Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mound brine tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Environmental assessment of the brine pipeline replacement for the Strategic Petroleum Reserve Bryan Mound Facility in Brazoria County, Texas  

SciTech Connect

The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0804, for the proposed replacement of a deteriorated brine disposal pipeline from the Strategic Petroleum Reserve (SPR) Bryan Mound storage facility in Brazoria County, Texas, into the Gulf of Mexico. In addition, the ocean discharge outfall would be moved shoreward by locating the brine diffuser at the end of the pipeline 3.5 miles offshore at a minimum depth of 30 feet. The action would occur in a floodplain and wetlands; therefore, a floodplain/wetlands assessment has been prepared in conjunction with this EA. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 USC. 4321, et seg.). Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and the Department is issuing this Finding of No Significant Impact (FONSI). This FONSI also includes a Floodplain Statement of Findings in accordance with 10 CFR Part 1022.

Not Available

1993-09-01T23:59:59.000Z

2

MOUND Environmental Restoration Program  

Office of Legacy Management (LM)

MOUND MOUND Environmental Restoration Program ._. I s ! I " ' Al /. i i : MOUND Environmental Restoration Program VlOUND I MOUND PLANT POTENTIAL RELEASE SITE PACKAGE Notice of Public Review Period hgram The following potential release site (PRS) packages will be available for public review ir he CERCLA Public Reading Room, 305 E. Central Ave., Miamisburg, Ohio beginning lune 17, 1997. Public comment will be accepted on these packages from June 17, 1997, .hrough July 18, 1997. PRS 30: Building 27 Propane Tank PRS 129/130: Former Solvent Storage Sites PRS 241: Soil Con@mination- - Main Hill Parking Lot Area PRS 307: Soil Contamination -.Buil.ding 29 PRS 318: PCB Tramformer and Capacitor Locations PRS 320-325: Former Sites -:Dayton Uqits 1-4/Dayton WarehousYScioto Facility

3

Mound History and Information  

Office of Legacy Management (LM)

Mound Site History and Information Mound Site History and Information The Mound site, formerly known as the Mound Plant or Facility, takes its name from a nearby Na- tive American burial mound. The 306 acre facility is sited on a hill in the center of Miamisburg, Ohio. Construction of the Mound Plant began in 1946, and the site became operational in 1949. Mound, the nation's first post-war U.S. Atomic Energy Commission site to be constructed, was established to consolidate and continue the work conducted at the Dayton Units for the Manhattan Project. Much of the work at the Mound Plant during the Cold War involved production of the polonium- beryllium initiators used in early atomic weapons and the manufacture of and research related to ra- dionuclides. In the 1950s, the facility began to

4

Mound Laboratory: Analytical Capability  

SciTech Connect

The Monsanto Research Corporation, Mound Laboratory Analytical Capability report is intended to fulfill a customer need for basic information concerning Mound Laboratory's analytical instrumentation and techniques.

Hendrickson, E. L.

1955-03-01T23:59:59.000Z

5

mound.cdr  

Office of Legacy Management (LM)

Mound Site, in Miamisburg, Ohio. Mound Site, in Miamisburg, Ohio. This site is managed by the U.S. Department of Energy Office of Legacy Management. Site Description and History The Mound site, named for a nearby Native American burial ground, is located in Miamisburg, Ohio, approxi- mately 10 miles southwest of Dayton. The Great Miami River flows southwest through Miamisburg and domi- nates the geography of the region surrounding the Mound site. The river valley is highly industrialized; the rest of the region is a mix of farmland, residential area, small communities, and light industry. Many residential developments, five schools, the Miamisburg downtown area, and six city parks are located within a mile of the Mound site. The Mound site sits atop an elevated area overlooking the city of Miamisburg, the Great Miami River, and the

6

DOE - Office of Legacy Management -- Mound Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Ohio Mound, Ohio, Site A CERCLA andor RCRA Site MoundMap DOE has completed all remediation activities at the Mound site in accordance with applicable Comprehensive Environmental...

7

Mound Supports Galileo  

DOE Green Energy (OSTI)

This video describes the invention of Radioisotope Thermoelectric Generators (RTGs) at Mound Laboratory, and radioisotope heat source production from 1 watt-thermal to 2400 watts-thermal. RTGs have been used in many space vehicles, but the RTG built for the Galileo mission to orbit Jupiter is the largest. This RTG unit will produce 4400 watts-thermal and convert to 300 watts-electric. The plutonium-238 heat source assembly and test at Mound is described. The RTGs are tested under simulated mission conditions. The RTG leakage radiation is carefully measured for background compensation for on-board radiation monitoring instruments.

Monsanto Research Corporation

1986-01-01T23:59:59.000Z

8

Chemistry of silica in Cerro Prieto brines  

DOE Green Energy (OSTI)

The precipitation of amorphous silica from synthetic geothermal brines which resemble the flashed brine at Cerro Prieto has been studied. It was found that part of the dissolved silica quickly polymerizes to form suspended colloidal silica. The colloidal silica flocculates and settles slowly at unmodified brine pH values near 7.35. Raising the pH of the brine to about 7.8 by adding base and stirring for a few minutes causes rapid and complete flocculation and settling. These results have been confirmed in the field using actual Cerro Prieto brine. Both in the laboratory and in the field quaternary amines were found to be effective with some brine compositions but not with others. Polyacrylamides do not work at all. These results suggest the following simple preinjection brine treatment process: age the brine for 10 to 20 minutes in a covered holding tank, add 20 to 30 ppM lime (CaO), stir for 5 minutes, and separate the flocculated silica from the brine using a conventional clarifier. The brine coming out of such a process will be almost completely free of suspended solids. The pilot plant tests needed to reduce this conceptual process to practice are discussed. The rate of deposition of silica scale from synthetic brines was separately studied. It was found that a modest decrease in pH could significantly reduce the scaling rate at a reasonable cost. The equilibrium chemistry of Cerro Prieto brine was studied theoretically. These calculations indicate that increasing the brine pH to remove silica might cause some precipitation of carbonate minerals, but also that this problem could easily be eliminated at a reasonable cost if it did arise.

Weres, O.; Tsao, L.; Iglesias, E.

1980-04-01T23:59:59.000Z

9

Chemistry of Silica in Cerro Prieto Brines  

DOE Green Energy (OSTI)

The precipitation of amorphous silica from synthetic geothermal, brines which resemble the flashed brine at Cerro Prieto has been studied. It was found that part of the dissolved silica quickly polymerizes to form suspended colloidal silica. The colloidal silica flocculates and settles slowly at unmodified brine pH values near 7.35. Raising the pH of the brine to about 7.8 by adding base and stirring for a few minutes causes rapid and complete flocculation and settling. these results have been confirmed in the field using actual Cerro Prieto brine. Both in the laboratory and in the field quaternary amines were found to be effective with some brine compositions but not with others. Polyacrylamides do not work at all. These results suggest the following simple preinjection brine treatment process: age the brine for 10-20 minutes in a covered holding tank, add 20-30 ppm lime (CaO), stir for 5 minutes, and separate the flocculated silica from the brine using a conventional clarifier. The brine coming out of such a process will be almost completely free of suspended solids. The pilot plant tests needed to reduce this conceptual process to practice are discussed. The rate of deposition of silica scale from synthetic brines was separately studied. It was found that a modest decrease in pH could significantly reduce the scaling rate at a reasonable cost. The equilibrium chemistry of Cerro Prieto brine was studied theoretically. These calculations indicate that increasing the brine pH to remove silica might cause some precipitation of carbonate minerals, but also that this problem could easily be eliminated at a reasonable cost if it did arise.

Weres, Oleh; Iglesias, Eduardo; Tsao, Leon

1980-04-01T23:59:59.000Z

10

Mound facility physical characterization  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide a baseline physical characterization of Mound`s facilities as of September 1993. The baseline characterizations are to be used in the development of long-term future use strategy development for the Mound site. This document describes the current missions and alternative future use scenarios for each building. Current mission descriptions cover facility capabilities, physical resources required to support operations, current safety envelope and current status of facilities. Future use scenarios identify potential alternative future uses, facility modifications required for likely use, facility modifications of other uses, changes to safety envelope for the likely use, cleanup criteria for each future use scenario, and disposition of surplus equipment. This Introductory Chapter includes an Executive Summary that contains narrative on the Functional Unit Material Condition, Current Facility Status, Listing of Buildings, Space Plans, Summary of Maintenance Program and Repair Backlog, Environmental Restoration, and Decontamination and Decommissioning Programs. Under Section B, Site Description, is a brief listing of the Site PS Development, as well as Current Utility Sources. Section C contains Site Assumptions. A Maintenance Program Overview, as well as Current Deficiencies, is contained within the Maintenance Program Chapter.

Tonne, W.R.; Alexander, B.M.; Cage, M.R.; Hase, E.H.; Schmidt, M.J.; Schneider, J.E.; Slusher, W.; Todd, J.E.

1993-12-01T23:59:59.000Z

11

Deactivation Of Mound's Tritium Complex  

E-Print Network (OSTI)

Deactivation of Mound? s tritium complex is on the critical path for the site exit plan. Under the site exit plan, the DOE Mound Plant in Miamisburg, Ohio, is undergoing significant effort to transition the former weapons facilities to commercial use. Mound will demolish, decontaminate, or transfer more than 100 facilities and 300 acres of land to a non-commercial organization, Miamisburg Mound Community Improvement Corp. (MMCIC) for the city's industrial site development. Among these facilities, deactivation of three tritium facilities presents the most challenge. These laboratory buildings were among some of the original buildings built at Mound in the late 1940s or early 1950s. Through the years, those buildings were used for tritium recovery, testing, research and development and are heavily contaminated with tritium and other radionuclides. The Mound Plant combined safe shutdown of these facilities into a single project. The first deactivation project of this magnitude in the...

Sam Cheng And

2000-01-01T23:59:59.000Z

12

Mound Facility. 1978 annual report  

DOE Green Energy (OSTI)

For Mound Facility, the year 1978 was one of progress marked by enhanced mission assignments and significant milestones. The thirtieth anniversary of the site was celebrated, and Monsanto Research Corporation began a new 5 year contract to operate the Mound Facility. Long-standing production assignments were strengthened, and were were given a new responsibility: to develop and produce all ceramic parts used in Mound-build products. progress toward US energy objectives was bolstered by Mound programs supporting the development of nuclear fusion poser, unlocking previously us attainable fossil fuels, ensuring the safety and security of nuclear material handling operations, and exploring the real promise of energy form the sun. In 1978, we focused our attention on many efforts aimed at a brighter, more secure future.

NONE

1979-12-31T23:59:59.000Z

13

Mounded LPG storage - Experience and developments  

SciTech Connect

Liquefied petroleum gas (LPG) is stored after production, and for distribution and use, in pressure vessels which vary in size from a few kilogrammes to many thousands of tons. The types of LPG under consideration are commercial butane, commercial propane, or mixtures of the two gases in varying proportions. Mounded storage systems are becoming popular as an alternative to the better-known traditional systems. The most widely used and therefore best-known of the traditional systems are the above-ground pressure-vessel designs. These more commonly comprise factory-made cylinders which are installed horizontally, being supported on saddles at each end of the vessel. When such vessels are installed in an LPG terminal, depot, or filling plant, they are required in multiple units to facilitate the storage of more than one grade of product and to enable regular maintenance and inspection to be carried out. Today's safety regulations require such installations to be divided into sub-groups of six tanks, with all the tanks located at a safe distance from one another, and from other facilities in the immediate area. These safety distances are being increased as a result of experience, which means terminals now require large areas of land.

Barber, D.

1988-01-01T23:59:59.000Z

14

Excavator Mound Spacing on Restocking Sites  

E-Print Network (OSTI)

of a tallgrass-prairie plant com- munity. We predicted that soil mounds and burrows would provide sites. Moreover, the species found locally on mounds and burrows were a subset of the dominant plants present that perennial grami- noids predominate in the rapid recovery of vegetation on pocket gopher mounds and bur- rows

15

Microsoft Word - Mound19990322.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jane Greenwalt, DOE/Ohio (937)865-3116 Jane Greenwalt, DOE/Ohio (937)865-3116 (937)885-2556 Pager (888)207-4149 Mark Becker, BWO (937) 865-4450 March 22, 1999 ENERGY SECRETARY BILL RICHARDSON TO VISIT MIAMISBURG ON MONDAY To Present $5 Million to Community Reuse Organization MIAMISBURG, OH - U.S. Department of Energy Secretary Bill Richardson will visit the Mound site in Miamisburg on Monday, March 22, to tour the facility and meet with employees, neighbors and civic leaders. At 2:00 p.m., he will join U.S. Congressman Tony Hall, Miamisburg Mayor Dick Church, state and local community reuse organization the Miamisburg Mound Community Improvement Corporation (MMCIC). During the ceremony, Secretary Richardson will present the MMCIC a $5 million check from the Energy Department to help fund capital

16

Treatment methods for geothermal brines  

DOE Green Energy (OSTI)

A survey is made of commercially available methods currently in use as well as those which might be used to prevent scaling and corrosion in geothermal brines. More emphasis is placed on scaling. Treatments are classified as inhibitors, alterants and coagulants; they are applied to control scaling and corrosion in fresh and waste geothermal brines. Recommendations for research in brine treatment are described.

Phillips, S.L.; Mathur, A.K.; Garrison, W.

1979-04-01T23:59:59.000Z

17

DOE - Office of Legacy Management -- Mound Laboratory - OH 19  

Office of Legacy Management (LM)

Mound Laboratory - OH 19 Mound Laboratory - OH 19 FUSRAP Considered Sites Site: Mound Laboratory (OH.19) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Mound, Ohio, Site Documents Related to Mound Laboratory LEGAL NOTICE for Mound Site 2011 CERCLA Five-Year Review Third Five-Year Review for the Mound, Ohio, Site Miamisburg, Ohio. LMS/MND/S07963. September 2011 5-Year OU-1 Remedy Five-Year Review Report Second Five-Year Review for the Mound, Ohio, Site Miamisburg, Ohio September 2006 Annual Assessment of the Effectiveness of Site-Wide Institutional Controls Applied to the Former DOE Mound Site Property. LMS/MND/S06401.

18

Bryan Mound SPR cavern 113 remedial leach stage 1 analysis.  

SciTech Connect

The U.S. Strategic Petroleum Reserve implemented the first stage of a leach plan in 2011-2012 to expand storage volume in the existing Bryan Mound 113 cavern from a starting volume of 7.4 million barrels (MMB) to its design volume of 11.2 MMB. The first stage was terminated several months earlier than expected in August, 2012, as the upper section of the leach zone expanded outward more quickly than design. The oil-brine interface was then re-positioned with the intent to resume leaching in the second stage configuration. This report evaluates the as-built configuration of the cavern at the end of the first stage, and recommends changes to the second stage plan in order to accommodate for the variance between the first stage plan and the as-built cavern. SANSMIC leach code simulations are presented and compared with sonar surveys in order to aid in the analysis and offer projections of likely outcomes from the revised plan for the second stage leach.

Rudeen, David Keith [GRAM, Inc., Albuquerque, NM; Weber, Paula D.; Lord, David L.

2013-08-01T23:59:59.000Z

19

Enforcement Letter, EG&G Mound Applied Technologies- August 22, 1996  

Energy.gov (U.S. Department of Energy (DOE))

Issued to EG&G Mound Applied Technologies related to the Inadvertent Transfer of Radiological Contamination at the Mound Plant

20

Mound Museum Volunteers: Preserving a Laboratory's Legacy | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mound Museum Volunteers: Preserving a Laboratory's Legacy Mound Museum Volunteers: Preserving a Laboratory's Legacy Mound Museum Volunteers: Preserving a Laboratory's Legacy April 17, 2013 - 11:39am Addthis Ray Seiler, Mound Science and Energy Museum President, is one of the many museum volunteers who routinely talks to visitors, such as this group from Iowa who are interested in the history of the Mound site. Ray Seiler, Mound Science and Energy Museum President, is one of the many museum volunteers who routinely talks to visitors, such as this group from Iowa who are interested in the history of the Mound site. What does this project do? Goal 1. Protect human health and the environment The Mound Science and Energy Museum (MSEM) owes its success to dedicated volunteers and supporters. The MSEM currently has 40 active volunteers and

Note: This page contains sample records for the topic "mound brine tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Mound Museum Volunteers: Preserving a Laboratory's Legacy | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mound Museum Volunteers: Preserving a Laboratory's Legacy Mound Museum Volunteers: Preserving a Laboratory's Legacy Mound Museum Volunteers: Preserving a Laboratory's Legacy April 17, 2013 - 11:39am Addthis Ray Seiler, Mound Science and Energy Museum President, is one of the many museum volunteers who routinely talks to visitors, such as this group from Iowa who are interested in the history of the Mound site. Ray Seiler, Mound Science and Energy Museum President, is one of the many museum volunteers who routinely talks to visitors, such as this group from Iowa who are interested in the history of the Mound site. What does this project do? Goal 1. Protect human health and the environment The Mound Science and Energy Museum (MSEM) owes its success to dedicated volunteers and supporters. The MSEM currently has 40 active volunteers and

22

Microsoft Word - S02885_2012 CIP Mound Site  

Office of Legacy Management (LM)

Mound Site Mound Site Community Involvement Plan January 2012 LMS/MND/S02885 This page intentionally left blank LMS/MND/S02885 Office of Legacy Management Mound Site Community Involvement Plan January 2012 This page intentionally left blank U.S. Department of Energy Mound Community Involvement Plan January 2012 Doc. No. S02885 Page i Contents Abbreviations .................................................................................................................................. ii 1.0 Introduction ............................................................................................................................1 2.0 Site Description and Background ...........................................................................................1

23

LiDAR Data Applications Monitoring Illinois Prehistoric Burial Mounds  

E-Print Network (OSTI)

kangaroo rat mounds. The ants may have benefited from altered soil texture and seed composition and reduced mounds and selectively harvesting seeds (Brown and Heske 1990, Valone and Brown 1995, Whitford and Kay mounds within each treatment type in order to control for rodent activity (i.e. densities) across

Frank, Thomas D.

24

Independent technical review of the Mound Plant  

SciTech Connect

This report documents an Independent Technical Review (ITR) of the facilities, organizations, plans, and activities required to transition particular elements of the Mound Plant from Defense Program (DP) funded operation as appropriate either to community developed reuse or safe deactivation leading to decontamination and decommissioning (D&D). The review was conducted at the request of the Dr. Willis Bixby, Deputy Assistant Secretary, U.S. Department of Energy EM-60, Office of Facility Transition and Management and is a consensus of the nine member ITR Team. Information for the review was drawn from documents provided to the ITR Team by the Miamisburg Area Office (MB) of the DOE, EG&G, the City of Miamisburg, and others; and from presentations, discussions, interviews, and facility inspections at the Mound Plant during the weeks of March 14 and March 28, 1994. During the week of April 25, 1994, the ITR Team met at Los Alamos, New Mexico to develop consensus recommendations. A presentation of the core recommendations was made at the Mound Plant on May 5, 1994. This is an independent assessment of information available to, and used by, the Mound Plant personnel. Repetition of the information is not meant to imply discovery by the ITR Team. Team members, however, acting as independent reviewers, frequently assess the information from a perspective that differs significantly from that of the Mound Plant personnel. The report is based on information obtained and conditions observed during the March 1994 review interval. The ITR process and normal site work often initiate rapid, beneficial changes in understanding and organization immediately following the review. These changes frequently alter conditions observed during the review, but the report does not address changes subsequent to the review interval.

1994-06-01T23:59:59.000Z

25

Recovery 2011 CSPG CSEG CWLS Convention 1 Brine-methane Substitution: The Seismic Response of Coalbeds  

E-Print Network (OSTI)

an important source of natural gas (Shi and Durucan, 2005). The production of the CBM takes place when coal seam using a tank model which assumes that there is no variation of the reservoir properties). For the Gassmann fluid substitution, we assume a pore fluid of 100% brine as the initial condition and calculate

Ferguson, Robert J.

26

DOE - Office of Legacy Management -- Mound Site  

Office of Legacy Management (LM)

Ohio Ohio Mound, Ohio, Site This Site All Sites All LM Quick Search Key Documents and Links All documents are Adobe Acrobat files. pdf_icon Key Documents Fact Sheet Annual Institutional Controls Report Long-Term Stewardship Site Transition Plan Site Sales Agreement Internal Links Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Administrative Records External Links Mound Development Corporation (MDC) Ohio Environmental Protection Agency U.S. Environmental Protection Agency Please be green. Do not print these documents unless absolutely necessary. Request a paper copy of any document by submitting a Document Request. All Site Documents All documents are Adobe Acrobat files. pdf_icon Fact Sheet Community Involvement General Site Documents

27

Gas evolution from geopressured brines  

DOE Green Energy (OSTI)

The process of gas evolution from geopressured brine is examined using as a basis the many past studies of gas evolution from liquids in porous media. A discussion of a number of speculations that have been made concerning gas evolution from geopressured brines is provided. According to one, rapid pressure reduction will cause methane gas to evolve as when one opens a champagne bottle. It has been further speculated that evolved methane gas would migrate up to form an easily producible cap. As a result of detailed analyses, it can be concluded that methane gas evolution from geopressured brines is far too small to ever form a connected gas saturation except very near to the producing well. Thus, no significant gas cap could ever form. Because of the very low solubility of methaned in brine, the process of methane gas evolution is not at all analogous to evolution of carbon dioxide from champagne. A number of other speculations and questions on gas evolution are analyzed, and procedures for completing wells and testing geopressured brine reservoirs are discussed, with the conclusion that presently used procedures will provide adequate data to enable a good evaluation of this resource.

Matthews, C.S.

1980-06-01T23:59:59.000Z

28

EG G Mound Applied Technologies payroll system  

SciTech Connect

EG G Mound Applied Technologies, Inc., manages and operates the Mound Facility, Miamisburg, Ohio, under a cost-plus-award-fee contract administered by the Department of Energy's Albuquerque Field Office. The contractor's Payroll Department is responsible for prompt payment in the proper amount to all persons entitled to be paid, in compliance with applicable laws, regulations, and legal decisions. The objective was to determine whether controls were in place to avoid erroneous payroll payments. EG G Mound Applied Technologies, Inc., did not have all the internal controls required by General Accounting Office Title 6, Pay, Leave, and Allowances.'' Specifically, they did not have computerized edits, separation of duties and responsibilities, and restricted access to payroll data files. This condition occurred because its managers were not aware of Title 6 requirements. As a result, the contractor could not assure the Department of Energy that payroll costs were processes accurately; and fraud, waste, or abuse of Department of Energy funds could go undetected. Our sample of 212 payroll transactions from a population of 66,000 in FY 1991 disclosed only two minor processing errors and no instances of fraud, waste or abuse.

Not Available

1992-02-07T23:59:59.000Z

29

Microsoft Word - MoundImprovementGrant20030522.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE: 202-586-5806 DOE: 202-586-5806 Tuesday, May 22, 2003 Miamisburg Mound Community Improvement Corporation To Receive $1.3 Million Grant WASHINGTON, DC - The Department of Energy (DOE) today announced that it will award $1.3 million to the Miamisburg Mound Community Improvement Corporation (MMCIC) to transition the Mound site from a former weapons production facility to the economically viable Mound Advanced Technology Center. MMCIC is the community reuse organization (CRO) for the department's Mound Site in Ohio. "The Energy Department is a good neighbor to the communities surrounding our sites," Secretary of Energy Spencer Abraham said. "We will continue to work with the Miamisburg Mound Community Improvement Corporation and other community reuse organizations around

30

Mound site environmental report for calendar year 1992  

Science Conference Proceedings (OSTI)

The purpose of this report is to inform the public about the impact of Mound operations on the population and the environment. Mound is a government-owned facility operated by EG&G Mound Applied Technologies for the US Department of Energy (DOE). This integrated production, development, and research site performs work in support of DOE`s weapon and energy related programs, with emphasis on explosive, nuclear and energy technologies.

Bauer, L.R.

1993-07-01T23:59:59.000Z

31

Modeling acid-gas generation from boiling chloride brines  

E-Print Network (OSTI)

distillation of a calcium-chloride-dominant brine was simulateddistillation of a calcium-chloride-dominated brine is then simulated

Zhang, Guoxiang

2010-01-01T23:59:59.000Z

32

Former Worker Medical Screening Program - Mound Former Construction...  

NLE Websites -- All DOE Office Websites (Extended Search)

Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE Site: Mound Worker Population...

33

Former Worker Medical Screening Program - Mound Former Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Workers Former Worker Medical Screening Program (FWP) Project Name: Worker Health Protection Program Covered DOE Site: Mound Worker Population Served: Production Workers...

34

Microsoft Word - S02885_2012 CIP Mound Site  

Office of Legacy Management (LM)

Corporation (see MDC) MSEM Mound Science and Energy Museum (formerly MMA) NCP National Oil and Hazardous Substances Pollution Contingency Plan NPL National Priorities List PRS...

35

Tank Closure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Topics 3 Overview of SRS Tank Closure Program Two Tank Farms - F Area and H Area Permitted by SC as Industrial Wastewater Facilities under the Pollution Control...

36

The Porcupine Bank Canyon coral mounds: oceanographic and topographic steering of deep-water carbonate mound  

E-Print Network (OSTI)

with increasing proximity to S. invicta mounds, suggesting that mealybugs benefit as well. Mutual benefits derived benefit from association with S. invicta. We found that mealybug occurrence increases sig- nificantly colony. While it appears clear that S. invicta benefits from association with these mealybugs, whether

Mazzini, Adriano

37

Improved Water Flooding through Injection Brine Modification  

Science Conference Proceedings (OSTI)

Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of waterflooding, by far the most widely applied method of improved oil recovery. Laboratory waterflood tests show that injection of dilute brine can increase oil recovery. Numerous fields in the Powder River basin have been waterflooded using low salinity brine (about 500 ppm) from the Madison limestone or Fox Hills sandstone. Although many uncertainties arise in the interpretation and comparison of field production data, injection of low salinity brine appears to give higher recovery compared to brine of moderate salinity (about 7,000 ppm). Laboratory studies of the effect of brine composition on oil recovery cover a wide range of rock types and crude oils. Oil recovery increases using low salinity brine as the injection water ranged from a low of no notable increase to as much as 37.0% depending on the system being studied. Recovery increases using low salinity brine after establishing residual oil saturation (tertiary mode) ranged from no significant increase to 6.0%. Tests with two sets of reservoir cores and crude oil indicated slight improvement in recovery for low salinity brine. Crude oil type and rock type (particularly the presence and distribution of kaolinite) both play a dominant role in the effect that brine composition has on waterflood oil recovery.

Robertson, Eric Partridge; Thomas, Charles Phillip; Morrow, Norman; (U of Wyoming)

2003-01-01T23:59:59.000Z

38

Property:BrineConstituents | Open Energy Information  

Open Energy Info (EERE)

BrineConstituents BrineConstituents Jump to: navigation, search Property Name BrineConstituents Property Type String Description Describes major elements, compounds in geothermal brine This is a property of type Page. Subproperties This property has the following 1 subproperty: V Valles Caldera - Redondo Geothermal Area Pages using the property "BrineConstituents" Showing 2 pages using this property. N North Brawley Geothermal Area + Chlorine, sodium, potassium, and calcium. Silica concentrations are 527 mg/l and total dissolved solids measure 82,900 mg/l. + S Salt Wells Geothermal Area + Cl, Na, SO4, SiO2, HCO3, and minor Ca, K + Retrieved from "http://en.openei.org/w/index.php?title=Property:BrineConstituents&oldid=598832#SMWResults" Category: Properties

39

Development Operations Hypersaline Geothermal Brine Utilization Imperial  

Open Energy Info (EERE)

Hypersaline Geothermal Brine Utilization Imperial Hypersaline Geothermal Brine Utilization Imperial County, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Development Operations Hypersaline Geothermal Brine Utilization Imperial County, California Abstract N/A Authors Whitescarver and Olin D. Published U.S. Department of Energy, 1984 Report Number N/A DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Development Operations Hypersaline Geothermal Brine Utilization Imperial County, California Citation Whitescarver, Olin D.. 1984. Development Operations Hypersaline Geothermal Brine Utilization Imperial County, California. (!) : U.S. Department of Energy. Report No.: N/A. Retrieved from "http://en.openei.org/w/index.php?title=Development_Operations_Hypersaline_Geothermal_Brine_Utilization_Imperial_County,_California&oldid=682648

40

Development Operations Hypersaline Geothermal Brine Utilization...  

Open Energy Info (EERE)

Number NA DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Development Operations Hypersaline Geothermal Brine Utilization Imperial...

Note: This page contains sample records for the topic "mound brine tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Mound Plant Director's Final Findings and Orders, October 4, 1995  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mound Plant Director's Final Findings and Orders, October 4, 1995 Page 1 of 16 Mound Plant Director's Final Findings and Orders, October 4, 1995 Page 1 of 16 EM Home | Regulatory Compliance | Environmental Compliance Agreements Mound Plant Director's Final Findings and Orders, October 4, 1995 BEFORE THE OHIO ENVIRONMENTAL PROTECTION AGENCY In the Matter Of: United States Department of Energy : Director's Final Mound Facility : Findings and Order P.O. Box 66 : Miamisburg, Ohio 45343-0066 : Respondent It is hereby agreed by and among the parties hereto as follows: Table of Contents I. Jurisdiction II. Parties Bound III. Definitions IV. Findings of Fact V. Orders VI. Limitations of Director's Approval VII. Notice VIII. Project Managers IX. Dispute Resolution X. Funding XI. Other Applicable Laws XII. Reservation of Rights XIII. Modification

42

DOE - Office of Legacy Management -- Mound_Benefits  

Office of Legacy Management (LM)

Ohio > Mound_Benefits Ohio > Mound_Benefits Employment Verification Mercer, Mound Benefits Center (866) 296-5036 Worker and Community Transition Program (Section 3161) Direct all education, training, preference in hiring, relocation, and outplacement inquiries to: Professional Services of America, Inc. 601 Avery Street, Suite 500, Parkersburg, WV 26101 Phone: (866) 562-7482 Fax: (304) 485-1280 E-mail: jsheppard@psa-inc.com Medical and Life Insurance for Former EG&G, BWXTO, and CH2M HILL Employees For questions about health insurance coverage and/or dependent information, life insurance and/or beneficiaries, etc.: Mercer, Mound Benefits Center P.O. Box 9735, Providence, RI 02940 (866) 296-5036 9:00 a.m. to 6:00 p.m. EST, Monday-Friday For questions about insurance claims:

43

Audit of Mound Plant`s reduction in force  

Science Conference Proceedings (OSTI)

Objective of this audit was to determine whether the Mound Plant`s Fiscal Year 1992 reduction in force (RIF) was effectively managed and implemented properly by DOE. DOE established policy to encourage contractors to reduce staffing by voluntary separations without unreasonable separation costs. EG&G Mound`s FY 1992 RIF was accomplished by voluntary separations; however, its implementation unreasonably increased costs because DOE did not have adequate criteria or guidelines for evaluating contractors` RIF proposals, and because EG&G Mound furnished inaccurate cost data to DOE evaluators. The unreasonable costs amounted to at least $21 million. Recommendations are made that DOE develop and implement guidelines to impose limitations on voluntary separation allowances, early retirement incentive payments, and inclusion of crucial employee classifications in voluntary RIFs.

Not Available

1993-05-17T23:59:59.000Z

44

EA-1001: Commercialization of the Mound Plant, Golden, Colorado  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts of the proposal to commercialize surplus facilities such as the U.S. Department of Energy's Mound Plant in Miamisburg, Ohio. Commercialization will make...

45

Microsoft Word - S07757_2011 Mound IC Report  

Office of Legacy Management (LM)

entire site from the south. Figure 3 shows the parcel boundaries laid over a March 2011 aerial photograph of the Mound Site. The actual photographs were taken at a low altitude,...

46

Environmental assessment for commercialization of the Mound Plant  

Science Conference Proceedings (OSTI)

In November 1993 US DOE decided to phase out operations at the Mound Plant in Miamisburg, Ohio, with the goal of releasing the site for commercial use. The broad concept is to transform the plant into an advanced manufacturing center with the main focus on commercializing products and other technology. DOE proposes to lease portions of the Mound Plant to commercial enterprises. This Environmental Impact statement has a finding of no significant impact in reference to such action.

Not Available

1994-10-26T23:59:59.000Z

47

EXPERIMENTAL METHODS TO ESTIMATE ACCUMULATED SOLIDS IN NUCLEAR WASTE TANKS  

SciTech Connect

The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream; Magnetic wand used to manually remove stainless steel solids from samples and the tank heel; Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas; Laser rangefinders to determine the volume and shape of the solids mounds; Core sampler to determine the stainless steel solids distribution within the solids mounds; Computer driven positioner that placed the laser rangefinders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were low. These devices and techniques were very effective to estimate the movement, location, and concentrations of the solids representing plutonium and are expected to perform well at a larger scale. The operation of the techniques and their measurement accuracies will be discussed as well as the overall results of the accumulated solids test.

Duignan, M.; Steeper, T.; Steimke, J.

2012-12-10T23:59:59.000Z

48

Tank Closure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Closure Closure Sherri Ross Waste Removal and Tank Closure Waste Disposition Project Programs Division Savannah River Operations Office Presentation to the DOE HLW Corporate Board 2  Overview and Status of SRS Tank Closure Program  Issues/Challenges  Communications  Schedule Performance  Ceasing Waste Removal  Compliance with SC Water Protection Standards  Questions? Topics 3 Overview of SRS Tank Closure Program  Two Tank Farms - F Area and H Area  Permitted by SC as Industrial Wastewater Facilities under the Pollution Control Act  Three agency Federal Facility Agreement (FFA)  DOE, SCDHEC, and EPA  51 Tanks  24 old style tanks (Types I, II and IV)  Do not have full secondary containment  FFA commitments to close by 2022  2 closed in 1997

49

Hydrocarbon content of geopressured brines. Final report  

DOE Green Energy (OSTI)

Design Well data (bottomhole pressure minus wellhead pressure, GWR, and hydrocarbon composition) is presented as a function of producing conditions. These are examined in conjunction with the following models to attempt to deduce the reservoir brine saturation level: (1) reservoir contains gas dispersed in the pores and the gas saturation is greater than critical; (2) reservoir brine is gas-saturated; (3) bubble point below hydrostatic pressure; and (4) bubble point between hydrostatic pressure and reservoir pressure. 24 figs., 10 tabs. (ACR)

Osif, T.L.

1985-08-01T23:59:59.000Z

50

Enforcement Letter, CH2M Hill Mound, Inc - December 22, 2004...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Letter, CH2M Hill Mound, Inc - December 22, 2004 December 22, 2004 Issued to CH2M Hill Mound, Inc. related to a Radioactive Contamination Event during Remediation Activities at...

51

Analysis of Subsidence Data for the Bryan Mound Site, Texas  

SciTech Connect

The elevation change data measured at the Bryan Mound Strategic Petroleum Reserve (SPR) site over the last 16+ years has been studied and a model utilized to project elevation changes into the future. The subsidence rate at Bryan Mound is low in comparison with other Strategic Petroleum Reserve sites and has decreased with time due to the maintenance of higher operating pressures and the normal decrease in creep closure rate of caverns with time. However, the subsidence at the site is projected to continue. A model was developed to project subsidence values 20 years into the future; no subsidence related issues are apparent from these projections.

Bauer, Stephen J.

1999-07-01T23:59:59.000Z

52

Cimbebasia 16: 143-175, 2000 143 Architecture and morphogenesis in the mound of  

E-Print Network (OSTI)

Microbial community composition and biogeochemical processes in cold-water coral carbonate mounds carbonate mound gradient gel-electrophoresis seafloor biosphere microbial community structure sulfate of Bacteria and Archaea in a cluster of carbonate mounds located in the Gulf of Cadiz on the Moroccan margin

Turner, Scott

53

Biological control of Striga hermonthica by Cubitermes termite mound powder amendment in sorghum culture  

E-Print Network (OSTI)

is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non, ant mounds, and bulk soil from an agricultural field. Mound soil was most enriched in inorganic N than burrow, mound and bulk soil for most substrates. Casts also had the highest MPNs for particular

Thioulouse, Jean

54

Stability of plutonium(VI) in WIPP brine  

Science Conference Proceedings (OSTI)

The redox stability of plutonium (VI) in WIPP brine was investigated by monitoring the oxidation state as a function of time using a combination of absorption spectrometry, radiochemical counting and filtration. Studies were performed with Pu-239 and Pu-238 in four WIPP brines at concentrations between 10{sup {minus}3} and 10{sup {minus}8} M for durations as long as two years. Two synthetic brines, Brine A and ERDA-6, and two underground collected brines, DH-36 and G-Seep, were used. The stability of Pu(VI) depended on the brine composition and the speciation of the plutonium in that brine. When carbonate was present, a Pu(VI)-carbonate complex was observed that was stable. In the absence of carbonate, Pu(VI) hydrolytic species predominated which had a wide range of stability in the brines investigated. The results reported will help define the speciation of plutonium in WIPP brine and hence its potential for migration.

Reed, D.T.; Okajima, S.

1993-12-01T23:59:59.000Z

55

Volatility of HCl and the thermodynamics of brines during brine dryout  

DOE Green Energy (OSTI)

Laboratory measurements of liquid-vapor partitioning (volatility) of chlorides from brines to steam can be used to indicate the potential for corrosion problems in geothermal systems. Measurements of volatilities of solutes in chloride brines have established a possible mechanism for the production of high-chloride steam from slightly acidic high temperature brines. Questions concerning the fate of NaCl in the steam production process have been addressed through extensive measurements of its volatility from brines ranging in concentration from dilute solutions to halite saturation. Recent measurements of chloride partitioning to steam over brines in contact with Geysers rock samples are consistent with our concept of the process for production of high-chloride steam.

Simonson, J.M.; Palmer, D.A.

1997-04-01T23:59:59.000Z

56

Miamisburg Mound Community Improvement Corp | Open Energy Information  

Open Energy Info (EERE)

Miamisburg Mound Community Improvement Corp Miamisburg Mound Community Improvement Corp Jump to: navigation, search Name Miamisburg Mound Community Improvement Corp Address 965 Capstone Dr, Suite 480 Place Miamisburg, Ohio Zip 45342-6714 Sector Buildings, Efficiency, Geothermal energy, Services, Solar, Wind energy Product Business and legal services; Energy audits/weatherization; Energy provider: power production; Engineering/architectural/design;Installation;Investment/finances; Manufacturing; Research and development; Trainining and education;Other:Economic Development Phone number 937-865-4462 Website http://www.mound.com Coordinates 39.6304472°, -84.2903471° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6304472,"lon":-84.2903471,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

57

Characteristics and origin of Earth-mounds on the Eastern Snake River Plain, Idaho  

Science Conference Proceedings (OSTI)

Earth-mounds are common features on the Eastern Snake River Plain, Idaho. The mounds are typically round or oval in plan view, mounds have formed on deposits of multiple sedimentary environments. Those studied included alluvial gravel terraces along the Big Lost River (late Pleistocene/early Holocene age), alluvial fan segments on the flanks of the Lost River Range (Bull Lake and Pinedale age equivalents), and loess/slopewash sediments overlying basalt flows. Backhoe trenches were dug to allow characterization of stratigraphy and soil development. Each mound has features unique to the depositional and pedogenic history of the site; however, there are common elements to all mounds that are linked to the history of mound formation. Each mound has a {open_quotes}floor{close_quotes} of a sediment or basement rock of significantly different hydraulic conductivity than the overlying sediment. These paleosurfaces are overlain by finer-grained sediments, typically loess or flood-overbank deposits. Mounds formed in environments where a sufficient thickness of fine-grained sediment held pore water in a system open to the migration to a freezing front. Heaving of the sediment occurred by the growth of ice lenses. Mound formation occurred at the end of the Late Pleistocene or early in the Holocene, and was followed by pedogenesis. Soils in the mounds were subsequently altered by bioturbation, buried by eolian deposition, and eroded by slopewash runoff. These secondary processes played a significant role in maintaining or increasing the mound/intermound relief.

Tullis, J.A.

1995-09-01T23:59:59.000Z

58

Placing Refuge: Shell Mounds and the Archaeology of Colonial Encounters in the San Francisco Bay Area, California  

E-Print Network (OSTI)

mounds by hunter-gatherers and ensuing currency as foundations for cultural continuity following the closure

Schneider, Tsim Duncan

2010-01-01T23:59:59.000Z

59

Brine flow in heated geologic salt.  

