Powered by Deep Web Technologies
Note: This page contains sample records for the topic "motor vehicle inspection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Motor Vehicle Parts Compliance Requirements  

Science Conference Proceedings (OSTI)

... The OVSC compliance testing program is a strong incentive for manufacturers of motor vehicles and items of motor vehicle equipment to ...

2012-09-24T23:59:59.000Z

2

Hybrid vehicle motor alignment  

DOE Patents (OSTI)

A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

Levin, Michael Benjamin (Ann Arbor, MI)

2001-07-03T23:59:59.000Z

3

Commercial Motor Vehicle Brake-Related Research  

E-Print Network (OSTI)

Commercial Motor Vehicle Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor

4

Commercial Motor Vehicle Brake Assessment Tools  

E-Print Network (OSTI)

Commercial Motor Vehicle Brake Assessment Tools Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor #12;Overview · Commercial Motor Vehicle (CMV) Air Brake System · North American Standard Level-1

5

Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC)  

E-Print Network (OSTI)

Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC) Oak Ridge National Laboratory Safety Security Vehicle Technologies Research Brief T he Commercial Motor Vehicle Roadside Technology in Tennessee to demonstrate, test, evaluation, and showcase innovative commercial motor vehicle (CMV) safety

6

motor vehicles | OpenEI  

Open Energy Info (EERE)

motor vehicles motor vehicles Dataset Summary Description The data included in this submission is United States Department of Transportation (DOT) data on rates and revenue statistics up to 1995. The data includes state motor-fuel tax receipts, 1919-1995, state motor fuel taxes and related receipts, 1950-1995, and state and federal motor fuel tax rates, 1919-1995 The data is presented in .xlsx format. Source DOT Date Released Unknown Date Updated Unknown Keywords DOT highway motor vehicles rates revenues Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon State motor-fuel tax receipts, 1919-1995 (xlsx, 13.8 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon State motor fuel taxes and related receipts, 1950-1995 (xlsx, 78.5 KiB)

7

COMMERICAL MOTOR VEHICLE OPERATOR EMPLOYMENT APPLICATION SUPPLEMENT  

E-Print Network (OSTI)

COMMERICAL MOTOR VEHICLE OPERATOR EMPLOYMENT APPLICATION SUPPLEMENT _________________________________________________________ Applicants for positions involving the operation of a commercial motor vehicle must comply with Title 49 CFR: _______________ Please list the following information for each unexpired commercial motor vehicle operator license

Roy, Subrata

8

VIA Motors electric vehicle platform | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VIA Motors electric vehicle platform VIA Motors electric vehicle platform extended range electric vehicle technologies VIA Motors electric vehicle platform More Documents &...

9

Explosion proof vehicle for tank inspection  

Science Conference Proceedings (OSTI)

An Explosion Proof Vehicle (EPV) having an interior substantially filled with an inert fluid creating an interior pressure greater than the exterior pressure. One or more flexible tubes provide the inert fluid and one or more electrical conductors from a control system to the vehicle. The vehicle is preferably used in subsurface tank inspection, whereby the vehicle is submerged in a volatile fluid.

Zollinger, William T. (Idaho Falls, ID); Klingler, Kerry M. (Idaho Falls, ID); Bauer, Scott G. (Idaho Falls, ID)

2012-02-28T23:59:59.000Z

10

Security enhanced with increased vehicle inspections  

NLE Websites -- All DOE Office Websites (Extended Search)

Security enhanced with increased vehicle inspections Security enhanced with increased vehicle inspections Security measures increase as of March: vehicle inspections won't delay traffic New increased security procedures meet LANL's security objectives while minimizing impacts on local businesses and tourists. March 23, 2012 The most prominent change is the increase of random inspections of all vehicles transiting the Laboratory, to include West and East Jemez Roads and roadways leading to the main Laboratory administrative area, Technical Area 3 Expect random inspections of all vehicles transiting the Laboratory, to include West and East Jemez Roads and roadways leading to the main Laboratory administrative area, Technical Area 3. Contact Kevin Roark Communications Office (505) 665-9202 Email "We're doing our best to meet our security objectives while minimizing

11

Motor generator electric automotive vehicle  

SciTech Connect

A motor generator electric automotive vehicle is described comprising in combination, a traction drive motor coupled by a first drive shaft to a differential of an axle of the vehicle, a main battery bank electrically connected by wires to a small electric motor driving a large D.C. generator having a second drive shaft therebetween, an on-off switch in series with one of the wires to the small motor, a speed control unit attached to an accelerator pedal of the vehicle being coupled with a double pole-double throw reverse switch to the traction drive motor, a charger regulator electrically connected to the generator, a bank of solar cells coupled to the charge regulator, an electric extension cord from the charge regulator having a plug on its end for selective connection to an exterior electric power source, a plurality of pulleys on the second drive shaft, a belt unit driven by the pulley, one the belt unit being connected to a present alternator of the vehicle which is coupled to a present battery and present regulator of the vehicle, and other of the units being connected to power brakes and equipment including power steering and an air conditioner.

Weldin, W.

1986-07-29T23:59:59.000Z

12

MOTOR VEHICLE MANUFACTURING TECHNOLOGY  

Science Conference Proceedings (OSTI)

... about half of the value added in light vehicles ... Selected Program White Papers. ... This white paper defines a program which supports the development ...

2011-10-19T23:59:59.000Z

13

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

E-Print Network (OSTI)

Carbonyl compounds present in motor vehicle exhaust, rangingfrom gasoline and diesel motor vehicles. Environ. Sci. Tech.composition and toxicity of motor vehicle emission samples.

Jakober, Chris A.

2008-01-01T23:59:59.000Z

14

Thermoelectric generator for motor vehicle  

DOE Patents (OSTI)

A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

Bass, John C. (6121 La Pintra Dr., La Jolla, CA 92037)

1997-04-29T23:59:59.000Z

15

Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Inspection  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Vehicle (NGV) Inspection Requirements to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Inspection Requirements on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Inspection Requirements on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Inspection Requirements on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Inspection Requirements on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Inspection Requirements on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Inspection Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

16

Total Cost of Motor-Vehicle Use  

E-Print Network (OSTI)

the use of Persian-Gulf oil by motor vehicles The sociallye r s i a n - G u l f Oil f o r Motor Vehicles 16. T h e C ofor motor vehicles: lost consumer surplus in other oil-

Delucchi, Mark A.

1996-01-01T23:59:59.000Z

17

Alternative Fuels Data Center: Low-Speed Vehicle Inspection Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Inspection Exemption to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Inspection Exemption on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Inspection Exemption on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Inspection Exemption on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Inspection Exemption on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Inspection Exemption on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Inspection Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Inspection Exemption Low-speed vehicles are exempt from annual state vehicle inspections.

18

INSPECTION MEANS FOR INDUCTION MOTORS  

DOE Patents (OSTI)

an appartus is descripbe for inspcting electric motors and more expecially an appartus for detecting falty end rings inn suqirrel cage inductio motors while the motor is running. In its broua aspects, the mer would around ce of reference tedtor means also itons in the phase ition of the An electronic circuit for conversion of excess-3 binary coded serial decimal numbers to straight binary coded serial decimal numbers is reported. The converter of the invention in its basic form generally coded pulse words of a type having an algebraic sign digit followed serially by a plurality of decimal digits in order of decreasing significance preceding a y algebraic sign digit followed serially by a plurality of decimal digits in order of decreasing significance. A switching martix is coupled to said input circuit and is internally connected to produce serial straight binary coded pulse groups indicative of the excess-3 coded input. A stepping circuit is coupled to the switching matrix and to a synchronous counter having a plurality of x decimal digit and plurality of y decimal digit indicator terminals. The stepping circuit steps the counter in synchornism with the serial binary pulse group output from the switching matrix to successively produce pulses at corresponding ones of the x and y decimal digit indicator terminals. The combinations of straight binary coded pulse groups and corresponding decimal digit indicator signals so produced comprise a basic output suitable for application to a variety of output apparatus.

Williams, A.W.

1959-03-10T23:59:59.000Z

19

Hybrid vehicle motor alignment - Energy Innovation Portal  

A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion ...

20

Alternative Fuels Data Center: Alternative Fuel Vehicle Inspection and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Inspection and Permit to someone by E-mail Inspection and Permit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Inspection and Permit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Inspection and Permit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Inspection and Permit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Inspection and Permit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Inspection and Permit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle Inspection and Permit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle Inspection and Permit

Note: This page contains sample records for the topic "motor vehicle inspection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Table A1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel ...  

U.S. Energy Information Administration (EIA)

Number of Vehicles Vehicle-Miles Traveled Motor Fuel Consumption Motor Fuel 2001 Household and Vehicle Expenditures ... Age of Primary Driver 16 to 17 Years ...

22

Motor vehicles and global warming  

SciTech Connect

Energy use in transportation is one of the contributors to the concern over global warming. The primary greenhouse gases released by the transportation sector are carbon dioxide and chlorofluorocarbons. When all greenhouse gases are considered, CO{sub 2} emissions from the operation of highway vehicles worldwide represent about 4.7% of global warming enhancement. CO{sub 2} emissions from U.S. highway vehicles along represent about 2 to 2.5% of worldwide greenhouse gases. The use of CFCs in automotive air conditioning, in blowing foams for seats and padding and in the manufacture of electronic circuit boards accounted for 15% of the global usage of CFC-12 in 1985 according to the U.S. EPA. The Motor Vehicle Manufacturers Association supports the phase-out of CFC use provided that safe substitutes are available and that adequate lead time is allowed for.They suggest that reduction of greenhouse gases would require planning on a global scope to be effective. One alternative they suggest for further study is a carbon fee for reducing emissions of carbon dioxide. This fee would be levied on each type of fossil fuel, proportional to its carbon content per unit of energy.

Halberstadt, M.L.

1990-03-01T23:59:59.000Z

23

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Inspection  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Inspection and Maintenance Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Inspection and Maintenance Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Inspection and Maintenance Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Inspection and Maintenance Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Inspection and Maintenance Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Inspection and Maintenance Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Inspection and Maintenance Exemption on AddThis.com...

