in performing the evaluation. In each topic area, an in depth evaluation was performed using DOE-LM site data (e.g., chemical measurements in groundwater, surface water and soil, water levels, and historical records) along with information collected during the December 2013 site visit (e.g., plant type survey, geomorphology, and minerals that were observed, collected and evaluated). A few of the key findings include: ? Physical removal of the tailings and associated materials reduced contaminant discharges to groundwater and reduced contaminant concentrations in the near-field plume. ? In the mid-field and far-field areas, residual contaminants are present in the vadose zone as a result of a variety of factors (e.g., evaporation/evapotranspiration from the capillary fringe and water table, higher water levels during tailings disposal, and geochemical processes). ? Vadose zone contaminants are widely distributed above the plume and are expected to be present as solid phase minerals that can serve as “secondary sources” to the underlying groundwater. The mineral sample collected at the site is consistent with thermodynamic predictions. ? Water table fluctuations, irrigation, infiltration and flooding will episodically solubilize some of the vadose zone secondary source materials and release contaminants to the groundwater for continued down gradient migration – extending the overall timeframe for flushing. ? Vertical contaminant stratification in the vadose zone and surficial aquifer will vary from location to location. Soil and water sampling strategies and monitoring well construction details will influence characterization and monitoring data. ? Water flows from the Wind River, beneath the Riverton Processing Site and through the plume toward the Little Wind River. This base flow pattern is influenced by seasonal irrigation and other anthropogenic activities, and by natural perturbations (e.g., flooding). ? Erosion and reworking of the sediments adjacent to the Little Wind River results in high heterogeneity and complex flow and geochemistry. Water flowing into oxbow lakes (or through areas where oxbow lakes were present in the past) will be exposed to localized geochemical conditions that favor chemical reduction (i.e., “naturally reduced zones”) and other attenuation processes. This attenuation is not sufficient to fully stabilize the plume or to reduce contaminant concentrations in the groundwater to target levels. Consistent with these observations, the team recommended increased emphasis on collecting data in the zones where secondary source minerals are projected to accumulate (e.g., just above the water table) using low cost methods such as x-ray fluorescence. The team also suggested several low cost nontraditional sources of data that have the potential to provide supplemental data (e.g., multispectral satellite imagery) to inform and improve legacy management decisions. There are a range of strategies for management of the legacy contamination in the groundwater and vadose zone near the Riverton Processing Site. These range from the current strategy, natural flushing, to intrusive remedies such as plume scale excavation of the vadose zone and pump & treat. Each option relates to the site specific conditions, issues and opportunities in a unique way. Further, each option has advantages and disadvantages that need to be weighed. Scoping evaluation was performed for three major classes

Looney, B.; Denham, M.; Eddy-Dilek, C.

2014-05-06T23:59:59.000Z

433

Dynamics of plume propagation and splitting during pulsed-laser ablation of Si in He and Ar R. F. Wood, J. N. Leboeuf, D. B. Geohegan, A. A. Puretzky, and K. R. Chen*  

E-Print Network [OSTI]

plume atoms will reach the detector without undergoing any collisions. This gives rise to a flux to the delayed peak from the scattered flux. In Ar only a few orders are necessary for convergence. The behavior. For example, it has been found that the fast component of the plume may cause dam- age to the growing film11

Geohegan, David B.

434

Persistent source influences on the trailing edge of a groundwater plume, and natural attenuation timeframes: The F-Area Savannah River Site  

E-Print Network [OSTI]

and FSB-110D; Savannah River National Laboratory: Aiken, SC,Berkeley CA Savannah River National Laboratory (SRNL), Aiken

Wan, J.

2013-01-01T23:59:59.000Z

435

AWEA Wind Project Siting Seminar  

Broader source: Energy.gov [DOE]

The AWEA Wind Project Siting Seminar takes an in-depth look at the latest siting challenges and identify opportunities to reduce risks associated with the siting and operation of wind farms to...

436

YUCCA MOUNTAIN SITE DESCRIPTION  

SciTech Connect (OSTI)

The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

A.M. Simmons

2004-04-16T23:59:59.000Z

437

Site Map - Cyclotron Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Success Stories ContactSite MapSite

438

Site map | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Success StoriesSite Map Site

439

Sandia National Laboratories: Siting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking WorkTransformationSiting Siting At the residential and

440

Site Map | DOEpatents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted forHighlightsSeminarsSiliconSite Map TUNL pdf's | FAS pdf's |Site Map

Note: This page contains sample records for the topic "mound site plume" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Site Monitoring Area Maps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted forHighlightsSeminarsSiliconSite Map TUNL pdf's | FAS pdf's |SiteMaps

442

Hanford Private Tours - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Private Tours Hanford Site Tours Hanford Tour Restrictions Hanford Site Tours Hanford Tours for Governmental Officials Hanford Tours for Tribal Affairs Hanford Private Tours Media...

443

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104,NO. Cll, PAGES 25,913-25,935,NOVEMBER 15, 1999 Overflow into the deep Caribbean: Effects of plume  

E-Print Network [OSTI]

into the deep Caribbean: Effects of plume variability ParkerMacCready,1WilliamE.Johns,2ClaesG.Rooth,2DavidCaribbeanandtheAtlanticis overthe Jungfern-GrapplerSill complexat 1815m depth.Throughthesegapsflowsthesolesourceof waterforthedeepCaribbean Sv -- 106m3s-l) of Atlanticwatercolderthan0=-3.965øCflowingintothe Caribbean

MacCready, Parker

444

12A.4 VERTICAL VELOCITY AND BUOYANCY CHARACTERISTICS OF ECHO PLUMES DETECTED BY AN AIRBORNE MM-WAVE RADAR IN THE CONVECTIVE  

E-Print Network [OSTI]

12A.4 VERTICAL VELOCITY AND BUOYANCY CHARACTERISTICS OF ECHO PLUMES DETECTED BY AN AIRBORNE MM-WAVE, is the availability of in situ thermodynamic and kinematic observations, and the direct observation of horizontal, as part of IHOP_02 (The International Water Vapor Project, Weckwerth et al 2003). The key radar

Geerts, Bart