Science Conference Proceedings (OSTI)

This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

Kuhlman, Kristopher L.; Malama, Bwalya

2013-03-01T23:59:59.000Z

60

Portable brine evaporator unit, process, and system  

DOE Patents (OSTI)

The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

Hart, Paul John (Indiana, PA); Miller, Bruce G. (State College, PA); Wincek, Ronald T. (State College, PA); Decker, Glenn E. (Bellefonte, PA); Johnson, David K. (Port Matilda, PA)

2009-04-07T23:59:59.000Z

Note: This page contains sample records for the topic "mound brine tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Brines formed by multi-salt deliquescence  

SciTech Connect

The FY05 Waste Package Environment testing program at Lawrence Livermore National Laboratory focused on determining the temperature, relative humidity, and solution compositions of brines formed due to the deliquescence of NaCl-KNO{sub 3}-NaNO{sub 3} and NaCl-KNO{sub 3}-NaNO{sub 3}-Ca(NO{sub 3}){sub 2} salt mixtures. Understanding the physical and chemical behavior of these brines is important because they define conditions under which brines may react with waste canister surfaces. Boiling point experiments show that NaCl-KNO{sub 3}-NaNO{sub 3} and NaCl-KNO{sub 3}-NaNO{sub 3}-Ca(NO{sub 3}){sub 2} salt mixtures form brines that transform to hydrous melts that do not truly 'dry out' until temperatures exceed 300 and 400 C, respectively. Thus a conducting solution is present for these salt assemblages over the thermal history of the repository. The corresponding brines form at lower relative humidity at higher temperatures. The NaCl-KNO{sub 3}-NaNO{sub 3} salt mixture has a mutual deliquescence relative humidity (MDRH) of 25.9% at 120 C and 10.8% at 180 C. Similarly, the KNO{sub 3}-NaNO{sub 3} salt mixture has MDRH of 26.4% at 120 C and 20.0% at 150 C. The KNO{sub 3}-NaNO{sub 3} salt mixture salts also absorb some water (but do not appear to deliquesce) at 180 C and thus may also contribute to the transfer of electrons at interface between dust and the waste package surface. There is no experimental evidence to suggest that these brines will degas and form less deliquescent salt assemblages. Ammonium present in atmospheric and tunnel dust (as the chloride, nitrate, or sulfate) will readily decompose in the initial heating phase of the repository, and will affect subsequent behavior of the remaining salt mixture only through the removal of a stoichiometric equivalent of one or more anions. Although K-Na-NO{sub 3}-Cl brines form at high temperature and low relative humidity, these brines are dominated by nitrate, which is known to inhibit corrosion at lower temperature. Nitrate to chloride ratios of the NaCl-KNO{sub 3}-NaNO{sub 3} salt mixture are about NO{sub 3}:Cl = 19:1. The role of nitrate on corrosion at higher temperatures is addressed in a companion report (Dixit et al., 2005).

Carroll, S; Rard, J; Alai, M; Staggs, K

2005-11-04T23:59:59.000Z

62

Silica scaling in simulated geothermal brines  

DOE Green Energy (OSTI)

A 6.3 1/sec (100 GPM) titanium corrosion test loop was modified to provide a dynamic facility for studying the formation of silica deposits, their properties and fates, as a function of brine composition, temperature, and flow conditions. Scale formation was studied in a segmented heat exchanger operating under realistic conditions; the segmented design permitted examination of scale formations in five temperature regimes. The program was terminated after minimal exploratory operation because of reduced sponsor perceptions of the need for concern with scaling problems. The runs which were completed dealt cursorily with brine concentration and pH effects. Results are presented.

Bohlmann, E.G.; Shor, A.J.; Berlinski, P.; Mesmer, R.E.

1981-04-01T23:59:59.000Z

63

Sludge Heel Removal Analysis for Slurry Pumps of Tank 11  

SciTech Connect

Computational fluid dynamics methods were used to develop and recommend a slurry pump operational strategy for sludge heel removal in Tank 11. Flow patterns calculated by the model were used to evaluate the performance of various combinations of operating pumps and their orientation. The models focused on removal of the sludge heel located at the edge of Tank 11 using the four existing slurry pumps. The models and calculations were based on prototypic tank geometry and expected normal operating conditions as defined by Tank Closure Project (TCP) Engineering. Computational fluid dynamics models of Tank 11 with different operating conditions were developed using the FLUENT(tm) code. The modeling results were used to assess the efficiency of sludge suspension and removal operations in the 75-ft tank. The models employed a three-dimensional approach, a two-equation turbulence model, and an approximate representation of flow obstructions. The calculated local velocity was used as a measure of sludge removal and mixing capability. For the simulations, a series of the modeling calculations was performed with indexed pump orientations until an efficient flow pattern near the potential location of the sludge mound was established for sludge removal. The calculated results demonstrated that the existing slurry pumps running at 1600 rpm could remove the sludge mound from the tank with a 103 in. liquid level, based on a minimum sludge suspension velocity of 2.27 ft/sec. In this case, the only exception is the region within about 2 ft. from the tank wall. Further results showed that the capabilities of sludge removal were affected by the indexed pump orientation, the number of operating pumps, and the pump speed. A recommended operational strategy for an efficient flow pattern was developed to remove the sludge mound assuming that local fluid velocity can be used as a measure of sludge suspension and removal. Sensitivity results showed that for a given pump speed, a higher tank level and a lower pump nozzle elevation would result in better performance in suspending and removing the sludge. The results also showed that the presence of flow obstructions such as valve housing structure were advantageous for certain pump orientations.

Lee, S.Y.

2003-09-30T23:59:59.000Z

64

Dual Tank Fuel System  

DOE Patents (OSTI)

A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

Wagner, Richard William (Albion, NY); Burkhard, James Frank (Churchville, NY); Dauer, Kenneth John (Avon, NY)

1999-11-16T23:59:59.000Z

65

Blue Mounds, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mounds, Wisconsin: Energy Resources Mounds, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0174968°, -89.8323454° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0174968,"lon":-89.8323454,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

66

Enforcement Letter-Mound-08/22/1996  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mr. Michael T. Sullivan Mr. Michael T. Sullivan [ ] EG&G Mound Applied Technologies P.O. Box 3000 Miamisburg, OH 45343-3000 Re: Noncompliance Number NTS-OH-MB-EGGM-EGGMAT01-1996-0001 Dear Mr. Sullivan: On April 17, 1996, the Office of Enforcement and Investigation conducted an onsite evaluation of the referenced potential noncompliance reported to Department of Energy (DOE) by EG&G Mound (EG&G) in the Noncompliance Tracking System (NTS). This potential noncompliance, which occurred on January 11, 1996, and was reported on January 24, 1996, involved the inadvertent transfer of contamination, resulting in low level contamination of individuals, equipment and locations outside designated radiological areas. The April 17, 1996, site visit evaluated the adequacy of and progress

67

Mound, Former Production Workers Screening Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Production Workers Screening Projects Production Workers Screening Projects Mound, Former Production Workers Screening Projects Project Name: Worker Health Protection Program Covered DOE Site: Mound Worker Population Served: Production Workers Principal Investigator: Jim Frederick Co-Principal Investigator: Steven Markowitz, MD Toll-free Telephone: 1-877-866-6802 Local Outreach Office Eric Parker, Paige Gibson and Mike Ball 113 East Central Avenue W. Carrollton, OH 45449 Website: http://www.worker-health.org/ This project is being conducted by the United Steelworkers, in conjunction with Queens College of the City University of New York. Free of charge, eligible workers can receive a medical exam, including chest X-ray and breathing test, and an educational workshop. This program also offers CT

68

Flower Mound, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Flower Mound, Texas: Energy Resources Flower Mound, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.0145673°, -97.0969552° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.0145673,"lon":-97.0969552,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

69

BIOCHEMICAL PROCESSES FOR GEOTHERMAL BRINE TREATMENT  

DOE Green Energy (OSTI)

As part of the DOE Geothermal Energy Program, BNL's Advanced Biochemical Processes for Geothermal Brines (ABPGB) project is aimed at the development of cost-efficient and environmentally acceptable technologies for the disposal of geothermal wastes. Extensive chemical studies of high and low salinity brines and precipitates have indicated that in addition to trace quantities of regulated substances, e.g., toxic metals such as arsenic and mercury, there are significant concentrations of valuable metals, including gold, silver and platinum. Further chemical and physical studies of the silica product have also shown that the produced silica is a valuable material with commercial potential. A combined biochemical and chemical technology is being developed which (1) solubilizes, separates, and removes environmentally regulated constituents in geothermal precipitates and brines (2) generates an amorphous silica product which may be used as feedstock for the production of revenue generating materials, (3) recover economically valuable trace metals and salts. Geothermal power resources which utilize low salinity brines and use the Stretford process for hydrogen sulfide abatement generate a contaminated sulfur cake. Combined technology converts such sulfur to a commercial grade sulfur, suitable for agricultural use. The R and D activities at BNL are conducted jointly with industrial parties in an effort focused on field applications.

PREMUZIC,E.T.; LIN,M.S.; BOHENEK,M.; JOSHI-TOPE,G.; ZHOU,W.; SHELENKOVA,L.; WILKE,R.

1998-09-20T23:59:59.000Z

70

Biochemical processes for geothermal brine treatment  

DOE Green Energy (OSTI)

As part of the DOE Geothermal Energy Program, BNL`s Advanced Biochemical Processes for Geothermal Brines (ABPGB) project is aimed at the development of cost-efficient and environmentally acceptable technologies for the disposal of geothermal wastes. Extensive chemical studies of high and low salinity brines and precipitates have indicated that in addition to trace quantities of regulated substances, e.g., toxic metals such as arsenic and mercury, there are significant concentrations of valuable metals, including gold, silver and platinum. Further chemical and physical studies of the silica product have also shown that the produced silica is a valuable material with commercial potential. A combined biochemical and chemical technology is being developed which (1) solubilizes, separates, and removes environmentally regulated constituents in geothermal precipitates and brines, (2) generates an amorphous silica product which may be used as feedstock for the production of revenue generating materials, (3) recover economically valuable trace metals and salts. Geothermal power resources which utilize low salinity brines and use the Stretford process for hydrogen sulfide abatement generate a contaminated sulfur cake. Combined technology converts such sulfur to a commercial grade sulfur, suitable for agricultural use. The R and D activities at BNL are conducted jointly with industrial parties in an effort focused on field applications.

Premuzic, E.T.; Lin, M.S.; Bohenek, M.; Joshi-Tope, G.; Zhou, W.; Shelenkova, L.; Wilke, R.

1998-08-01T23:59:59.000Z

71

Unconventional gas sources. Volume IV. Geopressured brines  

DOE Green Energy (OSTI)

The following topics are covered: study objectives, regional geology and prospect evaluation, reservoir engineering, drilling and well costs, production and water disposal facilities, pressure maintenance, geothermal and hydraulic energy assessment, operating expense, economic evaluation, environmental considerations, legal considerations, and risks analysis. The study addresses only sandstone brine reservoirs in the Texas and Louisiana Gulf Coast onshore areas. (MHR)

Not Available

1980-01-01T23:59:59.000Z

72

ANALYSIS OF THE TANK 5F FINAL CHARATERIZATION SAMPLES-2011  

SciTech Connect

The Savannah River National Laboratory (SRNL) was requested by SRR to provide sample preparation and analysis of the Tank 5F final characterization samples to determine the residual tank inventory prior to grouting. Two types of samples were collected and delivered to SRNL: floor samples across the tank and subsurface samples from mounds near risers 1 and 5 of Tank 5F. These samples were taken from Tank 5F between January and March 2011. These samples from individual locations in the tank (nine floor samples and six mound Tank 5F samples) were each homogenized and combined in a given proportion into 3 distinct composite samples to mimic the average composition in the entire tank. These Tank 5F composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 5F composite samples include bulk density and water leaching of the solids to account for water soluble species. With analyses for certain challenging radionuclides as the exception, all composite Tank 5F samples were analyzed and reported in triplicate. The target detection limits for isotopes analyzed were based on customer desired detection limits as specified in the technical task request documents. SRNL developed new methodologies to meet these target detection limits and provide data for the extensive suite of components. While many of the target detection limits were met for the species characterized for Tank 5F, as specified in the technical task request, some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The Technical Task Request allows that while the analyses of these isotopes is needed, meeting the detection limits for these isotopes is a lower priority than meeting detection limits for the other specified isotopes. The isotopes whose detection limits were not met in all cases included the following: Al-26, Sn-126, Sb-126, Sb-126m, Eu-152 and Cf-249. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

Oji, L.; Diprete, D.; Coleman, C.; Hay, M.

2012-01-20T23:59:59.000Z

73

Analysis Of The Tank 5F Final Characterization Samples-2011  

SciTech Connect

The Savannah River National Laboratory (SRNL) was requested by SRR to provide sample preparation and analysis of the Tank 5F final characterization samples to determine the residual tank inventory prior to grouting. Two types of samples were collected and delivered to SRNL: floor samples across the tank and subsurface samples from mounds near risers 1 and 5 of Tank 5F. These samples were taken from Tank 5F between January and March 2011. These samples from individual locations in the tank (nine floor samples and six mound Tank 5F samples) were each homogenized and combined in a given proportion into 3 distinct composite samples to mimic the average composition in the entire tank. These Tank 5F composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 5F composite samples include bulk density and water leaching of the solids to account for water soluble species. With analyses for certain challenging radionuclides as the exception, all composite Tank 5F samples were analyzed and reported in triplicate. The target detection limits for isotopes analyzed were based on customer desired detection limits as specified in the technical task request documents. SRNL developed new methodologies to meet these target detection limits and provide data for the extensive suite of components. While many of the target detection limits were met for the species characterized for Tank 5F, as specified in the technical task request, some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The Technical Task Request allows that while the analyses of these isotopes is needed, meeting the detection limits for these isotopes is a lower priority than meeting detection limits for the other specified isotopes. The isotopes whose detection limits were not met in all cases included the following: Al-26, Sn-126, Sb-126, Sb-126m, Eu-152 and Cf-249. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

Oji, L. N.; Diprete, D.; Coleman, C. J.; Hay, M. S.

2012-09-27T23:59:59.000Z

74

ANALYSIS OF THE TANK 5F FINAL CHARACTERIZATION SAMPLES-2011  

SciTech Connect

The Savannah River National Laboratory (SRNL) was requested by SRR to provide sample preparation and analysis of the Tank 5F final characterization samples to determine the residual tank inventory prior to grouting. Two types of samples were collected and delivered to SRNL: floor samples across the tank and subsurface samples from mounds near risers 1 and 5 of Tank 5F. These samples were taken from Tank 5F between January and March 2011. These samples from individual locations in the tank (nine floor samples and six mound Tank 5F samples) were each homogenized and combined in a given proportion into 3 distinct composite samples to mimic the average composition in the entire tank. These Tank 5F composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 5F composite samples include bulk density and water leaching of the solids to account for water soluble species. With analyses for certain challenging radionuclides as the exception, all composite Tank 5F samples were analyzed and reported in triplicate. The target detection limits for isotopes analyzed were based on customer desired detection limits as specified in the technical task request documents. SRNL developed new methodologies to meet these target detection limits and provide data for the extensive suite of components. While many of the target detection limits were met for the species characterized for Tank 5F, as specified in the technical task request, some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The Technical Task Request allows that while the analyses of these isotopes is needed, meeting the detection limits for these isotopes is a lower priority than meeting detection limits for the other specified isotopes. The isotopes whose detection limits were not met in all cases included the following: Al-26, Sn-126, Sb-126, Sb-126m, Eu-152 and Cf-249. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

Oji, L.; Diprete, D.; Coleman, C.; Hay, M.

2012-08-03T23:59:59.000Z

75

EG&G Mound Applied Technologies payroll system  

Science Conference Proceedings (OSTI)

EG&G Mound Applied Technologies, Inc., manages and operates the Mound Facility, Miamisburg, Ohio, under a cost-plus-award-fee contract administered by the Department of Energy`s Albuquerque Field Office. The contractor`s Payroll Department is responsible for prompt payment in the proper amount to all persons entitled to be paid, in compliance with applicable laws, regulations, and legal decisions. The objective was to determine whether controls were in place to avoid erroneous payroll payments. EG&G Mound Applied Technologies, Inc., did not have all the internal controls required by General Accounting Office Title 6, ``Pay, Leave, and Allowances.`` Specifically, they did not have computerized edits, separation of duties and responsibilities, and restricted access to payroll data files. This condition occurred because its managers were not aware of Title 6 requirements. As a result, the contractor could not assure the Department of Energy that payroll costs were processes accurately; and fraud, waste, or abuse of Department of Energy funds could go undetected. Our sample of 212 payroll transactions from a population of 66,000 in FY 1991 disclosed only two minor processing errors and no instances of fraud, waste or abuse.

Not Available

1992-02-07T23:59:59.000Z

76

Expected brine movement at potential nuclear waste repository salt sites  

SciTech Connect

The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m/sup 3/ brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs.

McCauley, V.S.; Raines, G.E.

1987-08-01T23:59:59.000Z

77

RECOMMENDATIONS FOR SAMPLING OF TANK 19 IN F TANK FARM  

SciTech Connect

Representative sampling is required for characterization of the residual material in Tank 19 prior to operational closure. Tank 19 is a Type IV underground waste storage tank located in the F-Tank Farm. It is a cylindrical-shaped, carbon steel tank with a diameter of 85 feet, a height of 34.25 feet, and a working capacity of 1.3 million gallons. Tank 19 was placed in service in 1961 and initially received a small amount of low heat waste from Tank 17. It then served as an evaporator concentrate (saltcake) receiver from February 1962 to September 1976. Tank 19 also received the spent zeolite ion exchange media from a cesium removal column that once operated in the Northeast riser of the tank to remove cesium from the evaporator overheads. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual waste, Huff and Thaxton [2009] developed a plan to sample the waste during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 19 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 19. The procedure computes the uncertainty in analyte concentration as a function of the number of samples, and the final number of samples is determined when the reduction in the uncertainty from an additional sample no longer has a practical impact on results. The characterization of the full suite of analytes in the North and South hemispheres is currently supported by a single Mantis rover sample in each hemisphere. A floor scrape sample was obtained from a compact region near the center riser slightly in the South hemisphere and has been analyzed for a shortened list of key analytes. There is not enough additional material from the floor scrape sample material for completing the full suite of constituents. No floor scrape samples have been previously taken from the North hemisphere. The criterion to determine the number of additional samples was based on the practical reduction in the uncertainty when a new sample is added. This was achieved when five additional samples are obtained. In addition, two archived samples will be used if a contingency such as failing to demonstrate the comparability of the Mantis samples to the floor scrape samples occurs. To complete sampling of the Tank 19 residual floor material, four additional samples should be taken from the North hemisphere and four additional samples should be taken from the South hemisphere. One of the samples from each hemisphere will be archived in case of need. Three of the four additional samples from each hemisphere will be analyzed. Once the results are available, differences between the Mantis and three floor scrape sample results will be evaluated. If there are no statistically significant analyte concentration differences between the Mantis and floor scrape samples, those results will be combined and then UCL95%s will be calculated. If the analyte concentration differences between the Mantis and floor scrape samples are statistically significant, the UCL95%s will be calculated without the Mantis sample results. If further reduction in the upper confidence limits is needed and can be achieved by the addition of the archived samples, they will be analyzed and included in t

Harris, S.; Shine, G.

2009-12-14T23:59:59.000Z

78

Geothermal brines and sludges: a new resource  

DOE Green Energy (OSTI)

Development of cost efficient biochemical processes for the treatment of geothermal brines and sludges is the main thrust of a major R&D effort at Brookhaven National Laboratory (BNL). This effort has led to the design of an environmentally acceptable, technically and economically feasible new technology which converts geothermal wastes into products with significant commercial potential. These include valuable metals recovery with a metal extraction and recovery efficiency of better then 80% over short periods of time (5-25 hours). The new technology also yields valuable salts, such as potassium chloride and generates high quality pigment free silica. The basic technology is versatile and can, with slight modifications, be used in the treatment of hypersaline as well as low salinity brines and sludges. Concurrently traces of toxic metals, including radium are removed to levels which are within regulatory limits. The current status of the new biochemical technology will be discussed in this paper.

Premuzic, E.T.; Lin, M.S.; Lian, H.; Miltenberger, R.P.

1996-10-01T23:59:59.000Z

79

Hydrocarbons associated with brines from geopressured wells  

DOE Green Energy (OSTI)

The purpose of this research is to determine the concentration of the cryocondensates in fluids of the various USDOE Geopressured wells as a function of production volume, to correlate the production of these compounds with reservoir and well production characteristics, to precisely measure solubilities of cryocondensates components in water and sodium chloride solutions (brines) as a function of ionic strength and temperature and the component's distribution coefficients between these solutions and oil, to develop models of the reservoir which are consistent with the data obtained, to monitor the wells for the production of aliphatic oils and relate any such production with the data obtained, and to develop a harsh environment pH probe for use in well brines. Results are summarized.

Not Available

1991-01-15T23:59:59.000Z

80

Approach to recover strategic metals from brines  

DOE Green Energy (OSTI)

The objective of the proposed research is to evaluate hypersaline brines from geothermal sources and salt domes as possible sources for some strategic metals. This research is suggested because several previous analyses of brine from geothermal wells in the Imperial Valley, California, and from Gulf Coast salt domes, indicate near commercial values for platinum as well as other metals (i.e., gold, silver). Extraction of the platinum should be technically feasible. A research program should include more complete systematic sampling and analysis for resource delineation, followed by bench-scale investigation of several potential extraction processes. This could be followed by engineering feasibility and design studies, for extraction of the metals either as a by-product of other operations or in a stand-alone process.

Raber, E.; Harrar, J.; Gregg, D.

1981-09-16T23:59:59.000Z

Note: This page contains sample records for the topic "mound brine tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

WETTING BEHAVIOR OF SELECTED CRUDE OIL/BRINE/ROCK SYSTEMS  

Science Conference Proceedings (OSTI)

The effect of aging and displacement temperatures, and brine and oil composition on wettability and the recovery of crude oil by spontaneous imbibition and waterflooding has been investigated. This study is based on displacement tests in Berea Sandstone using three distinctly different crude oils and three reservoir brines. Brine concentration was varied by changing the concentration of total dissolved solids of the synthetic brine in proportion to give brine of twice, one tenth, and one hundredth of the reservoir brine concentration. Aging and displacement temperatures were varied independently. For all crude oils, water-wetness and oil recovery increased with increase in displacement temperature. Tests on the effect of brine concentration showed that salinity of the connate and invading brines can have a major influence on wettability and oil recovery at reservoir temperature. Oil recovery increased over that for the reservoir brine with dilution of both the initial (connate) and invading brine or dilution of either. Removal of light components from the crude oil resulted in increased water-wetness. Addition of alkanes to the crude oil reduced the water-wetness, and increased oil recovery. Relationships between waterflood recovery and wettability are summarized.

G.Q. Tang; N.R. Morrow

1997-04-01T23:59:59.000Z

82

Plant Mounds as Concentration and Stabilization Agents for Actinide Soil Contaminants in Nevada  

SciTech Connect

Plant mounds or blow-sand mounds are accumulations of soil particles and plant debris around the base of shrubs and are common features in deserts in the southwestern United States. An important factor in their formation is that shrubs create surface roughness that causes wind-suspended particles to be deposited and resist further suspension. Shrub mounds occur in some plant communities on the Nevada Test Site, the Nevada Test and Training Range (NTTR), and Tonopah Test Range (TTR), including areas of surface soil contamination from past nuclear testing. In the 1970s as part of early studies to understand properties of actinides in the environment, the Nevada Applied Ecology Group (NAEG) examined the accumulation of isotopes of Pu, 241Am, and U in plant mounds at safety experiment and storage-transportation test sites of nuclear devices. Although aerial concentrations of these contaminants were highest in the intershrub or desert pavement areas, the concentration in mounds were higher than in equal volumes of intershrub or desert pavement soil. The NAEG studies found the ratio of contaminant concentration of actinides in soil to be greater (1.6 to 2.0) in shrub mounds than in the surrounding areas of desert pavement. At Project 57 on the NTTR, 17 percent of the area was covered in mounds while at Clean Slate III on the TTR, 32 percent of the area was covered in mounds. If equivalent volumes of contaminated soil were compared between mounds and desert pavement areas at these sites, then the former might contain as much as 34 and 62 percent of the contaminant inventory, respectively. Not accounting for radionuclides associated with shrub mounds would cause the inventory of contaminants and potential exposure to be underestimated. In addition, preservation of shrub mounds could be important part of long-term stewardship if these sites are closed by fencing and posting with administrative controls.

D.S. Shafer; J. Gommes

2009-02-03T23:59:59.000Z

83

Structure and composition of organic reefs and carbonate mud mounds: concepts and categories  

E-Print Network (OSTI)

of their large numbers and biomass. Their depredation on defoliating insects benefits trees (Karhu & Neuvonen; Mabelis, 2007; Dekoninck et al., 2010). The domed nest mounds of red wood ants are conspicu- ous; some can: Formicidae) nest mounds over an extensive area: Trialing a novel method KERRY M. BORKIN1 , RON W. SUMMERS2

Riding, Robert

84

STRUCTURE OF A CARBONATE/HYDRATE MOUND IN THE NORTHERN GULF OF MEXICO  

E-Print Network (OSTI)

STRUCTURE OF A CARBONATE/HYDRATE MOUND IN THE NORTHERN GULF OF MEXICO T. McGee1* , J. R. Woolsey1 of Mississippi Canyon Block 118 (MC118) This mound has been chosen by the Gulf of Mexico Hydrates Research

Gerstoft, Peter

85

Type I Tanks  

NLE Websites -- All DOE Office Websites (Extended Search)

I Tanks I Tanks * 12 Type I tanks were built between 1951-53 * 750,000 gallon capacity; 75 feet in diameter by 24 ½ feet high * Partial secondary containment with leak detection * Contain approximately 10 percent of the waste volume * 7 Type I tanks have leaked waste into the tank annulus; the amount of waste stored in these tanks is kept below the known leak sites that have appeared over the decades of

86

Comparison of elementary geothermal-brine power-production processes  

SciTech Connect

From applied technology geothermal committee meeting; Idaho Falls, Idaho, USA (7 Aug 1973). A comparison of three simple geothermal power- production systems shows that the flashed steam and the compound systems are favored for use with high-temperature brines. The binary system becomes economically competitive only when used on low-temperature brines (enthalpies less than 350 Btu/lb). Geothermal power appears to be economically attractive even when low-temperature brines are used. (auth)

Green, M.A.; Laird, A.D.K.

1973-08-01T23:59:59.000Z

87

AX Tank Farm tank removal study  

Science Conference Proceedings (OSTI)

This report examines the feasibility of remediating ancillary equipment associated with the 241-AX Tank Farm at the Hanford Site. Ancillary equipment includes surface structures and equipment, process waste piping, ventilation components, wells, and pits, boxes, sumps, and tanks used to make waste transfers to/from the AX tanks and adjoining tank farms. Two remedial alternatives are considered: (1) excavation and removal of all ancillary equipment items, and (2) in-situ stabilization by grout filling, the 241-AX Tank Farm is being employed as a strawman in engineering studies evaluating clean and landfill closure options for Hanford single-shell tanks. This is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

SKELLY, W.A.

1999-02-24T23:59:59.000Z

88

Microsoft Word - LEGAL NOTICE for Mound Site 2011 CERCLA Five.doc  

Office of Legacy Management (LM)

LEGAL NOTICE for Mound Site 2011 CERCLA Five-Year Review Page 1 of 2 LEGAL NOTICE for Mound Site 2011 CERCLA Five-Year Review Page 1 of 2 LEGAL NOTICE for Mound Site 2011 CERCLA Five-Year Review The U.S. Department of Energy (DOE) Office of Legacy Management (LM) is conducting the third Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Five-Year Review of the Mound Site in Miamisburg, Ohio. The Five-Year Review process ensures that the selected CERCLA remedies remain protective of human health and the environment. After the Mound Plant Site was placed on the CERCLA National Priority List in 1989, DOE signed a CERCLA Section 120 Federal Facility Agreement with the U.S. Environmental Protection Agency (EPA) in October 1990 and a tripartite agreement among the DOE, EPA, and Ohio EPA (OEPA) in 1993. The

89

Transition and Closeout of the Former DOE Mound Plant Site: Lessons Learned  

SciTech Connect

The U.S. Department of Energy's (DOE's) Office of Environmental Management (EM) manages the Miamisburg Closure Project (MCP) by cleaning up the Mound site, located in Miamisburg, Ohio, to specific environmental standards, conveying all excess land parcels to the Miamisburg Mound Community Improvement Corporation, and transferring all continuing DOE post-closure responsibilities to the Office of Legacy Management (LM). Presently, the EM cleanup contract of the Mound site with CH2M Hill Mound Inc. is scheduled for completion on March 31, 2006. LM manages the Mound transition efforts and also post-closure responsibilities at other DOE sites via a contract with the S.M. Stoller Corporation. The programmatic transfer from EM to LM is scheduled to take place on October 1, 2006. The transition of the Mound site has required substantial integration and coordination between the EM and LM. Several project management principles have been implemented to help facilitate the transfer of programmatic responsibility. As a result, several lessons learned have been identified to help streamline and improve integration and coordination of the transfer process. Lessons learned from the Mound site transition project are considered a work in progress and have been summarized according to a work breakdown structure for specific functional areas in the transition schedule. The functional areas include program management, environmental, records management, information technology, property management, stakeholder and regulatory relations, procurement, worker pension and benefits, and project closeout. Specific improvements or best practices have been recognized and documented by the Mound transition team. The Mound site is one of three major cleanup sites within the EM organization scheduled for completion in 2006. EM, EM cleanup contractor, LM, and LM post-closure contractor have identified lessons learned during the transition and closure of the Mound site. The transition effort from environmental cleanup to post-closure operations is complex and requires creative and innovative solutions. Future environmental cleanups can benefit from the lessons learned gained by DOE and contractor organizations. (authors)

Carpenter, C. P. [U.S. Department of Energy Office of Legacy Management, Research Ridge 4, MS-K09, 3600 Collins Ferry Road, Morgantown, WV 26507 (United States); Marks, M. L.; Smiley, S.L. [U.S. Department of Energy Office of Environmental Management, Chiquita Building, 250 E. 5 th Street, Cincinnati, OH 45202 (United States); Gallaher, D. M. [S.M. Stoller Corporation, 955 Mound Road, Miamisburg, OH 45342 (United States)

2006-07-01T23:59:59.000Z

90

Origin, distribution, and movement of brine in the Permian Basin (U. S. A. ). A model for displacement of connate brine  

SciTech Connect

Na-Cl, halite Ca-Cl, and gypsum Ca-Cl brines with salinities from 45 to >300 g/L are identified and mapped in four hydrostratigraphic units in the Permian Basin area beneath western Texas and Oklahoma and eastern New Mexico, providing spatial and lithologic constraints on the interpretation of the origin and movement of brine. Na-Cl brine is derived from meteoric water as young as 5-10 Ma that dissolved anhydrite and halite, whereas Ca-Cl brine is interpreted to be ancient, modified-connate Permian brine that now is mixing with, and being displaced by, the Na-Cl brine. Displacement fronts appear as broad mixing zones with no significant salinity gradients. Evolution of Ca-Cl brine composition from ideal evaporated sea water is attributed to dolomitization and syndepositional recycling of halite and bittern salts by intermittent influx of fresh water and sea water. Halite Ca-Cl brine in the evaporite section in the northern part of the basin differs from gypsum Ca-Cl brine in the south-central part in salinity and Na/Cl ratio and reflects segregation between halite- and gypsum-precipitating lagoons during the Permian. Ca-Cl brine moved downward through the evaporite section into the underlying Lower Permian and Pennsylvanian marine section that is now the deep-basin brine aquifer, mixing there with pre-existing sea water. Buoyancy-driven convection of brine dominated local flow for most of basin history, with regional advection governed by topographically related forces dominant only for the past 5 to 10 Ma. 71 refs., 11 figs.

Bein, A.; Dutton, A.R. (Univ. of Texas, Austin (United States))

1993-06-01T23:59:59.000Z

91

AX Tank Farm tank removal study  

SciTech Connect

This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

SKELLY, W.A.

1998-10-14T23:59:59.000Z

92

Audit of the transfer of government-owned property at the Mound and Pinellas Plants  

SciTech Connect

This report addresses the audit of the transfer of government-owned property at the Mound and Pinellas Plants. The end of the Cold War brought many changes to the Department of Energy (Department), including the reconfiguration of defense program activities and the closure of some operations. Public Law 103-160 allows the Department to transfer or lease, under specified conditions, Department-owned personal property to economic development initiatives. By encouraging economic development, the Department hopes to mitigate adverse impacts that plant closures would have on local economies. The objective of the audit was to determine whether the Department's interests were properly protected with regard to the transfer of equipment from weapons production use to economic development initiatives. The Mound Plant (Mound) and the Pinellas Plant (Pinellas) did not have property disposition plans that would properly protect Departmental interests. Specifically, Mound planned to make about $13.2 million of Government-owned property available to private businesses even through the property was needed by Defense Programs at other facilities and would cost less than $1 million to relocate. In addition, Mound and Pinellas planned to make available to economic development initiatives several hundred million dollars of Government-owned property without first determining whether it was needed by other Departmental elements. These conditions existed because neither Headquarters nor the Albuquerque Operations Office provided Mound and Pinellas adequate guidance, and Mound and Pinellas management believed that economic development initiatives could take precedence over some Departmental programs.

Not Available

1994-11-01T23:59:59.000Z

93

Microsoft Word - S07757_2011 Mound IC Report  

Office of Legacy Management (LM)

IC Assessment Checklist IC Assessment Checklist This page intentionally left blank CHECKLIST WORKSHEET - COMBINED - ALL PARCELS Review of Effectiveness of Institutional Controls U.S. Department of Energy Annual Assessment of the Effectiveness of Site-Wide Institutional Controls June 2011 Doc. No. S07757 Page A-1 Scope: Entire Mound Site Preliminary inspections performed on: April 5 and 7, 2011 Physical Inspection Walk around on: April 12, 2011 Review led by: Art Kleinrath, DOE LM Phone #: 937-227-2237 Participants in Physical Inspection Walk Around on April 12, 2011: See attached sign-in sheet. Summary of property improvements since the previous Review. For example, have buildings been demolished or erected? Has surface water flow been modified? Has landscaping been

94

Mound Plant Federal Facility Agreement, July 15, 1993 Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Environmental Protection Agency Region V United States Environmental Protection Agency Region V and the State of Ohio Federal Facility Agreement State Ohio Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA Scope Summary DOE shall identify Interim Remedial Actions (IRAs) alternatives and implement US EPA and OEPA approved remedies for the site in accordance with CERCLA Parties EPA; Ohio EPA (OEPA); DOE Date 07/15/1993 SCOPE * Identify Interim Remedial Action (IRA) alternatives which include Remedial Investigations (RI) and Feasibility Studies (FS); design and implement US EPA and OEPA approved remedies for the Mound site in accordance with CERCLA. ESTABLISHING MILESTONES * After approval of remedial design and action plans, DOE shall prepare and provide to U.S. EPA and OEPA written monthly progress reports.

95

Decommissioning of the Special Metallurgical Building at Mound Laboratory  

SciTech Connect

The Special Metallurgical Building at Mound Laboratory, a building of 18,515 sq ft of floor space, was decommissioned. This decommissioned facility formerly housed 238PU processes for the fabrication of radioisotopic fueled heat sources. The 238PU work was conducted in 585 linear ft of gloveboxes occupying approximately 12,600 sq ft of the building. All of the gloveboxes, process services, building services, interior walls, and ceilings were removed to the point of exit at the roof. Eighty-five percent of the filter banks occupying 700 sq ft of floor space was also removed. Special procedures and special equipment were used to reduce the amount of 238PU in the building from approximately 100,000 Ci at the start of the effort to less than 0.3 Ci without a significant release to the environment.

Harris, W. R.; Kokenge, B. R.; Marsh, G. C.

1965-12-31T23:59:59.000Z

96

RELATIONSHIP BETWEEN FLOWABILITY AND TANK CLOSURE GROUT QUALITY  

Science Conference Proceedings (OSTI)

After completion of waste removal and chemical cleaning operations, Tanks 5-F and 6-F await final closure. The project will proceed with completing operational closure by stabilizing the tanks with grout. Savannah River Remediations (SRR) experience with grouting Tanks 18-F and 19-F showed that slump-flow values were correlated with flow/spread inside these tanks. Less mounding was observed when using grouts with higher slump-flow. Therefore, SRNL was requested to evaluate the relationship between flowability and cured properties to determine whether the slump-flow maximum spread of Mix LP#8-16 could be increased from 28 inches to 30 inches without impacting the grout quality. A request was also made to evaluate increasing the drop height from 5 feet to 10 feet with the objective of enhancing the flow inside the tank by imparting more kinetic energy to the placement. Based on a review of the grout property data for Mix LP#8-16 collected from Tank 18-F and 19-F quality control samples, the upper limit for slump-flow measured per ASTM C 1611 can be increased from 28 to 30 inches without affecting grout quality. However, testing should be performed prior to increasing the drop height from 5 to 10 feet or observations should be made during initial filling operations to determine whether segregation occurs as a function of drop heights between 5 and 10 feet. Segregation will negatively impact grout quality. Additionally, increasing the delivery rate of grout into Tanks 5-F and 6-F by using a higher capacity concrete/grout pump will result in better grout spread/flow inside the tanks.

Langton, C.; Stefanko, D.; Hay, M.

2012-10-08T23:59:59.000Z

97

Relationship Between Flowability And Tank Closure Grout Quality  

SciTech Connect

After completion of waste removal and chemical cleaning operations, Tanks 5-F and 6-F await final closure. The project will proceed with completing operational closure by stabilizing the tanks with grout. Savannah River Remediation's (SRR) experience with grouting Tanks 18-F and 19-F showed that slump-flow values were correlated with flow/spread inside these tanks. Less mounding was observed when using grouts with higher slump-flow. Therefore, SRNL was requested to evaluate the relationship between flowability and cured properties to determine whether the slump-flow maximum spread of Mix LP#8-16 could be increased from 28 inches to 30 inches without impacting the grout quality. A request was also made to evaluate increasing the drop height from 5 feet to 10 feet with the objective of enhancing the flow inside the tank by imparting more kinetic energy to the placement. Based on a review of the grout property data for Mix LP#8-16 collected from Tank 18-F and 19-F quality control samples, the upper limit for slump-flow measured per ASTM C 1611 can be increased from 28 to 30 inches without affecting grout quality. However, testing should be performed prior to increasing the drop height from 5 to 10 feet or observations should be made during initial filling operations to determine whether segregation occurs as a function of drop heights between 5 and 10 feet. Segregation will negatively impact grout quality. Additionally, increasing the delivery rate of grout into Tanks 5-F and 6-F by using a higher capacity concrete/grout pump will result in better grout spread/flow inside the tanks.

Langton, C. A.; Stefanko, D. B.; Hay, M. S.

2012-10-08T23:59:59.000Z

98

HANFORD TANK CLEANUP UPDATE  

SciTech Connect

Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

BERRIOCHOA MV

2011-04-07T23:59:59.000Z

99

RECOMMENDATIONS FOR SAMPLING OF TANK 18 IN F TANK FARM  

SciTech Connect

Representative sampling is required for characterization of the residual floor material in Tank 18 prior to operational closure. Tank 18 is an 85-foot diameter, 34-foot high carbon steel tank with nominal operating volume of 1,300,000 gallons. It is a Type IV tank, and has been in service storing radioactive materials since 1959. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual material, Huff and Thaxton [2009] developed a plan to sample the material during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual floor material separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 18 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 18. The procedure computes the uncertainty in analyte concentration as a function of the number of samples, and the final number of samples is determined when the reduction in the uncertainty from an additional sample no longer has a practical impact on results. The characterization of the full suite of analytes in the North hemisphere is currently supported by a single Mantis rover sample obtained from a compact region near the center riser. A floor scrape sample was obtained from a compact region near the northeast riser and has been analyzed for a shortened list of key analytes. Since the unused portion of the floor scrape sample material is archived and available in sufficient quantity, additional analyses need to be performed to complete results for the full suite of constituents. The characterization of the full suite of analytes in the South hemisphere is currently supported by a single Mantis rover sample; there have been no floor scrape samples previously taken from the South hemisphere. The criterion to determine the number of additional samples was based on the practical reduction in the uncertainty when a new sample is added. This was achieved when five additional samples are obtained. In addition, two archived samples will be used if a contingency such as failing to demonstrate the comparability of the Mantis samples to the floor scrape samples occurs. To complete sampling of the Tank 18 residual floor material, three additional samples should be taken from the North hemisphere and four additional samples should be taken from the South hemisphere. One of the samples from each hemisphere will be archived in case of need. Two of the three additional samples from the North hemisphere and three of the four additional samples from the South hemisphere will be analyzed. Once the results are available, differences between the Mantis and three floor scrape samples (the sample previously obtained near NE riser plus the two additional samples that will be analyzed) results will be evaluated. If there are no statistically significant analyte concentration differences between the Mantis and floor scrape samples, those results will be combined and then UCL95%s will be calculated. If the analyte concentration differences between the Mantis and floor scrape samples are statistically significant, the UCL95%s will be calculated without the Mantis sample results. If further reduction in the upper confidence limits is needed and can be achieved by the addition of the archived samples, they will be analyzed and included in the stati

Shine, G.

2009-12-14T23:59:59.000Z

100

Tank 241-AW-101 tank characterization plan  

DOE Green Energy (OSTI)

The first section gives a summary of the available information for Tank AW-101. Included in the discussion are the process history and recent sampling events for the tank, as well as general information about the tank such as its age and the risers to be used for sampling. Tank 241-AW-101 is one of the 25 tanks on the Flammable Gas Watch List. To resolve the Flammable Gas safety issue, characterization of the tanks, including intrusive tank sampling, must be performed. Prior to sampling, however, the potential for the following scenarios must be evaluated: the potential for ignition of flammable gases such as hydrogen-air and/or hydrogen-nitrous oxide; and the potential for secondary ignition of organic-nitrate/nitrate mixtures in crust layer initiated by the burning of flammable gases or by a mechanical in-tank energy source. The characterization effort applicable to this Tank Characterization Plan is focused on the resolution of the crust burn flammable gas safety issue of Tank AW-101. To evaluate the potential for a crust burn of the waste material, calorimetry tests will be performed on the waste. Differential Scanning Calorimetry (DSC) will be used to determine whether an exothermic reaction exists.