24

The Allocation of the Social Costs of Motor-Vehicle Use to Six Classes of Motor Vehicles  

E-Print Network (OSTI)

alcohol Unfinished oils Motor gasoline blending componentsalcohol Unfinished oils Motor gasoline blending componentsthe Use of Persian-Gulf Oil for Motor Vehicles (M. Delucchi

Delucchi, Mark A.

1996-01-01T23:59:59.000Z

25

Vehicle Technologies Office: Fact #443: November 13, 2006 Motor...  

NLE Websites -- All DOE Office Websites (Extended Search)

3: November 13, 2006 Motor Vehicle Trade between the U.S. and China to someone by E-mail Share Vehicle Technologies Office: Fact 443: November 13, 2006 Motor Vehicle Trade between...

26

Physical context management for a motor vehicle  

DOE Patents (OSTI)

Computer software for and a method of enhancing safety for an operator of a motor vehicle comprising employing a plurality of sensors of vehicle and operator conditions, matching collective output from the sensors against a plurality of known dangerous conditions, and preventing certain activity of the operator if a known dangerous condition is detected.

Dixon, Kevin R. (Albuquerque, NM); Forsythe, James C. (Sandia Park, NM); Lippitt, Carl E. (Albuquerque, NM); Lippitt, legal representative, Lois Diane (Albuquerque, NM)

2009-10-27T23:59:59.000Z

27

Modelling and control of underwater inspection vehicle for aquaculture sites.  

E-Print Network (OSTI)

?? Underwater vehicles such as AUVs and ROVs with hovering capabilities is a promising method for inspection of net integrity in large scale, sea based, (more)

Hval, Mats Nvik

2012-01-01T23:59:59.000Z

28

Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor  

NLE Websites -- All DOE Office Websites (Extended Search)

1: December 14, 1: December 14, 2009 World Motor Vehicle Production to someone by E-mail Share Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on Facebook Tweet about Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on Twitter Bookmark Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on Google Bookmark Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on Delicious Rank Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on Digg Find More places to share Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on AddThis.com... Fact #601: December 14, 2009

29

Electrical system for a motor vehicle  

SciTech Connect

In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor.

Tamor, Michael Alan (Toledo, OH)

1999-01-01T23:59:59.000Z

30

Electrical system for a motor vehicle  

DOE Patents (OSTI)

In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor. 2 figs.

Tamor, M.A.

1999-07-20T23:59:59.000Z

31

Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

7: August 23, 7: August 23, 2010 World Motor Vehicle Production to someone by E-mail Share Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on Facebook Tweet about Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on Twitter Bookmark Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on Google Bookmark Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on Delicious Rank Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on Digg Find More places to share Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on AddThis.com... Fact #637: August 23, 2010 World Motor Vehicle Production

32

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network (OSTI)

from Transportation Fuels, Motor Vehicles, Transportationfrom alternative fuels for motor vehicles and electricity-Environmental Externalities of Motor-Vehicle Use in the U.

Delucchi, Mark

2005-01-01T23:59:59.000Z

33

Emergency Department Visits by Older Adults for Motor Vehicle Collisions: A Five-Year National Study  

E-Print Network (OSTI)

KM, Esserman DA, et al. Motor vehicle collision-relatedVisits by Older Adults for Motor Vehicle Collisions * Denvervisits by older adults for motor vehicle collisions (MVC) in

Vogel, Jody A; Ginde, Adit A.; Lowenstein, Steven R.; Betz, Marian E.

2013-01-01T23:59:59.000Z

34

Vital Signs: Emergency Department and Older Adult Motor Vehicle Collisions: Prevention is Paramount  

E-Print Network (OSTI)

Severity of Older Adult Motor Vehicle Collisions in OrangeOlder adults opinion of and motor vehicle-related crashes32. California Department of Motor Vehicles. Senior Driver:

Lotfipour, Shahram; Cisneros, Victor; Chakravarthy, Bharath

2013-01-01T23:59:59.000Z

35

Impacts of motor vehicle operation on water quality - Clean-up Costs and Policies  

E-Print Network (OSTI)

preventing water pollution from motor vehicles would be muchgroundwater pollution; motor-vehicle transportation;the environmental costs of motor vehicle transportation in

Nixon, Hilary; Saphores, Jean-Daniel M

2007-01-01T23:59:59.000Z

36

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

from Transportation Fuels, Motor Vehicles, Transportationfrom alternative fuels for motor vehicles and electricity-Environmental Externalities of Motor-Vehicle Use in the U.

Delucchi, Mark

2005-01-01T23:59:59.000Z

37

Descriptions of Motor Vehicle Collisions by Participants in Emergency DepartmentBased Studies: Are They Accurate?  

E-Print Network (OSTI)

reports in determining motor vehicle crash characteristics.R ESEARCH Descriptions of Motor Vehicle Collisions byThe immediate aftermath of motor vehicle collisions. In:

2012-01-01T23:59:59.000Z

38

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

Organization of Motor Vehicle Manufacturers, Paris, France,Organization of Motor Vehicle Manufacturers (2003) providesOrganization of Motor Vehicle Manufacturers. Because of

Delucchi, Mark

2005-01-01T23:59:59.000Z

39

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network (OSTI)

Organization of Motor Vehicle Manufacturers, Paris, France,Organization of Motor Vehicle Manufacturers (2003) providesOrganization of Motor Vehicle Manufacturers. Because of

Delucchi, Mark

2005-01-01T23:59:59.000Z

40

Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Motor Natural Gas Motor Vehicle Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Motor Vehicle Fuel Promotion An eight member Natural Gas Fuel Board (Board) was created to advise the

Note: This page contains sample records for the topic "motor vehicle inspection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Cell Motor Fuel Cell Motor Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Cell Motor Vehicle Tax Credit A tax credit of up to $4,000 is available for the purchase of qualified

42

Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Cell Motor Fuel Cell Motor Vehicle Tax Deduction to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Google Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Delicious Rank Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Cell Motor Vehicle Tax Deduction A taxpayer is eligible for a $2,000 tax deduction for the purchase of a

43

TAX AND FEE PAYMENTS BY MOTOR VEHICLE USERS FOR THE USE OF HIGHWAYS, FUELS, AND VEHICLES Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

and on lubricating oils motor-vehicle salesmen; selectivefor example motor vehicles, oil and gas properties, housethe Use of Persian-Gulf Oil for Motor Vehicles (M. Delucchi

Delucchi, Mark

2005-01-01T23:59:59.000Z

44

TAX AND FEE PAYMENTS BY MOTOR VEHICLE USERS FOR THE USE OF HIGHWAYS, FUELS, AND VEHICLES Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

July (1996). Motor Vehicle Manufacturers Association of theaddition, some motor-vehicle manufacturers have been finedEPA charges motor-vehicle manufacturers to cover the cost of

Delucchi, Mark

2005-01-01T23:59:59.000Z

45

Gas Mileage of 1986 Vehicles by Vixen Motor Company  

NLE Websites -- All DOE Office Websites (Extended Search)

Vixen Motor Company Vehicles EPA MPG MODEL City Comb Hwy 1986 Vixen Motor Company 21 TD 6 cyl, 2.4 L, Manual 5-spd, Diesel Compare 1986 Vixen Motor Company 21 TD 15 City 16...

46

Gas Mileage of 1984 Vehicles by Avanti Motor Corporation  

NLE Websites -- All DOE Office Websites (Extended Search)

84 Avanti Motor Corporation Vehicles EPA MPG MODEL City Comb Hwy 1984 Avanti Motor Corporation Avanti II 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1984 Avanti Motor...

47

VIA Motors electric vehicle platform  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Extended-Range Electric Trucks Extended-Range Electric Trucks The fuel economy of a Prius with the payload of a pickup VIA's E-REV powertrain is ideal for America's fleets, cutting fuel costs by up to 75%, while dramatically reducing petroleum consumption and emissions- electricity costs an average of 60 cents per equivalent gallon. Recharging daily, the average driver could expect to refill the gas tank less than 10 times a year rather than once a week. It offers all the advantages of an electric vehicle, without range limitations. Working with vehicle manufacturers, VIA plans to begin delivering E-REV trucks to government and utility fleets in 2011. The onboard generator provides a work site with 15 kW of exportable power Up to 40 miles in all-electric mode and up to 300 miles using the range extender

48

Electric machine for hybrid motor vehicle  

DOE Patents (OSTI)

A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

Hsu, John Sheungchun (Oak Ridge, TN)

2007-09-18T23:59:59.000Z

49

Gas Mileage of 1984 Vehicles by American Motors Corporation  

NLE Websites -- All DOE Office Websites (Extended Search)

4 American Motors Corporation Vehicles 4 American Motors Corporation Vehicles EPA MPG MODEL City Comb Hwy 1984 American Motors Corporation Eagle 4WD 4 cyl, 2.5 L, Manual 4-spd, Regular Gasoline Compare 1984 American Motors Corporation Eagle 4WD 19 City 20 Combined 22 Highway 1984 American Motors Corporation Eagle 4WD 4 cyl, 2.5 L, Manual 5-spd, Regular Gasoline Compare 1984 American Motors Corporation Eagle 4WD 19 City 21 Combined 23 Highway 1984 American Motors Corporation Eagle 4WD 6 cyl, 4.2 L, Automatic 3-spd, Regular Gasoline Compare 1984 American Motors Corporation Eagle 4WD 15 City 17 Combined 20 Highway 1984 American Motors Corporation Eagle 4WD 6 cyl, 4.2 L, Manual 4-spd, Regular Gasoline Compare 1984 American Motors Corporation Eagle 4WD 16 City 17 Combined 20 Highway 1984 American Motors Corporation Eagle 4WD 6 cyl, 4.2 L, Manual 5-spd, Regular Gasoline

50

Electric machine for hybrid motor vehicle - Energy Innovation ...  

A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet ...

51

Motor Vehicle Plant Lighting Level Best Practices | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Vehicle Plant Lighting Level Best Practices Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial...

52

EA-1869: Supplement to General Motors Corp., Electric Vehicle...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home EA-1869: Supplement to General Motors Corp., Electric VehicleBattery Manufacturing Application, White Marsh, Maryland, and Wixom, Michigan (DOE...