Sathyanarayana, P.

1994-11-22T23:59:59.000Z

Note: This page contains sample records for the topic "mound brine tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Audit of Shutdown and Transition of the Mound Plant, IG-0408  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 24, 1997 June 24, 1997 MEMORANDUM FOR THE SECRETARY FROM: John C. Layton Inspector General SUBJECT: INFORMATION: "Audit of Shutdown and Transition of the Mound Plant" BACKGROUND: The end of the Cold War has allowed the Department of Energy (Department) to reduce weapons production and consolidate operations throughout the nuclear weapons complex. As part of this consolidation, the Department has either transferred or is planning to transfer all weapons-related and production activities at the Mound Plant to other Departmental facilities. The objective of this audit was to determine if the shutdown and transition of the Mound Plant was progressing efficiently and effectively. More

102

Assessment of the AWC TRUclean process for use on Mound soils and sediments  

Science Conference Proceedings (OSTI)

The AWC TRUclean System has been proposed as a method to reduce the volume of LSA waste during D&D excavation of Pu-238 contaminated soils on the Mound Site and Pu-238 contaminated sediments in the Miami-Erie Canal. Following test runs with Mound soil, AWC suggested that the TRUclean Process could reduce the amount of LSA waste by greater than 90% if a machine could be built and used to process the Mound soil. The cost savings which could potentially be realized by assuming this magnitude of volume reduction were thought to be significant on large projects. These preliminary results suggested that a review of the TRUclean Process and the 1987 test results should be performed to determine a course of action. The AWC TRUclean Process and the test data have been evaluated and the potential effectiveness of the process determined for use on Mound soils and/or on the sediments in the Miami-Erie Canal.

Rogers, D.R.

1989-03-23T23:59:59.000Z

103

Origin and geochemical evolution of the Michigan basin brine  

Science Conference Proceedings (OSTI)

Chemical and isotopic data were collected on 126 oil field brine samples and were used to investigate the origin and geochemical evolution of water in 8 geologic formations in the Michigan basin. Two groups of brine are found in the basin, the Na-Ca-Cl brine in the upper Devonian formations, and Ca-Na-Cl brine from the lower Devonian and Silurian aged formations. Water in the upper Devonian Berea, Traverse, and Dundee formations originated from seawater concentrated into halite facies. This brine evolved by halite precipitation, dolomitization, aluminosilicate reactions, and the removal of SO{sub 4} by bacterial action or by CaSO{sub 4} precipitation. The stable isotopic composition (D, O) is thought to represent dilution of evapo-concentrated seawater by meteoric water. Water in the lower Devonian Richfield, Detroit River Group, and Niagara-Salina formations is very saline Ca-Na-Cl brine. Cl/Br suggest it originated from seawater concentrated through the halite and into the MgSO{sub 4} salt facies, with an origin linked to the Silurian and Devonian salt deposits. Dolomitization and halite precipitation increased the Ca/Na, aluminosilicate reactions removed K, and bacterial action or CaSO{sub 4} precipitation removed SO{sub 4} from this brine. Water chemistry in the Ordovician Trenton-Black River formations indicates dilution of evapo-concentrated seawater by fresh or seawater. Possible saline end-members include Ordovician seawater, present-day upper Devonian brine, or Ca-Cl brine from the deeper areas in the basin.

Wilson, T.P.

1989-01-01T23:59:59.000Z

104

Mound bridge-wire welding, testing and corrosion seminar, Miamisburg, OH, May 7-8, 1968  

SciTech Connect

Brief summaries are presented on the following presentations: welding for low voltage operation, welding techniques at Mound, welding/joining at Sandia, Ultrasonic`s plastic assemblies of detonator components, laser welding bridge-wires, laser safety in the Biorad industrial environment, nondestructive testing at Mound, thermal cycle data and evaluation, thermal cycle nondestructive testing, corrosion of detonator electrode and bridge-wire, and corrosion studies and fabrication of bridge-wire at Sigmund Cohn.

Richards, M.A.

1968-08-07T23:59:59.000Z

105

Tank 241-S-107 tank characterization plan  

Science Conference Proceedings (OSTI)

The Defense Nuclear Facilities Safety Board (DNFSB) has advised the Department of Energy (DOE) to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues (Conway 1993). The data quality objective (DQO) process was chosen as a tool to be used to identify the sampling and analytical needs for the resolution of safety issues. As a result, a revision in the Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process``. This document satisfies that requirement for tank 241-S-107 (S-107) sampling activities. The report gives a summary of descriptive information available on Tank S-107. Included are the present status and physical description of the tank, its age, process history, and expected tank contents from previous sampling and analytical data. The different types of waste, by layer, for Tank S-107 will also be discussed. As of December 1994, Tank S-107 has been categorized as sound and was partially isolated in December 1982. It is a low-heat load tank and is awaiting stabilization. Tank S-107 is expected to contain two primary layers of waste. The bottom layer should contain a mixture of REDOX waste and REDOX cladding waste. The second layer contains S1 saltcake (waste generated from the 242-S evaporator/crystallizer from 1973 until 1976), and S2 salt slurry (waste generated from the 242-S evaporator-crystallizer from 1977 until 1980).

Jo, J.

1995-04-06T23:59:59.000Z

106

Septic Tanks (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

A license from the Department of Environmental Quality is required for cleaning or pumping of septic tanks or holding tanks and disposing of sewage or septage. The rules for the license are...

107

Tank 241-U-111 tank characterization plan  

Science Conference Proceedings (OSTI)

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-U-111.

Carpenter, B.C.

1995-01-24T23:59:59.000Z

108

Tank 241-B-112 tank characterization plan  

Science Conference Proceedings (OSTI)

The Defense Nuclear Facilities Safety Board (DNFSB) has advised the US Department of Energy (DOE) to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The data quality objective (DQO) process was chosen as a tool to be used to identify sampling and analytical needs for the resolution of safety issues. As a result, a revision in the Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) milestone M-44-00 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process... Development of TCPs by the DQO process is intended to allow users (e.g., Hanford Facility user groups, regulators) to ensure their needs will be met and that resources are devoted to gaining only necessary information.`` This document satisfies that requirement for tank 241-B-112 (B-112). Tank B-112 is currently a non-Watch List tank; therefore, the only applicable DQO as of January 1995 is the Tank Safety Screening Data Quality Objective, which is described below. Tank B-112 is expected to have three primary layers. A bottom layer of sludge consisting of second-cycle waste, followed by a layer of BY saltcake and a top layer of supernate.

Schreiber, R.D. [Westinghouse Hanford Co., Richland, WA (United States)

1995-02-06T23:59:59.000Z

109

DIESEL FUEL TANK FOUNDATIONS  

DOE Green Energy (OSTI)

The purpose of this analysis is to design structural foundations for the Diesel Fuel Tank and Fuel Pumps.

M. Gomez

1995-01-18T23:59:59.000Z

110

Cost estimate for muddy water palladium production facility at Mound  

SciTech Connect

An economic feasibility study was performed on the ''Muddy Water'' low-chlorine content palladium powder production process developed by Mound. The total capital investment and total operating costs (dollars per gram) were determined for production batch sizes of 1--10 kg in 1-kg increments. The report includes a brief description of the Muddy Water process, the process flow diagram, and material balances for the various production batch sizes. Two types of facilities were evaluated--one for production of new, ''virgin'' palladium powder, and one for recycling existing material. The total capital investment for virgin facilities ranged from $600,000 --$1.3 million for production batch sizes of 1--10 kg, respectively. The range for recycle facilities was $1--$2.3 million. The total operating cost for 100% acceptable powder production in the virgin facilities ranged from $23 per gram for a 1-kg production batch size to $8 per gram for a 10-kg batch size. Similarly for recycle facilities, the total operating cost ranged from $34 per gram to $5 per gram. The total operating cost versus product acceptability (ranging from 50%--100% acceptability) was also evaluated for both virgin and recycle facilities. Because production sizes studied vary widely and because scale-up factors are unknown for batch sizes greater than 1 kg, all costs are ''order-of-magnitude'' estimates. All costs reported are in 1987 dollars.

McAdams, R.K.

1988-11-30T23:59:59.000Z

111

Mound Laboratory's Reclamation and Recycling Program  

SciTech Connect

In keeping with Mound Laboratory's tradition for innovation and forward-looking action, several studies were recently conducted to seek out alternatives to incineration and landfill of all nonradioactive solid waste. Efforts were directed towards reclamation, reuse, and recycling of solid wastes. These efforts resulted in a reclamation and recycling program which is being implemented in three separate phases: 1. Phase I provides for reclamation and recycling of IBM cards, printouts, and white paper. 2. Phase II is designed for reclamation, recycling, or off-site disposal of all wastes generated in buildings and areas where radioactive or explosive wastes are not contained. 3. Phase III provides for reclamation, recycling, or off-site disposal of the remaining wastes not included in Phases I and II. Implementatin would follow successful operation of Phases I and II and would only be implemented after a complete analysis of monitoring and segregation techniques have been established to assure against any possibility of off-site contamination.

Garbe, Yvonne M.

1974-10-01T23:59:59.000Z

112

Tank 241-AZ-102 tank characterization plan  

Science Conference Proceedings (OSTI)

The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, a revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process ... Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information``. This document satisfies that requirement for tank 241-AZ-102 (AZ-102) sampling activities. Tank AZ-102 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The current contents of Tank AZ-102, as of October 31, 1994, consisted of 3,600 kL (950 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-102 is expected to have two primary layers. The bottom layer is composed of 360 kL of sludge, and the top layer is composed of 3,240 kL of supernatant, with a total tank waste depth of approximately 8.9 meters.

Schreiber, R.D.

1995-02-06T23:59:59.000Z

113

Tank 241-AZ-101 tank characterization plan  

Science Conference Proceedings (OSTI)

The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, A revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process. Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information``. This document satisfies that requirement for Tank 241-AZ-101 (AZ-101) sampling activities. Tank AZ-101 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The contents of Tank AZ-101, as of October 31, 1994, consisted of 3,630 kL (960 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-101 is expected to have two primary layers. The bottom layer is composed of 132 kL of sludge, and the top layer is composed of 3,500 kL of supernatant, with a total tank waste depth of approximately 8.87 meters.

Schreiber, R.D.

1995-02-06T23:59:59.000Z

114

Concentration of Actinides in Plant Mounds at Safety Test Nuclear Sites in Nevada  

SciTech Connect

Plant mounds or blow-sand mounds are accumulations of soil particles and plant debris around large shrubs and are common features in deserts in the southwestern United States. Believed to be an important factor in their formation, the shrubs create surface roughness that causes wind-suspended particles to be deposited and resist further suspension. Shrub mounds occur in some plant communities on the Nevada Test Site, the Nevada Test and Training Range (NTTR), and Tonopah Test Range (TTR), including areas of surface soil contamination from past nuclear testing. In the 1970s as part of early studies to understand properties of actinides in the environment, the Nevada Applied Ecology Group (NAEG) examined the accumulation of isotopes of Pu, {sup 241}Am, and U in plant mounds at safety test sites. The NAEG studies found concentrations of these contaminants to be greater in shrub mounds than in the surrounding areas of desert pavement. For example, at Project 57 on the NTTR, it was estimated that 15 percent of the radionuclide inventory of the site was associated with shrub mounds, which accounted for 17 percent of the surface area of the site, a ratio of inventory to area of 0.85. At Clean Slate III at the TTR, 29 percent of the inventory was associated with approximately 32 percent of the site covered by shrub mounds, a ratio of 0.91. While the total inventory of radionuclides in intershrub areas was greater, the ratio of radionuclide inventory to area was 0.40 and 0.38, respectively, at the two sites. The comparison between the shrub mounds and adjacent desert pavement areas was made for only the top 5 cm since radionuclides at safety test sites are concentrated in the top 5 cm of intershrub areas. Not accounting for radionuclides associated with the shrub mounds would cause the inventory of contaminants and potential exposure to be underestimated. As part of its Environmental Restoration Soils Subproject, the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office has proposed that the majority of its contaminated soil 'Corrective Action Units', including the safety test sites, be closed by fencing and posting with administrative controls. The concentration of actinides in the shrub mounds has important implications for postclosure management of the safety test sites. Because resuspension factors at safety test sites can be three to four orders-of-magnitude higher than soil sites associated with atmospheric tests where criticality occurred, the shrub mounds are an important factor in stabilization of actinide contaminants. Loss of shrubs associated with mounds from fire or plant die-back from drought could cause radionuclides at these sites to become more prone to suspension and water erosion until the sites are stabilized. Alternatively, although shrub mounds are usually composed of predominantly fine sand size particles, smaller silt and clay size particles in them are often high in CaCO{sub 3} content. The CaCO{sub 3} may act as a cementing agent to limit erosion of the shrub mounds even if the vegetation cover is temporarily lost.

David S. Shafer; Jenna Gommes

2008-09-15T23:59:59.000Z

115

Office of Inspector General report on audit of shutdown and transition of the Mound Plant  

Science Conference Proceedings (OSTI)

With the end of the Cold War, the Department of Energy (Department) has greatly reduced the production of nuclear weapons and redirected the capabilities and focus of the weapons complex. As part of this redirection, the Mound Plant was transferred from a Defense Program site to an Environmental Management site with emphasis on accelerated cleanup and transition of facilities and personal property to the local community. This audit was initiated to determine if the shutdown and transition of the Mound Plant was progressing effectively and efficiently. The Department prepared a Nonnuclear Consolidation Plan (NCP) designed to reduce its costs of operation by closing and consolidating facilities. In contrast to the goal of the NCP, the Department plans to keep a portion of the Mound Plant open solely to perform work for other Federal agencies. Specifically, the Department has decided to continue assembling and testing isotopic heat sources and radioisotope thermoelectric generators (HS/RTG) at the Mound Plant despite the transfer or planned transfer of all other production operations.The Office of Nuclear Energy, Science and Technology decided to continue its HS/RTG operations at the Mound Plant without adequately considering the overall economic goals of the Department. As a result, the Department may not achieve the savings envisioned by the NCP. Also, the Department may incur between $4 million and $8.5 million more than necessary each year to continue its HS/RTG operations at the Mound Plant. Additionally, if the HS/RTG operations stay at the Mound Plant, the Department will spend more than $3 million to consolidate these operations into one location.

NONE

1997-06-24T23:59:59.000Z

116

ABSORBING WIPP BRINES: A TRU WASTE DISPOSAL STRATEGY  

SciTech Connect

Los Alamos National Laboratory (LANL) has completed experiments involving 15 each, 250- liter experimental test containers of transuranic (TRU) heterogeneous waste immersed in two types of brine similar to those found in the underground portion of the Waste Isolation Pilot Plant (WIPP). To dispose of the waste without removing the brine from the test containers, LANL added commercially available cross-linked polyacrylate granules to absorb the 190 liters of brine in each container, making the waste compliant for shipping to the WIPP in a Standard Waste Box (SWB). Prior to performing the absorption, LANL and the manufacturer of the absorbent conducted laboratory and field tests to determine the ratio of absorbent to brine that would fully absorb the liquid. Bench scale tests indicated a ratio of 10 parts Castile brine to one part absorbent and 6.25 parts Brine A to one part absorbent. The minimum ratio of absorbent to brine was sought because headspace in the containers was limited. However, full scale testing revealed that the ratio should be adjusted to be about 15% richer in absorbent. Additional testing showed that the absorbent would not apply more than 13.8 kPa pressure on the walls of the vessel and that the absorbent would still function normally at that pressure and would not degrade in the approximately 5e-4 Sv/hr radioactive field produced by the waste. Heat generation from the absorption was minimal. The in situ absorption created a single waste stream of 8 SWBs whereas the least complicated alternate method of disposal would have yielded at least an additional 2600 liters of mixed low level liquid waste plus about two cubic meters of mixed low level solid waste, and would have resulted in higher risk of radiation exposure to workers. The in situ absorption saved $311k in a combination of waste treatment, disposal, material and personnel costs compared to the least expensive alternative and $984k compared to the original plan.

Yeamans, D. R.; Wrights, R. S.

2002-02-25T23:59:59.000Z

117

Absorbing WIPP brines : a TRU waste disposal strategy.  

SciTech Connect

Los Alamos National Laboratory (LANL) has completed experiments involving 15 each, 250-liter experimental test containers of transuranic (TRU) heterogeneous waste immersed in two types of brine similar to those found in the underground portion of the Waste Isolation Pilot Plant (WIPP). To dispose of the waste without removing the brine from the test containers, LANL added commercially available cross-linked polyacrylate granules to absorb the 190 liters of brine in each container, making the waste compliant for shipping to the WlPP in a Standard Waste Box (SWB). Prior to performing the absorption, LANL and the manufacturer of the absorbent conducted laboratory and field tests to determine the ratio of absorbent to brine that would fully absorb the liquid. Bench scale tests indicated a ratio of 10 parts Castile brine to one part absorbent and 6.25 parts Brine A to one part absorbent. The minimum ratio of absorbent to brine was sought because headspace in the containers was limited. However, full scale testing revealed that the ratio should be adjusted to be about 15% richer in absorbent. Additional testing showed that the absorbent would not apply more than 13.8 kPa pressure on the walls of the vessel and that the absorbent would still function normally at that pressure and would not degrade in the approximately 5e-4 Sv/hr radioactive field produced by the waste. Heat generation from the absorption was minimal. The in situ absorption created a single waste stream of 8 SWBs whereas the least complicated alternate method of disposal would have yielded at least an additional 2600 liters of mixed low level liquid waste plus about two cubic meters of mixed low level solid waste, and would have resulted in higher risk of radiation exposure to workers. The in situ absorption saved $3 1 lk in a combination of waste treatment, disposal, material and personnel costs compared to the least expensive alternative and $984k compared to the original plan.

Yeamans, D. R. (David R.); Wright, R. (Robert)

2002-01-01T23:59:59.000Z

118

How to treat and recycle heavy clear brine fluids  

Science Conference Proceedings (OSTI)

Clear brine fluids, such as CaCl/sub 2/, are replacing muds in well completions and workovers. These ''solids-free'' fluids have caused increases in well productivity of as much as 850%. To use the fluids in higher density ranges, it is necessary to blend the CaCl/sub 2/ brines with the more expensive bromide fluids. This, in turn, has increased the importance of reclaiming weighted brines to make their use more cost effective. To reclaim clear fluids, the solids picked up during use are removed and the fluid is reused or reweighted. A common problem though is the post-precipitation of dissolved contaminants that may appear in the used brines after several days or weeks in storage. Precipitation also may occur if other heavy fluids are added to adjust density before reuse. Laboratory tests have identified the solids as primarily iron hydroxides and halides. (Halides are salts containing a halogen-flourine, chlorine, bromine, or iodine.) Additional experimentation has shown that pH adjustment at the well site or before transfer to storage facilities can provide a simple and effective way of controlling the precipitation of metal hydroxides and halides. This article discusses methods of pH control, measurement, and adjustment, which will allow for optimum use of clear brine fluids.

Pasztor, A.J.; Snover, J.S.

1983-07-01T23:59:59.000Z

119

Monsanto/Mound Laboratory Engineering Development of Tritium-Handling Systems  

SciTech Connect

Mound Laboratory (Mound) has, during the past four years, been actively involved in the development of methods to contain and control tritium during its processing and to recover it from waste streams. Initial bench-scale research was directed mainly toward removal of tritium from gaseous effluent streams and from laboratory liquid wastes. The gaseous effluent investigation has progressed through the developmental stage and has been implemented in routine operations. A test laboratory embodying many of the results of the research phase has been designed and construction has been completed. As the program at Mound has progressed, the scope of the effort has been expanded to include research concerned with handling not only gaseous tritium but also tritiated liquids. A program is presently under way to investigate the detritiation of aqueous wastes encountered in the fuel cycle of the commercial power reactor industry.

Bixel, J. C.; Lamberger, P. H.

1976-07-01T23:59:59.000Z

120

Conversion of the Bryan Mound geological site characterization reports to a three-dimensional model.  

Science Conference Proceedings (OSTI)

The Bryan Mound salt dome, located near Freeport, Texas, is home to one of four underground crude oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the Bryan Mound site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary units, mapped faults, and the 20 oil-storage caverns at the site. This work provides an internally consistent geologic model of the Bryan Mound site that can be used in support of future work.

Stein, Joshua S.; Rautman, Christopher Arthur

2005-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "mound brine tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Tank 48 Treatment Process  

-Reduce elutriation of particulates containing coal System planning: Sludge batch planning/DWPF WAC-Evaluate Tank Farm and DWPF coal capability

122

Spatial Trends and Factors of Pimple Mound Formation in East-Central Texas  

E-Print Network (OSTI)

Pimple mounds are circular to elliptical domes with basal diameters ranging from 3 to more than 30 m, and heights of 30 cm to more than 2 m above intermound levels. For almost two centuries, the origin of these features has been speculated upon by scientists without general consensus as to one of over 30 different mechanisms suggested for their origin. These soil microfeatures can be observed throughout portions of East Texas as well as Louisiana, Arkansas, Oklahoma, and Missouri. Pimple mounds have been extensively mapped throughout East Texas as complexes covering over 1.0 million ha in 47 soil survey areas. About 600,000 ha are on Pleistocene-age geological formations. This study focused on 5,500 ha in Leon County, Texas, mapped as Rader-Derly complex and Derly-Rader complex. Rader (Aquic Paleustalfs) is on mounds and Derly (Typic Glossaqualfs) in the low intermounds. These soils are mapped primarily on terraces of the Trinity River system within the survey area. Using elevation levels published for the various fluviatile terrace deposits of the Trinity River, six groups (five terrace level groups and an upland group) were identified for analysis of mounds within the study area. Processes and factors of soil formation during the life of these features were considered using two methods ? remotely sensed elevation data and sampling data collected in the field. Size, shape, and relief of mounds were analyzed using airborne-based, remotely sensed LiDAR (Light Detection and Ranging) elevation data. Particle size distributions and pedon descriptions of mounds formed on materials of various ages were compared across the study area with special emphasis given to spatial trends. Analyses indicate a fluvial origin with pimple mound orientation corresponding to surrounding ridge and swale features of the paleoriver. Pimple mounds within the study area formed in the presence of sandy to loamy alluvial sediments and require the presence of accretionary ridge microtopography over point bar deposits. This alluvial parent material and topography were further developed by fluctuations in climate and vegetation over time. The erosional influence of bioturbation by animals and the intense rainfall and flood events which frequent the study area provided an environment in which these soil microfeatures have developed and over time exhibit increased levels of pedogenesis.

Robinson, Chance

2012-05-01T23:59:59.000Z

123

Brine Migration Experimental Studies for Salt Repositories | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brine Migration Experimental Studies for Salt Repositories Brine Migration Experimental Studies for Salt Repositories Brine Migration Experimental Studies for Salt Repositories Experiments were used to examine water content in Permian salt samples (Salado Formation) collected from the WIPP site. The profile of water release and movement is recognized as a function of temperature from 30 to 275 oC using classical gravimetric methods to measure weight loss as a result of heating. The amount of water released from heating the salt was found to be correlated with the salts accessory mineral content (clay, other secondary minerals lost up to 3 wt % while pure halite salt lost less than 0.5 wt % water). Water released from salt at lower temperature was reversible and is attributed to clay hydration and dehydration processes. The analysis

124

Cementation process for minerals recovery from Salton Sea geothermal brines  

DOE Green Energy (OSTI)

The potential for minerals recovery from a 1000-MWe combined geothermal power and minerals recovery plant in the Salton Sea is examined. While the possible value of minerals recovered would substantially exceed the revenue from power production, information is insufficient to carry out a detailed economic analysis. The recovery of precious metals - silver, gold, and platinum - is the most important factor in determining the economics of a minerals recovery plant; however, the precious metals content of the brines is not certain. Such a power plant could recover 14 to 31% of the US demand for manganese and substantial amounts of zinc and lead. Previous work on minerals extraction from Salton Sea brines is also reviewed and a new process, based on a fluidized-bed cementation reaction with metallic iron, is proposed. This process would recover the precious metals, lead, and tin present in the brines.

Maimoni, A.

1982-01-26T23:59:59.000Z

125

Actinide (III) solubility in WIPP Brine: data summary and recommendations  

Science Conference Proceedings (OSTI)

The solubility of actinides in the +3 oxidation state is an important input into the Waste Isolation Pilot Plant (WIPP) performance assessment (PA) models that calculate potential actinide release from the WIPP repository. In this context, the solubility of neodymium(III) was determined as a function of pH, carbonate concentration, and WIPP brine composition. Additionally, we conducted a literature review on the solubility of +3 actinides under WIPP-related conditions. Neodymium(III) was used as a redox-invariant analog for the +3 oxidation state of americium and plutonium, which is the oxidation state that accounts for over 90% of the potential release from the WIPP through the dissolved brine release (DBR) mechanism, based on current WIPP performance assessment assumptions. These solubility data extend past studies to brine compositions that are more WIPP-relevant and cover a broader range of experimental conditions than past studies.

Borkowski, Marian; Lucchini, Jean-Francois; Richmann, Michael K.; Reed, Donald T.

2009-09-01T23:59:59.000Z

126

Brine Migration Experimental Studies for Salt Repositories | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brine Migration Experimental Studies for Salt Repositories Brine Migration Experimental Studies for Salt Repositories Brine Migration Experimental Studies for Salt Repositories Experiments were used to examine water content in Permian salt samples (Salado Formation) collected from the WIPP site. The profile of water release and movement is recognized as a function of temperature from 30 to 275 oC using classical gravimetric methods to measure weight loss as a result of heating. The amount of water released from heating the salt was found to be correlated with the salts accessory mineral content (clay, other secondary minerals lost up to 3 wt % while pure halite salt lost less than 0.5 wt % water). Water released from salt at lower temperature was reversible and is attributed to clay hydration and dehydration processes. The analysis

127

Microbial community composition and biogeochemical processes in cold-water coral carbonate mounds in the Gulf of Cadiz, on the Moroccan margin  

E-Print Network (OSTI)

Bait Compared to an Individual Mound Treatment Engler 19 Evaluation of AllectusTM and Talstar Formulations and Diatomaceous Earth as Individual Mound Treatments for Red Imported Fire Ants Engler, Drees, Nester 32 Preliminary Assessment of 80% Spinosad (Entrust®) as an Individual Mound Drench Treatment

Gilli, Adrian

128

Brine and gas recovery from geopressured systems. I. Parametric calculations  

DOE Green Energy (OSTI)

A series of parametric calculations was run with the S-CUBED geopressured-geothermal simulator MUSHRM to assess the effects of important formation, fluid and well parameters on brine and gas recovery from geopressured reservoir systems. The specific parameters considered are formation permeability, pore-fluid salinity, temperature and gas content, well radius and location with respect to reservoir boundaries, desired flow rate, and possible shale recharge. It was found that the total brine and gas recovered (as a fraction of the resource in situ) were most sensitive to formation permeability, pore-fluid gas content, and shale recharge.

Garg, S.K.; Riney, T.D.

1984-02-01T23:59:59.000Z

129

Conditioning of geothermal brine effluents for injection: use of coagulants  

DOE Green Energy (OSTI)

The use of various chemical coagulants and flocculants with spent geothermal brine for enhancing the removal of colloidal solids prior to injection was studied. Brine at 80 to 85/sup 0/C was obtained from the injection line of the SDG and E/DOE Geothermal Loop Experimental Facility during a period of operation with Magmamax No. 1 Fluid. The solids consist primarily of an iron-rich amorphous silica and heavy metal sulfides, principally lead. Standard jar testing equipment was used to carry out the tests.

Quong, R.; Shoepflin, F.; Stout, N.D.

1978-02-01T23:59:59.000Z

130

Hanford Tank Waste Residuals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - ~27 million gallons of waste* - 149 SSTs located in 12 SST Farms - Grouped into 7 Waste Management Areas (WMAs) for RCRA closure purposes: 200 West Area S/SX T TX/TY U 200 East Area A/AX B/BX/BY C * Double-Shell Tanks (DSTs) - ~26 million gallons of waste* - 28 DSTs located in 6 DST Farms (1 West/5 East) * 17 Misc Underground Storage Tanks (MUST) * 43 Inactive MUST (IMUST) 200 East Area A/AX B/BX/BY C * Volumes fluctuate as SST retrievals and 242-A Evaporator runs occur. Major Regulatory Drivers * Radioactive Tank Waste Materials - Atomic Energy Act - DOE M 435.1-1, Ch II, HLW - Other DOE Orders * Hazardous/Dangerous Tank Wastes - Hanford Federal Facility Agreement and Consent Order (TPA) - Retrieval/Closure under State's implementation

131

Near Tank Treatment System  

Hanford High Level Waste: S/SX Tanks TEM Images of Actual Waste Boehmite 7 (a) 0.2 m (b) 0.2 m (c) 0.5 m (d) 0.2 m U and Mn particles . Near Tank Treatment System

132

SRS Tank Closure Regulatory Developments  

Order 435.1 and State-required documents are prepared and in review Tank-specific documents for Tanks 18, 19, 5 and ... Solids Volume (gal) Solids ...

133

Tank characterization reference guide  

Science Conference Proceedings (OSTI)

Characterization of the Hanford Site high-level waste storage tanks supports safety issue resolution; operations and maintenance requirements; and retrieval, pretreatment, vitrification, and disposal technology development. Technical, historical, and programmatic information about the waste tanks is often scattered among many sources, if it is documented at all. This Tank Characterization Reference Guide, therefore, serves as a common location for much of the generic tank information that is otherwise contained in many documents. The report is intended to be an introduction to the issues and history surrounding the generation, storage, and management of the liquid process wastes, and a presentation of the sampling, analysis, and modeling activities that support the current waste characterization. This report should provide a basis upon which those unfamiliar with the Hanford Site tank farms can start their research.

De Lorenzo, D.S.; DiCenso, A.T.; Hiller, D.B.; Johnson, K.W.; Rutherford, J.H.; Smith, D.J. [Los Alamos Technical Associates, Kennewick, WA (United States); Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States)

1994-09-01T23:59:59.000Z

134

Marketing research for EE G Mound Applied Technologies' heat treatment process of high strength materials  

Science Conference Proceedings (OSTI)

This report summarizes research conducted by ITI to evaluate the commercialization potential of EG G Mound Applied Technologies' heat treatment process of high strength materials. The remainder of the report describes the nature of demand for maraging steel, extent of demand, competitors, environmental trends, technology life cycle, industry structure, and conclusion. (JL)

Shackson, R.H.

1991-10-09T23:59:59.000Z

135

Tank 241-U-202 tank characterization plan  

Science Conference Proceedings (OSTI)

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, and WHC 222-S Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-U-202.

Schreiber, R.D.

1995-02-21T23:59:59.000Z

136

Tank 241-BY-106 tank characterization plan  

Science Conference Proceedings (OSTI)

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, PNL 325 Analytical Chemistry Laboratory, and WHC 222-S Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-BY-106.

Schreiber, R.D.

1995-01-24T23:59:59.000Z

137

Tank 241-C-102 tank characterization plan  

SciTech Connect

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL 325 Analytical Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples from tank 241-C-102.

Schreiber, R.D.

1995-01-01T23:59:59.000Z

138

Uranium (VI) solubility in carbonate-free ERDA-6 brine  

Science Conference Proceedings (OSTI)

When present, uranium is usually an element of importance in a nuclear waste repository. In the Waste Isolation Pilot Plant (WIPP), uranium is the most prevalent actinide component by mass, with about 647 metric tons to be placed in the repository. Therefore, the chemistry of uranium, and especially its solubility in the WIPP conditions, needs to be well determined. Long-term experiments were performed to measure the solubility of uranium (VI) in carbonate-free ERDA-6 brine, a simulated WIPP brine, at pC{sub H+} values between 8 and 12.5. These data, obtained from the over-saturation approach, were the first repository-relevant data for the VI actinide oxidation state. The solubility trends observed pointed towards low uranium solubility in WIPP brines and a lack of amphotericity. At the expected pC{sub H+} in the WIPP ({approx} 9.5), measured uranium solubility approached 10{sup -7} M. The objective of these experiments was to establish a baseline solubility to further investigate the effects of carbonate complexation on uranium solubility in WIPP brines.

Lucchini, Jean-francois [Los Alamos National Laboratory; Khaing, Hnin [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

139

Advanced biochemical processes for geothermal brines current developments  

DOE Green Energy (OSTI)

A research program at Brookhaven National Laboratory (BNL) which deals with the development and application of processes for the treatment of geothermal brines and sludges has led to the identification and design of cost-efficient and environmentally friendly treatment methodology. Initially the primary goal of the processing was to convert geothermal wastes into disposable materials whose chemical composition would satisfy environmental regulations. An expansion of the R&D effort allowed to identify a combination of biochemical and chemical processes which became a basis for the development of a technology for the treatment of geothermal brines and sludges. The new technology satisfies environmental regulatory requirements and concurrently converts the geothermal brines and sludges into commercially promising products. Because the chemical composition of geothermal wastes depends on the type of the resource and therefore differs, the emerging technology has to be also flexible so that it can be readily modified to suit the needs of a particular type of resource. Recent conceptional designs for the processing of hypersaline and low salinity brines and sludges will be discussed.

Premuzic, E.T.; Lin, M.S.; Bohenek, M.

1997-03-10T23:59:59.000Z

140

Advanced biochemical processes for geothermal brines: Current developments  

DOE Green Energy (OSTI)

A research program at Brookhaven National Laboratory (BNL) which deals with the development and application of processes for the treatment of geothermal brines and sludges has led to the identification and design of cost-efficient and environmentally friendly treatment methodology. Initially the primary goal of the processing was to convert geothermal wastes into disposable materials whose chemical composition would satisfy environmental regulations. An expansion of the r and D effort identified a combination of biochemical and chemical processes which became the basis for the development of a technology for the treatment of geothermal brines and sludges. The new technology satisfies environmental regulatory requirements and concurrently converts the geothermal brines and sludges into commercially promising products. Because the chemical composition of geothermal wastes depends on the type of the resource, the emerging technology has to be flexible so that it can be readily modified to suit the needs of a particular type of resource. Recent conceptional designs for the processing of hypersaline and low salinity brines and sludges will be discussed.

Premuzic, E.T.; Lin, M.S.; Bohenek, M. [Brookhaven National Lab., Upton, NY (United States). Energy Science and Technology Div.; Bajsarowicz, V. [CET Environmental Services, Inc., Richmond, CA (United States); McCloud, M. [C.E. Holt/California Energy, Pasadena, CA (United States)

1997-07-07T23:59:59.000Z

Note: This page contains sample records for the topic "mound brine tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Processing of high salinity brines for subsurface injection  

DOE Green Energy (OSTI)

Different chemical pretreatments and filtration methods were evaluated as a possible means of clarifying and improving the injectivity of hypersaline brines. Six different downflow media combinations were evaluated over three geopressurized sites, using test data from 4 inch diameter filters. Also, tests were conducted with one hollow fiber ultrafilter unit and two types of disposable cartridge filters. The test procedures are mentioned briefly. (MHR)

Thompson, R.E.; Raber, E.

1979-08-06T23:59:59.000Z

142

Pressurizer tank upper support  

DOE Patents (OSTI)

A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90[degree] intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure. 10 figures.

Baker, T.H.; Ott, H.L.

1994-01-11T23:59:59.000Z

143

Pressurizer tank upper support  

DOE Patents (OSTI)

A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90.degree. intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure.

Baker, Tod H. (O' Hara Township, Allegheny County, PA); Ott, Howard L. (Kiski Township, Armstrong County, PA)

1994-01-01T23:59:59.000Z

144

Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Tank Waste Treatment and Immobilization Plant - - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report This is a comprehensive review ofthe Hanford WTP estimate at completion - assessing the project scope, contract requirements, management execution plant, schedule, cost estimates, and risks. Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report More Documents & Publications TBH-0042 - In the Matter of Curtis Hall

145

Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ETR Tank Waste Treatment and Immobilization Plant - Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Full Document and Summary Versions are available for download Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Summary - Flowsheet for the Hanford Waste Treatment Plant More Documents & Publications Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility

146

Tank 48 - Chemical Destruction  

SciTech Connect

Small tank copper-catalyzed peroxide oxidation (CCPO) is a potentially viable technology to facilitate the destruction of tetraphenylborate (TPB) organic solids contained within the Tank 48H waste at the Savannah River Site (SRS). A maturation strategy was created that identified a number of near-term development activities required to determine the viability of the CCPO process, and subsequent disposition of the CCPO effluent. Critical activities included laboratory-scale validation of the process and identification of forward transfer paths for the CCPO effluent. The technical documentation and the successful application of the CCPO process on simulated Tank 48 waste confirm that the CCPO process is a viable process for the disposition of the Tank 48 contents.

Simner, Steven P.; Aponte, Celia I.; Brass, Earl A.

2013-01-09T23:59:59.000Z

147

Cryogenic Fuel Tank Draining  

E-Print Network (OSTI)

One of the technological challenges in designing advanced hypersonic aircraft and the next generation of spacecraft is developing reusable flight-weight cryogenic fuel tanks. As an aid in the design and analysis of these cryogenic tanks, a computational fluid dynamics (CFD) model has been developed specifically for the analysis of flow in a cryogenic fuel tank. This model employs the full set of Navier-Stokes equations, except that viscous dissipation is neglected in the energy equation. An explicit finite difference technique in two-dimensional generalized coordinates, approximated to second-order accuracy in both space and time is used. The stiffness resulting from the low Mach number is resolved by using artificial compressibility. The model simulates the transient, two-dimensional draining of a fuel tank cross section. To calculate the slosh wave dynamics the interface between the ullage gas and liquid fuel is modeled as a free surface. Then, experimental data for free convection inside a horizontal cylinder are compared with model results. Finally, cryogenic tank draining calculations are performed with three different wall heat fluxes to demonstrate the effect of wall heat flux on the internal tank flow field.

Analysis Model Donald; Donald Greer

1999-01-01T23:59:59.000Z

148

Impact-driven pressure management via targeted brine extraction Conceptual studies of CO2 storage in saline formations  

E-Print Network (OSTI)

Combining Brine Extraction, desalination, and Residual-Brinebeneficial use such as desalination for drinking water

Birkholzer, J.T.

2013-01-01T23:59:59.000Z

149

Analysis of anions in geological brines using ion chromatography  

DOE Green Energy (OSTI)

Ion chromatographic procedures for the determination of the anions bromide, sulfate, nitrite, nitrate, phosphate, and iodide in brine samples have been developed and are described. The techniques have been applied to the analysis of natural brines, and geologic evaporites. Sample matrices varied over a range from 15,000 mg/L to 200,000 mg/L total halogens, nearly all of which is chloride. The analyzed anion concentrations ranged from less than 5 mg/L in the cases of nitrite, nitrate, and phosphate, to 20,000 mg/L in the case of sulfate. A technique for suppressing chloride and sulfate ions to facilitate the analysis of lower concentration anions is presented. Analysis times are typically less than 20 minutes for each procedure and the ion chromatographic results compare well with those obtained using more time consuming classical chemical analyses. 10 references, 14 figures.

Merrill, R.M.

1985-03-01T23:59:59.000Z

150

Power Production from Geothermal Brine with the Rotary Separator Turbine  

SciTech Connect

The rotary separator turbine is a new turbine device that operates with gas-liquid mixtures. This device achieves complete gas-liquid separation, generates power from the liquid and repressurizes the liquid. The use of the rotary separator turbine for geothermal power generation was investigated on this program. A pilot scale unit was designed and tested. Tests were conducted with a clean water/steam mixture and with geothermal brine/steam flows at East Mesa, California; Raft River, Idaho; and Roosevelt Hot Springs, Utah. The test results were used to calculate the performance advantage of a rotary separator turbine power system compared to a flash steam power system and a binary power system. The calculated performance advantages were then used to estimate market potential for wellhead and central station Biphase units. The measured performance in the laboratory and in the field agreed to within {+-} 10% of the predicted values. The design goal of 20 kWe was generated both in the laboratory and from brine. Separated steam quality was measured to be greater than 99.96% at all three geothermal resources and in the laboratory. Brine pressure leaving the test unit was greater than reinjection pressure requirements. Maximum brine outlet pressure of 90 psig was demonstrated. The measured performance values would result in a 34% increase in electric power production above a single stage flash steam system. Increasing the size from the pilot size unit (20kWe) to a wellhead unit (2000 kWe) gave a calculated performance advantage of 40%. Based on these favorable results, design, construction and testing of a full-size well-head unit was initiated.

Cerini, Donald J.; Hays, Lance G.

1980-12-01T23:59:59.000Z

151

Modeling acid-gas generation from boiling chloride brines  

Science Conference Proceedings (OSTI)

This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent expected conditions in an emplacement drift, but nevertheless illustrate the potential for acid-gas generation at moderate temperatures (<150 C).

Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

2009-11-16T23:59:59.000Z

152

Flammable Gas Release Estimates for Modified Sluicing Retrieval of Waste from Selected Hanford Single-Shell Tanks  

DOE Green Energy (OSTI)

The high-level radioactive wastes in many single-shell tanks (SSTs) at the Hanford Site are to be retrieved by a modified sluicing method. Retrieval operations will hydraulically erode and dissolve the saltcake waste, and the resulting brine will then be pumped to a double-shell tank (DST). Waste gases residing in the solid waste matrix will be released into the tank headspace when the matrix is eroded or dissolved. These retained waste gases include the flammable species hydrogen, methane, and ammonia, and there is a concern that these flammable gases could produce a flammable mixture in the tank headspaces during the retrieval operations. This report combines conservative retained gas inventory estimates and tank data with anticipated waste retrieval rates to estimate the potential headspace flammability of selected SSTs during waste retrieval operations. The SSTs considered here are ten of the twelve 241-S farm tanks (tanks 241-S-107 and 241-S-111 are excluded from consideration here) and tank 241-U-107 (U-107).

Huckaby, James L.; Wells, Beric E.

2003-05-13T23:59:59.000Z

153

The feasibility of deep well injection for brine disposal  

E-Print Network (OSTI)

A generalized methodology for evaluating the technical feasibility of projects involving the disposal of waste brine by injection into deep saline aquifers is developed, primarily from the hydrology and petroleum engineering literature. Data collection, groundwater modeling, and fluid compatibility are discussed in detail. Injection system design, economics, and regulatory considerations are more related to economic than technical feasibility, and are discussed only as they relate to technical feasibility. The methodology is utilized to make a preliminary evaluation of a proposed brine injection project in the Dove Creek area of King and Stonewall Counties, North Central Texas. Four known deep aquifers are modeled, using the SWIFT/486 software, to determine their ability to receive two cfs of brine for a project life of one hundred years. Two aquifers, the Strawn and EUenburger Formations, are predicted to be acceptable for disposal. Each aquifer would require only one disposal well which is favorable for the economics of the project. Additional data, particularly hydraulic conductivity and net aquifer thickness data, are required to make a more definitive technical feasibility determination for this project.

Spongberg, Martin Edward

1994-01-01T23:59:59.000Z

154

Tank Waste Strategy Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Waste Subcommittee www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 Tank Waste Subcommittee Ken Picha Office of Environmental Management December 5, 2011 Background Tank Waste Subcommittee (TWS)originally chartered, in response to Secretary's request to perform a technical review of Waste Treatment and Immobilization Plant (WTP) in May 2010. Three tasks: o Verification of closure of WTP External Flowsheet Review Team (EFRT) issues. o WTP Technical Design Review o WTP potential improvements Report completed and briefed to DOE in September 2010 www.em.doe.gov safety performance cleanup closure E M Environmental Management 2 Report completed and briefed to DOE in September 2010 Follow-on scope for TWS identified immediately after briefing to DOE and

155

Tank characterization for Double-Shell Tank 241-AP-102  

SciTech Connect

This document provides the characterization information and interprets the data for Double-Shell Tank AP-102.

DeLorenzo, D.S.; DiCenso, A.T.; Amato, L.C.; Weyns-Rollosson, M.I.; Smith, D.J. [Los Alamos Technical Associates, Inc., Kennewick, WA (United States); Simpson, B.C.; Welsh, T.L. [Westinghouse Hanford Co., Richland, WA (United States)

1994-08-01T23:59:59.000Z

156

Brine pH Modification Scale Control Technology. 2. A Review.pdf | Open  

Open Energy Info (EERE)

Brine pH Modification Scale Control Technology. 2. A Review.pdf Brine pH Modification Scale Control Technology. 2. A Review.pdf Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Brine pH Modification Scale Control Technology. 2. A Review.pdf Abstract A variety of processes has been deployed at geothermalfields to inhibit or control siliceous scale deposition. It has beenknown for decades that the kinetics of silicic acid polymerizationis retarded when the pH of an aqueous solution is decreased.Therefore, a potential method for controlling siliceous scalingfrom geothermal brine is treatment with acid. Early attempts tocontrol siliceous scaling in geothermal brine-handling equipmentby retarding polymerization led to the belief that the pHhad to be reduced to < 4. Acidifying brine was discourageddue to corrosion concerns.

157

Trace metal speciation in saline waters affected by geothermal brines. [GEOCHEM  

DOE Green Energy (OSTI)

A description is given of the chemical equilibrium computer program GEOCHEM, which has been developed to calculate trace element speciation in soil, irrigation, drainage, or Salton Sea waters affected by geothermal brine. GEOCHEM is applied to irrigation water-brine mixtures and to Salton Sea water-brine mixtures in order to compute the chemical speciation of the elements Cd, Cu, Hg, Ni, Pb, and Zn, along with the oxyanions of As and B. The results suggest that the computer simulation can have an important effect on a program for managing brine spills. Appendices include published papers on related research.

Sposito, G.; Page, A.L.

1977-11-01T23:59:59.000Z

158

Tanks focus area. Annual report  

SciTech Connect

The U.S. Department of Energy Office of Environmental Management is tasked with a major remediation project to treat and dispose of radioactive waste in hundreds of underground storage tanks. These tanks contain about 90,000,000 gallons of high-level and transuranic wastes. We have 68 known or assumed leaking tanks, that have allowed waste to migrate into the soil surrounding the tank. In some cases, the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in the safest possible condition until their eventual remediation to reduce the risk of waste migration and exposure to workers, the public, and the environment. Science and technology development for safer, more efficient, and cost-effective waste treatment methods will speed up progress toward the final remediation of these tanks. The DOE Office of Environmental Management established the Tanks Focus Area to serve as the DOE-EM`s technology development program for radioactive waste tank remediation in partnership with the Offices of Waste Management and Environmental Restoration. The Tanks Focus Area is responsible for leading, coordinating, and facilitating science and technology development to support remediation at DOE`s four major tank sites: the Hanford Site in Washington State, Idaho National Engineering and Environmental Laboratory in Idaho, Oak Ridge Reservation in Tennessee, and the Savannah River Site in South Carolina. The technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank. Safety is integrated across all the functions and is a key component of the Tanks Focus Area program.

Frey, J.

1997-12-31T23:59:59.000Z

159

Community Geothermal Technology Program: Electrodeposition of minerals in geothermal brine  

DOE Green Energy (OSTI)

Objective was to study the materials electrodeposited from geothermal brine, from the HGP-A well in Puna, Hawaii. Due to limitations, only one good set of electrodeposited material was obtained; crystallography indicates that vaterite forms first, followed by calcite and then perhaps aragonite as current density is increased. While the cost to weight ratio is reasonable, the deposition rate is very slow. More research is needed, such as reducing the brittleness. The electrodeposited material possibly could be used as building blocks, tables, benches, etc. 49 figs, 4 tabs, 7 refs.

Not Available

1990-12-31T23:59:59.000Z

160

Geothermal Chemical Modeling Project DOE Advanced Brine Chemistry Program  

DOE Green Energy (OSTI)

The brine-calcite-anhydrite-silica scale model program is ready to be used by the industry at a research level. Versions are already in use in studies of scaling in geothermal and oil production systems. A set of short course notes has been prepared to help perspective users. IBM and Macintosh versions of the model are available. The gas phase models have been incorporated in the general package for distribution. Both mainframe (SUN) and PC versions (MacIntosh and IBM) of the code have been distributed.

Moeller, N.; Weare, J.H.

1993-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "mound brine tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Accelerated Clean-up of the United States Department of Energy, Mound Nuclear Weapons Facility in Miamisburg, Ohio  

Science Conference Proceedings (OSTI)

CH2M HILL is executing a performance-based contract with the United States Department of Energy to accelerate the safe closure of the nuclear facilities at the former Mound plant in Miamisburg, Ohio. The contract started in January 2003 with a target completion date of March 31, 2006. Our accelerated baseline targets completion of the project 2 years ahead of the previous baseline schedule, by spring 2006, and for $200 million less than previous estimates. This unique decommissioning and remediation project is located within the City of Miamisburg proper and is designed for transfer of the property to the Miamisburg Mound Community Improvement Corporation for industrial reuse. The project is being performed with the Miamisburg Mound Community Improvement Corporation and their tenants co-located on the site creating significant logistical, safety and stakeholder challenges. The project is also being performed in conjunction with the United States Department of Energy, United States Environmental Protection Agency, and the Ohio Environmental Protection Agency under the Mound 2000 regulatory cleanup process. The project is currently over 95% complete. To achieve cleanup and closure of the Mound site, CH2M HILL's scope includes: - Demolition of 64 nuclear, radiological and commercial facilities - Preparation for Transfer of 9 facilities (including a Category 2 nuclear facility) to the Miamisburg Mound Community Improvement Corporation for industrial reuse - Removal of all above ground utility structures and components, and preparation for transfer of 9 utility systems to Miamisburg Mound Community Improvement Corporation - Investigation, remediation, closure, and documentation of all known Potential Release Sites contaminated with radiological and chemical contamination (73 identified in original contract) - Storage, characterization, processing, packaging and shipment of all waste and excess nuclear materials - Preparation for Transfer of the 306 acre site to the Miamisburg Mound Community Improvement Corporation for industrial reuse In the first two and a half years the project has successfully completed more demolition work, more environmental remediation work and more waste shipping than any other period in site history while improving the safety statistics of the site significantly. CH2M HILL Mound established a safety culture to promote line management safety responsibility and continues to place a high emphasis on safety performance even in an accelerated closure environment. The Occupational Safety and Health Administration (OSHA), Time Restricted Case (TRC) and Days Away and Restricted Time (DART) rates improved 76% and 90%, respectively, since contract start from 2002 to 2005. These rates are the lowest the site has ever seen. The site has also gone over 1 million hours without a Lost Workday Case accident. Covered below are the key strategies for safety improvement and project delivery that have been successful at the Miamisburg Closure Project are presented. (authors)

Lehew, J.G.; Bradford, J.D.; Cabbil, C.C. [CH2M Hill / CH2M Hill Mound, Inc., 1075 Mound Road, Miamisburg, OH 45343 (United States)

2006-07-01T23:59:59.000Z

162

Technical Review Report for the Mound 1KW Package Safety Analysis Report for Packaging Addendum No. 1, through Revision b  

SciTech Connect

This Technical Review Report (TRR) documents the review, performed by the Lawrence Livermore National Laboratory (LLNL) staff, at the request of the U.S. Department of Energy (DOE), on the 'Mound 1KW Package Safety Analysis Report for Packaging, Addendum No. 1, Revision b', dated May 2007 (Addendum 1). The Mound 1KW Package is certified by DOE Certificate of Compliance (CoC) number USA/9516/B(U)F-85 for the transportation of Type B quantities of plutonium heat source material. The safety analysis of the package is documented in the 'Safety Analysis Report for Packaging (SARP) for the Mound 1KW Package' (i.e., the Mound 1KW SARP, or the SARP). Addendum 1 incorporates a new fueled capsule assembly payload. The following changes have been made to add this payload: (1) The primary containment vessel (PCV) will be of the same design, but will increase in height to 11.16 in.; (2) A new graphite support block will be added to support up to three fueled capsule assemblies per package; (3) The cutting groove height on the secondary containment vessel (SCV) will be heightened to accommodate the taller PCV; and (4) A 3.38 in. high graphite filler block will be placed on top of the PCV. All other packaging features, as described in the Mound 1KW SARP [3], remain unchanged. This report documents the LLNL review of Addendum 1[1]. The specific review for each SARP Chapter is documented herein.

DiSabatino, A; West, M; Hafner, R; Russell, E

2007-10-04T23:59:59.000Z

163

Tank characterization data report: Tank 241-C-112  

Science Conference Proceedings (OSTI)

Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. It is probable that tank 241-C-112 exceeds the 1,000 g-mol inventory criteria established for the Ferrocyanide USQ; however, extensive energetic analysis of the waste has determined a maximum exothermic value of -9 cal/g dry waste. This value is substantially below any levels of concern (-75 cal/g). In addition, an investigation of potential mechanisms to generate concentration levels of radionuclides high enough to be of concern was performed. No credible mechanism was postulated that could initiate the formation of such concentration levels in the tank. Tank 241-C-112 waste is a complex material made up primarily of water and inert salts. The insoluble solids are a mixture of phosphates, sulfates, and hydroxides in combination with aluminum, calcium, iron, nickel, and uranium. Disodium nickel ferrocyanide and sodium cesium nickel ferrocyanide probably exist in the tank; however, there appears to have been significant degradation of this material since the waste was initially settled in the tank.

Simpson, B.C.; Borsheim, G.L.; Jensen, L.

1993-04-01T23:59:59.000Z

164

Kinetics of silica deposition from simulated geothermal brines  

DOE Green Energy (OSTI)

Supersaturated brines were passed through columns packed with several forms of silica (crystalline ..cap alpha.. quartz, polycrystalline ..cap alpha.. quartz, and porous Vycor). Also, silica deposition on ThO/sub 2/ microspheres and titanium powder was studied under controlled conditions of supersaturation, pH, temperature, and salinity. The residence time was varied by adjustments of flow rate and column length. The silica contents of the input and effluent solutions were determined colorimetrically by a molybdate method which does not include polymers without special pretreatment. Essentially identical deposition behavior was observed once the substrate was thoroughly coated with amorphous silica and the BET surface area of the coated particles was taken into account. The reaction rate is not diffusion limited in the columns. The silica deposition is a function of the monomeric Si(OH)/sub 4/ concentration in the brine. The deposition on all surfaces examined was spontaneously nucleated. The dependence on the supersaturation concentration, hydroxide ion concentration, surface area, temperature and salinity were examined. Fluoride was shown to have no effect at pH 5.94 and low salinity. The empirical rate law which describes the data in 1 m NaCl in the pH range 5-7 and temperatures from 60 to 120/sup 0/C is given.

Bohlmann, E.G.; Mesmer, R.E.; Berlinski, P.

1980-03-01T23:59:59.000Z

165

Trace metal speciation in saline waters affected by geothermal brines. Final technical report. [GEOCHEM  

DOE Green Energy (OSTI)

The computer program GEOCHEM was developed and applied to calculate the speciation of trace elements, such as Li, B, Mn, Co, Ni, Cu, Zn, Pb, and As, in mixtures of geothermal brines with soil waters. A typical speciation calculation involved the simultaneous consideration of about 350 inorganic and organic complexes and about 80 possible solid phases that could form among the macro- and microconstituents in the mixtures. The four geothermal brines chosen for study were from the East Mesa, Heber, and Salton Sea KGRA's. Two examples of East Mesa brine were employed in order to illustrate the effect of brine variability within a given KGRA. The soil waters chosen for study were the Holtville, Rosita, and Vint soil solutions and the Vail 4 drain water. These waters were mixed with the four brines to produce 1%, 5%, and 10% brine combinations. The combinations then were analyzed with the help of GEOCHEM and were interpreted in the context of two proposed general contamination scenarios. The results of the speciation calculations pointed to the great importance, in brine, of sulfide as a precipitating agent for trace metals and of borate as a trace metal-complexing ligand. In general, precipitation and/or exchange adsorption in soil were found to reduce the levels of trace metals well below harmful concentrations. The principal exceptions were Li and B, which did not precipitate and which were at or very hear harmful levels in the soil water-brine mixtures.

Sposito, G.

1979-07-01T23:59:59.000Z

166

Improving the performance of brine wells at Gulf Coast strategic petroleum reserve sites  

DOE Green Energy (OSTI)

At the request of the Department of Energy, field techniques were developed to evaluate and improve the injection of brine into wells at Strategic Petroleum Reserve (SPR) sites. These wells are necessary for the disposal of saturated brine removed from salt domes where oil is being stored. The wells, which were accepting brine at 50 percent or less of their initial design rates, were impaired by saturated brine containing particulates that deposited on the sand face and in the geologic formation next to the wellbore. Corrosion of the brine-disposal pipelines and injection wells contributed to the impairment by adding significant amounts of particulates in the form of corrosion products. When tests were implemented at the SPR sites, it was found that the poor quality of injected brines was the primary cause of impaired injection; that granular-media filtration, when used with chemical pretreatment, is an effective method for removing particulates from hypersaline brine; that satisfactory injection-well performance can be attained with prefiltered brines; and that corrosion rates can be substantially reduced by oxygen-scavenging.

Owen, L.B.; Quong, R. (eds.)

1979-11-05T23:59:59.000Z

167

A Summary Review of Mound Laboratory's Experience in D & D of Radioactive Facilities 1949-1973  

SciTech Connect

The objective of Mound Laboratory's Decontamination and Decommissioning (D&D) projects has been the effective termination of radioactive material processing facilities with no significant personnel exposures or environmental releases. This objective must be met with available resources and manpower. Mound has effectively decontaminated and/or decommissioned four major facilities in the 1949 through 1973 time period. Many minor areas were also decontaminated and/or decommissioned during this period. The major D & D projects involved the following isotopes: polonium-210, radium-226, actinium-227, and plutonium-238. To achieve a D & D status, Mound has employed several control and decontamination techniques such as: "Navy Cocooning", entombment, removal, foaming, bagging, tents, chutes, portable exhausters, dry ice, vents, bubble suits, three-zones, fire watches, painting and sealing, in-line cleaning, high pressure water blaster, and chemical cleaning.

Garner, J. M.; Davis, W. P.

1974-06-01T23:59:59.000Z

168

Studies of brine chemistry, precipitation of solids, and scale formation at the Salton Sea geothermal field  

DOE Green Energy (OSTI)

Factors affecting the precipitation of solids and deposition of scale from the hypersaline brines of the Salton Sea geothermal field - two potential problems in the proposed utilization of these brines for electric power generation - were investigated. The average physical and chemical composition of the fluid from Magmamax No. 1 well was noted and the effects of changes in well flowrate on the chemistry of the brine and the formation of solids were determined. The effects of pH on the process stream chemistry and on the composition and rates of formation of solids and scale that precipitated from this brine were studied. Reduction of the pH from 6 to 4-5 decreased the scaling rates and increased the proportions of bariun sulfate and calcium fluoride in the scales and precipitated solids. These studies were conducted using a small-scale four-stage brine flash system constructed at the site.

Harrar, J.E.; Otto, C.H. Jr.; Deutscher, S.B.; Ryon, R.W.; Tardiff, G.E.

1979-01-08T23:59:59.000Z

169

Mound-ACT*DE*CON{sup SM} feasibility study. Phase 2: Final report  

Science Conference Proceedings (OSTI)

A portion of the abandoned Miami-Erie Canal paralleling the Greater Miami River receives the runoff and storm-water discharge from Mound Laboratory. In 1969, a low-level plutonium leak contaminated sediment as far away as 1.5 mi from the Mound site along the old canal system. An estimated one million cubic feet of sediment requires remediation. The technology being evaluated for the remediation of the low-level plutonium-238 contamination of the sediment involves two processes: washing the sediments with ACT*DE*CON{sup SM} solution to dissolve the contaminant, followed by extraction of the solution and processing with the MAG*SEP{sup SM} process to concentrate the contaminant and allow reuse of the ACT*DE*CON{sup SM} solution. The processes are being optimized for pilot-scale and field demonstration. Phase 2 of the project primarily involved identification at the laboratory scale of the optimal ACT*DE*CON{sup SM} formulation, identification of the ion-exchanger and MAG*SEP{sup SM} particles, verification of the plutonium mobility in the treated soil, and evaluation of other process parameters according to a series of tasks.

NONE

1994-12-01T23:59:59.000Z

170

Focused risk assessment: Mound Plant, Miami-Erie Canal Operable Unit 4  

SciTech Connect

In 1969, an underground waste line at Mound Plant ruptured and released plutonium-238 in a dilute nitric acid solution to the surrounding soils. Most of the acid was neutralized by the native soils. The plutonium, which in a neutral solution is tightly sorbed onto clay particles, remained within the spill area. During remediation, a severe storm eroded some of the contaminated soil. Fine grained plutonium-contaminated clay particles were carried away through the natural drainage courses to the remnants of the Miami-Erie Canal adjacent to Mound Plant, and then into the Great Miami River. This focused risk assessment considers exposure pathways relevant to site conditions, including incidental ingestion of contaminated soils, ingestion of drinking water and fish, and inhalation of resuspended soils and sediments. For each potential exposure pathway, a simplified conceptual model and exposure scenarios have been used to develop conservative estimates of potential radiation dose equivalents and health risks. The conservatism of the dose and risk estimates provides a substantive margin of safety in assuring that the public health is protected.

Rogers, D.R.; Dunning, D.F.

1994-09-29T23:59:59.000Z

171

Mounds Builders  

NLE Websites -- All DOE Office Websites (Extended Search)

of stone -- axes, war clubs, spearheads, arrowheads and pipes -- there were small brass kettles, iron tomahawks, steel knives and silver ornaments that Indians did not have...

172

Frio II Brine Pilot: Report on GEOSEQ Activities  

Science Conference Proceedings (OSTI)

LBNL's GEOSEQ project is a key participant in the Frio IIbrine pilot studying geologic sequestration of CO2. During During theinjection phase of the Frio-II brine pilot, LBNL collected multiple datasets including seismic monitoring, hydrologic monitoring and geochemicalsampling. These data sets are summarized in this report including allCASSM (continuous active source seismic monitoring) travel time data,injection pressure and flow rate data and gaseous sampling and tracerdata. Additional results from aqueous chemistry analysis performed by theU. S. Geological Survey (USGS) are summarized. Post injectionmodification of the flow model for Frio II is shown. Thesemodificationsare intended to facilitate integration with the monitoring data andincorporation of model heterogeneity. Current activities of LBNL's GEOSEQproject related to the Frio II test are shown, including development of anew petrophysical model for improved interpretation of seismic monitoringdata and integration of this data with flow modeling.

Daley, T.M.; Freifeld, B.M.; Ajo-Franklin, J.B.; Doughty, C.; Benson, S.M.

2007-11-17T23:59:59.000Z

173

Methane extraction from geopressured-geothermal brine at wellhead conditions  

DOE Green Energy (OSTI)

Disposal of geopressured-geothermal brine effluents by injection is expected to be costly, even into shallow aquifers. If injection into the production reservoir becomes necessary to maintain productivity and to minimize subsidence, the injection pumping costs can become overwhelming. An option aimed at reducing injection pump operating costs is to maintain a higher than normal pressure at the production wellhead to reduce the injection pumping load. The crucial element, however, is that a significant portion of CH/sub 4/ remains in solution and must be recovered in order for the pressure maintenance option to be cost effective. A laboratory and field test capability has been established, and several methods for extracting dissolved CH/sub 4/ at high temperature and pressure are being evaluated. Solvent extraction and use of hydraulic motors or turbines coupled to CH/sub 4/ recovery systems are the leading candidate methods.

Quong, R.; Owen, L.B.; Locke, F.E.; Otto, C.H.; Netherton, R.; Lorensen, L.E.

1980-05-29T23:59:59.000Z

174

Weeks Island brine diffuser site study: baseline conditions and environmental assessment technical report  

SciTech Connect

This technical report presents the results of a study conducted at two alternative brine diffuser sites (A and B) proposed for the Weeks Island salt dome, together with an analysis of the potential physical, chemical, and biological effects of brine disposal for this area of the Gulf of Mexico. Brine would result from either the leaching of salt domes to form or enlarge oil storage caverns, or the subsequent use of these caverns for crude oil storage in the Strategic Petroleum Reserve (SPR) program. Brine leached from the Weeks Island salt dome would be transported through a pipeline which would extend from the salt dome either 27 nautical miles (32 statute miles) for Site A, or 41 nautical miles (47 statute miles) for Site B, into Gulf waters. The brine would be discharged at these sites through an offshore diffuser at a sustained peak rate of 39 ft/sup 3//sec. The disposal of large quantities of brine in the Gulf could have a significant impact on the biology and water quality of the area. Physical and chemical measurements of the marine environment at Sites A and B were taken between September 1977 and July 1978 to correlate the existing environmental conditions with the estimated physical extent of tthe brine discharge as predicted by the MIT model (US Dept. of Commerce, 1977a). Measurements of wind, tide, waves, currents, and stratification (water column structure) were also obtained since the diffusion and dispersion of the brine plume are a function of the local circulation regime. These data were used to calculate both near- and far-field concentrations of brine, and may also be used in the design criteria for diffuser port configuration and verification of the plume model. Biological samples were taken to characterize the sites and to predict potential areas of impact with regard to the discharge. This sampling focused on benthic organisms and demersal fish. (DMC)

None

1980-12-12T23:59:59.000Z

175

Audit of the Department of Energy's Grant for Economic Development at the Mound Plant, ER-B-97-02  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OFFICE OF INSPECTOR GENERAL AUDIT OF THE DEPARTMENT OF ENERGY'S GRANT FOR ECONOMIC DEVELOPMENT AT THE MOUND PLANT The Office of Inspector General wants to make the distribution of its reports as customer friendly and cost effective as possible. Therefore, this report will be available electronically through the Internet at the following alternative addresses:

176

Buoyancy effects on upward brine displacement caused by CO2 injection  

SciTech Connect

Upward displacement of brine from deep reservoirs driven by pressure increases resulting from CO{sub 2} injection for geologic carbon sequestration may occur through improperly sealed abandoned wells, through permeable faults, or through permeable channels between pinch-outs of shale formations. The concern about upward brine flow is that, upon intrusion into aquifers containing groundwater resources, the brine may degrade groundwater. Because both salinity and temperature increase with depth in sedimentary basins, upward displacement of brine involves lifting fluid that is saline but also warm into shallower regions that contain fresher, cooler water. We have carried out dynamic simulations using TOUGH2/EOS7 of upward displacement of warm, salty water into cooler, fresher aquifers in a highly idealized two-dimensional model consisting of a vertical conduit (representing a well or permeable fault) connecting a deep and a shallow reservoir. Our simulations show that for small pressure increases and/or high-salinity-gradient cases, brine is pushed up the conduit to a new static steady-state equilibrium. On the other hand, if the pressure rise is large enough that brine is pushed up the conduit and into the overlying upper aquifer, flow may be sustained if the dense brine is allowed to spread laterally. In this scenario, dense brine only contacts the lower-most region of the upper aquifer. In a hypothetical case in which strong cooling of the dense brine occurs in the upper reservoir, the brine becomes sufficiently dense that it flows back down into the deeper reservoir from where it came. The brine then heats again in the lower aquifer and moves back up the conduit to repeat the cycle. Parameter studies delineate steady-state (static) and oscillatory solutions and reveal the character and period of oscillatory solutions. Such oscillatory solutions are mostly a curiosity rather than an expected natural phenomenon because in nature the geothermal gradient prevents the cooling in the upper aquifer that occurs in the model. The expected effect of upward brine displacement is either establishment of a new hydrostatic equilibrium or sustained upward flux into the bottom-most region of the upper aquifer.

Oldenburg, C.M.; Rinaldi, A.

2010-01-15T23:59:59.000Z

177

Estimating Waste Inventory and Waste Tank Characterization |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating Waste Inventory and Waste Tank Characterization Estimating Waste Inventory and Waste Tank Characterization Summary Notes from 28 May 2008 Generic Technical Issue...

178

CX-009719: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

19: Categorical Exclusion Determination 19: Categorical Exclusion Determination CX-009719: Categorical Exclusion Determination Repair and Line Bryan Mound Brine Tank, BMT-1 CX(s) Applied: B1.3 Date: 12/18/2012 Location(s): Texas Offices(s): Strategic Petroleum Reserve Field Office Subcontractor shall provide all transportation, materials, equipment, supplies, tools, facilities, utilities, labor and supervision required to repair and line the Bryan Mound (BM) brine tank, BMT-1. The tank will be cleaned by others before turning it over to the Subcontractor for repairs. Tasks include welding repair work (if required), welding inspection, tank surface preparation, and lining. CX-009719.pdf More Documents & Publications CX-000873: Categorical Exclusion Determination CX-009213: Categorical Exclusion Determination

179

Mound Laboratory Plutonium-238 Study Off-Site Analytical Data May-December 1974  

SciTech Connect

Preliminary samples collected from off-site sediment in the Miami-Erie Canal Area near Mound Laboratory indicated that plutonium-238 concentrations are substantially above baseline levels. As a result an extensive sampling and analysis program was performed to determine the plutonium-238 concentrations as a function of depth and location in a drainage ditch, the canal, two ponds, a run-off hollow, a canal overflow creek and the Great Miami River. The plutonium-238 concentration data was used to estimate the total inventory of 238Pu deposited in these waterways, to determine the extent of the contamination, and to evaluate the potential health hazards to the general population of the area. The scope of this report is to present the data collected during this study. Detailed interpretation of the data will be presented in subsequent reports.

Robinson, Bob; Rogers, D. R.; Westendorf, W. H.; Black, H. A.

1975-03-01T23:59:59.000Z

180

Tank Waste Corporate Board | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Waste Corporate Board Tank Waste Corporate Board Tank Waste Corporate Board The Tank Waste Corporate Board is a chartered group of senior DOE, contractor, and laboratory managers and staff that meets approximately semi-annually to formulate and coordinate implementation of an effective and efficient national Tank Waste program. August 1, 2012 Tank Waste Corporate Board Meeting 08/01/12 The following documents are associated with the Tank Waste Corporate Board Meeting held on August 1st, 2012. November 18, 2010 Tank Waste Corporate Board Meeting 11/18/10 The following documents are associated with the Tank Waste Corporate Board Meeting held on November 18th, 2010. July 29, 2009 Tank Waste Corporate Board Meeting 07/29/09 The following documents are associated with the Tank Waste Corporate Board

Note: This page contains sample records for the topic "mound brine tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

FEMA Think Tank Call Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

FEMA Think Tank Call Meeting FEMA Think Tank Call Meeting Minimize Date: Wednesday, September 25, 2013 Time: 1:00 - 2:30 p.m. (Eastern Time) Location: Y-12 New Hope Center, 602 Scarboro Rd, Oak Ridge, TN 37830 Overview Description: The FEMA Think Tank is a mechanism to formally collect, discuss, evaluate, and develop innovative ideas in the emergency management community - state, local, and tribal governments, as well as members of the public, including the private sector, the disability community, and volunteer groups. It ensures whole community partners and federal employees are motivated and encouraged to innovate, actively solicit and discuss ideas, and oversee the implementation of promising ideas. The FEMA Think Tank is designed to act as a forum where good ideas are shared, discussed, and become innovative solutions. There are currently two components to the think tank. The first, an online component, can be accessed at any time at, http://fema.ideascale.com. The second component is a conference call that includes both a nationwide telephone audience and an audience at the FEMA Think Tank Call site. This second component is described in more detail at the following website: http://www.fema.gov/fema-think-tank.

182

Study of thermal-gradient-induced migration of brine inclusions in salt. Final report  

Science Conference Proceedings (OSTI)

Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed.

Olander, D.R.

1984-08-01T23:59:59.000Z

183

Improving the injectability of high-salinity brines for disposal or waterflooding operations  

DOE Green Energy (OSTI)

This work is part of a study conducted by Lawrence Livermore National Laboratory (LLNL) to improve the performance of brine injection wells at Gulf Coast Strategic Petroleum Reserve Sites. Our involvement established that granular media filtration, when used with proper chemical pretreatments, provides an effective and economical method for removing particulates from hypersaline brines. This treatment allows for the injection of 200,000 B/D with significantly increased well half-lives of 30 years.

Raber, E.; Thompson, R.E.; Smith, F.H.

1981-07-25T23:59:59.000Z

184

Tank 241-C-103 tank characterization plan. Revision 2  

Science Conference Proceedings (OSTI)

This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-C-103.

Homi, C.S.

1995-10-04T23:59:59.000Z

185

Tank 241-AN-102 tank characterization plan. Revision 1  

Science Conference Proceedings (OSTI)

This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-AN-102

Homi, C.S.

1995-10-04T23:59:59.000Z

186

Tank characterization report for single-shell Tank B-201  

Science Conference Proceedings (OSTI)

The purpose of this report is to characterize the waste in single shell Tank B-201. Characterization includes the determination of the physical, chemical (e.g., concentrations of elements and organic species), and radiological properties of the waste. These determinations are made using analytical results from B-201 core samples as well as historical information about the tank. The main objective is to determine average waste properties: but in some cases, concentrations of analytes as a function of depth were also determined. This report also consolidates the available historical information regarding Tank B-201, arranges the analytical information from the recent core sampling in a useful format, and provides an interpretation of the data within the context of what is known about the tank.

Heasler, P.G.; Remund, K.M.; Tingey, J.M.; Baird, D.B.; Ryan, F.M.

1994-09-01T23:59:59.000Z

187

Recovery of energy from geothermal brine and other hot water sources  

DOE Patents (OSTI)

Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

Wahl, III, Edward F. (Claremont, CA); Boucher, Frederic B. (San Juan Capistrano, CA)

1981-01-01T23:59:59.000Z

188

Hanford Determines Double-Shell Tank Leaked Waste From Inner Tank |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determines Double-Shell Tank Leaked Waste From Inner Tank Determines Double-Shell Tank Leaked Waste From Inner Tank Hanford Determines Double-Shell Tank Leaked Waste From Inner Tank October 22, 2012 - 12:00pm Addthis Media Contacts Lori Gamache, ORP 509-372-9130 John Britton, WRPS 509-376-5561 RICHLAND - The Department of Energy's Office of River Protection (ORP), working with its Hanford tank operations contractor Washington River Protection Solutions, has determined that there is a slow leak of chemical and radioactive waste into the annulus space in Tank AY-102, the approximately 30-inch area between the inner primary tank and the outer tank that serves as the secondary containment for these types of tanks. This is the first time a double-shell tank (DST) leak from the primary tank into the annulus has been identified. There is no indication of waste in

189

Chemical Speciation of Heterogeneously Reduced Pu in Synthetic Brines  

Science Conference Proceedings (OSTI)

X-ray absorption fine structure (XAFS) spectroscopy has been used to determine the speciation of Pu precipitates prepared by the heterogeneous reduction of Pu(VI) with Al and Fe in 5M NaCl and an ERDA-6 brine, a simulant from the Waste Isolation Pilot Plant in Carlsbad, New Mexico. NaOCl was added to some of these solutions to determine its effect on Pu speciation. Analysis of the Pu LIII spectra showed that all solids consisted of PuO2+x?y(OH)2y zH2O, compounds with characteristics identical to those prepared by hydrolysis and with Pu?O and Pu?Pu distances identical to those treated at elevated temperature. Additionally, reduction with Al gave compounds with different site distributions than reduction with Fe, and reduction with Al or the addition of NaOCl appeared to suppress the formation of oxo groups and their associated Pu(V) sites.

Ding, Mei; Conca, James L.; Den Auwer, Christophe J.; Gabitov, Rinat I.; Hess, Nancy J.; Paviet-Hartmann, Patricia; Palmer, Phillip D.; LoPresti, Vin; Conradson, Steven D.

2006-07-01T23:59:59.000Z

190

High-Pressure Hydrogen Tanks  

NLE Websites -- All DOE Office Websites (Extended Search)

February 8 February 8 th , 2005 Mark J. Warner, P.E. Principal Engineer Quantum Technologies, Inc. Irvine, CA Low Cost, High Efficiency, Low Cost, High Efficiency, High Pressure Hydrogen Storage High Pressure Hydrogen Storage This presentation does not contain any proprietary or confidential information. 70 MPa Composite Tanks Vent Line Ports Defueling Port (optional) Fill Port Filter Check Valve Vehicle Interface Bracket with Stone Shield In Tank Regulator with Solenoid Lock-off Pressure Relief Device Manual Valve Compressed Hydrogen Storage System In-Tank Regulator Pressure Sensor (not visible here) Pressure Relief Device (thermal) In Tank Gas Temperature Sensor Carbon Composite Shell (structural) Impact Resistant Outer Shell (damage resistant) Gas Outlet Solenoid Foam Dome (impact protection)

191

Improvement in LNG storage tanks  

SciTech Connect

To develop and produce natural gas fuel tanks for medium duty truck and transit bus end-use to overcome the weight and range problems inherent in current fuel systems.

NONE

1999-11-20T23:59:59.000Z

192

Hydrogen Storage "Think Tank" Report  

NLE Websites -- All DOE Office Websites (Extended Search)

brainstorming on this critical issue. This "Think Tank" meeting was held in Washington, D.C. on March 14, 2003 and was organized and sponsored by the U.S. Department of...

193

Hanford Site C Tank Farm Meeting Summary - May 2011 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 2011 Hanford Site C Tank Farm Meeting Summary - May 2011 Hanford Site C Tank Farm Meeting Summary More Documents & Publications Hanford Site C Tank Farm Meeting Summary -...

194

Hanford Site C Tank Farm Meeting Summary - September 2010 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 2010 Hanford Site C Tank Farm Meeting Summary - September 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank...

195

Hanford Site C Tank Farm Meeting Summary - September 2009 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 2009 Hanford Site C Tank Farm Meeting Summary - September 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank...

196

Hanford Site C Tank Farm Meeting Summary - February 2009 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 2009 Hanford Site C Tank Farm Meeting Summary - February 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank...

197

Hanford Waste Tank Plant PIA, Richland Operations Office | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Waste Tank Plant PIA, Richland Operations Office Hanford Waste Tank Plant PIA, Richland Operations Office Hanford Waste Tank Plant PIA, Richland Operations Office Hanford...

198

Auxiliary resonant DC tank converter  

SciTech Connect

An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

Peng, Fang Z. (Knoxville, TN)

2000-01-01T23:59:59.000Z

199

241-AY-101 Tank Construction Extent of Condition Review for Tank Integrity  

Science Conference Proceedings (OSTI)

This report provides the results of an extent of condition construction history review for tank 241-AY-101. The construction history of tank 241-AY-101 has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In tank 241-AY-101, the second double-shell tank constructed, similar issues as those with tank 241-AY-102 construction reoccurred. The overall extent of similary and affect on tank 241-AY-101 integrity is described herein.

Barnes, Travis J.; Gunter, Jason R.

2013-08-26T23:59:59.000Z

200

241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity  

Science Conference Proceedings (OSTI)

This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

2013-11-19T23:59:59.000Z

Note: This page contains sample records for the topic "mound brine tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Life Estimation of High Level Waste Tank Steel for H-Tank Farm ...  

the tanks is not considered in the analysis. Life Estimation of High Level Waste Tank ... conservative scenario in which the concrete vault has completely

202

MLM-462 Contract Number AT-33-l-GtiN-53 MOUND LABORATCRY Operatsd By  

Office of Legacy Management (LM)

This Doeumr;t Consists of 116 ?zges This Doeumr;t Consists of 116 ?zges This is COPY of i.3 k MLM-462 Contract Number AT-33-l-GtiN-53 MOUND LABORATCRY Operatsd By MONSAmOC~ALGoMPANY MIAMISBURG, OHIO REPORT NO. 3 OF STIEUING CaW'M'B FOR DISPUSAL CF UNITS 111 AND IV (Completion Report for Disposal of UrLt IV, Runnymeade Road sr,d Dixon live. Dayton, Ohlo) . Date: April 17, 1950 Prepared By: -36L254- F. L. Halbach Chairnan., St33ricg Gcicmittes 1ssue.d: DISTRIHJTION copy 1. - Dr. Carroll A. Hochwalt copy 2. - Dr. M. M. Haring copy 3. - Dr. J. J. Ehmbage COPY 4. - Mr. F. L. Halbach . - Copy 5. - 5 '3 . . ., I Copy 6. - Area Ahmger COPY 7. - Area Y@mger CWY 8. - Area Qinagsr copy 9. - Area Ydager CT -Files&?& d3i' V.-u c 4. copy 11. - Central Files i copy 12. - Central Files

203

Dig-face monitoring during excavation of a radioactive plume at Mound Laboratory, Ohio  

Science Conference Proceedings (OSTI)

A dig-face monitoring system consists of onsite hardware for collecting information on changing chemical, radiological, and physical conditions in the subsurface soil during the hazardous site excavation. A prototype dig-face system was take to Mount Laboratory for a first trial. Mound Area 7 was the site of historical disposals of {sup 232}Th, {sup 227}Ac, and assorted debris. The system was used to monitor a deep excavation aimed at removing {sup 227}Ac-contaminated soils. Radiological, geophysical, and topographic sensors were used to scan across the excavation dig-face at four successive depths as soil was removed. A 3-D image of the contamination plumes was developed; the radiation sensor data indicated that only a small portion of the excavated soil volume was contaminated. The spatial information produced by the dig-face system was used to direct the excavation activities into the area containing the {sup 227}Ac and to evaluate options for handling the separate {sup 232}Th plume.

Josten, N.E.; Gehrke, R.J.; Carpenter, M.V.

1995-12-01T23:59:59.000Z

204

The depth of the oil/brine interface and crude oil leaks in SPR caverns  

Science Conference Proceedings (OSTI)

Monitoring wellhead pressure evolution is the best method of detecting crude oil leaks in SPR caverns while oil/brine interface depth measurements provide additional insight. However, to fully utilize the information provided by these interface depth measurements, a thorough understanding of how the interface movement corresponds to cavern phenomena, such as salt creep, crude oil leakage, and temperature equilibration, as well as to wellhead pressure, is required. The time evolution of the oil/brine interface depth is a function of several opposing factors. Cavern closure due to salt creep and crude oil leakage, if present, move the interface upward. Brine removal and temperature equilibration of the oil/brine system move the interface downward. Therefore, the relative magnitudes of these factors determine the net direction of interface movement. Using a mass balance on the cavern fluids, coupled with a simplified salt creep model for closure in SPR caverns, the movement of the oil/brine interface has been predicted for varying cavern configurations, including both right-cylindrical and carrot-shaped caverns. Three different cavern depths and operating pressures have been investigated. In addition, the caverns were investigated at four different points in time, allowing for varying extents of temperature equilibration. Time dependent interface depth changes of a few inches to a few feet were found to be characteristic of the range of cases studied. 5 refs, 19 figs., 1 tab.