53

The Allocation of the Social Costs of Motor-Vehicle Use to Six Classes of Motor Vehicles  

E-Print Network (OSTI)

emissions (from petroleum refineries, vehicle manufacture,emissions from petroleum refineries. Then, I apportion theproduction of motor fuel at refineries, emissions from the

Delucchi, Mark A.

1996-01-01T23:59:59.000Z

54

Do Motor-Vehicle Users in the US Pay Their Way?  

E-Print Network (OSTI)

expenditures related to motor-vehicle use is a key factor insuch as highway patrol, for motor-vehicle users (Delucchi,fees speci?cally related to motor-vehicle use A2.1. Taxes

Delucchi, Mark

2007-01-01T23:59:59.000Z

55

Inhalation of motor vehicle emissions: effects of urban population and land area  

E-Print Network (OSTI)

M.A. , 1996. Total cost of motor-vehicle use. Access 8, 7-Urban density and inhalation of motor vehicle emissions JDof primary pollutants: motor vehicle emissions in the South

Marshall, J D; McKone, T E; Deakin, E; Nazaroff, William W

2005-01-01T23:59:59.000Z

56

Inhalation of motor vehicle emissions: effects of urban population and land area  

E-Print Network (OSTI)

M.A. , 1996. Total cost of motor-vehicle use. Access 8,of ammonia and other motor vehicle exhaust emissions.and engine load on motor vehicle emissions. Environmental

Marshall, Julian D.; McKone, Thomas E.; Deakin, Elizabeth; Nazaroff, William W.

2006-01-01T23:59:59.000Z

57

Do Motor-Vehicle Users in the US Pay Their Way?  

E-Print Network (OSTI)

the Use of Persian-Gulf Oil for Motor Vehicles, Report #15the use of Persian-Gulf oil for motor vehicles. 9 While itthe use of Persian-Gulf oil by motor vehicles (Table 2). All

Delucchi, Mark

2007-01-01T23:59:59.000Z

58

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

the use of Persian Gulf oil for motor vehicles. UCD-ITS-RR-use of Persian Gulf oil for motor vehicles Mark A. Delucchiof Persian Gulf oil by motor vehicles speci?cally, both in

Delucchi, Mark; Murphy, James

2008-01-01T23:59:59.000Z

59

Summary of electric vehicle dc motor-controller tests  

DOE Green Energy (OSTI)

Available performance data for production motors are usually of marginal value to the electric vehicle designer. To provide at least a partial remedy to this situation, tests of typical dc propulsion motors and controllers were conducted as part of the DOE Electric Vehicle Program. The objectives of this program were to evaluate the differences in the performance of dc motors when operating with chopper-type controllers and when operating on direct current; and to gain an understanding of the interactions between the motor and the controller which cause these differences. Toward this end, motor-controller tests performed by the NASA Lewis Research Center provided some of the first published data that quantified motor efficiency variations for both ripple-free (straight dc) and chopper modes of operation. Test and analysis work at the University of Pittsburgh explored motor-controller relationships in greater depth. And to provide additional data, 3E Vehicles tested two small motors, both on a dynamometer and in a vehicle, and the Eaton Corporation tested larger motors, using sophisticated instrumentation and digital processing techniques. All the motors tested were direct-current types. Of the separately excited types, seven were series wound and two were shunt wound. One self-excited permanent magnet type was also tested. Four of the series wound motors used brush shifting to obtain good commutation. In almost all cases, controller limitations constrained the test envelope so that the full capability of the motors could not be explored.

McBrien, E F; Tryon, H B

1982-09-01T23:59:59.000Z

60

Motor Vehicle Emission Simulator (MOVES) | Open Energy Information  

Open Energy Info (EERE)

Motor Vehicle Emission Simulator (MOVES) Motor Vehicle Emission Simulator (MOVES) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Motor Vehicle Emission Simulator (MOVES) Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.epa.gov/otaq/models/moves/index.htm Cost: Free Equivalent URI: cleanenergysolutions.org/content/motor-vehicle-emission-simulator-move Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation References: http://www.epa.gov/otaq/models/moves/index.htm Intended to replace MOBILE6, NONROAD, and NMIM. Estimates energy consumption emissions from highway vehicles from 1999-2050 and accounts for

Note: This page contains sample records for the topic "motor vehicle inspection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

How large are tax subsidies to motor-vehicle users in the US?  

E-Print Network (OSTI)

of this deriving from motor fuels (the oil industry) ratherincome (%) Income year 1991 a Oil industries Motor vehicleindustries Oil and motor vehicle industries combined Amount

Delucchi, Mark; Murphy, James

2008-01-01T23:59:59.000Z

62

Natural Gas Vehicle Cylinder Safety, Training and Inspection Project  

DOE Green Energy (OSTI)

Under the auspices of the National Energy Technology Laboratory and the US Department of Energy, the Clean Vehicle Education Foundation conducted a three-year program to increase the understanding of the safe and proper use and maintenance of vehicular compressed natural gas (CNG) fuel systems. High-pressure fuel systems require periodic inspection and maintenance to insure safe and proper operation. The project addressed the needs of CNG fuel containers (cylinders) and associated high-pressure fuel system components related to existing law, codes and standards (C&S), available training and inspection programs, and assured coordination among vehicle users, public safety officials, fueling station operators and training providers. The program included a public and industry awareness campaign, establishment and administration of a cylinder inspector certification training scholarship program, evaluation of current safety training and testing practices, monitoring and investigation of CNG vehicle incidents, evaluation of a cylinder recertification program and the migration of CNG vehicle safety knowledge to the nascent hydrogen vehicle community.

Hank Seiff

2008-12-31T23:59:59.000Z

63

Vehicle Technologies Office: Fact #61: May 12, 1998 Growth in Motor  

NLE Websites -- All DOE Office Websites (Extended Search)

1: May 12, 1998 1: May 12, 1998 Growth in Motor Vehicles: 1940-1996 to someone by E-mail Share Vehicle Technologies Office: Fact #61: May 12, 1998 Growth in Motor Vehicles: 1940-1996 on Facebook Tweet about Vehicle Technologies Office: Fact #61: May 12, 1998 Growth in Motor Vehicles: 1940-1996 on Twitter Bookmark Vehicle Technologies Office: Fact #61: May 12, 1998 Growth in Motor Vehicles: 1940-1996 on Google Bookmark Vehicle Technologies Office: Fact #61: May 12, 1998 Growth in Motor Vehicles: 1940-1996 on Delicious Rank Vehicle Technologies Office: Fact #61: May 12, 1998 Growth in Motor Vehicles: 1940-1996 on Digg Find More places to share Vehicle Technologies Office: Fact #61: May 12, 1998 Growth in Motor Vehicles: 1940-1996 on AddThis.com... Fact #61: May 12, 1998 Growth in Motor Vehicles: 1940-1996

64

TAX AND FEE PAYMENTS BY MOTOR VEHICLE USERS FOR THE USE OF HIGHWAYS, FUELS, AND VEHICLES Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

Arizona Department of Motor Vehicles, Phoenix, Arizona,Enhancement Through Increased Motor-Fuel Tax Enforcement,Commercial and Industrialb Motor vehiclesc (AVMV USA,Yr )

Delucchi, Mark

2005-01-01T23:59:59.000Z

65

Nevada Department of Motor Vehicles | Open Energy Information  

Open Energy Info (EERE)

Motor Vehicles Motor Vehicles Jump to: navigation, search Logo: Nevada Department of Motor Vehicles Name Nevada Department of Motor Vehicles Address 555 Wright Way Place Carson City, Nevada Zip 89711 Phone number 702-486-4368 Website http://dmvnv.com/ Coordinates 39.1549237°, -119.7635207° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1549237,"lon":-119.7635207,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

66

Texas Department of Motor Vehicles | Open Energy Information  

Open Energy Info (EERE)

Motor Vehicles Motor Vehicles Jump to: navigation, search Logo: Texas Department of Motor Vehicles Name Texas Department of Motor Vehicles Short Name TxDMV Address 4000 Jackson Ave. Place Austin, Texas Zip 78731 Phone number 1-888-368-4689 Website http://www.txdmv.gov/ Coordinates 30.3134782°, -97.7553907° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3134782,"lon":-97.7553907,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

67

The External Damage Cost of Direct Noise From Motor Vehicles  

E-Print Network (OSTI)

Effects and Social Costs of Road Transport, Transportationreview of the social costs of transportation in the U. S.social cost MV = motor vehicle NIPA = National Income Product Accounts NOx = nitrogen oxides NPTS = Nationwide Personal Transportation

Delucchi, Mark A.; Hsu, Shi-Ling

1996-01-01T23:59:59.000Z

68

Gas Mileage of 1993 Vehicles by J.K. Motors  

NLE Websites -- All DOE Office Websites (Extended Search)

3 J.K. Motors Vehicles 3 J.K. Motors Vehicles EPA MPG MODEL City Comb Hwy 1993 J.K. Motors 190E 2.3 MERC BENZ 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors 190E 2.3 MERC BENZ 16 City 17 Combined 18 Highway 1993 J.K. Motors 230E MERC BENZ 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors 230E MERC BENZ 16 City 17 Combined 18 Highway 1993 J.K. Motors 300SL 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors 300SL 14 City 15 Combined 16 Highway 1993 J.K. Motors BMW535I 6 cyl, 3.4 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors BMW535I 12 City 14 Combined 18 Highway 1993 J.K. Motors BMW635CSI 6 cyl, 3.4 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors BMW635CSI 12 City 14 Combined 18

69

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

Annual Report, data on motor fuel use available online at /and diesel fuel used by motor vehicles. We recommend thatanalyses of the social cost of motor vehicle use in the US.

Delucchi, Mark; Murphy, James

2008-01-01T23:59:59.000Z

70

California Motor Vehicle Standards and Federalism: Lessons for the European Union  

E-Print Network (OSTI)

7543(b)(1) (West 2007). See Motor Vehicle Mfrs. Assn v. Newp. 11 (Letter from General Motors President clarifying thatTransportation Controls to Reduce Motor Vehicle Emissions in

Carlson, Ann E.