Heffelfinger, G.S.

1991-06-01T23:59:59.000Z

205

TANK48 CFD MODELING ANALYSIS  

SciTech Connect

The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitative mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single-phase model. The modeling results show that the flow patterns driven by four pump operation satisfy the solid suspension requirement, and the average solid concentration at the plane of the transfer pump inlet is about 12% higher than the tank average concentrations for the 70 inch tank level and about the same as the tank average value for the 29 inch liquid level. When one of the four pumps is not operated, the flow patterns are satisfied with the minimum suspension velocity criterion. However, the solid concentration near the tank bottom is increased by about 30%, although the average solid concentrations near the transfer pump inlet have about the same value as the four-pump baseline results. The flow pattern results show that although the two-pump case satisfies the minimum velocity requirement to suspend the sludge particles, it provides the marginal mixing results for the heavier or larger insoluble materials such as MST and KTPB particles. The results demonstrated that when more than one jet are aiming at the same position of the mixing tank domain, inefficient flow patterns are provided due to the highly localized momentum dissipation, resulting in inactive suspension zone. Thus, after completion of the indexed solids suspension, pump rotations are recommended to avoid producing the nonuniform flow patterns. It is noted that when tank liquid level is reduced from the highest level of 70 inches to the minimum level of 29 inches for a given number of operating pumps, the solid mixing efficiency becomes better since the ratio of the pump power to the mixing volume becomes larger. These results are consistent with the literature results.

Lee, S.

2011-05-17T23:59:59.000Z

206

Tank Waste Disposal Program redefinition  

SciTech Connect

The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

1991-10-01T23:59:59.000Z

207

Pore-Level Modeling of Carbon Dioxide Sequestration in Brine Fields  

NLE Websites -- All DOE Office Websites (Extended Search)

Pore-Level Modeling of Carbon Dioxide Sequestration in Brine Fields Pore-Level Modeling of Carbon Dioxide Sequestration in Brine Fields M. Ferer, (mferer@wvu.edu) Department of Physics, West Virginia University, Morgantown, WV 26506-6315, Grant S. Bromhal, (bromhal@netl.doe.gov) US DOE, National Energy Technology Laboratory, Morgantown, WV 26507-0880; and Duane H. Smith, (dsmith@netl.doe.gov) US DOE, National Energy Technology Laboratory, Morgantown, WV 26507-0880 & Department of Physics, West Virginia University. Underground injection of gas is a common practice in the oil and gas industry. Injection into deep, brine-saturated formations is a commercially proven method of sequestering CO 2 . However, it has long been known that displacement of a connate fluid by a less viscous fluid produces unstable displacement fronts with significant fingering. This fingering allows only a

208

Salt effects on stable isotope partitioning and their geochemical implications for geothermal brines  

DOE Green Energy (OSTI)

It has long been recognized that dissolved salts in water can change oxygen and hydrogen isotope partitioning between water and other phases (i.e., vapor, minerals) due to the hydration of ions upon the dissolution of salts in water. However, their effects have not been well determined at elevated temperatures. We are currently conducting a series of hydrothermal experiments of the system brine-vapor or minerals to 350{degrees}C, in order to determine precisely the effects of dissolved salts abundant in brines on isotope partitioning at temperatures encountered in geothermal systems. The so-called ``isotope salt effect`` has important implications for the interpretation and modeling of isotopic data of brines and rocks obtained from geothermal fields. We will show how to use our new results of isotopic partitioning to help better evaluate energy resources of many geothermal fields.

Horita, J.; Cole, D.R.; Wesolowski, D.J.

1994-06-01T23:59:59.000Z

209

Military - Tougher tanks | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Military - Tougher tanks Improving welds of heavy and light armored fighting vehicles is the target of a collaboration among Oak Ridge National Laboratory, the U.S. Army Tank...

210

Technical requirements specification for tank waste retrieval  

Science Conference Proceedings (OSTI)

This document provides the technical requirements specification for the retrieval of waste from the underground storage tanks at the Hanford Site. All activities covered by this scope are conducted in support of the Tank Waste Remediation System (TWRS) mission.

Lamberd, D.L.

1996-09-26T23:59:59.000Z

211

Comparative safety analysis of LNG storage tanks  

Science Conference Proceedings (OSTI)

LNG storage tank design and response to selected release scenarios were reviewed. The selection of the scenarios was based on an investigation of potential hazards as cited in the literature. A review of the structure of specific LNG storage facilities is given. Scenarios initially addressed included those that most likely emerge from the tank facility itself: conditions of overfill and overflow as related to liquid LNG content levels; over/underpressurization at respective tank vapor pressure boundaries; subsidence of bearing soil below tank foundations; and crack propagation in tank walls due to possible exposure of structural material to cryogenic temperatures. Additional scenarios addressed include those that result from external events: tornado induced winds and pressure drops; exterior tank missile impact with tornado winds and rotating machinery being the investigated mode of generation; thermal response due to adjacent fire conditions; and tank response due to intense seismic activity. Applicability of each scenario depended heavily on the specific tank configurations and material types selected. (PSB)

Fecht, B.A.; Gates, T.E.; Nelson, K.O.; Marr, G.D.

1982-07-01T23:59:59.000Z

212

ASSESSMENT OF TECHNETIUM LEACHABILITY IN CEMENT STABILIZED BASIN 43 GROUNDWATER BRINE  

SciTech Connect

This report is an initial report on the laboratory effort executed under RPP-PLAN-33338, Test Plan for the Assessment of Technetium Leachability in Cement-Stabilized Basin 43 Groundwater Brine. This report delineates preliminary data obtained under subcontract 21065, release 30, from the RJ Lee Group, Inc., Center for Laboratory Sciences. The report is predicated on CLS RPT-816, Draft Report: Assessment of Technetium Leachability in Cement Stabilized Basin 43 Groundwater Brine. This document will be revised on receipt of the final RJ Lee Group, Inc., Center for Laboratory Sciences report, which will contain data subjected to quality control and quality assurance criteria.

COOKE GA; DUNCAN JB; LOCKREM LL

2008-09-30T23:59:59.000Z

213

Geothermal Power Production from Brine Co-Produced from Oil and Gas Wells  

Science Conference Proceedings (OSTI)

Millions of barrels of water (brine) per day are co-produced from oil and gas wells. Currently, the oil and gas industry views this as a waste stream that costs millions of dollars per year to manage, through either treatment or disposal/reinjection. A significant percentage of the co-produced brine, however, flows at sufficient rate and temperature to generate power using a binary power plant, and this is viewed by some as a potential value stream. The value lies in that the co-produced water is "free" ...

2012-04-30T23:59:59.000Z

214

Tanks 18/19: Sample Characterization, Method Development and ...  

Measurement of radioactive constituents in tank. ... SRS Waste Tank . 5 ... Low Level Measurements Ra-226 1*10-4

215

Brine flow up a borehole caused by pressure perturbation from CO2 storage: Static and dynamic evaluations  

SciTech Connect

Industrial-scale storage of CO{sub 2} in saline sedimentary basins will cause zones of elevated pressure, larger than the CO{sub 2} plume itself. If permeable conduits (e.g., leaking wells) exist between the injection reservoir and overlying shallow aquifers, brine could be pushed upwards along these conduits and mix with groundwater resources. This paper discusses the potential for such brine leakage to occur in temperature- and salinity-stratified systems. Using static mass-balance calculations as well as dynamic well flow simulations, we evaluate the minimum reservoir pressure that would generate continuous migration of brine up a leaking wellbore into a freshwater aquifer. Since the brine invading the well is denser than the initial fluid in the wellbore, continuous flow only occurs if the pressure perturbation in the reservoir is large enough to overcome the increased fluid column weight after full invasion of brine into the well. If the threshold pressure is exceeded, brine flow rates are dependent on various hydraulic (and other) properties, in particular the effective permeability of the wellbore and the magnitude of pressure increase. If brine flow occurs outside of the well casing, e.g., in a permeable fracture zone between the well cement and the formation, the fluid/solute transfer between the migrating fluid and the surrounding rock units can strongly retard brine flow. At the same time, the threshold pressure for continuous flow to occur decreases compared to a case with no fluid/solute transfer.

Birkholzer, J.T.; Nicot, J.-P.; Oldenburg, C.M.; Zhou, Q.; Kraemer, S.; Bandilla, K.W.

2011-05-01T23:59:59.000Z

216

Savannah River Site- Tank 48 Briefing on SRS Tank 48 Independent Technical Review  

Energy.gov (U.S. Department of Energy (DOE))

This presentation outlines the SRS Tank 48 ITR listing observations, conclusions, and TPB processing.

217

Calcium Isotopic Variation in Marine Evaporites and Carbonates: Applications to Late Miocene Mediterranean Brine Chemistry and Late Cenozoic Calcium Cycling in the Oceans  

E-Print Network (OSTI)

Field: Geochemistry Studies in Isotope Geology Professors J.Isotopes and Brine Evolution .. 3.2.1 General geology andIsotopes and Brine Evolution 3.2.1 General geology and

Hensley, Tabitha Michele

2006-01-01T23:59:59.000Z

218

Tank 241-BY-107 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank 241-BY-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues{close_quotes}. Tank 241-BY-107 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution{close_quotes}.

Huckaby, J.L.

1995-05-05T23:59:59.000Z

219

Tank 241-S-102 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank 241-S-102 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-S-102 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution. {close_quotes}

Huckaby, J.L.

1995-05-31T23:59:59.000Z

220

Tank 41H bounding uranium enrichment  

Science Conference Proceedings (OSTI)

The intent of this document is to combine data from salt samples and historical process information to bound the uranium (U-235) enrichment which could be expected in the upper portion of the salt in Tank 41H. This bounding enrichment will be used in another document to establish a nuclear safety basis for initial salt removal operations. During the processing period of interest (4/82-4/87), waste was fed to the 2H Evaporator from Tank 43H, and the evaporator bottoms were sent to Tank 41H where the bottoms were allowed to cool (resulting in the formation of salt deposits in the tank). As Tank 41H was filled with concentrate, the supernate left after salt formation was recycled back to Tank 43H and reprocessed through the evaporator along with any additional waste which had been added to Tank 43H. As Tank 41 H filled with salt, this recycle took place with increasing frequency because it took less time to fill the decreased volume with evaporator concentrate. By determining which of the sampled waste tanks were receiving fresh waste from the canyons at the time the tanks were sampled (from published transfer records), it was possible to deduce which samples were likely representative of fresh canyon waste. The processing that was being carried out in the Separation canyons when these tanks were sampled, should be comparable to the processing while Tank 41H was being filled.

Cavin, W.S.

1994-07-12T23:59:59.000Z

Note: This page contains sample records for the topic "mound brine tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review Environmental Management Advisory Board EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review Report Number TWS #003 EMAB EM-TWS SRS / Hanford Tank Waste June 23, 2011 This is the second report of the Environmental Management Tank Waste Subcommittee (EMTWS) of the Environmental Management Advisory Board (EMAB). The first report was submitted and accepted by the Assistant Secretary for Environmental Management (EM-1) in September 2010. The EM-TWS responded to three charges from EM-1 regarding the Waste Treatment and Immobilization Plant at Hanford (WTP) under construction in Richland, Washington. EM's responses were timely, and efforts have been

222

Savannah River Site - Tank 48 Briefing on SRS Tank 48 Independent Technical Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank 48 Tank 48 Independent Technical Review August 2006 2 SRS Tank 48 ITR SRS Tank 48 ITR Key ITR Observation Two distinct problems: Removing tetraphenylborate (TPB) waste and then cleaning the tank sufficiently to support return to service Processing contents to eliminate TPB hazard August 2006 3 SRS Tank 48 ITR SRS Tank 48 ITR Overarching ITR Conclusions 1. TPB Processing is on the right track - DOE/WSRC have selected the most promising candidates - Fluidized Bed Steam Reforming (FBSR) is the most technically attractive and mature of the candidate processes August 2006 4 SRS Tank 48 ITR SRS Tank 48 ITR Overarching Conclusions (continued) 2. Heel removal and tank cleanout will be a very challenging task. Compounding issues: - Physical difficulties in cleanout (access, congestion, etc.)

223

A study of hydrocarbons associated with brines from DOE geopressured wells  

DOE Green Energy (OSTI)

Accomplishments are summarized on the following tasks: distribution coefficients and solubilities, DOE design well sampling, analysis of well samples, review of theoretical models of geopressured reservoir hydrocarbons, monitor for aliphatic hydrocarbons, development of a ph meter probe, DOE design well scrubber analysis, removal and disposition of gas scrubber equipment at Pleasant Bayou Well, and disposition of archived brines.

Keeley, D.F.

1993-01-01T23:59:59.000Z

224

A study of hydrocarbons associated with brines from DOE geopressured wells. Final report  

DOE Green Energy (OSTI)

Accomplishments are summarized on the following tasks: distribution coefficients and solubilities, DOE design well sampling, analysis of well samples, review of theoretical models of geopressured reservoir hydrocarbons, monitor for aliphatic hydrocarbons, development of a ph meter probe, DOE design well scrubber analysis, removal and disposition of gas scrubber equipment at Pleasant Bayou Well, and disposition of archived brines.

Keeley, D.F.

1993-07-01T23:59:59.000Z

225

Corrosivity of geothermal brines. Progress report for period ending June 1976  

DOE Green Energy (OSTI)

Studies carried out during FY 1976 on the corrosivity of ferrous materials in synthetic geothermal brines are described. Electrochemical measurements on the spontaneous corrosion potentials and corrosion rates, and on the kinetics of the anodic and cathodic corrosion reactions of iron and carbon steel were made in 4 M NaCl solution over the pH range from 1 to 11 at temperatures up to 100/sup 0/C in a conventional Pyrex electrochemical cell. A refreshed, stirred titanium autoclave system was designed, constructed, and tested, and will be used for making electrochemical measurements in synthetic brines up to at least 200/sup 0/C. The effect of pH on hydrolysis, precipitation, and electrochemical reactivity of ferrous and ferric ions in 4 M NaCl at 25/sup 0/C was studied, and implications for plant operation are discussed. The pitting potential of type 304 stainless steel in synthetic brine was measured as a function of temperature from 25 to 85/sup 0/C. Plans for research on electrochemical aspects of the corrosion of iron and carbon steel in synthetic geothermal brines during FY1977 are presented. 14 fig. (auth)

Posey, F.A.; Palko, A.A.

1976-12-01T23:59:59.000Z

226

ICPP Tank Farm planning through 2012  

SciTech Connect

Historically, liquid high-level waste (HLW) generated at the Idaho Chemical Processing Plant has been stored in the Tank Farm after which it is calcined with the calcine being stored in stainless steel bins. Following the curtailment of spent nuclear fuel reprocessing in 1992, the HLW treatment methods were re-evaluated to establish a path forward for producing a final waste form from the liquid sodium bearing wastes (SBW) and the HLW calcine. Projections for significant improvements in waste generation, waste blending and evaporation, and calcination were incorporated into the Tank Farm modeling. This optimized modeling shows that all of the SBW can be calcined by the end of 2012 as required by the Idaho Settlement Agreement. This Tank Farm plan discusses the use of each of the eleven HLW tanks and shows that two tanks can be emptied, allowing them to be Resource Conservation and Recovery Act closed by 2006. In addition, it describes the construction of each tank and vault, gives the chemical concentrations of the contents of each tank, based on historical input and some sampling, and discusses the regulatory drivers important to Tank Farm operation. It also discusses new waste generation, the computer model used for the Tank Farm planning, the operating schedule for each tank, and the schedule for when each tank will be empty and closed.

Palmer, W.B.; Millet, C.B.; Staiger, M.D.; Ward, F.S.

1998-04-01T23:59:59.000Z

227

Sustainable Carbon Sequestration: Increasing CO2-Storage Efficiency through a CO2-Brine Displacement Approach  

E-Print Network (OSTI)

CO2 sequestration is one of the proposed methods for reducing anthropogenic CO2 emissions to the atmosphere and therefore mitigating global climate change. Few studies on storing CO2 in an aquifer have been conducted on a regional scale. This study offers a conceptual approach to increasing the storage efficiency of CO2 injection in saline formations and investigates what an actual CO2 storage project might entail using field data for the Woodbine aquifer in East Texas. The study considers three aquifer management strategies for injecting CO2 emissions from nearby coal-fired power plants into the Woodbine aquifer. The aquifer management strategies studied are bulk CO2 injection, and two CO2-brine displacement strategies. A conceptual model performed with homogeneous and average reservoir properties reveals that bulk injection of CO2 pressurizes the aquifer, has a storage efficiency of 0.46% and can only last for 20 years without risk of fracturing the CO2 injection wells. The CO2-brine displacement strategy can continue injecting CO2 for as many as 240 years until CO2 begins to break through in the production wells. This offers 12 times greater CO2 storage efficiency than the bulk injection strategy. A full field simulation with a geological model based on existing aquifer data validates the storage capacity claims made by the conceptual model. A key feature in the geological model is the Mexia-Talco fault system that serves as a likely boundary between the saline aquifer region suitable for CO2 storage and an updip fresh water region. Simulation results show that CO2 does not leak into the fresh water region of the iv aquifer after 1000 years of monitoring if the faults have zero transmissibility, but a negligible volume of brine eventually gets through the mostly sealing fault system as pressure across the faults slowly equilibrates during the monitoring period. However, for fault transmissibilities of 0.1 and 1, both brine and CO2 leak into the fresh water aquifer in increasing amounts for both bulk injection and CO2-brine displacement strategies. In addition, brine production wells draw some fresh water into the saline aquifer if the Mexia-Talco fault system is not sealing. A CO2 storage project in the Woodbine aquifer would impact as many as 15 counties with high-pressure CO2 pipelines stretching as long as 875 km from the CO2 source to the injection site. The required percentage of power plant energy capacity was 7.43% for bulk injection, 7.9% for the external brine disposal case, and 10.2% for the internal saturated brine injection case. The estimated total cost was $0.00132$0.00146/kWh for the bulk injection, $0.00191$0.00211/kWh for the external brine disposal case, and $0.0019$0.00209/kWh for the internal saturated brine injection case.

Akinnikawe, Oyewande

2012-08-01T23:59:59.000Z

228

Particle measurement and brine chemistry at the Salton Sea Deep Well  

DOE Green Energy (OSTI)

The Advanced Brine Chemistry Project, a part of the US Department of Energy's Geothermal Energy Program, is addressing operating problems associated with scaling and corrosion at geothermal power plants. Under this project, Pacific Northwest Laboratory conducted a series of tests at the Salton Sea Deep Well, which has one of the highest solids contents in the world. The purpose of the tests was to evaluate monitoring instrumentation under field conditions and relate particulate formation to the brine chemistry. The instrumentation, was evaluated under scaling geothermal conditions using two different principles: ultrasonic reflection and laser light scattering. The following conclusions were drawn from the instrumentation testing and brine chemistry and particulate analyses. (1) Using reflected ultrasonic impulses to detect suspended particles has been demonstrate for on-line application in a geothermal brine with strong scaling tendencies. Advantages over laser light scattering include improved high-temperature durability for the transducer and longer operation with less maintenance. (2) Counting and sizing particles using laser light scattering requires constant maintenance in geothermal applications. (3) Silica is the dominant scale species and appears in amounts orders of magnitude greater than other minor species such as barium sulfate. (4) The silica that formed at high temperatures and short residence times is very gelatinous and difficult to filter out of the brine. (5) Correlation of instrument readings with particle collection data was difficult because conditions on the filter (i.e., temperature, flowrate, and pressure) could not be maintained constant for long enough intervals to obtain comparable information. 5 refs., 27 figs., 2 tabs.

Robertus, R.J.; Kindle, C.H.; Sullivan, R.G.; Shannon, D.W.

1991-09-01T23:59:59.000Z

229

Life Extension of Aging High-Level Waste Tanks  

Science Conference Proceedings (OSTI)

The Double Shell Tanks (DSTs) play a critical role in the Hanford High-Level Waste Treatment Complex, and therefore activities are underway to protect and better understand these tanks. The DST Life Extension Program is focused on both tank life extension and on evaluation of tank integrity. Tank life extension activities focus on understanding tank failure modes and have produced key chemistry and operations controls to minimize tank corrosion and extend useful tank life. Tank integrity program activities have developed and applied key technologies to evaluate the condition of the tank structure and predict useful tank life. Program results to date indicate that DST useful life can be extended well beyond the original design life and allow the existing tanks to fill a critical function within the Hanford High-Level Waste Treatment Complex. In addition the tank life may now be more reliably predicted, facilitating improved planning for the use and possible future replacement of these tanks.

Bryson, D.; Callahan, V.; Ostrom, M.; Bryan, W.; Berman, H.

2002-02-26T23:59:59.000Z

230

Evaluation of 241 AN tank farm flammable gas behavior  

DOE Green Energy (OSTI)

The 241 AN Tank Farm tanks 241-AN-103, -104, and 105 are Flammable Gas Watch List tanks. Characteristics exhibited by these tanks (i.e., surface level drops, pressure increases, and temperature profiles) are similar to those exhibited by tank 241-SY-101, which is also a Watch List tank. Although the characteristics exhibited by tank 241-SY-101 are also present in tanks 241-AN-103, -104, and 105, they are exhibited to a lesser degree in the AN Tank Farm tanks. The 241 AN Tank Farm tanks have only small surface level drops, and the pressure changes that occur are not sufficient to release an amount of gas that would cause the dome space to exceed the lower flammability limit (LFL) for hydrogen. Therefore, additional restrictions are probably unnecessary for working within the 241 AN Tank Farm, either within the dome space of the tanks or in the waste.

Reynolds, D.A.

1994-01-01T23:59:59.000Z

231

Plutonium working group report on environmental, safety and health vulnerabilities associated with the Department`s plutonium storage. Volume II, part 7: Mound working group assessment team report  

Science Conference Proceedings (OSTI)

This is the report of a visit to the Mound site by the Working Group Assessment Team (WGAT) to assess plutonium vulnerabilities. Purposes of the visit were: to review results of the site`s self assessment of current practices for handling and storing plutonium; to conduct an independent assessment of these practices; to reconcile differences and assemble a final list of vulnerabilities; to calculate consequences and probability for each vulnerability; and to issue a report to the Working Group. This report, representing completion of the Mound visit, will be compiled along with those from all other sites with plutonium inventories as part of a final report to the Secretary of Energy.

NONE

1994-09-01T23:59:59.000Z

232

CRITICAL ASSUMPTIONS IN THE F-TANK FARM CLOSURE OPERATIONAL DOCUMENTATION REGARDING WASTE TANK INTERNAL CONFIGURATIONS  

SciTech Connect

The intent of this document is to provide clarification of critical assumptions regarding the internal configurations of liquid waste tanks at operational closure, with respect to F-Tank Farm (FTF) closure documentation. For the purposes of this document, FTF closure documentation includes: (1) Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the FTF PA) (SRS-REG-2007-00002), (2) Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site (DOE/SRS-WD-2012-001), (3) Tier 1 Closure Plan for the F-Area Waste Tank Systems at the Savannah River Site (SRR-CWDA-2010-00147), (4) F-Tank Farm Tanks 18 and 19 DOE Manual 435.1-1 Tier 2 Closure Plan Savannah River Site (SRR-CWDA-2011-00015), (5) Industrial Wastewater Closure Module for the Liquid Waste Tanks 18 and 19 (SRRCWDA-2010-00003), and (6) Tank 18/Tank 19 Special Analysis for the Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the Tank 18/Tank 19 Special Analysis) (SRR-CWDA-2010-00124). Note that the first three FTF closure documents listed apply to the entire FTF, whereas the last three FTF closure documents listed are specific to Tanks 18 and 19. These two waste tanks are expected to be the first two tanks to be grouted and operationally closed under the current suite of FTF closure documents and many of the assumptions and approaches that apply to these two tanks are also applicable to the other FTF waste tanks and operational closure processes.

Hommel, S.; Fountain, D.

2012-03-28T23:59:59.000Z

233

Enhanced Tank Waste Strategy Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduce the life-cycle costs and accelerate the cleanup of the Cold War environmental legacy www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 cleanup of the Cold War environmental legacy Shirley J. Olinger Associate Principal Deputy for Corporate Operations EMAB Presentation June 23, 2011 EM Priorities: Activities to maintain a safe, secure, and compliant posture in the EM complex Radioactive tank waste stabilization, treatment, and disposal Spent (used) nuclear fuel storage, receipt, and disposition "To-Go Life-Cycle Costs" ($185B - $218B as of the FY 2012 Request) Programmatic support activities* 10% Radioactive tank waste stabilization, treatment and disposal 38% Excess facilities decontamination and decommissioning

234

High Pressure Hydrogen Tank Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop Workshop High Pressure Hydrogen Tank Manufacturing Mark Leavitt Quantum Fuel Systems Technologies Worldwide, Inc. August 11, 2011 This presentation does not contain any proprietary, confidential, or otherwise restricted information History of Innovations... Announced breakthrough in all-composite lightweight, high capacity, low-cost fuel storage technologies. * Developed a series of robust, OEM compatible electronic control products. Developed H 2 storage system for SunLine Tran-sit Hythane® bus. Awarded patent for integrated module including in-tank regulator * Developed high efficiency H 2 fuel storage systems for DOE Future Truck programs Developed H 2 storage and metering system for Toyota's FCEV platform. First to certify 10,000 psi systems in Japan

235

241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity  

SciTech Connect

This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

2013-07-30T23:59:59.000Z

236

241-SY Tank Farm Construction Extent of Condition Review for Tank Integrity  

SciTech Connect

This report provides the results of an extent of condition construction history review for tanks 241-SY-101, 241-SY-102, and 241-SY-103. The construction history of the 241-SY tank farm has been reviewed to identify issues similar to those experienced during tank 241-AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank 241-AY-102 as the comparison benchmark. In the 241-SY tank farm, the third DST farm constructed, refractory quality and stress relief were improved, while similar tank and liner fabrication issues remained.

Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

2013-07-25T23:59:59.000Z

237

HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS  

SciTech Connect

This report documents a detailed buckling evaluation of the primary tanks in the Hanford double shell waste tanks. The analysis is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raise by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review (in April and May 2001) of work being performed on the double-shell tank farms, and the operation of the aging waste facility (AWF) primary tank ventilation system.

MACKEY, T.C.

2006-03-17T23:59:59.000Z

238

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.

West, B.; Waltz, R.

2012-06-21T23:59:59.000Z

239

RETRIEVAL & TREATMENT OF HANFORD TANK WASTE  

SciTech Connect

The Hanford Tank Farms contain 53 million gal of radioactive waste accumulated during over 50 years of operations. The waste is stored in 177 single-shell and double-shell tanks in the Hanford 200 Areas. The single-shell tanks were put into operation from the early 1940s through the 1960s with wastes received from several generations of processing facilities for the recovery of plutonium and uranium, and from laboratories and other ancillary facilities. The overall hanford Tank Farm system represents one of the largest nuclear legacies in the world driving towards completion of retrieval and treatment in 2028 and the associated closure activity completion by 2035. Remote operations, significant radiation/contamination levels, limited access, and old facilities are just some of the challenges faced by retrieval and treatment systems. These systems also need to be able to successfully remove 99% or more of the waste, and support waste treatment, and tank closure. The Tank Farm retrieval program has ramped up dramatically in the past three years with design, fabrication, installation, testing, and operations ongoing on over 20 of the 149 single-shell tanks. A variety of technologies are currently being pursued to retrieve different waste types, applications, and to help establish a baseline for recovery/operational efficiencies. The paper/presentation describes the current status of retrieval system design, fabrication, installation, testing, readiness, and operations, including: (1) Saltcake removal progress in Tanks S-102, S-109, and S-112 using saltcake dissolution, modified sluicing, and high pressure water lancing techniques; (2) Sludge vacuum retrieval experience from Tanks C-201, C-202, C-203, and C-204; (3) Modified sluicing experience in Tank C-103; (4) Progress on design and installation of the mobile retrieval system for sludge in potentially leaking single-shell tanks, particularly Tank C-101; and (5) Ongoing installation of various systems in the next generation of tanks to be retrieved.

EACKER, J.A.; SPEARS, J.A.; STURGES, M.H.; MAUSS, B.M.

2006-01-20T23:59:59.000Z

240

Storage Tanks (Arkansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Tanks (Arkansas) Storage Tanks (Arkansas) Storage Tanks (Arkansas) < Back Eligibility Commercial Construction Fuel Distributor Industrial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Arkansas Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Storage Tanks regulations is a set of rules and permit requirements mandated by the Arkansas Pollution and Ecology Commission in order to protect the public health and the lands and the waters of the State of Arkansas. They are promulgated pursuant to Arkansas Code Annotated 8-7-801 and the Petroleum Storage Trust Fund Act 8-7-901. It covers all storage tanks, above (AST) and underground (UST). Most importantly these regulations establish that all owners and operators of storage tanks must

Note: This page contains sample records for the topic "mound brine tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Tank characterization report for single-shell tank 241-B-201  

SciTech Connect

This tank characterization report for Tank 241-B-201 was initially released as PNL-10100. This document is now being released as WHC-SD- WM-ER-550 in order to accommodate internet publishing.

Conner, J.M.

1996-06-06T23:59:59.000Z

242

ICPP tank farm closure study. Volume 1  

SciTech Connect

The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituents are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.

Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M. [and others

1998-02-01T23:59:59.000Z

243

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

West, B.; Waltz, R.

2011-06-23T23:59:59.000Z

244

Brine flow up a borehole caused by pressure perturbation from CO2 storage: Static and dynamic evaluations  

E-Print Network (OSTI)

flow model for carbon dioxide and brine, in Proceedings 9 thGeological Storage of Carbon Dioxide, in: S.J. Baines andGeological Storage of Carbon Dioxide, Geological Society,

Birkholzer, J.T.

2012-01-01T23:59:59.000Z

245

Underground Storage Tank Regulations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Regulations Underground Storage Tank Regulations Underground Storage Tank Regulations < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Underground Storage Tank Regulations is relevant to all energy projects

246

Recovery Act: Molecular Simulation of Dissolved Inorganic Carbons for Underground Brine CO2 Sequestration  

SciTech Connect

To further our understanding and develop the method for measuring the DICs under geological sequestration conditions, we studied the infrared spectra of DICs under high pressure and temperature conditions. First principles simulations of DICs in brine conditions were performed using a highly optimized ReaxFF-DIC forcefield. The thermodynamics stability of each species were determined using the 2PT method, and shown to be consistent with the Reax simulations. More importantly, we have presented the IR spectra of DIC in real brine conditions as a function of temperature and pressure. At near earth conditions, we find a breaking of the O-C-O bending modes into asymmetric and symmetric modes, separated by 100cm{sup -1} at 400K and 5 GPa. These results can now be used to calibrate FTIR laser measurements.

Goddard, William

2012-11-30T23:59:59.000Z

247

West Hackberry Brine Disposal Project pre-discharge characterization. Final report  

SciTech Connect

The physical, chemical and biological attributes are described for: (1) a coastal marine environment centered about a Department of Energy Strategic Petroleum Reserve (SPR) brine disposal site 11.4 km off the southwest coast of Louisiana; and (2) the lower Calcasieu and Sabine estuarine systems that provide leach waters for the SPR project. A three month sampling effort, February through April 1981, and previous investigations from the study area are integrated to establish baseline information for evaluation of impacts from brine disposal in the nearshore marine waters and from freshwater withdrawal from the coastal marsh of the Chenier Plain. January data are included for some tasks that sampled while testing and mobilizing their instruments prior to the February field effort. The study addresses the areas of physical oceanography, estuarine hydrology and hydrography, water and sediment quality, benthos, nekton, phytoplankton, zooplankton, and data management.

DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C. (eds.) [eds.

1982-01-01T23:59:59.000Z

248

Prelimiary investigation desalting of geothermal brines in the Imperial Valley of California  

SciTech Connect

The Imperial Valley Project is an applied research program to provide geologic, hydrologic, engineering, and economic information necessary for development of the geothermal resources of the delta of the lower Colorado River. It is suggested that a desalting pilot plant be associated with the project to develop an economic desalting process if 2 to 3% geothermal brine is produced. The process will be unconventional in that waste heat must be rejected to atmosphere in wet or dry cooling towers. The presence of large amounts of CO/sub 2/, H/sub 2/S, and silica will require gas removal and silicascale control equipment. The plant would process up to 75,000 gallons of brine per day. (MCW)

Spiewak, I.; Hise, E.C.; Reed, S.A.; Thompson, S.A.

1970-03-01T23:59:59.000Z

249

Aromatic hydrocarbons associated with brines from geopressured wells. Annual report, fiscal 1985  

DOE Green Energy (OSTI)

Samples of cryocondensates - materials condensed at - 78.5/sup 0/C were taken on a regular basis from the gas stream for the USDOE geopressured wells. Most of the data has been taken from the Gladys McCall well as it has flowed on a regular and almost continous basis. The cryocondensates, not the ''condensate'' from gas wells, are almost exclusively aromatic hydrocarbons, primarily benzene, toluene, ethylbenzene, and the xylenes, but contain over 95 compounds, characterized using gas chromatographic-mass spectroscopy. The solubility in water and brine of benezene, toluene, ethylbenzene and o-xylene, some of the components of the cryocondensate, as well as distribution coefficients between water or brine and a standard oil have been measured. 25 refs.

Keeley, D.F.; Meriwether, J.R.

1985-01-01T23:59:59.000Z

250

Scientific Considerations Related to Regulation Development for CO2 Sequestration in Brine Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

SCIENTIFIC CONSIDERATIONS RELATED TO REGULATION SCIENTIFIC CONSIDERATIONS RELATED TO REGULATION DEVELOPMENT FOR CO 2 SEQUESTRATION IN BRINE FORMATIONS Chin-Fu Tsang (cftsang@lbl.gov; (510) 486-5782) Sally M. Benson (smbenson@lbl.gov; (510) 486-7071) Earth Sciences Division, Ernest Orlando Lawrence Berkeley National Laboratory One Cyclotron Road, MS 90-1116, Berkeley, CA 94720 Bruce Kobelski (kobelski.bruce@epa.gov) Robert Smith (smith.robert-eu@epamail.epa.gov) U.S. Environmental Protection Agency Office of Drinking Water and Ground Water, Washington D.C. Introduction Reduction of atmospheric emissions of CO 2 (DOE, 1999a) through injection of CO 2 into in deep brine formations is being actively studied both in the U.S. and internationally. If this technology is to be employed broadly enough to make a significant impact on global

251

Supporting document for the historical tank content estimate for AN-tank farm  

Science Conference Proceedings (OSTI)

This Supporting Document provides historical in-depth characterization information on AN-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

1997-03-06T23:59:59.000Z

252

Supporting document for the SW Quadrant Historical Tank Content Estimate for U-Tank Farm  

Science Conference Proceedings (OSTI)

This Supporting Document provides historical characterization information gathered on U-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature data, sampling data, and drywell and liquid observation well data for Historical Tank Content Estimate of the SW Quadrant at the Hanford 200 West Area.

Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

1994-06-01T23:59:59.000Z

253

Supporting document for the historical tank content estimate for BY Tank Farm  

Science Conference Proceedings (OSTI)

This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the BY Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices contain data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

1994-06-01T23:59:59.000Z

254

Supporting document for the historical tank content estimate for B Tank Farm  

Science Conference Proceedings (OSTI)

This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the B Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

1994-06-01T23:59:59.000Z

255

Supporting document for the historical tank content estimate for S tank farm  

SciTech Connect

This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200 West Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to all the SSTs in the S Tank Farm of the southwest quadrant of the 200 West Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

1994-06-01T23:59:59.000Z

256

Comparison of selected oil-field brines from fields in the Permian basin, West Texas-southeast New Mexico  

SciTech Connect

Stiff diagrams of oil-field brines from the west Texas Permian basin are identifiable within the geological framework. Plotted from a simple analysis of three cations and three anions, older Paleozoic waters can be categorized as either 'pristine' or modified, usually by a later influx of Permian or early Pennsylvanian water. These different plots can be segregated by geologic province. The Permian brines differ by age and also by environment (shelf, basin, etc.).

White, H.G. III

1992-04-01T23:59:59.000Z

257

Biochemical solubilization of toxic salts from residual geothermal brines and waste waters  

DOE Patents (OSTI)

A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed, The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts, For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

1994-11-22T23:59:59.000Z

258

Biochemical solubilization of toxic salts from residual geothermal brines and waste waters  

DOE Patents (OSTI)

A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed. The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts. For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates. 54 figs.

Premuzic, E.T.; Lin, M.S.

1994-11-22T23:59:59.000Z

259

Tank farms essential drawing plan  

SciTech Connect

The purpose of this document is to define criteria for selecting Essential Drawings, Support Drawings, and Controlled Print File (CPF) drawings and documents for facilities that are part of East and West Tank Farms. Also, the drawings and documents that meet the criteria are compiled separate listings. The Essential Drawing list and the Support Drawing list establish a priority for updating technical baseline drawings. The CPF drawings, denoted by an asterisk (*), defined the drawings and documents that Operations is required to maintain per the TWRS Administration Manual. The Routing Boards in Buildings 272-WA and 272-AW are not part of the CPF.

Domnoske-Rauch, L.A.

1998-08-04T23:59:59.000Z

260

Energy optimization in ice hockey halls I. The system COP as a multivariable function, brine and design choices  

E-Print Network (OSTI)

This work is the first in a series of articles addressing the energy optimization in ice hockey halls. Here we adopt an analytical method, called functional optimization, to find which design and operating conditions maximize the Coefficient Of Performance of the entire cooling system (brine pumps and cooling tower), which we call ${\\rm COP}_{sys}$. This is addressed as a function of several variables, like electric consumption and brine physical properties. By maximizing such function, the best configuration and brine choices for the system can thus be determined accurately and rigorously. We investigate the importance of pipe diameter, depth and brine type (ethylene glycol and ammonia) for average-sized ice rinks. An optimal brine density is found, and we compute the weight of the electric consumption of the brine pumps on ${\\rm COP}_{sys}$. Our formulas are validated with heat flow measurement data obtained at an ice hockey hall in Finland. They are also confronted with technical and cost-related constraints, and implemented by simulations with the program COMSOL Multiphysics. The multivariable approach here discussed is general, and can be applied to the rigorous preliminary study of diverse situations in building physics and in many other areas of interest.

Andrea Ferrantelli; Paul Melis; Miska Rikknen; Martti Viljanen

2012-11-02T23:59:59.000Z

Note: This page contains sample records for the topic "mound brine tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Use of inhibitors for scale control in brine-producing gas and oil wells  

SciTech Connect

Field and laboratory work have shown that calcium-carbonate scale formation in waters produced with natural gas and oil can be prevented by injection of phosphonate inhibitor into the formation, even if the formation is sandstone without calcite binging material. Inhibitor squeeze jobs have been carried out on DOE's geopressured-geothermal Gladys McCall brine-gas well and GRI's co-production wells in the Hitchcock field. Following the inhibitor squeeze on Gladys McCall, the well produced over five million barrels of water at a rate of approximately 30,000 BPD without calcium-carbonate scaling. Before the inhibitor squeeze, the well could not be produced above 15,000 BPD without significant scale formation. In the GRI brine-gas co-production field tests, inhibitor squeezes have been used to successfully prevant scaling. Laboratory work has been conducted to determine what types of oil field waters are subject to scaling. This research has led to the development of a saturation index and accompanying nomographs which allow prediction of when scale will develop into a problem in brine production.

Tomson, M.B.; Prestwich, S.

1986-01-01T23:59:59.000Z

262

Hanford Site C Tank Farm Meeting Summary - May 2010 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Hanford Site C Tank Farm Meeting Summary - May 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank Farm Meeting...

263

Hanford Site C Tank Farm Meeting Summary - July 2010 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 2010 Hanford Site C Tank Farm Meeting Summary - July 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank Farm...

264

Hanford Site C Tank Farm Meeting Summary - May 2009 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09 Hanford Site C Tank Farm Meeting Summary - May 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank Farm Meeting...

265

Hanford Site C Tank Farm Meeting Summary - January 2010 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Hanford Site C Tank Farm Meeting Summary - January 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank Farm Meeting...

266

Hanford Site C Tank Farm Meeting Summary - January 2011 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Hanford Site C Tank Farm Meeting Summary - January 2011 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank Farm Meeting...

267

Hanford Site C Tank Farm Meeting Summary - October 2009 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 2009 Hanford Site C Tank Farm Meeting Summary - October 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank Farm...

268

Hanford Site C Tank Farm Meeting Summary - September 2009 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Site C Tank Farm Meeting Summary - September 2009 Hanford Site C Tank Farm Meeting Summary - September 2009 Meeting Summary for Development of the Hanford Site C Tank Farm...