2008-01-01T23:59:59.000Z

71

Variable-reluctance motors for electric vehicle propulsion  

SciTech Connect

This paper discusses the design, operation, and expected performance of a 60-kW variable-reluctance motor and inverter-designed for electric vehicle propulsion. To substantiate the performance of this system, experimental data obtained with a prototype 3.8-kW motor and inverter are provided.

Vallese, F.J.; Lang, J.H.

1985-01-01T23:59:59.000Z

72

MIT Electric Vehicle Team Porsche designing a cooling system for the AC24 electric motor  

E-Print Network (OSTI)

In this thesis I worked on the design and analysis of a cooling system for the electric motor of the MIT Electric Vehicle Team's Porsche 914 Battery Electric Vehicle. The vehicle's Azure Dynamics AC24 motor tended to ...

Meenen, Jordan N

2010-01-01T23:59:59.000Z

73

Motor-Vehicle Infrastructure and Services Provided by the Public Sector: Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

motor-vehicle parts, and motor-oil are recycled. Presumably,parts, motor fuels, or motor oil. I assume a range of 4-8%.relationship between motor-vehicle use and oil imports is

Delucchi, Mark; Murphy, James

2005-01-01T23:59:59.000Z

74

MOTOR-VEHICLE INFRASTRUCTURE AND SERVICES PROVIDED BY THE PUBLIC SECTOR Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

motor-vehicle parts, and motor-oil are recycled. Presumably,parts, motor fuels, or motor oil. I assume a range of 4-8%.relationship between motor-vehicle use and oil imports is

Delucchi, Mark

2005-01-01T23:59:59.000Z

75

Tax and Fee Payments by Motor-Vehicle Users for the Use of Highways, Fuels, and Vehicles: Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

and on lubricating oils motor-vehicle salesmen; selectivefor example motor vehicles, oil and gas properties, housethe Use of Persian-Gulf Oil for Motor Vehicles, Report #15

Delucchi, Mark

2005-01-01T23:59:59.000Z

76

Tax and Fee Payments by Motor-Vehicle Users for the Use of Highways, Fuels, and Vehicles: Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

July (1996). Motor Vehicle Manufacturers Association of theaddition, some motor-vehicle manufacturers have been finedEPA charges motor-vehicle manufacturers to cover the cost of

Delucchi, Mark

2005-01-01T23:59:59.000Z

77

DOE Hydrogen Analysis Repository: MOVES (Motor Vehicle Emission Simulator)  

NLE Websites -- All DOE Office Websites (Extended Search)

MOVES (Motor Vehicle Emission Simulator) MOVES (Motor Vehicle Emission Simulator) Project Summary Full Title: MOVES (Motor Vehicle Emission Simulator) Previous Title(s): New Generation Mobile Source Emissions Model (NGM) Project ID: 179 Principal Investigator: Margo Oge Brief Description: Estimates emissions for on-road and nonroad sources, multiple pollutants, fine-scale analysis to national inventory estimation. Keywords: Vehicle; transportation; emissions Purpose Estimate emissions for on-road and nonroad sources, cover a broad range of pollutants, and allow multiple scale analysis, from fine-scale analysis to national inventory estimation. When fully implemented MOVES will serve as the replacement for MOBILE. Performer Principal Investigator: Margo Oge Organization: U.S. Environmental Protection Agency

78

Do Motor-Vehicle Users in the US Pay Their Way?  

E-Print Network (OSTI)

the sales taxes paid on motor-vehicles, gasoline and motor-as gasoline excise taxes, road tolls, and motor-vehiclegasoline tax (e.g. , Parry and Small, 2005), the incidence of federal and state motor-

Delucchi, Mark

2007-01-01T23:59:59.000Z

79

Motor Vehicle Crash Fatalities and Injuries: An Analysis of the Relationship of Roadway, Driver, Vehicle Characteristics in Oregon  

E-Print Network (OSTI)

Motor Vehicle Crash Fatalities and Injuries: An Analysis of the Relationship of Roadway, Driver, Vehicle Characteristics in Oregon Motor Vehicle Crash Fatalities and Injuries: An Analysis,000 population among Oregon counties from 2000-2005 ranged from 6.64-211.17. In the event of a severe motor

Bertini, Robert L.

80

Hybrid Cascaded H-bridges Multilevel Motor Drive Control for Electric Vehicles  

E-Print Network (OSTI)

Hybrid Cascaded H-bridges Multilevel Motor Drive Control for Electric Vehicles Zhong Du1 , Leon M for electric/hybrid electric vehicles where each phase of a three-phase cascaded multilevel converter can vehicle motor drive applications and hybrid electric vehicle motor drive applications. Keywords: hybrid

Tolbert, Leon M.

Note: This page contains sample records for the topic "motor vehicle inspection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Low cost, compact, and high efficiency traction motor for electric and hybrid electric vehicles  

DOE Green Energy (OSTI)

A new motor drive, the switched reluctance motor drive, has been developed for hybrid-electric vehicles. The motor drive has been designed, built and tested in the test bed at a near vehicle scale. It has been shown that the switched reluctance motor drive is more suitable for traction application than any other motor drive.

Ehsani, Mark

2002-10-07T23:59:59.000Z

82

TAX AND FEE PAYMENTS BY MOTOR VEHICLE USERS FOR THE USE OF HIGHWAYS, FUELS, AND VEHICLES Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

general sales taxes) on motor gasoline (EIA, State Energythe sales tax paid on motor-vehicles, gasoline and motor-Motor fuels: portions of federal gasoline and diesel-fuel tax

Delucchi, Mark

2005-01-01T23:59:59.000Z

83

MOtor Vehicle Emission Simulator (MOVES) | Open Energy Information  

Open Energy Info (EERE)

MOtor Vehicle Emission Simulator (MOVES) MOtor Vehicle Emission Simulator (MOVES) Jump to: navigation, search Tool Summary Name: MOtor Vehicle Emission Simulator (MOVES) Agency/Company /Organization: U.S. Environmental Protection Agency Focus Area: GHG Inventory Development Topics: Analysis Tools Website: www.epa.gov/otaq/models/moves/index.htm This emission modeling system estimates emissions from mobile sources, including cars, trucks, and motorcycles. The modeling tool covers a broad range of pollutants and allows multiple scale analysis. How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air pollutants and greenhouse gas emissions.

84

How large are tax subsidies to motor-vehicle users in the US?  

E-Print Network (OSTI)

gasoline tax and with total user payments for government-provided motor-motor-vehicle use. In most states, gasoline is not subject to a general sales tax (

Delucchi, Mark; Murphy, James

2008-01-01T23:59:59.000Z

85

ENERGY STAR Focus on Energy Efficiency in Motor Vehicle Manufacturing |  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Vehicle Motor Vehicle Manufacturing Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Tools for benchmarking energy management practices Tools for tracking and benchmarking facility energy performance ENERGY STAR Energy Performance Indicators for plants

86

Motor-Vehicle Infrastructure and Services Provided by the Public Sector: Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

Blincoe, The Economic Cost of Motor Vehicle Crashes, 1994,M. Faigin, The Economic Cost of Motor Vehicle Crashes, 1990,Q. Wang, and D. L. Greene, Motor Vehicle Fuel Economy, The

Delucchi, Mark; Murphy, James

2005-01-01T23:59:59.000Z

87

MOTOR-VEHICLE INFRASTRUCTURE AND SERVICES PROVIDED BY THE PUBLIC SECTOR Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

Blincoe, The Economic Cost of Motor Vehicle Crashes, 1994,M. Faigin, The Economic Cost of Motor Vehicle Crashes, 1990,Q. Wang, and D. L. Greene, Motor Vehicle Fuel Economy, The

Delucchi, Mark

2005-01-01T23:59:59.000Z

88

U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

defending: the use of oil by motor vehicles in the U. S. (THE USE OF PERSIAN-GULF OIL FOR MOTOR VEHICLES Report #15 inthe Use of Persian-Gulf Oil for Motor Vehicles (M. Delucchi

Delucchi, Mark; Murphy, James

2006-01-01T23:59:59.000Z

89

Fatality and Injury Severity of Older Adult Motor Vehicle Collisions in Orange County, California, 1998-2007  

E-Print Network (OSTI)

Report of Fatal and Injury Motor Vehicle Traffic Collisions.of state regulations on motor vehicle fatalities for youngerXIV, NO . 1 : February 2013 motor vehicle traffic crashes.

2013-01-01T23:59:59.000Z

90

Correlation of I/M240 and FTP emissions for Alternative Motor Fuels Act test vehicles  

SciTech Connect

The National Remewable Energy Laboratory (NREL) is managing a series of light duty vehicle chasis dynamometer chasis tests on alternative fuel vehicles for the US Department of Energy (DOE). This testing program is part of a larger demonstration of alternative fuel vehicles that was mandated by the Alternative Motor Fuels Act of 1988 (AMFA). In Phase I of the AMFA emissions test program (AMFA I) 18 vehicles were tested by three laboratories. All the vehicles tested were 1991 model year. In Phase II of the program (AMFA II), the number of vehicles was increased to nearly 300, including M85 Dodge Spirits, E85 Chevrolet Luminas, and compressed natural gas Dodge passenger vans. Phase II testing includes a Federal Test Procedure (FTP) test, followed by two of the EPA`s Inspection/Maintenance (I/M240) tests. It is concluded that the I/M240 test is not an appropriate comparison to the FTP. Further the I/M 240 test is not as reliable as the FTP in estimating the `real world` emissions of these relatively low emission vehicles. 7 refs., 10 figs., 8 tabs.

Kelly, K.J.

1994-10-01T23:59:59.000Z

91

Nuclear Maintenance Applications Center: Guide for the Performance of OnSite and Vendor Shop Inspections of Electric Motors  

Science Conference Proceedings (OSTI)

The power industry is experiencing a loss of expertise as its workforce ages. Compounding the problem is that many plants find that there is limited time to train new workers. Periodically, station and corporate motor specialists are asked to perform inspections of on-site motors to maintain a level of equipment reliability or to perform inspections for customers at vendor motor shops. This report should prove valuable during visual inspections of electric motors.

2008-12-19T23:59:59.000Z

92

AUTHORIZATION TO OBTAIN DRIVING RECORDS FROM THE DEPARTMENT OF MOTOR VEHICLES  

E-Print Network (OSTI)

AUTHORIZATION TO OBTAIN DRIVING RECORDS FROM THE DEPARTMENT OF MOTOR VEHICLES (INF 254) Section necessary driver and motor vehicle record data to support this status check. X (Employee Signature) (Date

de Lijser, Peter

93

Fuel-Based On-Road Motor Vehicle Emissions Inventory  

E-Print Network (OSTI)

Fuel-Based On-Road Motor Vehicle Emissions Inventory for the Denver Metropolitan Area Sajal S sales from tax department -quite precise Inventory -uncertainty can be estimated Travel Based Model FuelGasohol (LTK, PAS) Tons/day3748369Gasoline (LTK, PAS) g per kg of fuel7859Gasohol (LTK, PAS) g per kg

Denver, University of

94

Motor vehicle fuel economy, the forgotten HC control stragegy?  

DOE Green Energy (OSTI)

Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

Deluchi, M.; Wang, Quanlu; Greene, D.L.

1992-06-01T23:59:59.000Z

95

Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption . U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption and Expenditures, 1994 1993 Household and 1994 Vehicle Characteristics RSE Column Factor: Number of Vehicles Vehicle-Miles Traveled Motor Fuel Consumption Motor Fuel Expenditures RSE Row Factor: (million) (percent) (billion) (percent) (billion gallons) (gallon percent) (quadril- lion Btu) (billion dollars) (percent) 0.9 0.8 1.1 1.0 1.1 1.0 1.1 1.1 1.0 Household Characteristics Total .................................................... 156.8 100.0 1,793 100.0 90.6 100.0 11.2 104.7 100.0 2.8 Census Region and Division Northeast ........................................... 26.6 17.0 299 16.7 14.5 16.0 1.8 17.2 16.4 5.7 New England ................................... 7.6 4.8 84 4.7 4.1 4.5 0.5 4.8 4.6 13.8 Middle Atlantic

96

Chemiion evolution in motor vehicle exhaust: Further evidence of its role in nanoparticle formation  

E-Print Network (OSTI)

Chemiion evolution in motor vehicle exhaust: Further evidence of its role in nanoparticle formation of the nanoparticles in motor vehicle exhaust. INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols [2001] found that total number of NPs formed in motor vehicle exhaust is very sensitive to CI

Yu, Fangqun

97

Design of Electric Vehicles DC Traction Motor Drive System Based on Optimal Control  

Science Conference Proceedings (OSTI)

The traditional electric vehicle DC motor drive system can not automatically weaken magnetic field. This paper designs DC motor drive system which control optimally the motor to meet the requirement. The study results show that: the drive system can ... Keywords: electric vehicles, DC motor, controller, optimal control

Yan Jun

2012-12-01T23:59:59.000Z

98

EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCAR Vehicles Get Put to the Test at General Motors' Proving EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground June 13, 2011 - 5:57pm Addthis Virginia Tech puts their EcoCar vehicle through the paces at General Motors' Milford Proving Grounds. | Credit Department of Energy Advanced Vehicle Technology Competitions Virginia Tech puts their EcoCar vehicle through the paces at General Motors' Milford Proving Grounds. | Credit Department of Energy Advanced Vehicle Technology Competitions Connie Bezanson Education & Outreach Manager, Vehicle Technologies Program What does this project do? EcoCar challenges students to reduce the environmental impact of vehicles by minimizing the vehicle's fuel consumption and emissions -- while retaining the vehicle's performance, safety and consumer appeal.

99

THE ALLOCATION OF THE SOCIAL COSTS OF MOTOR-VEHICLE USE TO SIX CLASSES OF MOTOR VEHICLES  

E-Print Network (OSTI)

-3), on the assumption that consumption of oil and lubricating greases is proportional to fuel consumption. SIC 3011 diameter PMT = person-miles of travel RECS = Residential Energy Consumption Survey SIC = standard Lubricating oils and grease Tires and inner tubes Primary metals Automotive stampings ** Motor vehicles

Delucchi, Mark

100

Table 2.8 Motor Vehicle Mileage, Fuel Consumption, and Fuel ...  

U.S. Energy Information Administration (EIA)

Table 2.8 Motor Vehicle Mileage, Fuel Consumption, and Fuel Economy, 1949-2010: Year: Light-Duty Vehicles, Short Wheelbase 1: Light-Duty Vehicles, Long Wheelbase 2:

Note: This page contains sample records for the topic "motor vehicle inspection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Method for controlling a motor vehicle powertrain  

DOE Patents (OSTI)

A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the position of the gear selector lever operated manually by the vehicle operator, the speed of the power source, the state of the ignition key, and the rate of release of an accelerator pedal. A control algorithm produces input data representing a commanded upshift, a commanded downshift and a torque command and various constant torque signals. A microprocessor processes the input and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake to produce the forward drive, reverse and regenerative operation of the transmission.

Burba, Joseph C. (Ypsilanti, MI); Landman, Ronald G. (Ypsilanti, MI); Patil, Prabhakar B. (Detroit, MI); Reitz, Graydon A. (Farmington Hills, MI)

1990-01-01T23:59:59.000Z

102

Method for controlling a motor vehicle powertrain  

DOE Patents (OSTI)

A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the position of the gear selector lever operated manually by the vehicle operator, the speed of the power source, the state of the ignition key, and the rate of release of an accelerator pedal. A control algorithm produces input data representing a commanded upshift, a commanded downshift and a torque command and various constant torque signals. A microprocessor processes the input and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake to produce the forward drive, reverse and regenerative operation of the transmission. 7 figs.

Burba, J.C.; Landman, R.G.; Patil, P.B.; Reitz, G.A.

1990-05-22T23:59:59.000Z

103

Impacts of Motor Vehicle Operation on Water Quality in the United States - Clean-up Costs and Policies  

E-Print Network (OSTI)

Environmental externalities of motor-vehicle use in the US.Gasoline Cd Co Cr Cu Fe Mn Ni Motor Oil & Grease Antifreezecan often be traced to motor vehicle sources. According to

Nixon, Hilary; Saphores, Jean-Daniel

2007-01-01T23:59:59.000Z

104

EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES  

E-Print Network (OSTI)

EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES from motor vehicles because unlike emissions of CO2, which are relatively easy to estimate, emissions-related emissions. In the U.S., for example, emissions of carbon dioxide (CO2) from the production and use of motor

Kammen, Daniel M.

105

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

US military expenditures to protect the use of Persian Gulf oil for motor vehicles Mark A. Delucchi 2008 Keywords: Oil importing cost Motor fuel social cost Energy security cost a b s t r a c t Analyses of the full social cost of motor vehicle use in the US often estimate an ``oil import premium'' that includes

Murphy, James J.

106

A design for improved performance of interior permanent magnet synchronous motor for hybrid electric vehicle  

Science Conference Proceedings (OSTI)

This paper investigates the layout of a magnet shape on the performance of an interior permanent magnet (IPM) synchronous motor. The motor is used in a hybrid electric vehicle. The IPM motor is a pancake shaped motor that has permanent magnets inside the rotor. The motor acts as a rotational electrodynamic machine between the engine and transmission. The main purpose of redesigning the shape of the magnet is to improve the motor performance

Seong Yeop Lim

2006-01-01T23:59:59.000Z

107

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network (OSTI)

171 Emissions related to the use of lubricating oil by motoruse of lubricating oil by motor vehicles The LEM estimatesoil refining to gasoline), the efficiency of fuel use by motor

Delucchi, Mark

2005-01-01T23:59:59.000Z

108

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

171 Emissions related to the use of lubricating oil by motoruse of lubricating oil by motor vehicles The LEM estimatesoil refining to gasoline), the efficiency of fuel use by motor

Delucchi, Mark

2005-01-01T23:59:59.000Z

109

Gas Mileage of 1984 Vehicles by Bill Dovell Motor Car Company  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Bill Dovell Motor Car Company Vehicles EPA MPG MODEL City Comb Hwy 1984 Bill Dovell Motor Car Company Dovell 230CE 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 1984...

110

Gas Mileage of 1985 Vehicles by Bill Dovell Motor Car Company  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Bill Dovell Motor Car Company Vehicles EPA MPG MODEL City Comb Hwy 1985 Bill Dovell Motor Car Company Dovell 230CE 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 1985...

111

Figure 1.8 Motor Vehicle Fuel Economy, 1973-2011 (Miles per Gallon)  

U.S. Energy Information Administration (EIA)

Figure 1.8 Motor Vehicle Fuel Economy, 1973-2011 (Miles per Gallon) U.S. Energy Information Administration / Monthly Energy Review August 2013 17

112

Vehicle Yaw Control Utilizing Hybrid Electric Drivetrains with Multiple Electric Motors.  

E-Print Network (OSTI)

??Vehicles with multiple electric motors coupled to individual wheels have excitingopportunities for safety control systems. An investigation is conducted to determine whatdynamic benefits can be (more)

D'Iorio, James

2008-01-01T23:59:59.000Z

113

Table 2.8 Motor Vehicle Mileage, Fuel Consumption, and Fuel ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. ... Table 2.8 Motor Vehicle Mileage, Fuel Consumption, and Fuel Economy, 1949-2010:

114

Tax and Fee Payments by Motor-Vehicle Users for the Use of Highways, Fuels, and Vehicles: Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

the sales tax paid on motor-vehicles, gasoline and motor-as gasoline excise taxes, road tolls, and motor- vehicleMotor fuels: portions of federal gasoline and diesel-fuel tax

Delucchi, Mark

2005-01-01T23:59:59.000Z

115

TAX AND FEE PAYMENTS BY MOTOR VEHICLE USERS FOR THE USE OF HIGHWAYS, FUELS, AND VEHICLES Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

of Motor Vehicles, Albany, New York, personal communication,the Justice Court Fund, Albany, New York, data transmittal,of Accounting Operations, Albany, New York (1992). D. M.