269

Double-Shell Tank Visual Inspection Changes REsulting from the Tank 241-AY-102 Primary Tank Leak - 14193  

SciTech Connect

As part of the Double-Shell Tank (DST) Integrity Program, remote visual inspections are utilized to perform qualitative in-service inspections of the DSTs in order to provide a general overview of the condition of the tanks. During routine visual inspections of tank 241-AY -1 02 (A Y -1 02) in August 2012, anomalies were identified on the annulus floor which resulted in further evaluations. In October 2012, Washington River Protection Solutions, LLC determined that the primary tank of AY -102 was leaking. Following identification of the tank AY-102 probable leak cause, evaluations considered the adequacy of the existing annulus inspection frequency with respect to the circumstances of the tank AY-1021eak and the advancing age of the DST structures. The evaluations concluded that the interval between annulus inspections should be shortened for all DSTs, and each annulus inspection should cover > 95 percent of annulus floor area, and the portion of the primary tank (i.e., dome, sidewall, lower knuckle, and insulating refractory) that is visible from the annulus inspection risers. In March 2013, enhanced visual inspections were performed for the six oldest tanks: 241-AY-101, 241-AZ-101,241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103, and no evidence of leakage from the primary tank were observed. Prior to October 2012, the approach for conducting visual examinations of DSTs was to perform a video examination of each tank's interior and annulus regions approximately every five years (not to exceed seven years between inspections). Also, the annulus inspection only covered about 42 percent of the annulus floor.

Girardot, Crystal L.; Washenfelder, Dennis J.; Johnson, Jeremy M.; Engeman, Jason K.

2013-11-14T23:59:59.000Z

270

Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine  

SciTech Connect

This study is developing a comprehensive study of what is involved in the desalination of oil field produced brine and the technical developments and regulatory changes needed to make the concept a commercial reality. It was originally based on ''conventional'' produced water treatment and reviewed (1) the basics of produced water management, (2) the potential for desalination of produced brine in order to make the resource more useful and available in areas of limited fresh water availability, and (3) the potential beneficial uses of produced water for other than oil production operations. Since we have begun however, a new area of interest has appeared that of brine water treatment at the well site. Details are discussed in this technical progress report. One way to reduce the impact of O&G operations is to treat produced brine by desalination. The main body of the report contains information showing where oil field brine is produced, its composition, and the volume available for treatment and desalination. This collection of information all relates to what the oil and gas industry refers to as ''produced water management''. It is a critical issue for the industry as produced water accounts for more than 80% of all the byproducts produced in oil and gas exploration and production. The expense of handling unwanted waste fluids draws scarce capital away for the development of new petroleum resources, decreases the economic lifetimes of existing oil and gas reservoirs, and makes environmental compliance more expensive to achieve. More than 200 million barrels of produced water are generated worldwide each day; this adds up to more than 75 billion barrels per year. For the United States, the American Petroleum Institute estimated about 18 billion barrels per year were generated from onshore wells in 1995, and similar volumes are generated today. Offshore wells in the United States generate several hundred million barrels of produced water per year. Internationally, three barrels of water are produced for each barrel of oil. Production in the United States is more mature; the US average is about 7 barrels of water per barrel of oil. Closer to home, in Texas the Permian Basin produces more than 9 barrels of water per barrel of oil and represents more than 400 million gallons of water per day processed and re-injected.

David B. Burnett

2005-09-29T23:59:59.000Z

271

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM- 2007  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. The 2007 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. A very small amount of material had seeped from Tank 12 from a previously identified leaksite. The material observed had dried on the tank wall and did not reach the annulus floor. A total of 5945 photographs were made and 1221 visual and video inspections were performed during 2007. Additionally, ultrasonic testing was performed on four Waste Tanks (15, 36, 37 and 38) in accordance with approved inspection plans that met the requirements of WSRC-TR-2002- 00061, Revision 2 'In-Service Inspection Program for High Level Waste Tanks'. The Ultrasonic Testing (UT) In-Service Inspections (ISI) are documented in a separate report that is prepared by the ISI programmatic Level III UT Analyst. Tanks 15, 36, 37 and 38 are documented in 'Tank Inspection NDE Results for Fiscal Year 2007'; WSRC-TR-2007-00064.

West, B; Ruel Waltz, R

2008-06-05T23:59:59.000Z

272

Tanks Focus Area annual report FY2000  

SciTech Connect

The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation effort with tanks containing hazardous and radioactive waste resulting from the production of nuclear materials. With some 90 million gallons of waste in the form of solid, sludge, liquid, and gas stored in 287 tanks across the DOE complex, containing approximately 650 million curies, radioactive waste storage tank remediation is the nation's highest cleanup priority. Differing waste types and unique technical issues require specialized science and technology to achieve tank cleanup in an environmentally acceptable manner. Some of the waste has been stored for over 50 years in tanks that have exceeded their design lives. The challenge is to characterize and maintain these contents in a safe condition and continue to remediate and close each tank to minimize the risks of waste migration and exposure to workers, the public, and the environment. In 1994, the DOE's Office of Environmental Management (EM) created a group of integrated, multiorganizational teams focusing on specific areas of the EM cleanup mission. These teams have evolved into five focus areas managed within EM's Office of Science and Technology (OST): Tanks Focus Area (TFA); Deactivation and Decommissioning Focus Area; Nuclear Materials Focus Area; Subsurface Contaminants Focus Area; and Transuranic and Mixed Waste Focus Area.

None

2000-12-01T23:59:59.000Z

273

Improved method for determining tank heel volumes  

SciTech Connect

As part of the tank calibration process, the instrument heel is that part of the tank that cannot be measured by the liquid level instrumentation. if the tank being calibrated is not a bottom drain tank, some volume of fluid will be present in the bottom of the tank after draining as much as possible. The amount of fluid remaining in the tank at the start of each run can be estimated by measuring a concentration change of an added spiking material. With the great improvement of liquid level measuring instruments, the total error associated with the instrument heel determination can be greatly affected by the laboratory method used to measure the concentration difference. At the Savannah River Site, the laboratory method used has historically been Direct Current Plasma Emission Spectroscopy, which yielded very marginal results at best. In the most recent tank calibrations, the laboratory method was changed to Absorption Spectrophotometry, which reduces the total error on the instrument heel measurement by a factor of 2.5 times. This paper describes the method used to determine tank instrument heels and the improvements made to this process.

Holt, S.H.; Livingston, R.R.; Nave, S.E.

1994-07-01T23:59:59.000Z

274

HANFORD WASTE TANK BUMP ACCIDENT & CONSEQUENCE ANALYSIS  

DOE Green Energy (OSTI)

Postulated physical scenarios leading to tank bumps were examined. A combination of a substantial supernatant layer depth, supernatant temperatures close to saturation, and high sludge temperatures are required for a tank bump to occur. Scenarios postulated at various times for sludge layers lacking substantial supernatant, such as superheat within the layer and fumarole formation leading to a bump were ruled out.

MEACHAM, J.E.

2005-02-22T23:59:59.000Z

275

Fuel Cell Technologies Office: Onboard Storage Tank Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Onboard Storage Tank Onboard Storage Tank Workshop to someone by E-mail Share Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Facebook Tweet about Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Twitter Bookmark Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Google Bookmark Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Delicious Rank Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Digg Find More places to share Fuel Cell Technologies Office: Onboard Storage Tank Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings

276

DOE Selects Washington River Protection Solutions, LLC for Tank...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington River Protection Solutions, LLC for Tank Operations Contract at Hanford Site DOE Selects Washington River Protection Solutions, LLC for Tank Operations Contract at...

277

Independent Oversight Review of Hanford Tank Farms Safety Basis...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to create tank vacuum exceeding their analyzed capabilities, which could result in structural failures. The vacuum relief valves and other tank vacuum 3 protection devices are...

278

Independent Oversight Review of Hanford Tank Farms Safety Basis...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hanford Tank Farms Safety Basis Amendment for Double-Shell Tank Ventilation System Upgrades November 2011 Office of Safety and Emergency Management Evaluations Office of...

279

Hanford Site C Tank Farm Meeting Summary - March 2010 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 2010 Hanford Site C Tank Farm Meeting Summary - March 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Meeting Summary for...

280

Hanford Tank Waste Treatment and Immobilization Plan Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Tank Waste Treatment and Immobilization Plan Project PIA, Richland Operations Office Hanford Tank Waste Treatment and Immobilization Plan Project PIA, Richland Operations...

Note: This page contains sample records for the topic "mound brine tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

What's going on Inside Today's Fuel Storage Tank?  

Science Conference Proceedings (OSTI)

... 14 Page 15. E85 tanks ? Minnesota has a high percentage of underground tanks at gas stations storing 85% ethanol ? Last ...

2013-08-28T23:59:59.000Z

282

Hydrogen Tank Testing R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

04.29.2010 | Presented by Joe Wong, P.Eng. 04.29.2010 | Presented by Joe Wong, P.Eng. DOE Tank Safety Workshop Hydrogen Tank Safety Testing 1 POWERTECH - Hydrogen & CNG Services  Certification testing of individual high pressure components  Design Verification, Performance, End-of-Life testing of complete fuel systems  Design, construction, and operation of Hydrogen Fill Stations  Safety Studies  Standards Development 2 PRESENTATION  Discuss CNG Field Performance Data  Discuss Safety Testing of Type 4 Tanks  Current work to support Codes & Standards Development 3 Storage Tank Technologies 4 basic types of tank designs  Type 1 - all metal  Type 2 - metal liner with hoop wrapped composite  Type 3 - metal liner with fully wrapped composite  Type 4 - Plastic liner with

283

Radioactive tank waste remediation focus area  

SciTech Connect

EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

1996-08-01T23:59:59.000Z

284

Haynes Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Haynes Tow Tank Haynes Tow Tank Jump to: navigation, search Basic Specifications Facility Name Haynes Tow Tank Overseeing Organization Texas A&M (Haynes) Hydrodynamic Testing Facility Type Tow Tank Length(m) 45.7 Beam(m) 3.7 Depth(m) 3.0 Water Type Freshwater Cost(per day) $150/hour (excluding labor) Special Physical Features The tank includes a 7.6m by 3.7m by 1.5m deep sediment pit. Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 1.8 Length of Effective Tow(m) 24.4 Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description National Instruments LabView Number of channels 40 Cameras Yes Number of Color Cameras 6 Description of Camera Types 3 video; 3 digital

285

Tank characterization report for single-shell tank 241-BY-104  

SciTech Connect

This characterization report summarizes the available information on the historical uses, current status, and the sampling and analysis results of waste contained in underground storage tank 241-BY-104. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-09. Tank 241-BY-104 is one of 12 single-shell tanks located in the BY-Tank Farm in the 200 East Area of the Hanford Site. Tank 241-BY-104 entered service in the first quarter of 1950 with a transfer of metal waste from an unknown source. Through cascading, the tank was full of metal waste by the second quarter of 1951. The waste was sluiced in the second quarter of 1954. Uranium recovery (tributyl phosphate) waste was sent from tank 241-BY-107 during the second quarter of 1955 and from tank 241-BY-110 during the third quarter of 1955. Most of this waste was sent to a crib during the fourth quarter of 1955. During the third and fourth quarters of 1956 and the second and third quarters of 1957, the tank received waste from the in-plant ferrocyanide scavenging process (PFeCN2) from tanks 241-BY-106, -107, -108, and -110. This waste type is predicted to compose the bottom layer of waste currently in the tank. The tank received PUREX cladding waste (CWP) periodically from 1961 to 1968. Ion-exchange waste from cesium recovery operations was received from tank 241-BX-104 during the second and third quarters of 1968. Tank 241-BY-104 received evaporator bottoms waste from the in-tank solidification process that was conducted in the BY-Tank Farm 0247from tanks 241 -BY- 109 and 241 -BY- 1 12 from 1970 to 1974. The upper portion of tank waste is predicted to be composed of BY saltcake. Tank 241-BY-104 was declared inactive in 1977. Waste was saltwell pumped from the tank during the third quarter of 1982 and the fourth quarter of 1985. Table ES-1 and Figure ES-1 describe tank 241-BY-104 and its status. The tank has an operating capacity of 2,869 kL and presently contains an estimated 1,234 kL of noncomplexed waste. Of this total volume, 568 kL are estimated to be sludge and 666 kL are estimated to be saltcake. The Hanlon values are not used because they are inconsistent with waste surface level measurements, and they will not be updated until the tank level stabilizes and the new surface photos are taken. This report summarizes the collection and analysis of two rotary-mode core samples obtained in October and November 1995 and reported in the Final Report for Tank 241-BY-104, Rotary Mode Cores 116 and 117. Cores 116 and 117 were obtained from risers 5 and IIA, respectively. The sampling event was performed to satisfy the requirements listed in the following documents: Tank Safety Screening Data Quality Objective , Data Requirements for the Ferrocyanide Safety Issue Developed through the Data Quality Objective Process, Data Quality Objective to Support Resolution of the Organic Fuel Rich Tank Safety Issue, Test Plan for Samples from Hanford Waste Tanks 241-BY-103, BY-104, BY-105, BY-106, BY-108, BY-110, YY-103, U-105, U-107, U-108, and U-109.

Benar, C.J.

1996-09-26T23:59:59.000Z

286

Combustion modeling in waste tanks  

DOE Green Energy (OSTI)

This paper has two objectives. The first one is to repeat previous simulations of release and combustion of flammable gases in tank SY-101 at the Hanford reservation with the recently developed code GASFLOW-II. The GASFLOW-II results are compared with the results obtained with the HMS/TRAC code and show good agreement, especially for non-combustion cases. For combustion GASFLOW-II predicts a steeper pressure rise than HMS/TRAC. The second objective is to describe a so-called induction parameter model which was developed and implemented into GASFLOW-II and reassess previous calculations of Bureau of Mines experiments for hydrogen-air combustion. The pressure time history improves compared with the one-step model, and the time rate of pressure change is much closer to the experimental data.

Mueller, C.; Unal, C. [Los Alamos National Lab., NM (United States); Travis, J.R. [Los Alamos National Lab., NM (United States)]|[Forschungszentrum Karlsruhe (Germany). Inst. fuer Reaktorsicherheit

1997-08-01T23:59:59.000Z

287

Savannah River Tank Waste Residuals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah Savannah River Savannah River Tank Waste Residuals HLW Corporate Board November 6, 2008 1 November 6, 2008 Presentation By Sherri R. Ross Department of Energy Savannah River Operations Office The Issue * How clean is clean? * Ultimate Challenge - Justify highly radioactive radionuclides have been removed to the maximum extent practical? 2 removed to the maximum extent practical? - Building compelling regulatory documentation that will withstand intense scrutiny §3116 Requirements 1. Does not require disposal in deep geological repository 2. Highly radioactive radionuclides removed to the maximum extent practical 3. Meet the performance objectives in 10 CFR Part 3 3. Meet the performance objectives in 10 CFR Part 61, Subpart C 4. Waste disposed pursuant to a State-approved closure plan or permit Note: If it is anticipated that Class C disposal limits will be exceeded, additional

288

Tank characterization report for Single-Shell Tank 241-T-107  

Science Conference Proceedings (OSTI)

Single shell tank 241-T-107 is a Hanford Site Ferrocyanide Watch List tank most recently sampled in March 1993. Analyses of materials obtained from tank T-107 were conducted to support the Ferrocyanide Unreviewed Safety Question (USQ) and the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-06 as well as Milestones M-44-05 and M-44-07. Characterization of the tank waste T-107 will support the ferrocyanide safety issue in order to classify the tank as safe, conditionally safe, or unsafe. This tank characterization report expands on the data found in Ferrocyanide Safety Program: Data Interpretation Report for Tank 241-T-107 Core Samples. Analysis of core samples obtained from tank T-107 strongly indicate the cyanide and oxidizer (nitrate/nitrite) concentrations in the tank waste are not significant enough to support a self-sustaining exothermic reaction. Therefore, the contents of tank T-107 present no imminent threat to the workers at the Hanford Site, the public, or the environment. Because the possibility of an exothermic reaction is remote, the consequences of an accident scenario, as proposed by the General Accounting Office, are not applicable.

Valenzuela, B.D.; Jensen, L.

1994-09-01T23:59:59.000Z

289

Tank 241-C-112 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank C-112 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank C-112 is a single-shell tank which received first-cycle decontamination waste from B Plant and was later used as a settling tank. Samples were collected from Tank C-112 using the vapor sampling system (VSS) on August 11, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 28 C. Air from the Tank C-112 headspace was withdrawn via a 7.9 m-long heated sampling probe mounted in riser 4, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 39 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks provided by the laboratories.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

290

Tank 241-C-111 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank C-111 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Results presented here represent the best available data on the headspace constituents of Tank C-111. Almost all of the data in this report was obtained from samples collected on September 13, 1994.Data from 2 other sets of samples, collected on August 10, 1993 and June 20, 1994, are in generally good agreement with the more recent data. The tank headspace temperature was determined to be 27 C. Air from the Tank C-111 headspace was withdrawn via a 7.9 m-long heated sampling probe mounted in riser 6, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 39 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks provided by the laboratories. Tank C-111 is a single shell tank which received first-cycle decontamination waste from B Plant and was later used as a settling tank.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

291

Theory and practice of brine processing by industrial-scale magnetic ion polarization and optimization of personal-scale passive solar desalination.  

E-Print Network (OSTI)

??In the first section of this work we hope to add to the science of brine management in desalination. We have undertaken a feasibility analysis (more)

Wofsey, Michael Henry

2010-01-01T23:59:59.000Z

292

Vadose zone characterization project at the Hanford Tank Farms: U Tank Farm Report  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy Grand Junction Office (DOE-GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the gamma-ray-emitting radionuclides that are distributed in the vadose zone sediments beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources when possible, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information regarding vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. This information is presently limited to detection of gamma-emitting radionuclides from both natural and man-made sources. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank in a tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the U Tank Farm. Logging operations used high-purity germanium detection systems to acquire laboratory-quality assays of the gamma-emitting radionuclides in the sediments around and below the tanks. These assays were acquired in 59 boreholes that surround the U Tank Farm tanks. Logging of all boreholes was completed in December 1995, and the last Tank Summary Data Report for the U Tank Farm was issued in September 1996.

NONE

1997-05-01T23:59:59.000Z

293

TANK 4 CHARACTERIZATION, SETTLING, AND WASHING STUDIES  

SciTech Connect

A sample of PUREX sludge from Tank 4 was characterized, and subsequently combined with a Tank 51 sample (Tank 51-E1) received following Al dissolution, but prior to a supernate decant by the Tank Farm, to perform a settling and washing study to support Sludge Batch 6 preparation. The sludge source for the majority of the Tank 51-E1 sample is Tank 12 HM sludge. The Tank 51-E1 sample was decanted by SRNL prior to use in the settling and washing study. The Tank 4 sample was analyzed for chemical composition including noble metals. The characterization of the Tank 51-E1 sample, used here in combination with the Tank 4 sample, was reported previously. SRNL analyses on Tank 4 were requested by Liquid Waste Engineering (LWE) via Technical Task Request (TTR) HLE-TTR-2009-103. The sample preparation work is governed by Task Technical and Quality Assurance Plan (TTQAP), and analyses were controlled by an Analytical Study Plan and modifications received via customer communications. Additional scope included a request for a settling study of decanted Tank 51-E1 and a blend of decanted Tank 51-E1 and Tank 4, as well as a washing study to look into the fate of undissolved sulfur observed during the Tank 4 characterization. The chemistry of the Tank 4 sample was modeled with OLI Systems, Inc. StreamAnalyzer to determine the likelihood that sulfate could exist in this sample as insoluble Burkeite (2Na{sub 2}SO{sub 4} {center_dot} Na{sub 2}CO{sub 3}). The OLI model was also used to predict the composition of the blended tank materials for the washing study. The following conclusions were drawn from the Tank 4 analytical results reported here: (1) Any projected blend of Tank 4 and the current Tank 51 contents will produce a SB6 composition that is lower in Ca and U than the current SB5 composition being processed by DWPF. (2) Unwashed Tank 4 has a relatively large initial S concentration of 3.68 wt% on a total solids basis, and approximately 10% of the total S is present as an insoluble or undissolved form. (3) There is 19% more S than can be accounted for by IC sulfate measurement. This additional soluble S is detected by ICP-AES analysis of the supernate. (4) Total supernate and slurry sulfur by ICP-AES should be monitored during washing in addition to supernate sulfate in order to avoid under estimating the amount of sulfur species removed or remaining in the supernate. (5) OLI simulation calculations show that the presence of undissolved Burkeite in the Tank 4 sample is reasonable, assuming a small difference in the Na concentration that is well within the analytical uncertainties of the reported value. The following conclusions were drawn from the blend studies of Tank 4 and decanted Tank 51-E1: (1) The addition of Tank 4 slurry to a decanted Tank 51-E1 sample significantly improved the degree and time for settling. (2) The addition of Tank 4 slurry to a decanted Tank 51-E1 sample significantly improved the plastic viscosity and yield stress. (3) The SRNL washing test, where nearly all of the wash solution was decanted from the solids, indicates that approximately 96% or more of the total S was removed from the blend in these tests, and the removal of the sulfur tracks closely with that of Na. Insoluble (undissolved) S remaining in the washed sludge was calculated from an estimate of the final slurry liquid fraction, the S result in the slurry digestion, and the S in the final decant (which was very close to the method detection limit). Based on this calculated result, about 4% of the initial total S remained after these washes; this amount is equivalent to about 18% of the initially undissolved S.

Bannochie, C.; Pareizs, J.; Click, D.; Zamecnik, J.

2009-09-29T23:59:59.000Z

294

Hazard Analysis for In Tank Spray Leaks  

SciTech Connect

The River Protection Project (RPP) Authorization Basis (AB) contains controls that address spray leaks in tanks. However, there are no hazardous conditions in the Hazards Database that specifically identify in-tank spray leak scenarios. The purpose of this Hazards Evaluation is to develop hazardous conditions related to in-tank spray leaks for the Hazards Database and to provide more complete coverage of Tank Farm facilities. Currently, the in-tank spray leak is part of the ''Spray Leak in Structures or From Waste Transfer Lines'' accidents in Section 3.4.2.9 of the Final Safety Analysis Report (FSAR) (CHG, 2000a). The accident analysis for the ''Spray Leak in Structure or From Waste Transfer Lines'' states the following regarding the location of a possible spray leak: Inside ventilated waste storage tanks (DSTs, DCRTs, and some SSTs). Aerosols could be generated inside a storage tank during a transfer because of a leak from the portion of the transfer pipe inside the tank. The tank ventilation system could help disperse the aerosols to the atmosphere should the vent system HEPA filters fail. This Hazards Evaluation also evaluates the controls currently assigned to the spray leak in structure accident and determines the applicability of the controls to the new hazardous conditions. This comparison reviews both the analysis in the FSAR and the controls found in the Technical Safety Requirements (TSRs) (CHG, 2000h). If the new hazardous conditions do not match the analyzed accident conditions and controls, then additional analysis may be required. This document is not intended to authorize the activity or determine the adequacy of controls; it is only intended to provide information about the hazardous conditions associated with this activity. The Control decision process as defined in the AB will be used to determine the adequacy of controls and whether the proposed activity is within the AB. This hazard evaluation does not constitute an accident analysis.

GRAMS, W.H.

2000-06-13T23:59:59.000Z

295

UCSD Geothermal Chemical Modeling Project: DOE Advanced Brine Chemistry Program. [University of California at San Diego (UCSD)  

DOE Green Energy (OSTI)

DOE funding to the UCSD Chemical Modeling Group supports research to provide computer models which will reliably characterize the equilibrium chemistry of geothermal brines (solution, solid and gas phases) under variable thermodynamic conditions. With this technology, it will be possible to rapidly and inexpensively predict the chemical behavior of geothermal brines during various resource recovery stages; exploration, production, plant energy extraction and rejection as well as in ancillary programs such as mineral recovery. Our modeling technology is based on recent progress in the physical chemistry of concentrated aqueous solutions. The behavior of these fluids has not been predicted from first principle theories. However, because of the importance of concentrated brines to many industrial and natural processes, there have been numerous efforts to develop accurate phenomenological expressions for predicting the chemical behavior of these brines. One of the most successful of these efforts is that of Pitzer and coworkers. Incorporating the semiempirical equations of Pitzer, we have shown at UCSD that we can create highly accurate models of brine-solid-gas chemistry.

Moeller, N.; Weare, J.H.

1992-04-01T23:59:59.000Z

296

Experimental testing of a direct contact heat exchanger for geothermal brine. Final report, July 1, 1978-February 1, 1979  

DOE Green Energy (OSTI)

A series of direct contact heat exchanger (DCHX) experiments were conducted at the East Mesa Geothermal Test Site during the period July 1, 1978 to February 1, 1979. The purpose of these tests was to provide additional data necessary to better understand the thermal and hydraulic characteristics of the DCHX binary cycle loop components that may be used to extract energy from geothermal brines. Isobutane and Isopentane were tested as secondary working fluids. The analytical and experimental efforts were directed at the problems of working fluid loss in the effluent brine, carryover of water vapor with the vaporized secondary fluid and the free CO/sub 2/ content of the feed brine. The tests aimed at evaluating the heat transfer performance of various type tubes installed in vertical shell-and-tube secondary fluid condensers. Data was collected while operating a low temperature isopentane cycle with brine preflashed to 210 to 212/sup 0/F; the objective being to gain insight to waste heat recovery applications such as the Arkansas Power and Light project. Possible alternatives for isobutane recovery from the spent brine were investigated. A system was designed and the economic aspects studied.

Urbanek, M.W.

1979-12-01T23:59:59.000Z

297

Tank 241-BY-104 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank BY-104 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-104 using the vapor sampling system (VSS) on June 24, 1994 by WHC Sampling and Mobile Laboratories. Air from the tank BY-104 headspace was withdrawn via a heated sampling probe mounted in riser 10A, and transferred via heated tubing to the VSS sampling manifold. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 46 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 10 trip blanks provided by the laboratories.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

298

CHARACTERIZATION OF TANK 11H AND TANK 51H POST ALUMINUM DISSOLUTION PROCESS SAMPLES  

Science Conference Proceedings (OSTI)

A dip sample of the liquid phase from Tank 11H and a 3-L slurry sample from Tank 51H were obtained and sent to Savannah River National Laboratory for characterization. These samples provide data to verify the amount of aluminum dissolved from the sludge as a result of the low temperature aluminum dissolution process conducted in Tank 51H. The characterization results for the as-received Tank 11H and Tank 51H supernate samples and the total dried solids of the Tank 51H sludge slurry sample appear quite good with respect to the precision of the sample replicates and minimal contamination present in the blank. The two supernate samples show similar concentrations for the major components as expected.

Hay, M; Daniel McCabe, D

2008-05-16T23:59:59.000Z

299

Advanced biochemical processes for geothermal brines FY 1998 annual operating plan  

DOE Green Energy (OSTI)

As part of the overall Geothermal Energy Research which is aimed at the development of economical geothermal resources production systems, the aim of the Advanced Biochemical Processes for Geothermal Brines (ABPGB) effort is the development of economic and environmentally acceptable methods for disposal of geothermal wastes and conversion of by-products to useful forms. Methods are being developed for dissolution, separation and immobilization of geothermal wastes suitable for disposal, usable in inert construction materials, suitable for reinjection into the reservoir formation, or used for recovery of valuable metals.

NONE

1997-10-01T23:59:59.000Z

300

Development of direct heat exchangers for geothermal brines. Final report, October 4, 1977--June 30, 1978  

DOE Green Energy (OSTI)

A series of experiments during a period of eight months was conducted with the existing Direct Contact Heat Exchanger (DCHX) Loop in order to better understand the thermal and hydraulic characteristics of the equipment. Modifications were made to the equipment which were designed to improve heat transfer and reduce the cost of the heat exchangers. Additional changes were made to the equipment to conduct turbine experiments, condenser experiments, and carryover tests. Further studies of the amounts of dissolved isobutane in the geothermal brine and methods of recovering this dissolved isobutane were also made. The procedures used and the results of the tests performed are presented.

Urbanek, M.W.

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mound brine tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Radiation chemistry of salt-mine brines and hydrates. [Gamma radiation  

Science Conference Proceedings (OSTI)

Certain aspects of the radiation chemistry of NaCl-saturated MgCl/sub 2/ solutions and MgCl/sub 2/ hydrates at temperatures in the range of 30 to 180/sup 0/C were investigated through experiments. A principal objective was to establish the values for the yields of H/sub 2/ (G(H/sub 2/)) and accompanying oxidants in the gamma-ray radiolysis of concentrated brines that might occur in waste repositories in salt. We concluded that G(H/sub 2/) from gamma-irradiated brine solution into a simultaneously irradiated, deaerated atmosphere above the solution is between 0.48 and 0.49 over most of the range 30 to 143/sup 0/C. The yield is probably somewhat lower at the lower end of this range, averaging 0.44 at 30 to 45/sup 0/C. Changes in the relative amounts of MgCl/sub 2/ and NaCl in the NaCl-saturated solutions have negligible effects on the yield. The yield of O/sub 2/ into the same atmosphere averages 0.13, independent of the temperature and brine composition, showing that only about 50% of the radiolytic oxidant that was formed along with the H/sub 2/ was present as O/sub 2/. We did not identify the species that compose the remainder of the oxidant. We concluded that the yield of H/sub 2/ from a gamma-irradiated brine solution into a simultaneously irradiated atmosphere containing 5 to 8% air in He may be greater than the yield in deaerated systems by amounts ranging from 0% for temperatures of 73 to 85/sup 0/C, to about 30 and 40% for temperatures in the ranges 100 to 143/sup 0/C and 30 to 45/sup 0/C, respectively. We did not establish the mechanism whereby the air affected the yields of H/sub 2/ and O/sub 2/. The values found in this work for G(H/sub 2/) in deaerated systems are in approximate agreement with the value of 0.44 for the gamma-irradiation yield of H/sub 2/ in pure H/sub 2/O at room temperature. They are also in agreement with the values predicted by extrapolation from the findings of previous researchers for the value for G(H/sub 2/) in 2 M NaCl solutions at room temperature.

Jenks, G.H.; Walton, J.R.; Bronstein, H.R.; Baes, C.F. Jr.

1981-07-01T23:59:59.000Z

302

Electric power generation using geothermal brine resources for a proof-of-concept facility  

DOE Green Energy (OSTI)

A report is given of the initial phase of a proof-of-concept project to establish the technical, environmental, and economic feasibility of utilizing hot brine resources for electric energy production and other industrial applications. Included in the report are the following: summary, conclusions, and recommendations; site selection; Heber site description; development of design bases for an experimental facility and a 10 MWe(Net) generating unit; description of facilities; safety analysis; environmental considerations; implementation plan and schedule; and conceptual capital cost estimate.

Not Available

1976-01-01T23:59:59.000Z

303

Effect of shale-water recharge on brine and gas recovery from geopressured reservoirs  

DOE Green Energy (OSTI)

The concept of shale-water recharge has often been discussed and preliminary assessments of its significance in the recovery of geopressured fluids have been given previously. The present study uses the Pleasant Bayou Reservoir data as a base case and varies the shale formation properties to investigate their impact on brine and gas recovery. The parametric calculations, based on semi-analytic solutions and finite-difference techniques, show that for vertical shale permeabilities which are at least of the order of 10/sup -5/ md, shale recharge will constitute an important reservoir drive mechanism and will result in much larger fluid recovery than that possible in the absence of shale dewatering.

Riney, T.D.; Garg, S.K.; Wallace, R.H. Jr.

1985-01-01T23:59:59.000Z

304

Application of freshwater and brine polymer flooding in the North Burbank Unit, Osage County, Oklahoma  

SciTech Connect

A freshwater polymer-flood project was implemented in a 1,440-acre area of the North Burbank Unit (NBU) in 1980 with sequential injection of 4.2 million Ibm of polyacrylamide and 4.0 million Ibm of a 2.9% aluminum citrate crosslinking solution. Response to polymer flooding has been very pronounced, with ultimate incremental oil recovery projected to exceed 2.5 MMSTB of oil and total project oil expected to be 4.5 MMSTB. A crosslinked polymer-flood process for use in brine was developed that displays equally favorable performance characteristics as the freshwater polymer-flooding system.

Moffitt, P.D.; Zornes, D.R.; Moradi-Araghi, A.; McGovern, J.M. (Phillips Petroleum Co., Bartlesville, OK (United States))

1993-05-01T23:59:59.000Z

305

Vehicle Tank & Loading Rack Meters - 2013-04-22  

Science Conference Proceedings (OSTI)

Vehicle Tank & Loading Rack Meters. Purpose: ... Participants should bring a calculator to the training. Materials & Supplies: ...

2013-06-03T23:59:59.000Z

306

Enclosure 1 Additional Information on Hanford Tank Wastes  

E-Print Network (OSTI)

Enclosure 1 Additional Information on Hanford Tank Wastes Introduction The U. S. Nuclear Regulatory of Energy to the U. S. Environmental Protection Agency addressing the Hanford Tank and K Basin Wastes (CBFO stored in two tanks (designated as tanks 241-AW-103 and 241-AW-105) at the Hanford Site are not high

307

Tank characterization report for single-shell tank 241-C-109  

SciTech Connect

This document provides the characterization information and interprets the data for Single-Shell Tank 241-C-109. Single-Shell Tank 241-C-109 is an underground storage tank containing high-level radioactive waste. It is located in the C Tank Farm in the Hanford Site`s 200 East Area. The tank was sampled in September of 1992 to address the Ferrocyanide Unreviewed Safety Question. Analyses of tank waste were also performed to support Hanford Federal Facility Agreement and Consent Order Milestone M-44-08. Tank 241-C-109 went into service in 1946 and received first-cycle decontamination waste from bismuth phosphate process operations at B Plant in 1948. Other waste types added that are expected to contribute to the current contents include ferrocyanide scavenging waste and Strontium Semiworks waste. It is the last tank in a cascade with Tanks 241-C-107 and 241-C-108. The tank has a capacity of 2,010 kL (530 kgal) and currently contains 250 kL (66 kgal) of waste, existing primarily of sludge. Approximately 9.15 kL (4 kgal) of supernate remain. The sludge is heterogeneous, with significantly different chemical compositions depending on waste depth. The major waste constituents include aluminum, calcium, iron, nickel, nitrate, nitrite, phosphate, sodium, sulfate and uranium. The major radionuclides present are Cesium 137 and Strontium 90. The results of this characterization indicate that the waste in this tank is adequately described in the Dangerous Waste Permit Application of the Single-Shell Tank System.

DiCenso, A.T.; Amato, L.C.; Lambie, R.W.; Franklin, J.D.; Seymour, B.J.; Johnson, K.W.; Stevens, R.H. [Los Alamos Technical Associates, Inc., Kennewick, WA (United States); Remund, K.M. [Pacific Northwest Lab., Richland, WA (United States); Sasaki, L.M.; Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States)

1995-02-01T23:59:59.000Z

308

TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS  

Science Conference Proceedings (OSTI)

The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks were evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion ( 60 days) settling times in Tank 21.

Lee, S.; Leishear, R.; Poirier, M.

2012-05-31T23:59:59.000Z

309

Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Promulgation of Promulgation of Renewable Fuel Storage Tank Regulations to someone by E-mail Share Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Facebook Tweet about Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Twitter Bookmark Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Google Bookmark Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Delicious Rank Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Digg Find More places to share Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on AddThis.com... More in this section... Federal

310

Alternative Fuels Data Center: Filling CNG Fuel Tanks  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Filling CNG Fuel Tanks Filling CNG Fuel Tanks to someone by E-mail Share Alternative Fuels Data Center: Filling CNG Fuel Tanks on Facebook Tweet about Alternative Fuels Data Center: Filling CNG Fuel Tanks on Twitter Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Google Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Delicious Rank Alternative Fuels Data Center: Filling CNG Fuel Tanks on Digg Find More places to share Alternative Fuels Data Center: Filling CNG Fuel Tanks on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Maintenance & Safety Fuel System & Cylinders Fuel Safety Traffic Accident Filling CNG Tanks Laws & Incentives Filling CNG Fuel Tanks Unlike liquid fuel, which consistently holds about the same volume of fuel

311

Tank characterization report for single-shell tank 241-BY-110  

Science Conference Proceedings (OSTI)

This characterization report summarizes information on the historical uses, current status, and sampling and analysis results of waste stored in tank 241-BY-110.

Schreiber, R.D.

1996-09-16T23:59:59.000Z

312

EM Tank Waste Subcommittee Report for SRS and Hanford Tank Waste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

incorporating chemistry. Such tools would allow the facile evaluation of the impacts of treatment and waste form alternatives on the overall disposition path for Hanford tank...

313

Ship Towing Tank | Open Energy Information  

Open Energy Info (EERE)

Towing Tank Towing Tank Jump to: navigation, search Basic Specifications Facility Name Ship Towing Tank Overseeing Organization University of Iowa Hydrodynamic Testing Facility Type Tow Tank Length(m) 100.0 Beam(m) 3.0 Depth(m) 3.0 Cost(per day) Contact POC Special Physical Features Towed 3DPIV; contactless motion tracking; free surface measurement mapping Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 3 Length of Effective Tow(m) 75.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.2 Maximum Wave Height(m) at Wave Period(s) 2.0 Maximum Wave Length(m) 6 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Fully programmable using LabView for regular or irregular waves

314

Ohmsett Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Ohmsett Tow Tank Ohmsett Tow Tank Jump to: navigation, search Basic Specifications Facility Name Ohmsett Tow Tank Overseeing Organization Ohmsett Hydrodynamic Testing Facility Type Tow Tank Length(m) 203.0 Beam(m) 19.8 Depth(m) 2.4 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 3.4 Length of Effective Tow(m) 155.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.9 Maximum Wave Height(m) at Wave Period(s) 4.1 Maximum Wave Length(m) 18 Wave Period Range(s) 4.1 Current Velocity Range(m/s) 3.4 Programmable Wavemaking Yes Wavemaking Description Programmable frequency Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Wave dampening at downstream end Channel/Tunnel/Flume

315

MHL Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Tow Tank Tow Tank Jump to: navigation, search Basic Specifications Facility Name MHL Tow Tank Overseeing Organization University of Michigan Hydrodynamics Hydrodynamic Testing Facility Type Tow Tank Length(m) 109.7 Beam(m) 6.7 Depth(m) 3.7 Cost(per day) $2000 (+ Labor/Materials) Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 6.7 Length of Effective Tow(m) 103.6 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Regular and irregular wave spectrum Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Concrete beach Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None

316

Stennis Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Stennis Tow Tank Stennis Tow Tank Jump to: navigation, search Basic Specifications Facility Name Stennis Tow Tank Overseeing Organization United States Geological Survey, HIF Hydrodynamic Testing Facility Type Tow Tank Length(m) 137.2 Beam(m) 3.7 Depth(m) 3.7 Cost(per day) $1200(+ setup charges) Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 4.6 Length of Effective Tow(m) 114.3 Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Fully automated data collection/carriage control computer system for mechanical current meters only. Number of channels 4 Cameras None Available Sensors Acceleration, Velocity Data Generation Capability

317

Penn Reverberant Tank | Open Energy Information  

Open Energy Info (EERE)

Penn Reverberant Tank Penn Reverberant Tank Jump to: navigation, search Basic Specifications Facility Name Penn Reverberant Tank Overseeing Organization Pennsylvania State University Hydrodynamics Hydrodynamic Testing Facility Type Reverberant Tank Length(m) 7.9 Beam(m) 5.3 Depth(m) 5.5 Water Type Freshwater Cost(per day) Contact POC Special Physical Features Structurally isolated hydrodynamic acoustics testing. Lined with an absorber on four sides and bottom with three 0.5x0.5 meter underwater viewing ports. Mechanical oscillation of a small-scale test unit-simulation of oscillating flow for wave or tidal excitation. Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities

318

Small Towing Tank | Open Energy Information  

Open Energy Info (EERE)

Towing Tank Towing Tank Jump to: navigation, search Basic Specifications Facility Name Small Towing Tank Overseeing Organization University of Iowa Hydrodynamic Testing Facility Type Tow Tank Length(m) 3.7 Beam(m) 0.6 Depth(m) 0.8 Cost(per day) Contact POC Special Physical Features Flows up to 5 gallons per minute Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 0.03 Length of Effective Tow(m) 3.0 Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Cameras None Available Sensors Acoustics, Thermal, Turbulence, Velocity Data Generation Capability Real-Time Yes Test Services Test Services Yes On-Site fabrication capability/equipment Machine shop, carpenter shop, welding shop, instrumentation and electronics shop

319

Maine Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Tow Tank Tow Tank Jump to: navigation, search Basic Specifications Facility Name Maine Tow Tank Overseeing Organization University of Maine Hydrodynamics Hydrodynamic Testing Facility Type Tow Tank Length(m) 30.5 Beam(m) 2.4 Depth(m) 1.2 Cost(per day) Contact POC Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 3 Length of Effective Tow(m) 27.4 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.0 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Simulated beach is framed with PVC/mesh. Has a 4:9 slope. Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition

320

Lakefront Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Lakefront Tow Tank Lakefront Tow Tank Jump to: navigation, search Basic Specifications Facility Name Lakefront Tow Tank Overseeing Organization University of New Orleans Hydrodynamic Testing Facility Type Tow Tank Length(m) 36.6 Beam(m) 4.9 Depth(m) 1.8 Cost(per day) $1200 Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 2.7 Length of Effective Tow(m) 25.9 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Maximum Wave Length(m) 22 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Regular random and transient waves Spectra include ISSC, JONSWAP, Bretschneider, Pierson-Moskowitz and custom user-defined. Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Aluminum segmented arch

Note: This page contains sample records for the topic "mound brine tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Davidson Laboratory Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Laboratory Tow Tank Laboratory Tow Tank Jump to: navigation, search Basic Specifications Facility Name Davidson Laboratory Tow Tank Overseeing Organization Stevens Institute of Technology Hydrodynamic Testing Facility Type Tow Tank Length(m) 97.5 Beam(m) 4.9 Depth(m) 2.0 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 18.3 Length of Effective Tow(m) 30.5 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Maximum Wave Height(m) at Wave Period(s) 4.0 Maximum Wave Length(m) 15.2 Wave Period Range(s) 4.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Menu driven selection of standard spectra or user specified Wave Direction Uni-Directional Simulated Beach Yes

322

Ice Towing Tank | Open Energy Information  

Open Energy Info (EERE)

Ice Towing Tank Ice Towing Tank Jump to: navigation, search Basic Specifications Facility Name Ice Towing Tank Overseeing Organization University of Iowa Hydrodynamic Testing Facility Type Tow Tank Length(m) 21.2 Beam(m) 5.0 Depth(m) 1.3 Cost(per day) Contact POC Special Physical Features Specialized for cold regions research, room temperature can be decreased to -10°F Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 0.5 Length of Effective Tow(m) 15.0 Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Cameras Yes Description of Camera Types Underwater Available Sensors Acoustics, Thermal, Turbulence, Velocity Data Generation Capability

323

Underground Storage Tank Management (District of Columbia)  

Energy.gov (U.S. Department of Energy (DOE))

The installation, upgrade and operation of any petroleum UST (>110 gallons) or hazardous substance UST System, including heating oil tanks over 1,100 gallons capacity in the District requires a...