Delucchi, Mark

2005-01-01T23:59:59.000Z

116

Tax and Fee Payments by Motor-Vehicle Users for the Use of Highways, Fuels, and Vehicles: Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

Enhancement Through Increased Motor-Fuel Tax Enforcement,1976). L. R. Moran, Motor Vehicles, Model Year 1991,Commercial and Industrialb Motor vehiclesc (AVMV USA,Yr )

Delucchi, Mark

2005-01-01T23:59:59.000Z

117

The Annualized Social Cost of Motor-Vehicle Use in the U.S., 1990-1991: Summary of Theory, Data, Methods, and Results  

E-Print Network (OSTI)

the Use of Persian-Gulf Oil for Motor Vehicles (M. Delucchirunoff polluted by oil from motor vehicles, and pollutionuse of Persian-Gulf oil by motor vehicles B, D Annualized

Delucchi, Mark A.

1997-01-01T23:59:59.000Z

118

U.S. Military Expenditures to Protect the Use of Persian-Gulf Oil For Motor Vehicles  

E-Print Network (OSTI)

THE USE OF PERSIAN-GULF OIL FOR MOTOR VEHICLES Report #15 inTO PROTECT THE USE OF PERSIAN-GULF OIL FOR MOTORTHE USE OF PERSIAN-GULF OIL FOR MOTOR VEHICLES 15.1 UNITED

Delucchi, Mark A.; Murphy, James

1996-01-01T23:59:59.000Z

119

A Power Presizing Methodology for Electric Vehicle Traction Motors Bekheira Tabbache1,2  

E-Print Network (OSTI)

= Vehicle base speed; Vcr = Vehicle cruising speed; = Grade angle; Pv = Vehicle driving power; Fw = Road for the most appropriate electric propulsion system. In this case, key features are efficiency, reliability manuscript, published in "International Review on Modelling and Simulations 6, 1 (2013) 29-32" #12;motor type

Brest, Université de

120

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

war (which Ravenal estimates cost $1050 billion in 1991of motor vehicle estimate total costs), and because one mustand deaths), and estimate the economic cost of the Iraq War

Delucchi, Mark; Murphy, James

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "motor vehicle inspection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network (OSTI)

by producing region. Imports of natural gas by producinghave to import between 9% and 43% of its gas demand. Data ongas losses end use consumption). Motor-vehicle flows Imports

Delucchi, Mark

2005-01-01T23:59:59.000Z

122

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

by producing region. Imports of natural gas by producinghave to import between 9% and 43% of its gas demand. Data ongas losses end use consumption). Motor-vehicle flows Imports

Delucchi, Mark

2005-01-01T23:59:59.000Z

123

The Built Environment and Motor Vehicle Ownership and Use: Evidence from Santiago de Chile  

E-Print Network (OSTI)

This paper examines the relationships between the built environmentboth neighborhood design characteristics and relative locationand motor vehicle ownership and use in a rapidly motorising, developing city context, ...

Zegras, P. Christopher

124

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

Residual Oil Distillate Oil Motor Gasoline Other Petroleumthe use of lubricating oil by motor vehicles is based on theuse of lubricating oil related to motor- vehicle use (g/mi).

Delucchi, Mark

2003-01-01T23:59:59.000Z

125

Analysis of a PM DC motor model for application in feedback design for electric-powered mobility vehicles  

Science Conference Proceedings (OSTI)

Accurate modelling of Permanent Magnet (PM) DC motors is a prerequisite for expedient feedback design of electric-powered mobility vehicles. This paper identifies the parameters in the ideal equations for PM DC motors and considers the methods ... Keywords: electric-powered mobility vehicles, feedback design, frictional torque, model accuracy, modelling, permanent magnet DC motors models

Patrick Wolm; XiaoQi Chen; J. Geoffrey Chase; Warren Pettigrew; Christopher E. Hann

2010-08-01T23:59:59.000Z

126

Profile of motor-vehicle fleets in Atlanta 1994. Assessing the market for alternative-fuel vehicles  

Science Conference Proceedings (OSTI)

This document reports the results of the EIA survey of motorvehicle fleets, both private and municipal, in Atlanta. These data should be useful to those whose goal is to assist or participate in the early development of alternative-fuel vehicle markets. The data also should be useful to persons implementing motor-vehicle-related clean air programs or analyzing transportation energy use. Persons in the petroleum industry will find useful information regarding conventional fuels and the fuel-purchasing behavior of fleets.

NONE

1995-11-06T23:59:59.000Z

127

The Allocation of the Social Costs of Motor-Vehicle Use to Six Classes of Motor Vehicles  

E-Print Network (OSTI)

motor gasoline was $0.957/gallon in 1987, and $1.196 in 1991, including taxes (tax price of gasoline sold by service stations owned by refining companies with the sales- weighted average retail of all motor

Delucchi, Mark A.

1996-01-01T23:59:59.000Z

128

Hybrid Electric Vehicle with Permanent Magnet Traction Motor: A Simulation Model  

E-Print Network (OSTI)

A simulation model for a hybrid electric vehicle is developed. Permanent magnet synchronous motor is considered for the drive part of the hybrid electric vehicle which comprises three energy sources: (i) a fuel cell, (ii) a battery bank, and (iii) a super capacitor. Rotor-oriented speed controller is designed, and also verified by simulation results, to achieve trajectory tracking requirements of the hybrid electric vehicle within the inverter voltage and current limits.

Levent U. Gkdere; Khalid Benlyazid; Enrico; Enrico Santi; Charles W. Brice; Roger A. Dougal

1999-01-01T23:59:59.000Z

129

EA-1869: Supplement to General Motors Corp., Electric Vehicle/Battery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Supplement to General Motors Corp., Electric 9: Supplement to General Motors Corp., Electric Vehicle/Battery Manufacturing Application, White Marsh, Maryland, and Wixom, Michigan (DOE/EA-1723-S1) EA-1869: Supplement to General Motors Corp., Electric Vehicle/Battery Manufacturing Application, White Marsh, Maryland, and Wixom, Michigan (DOE/EA-1723-S1) Overview Based on the analysis in the Environmental Assessment DOE determined that its proposed action, to award a federal grant to General Motors to establish an electric motor components manufacturing and electric drive assembly facility would result in no significant adverse impacts. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download September 29, 2011 EA-1869: Final Environmental Assessment and Finding of No Significant

130

Efficient, High-Torque Electric Vehicle Motor: Advanced Electric Vehicle Motors with Low or No Rare Earth Content  

SciTech Connect

REACT Project: QM Power will develop a new type of electric motor with the potential to efficiently power future generations of EVs without the use of rare-earth-based magnets. Many of todays EV motors use rare earth magnets to efficiently provide torque to the wheels. QM Powers motors would contain magnets that use no rare earth minerals, are light and compact, and can deliver more power with greater efficiency and at reduced cost. Key innovations in this project include a new motor design with iron-based magnetic materials, a new motor control technique, and advanced manufacturing techniques that substantially reduce the cost of the motor. The ultimate goal of this project is to create a cost-effective EV motor that offers the rough peak equivalent of 270 horsepower.

None

2012-01-01T23:59:59.000Z

131

Texas AgriLife Research Procedure 21.01.08.A1.04 Vehicle Compulsory Inspection Page 1 of 2 Texas AgriLife Research Procedures  

E-Print Network (OSTI)

Texas AgriLife Research Procedure 21.01.08.A1.04 Vehicle Compulsory Inspection Page 1 of 2 Texas Revised: November 13, 2010 Next Scheduled Review: November 13, 2012 PROCEDURE STATEMENT The Texas for the inspection of vehicles to comply with the Texas Transportation Code. PROCEDURES 1.0 Inspection Requirements 1

132

Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle  

DOE Patents (OSTI)

A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.

Boberg, Evan S. (Hazel Park, MI); Gebby, Brian P. (Hazel Park, MI)

1999-09-28T23:59:59.000Z

133

The lived experience of post-traumatic stress disorder as described by motor vehicle accident victims in Jordan.  

E-Print Network (OSTI)

??Aim: To explore the lived experience of post-traumatic stress disorder (PTSD) as described by individuals who have been involved in a motor vehicle accident (MVA) (more)

Al-Kofahy, Lilibeth

2011-01-01T23:59:59.000Z

134

Electric Energy Industry Workforce: Trends in Motor Vehicle Crashes  

Science Conference Proceedings (OSTI)

EPRI has established an ongoing injury/illness research programthe Occupational Health and Safety Database (OHSD) Programto provide information about the occurrence of workplace injury and illness among the electric energy industry workforce. Vehicles operated by electric utility workers typically include bucket trucks, digger/derrick trucks, washer trucks, pole and material trucks and trailers, and other vehicles used in line construction and maintenance. These vehicles are generally operated over low m...

2007-04-26T23:59:59.000Z

135

Stability Control of Electric Vehicles with In-wheel Motors.  

E-Print Network (OSTI)

??Recently, mostly due to global warming concerns and high oil prices, electric vehicles have attracted a great deal of interest as an elegant solution to (more)

Jalali, Kiumars

2010-01-01T23:59:59.000Z

136

Evaluation of half wave induction motor drive for use in passenger vehicles. Final report  

SciTech Connect

This report describes research performed to devise and design a lower cost inverter-induction motor drive for electrical propulsion of passenger vehicles. A two-phase inverter-motor system is recommended. It is predicted to provide comparable vehicle performance, improved reliability and nearly a 10% cost advantage for a high production vehicle because of the reduction in total parts count, decreased total rating of the power semiconductor switches and somewhat simpler control hardware compared to the conventional three-phase bridge inverter-motor drive system. The major disadvantages of the two-phase inverter-motor drive are that the tow-phase motor is larger and more expensive than a three-phase machine, the design of snubbers for the power switches is difficult because motor lead and bifilar winding leakage inductances produce higher transient voltages, and the torque pulsations are relatively large because of the necessity to limit the inverter switching frequency to achieve high efficiency. An actuall model of the two-phase system must be constructed and evaluated. The most challenging engineering design task will be to design the inverter, motor and snubber circuits to minimize transient voltages with high system efficiency.