324

Analyses and characterization of double shell tank  

Science Conference Proceedings (OSTI)

Evaporator candidate feed from tank 241-AP-108 (108-AP) was sampled under prescribed protocol. Physical, inorganic, and radiochemical analyses were performed on tank 108-AP. Characterization of evaporator feed tank waste is needed primarily for an evaluation of its suitability to be safely processed through the evaporator. Such analyses should provide sufficient information regarding the waste composition to confidently determine whether constituent concentrations are within not only safe operating limits, but should also be relevant to functional limits for operation of the evaporator. Characterization of tank constituent concentrations should provide data which enable a prediction of where the types and amounts of environmentally hazardous waste are likely to occur in the evaporator product streams.

Not Available

1994-10-04T23:59:59.000Z

325

Cryogenic Fuel Tank Draining Analysis Model  

E-Print Network (OSTI)

One of the technological challenges in designing advanced hypersonic aircraft and the next generation of spacecraft is developing reusable flight-weight cryogenic fuel tanks. As an aid in the design and analysis of these cryogenic tanks, a computational fluid dynamics (CFD) model has been developed specifically for the analysis of flow in a cryogenic fuel tank. This model employs the full set of Navier-Stokes equations, except that viscous dissipation is neglected in the energy equation. An explicit finite difference technique in two-dimensional generalized coordinates, approximated to second-order accuracy in both space and time is used. The stiffness resulting from the low Mach number is resolved by using artificial compressibility. The model simulates the transient, two-dimensional draining of a fuel tank cross section. To calculate the slosh wave dynamics the interface between the ullage gas and liquid fuel is modeled as a free surface. Then, experimental data for free convection i...

Donald Greer Research; Donald Greer

1999-01-01T23:59:59.000Z

326

Alden Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Tow Tank Tow Tank Jump to: navigation, search Basic Specifications Facility Name Alden Tow Tank Overseeing Organization Alden Research Laboratory, Inc Hydrodynamic Testing Facility Type Tow Tank Length(m) 30.5 Beam(m) 1.2 Depth(m) 1.2 Water Type Freshwater Cost(per day) Depends on study Towing Capabilities Towing Capabilities Yes Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities Yes Wind Velocity Range(m/s) Designed as needed for study objectives Other Characteristics Point measurement capability Control and Data Acquisition Description Differential pressure transducers, acoustic profiling, propeller meters, load cells, computer data acquisition systems. Number of channels Designed as needed

327

Capacity Investigation of Brine-Bearing Sands of the Frio Formation for Geologic Sequestration of CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Investigation of Brine-Bearing Sands of the Frio Capacity Investigation of Brine-Bearing Sands of the Frio Formation for Geologic Sequestration of CO 2 Christine Doughty (cadoughty@lbl.gov; 510-486-6453) Karsten Pruess (k_pruess@lbl.gov; 510-486-6732) Sally M. Benson (smbenson@lbl.gov; 510-486-5875) Lawrence Berkeley National Laboratory 1 Cyclotron Rd, MS 90-1116 Berkeley, CA 94720 Susan D. Hovorka (susan.hovorka@beg.utexas.edu; 512-471-4863) Paul R. Knox (paul.knox@beg.utexas.edu; 512-471-7313) Bureau of Economic Geology P.O. Box X, The University of Texas Austin, TX 78713 Christopher T. Green (ctgreen@ucdavis.edu; 530-752-1372) University of California, Hydrologic Sciences 1 Shields Ave. Davis, CA 95616 Abstract The capacity of fluvial brine-bearing formations to sequester CO 2 is investigated using numerical simulations of CO

328

Study and testing of direct contact heat exchangers for geothermal brines. Final report, June 1975--July 1976  

DOE Green Energy (OSTI)

The object of the work reported herein was to assess the technical and economic feasibility of preheating and evaporating a secondary fluid via direct contact with hot geothermal brine. The work covered a period of 12 months and included the design, construction, and testing of a unit which heats and vaporizes 10 gpm of isobutane by direct contact with 325/sup 0/F brine. The analytical and experimental efforts explored design and economic characteristics, including anticipated problem areas such as working fluid loss in the brine, production of a stable dispersion of the working fluid in brine, fluids separation, axial mixing and carry-over of water vapor with the working fluid. Isobutane was selected as the working fluid for tests primarily because of the favorable amount of net work produced per pound of geothermal brine and the low amount and cost of working fluid lost in the heat exchange process. The Elgin Spray Tower concept was selected for the preheater and boiler. The test apparatus includes a separate boiler and a separate preheater, each 6'' diameter by 6' high. Brine enters the top of each vessel and leaves the bottom. Isobutane enters the bottom of the preheater through a distributor plate to produce 0.15 inch diameter drops. The experimental unit operated with no major problems and demonstrated its hydraulic and thermal capabilities. Volumetric heat transfer coefficients obtained ranged up to 4000 BTU/hr /sup 0/F ft/sup 3/. Boiling heat transfer coefficients of as high as 17,000 BTU/hr /sup 0/F ft/sup 3/ were obtained with a design value of 10,000 BTU/hr /sup 0/F ft/sup 3/. Amount of isobutane in a 21 percent NaCl solution leaving the preheater was less than 40 ppM. A conceptual design and cost estimate was prepared for a direct contact heat exchange system sized for a 50 MW power plant.

Suratt, W.B.; Hart, G.K.

1977-01-01T23:59:59.000Z

329

RECENT PROGRESS IN DOE WASTE TANK CLOSURE  

SciTech Connect

The USDOE complex currently has over 330 underground storage tanks that have been used to process and store radioactive waste generated from the production of weapons materials. These tanks contain over 380 million liters of high-level and low-level radioactive waste. The waste consists of radioactively contaminated sludge, supernate, salt cake or calcine. Most of the waste exists at four USDOE locations, the Hanford Site, the Savannah River Site, the Idaho Nuclear Technology and Engineering Center and the West Valley Demonstration Project. A summary of the DOE tank closure activities was first issued in 2001. Since then, regulatory changes have taken place that affect some of the sites and considerable progress has been made in closing tanks. This paper presents an overview of the current regulatory changes and drivers and a summary of the progress in tank closures at the various sites over the intervening six years. A number of areas are addressed including closure strategies, characterization of bulk waste and residual heel material, waste removal technologies for bulk waste, heel residuals and annuli, tank fill materials, closure system modeling and performance assessment programs, lessons learned, and external reviews.

Langton, C

2008-02-01T23:59:59.000Z

330

Analysis of ICPP tank farm infiltration  

SciTech Connect

This report addresses water seeping into underground vaults which contain high-level liquid waste (HLLW) storage tanks at the Idaho Chemical Processing Plant (ICPP). Each of the vaults contains from one to three sumps. The original purpose of the sumps was to serve as a backup leak detection system for release of HLLW from the storage tanks. However, water seeps into most of the vaults, filling the sumps, and defeating their purpose as a leak detection system. Leak detection for the HLLW storage tanks is based on measuring the level of liquid inside the tank. The source of water leaking into the vaults was raised as a concern by the State of Idaho INEL Oversight Group because this source could also be leaching contaminants released to soil in the vicinity of the tank farm and transporting contaminants to the aquifer. This report evaluates information concerning patterns of seepage into vault sumps, the chemistry of water in sumps, and water balances for the tank farm to determine the sources of water seeping into the vaults.

Richards, B.T.

1993-10-01T23:59:59.000Z

331

Underground storage tank management plan  

Science Conference Proceedings (OSTI)

The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

NONE

1994-09-01T23:59:59.000Z

332

Brine migration test report: Asse Salt Mine, Federal Republic of Germany: Technical report  

Science Conference Proceedings (OSTI)

This report presents a summary of Brine Migration Tests which were undertaken at the Asse mine of the Federal Republic of Germany (FRG) under a bilateral US/FRG agreement. This experiment simulates a nuclear waste repository at the 800-m (2624-ft) level of the Asse salt mine in the Federal Republic of Germany. This report describes the Asse salt mine, the test equipment, and the pretest properties of the salt in the mine and in the vicinity of the test area. Also included are selected test data (for the first 28 months of operation) on the following: brine migration rates, thermomechaical behavior of the salt (including room closure, stress reading, and thermal profiles), borehole gas pressures, and borehole gas analyses. In addition to field data, laboratory analyses of pretest salt properties are included in this report. The operational phase of these experiments was completed on October 4, 1985, with the commencement of cooldown and the start of posttest activities. 7 refs., 68 figs., 48 tabs.

Coyle, A.J.; Eckert, J.; Kalia, H.

1987-01-01T23:59:59.000Z

333

Fluid sampling and chemical modeling of geopressured brines containing methane. Final report, March 1980-February 1981  

DOE Green Energy (OSTI)

The development of a flowthrough sampler capable of obtaining fluid samples from geopressured wells at temperatures up to 400/sup 0/F and pressures up to 20,000 psi is described. The sampler has been designed, fabricated from MP35N alloy, laboratory tested, and used to obtain fluid samples from a geothermal well at The Geysers, California. However, it has not yet been used in a geopressured well. The design features, test results, and operation of this device are described. Alternative sampler designs are also discussed. Another activity was to review the chemistry and geochemistry of geopressured brines and reservoirs, and to evaluate the utility of available computer codes for modeling the chemistry of geopressured brines. The thermodynamic data bases for such codes are usually the limiting factor in their application to geopressured systems, but it was concluded that existing codes can be updated with reasonable effort and can usefully explain and predict the chemical characteristics of geopressured systems, given suitable input data.

Dudak, B.; Galbraith, R.; Hansen, L.; Sverjensky, D.; Weres, O.

1982-07-01T23:59:59.000Z

334

Demonstration of a rotary separator for two-phase brine and steam flows. Final report  

DOE Green Energy (OSTI)

The application of a two-phase rotary separator for geothermal energy conversion was demonstrated. Laboratory tests were conducted with clean water and steam at Biphase Energy Systems, Inc., Santa Monica, California. Field tests were conducted at the Union Oil Co., Tow No. 1 wellsite near Brawley, California. The system tested consisted of the major components of a total flow rotary separator/turbine conversion system. A nozzle converted the brine wellhead enthalpy to two-phase flow kinetic by impinging the nozzle flow tangentially on the inside of the separator. The flow was therefore subjected to the high centrifugal force field in the separator. This caused the liquid phase to collect as a film on the separator drum with very little energy loss. The steam was allowed to flow radially inward to the central steam discharge. Potable water was obtained by condensing the steam exhaust. The brine collection system converted the liquid film kinetic energy to static pressure head. The system was operated for 116 hours in a high salinity environment (115,000 ppM TDS). The system operated properly with no adverse effects from solids precipitation or scale buildup. The rotary separator produced separate flows of pure liquid and steam of greater than 99.5% quality.

Cerini, D.J.

1978-01-01T23:59:59.000Z

335

High-pressure solvent extraction of methane from geopressured brines: technical evaluation and cost analysis  

DOE Green Energy (OSTI)

Solvent extraction is proposed as a means of recovering dissolved methane from geopressured-geothermal brines at high pressures. The assessment shows that additional investment in a high pressure solvent extraction plant preceding direct injection disposal of brines into isolated aquifers can be profitable. The technical and economic issues are discussed, and compared with other injection methods such as complete depressurization for methane recovery followed by conventional mechanical pumping. The contributions of hydraulic (pressure) energy recovery and geothermal power production are also assessed. For deep injection into the producing formation, it is concluded that methane extraction processes are not applicable, insofar as maintenance of high surface pressures provides no clear-cut energy benefits. As a first step in the evaluation of solvent extraction, the solubility of a promising solvent candidate, n-hexadecane, was measured in 15 wt % NaCl solutions at temperatures up to 150/sup 0/C. The solubility of a potential low cost solvent, No. 2 Diesel fuel, was also measured.

Quong, R.; Otsuki, H.H.; Locke, F.E.

1981-07-01T23:59:59.000Z

336

Report on design, construction, and testing of CO/sub 2/ breakout system for geothermal brines  

DOE Green Energy (OSTI)

A skid mounted test facility has been built for determining conditions at which CO/sub 2/ flashes from geothermal brines. The system has been checked and operated at one geothermal plant. It performed as designed. The equipment is designed to operate at temperatures and pressures typical of wells near Heber, California. (Nominally 180/sup 0/C and 300 to 500 psig). It has heat exchangers which can cool the brine to less than 70/sup 0/C. (The cooling water is recirculated after being cooled by a forced air heat exchanger). Breakout pressures can be determined for any temperature between 70/sup 0/C and wellhead temperature. An adjustable orifice provides final control on pressure required to initiate flashing. The orifice is at the bottom of a sight glass. A light beam shines through the sight glass and focuses on a photoelectric cell. The presence of bubbles scatters light and decreases the output of the cell. Results using the cell were more reproducible than those using the naked eye. Results from one test show a smooth curve over the temperature range 75/sup 0/C to 165/sup 0/C. Agreement between the experimental values and calculated ones is discussed.

Robertus, R.J.; Shannon, D.W.; Sullivan, R.G.

1984-03-01T23:59:59.000Z

337

Subsurface Ice and Brine Sampling Using an Ultrasonic/Sonic Gopher for Life Detection and Characterization  

E-Print Network (OSTI)

There is growing evidence for ice and fluids near the surface of Mars with potential discharge of brines, which may preserve a record of past life on the planet. Proven techniques to sample Mars subsurface will be critical for future NASA astrobiology missions that will search for such records. The required technology studies are underway in the McMurdo Dry valleys, Antarctica, which is serving as a Mars analog. The ice layer on Lake Vida in the dry valleys is estimated to be 20-meter thick where below 16-m depth there is a mix of ice and brine, which has never been sampled directly due to logistical constraints. A novel light weight, low power ultrasonic/sonic driller/corer (USDC) mechanism was developed that overcomes the need for high axial loads required by drilling via conventional techniques. The USDC was modified to produce an Ultrasonic/Sonic Gopher that is being developed to core down to the 20-m depth for in situ analysis and sample collection. Coring ice at-20 o C as in Lake Vida suggests that it is a greater challenge and current efforts are focused on the problems of ice core cutting, ice chip handling and potential ice melt (and refreezing) during drilling. An analytical model and a prototype are being developed with an effort to

Y. Bar-cohen; S. Sherrit; Z. Chang; L. Wessel; X. Bao; P. T. Doran; C. H. Fritsen; F. Kenig; C. P. Mckay; A. Murray; T. Peterson

2004-01-01T23:59:59.000Z

338

Project Trinidad: explosive excavation of railroad cuts 2 and 3 by mounding and directed blasting. Final technical report  

SciTech Connect

The objectives, design, and results of two explosive excavation experiments performed as the final phase of Project Trinidad, a comprehensive series of tests to determine the cratering properties of interbedded sandstones and shales, are summarized. The experiments were performed in September 1971 by the U.S. Army Engineer Waterways Experiment Station Explosive Excavation Research Laboratory. These final experiments were designed to excavate through- cuts for relocation of the Colorado and Wyoming Railroad at the Trinidad Dam and Lake Project. The first of the two experiments tested a charge array designed to break up material within a 19,000-yd/sup 3/ cut to facilitate later removal of the material by mechanical means. The concept tested was mounding, a blasting technique in which charges are positioned with respect to the horizontal ground surface rather than a vertical bench face. The results from this experiment confirmed the applicability of empirical scaling methods to the design of an array of deeply buried charges. The second experiment was a directed blasting detonation that was designed to produce a 30.000-yd/sup 3/ throughcut by cratering. This experiment tested a charge array design that had been developed by a combination of empirical scaling and kinematical methods. (auth)

Lattery, J.E.

1973-01-01T23:59:59.000Z

339

ANALYSIS OF SAMPLES FROM TANK 6F CHEMICAL CLEANING  

SciTech Connect

Savannah River Remediation (SRR) is preparing Tank 6F for closure. The first step in preparing the tank for closure is mechanical sludge removal. In mechanical sludge removal, personnel add liquid (e.g., inhibited water or supernate salt solution) to the tank to form a slurry. They mix the liquid and sludge with pumps, and transfer the slurry to another tank for further processing. Mechanical sludge removal effectively removes the bulk of the sludge from a tank, but is not able to remove all of the sludge. In Tank 6F, SRR estimated a sludge heel of 5,984 gallons remained after mechanical sludge removal. To remove this sludge heel, SRR performed chemical cleaning. The chemical cleaning included two oxalic acid strikes, a spray wash, and a water wash. SRR conducted the first oxalic acid strike as follows. Personnel added 110,830 gallons of 8 wt % oxalic acid to Tank 6F and mixed the contents of Tank 6F with two submersible mixer pumps (SMPs) for approximately four days. Following the mixing, they transferred 115,903 gallons of Tank 6F material to Tank 7F. The SMPs were operating when the transfer started and were shut down approximately five hours after the transfer started. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Mapping of the tank following the transfer indicated that 2,400 gallons of solids remained in the tank. SRR conducted the second oxalic acid strike as follows. Personnel added 28,881 gallons of 8 wt % oxalic acid to Tank 6F. Following the acid addition, they visually inspected the tank and transferred 32,247 gallons of Tank 6F material to Tank 7F. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Mapping of the tank following the transfer indicated that 3,248 gallons of solids remained in the tank. Following the oxalic acid strikes, SRR performed Spray Washing with oxalic acid to remove waste collected on internal structures, cooling coils, tank top internals, and tank walls. The Acid Spray Wash was followed by a Water Spray Wash to remove oxalic acid from the tank internals. SRR conducted the Spray Wash as follows. Personnel added 4,802 gallons of 8 wt % oxalic acid to Tank 6F through the spray mast installed in Riser 2, added 4,875 gallons of oxalic acid through Riser 7, added 5,000 gallons of deionized water into the tank via Riser 2, and 5,000 gallons of deionized water into the tank via Riser 7. Following the Spray Wash, they visually inspected the tank and transferred 22,430 gallons of Tank 6F material to Tank 7F. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Following the Spray Wash and transfer, Savannah River Site (SRS) added 113,935 gallons of well water to Tank 6F. They mixed the tank contents with a single SMP and transferred 112,699 gallons from Tank 6F to Tank 7F. SRR collected a sample of the liquid from Tank 6F and submitted to SRNL for analysis. Mapping of the tank following the transfer indicated that 3,488 gallons of solids remained in the tank. Following the Water Wash, SRR personnel collected a solid sample and submitted it to SRNL for analysis to assess the effectiveness of the chemical cleaning and to provide a preliminary indication of the composition of the material remaining in the tank.

Poirier, M.; Fink, S.

2010-02-02T23:59:59.000Z

340

Tank characterization report for single-shell Tank 241-T-105  

SciTech Connect

Single-Shell Tank 241-T-105, an underground storage tank containing radioactive waste, was most recently sampled in March and May of 1993. Sampling and characterization of the waste in Tank 241-T-105 contribute toward the fulfillment of Milestone M-44-05 of the Hanford Federal Facility Agreement and Consent Order. Tank 241-T-105, located in the 200 West Area T Tank Farm, was constructed in 1944 and went into service in July of 1946 by receiving second cycle decontamination waste from the T Plant. During the service life of the tank, other wastes were added including T Plant first cycle waste, PUREX Plant coating waste, laboratory waste, decontamination waste from T Plant, B Plant low level waste, and B Plant ion exchange waste. The tank currently contains 98,000 gal of non-complexed waste, existing primarily as sludge. Approximately 23,000 gal of drainable interstitial liquid remain. The waste is heterogeneous. Tank 241-T-105 is classified as a non-Watch List tank, with no Unreviewed Safety Questions associated with it at this time. The tank was Interim Stabilized in 1987 and Intrusion Prevention was completed in 1988. The waste in Tank 241-T-105 is comprised of precipitated salts, some of which contain traces of radioactive isotopes. The most prevalent analytes include aluminum, iron, silicon, manganese, sodium, uranium, nitrate, nitrite, and sulfate. The water digested sample results demonstrated that cadmium, chromium, lead, mercury, selenium, and silver concentrations were greater than their Toxicity Characteristic regulatory thresholds. The major radionuclide constituents are {sup 90}Sr and {sup 137}Cs. The waste is 74.1% solids by weight.

DiCenso, A.T.; Amato, L.C.; Franklin, J.D.; Nuttall, G.L.; Johnson, K.W. [Los Alamos Technical Associates, Kennewick, WA (United States); Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States)

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "mound brine tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico brine pool via in situ mass spectrometry  

E-Print Network (OSTI)

New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico Keywords: Methane flux Mass spectrometer Brine pool Methane oxidation Gulf of Mexico a b s t r a c t Deep report direct measurements of methane concentrations made in a Gulf of Mexico brine pool located

Girguis, Peter R.

342

ICPP tank farm closure study. Volume 2: Engineering design files  

SciTech Connect

Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-grouted polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.

NONE

1998-02-01T23:59:59.000Z

343

Tank 241-BY-110 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank BY-110 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-110 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-110 using the vapor sampling system (VSS) on November 11, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 27 C. Air from the Tank BY-110 headspace was withdrawn via a 7.9 m-long heated sampling probe mounted in riser 12B, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, and Pacific Northwest Laboratories. The 40 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks that accompanied the samples.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

344

Tank 241-BY-106 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank BY-106 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-106 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-106 using the vapor sampling system (VSS) on July 8, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 27 C. Air from the Tank BY-106 headspace was withdrawn via a heated sampling probe mounted in riser 10B, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 65 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 46 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 10 trip blanks provided by the laboratories.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

345

Tank 241-BY-105 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank BY-105 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-105 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-105 using the vapor sampling system (VSS) on July 7, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 26 C. Air from the Tank BY-105 headspace was withdrawn via a heated sampling probe mounted in riser 10A, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 65 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 46 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 10 trip blanks provided by the laboratories.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

346

Tank 241-BY-108 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank BY-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-108 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-108 using the vapor sampling system (VSS) on october 27, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 25.7 C. Air from the Tank BY-108 headspace was withdrawn via a 7.9 m-long heated sampling probe mounted in riser 1, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, and Pacific Northwest Laboratories. The 40 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks that accompanied the samples.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

347

Tank characterization report for single-shell tank 241-S-104  

SciTech Connect

In July and August 1992, Single-Shell Tank 241-S-104 was sampled as part of the overall characterization effort directed by the Hanford Federal Facility Agreement and Consent Order. Sampling was also performed to determine proper handling of the waste, to address corrosivity and compatibility issues, and to comply with requirements of the Washington Administrative Code. This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics. It also presents expected concentration and bulk inventory data for the waste contents based on this latest sampling data and background historical and surveillance tank information. Finally, this report makes recommendations and conclusions regarding operational safety. The purpose of this report is to describe the characteristics the waste in Single-Shell Tank 241-S-104 (hereafter, Tank 241-S-104) based on information obtained from a variety of sources. This report summarizes the available information regarding the chemical and physical properties of the waste in Tank 241-S-104, and using the historical information to place the analytical data in context, arranges this information in a format useful for making management and technical decisions concerning waste tank safety and disposal issues. In addition, conclusions and recommendations are presented based on safety issues and further characterization needs.

DiCenso, A.T.; Simpson, B.C.

1994-09-29T23:59:59.000Z

348

Stress evaluation of the primary tank of a double-shell underground storage tank facility  

SciTech Connect

A facility called the Multi-Function Waste Tank Facility (MWTF) is being designed at the Department of Energy`s Hanford site. The MWTF is expected to be completed in 1998 and will consist of six underground double-shell waste storage tanks and associated systems. These tanks will provide safe and environmentally acceptable storage capacity to handle waste generated during single-shell and double-shell tank safety mitigation and remediation activities. This paper summarizes the analysis and qualification of the primary tank structure of the MWTF, as performed by ICF Kaiser Hanford during the latter phase of Title 1 (Preliminary) design. Both computer finite element analysis (FEA) and hand calculations methods based on the so-called Tank Seismic Experts Panel (TSEP) Guidelines were used to perform the analysis and evaluation. Based on the evaluations summarized in this paper, it is concluded that the primary tank structure of the MWTF satisfies the project design requirements. In addition, the hand calculations performed using the methodologies provided in the TSEP Guidelines demonstrate that, except for slosh height, the capacities exceed the demand. The design accounts for the adverse effect of the excessive slosh height demand, i.e., inadequate freeboard, by increasing the hydrodynamic wall and roof pressures appropriately, and designing the tank for such increased pressures.

Atalay, M.B. [ICF Kaiser Engineers, Inc., Oakland, CA (United States); Stine, M.D. [ICF Kaiser Hanford Co., Richland, WA (United States); Farnworth, S.K. [Westinghouse Hanford Co., Richland, WA (United States)

1994-12-01T23:59:59.000Z

349

Discovery of the First Leaking Double-Shell Tank - Hanford Tank 241-AY-102-14222  

SciTech Connect

A routine video inspection of the annulus space between the primary tank and secondary liner of double-shell tank 241-AY-102 was performed in August 2012. During the inspection, unexpected material was discovered. A subsequent video inspection revealed additional unexpected material on the opposite side of the tank, none of which had been observed during inspections performed in December 2006 and January 2007. A formal leak assessment team was established to review the tank's construction and operating histories, and preparations for sampling and analysis began to determine the material's origin. A new sampling device was required to collect material from locations that were inaccessible to the available sampler. Following its design and fabrication, a mock-up test was performed for the new sampling tool to ensure its functionality and capability of performing the required tasks. Within three months of the discovery of the unexpected material, sampling tools were deployed, material was collected, and analyses were performed. Results indicated that some of the unknown material was indicative of soil, whereas the remainder was consistent with tank waste. This, along with the analyses performed by the leak assessment team on the tank's construction history, lead to the conclusion that the primary tank was leaking into the annulus. Several issues were encountered during the deployment of the samplers into the annulus. As this was the first time samples had been required from the annulus of a double-shell tank, a formal lessons learned was created concerning designing equipment for unique purposes under time constraints.

Harrington, Stephanie J.; Sams, Terry L.

2013-11-06T23:59:59.000Z

350

LABORATORY REPORT ON THE REMOVAL OF PERTECHNETATE FROM TANK 241-AN-105 SIMULANT USING PUROLITE A530E  

SciTech Connect

This effort falls under the technetium management initiative and will provide data for those who will make decisions regarding the handling and disposition of technetium. To that end, the objective of this effort is to challenge Purolite{reg_sign} A530E against a double-shell tank simulant from tank 241-AN-105 spiked with pertechnetate (TcO{sub 4}{sup -}). The Purolite{reg_sign} A530E is commercially available and is currently being used at the 200 West Pump and Treat Groundwater Treatment Plant to remove pertechnetate. It has been demonstrated that Purolite{reg_sign} A530E is highly effective in removing TcO{sub 4}{sup -} from a water matrix. Purolite{reg_sign} A530E is the commercial product of the Oak Ridge National Laboratory's Biquat{trademark} resin. Further work has demonstrated that technetium-loaded A530E achieves a leachability index in Cast Stone of 12.5 (RPP-RPT-39195, Assessment of Technetium Leachability in Cement-Stabilized Basin 43 Groundwater Brine).

DUNCAN JB; HAGERTY KJ; MOORE WP; JOHNSON JM

2012-06-29T23:59:59.000Z

351

Results for the DWPF Slurry Mix Evaporator Condensate Tank, Off Gas Condensate Tank, And Recycle Collection Tank Samples  

Science Conference Proceedings (OSTI)

The Defense Waste Processing Facility, DWPF, currently generates approximately 1.4 million gallons of recycle water per year during Sludge-Only operations. DWPF has minimized condensate generation to 1.4 million gallons by not operating the Steam Atomized Scrubbers, SASs, for the melter off gas system. By not operating the SASs, DWPF has reduced the total volume by approximately 800,000 gallons of condensate per year. Currently, the recycle stream is sent to back to the Tank Farm and processed through the 2H Evaporator system. To alleviate the load on the 2H Evaporator system, an acid evaporator design is being considered as an alternate processing and/or concentration method for the DWPF recycle stream. In order to support this alternate processing option, the DWPF has requested that the chemical and radionuclide compositions of the Off Gas Condensate Tank, OGCT, Slurry Mix Evaporator Condensate Tank, SMECT, Recycle Collection Tank, RCT, and the Decontamination Waste Treatment Tank, DWTT, be determined as a part of the process development work for the acid evaporator design. Samples have been retrieved from the OGCT, RCT, and SMECT and have been sent to the Savannah River National Laboratory, SRNL for this characterization. The DWTT samples have been recently shipped to SRNL. The results for the DWTT samples will be issued at later date.

TERRI, FELLINGER

2004-12-21T23:59:59.000Z

352

TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS  

SciTech Connect

The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks were evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion (<1200 mg/l). (4) Experimental tests with sludge batch 6 simulant and field turbidity data from a recent Tank 21 mixing evolution suggest the solid particles have higher density and/or larger size than indicated by previous analysis of SRS sludge and sludge simulants. (5) Tank 21 waste characterization, laboratory settling tests, and additional field turbidity measurements during mixing evolutions are recommended to better understand potential risk for extended (> 60 days) settling times in Tank 21.

Lee, S.; Leishear, R.; Poirier, M.

2012-05-31T23:59:59.000Z

353

Microsoft Word - Tank Waste Report 9-30-05.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerated Tank Waste Retrieval Accelerated Tank Waste Retrieval Activities at the Hanford Site DOE/IG-0706 October 2005 REPORT ON THE ACCELERATED TANK WASTE RETRIEVAL ACTIVITIES AT THE HANFORD SITE TABLE OF CONTENTS Tank Waste Retrieval Details of Finding 1 Recommendations and Comments 4 Appendices Objective, Scope, and Methodology 6 Prior Reports 7 Management Comments 8 Tank Waste Retrieval Page 1 Details of Finding Tank Waste The Department will not meet Tri-Party Agreement (Agreement) Retrieval Activities milestones for the retrieval of waste from the single-shell tanks located at the C-Tank Farm within schedule and cost. Based on the current C-Tank Farm retrieval schedule and the amount of waste retrieved to date, the Department will not accomplish its

354

Independent Activity Report, Hanford Tank Farms - April 2013 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Farms - April 2013 Tank Farms - April 2013 Independent Activity Report, Hanford Tank Farms - April 2013 April 2013 Operational Awareness at the Hanford Tank Farms [HIAR-HANFORD-2013-04-15] The Office of Health, Safety and Security (HSS) Office of Safety and Emergency Management Evaluations (HS-45) Site Lead conducted an operational awareness visit to the Office of River Protection (ORP) to tour the Hanford Tank Farms, observe video inspection of single shell and double shell tanks, and observe Tank Farm project and staff meetings. Independent Activity Report, Hanford Tank Farms - April 2013 More Documents & Publications Independent Oversight Activity Report, Office of River Protection - May 2013 Independent Oversight Activity Report, Hanford Tank Farms - June 2013 Independent Activity Report, Office of River Protection Waste Treatment

355

Savings Project: Insulate Your Water Heater Tank | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savings Project: Insulate Your Water Heater Tank Savings Project: Insulate Your Water Heater Tank Savings Project: Insulate Your Water Heater Tank Addthis Project Level medium Energy Savings $20-$45 annually Time to Complete 1.5 hours Overall Cost $30 Insulate your hot water tank to save energy and money. | Photo courtesy of iStockphoto.com/glennebo Insulate your hot water tank to save energy and money. | Photo courtesy of iStockphoto.com/glennebo Just like insulating your walls or roof, insulating your hot water tank is an easy and inexpensive way to improve energy efficiency and save you money each month. If your water tank is new, it is likely already insulated. If you have an older hot water tank, check to see if it has insulation with an R-value of at least 24. If not, consider insulating your water tank, which

356

Independent Oversight Review, Hanford Tank Farms - November 2011 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Review, Hanford Tank Farms - November 2011 Review, Hanford Tank Farms - November 2011 Independent Oversight Review, Hanford Tank Farms - November 2011 November 2011 Review of Hanford Tank Farms Safety Basis Amendment for Double-Shell Tank Ventilation System Upgrades The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted an independent oversight review of the draft amendment to the Hanford Tank Farms safety basis for upgrading the double-shell tank (DST) primary tank ventilation (PTV) systems to safety-significant designation. The Tank Farms are Hazard Category 2 DOE nuclear facilities. The review was performed during the period July 25 - August 12, 2011 by the HSS Office of Enforcement and Oversight's Office of Safety and Emergency Management

357

System for removing liquid waste from a tank  

DOE Patents (OSTI)

A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid therethrough. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank.

Meneely, Timothy K. (Penn Hills, PA); Sherbine, Catherine A. (N. Versailles Township, Allegheny County, PA)

1994-01-01T23:59:59.000Z

358

System for removing liquid waste from a tank  

DOE Patents (OSTI)

A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid there through. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank. 2 figures.

Meneely, T.K.; Sherbine, C.A.

1994-04-26T23:59:59.000Z

359

Tank characterization report for single-shell tank 241-C-109  

SciTech Connect

One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-109. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241 C-109 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices.

Simpson, B.C.

1997-05-23T23:59:59.000Z

360

Tank characterization report for Double-Shell Tank 241-AP-103  

SciTech Connect

This document provides the characterization information and interprets the data for Double-Shell Tank AP-103. The results of the analyses have been compared to the dangerous waste codes in the Washington Dangerous Waste Regulations (WAC 173-303). This assessment was conducted by comparing tank analyses against dangerous waste characteristics (D waste codes) and against state waste codes. It did not include checking tank analyses against U, P, F, or K waste codes since application of these codes is dependent on the source of the waste and not on particular constituent concentrations. The results indicate that the waste in this tank is adequately described in the Dangerous Waste Permit Application for the Double-Shell Tank System.

DeLorenzo, D.S.; DiCenso, A.T.; Amato, L.C.; Franklin, J.D.; Lambie, R.W. [Los Alamos Technical Associates, Inc., Kennewick, WA (United States); Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States)

1994-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "mound brine tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Computer modeling of ORNL storage tank sludge mobilization and mixing  

SciTech Connect

This report presents and analyzes the results of the computer modeling of mixing and mobilization of sludge in horizontal, cylindrical storage tanks using submerged liquid jets. The computer modeling uses the TEMPEST computational fluid dynamics computer program. The horizontal, cylindrical storage tank configuration is similar to the Melton Valley Storage Tanks (MVST) at Oak Ridge National (ORNL). The MVST tank contents exhibit non-homogeneous, non-Newtonian rheology characteristics. The eventual goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents of the tanks.

Terrones, G.; Eyler, L.L.

1993-09-01T23:59:59.000Z

362

Vapor sampling of the headspace of radioactive waste storage tanks  

DOE Green Energy (OSTI)

This paper recants the history of vapor sampling in the headspaces of radioactive waste storage tanks at Hanford. The first two tanks to receive extensive vapor pressure sampling were Tanks 241-SY-101 and 241-C-103. At various times, a gas chromatography, on-line mass spectrometer, solid state hydrogen monitor, FTIR, and radio acoustic ammonia monitor have been installed. The head space gas sampling activities will continue for the next few years. The current goal is to sample the headspace for all the tanks. Some tank headspaces will be sampled several times to see the data vary with time. Other tanks will have continuous monitors installed to provide additional data.

Reynolds, D.A., Westinghouse Hanford

1996-05-22T23:59:59.000Z

363

Ferrocyanide tank waste stability. Supplement 2  

Science Conference Proceedings (OSTI)

Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove {sup 137}CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes.

Fowler, K.D.

1993-01-01T23:59:59.000Z

364

Rethinking the Hanford Tank Waste Program  

Science Conference Proceedings (OSTI)

The program to treat and dispose of the highly radioactive wastes stored in underground tanks at the U.S. Department of Energy's Hanford site has been studied. A strategy/management approach to achieve an acceptable (technically sound) end state for these wastes has been developed in this study. This approach is based on assessment of the actual risks and costs to the public, workers, and the environment associated with the wastes and storage tanks. Close attention should be given to the technical merits of available waste treatment and stabilization methodologies, and application of realistic risk reduction goals and methodologies to establish appropriate tank farm cleanup milestones. Increased research and development to reduce the mass of non-radioactive materials in the tanks requiring sophisticated treatment is highly desirable. The actual cleanup activities and milestones, while maintaining acceptable safety standards, could be more focused on a risk-to-benefit cost effectiveness, as agreed to by the involved stakeholders and in accordance with existing regulatory requirements. If existing safety standards can be maintained at significant cost savings under alternative plans but with a change in the Tri-Party Agreement (a regulatory requirement), those plans should be carried out. The proposed strategy would also take advantage of the lessons learned from the activities and efforts in the first phase of the two-phased cleanup of the Hanford waste tank farms.

Parker, F. L.; Clark, D. E.; Morcos, N.

2002-02-26T23:59:59.000Z

365

Modeling of an adiabatic packed bed brine-air contactor for use in a solar energy driven food processing system  

Science Conference Proceedings (OSTI)

A mathematical model was developed for a packed bed brine-air contacting system which has applications in a solar energy driven food processing system. The model considers mass transfer resistances of both phases, but neglects the heat transfer resistance of the liquid phase. It takes into account the large heat effects associated with water absorption into and desorption from the brine. A computational method was also developed to calculate the minimum air flow rate which would prevent a pinch. A packed bed brine-air contactor was built, and experiments were conducted for a range of brine and air conditions. Good agreement between the computed and experimental results warrants use of the model to design and optimize the packed bed water stripping process. A periodic-flow packed bed heat regenerator was built to recover heat from the exit air of the contactor so as to improve the energy efficiency of the system. It was possible to preheat the inlet air to a temperature close to that of the exit air. The inlet air, however, during its passage through the regenerator picked up the condensate deposited from the exit air. This led to a decrease in the driving potential to mass transfer in the contactor. Optimization studies show that using a combined solar driven boiler and air assisted packed bed water stripper would be more economical than using a solar driven boiler alone or using flat plate solar collectors to drive the water stripper.

Biswal, R.N.

1983-01-01T23:59:59.000Z

366

Energy optimization in ice hockey halls I. The system COP as a multivariable function, brine and design choices  

E-Print Network (OSTI)

This work is the first of a series of articles addressing the energy optimization in ice hockey halls. Here we outline an analytic method to predict in which design and operating conditions the COP of the entire cooling system (refrigerator and cooling tower) ${\\rm COP}_{sys}$ is maximum. ${\\rm COP}_{sys}$ is investigated as a function of several variables, like electric consumption and brine physical properties. With this method, the best configuration and brine choices for the system can therefore be determined in advance. We estimate the optimal design of an average-sized ice rink, including pipe diameter, depth and brine type (ethylene glycol and ammonia). We also single out an optimal brine density and show the impact of the electric consumption of the pump on ${\\rm COP}_{sys}$. Our theoretical predictions are validated with heat flow measurement data obtained at an ice hockey hall in Finland. They are also confronted with technical and cost-related constraints, and implemented by simulations with the pr...

Ferrantelli, Andrea; Rikknen, Miska; Viljanen, Martti

2012-01-01T23:59:59.000Z

367

THE ROLE OF LAND USE IN ENVIRONMENTAL DECISION MAKING AT THREE DOE MEGA-CLEANUP SITES FERNALD & ROCKY FLATS & MOUND  

SciTech Connect

This paper explores the role that future land use decisions have played in the establishment of cost-effective cleanup objectives and the setting of environmental media cleanup levels for the three major U.S. Department of Energy (DOE) sites for which cleanup has now been successfully completed: the Rocky Flats, Mound, and Fernald Closure Sites. At each site, there are distinct consensus-building histories throughout the following four phases: (1) the facility shut-down and site investigation phase, which took place at the completion of their Cold War nuclear-material production missions; (2) the decision-making phase, whereby stakeholder and regulatory-agency consensus was achieved for the future land-use-based environmental decisions confronting the sites; (3) the remedy selection phase, whereby appropriate remedial actions were identified to achieve the future land-use-based decisions; and (4) the implementation phase, whereby the selected remedial actions for these high-profile sites were implemented and successfully closed out. At each of the three projects, there were strained relationships and distrust between the local community and the DOE as a result of site contamination and potential health effects to the workers and local residents. To engage citizens and interested stakeholder groups - particularly in the role of final land use in the decision-making process, the site management teams at each respective site developed new public-participation strategies to open stakeholder communication channels with site leadership, technical staff, and the regulatory agencies. This action proved invaluable to the success of the projects and reaching consensus on appropriate levels of cleanup. With the implementation of the cleanup remedies now complete, each of the three DOE sites have become models for future environmental-remediation projects and associated decision making.

JEWETT MA

2011-01-14T23:59:59.000Z

368

A Methodology for Measuring the Rate of Reaction of CO2 with Brine-Rock Mixtures  

NLE Websites -- All DOE Office Websites (Extended Search)

Methodology for Measuring the Rate of Reaction of CO Methodology for Measuring the Rate of Reaction of CO 2 with Brine-Rock Mixtures Nicholas B. Janda (nbj2@po.cwru.edu; 216-368-2648) Philip W. Morrison, Jr. (pwm5@po.cwru.edu; 216-368-4238) Department of Chemical Engineering Case Western Reserve University 10900 Euclid Avenue Cleveland, OH 44106-7217 Beverly Z. Saylor (bzs@po.cwru.edu; 216-368-3763) Gerald Matisoff (gxm4@po.cwru.edu; 216-368-3677) Department of Geological Sciences Case Western Reserve University 10900 Euclid Avenue Cleveland, OH 44106-7216 Introduction Storage of carbon dioxide in deep, porous, and permeable reservoir rocks is one of the most promising technologies for reducing emissions of greenhouse gases to the atmosphere. Although oil and gas reservoirs are a sensible first step for sequestration of carbon dioxide in geologic

369

Reducing Foreign Lithium Dependence through Co-Production of Lithium from Geothermal Brine  

NLE Websites -- All DOE Office Websites (Extended Search)

Foreign Lithium Dependence through Co-Production of Lithium from Foreign Lithium Dependence through Co-Production of Lithium from Geothermal Brine Kerry Klein 1 , Linda Gaines 2 1 New West Technologies LLC, Washington, DC, USA 2 Center for Transportation Research, Argonne National Laboratory, Argonne, IL, USA KEYWORDS Mineral extraction, zinc, silica, strategic metals, Imperial Valley, lithium ion batteries, electric- drive vehicles, battery recycling ABSTRACT Following a 2009 investment of $32.9 billion in renewable energy and energy efficiency research through the American Recovery and Reinvestment Act, President Obama in his January 2011 State of the Union address promised deployment of one million electric vehicles by 2015 and 80% clean energy by 2035. The United States seems poised to usher in its bright energy future,

370

Analysis of hydrocarbon removal methods for the management of oilfield brines and produced waters  

E-Print Network (OSTI)

According to the Texas Railroad Commission (TRC), ????over 250 billion gallons of produced water is taken out of Texas Soil every year, and more than 35% of this water is not currently fit to use.?? Therefore, it can be assumed that domestically and globally, the petroleum industries challenge has been to develop a high-tech and cost effective method to purify the large volumes of oilfield brines and produced water. Currently, most of the produced water requires several pre- and post- treatment methods to aide in reducing fouling of membranes, separation of components, increasing influent and effluent quality, and preventing unwanted work stoppage during the desalination process. As a result, the pre- and post- treatment conditioning of the produced water affects the economics and scale-up (i.e. residence times, absorption capacity, etc??) of the varying processes parameters. Therefore, this research focuses on developing an economic analysis and determining the adsorption capacity of an organoclay system to remove oil.

Furrow, Brendan Eugene

2005-08-01T23:59:59.000Z

371

Tank Waste System Integrated Project Team  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decisional Draft Decisional Draft 1 This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary to protect human health, the environment and national security are maintained. Tank Waste System Tank Waste System Integrated Project Team Integrated Project Team Steve Schneider Office of Engineering and Technology Tank Waste Corporate Board July 29, 2009 2 This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary

372

Hanford Single-Shell Tank Integrity Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operations Contract Hanford Single Hanford Single- -Shell Shell Hanford Single Hanford Single Shell Shell Tank Integrity Tank Integrity Program Program Herbert S Berman Herbert S Berman Herbert S. Berman Herbert S. Berman July 29, 2009 July 29, 2009 1 Page 1 Tank Operations Contract Introduction * The Hanford site's principle historic mission was plutonium production for the manufacture of nuclear weapons. * Between 1944 and 1988, the site operated nine graphite- moderated light-water production reactors to irradiate moderated, light-water, production reactors to irradiate fuel and produce plutonium. * Four large chemical separations plants were run to extract plutonium from the fuel, and a variety of laboratories, support facilities, and related infrastructure to support production

373

Tank Stabilization September 30, 1999 Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Court Easter District of Washington United States Court Easter District of Washington Consent Decree (as amended on September 19, 2000.) State Washington Agreement Type Consent Decree Legal Driver(s) RCRA Scope Summary Renegotiate a schedule to pump liquid radioactive hazardous waste from single-shell tanks to double-shell tanks Parties DOE; State of Washington, Department of Ecology Date 09/30/1999; Amended 09/19/2000 SCOPE * Address DOE's obligations to the State of Washington, Department of Ecology concerning missed and remaining milestones under the Hanford Federal Facility Agreement (HFFACO) and Consent Order of May 15, 1989. * Establish a judicially enforceable schedule for pumping radioactive hazardous waste from single-shell to double-shell tanks. ESTABLISHING MILESTONES

374

MIT Tow Tank | Open Energy Information  

Open Energy Info (EERE)

MIT Tow Tank MIT Tow Tank Overseeing Organization Massachusetts Institute of Technology Hydrodynamics Hydrodynamic Testing Facility Type Tow Tank Length(m) 36.6 Beam(m) 2.4 Depth(m) 1.2 Water Type Saltwater Cost(per day) $750 Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 1.5 Length of Effective Tow(m) 27.4 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.1 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 4.6 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Arbitrary spectrum Wave Direction Uni-Directional Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition

375

Double Shell Tank (DST) Utilities Specification  

SciTech Connect

This specification establishes the performance requirements and provides the references to the requisite codes and standards to he applied during the design of the Double-Shell Tank (DST) Utilities Subsystems that support the first phase of waste feed delivery (WFD). The DST Utilities Subsystems provide electrical power, raw/potable water, and service/instrument air to the equipment and structures used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. The DST Utilities Subsystems also support the equipment and structures used to deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Privatization Contractor facility where the waste will be immobilized. This specification is intended to be the basis for new projects/installations. This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program.

SUSIENE, W.T.

2000-04-27T23:59:59.000Z

376

Technology development activities supporting tank waste remediation  

Science Conference Proceedings (OSTI)

This document summarizes work being conducted under the U.S. Department of Energy`s Office of Technology Development (EM-50) in support of the Tank Waste Remediation System (TWRS) Program. The specific work activities are organized by the following categories: safety, characterization, retrieval, barriers, pretreatment, low-level waste, and high-level waste. In most cases, the activities presented here were identified as supporting tank remediation by EM-50 integrated program or integrated demonstration lead staff and the selections were further refined by contractor staff. Data sheets were prepared from DOE-HQ guidance to the field issued in September 1993. Activities were included if a significant portion of the work described provides technology potentially needed by TWRS; consequently, not all parts of each description necessarily support tank remediation.

Bonner, W.F.; Beeman, G.H.

1994-06-01T23:59:59.000Z

377

Corrosivity of geothermal brines. Progress report for period ending September 1977. Final report  

DOE Green Energy (OSTI)

Results of studies carried out principally during FY 1976 and FY 1977 on the corrosion of ferrous materials in synthetic geothermal brines are summarized. A survey of prior work on electrochemical aspects of the corrosion of iron and carbon steel in chloride solutions is presented, and some of the results of these investigations are summarized. The principal results of the present studies are then recapitulated. Included are measurements of the corrosion potential, corrosion rate, and polarization behavior of iron and carbon steel in deaerated 4 M NaCl over the pH range from 1 to 11 at temperatures up to 100/sup 0/C in a conventional Pyrex electrochemical cell. The effect of pH on hydrolysis, precipitation, and electrochemical reactivity of ferrous and ferric ions in 4 M NaCl at 25/sup 0/C is presented, and implications for plant operation are discussed. Details of a refreshed, stirred titanium autoclave system are described; the system permits electrochemical measurements to be made up to at least 200/sup 0/in corrosive aqueous saline media. The effect of pH (from pH equals 7 to pH equals 2) and temperature (from 25/sup 0/ to 200/sup 0/C) on the corrosion rate of type A212B carbon steel in deaerated 4 M NaCl is described. A relatively simple numerical correlation describes the data over the entire temperature and pH range. The spontaneous corrosion potentials and pitting potentials of types 304 and 316 stainless steel were measured in deaerated 4 M NaCl at pH equals 5 from 25/sup 0/ to 200/sup 0/C, and the data demonstrate the borderline stability of austenitic stainless steel for brine service. Finally, conclusions and recommendations for further studies are presented.

Posey, F.A.; Palko, A.A.; Bacarella, A.L.

1978-03-01T23:59:59.000Z

378

Evaluation of materials for systems using cooled, treated geothermal or high-saline brines  

DOE Green Energy (OSTI)

Lack of adequate quantities of clean surface water for use in wet (evaporative) cooling systems indicates the use of high-salinity waste waters, or cooled geothermal brines, for makeup purposes. High-chloride, aerated water represents an extremely corrosive environment. In order to determine metals suitable for use in such an environment, metal coupons were exposed to aerated, treated geothermal brine salted to a chloride concentration of 10,000 and 50,000 ppM (mg/L) for periods of up to 30 days. The exposed coupons were evaluated to determine the general, pitting, and crevice corrosion characteristics of the metals. The metals exhibiting corrosion resistance at 50,000 ppM chloride were then evaluated at 100,000 and 200,000 ppM chloride. Since these were screening tests to select materials for components to be used in a cooling system, with primary emphasis on condenser tubing, several materials were exposed for 4 to 10 months in pilot cooling tower test units with heat transfer for further corrosion evaluation. The results of the screening tests indicate that ferritic stainless steels (29-4-2 and SEA-CURE) exhibit excellent corrosion resistance at all levels of chloride concentration. Copper-nickel alloys (70/30 and Monel 400) exhibited excellent corrosion resistance in the high-saline water. The 70/30 copper-nickel alloy, which showed excellent resistance to general corrosion, exhibited mild pitting in the 30-day tests. This pitting was not apparent, however, after 6 months of exposure in the pilot cooling tower tests. The nickel-base alloys exhibited excellent corrosion resistance, but their high cost prevents their use unless no other material is found feasible. Other materials tested, although unsuitable for condenser tubing material, would be suitable as tube sheet material.

Suciu, D.F.; Wikoff, P.M.

1982-09-01T23:59:59.000Z

379

Vadose zone characterization project at the Hanford Tank Farms: BY Tank Farm report  

SciTech Connect

The US Department of Energy Grand Junction Office (GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the contamination distributed in the vadoze zone sediment beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information about the vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the BY Tank Farm.

Kos, S.E.

1997-02-01T23:59:59.000Z

380

Assessment of Tank 241-S-112 Liquid Waste Mixing in Tank 241-SY-101  

SciTech Connect

The objectives of this study were to evaluate mixing of liquid waste from Tank 241-S-112 with waste in Tank 241-SY-101 and to determine the properties of the resulting waste for the cross-site transfer to avoid potential double-shell tank corrosion and pipeline plugging. We applied the time-varying, three-dimensional computer code TEMPEST to Tank SY-101 as it received the S-112 liquid waste. The model predicts that temperature variations in Tank SY-101 generate a natural convection flow that is very slow, varying from about 7 x 10{sup -5} to 1 x 10{sup -3} ft/sec (0.3 to about 4 ft/hr) in most areas. Thus, natural convection would eventually mix the liquid waste in SY-101 but would be very slow to achieve nearly complete mixing. These simulations indicate that the mixing of S-112 and SY-101 wastes in Tank SY-101 is a very slow process, and the density difference between the two wastes would further limit mixing. It is expected to take days or weeks to achieve relatively complete mixing in Tank SY-101.

Onishi, Yasuo; Trent, Donald S.; Wells, Beric E.; Mahoney, Lenna A.

2003-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "mound brine tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Tank characterization report for single-shell tank 241-SX-106  

SciTech Connect

A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report. This report and its appendices serve as the tank characterization report for single-shell tank 241-SX-106. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-SX-106 waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03 to ''issue characterization deliverables consistent with the Waste Information Requirements Documents developed for 1998.''

FIELD, J.G.

1999-02-24T23:59:59.000Z

382

Tank characterization report for single-shell tank 241-U-103  

Science Conference Proceedings (OSTI)

A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report. This report and its appendices serve as the tank characterization report for single-shell tank 241-U-103. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-U-103 waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03 to ''issue characterization deliverables consistent with Waste Information Requirements Documents developed for 1998.''

SASAKI, L.M.

1999-02-24T23:59:59.000Z

383

High-Pressure Tube Trailers and Tanks  

NLE Websites -- All DOE Office Websites (Extended Search)

Berry Berry Salvador M. Aceves Lawrence Livermore National Laboratory (925) 422-0864 saceves@LLNL.GOV DOE Delivery Tech Team Presentation Chicago, Illinois February 8, 2005 Inexpensive delivery of compressed hydrogen with ambient temperature or cryogenic compatible vessels * Pressure vessel research at LLNL Conformable (continuous fiber and replicants) Cryo-compressed * Overview of delivery options * The thermodynamics of compressed and cryo-compressed hydrogen storage * Proposed analysis activities * Conclusions Outline We are investigating two techniques for reduced bending stress: continuous fiber vessels and vessels made of replicants Conformable tanks require internal stiffeners (ribs) to efficiently support the pressure and minimize bending stresses Spherical and cylindrical tanks

384

Alternative Inspection Methods for Single Shell Tanks  

Science Conference Proceedings (OSTI)

This document was prepared to provide evaluations and recommendations regarding nondestructive evaluation methods that might be used to determine cracks and bowing in the ceiling of waste storage tanks on the Hanford site. The goal was to determine cracks as small as 1/16 in. wide in the ceiling, and bowing as small as 0.25 in. This report describes digital video camera methods that can be used to detect a crack in the ceiling of the dome, and methods for determining the surface topography of the ceiling in the waste storage tanks to detect localized movements in the surface. A literature search, combined with laboratory testing, comprised this study.

Peters, Timothy J.; Alzheimer, James M.; Hurley, David E.

2010-01-19T23:59:59.000Z

385

Independent Oversight Activity Report, Hanford Tank Farms - June 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Activity Report, Hanford Tank Farms - June Oversight Activity Report, Hanford Tank Farms - June 2013 Independent Oversight Activity Report, Hanford Tank Farms - June 2013 June 2013 Office of River Protection Assessment of Contractor Quality Assurance, Operational Awareness at the Hanford Tank Farms [HIAR NNSS-2012-12-03] The Office of Health, Safety and Security (HSS), Office of Safety and Emergency Management Evaluations (Independent Oversight) Site Lead conducted an operational awareness visit to the ORP Hanford Tank Farms, observed a Tank Farms morning meeting, toured the C Tank Farm, and observed a heavy (34,000 pound) lift. Independent Oversight Activity Report, Hanford Tank Farms - June 2013 More Documents & Publications Independent Activity Report, Office of River Protection Waste Treatment

386

Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Publications » Technology Bulletins Publications » Technology Bulletins Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory to someone by E-mail Share Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Facebook Tweet about Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Twitter Bookmark Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Google Bookmark Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Delicious Rank Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Digg Find More places to share Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on AddThis.com... Propane Tank Overfill Safety Advisory

387

High-Level Liquid Waste Tank Integrity Workshop - 2008  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liquid Waste Tank Integrity Liquid Waste Tank Integrity Workshop - 2008 Karthik Subramanian Bruce Wiersma November 2008 High Level Waste Corporate Board Meeting karthik.subramanian@srnl.doe.gov bruce.wiersma@srnl.doe.gov 2 Acknowledgements * Bruce Wiersma (SRNL) * Kayle Boomer (Hanford) * Michael T. Terry (Facilitator) * SRS - Liquid Waste Organization * Hanford Tank Farms * DOE-EM 3 Background * High level radioactive waste (HLW) tanks provide critical interim confinement for waste prior to processing and permanent disposal * Maintaining structural integrity (SI) of the tanks is a critical component of operations 4 Tank Integrity Workshop - 2008 * Discuss the HLW tank integrity technology needs based upon the evolving waste processing and tank closure requirements along with its continued storage mission

388

EIS-0391: Hanford Tank Closure and Waste Management, Richland...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

single-shell tanks (SSTs) and 28 double-shell tanks and closure of the SST system, (2) decommissioning of the Fast Flux Test Facility, a nuclear test reactor, and (3) disposal...

389

TANK FARM INTERIM SURFACE BARRIER MATERIALS AND RUNOFF ALTERNATIVES STUDY  

SciTech Connect

This report identifies candidate materials and concepts for interim surface barriers in the single-shell tank farms. An analysis of these materials for application to the TY tank farm is also provided.

HOLM MJ

2009-06-25T23:59:59.000Z

390

Savings Project: Insulate Your Water Heater Tank | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Your Water Heater Tank Addthis Project Level medium Energy Savings 20-45 annually Time to Complete 1.5 hours Overall Cost 30 Insulate your hot water tank to save energy and...

391

Authorization basis status report (miscellaneous TWRS facilities, tanks and components)  

SciTech Connect

This report presents the results of a systematic evaluation conducted to identify miscellaneous TWRS facilities, tanks and components with potential needed authorization basis upgrades. It provides the Authorization Basis upgrade plan for those miscellaneous TWRS facilities, tanks and components identified.

Stickney, R.G.

1998-04-29T23:59:59.000Z

392

Tank SY-101 void fraction instrument functional design criteria  

DOE Green Energy (OSTI)

This document presents the functional design criteria for design, analysis, fabrication, testing, and installation of a void fraction instrument for Tank SY-101. This instrument will measure the void fraction in the waste in Tank SY-101 at various elevations.

McWethy, L.M.

1994-10-18T23:59:59.000Z

393

STATUS OF CHEMICAL CLEANING OF WASTE TANKS AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT - 9114  

SciTech Connect

Chemical Cleaning is currently in progress for Tanks 5 and 6 at the Savannah River Site. The Chemical Cleaning process is being utilized to remove the residual waste heel remaining after completion of Mechanical Sludge Removal. This work is required to prepare the tanks for closure. Tanks 5 and 6 are 1950s vintage carbon steel waste tanks that do not meet current containment standards. These tanks are 22.9 meters (75 feet) in diameter, 7.5 meters (24.5 feet) in height, and have a capacity of 2.84E+6 liters (750,000 gallons). Chemical Cleaning adds 8 wt % oxalic acid to the carbon steel tank to dissolve the remaining sludge heel. The resulting acidic waste solution is transferred to Tank 7 where it is pH adjusted to minimize corrosion of the carbon steel tank. The Chemical Cleaning flowsheet includes multiple strikes of acid in each tank. Acid is delivered by tanker truck and is added to the tanks through a hose assembly connected to a pipe penetration through the tank top. The flowsheet also includes spray washing with acid and water. This paper includes an overview of the configuration required for Chemical Cleaning, the planned flowsheet, and an overview of technical concerns associated with the process. In addition, the current status of the Chemical Cleaning process in Tanks 5 and 6, lessons learned from the execution of the process, and the path forward for completion of cleaning in Tanks 5 and 6 will also be discussed.

Thaxton, D; Geoff Clendenen, G; Willie Gordon, W; Samuel Fink, S; Michael Poirier, M

2008-12-31T23:59:59.000Z

394

LESSONS LEARNED FROM PREVIOUS WASTE STORAGE TANK VAPOR CONTROL ATTEMPTS ON SINGLE SHELL TANK (SST) & DOUBLE SHELL TANK (DST) FARMS  

Science Conference Proceedings (OSTI)

This report forms the basis for a feasibility study and conceptual design to control vapor emissions from waste storage tanks at the Hanford Site. The Carbtrol, Vapor Mixing, and High Efficiency Gas Absorber (HEGA) vapor controls were evaluated to determine the lessons learned from previous failed vapor control attempts. This document illustrates the resulting findings based on that evaluation.

BAKER, D.M.

2004-08-03T23:59:59.000Z

395

Sloshing response of a reactor tank with internals  

Science Conference Proceedings (OSTI)

The sloshing response of a large reactor tank with in-tank components is presented. The study indicates that the presence of the internal components can significantly change the dynamic characteristics of the sloshing motion. The sloshing frequency of a tank with internals is considerably higher than that of a tank without internal. The higher sloshing frequency reduces the sloshing wave height on the free-surface but increases the dynamic pressure in the fluid.

Ma, D.C.; Gvildys, J.; Chang, Y.W.

1984-01-01T23:59:59.000Z

396

Functional Analysis for Double Shell Tank (DST) Subsystems  

Science Conference Proceedings (OSTI)

This functional analysis identifies the hierarchy and describes the subsystem functions that support the Double-Shell Tank (DST) System described in HNF-SD-WM-TRD-007, System Specification for the Double-Shell Tank System. Because of the uncertainty associated with the need for upgrades of the existing catch tanks supporting the Waste Feed Delivery (WFD) mission, catch tank functions are not addressed in this document. The functions identified herein are applicable to the Phase 1 WFD mission only.

SMITH, D.F.

2000-08-22T23:59:59.000Z

397

Operational test report for WESF diesel generator diesel tank installation  

Science Conference Proceedings (OSTI)

The WESF Backup Generator Underground Diesel Tank 101 has been replaced with a new above ground 1000 gallon diesel tank. Following the tank installation, inspections and tests specified in the Operational Test Procedure, WHC-SD-WM-OTP-155, were performed. Inspections performed by a Quality Control person indicated the installation was leak free and the diesel generator/engine ran as desired. There were no test and inspection exceptions, therefore, the diesel tank installation is operable.

Schwehr, B.A.

1994-08-02T23:59:59.000Z

398

5th Symposium on Railroad Tank Cars - Programmaster.org  

Science Conference Proceedings (OSTI)

... processing strategies, correlation of material properties with puncture performance, safety and security of tank cars, non destructive testing, maintenance and...

399

Tank Waste Corporate Board Meeting 07/24/08  

Energy.gov (U.S. Department of Energy (DOE))

The following documents are associated with the Tank Waste Corporate Board Meeting held on July 24th, 2008.

400

System Specification for the Double Shell Tank (DST) System  

Science Conference Proceedings (OSTI)

This document establishes the functional, performance, design, development, interface and test requirements for the Double-Shell Tank System.

GRENARD, C.E.

2000-04-21T23:59:59.000Z

Note: This page contains sample records for the topic "mound brine tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

GEOCHEMICAL TESTING AND MODEL DEVELOPMENT - RESIDUAL TANK WASTE TEST PLAN  

SciTech Connect

This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

CANTRELL KJ; CONNELLY MP

2010-03-09T23:59:59.000Z

402

Environmental Assessment for the Operation of the Glass Melter Thermal Treatment Unit at the US Department of Energy`s Mound Plant, Miamisburg, Ohio  

SciTech Connect

The glass melter would thermally treat mixed waste (hazardous waste contaminated with radioactive constituents largely tritium, Pu-238, and/or Th-230) that was generated at the Mound Plant and is now in storage, by stabilizing the waste in glass blocks. Depending on the radiation level of the waste, the glass melter may operate for 1 to 6 years. Two onsite alternatives and seven offsite alternatives were considered. This environmental assessment indicates that the proposed action does not constitute a major Federal action significantly affecting the human environment according to NEPA, and therefore the finding of no significant impact is made, obviating the need for an environmental impact statement.

NONE

1995-06-01T23:59:59.000Z

403

Mixer pump test plan for double shell tank AZ-101  

Science Conference Proceedings (OSTI)

Mixer pump systems have been chosen as the method for retrieval of tank wastes contained in double shell tanks at Hanford. This document describes the plan for testing and demonstrating the ability of two 300 hp mixer pumps to mobilize waste in tank AZ-101. The mixer pumps, equipment and instrumentation to monitor the test were installed by Project W-151.

STAEHR, T.W.

1999-05-12T23:59:59.000Z

404

Justification for Continued Operation for Tank 241-Z-361  

Science Conference Proceedings (OSTI)

This justification for continued operations (JCO) summarizes analyses performed to better understand and control the potential hazards associated with Tank 241-2-361. This revision to the JCO has been prepared to identify and control the hazards associated with sampling the tank using techniques developed and approved for use in the Tank Waste Remediation System (TWRS) at Hanford.

BOGEN, D.M.

1999-09-01T23:59:59.000Z

405

Tank characterization report for single-shell tank 241-BX-111  

Science Conference Proceedings (OSTI)

This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste, stored in Tank 241-BX-111. This report supports the requirements of the Tri-Party Agreement Milestone M-44-ISB.

Anantatmula, R.P.

1998-05-05T23:59:59.000Z

406

Tank characterization report for single-shell tank 241-BY-107  

Science Conference Proceedings (OSTI)

One major function of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-BY-107. The objectives of this report are (1) to use characterization data in response to technical issues associated with 241-BY-107 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 provides the best-basis inventory estimate, and Section 4.0 makes recommendations about the safety status and additional sampling needs. The appendices contain supporting data and information.

Mccain, D.J.

1997-04-09T23:59:59.000Z

407

Data Observations on Double Shell Tank (DST) Flammable Gas Watch List Tank Behavior  

DOE Green Energy (OSTI)

This report provides the data from the retained gas sampler, void fraction instrument, ball rheometer, standard hydrogen monitoring system, and other tank data pertinent to gas retention and release behavior in the waste stored in double-shelled Flammable Gas Watch List tanks at Hanford. These include tanks 241-AN-103,241-AN-104, 241-AN-105, 241-AW-101, 241-SY-101, and 241-SY-103. The tanks and the waste they contain are described in terms of fill history and chemistry. The results of mixer pump operation and recent waste transfers and back-dilution in SY-101 are also described. In-situ measurement and monitoring systems are described and the data are summarized under the categories of thermal behavior, waste configuration and properties, gas generation and composition, gas retention and historical gas release behavior.

HEDENGREN, D.C.

2000-09-28T23:59:59.000Z

408

Potential for criticality in Hanford tanks resulting from retrieval of tank waste  

SciTech Connect

This report assesses the potential during retrieval operations for segregation and concentration of fissile material to result in a criticality. The sluicing retrieval of C-106 sludge to AY-102 and the operation of mixer pumps in SY-102 are examined in some detail. These two tanks (C-106, SY-102) were selected because of the near term plans for retrieval of these tanks and their high plutonium inventories relative to other tanks. Although all underground storage tanks are subcritical by a wide margin if assumed to be uniform in composition, the possibility retrieval operations could preferentially segregate the plutonium and locally concentrate it sufficiently to result in criticality was a concern. This report examines the potential for this segregation to occur.

Whyatt, G.A.; Sterne, R.J.; Mattigod, S.V. [and others

1996-09-01T23:59:59.000Z

409

Chase Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Chase Tow Tank Chase Tow Tank Jump to: navigation, search Basic Specifications Facility Name Chase Tow Tank Overseeing Organization University of New Hampshire Hydrodynamics Hydrodynamic Testing Facility Type Tow Tank Length(m) 36.6 Beam(m) 3.7 Depth(m) 2.4 Cost(per day) Contact POC Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 2.5 Length of Effective Tow(m) 20.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.4 Maximum Wave Height(m) at Wave Period(s) 3.1 Wave Period Range(s) 3.1 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wave Direction Uni-Directional Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description National Instruments LabView-based data acquistion software/components. Optical measurement system for observing kinematics of a model under test in the wave mode.

410

Annual Radioactive Waste Tank Inspection Program - 2000  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2000 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report.

West, W.R.

2001-04-17T23:59:59.000Z

411

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2008  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2008 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report.

West, B.; Waltz, R.

2009-06-11T23:59:59.000Z

412

Explosion proof vehicle for tank inspection  

Science Conference Proceedings (OSTI)

An Explosion Proof Vehicle (EPV) having an interior substantially filled with an inert fluid creating an interior pressure greater than the exterior pressure. One or more flexible tubes provide the inert fluid and one or more electrical conductors from a control system to the vehicle. The vehicle is preferably used in subsurface tank inspection, whereby the vehicle is submerged in a volatile fluid.

Zollinger, William T. (Idaho Falls, ID); Klingler, Kerry M. (Idaho Falls, ID); Bauer, Scott G. (Idaho Falls, ID)

2012-02-28T23:59:59.000Z

413

HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS  

Science Conference Proceedings (OSTI)

This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive I-bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads, based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the I-bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive I-bolt failure leading to global buckling of the tank under increased vacuum) could occur.

MACKEY TC; JOHNSON KI; DEIBLER JE; PILLI SP; RINKER MW; KARRI NK

2007-02-14T23:59:59.000Z

414

Decision and systems analysis for underground storage tank waste retrieval systems and tank waste remediation system  

SciTech Connect

Hanford`s underground tanks (USTs) pose one of the most challenging hazardous and radioactive waste problems for the Department of Energy (DOE). Numerous schemes have been proposed for removing the waste from the USTs, but the technology options for doing this are largely unproven. To help assess the options, an Independent Review Group (IRG) was established to conduct a broad review of retrieval systems and the tank waste remediation system. The IRG consisted of the authors of this report.

Bitz, D.A. [Independent Consultant, Kirkland, WA (United States); Berry, D.L. [Sandia National Labs., Albuquerque, NM (United States); Jardine, L.J. [Lawrence Livermore National Lab., CA (United States)

1994-03-01T23:59:59.000Z

415

Tank characterization report for single-shell tank 241-BX-110  

SciTech Connect

A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-BX-110. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-BX-110 waste, and (2) to provide a standard characterization of the waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, and Section 4.0 makes recommendations about the tank's safety status and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03 to ''issue characterization deliverables consistent with the Waste Information Requirements Document developed for 1998.''

RASMUSSEN, J.H.

1999-02-23T23:59:59.000Z

416

Supporting document for the North East Quandrant Historical Tank Content Estimate Report for BX-Tank Farm  

Science Conference Proceedings (OSTI)

This supporting document provides historical in-depth characterization information gathered on BX-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature data, sampling data, and drywell and liquid observation well data for Historical Tank Content Estimate Report of the NE Quandrant and the Hanford 200 East Areas.

Brevick, C.H.

1994-06-01T23:59:59.000Z

417

WRPS MEETING THE CHALLENGE OF TANK WASTE  

SciTech Connect

Washington River Protection Solutions (WRPS) is the Hanford tank operations contractor, charged with managing one of the most challenging environmental cleanup projects in the nation. The U.S. Department of Energy hired WRPS to manage 56 million gallons of high-level radioactive waste stored in 177 underground tanks. The waste is the legacy of 45 years of plutonium production for the U. S. nuclear arsenal. WRPS mission is three-fold: safely manage the waste until it can be processed and immobilized; develop the tools and techniques to retrieve the waste from the tanks, and build the infrastructure needed to deliver the waste to the Waste Treatment Plant (WTP) when it begins operating. WTP will 'vitrify' the waste by mixing it with silica and other materials and heating it in an electric melter. Vitrification turns the waste into a sturdy glass that will isolate the radioactivity from the environment. It will take more than 20 years to process all the tank waste. The tank waste is a complex highly radioactive mixture of liquid, sludge and solids. The radioactivity, chemical composition of the waste and the limited access to the underground storage tanks makes retrieval a challenge. Waste is being retrieved from aging single-shell tanks and transferred to newer, safer double-shell tanks. WRPS is using a new technology known as enhanced-reach sluicing to remove waste. A high-pressure stream of liquid is sprayed at 100 gallons per minute through a telescoping arm onto a hard waste layer several inches thick covering the waste. The waste is broken up, moved to a central pump suction and removed from the tank. The innovative Mobile Arm Retrieval System (MARS) is also being used to retrieve waste. MARS is a remotely operated, telescoping arm installed on a mast in the center of the tank. It uses multiple technologies to scrape, scour and rake the waste toward a pump for removal. The American Reinvestment and Recovery Act (ARRA) provided nearly $326 million over two-and-a-half years to modernize the infrastructure in Hanford's tank farms. WRPS issued 850 subcontracts totaling more than $152 million with nearly 76 percent of that total awarded to small businesses. WRPS used the funding to upgrade tank farm infrastructure, develop technologies to retrieve and consolidate tank waste and extend the life of two critical operating facilities needed to feed waste to the WTP. The 222-S Laboratory analyzes waste to support waste retrievals and transfers. The laboratory was upgraded to support future WTP operations with a new computer system, new analytical equipment, a new office building and a new climate-controlled warehouse. The 242-A Evaporator was upgraded with a control-room simulator for operator training and several upgrades to aging equipment. The facility is used to remove liquid from the tank waste, creating additional storage space, necessary for continued waste retrievals and WTP operation. The One System Integrated Project Team is ajoint effort ofWRPS and Bechtel National to identify and resolve common issues associated with commissioning, feeding and operating the Waste Treatment Plant. Two new facilities are being designed to support WTP hot commlsslomng. The Interim Hanford Storage project is planned to store canisters of immobilized high-level radioactive waste glass produced by the vitrification plant. The facility will use open racks to store the 15-foot long, two-foot diameter canisters of waste, which require remote handling. The Secondary Liquid Waste Treatment Project is a major upgrade to the existing Effluent Treatment Facility at Hanford so it can treat about 10 million gallons of liquid radioactive and hazardous effluent a year from the vitrification plant. The One System approach brings the staff of both companies together to identify and resolve WTP safety issues. A questioning attitude is encouraged and an open forum is maintained for employees to raise issues. WRPS is completing its mission safely with record-setting safety performance. Since WRPS took over the Hanford Tank Operations Contract in October 2

BRITTON JC

2012-02-21T23:59:59.000Z

418

Criticality Safety Evaluation of Hanford Tank Farms Facility  

SciTech Connect

Data and calculations from previous criticality safety evaluations and analyses were used to evaluate criticality safety for the entire Tank Farms facility to support the continued waste storage mission. This criticality safety evaluation concludes that a criticality accident at the Tank Farms facility is an incredible event due to the existing form (chemistry) and distribution (neutron absorbers) of tank waste. Limits and controls for receipt of waste from other facilities and maintenance of tank waste condition are set forth to maintain the margin subcriticality in tank waste.

WEISS, E.V.

2000-12-15T23:59:59.000Z

419

Underground Storage Tank Regulations for the Certification of Persons Who  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Regulations for the Certification of Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells

420

Radioactive waste isolation in salt: geochemistry of brine in rock salt in temperature gradients and gamma-radiation fields - a selective annotated bibliography  

SciTech Connect

Evaluation of the extensive research concerning brine geochemistry and transport is critically important to successful exploitation of a salt formation for isolating high-level radioactive waste. This annotated bibliography has been compiled from documents considered to provide classic background material on the interactions between brine and rock salt, as well as the most important results from more recent research. Each summary elucidates the information or data most pertinent to situations encountered in siting, constructing, and operating a mined repository in salt for high-level radioactive waste. The research topics covered include the basic geology, depositional environment, mineralogy, and structure of evaporite and domal salts, as well as fluid inclusions, brine chemistry, thermal and gamma-radiation effects, radionuclide migration, and thermodynamic properties of salts and brines. 4 figs., 6 tabs.

Hull, A.B.; Williams, L.B.

1985-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "mound brine tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Status of tank 241-SY-101 data analyses  

DOE Green Energy (OSTI)

The Waste Tank Flammable Gas Stabilization Program was established in 1990 to provide for resolution of a major safety issue identified for 23 of the high-level waste tanks at the Hanford Site. The safety issue involves the production, accumulation, and periodic release from these tanks of flammable gases in concentrations exceeding the lower flammability limits. This document deals primarily with tank 241-SY-101 from the SY Tank Farm. The flammable gas condition has existed for this tank since the tank was first filled in the time period from 1977 to 1980. During a general review of waste tank chemical stability in 1988--1989, this situation was re-examined and, in March 1990, the condition was declared to be an unreviewed safety question. Tank 241-SY-101 was placed under special operating restrictions, and a program of investigation was begun to evaluate the condition and determine appropriate courses of action. This report summarizes the data that have become available on tank 241-SY-101 since it was declared as an unreviewed safety question and updates the information reported in an earlier document (WHC-EP-0517). The report provides a technical basis for use in the evaluation of safety risks of the tank and subsequent resolution of the unreviewed safety question.

Anantatmula, R.P.

1992-09-01T23:59:59.000Z

422

Experimental and Computational Studies of Fluid Flow Phenomena in Carbon Dioxide Sequestration in Brine and Oil Fields  

NLE Websites -- All DOE Office Websites (Extended Search)

EXPERIMENTAL AND COMPUTATIONAL STUDIES OF FLUID EXPERIMENTAL AND COMPUTATIONAL STUDIES OF FLUID FLOW PHENOMENA IN CARBON DIOXIDE SEQUESTRATION IN BRINE AND OIL FIELDS Chuang Ji ( chuang.ji@netl.doe.gov ) National Energy Technology Laboratory Department of Energy, Morgantown, WV 26507-0880 BOX 5725 Clarkson University Potsdam, NY 13699 Goodarz Ahmadi ( ahmadi@clarkson.edu ) BOX 5725 Clarkson University Potsdam, NY 13699 Duane H. Smith ( duane.smith@netl.doe.gov ) National Energy Technology Laboratory Department of Energy, Morgantown, WV 26507-0880 2 INTRODUCTION Sequestration of CO 2 by injection into deep geological formations is a method to reduce CO 2 emissions into the atmosphere. However, when CO 2 is injected underground, it forms fingers extending into the rock pores saturated with brine or petroleum. This flow

423

Evaluation of Brine-Bearing Sands of the Frio Formation, Upper Texas Gulf Coast for Geological Sequestration of CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Brine-Bearing Sands of the Evaluation of Brine-Bearing Sands of the Frio Formation, Upper Texas Gulf Coast for Geological Sequestration of CO 2 S. D. Hovorka (susan.hovorka@beg.utexas.edu; 512-471-4863) Bureau of Economic Geology, P.O. Box X, The University of Texas at Austin, Austin, TX 78713 C. Doughty (CADoughty@lbl.gov; 510-486-6453 ) Lawrence Berkeley National Lab, 1 Cyclotron Road Mailstop 90-1116, Berkeley, CA 94720 P. R. Knox (paul.knox@beg.utexas.edu; 512-471-7313), Bureau of Economic Geology, P.O. Box X, The University of Texas at Austin, Austin, TX 78713 C. T. Green (ctgreen@ucdavis.edu; 510-495-2461) University of California, Hydrologic Sciences, One Shields Ave., Davis, CA 95616 K. Pruess(K_Pruess@lbl.gov; 510-486-6732) Lawrence Berkeley National Lab, 1 Cyclotron Road Mailstop 90-1116,

424

Removal of hydrogen sulfide from simulated geothermal brines by reaction with oxygen. Final report, October 6, 1975-February 4, 1977  

DOE Green Energy (OSTI)

A process for controlling hydrogen sulfide emissions and corrosivity in geothermal systems has been evaluated on a small laboratory pilot plant scale and shown to be technically feasible. The hydrogen sulfide was oxidized by oxygen injected directly into a 11.4-liter-(3-gallon)-per-minute flowing stream of simulated geothermal brine. The oxidation of the sulfide was complete at oxygen:sulfide mole ratios of 1.25:1 to 1.5:1, depending on temperature and total dissolved solids in the brine. The reaction products were free sulfur, sulfite and sulfate. The ratio of these was dependent upon the oxygen:sulfide mole ratios; but, generally, more than 80% of the sulfide was converted to sulfate, approximately 10% to free sulfur and less than 10% to sulfite.

Wilson, J.S.; King, J.E.; Bullard, G.R.

1977-04-01T23:59:59.000Z

425

Hydrocarbons associated with brines from geopressured wells. Fourth quarterly technical progress report, 1 October 1990--30 December 1990  

DOE Green Energy (OSTI)

The purpose of this research is to determine the concentration of the cryocondensates in fluids of the various USDOE Geopressured wells as a function of production volume, to correlate the production of these compounds with reservoir and well production characteristics, to precisely measure solubilities of cryocondensates components in water and sodium chloride solutions (brines) as a function of ionic strength and temperature and the component`s distribution coefficients between these solutions and oil, to develop models of the reservoir which are consistent with the data obtained, to monitor the wells for the production of aliphatic oils and relate any such production with the data obtained, and to develop a harsh environment pH probe for use in well brines. Results are summarized.

Not Available

1991-01-15T23:59:59.000Z

426

Summary - Tank 48 at the Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank 48 Tank 48 ETR Report Date: August 2006 ETR-2 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Tank 48 at the Savannah River Site (SRS) Why DOE-EM Did This Review Tank 48 is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system that will play a very important role in removal and processing of high-level waste (HLW) in the years ahead. However, the tank is currently isolated from the system and unavailable for use, because its contents. It contains approximately 250,000 gallons of salt solution containing Cesium-137 and o