Hoft, R.G.; Kawamura, A.; Goodarzi, A.; Yang, G.Q.; Erickson, C.L.

1985-05-01T23:59:59.000Z

137

Rare-Earth-Free Traction Motor: Rare Earth-Free Traction Motor for Electric Vehicle Applications  

Science Conference Proceedings (OSTI)

REACT Project: Baldor will develop a new type of traction motor with the potential to efficiently power future generations of EVs. Unlike todays large, bulky EV motors which use expensive, imported rare-earth-based magnets, Baldors motor could be light, compact, contain no rare earth materials, and have the potential to deliver more torque at a substantially lower cost. Key innovations in this project include the use of a unique motor design, incorporation of an improved cooling system, and the development of advanced materials manufacturing techniques. These innovations could significantly reduce the cost of an electric motor.

None

2012-01-01T23:59:59.000Z

138

Motor Vehicle Plant Lighting Level Best Practices | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Vehicle Plant Lighting Level Best Practices Motor Vehicle Plant Lighting Level Best Practices Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

139

Direct Lamination Cooling of Motors For Electric Vehicles  

DOE Green Energy (OSTI)

Current designs for electric motors use a housing that acts as both a structural support and as a method of cooling the stator and rotor. This approach to cooling is not as effective as possible because heat must flow from the rotor and stator through the housing to the cooling media. Because the housing must contain the coolant, it is also larger, heavier, and more expensive than necessary. This project develops a motor that uses a direct lamination cooling (DLC) system, passing coolant directly through the stator and eliminating the need for bulky housing, thereby improving heat transfer. Motor size could be reduced by up to 30-40%, mass by up to 20-30%, and cost by up to 30%. Phase I demonstrated that reliable lamination-to-lamination seals and reliable stack-to-manifold seals can be achieved using the methods identified. The addition of the selected sealants adds only slightly to the thermal resistance and pressure drop compared with unsealed counterparts. Phase II builds electric motors and inductors using the DLC method, obtain comparative performance data on the effectiveness of the method, and then obtain operational use data on these components through long term testing in a representative environment. The long-term testing will ensure that real world aspects of motor and inductor operation (including vibration, temperature cycling, and the presence of electrical and magnetic fields) do not degrade the seals such that leaking occurs or that the thermal performance degrades.

Rippel, Wally; Kobayashi, Drayll

2003-07-30T23:59:59.000Z

140

Preliminary Assessment of Overweight Mainline Vehicles  

DOE Green Energy (OSTI)

The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination vehicles, and 50.6% of all the vehicles were permitted to operate above the legal weight limit in Tennessee, which is 80,000 lb for vehicles with five or more axles. Only 16.8% of the CMVs recorded were overweight gross (11.5% of permitted vehicles) and 54.1% were overweight on an axle group. The low percentage of overweight gross CMVs was because only 45 of the vehicles over 80,000 lb. were not permitted. On average, axles that were overweight were 2,000 lb. over the legal limit for an axle or group of axles. Of the vehicles recorded, 172 vehicles were given a North American Standard (NAS) inspection during the assessment. Of those, 69% of the inspections were driver-only inspections (Level III) and only 25% of the inspections had a vehicle component (such as a Level I or Level II). The remaining 6% of inspections did not have valid Aspen numbers; the type of was inspection unknown. Data collected on the types of trailers of each vehicle showed that about half of the recorded CMVs could realistically be given a Level I (full vehicle and driver) inspection; this estimate was solely based on trailer type. Enforcement personnel at ISs without an inspection pit have difficulty fully inspecting certain vehicles due to low clearance below the trailer. Because of this, overweight and oversized vehicles were normally only given a Level III (driver) inspection; thus, little is known about the safety of these vehicles. The out-of-service (OOS) rate of all the inspected vehicles (driver and vehicle inspections) was 18.6%, while the OOS rate for vehicle inspections (Level I and II) was 52.4%. Future work will focus on performing Level I inspections on five-axle combination tractor-trailers and the types of violations that overweight vehicles may have. This research will be conducted in Tennessee and possibly in other states as well.

Siekmann, Adam [ORNL; Capps, Gary J [ORNL; Lascurain, Mary Beth [ORNL

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "motor vehicle inspection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Allocation of the Social Costs of Motor-Vehicle Use to Six Classes of Motor Vehicles  

E-Print Network (OSTI)

higher the amount of foreign oil embodied, and consequentlyof domestic and foreign crude oil used to make motor fuels10-13b). Mass of foreign crude oil (including unfinished

Delucchi, Mark A.

1996-01-01T23:59:59.000Z

142

Development of a Vehicle Stability Control Strategy for a Hybrid Electric Vehicle Equipped With Axle Motors.  

E-Print Network (OSTI)

??Hybrid-electric vehicles have been available to consumers for over a decade, and plug-in hybrid and pure electric vehicles are rapidly becoming mainstream products with the (more)

Bayar, Kerem

2011-01-01T23:59:59.000Z

143

CMVRTC: Overweight Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

overweight vehicle data collection overweight vehicle data collection scale The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination

144

Economic Implications of Net Metering for Stationary and Motor Vehicle Fuel Cell Systems in California  

E-Print Network (OSTI)

); and · Similarly, use of PEM fuel cell waste heat for hot water heating would require careful integration with hot consider cogeneration of hot water to be a potential competitive advantage of stationary fuel cellsPWP-092 Economic Implications of Net Metering for Stationary and Motor Vehicle Fuel Cell Systems

Kammen, Daniel M.

145

Motor vehicle fuel economy, the forgotten HC control stragegy. [Hydrocarbon (HC)  

DOE Green Energy (OSTI)

Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

Deluchi, M.; Wang, Quanlu; Greene, D.L.

1992-06-01T23:59:59.000Z

146

Proceedings of the Neighborhood Electric Vehicle Workshop  

E-Print Network (OSTI)

Electric Vehicle Workshop Proceedings Vehicle Safety DesignElectric Vehicle Workshop Proceedings Federal Motor Vehicle SafetyElectric Vehicle Workshop Proceedings FEDERAL MOTOR VEHICLE SAFETY

Lipman, Timothy

1994-01-01T23:59:59.000Z

147

A guide to surveys of motor vehicle fleets  

DOE Green Energy (OSTI)

In response to directives in Section 407 of the Energy Policy Act of 1992 (EPACT), the Energy Information Administration (EIA) developed a data collection program designed to provide information useful to persons interested in the alternative fuels market. The target audience includes those seeking to manufacture, convert, sell, own, or operate alternative-fuel vehicles (AFVs) or alternative fueling facilities. Among the various projects EIA conducted as part of this data collection program were two fleet surveys conducted in Department of Energy-designated Clean Cities. The Clean Cities program is a locally-based government/industry partnership coordinated by the Department of Energy to expand the use of alternative transportation fuels. These surveys were designed to collect a broad range of information regarding the fleets and fleet vehicles in operation in the Atlanta, Georgia and Denver, Colorado areas. One of the objectives of these surveys was to attempt to identify and describe the market for AFVs. Due to inherent limitations associated with AFVs and limited alternative-fuel infrastructure, it`s believed that the first practical applications for AFVs will be within private and government fleets. Another objective in conducting the Clean Cities Fleet surveys was to develop a useful methodology for accessing and surveying private and municipal fleets that would aid other interested parties in conducting similar surveys. This report is intended to provide a description of how EIA gathered information on private and municipal fleets, but the basic survey design could be used to design surveys of other difficult-to-access populations. There are 3 basic steps to any survey: define the target population, constructing the survey frame, and implementing the survey. The procedures outlined in this report are, for the most part, the procedures used for the fleet survey conducted in Denver. The major changes between the two surveys are described in Appendix A.

NONE

1996-11-01T23:59:59.000Z

148

MOTOR-VEHICLE INFRASTRUCTURE AND SERVICES PROVIDED BY THE PUBLIC SECTOR Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

FOR REVIEW 5. Robbery of gas station 6. Robbery in parkingvehicles 13. Arson to gas stations and car dealerships 14.to motor-vehicles Arson to gas stations and car dealerships

Delucchi, Mark

2005-01-01T23:59:59.000Z

149

Motor-Vehicle Infrastructure and Services Provided by the Public Sector: Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

FOR REVIEW 5. Robbery of gas station 6. Robbery in parkingvehicles 13. Arson to gas stations and car dealerships 14.to motor-vehicles Arson to gas stations and car dealerships

Delucchi, Mark; Murphy, James

2005-01-01T23:59:59.000Z

150

U.S. Motor Vehicle Output and Other GDP, 1968-2007  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Vehicle Output and Other GDP, 1968-2007 Motor Vehicle Output and Other GDP, 1968-2007 Danilo J. Santini, Ph. D. Senior Economist Center for Transportation Research Argonne National Laboratory 9700 South Cass Avenue Phone: 630 252 3758 Fax: 630 252 3443 E-mail: dsantini@anl.gov David A Poyer, Ph.D. Associate Professor of Economics Morehouse College 830 Westview Dr. SW Atlanta, GA 30314 Phone: 404 681 2800, ext. 2553 E-mail: dpoyer@morehouse.edu THE 66th INTERNATIONAL ATLANTIC ECONOMIC CONFERENCE Montreal, Canada 9-12 October 2008 BUSINESS FLUCTUATIONS AND CYCLES 12 October 2008 Sunday 11:15 AM - 1:15 PM The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. . The U.S. Government

151

Spatial Analysis of Motor Vehicle Accidents in Johnson City, Tennessee, as Reported to Washington County Emergency Communications District (911).  

E-Print Network (OSTI)

??This study spatially analyzes emergency 911 call-for-service records from January 1, 2000 through December 31, 2009 for motor vehicle accidents inside the corporate limits of (more)

Bennett, Katharine D

2010-01-01T23:59:59.000Z

152

Phase 1 STTR flywheel motor/alternator for hybrid electric vehicles. CRADA final report  

SciTech Connect

Visual Computing Systems (VCS) and the Oak Ridge National Laboratory (ORNL) have teamed, through a Phase 1 Small Business Technology Transfer (STTR) grant from the US Department of Energy (DOE), to develop an advanced, low-cost motor/alternator drive system suitable for Flywheel Energy Storage (FES) applications. During Phase 1, system performance and design requirements were established, design concepts were generated, and preliminary motor/alternator designs were developed and analyzed. ORNL provided mechanical design and finite element collaboration and Lynx Motion Technology, a spin-off from VCS to commercialize their technology, constructed a proof-of-concept axial-gap permanent magnet motor/alternator that employed their Segmented Electromagnetic Array (SEMA) with a survivable design speed potential of 10,000 rpm. The VCS motor/alternator was successfully tested in ORNL`s Motor Test Tank using an ORNL inverter and ORNL control electronics. It was first operated as an unloaded motor to 6,000 rpm and driven as an unloaded generator to 6,000 rpm. Output from the generator was then connected to a resistance bank, which caused the loaded generator to decelerate to 3,860 rpm where data was collected. After about 4-1/2 minutes, the test was terminated because of an impact noise. Subsequent inspection and operation at low speeds did not reveal the source of the noise. Electrical performance of the motor was excellent, encouraging continued development of this technology. Phase 2 efforts will focus on further design development and optimization, manufacturing development and prototype construction, testing, and evaluation.

McKeever, J.W.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P. [Oak Ridge National Lab., TN (United States); Kessinger, R.L. Jr.; Robinson, S.T.; Seymour, K.P.; Dockstadter, K.D. [Visual Computer Systems Corp., Greenville, IN (United States)

1997-12-31T23:59:59.000Z

153

Tax and Fee Payments by Motor-Vehicle Users for the Use of Highways, Fuels, and Vehicles: Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

of Motor Vehicles, Albany, New York, personal communication,the Justice Court Fund, Albany, New York, data transmittal,of Accounting Operations, Albany, New York (1992). D. M.

Delucchi, Mark

2005-01-01T23:59:59.000Z

154

A decision support system of vehicle routing and refueling for motor carriers with time-sensitive demands  

Science Conference Proceedings (OSTI)

Given the recent trend of raising fuel cost and the increased time-sensitiveness of shippers, an extensive pressure is placed on the motor-carrier industry to meet the time-constrained customer demands at minimum fuel cost. We propose a decision support ... Keywords: Decision support system, Fuel cost, Motor carriers, Optimization, Vehicle routing

Yoshinori Suzuki

2012-12-01T23:59:59.000Z

155

A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives  

Science Conference Proceedings (OSTI)

The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105?C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

None, None

2012-01-31T23:59:59.000Z

156

Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.  

SciTech Connect

As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate

Wang, M.; Huo, H.; Johnson, L.; He, D.

2006-12-20T23:59:59.000Z

157

Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.  

Science Conference Proceedings (OSTI)

As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate

Wang, M.; Huo, H.; Johnson, L.; He, D.

2006-12-20T23:59:59.000Z

158

Propulsion system for a motor vehicle using a bidirectional energy converter  

DOE Patents (OSTI)

A motor vehicle propulsion system includes an electrical energy source and a traction motor coupled to receive electrical energy from the electrical energy source. The system also has a first bus provided electrical energy by the electrical energy source and a second bus of relatively lower voltage than the first bus. In addition, the system includes an electrically-driven source of reaction gas for the electrical energy source, the source of reaction gas coupled to receive electrical energy from the first bus. Also, the system has an electrical storage device coupled to the second bus for storing electrical energy at the lower voltage. The system also includes a bidirectional energy converter coupled to convert electrical energy from the first bus to the second bus and from the second bus to the first bus.

Tamor, Michael Alan (Toledo, OH); Gale, Allan Roy (Livonia, MI)

1999-01-01T23:59:59.000Z

159

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

provide the worlds uranium enrichment services. With theseenergy efficiency of uranium enrichment, in mWh-enrichment-gas Motor-vehicle flows Uranium enrichment Agriculture Fuel

Delucchi, Mark

2003-01-01T23:59:59.000Z

160

State of California BOARD OF EQUALIZATION MOTOR VEHICLE FUEL TAX REGULATIONS Regulation 1178.  

E-Print Network (OSTI)

(a) GENERAL. A taxpayer shall maintain and make available for examination on request by the board or its authorized representatives, records in the manner set forth at California Code of Regulations, Title 18, Section 4901 (b) SPECIFIC APPLICATIONS. In addition to the record keeping requirements set forth in subdivision (a), suppliers shall comply with the following requirements. A supplier shall maintain complete records of all rack removals, sales, imports and exempt dispositions including exemption certificates, self-consumed fuel, inventories, purchases, receipts, and tank gaugings or meter readings, of motor vehicle and any other fuel that is required to be accounted for on the suppliers return or report. Such records include but are not limited to: (1) Refinery Reports related to the production of motor vehicle fuel. (2) Inventory reconciliation by location. (3) Storage inventory reports. (4) List of storage locations. (5) Tax returns from other states to support export claims. (6) Cardlock statements. (7) Calculations or formulas to support off-highway exempt usage.

unknown authors

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "motor vehicle inspection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Impact of Motor Vehicle Operation on Water Quality: A Premilinary Assessment  

E-Print Network (OSTI)

Institute), 1997. Used Motor Oil Collection and Recycling. Amillion gallons of used motor oil are improperly dischargedLike crude oil slicks, used motor oil can destroy aquatic

Nixon, Hillary; Saphores, Jean-Daniel

2003-01-01T23:59:59.000Z

162

Study of the Advantages of Internal Permanent Magnet Drive Motor with Selectable Windings for Hybrid-Electric Vehicles  

SciTech Connect

This report describes research performed on the viability of changing the effectively active number of turns in the stator windings of an internal permanent magnet (IPM) electric motor to strengthen or weaken the magnetic fields in order to optimize the motor's performance at specific operating speeds and loads. Analytical and simulation studies have been complemented with research on switching mechanisms to accomplish the task. The simulation studies conducted examine the power and energy demands on a vehicle following a series of standard driving cycles and the impact on the efficiency and battery size of an electrically propelled vehicle when it uses an IPM motor with turn-switching capabilities. Both full driving cycle electric propulsion and propulsion limited starting from zero to a set speed have been investigated.

Otaduy, P.J.; Hsu, J.S.; Adams, D.J.

2007-11-30T23:59:59.000Z

163

Texas AgriLife Research Procedure 24.01.01.A1.02 Motor Vehicle Accident Reports Page 1 of 2 Texas AgriLife Research Procedures  

E-Print Network (OSTI)

Texas AgriLife Research Procedure 24.01.01.A1.02 Motor Vehicle Accident Reports Page 1 of 2 Texas Revised: November 13, 2010 Next Scheduled Review: November 13, 2012 PROCEDURE STATEMENT The Texas A vehicle operators in the event of a vehicle accident involving a Texas AgriLife Research (Agri

164

Impacts of motor vehicle operation on water quality - Clean-up Costs and Policies  

E-Print Network (OSTI)

and recycling. API used motor oil FAQs. Available from:improperly discharged used motor oil pollute streams, lakes,refined products such as motor oil and gasoline are more

Nixon, Hilary; Saphores, Jean-Daniel M

2007-01-01T23:59:59.000Z

165

The Impacts of Motor Vehicle Operation on Water Quality: A Preliminary Assessment  

E-Print Network (OSTI)

million gallons of used motor oil are improperly discharged3 Like crude oil slicks, used motor oil can destroy aquaticrefined products such as motor oil and gasoline are more

Nixon, Hilary; Saphores, Jean-Daniel M

2003-01-01T23:59:59.000Z

166

The Cost of Crop Damage Caused by Ozone Air Pollution From Motor Vehicles  

E-Print Network (OSTI)

transportation fuels, oil-production ?elds, motor-vehiclethe production of crude oil used to make motor fuel, thethe production of crude oil used to make motor fuel, the

Murphy, James; Delucchi, Mark; McCubbin, Donald; Kim, H.J.

1999-01-01T23:59:59.000Z

167

The Cost of Crop Damage Caused by Ozone Air Pollution From Motor Vehicles  

E-Print Network (OSTI)

transportation fuels, oil-production fields, motor-vehiclethe production of crude oil used to make motor fuel, thethe production of crude oil used to make motor fuel, the

Delucchi, Mark A.; Murphy, James; Kim, Jin; McCubbin, Donald R.

1996-01-01T23:59:59.000Z

168

Texas AgriLife Extension Service Procedure 21.01.08.X1.04 Vehicle Compulsory Inspection Page 1 of 2 Texas AgriLife Extension Service Procedures  

E-Print Network (OSTI)

Texas AgriLife Extension Service Procedure 21.01.08.X1.04 Vehicle Compulsory Inspection Page 1 of 2 Texas AgriLife Extension Service Procedures 21.01.08.X1.04 VEHICLE COMPULSORY INSPECTION Approved: July The Texas Transportation Code, Title 7, Subtitle C, Chapter 548 administered by the Department of Public

169

Airborne Inventory and Inspection of Transmission Lines: Unmanned Airborne Vehicle (UAV)  

Science Conference Proceedings (OSTI)

Deregulation and competition have changed the electrical power industry business environment. The emphasis of utility companies has shifted to increasing the reliability of the power delivery system while minimizing costs and maximizing the use of existing facilities. This new emphasis results in a reduction of capital spending on upgrades and new construction. Consequently, there is a need to effectively apply reduced budgets to minimize inspection and maintenance cost.

2000-09-14T23:59:59.000Z

170

PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report  

DOE Green Energy (OSTI)

The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a power density surpassed by no other machine design.

Staunton, R.H.

2004-08-11T23:59:59.000Z

171

The Contribution of Motor Vehicles and Other Sources to Ambient Air Pollution  

E-Print Network (OSTI)

industries Petrol evaporation Gasoline vehicle exhaustb Solvents and storage Fuel combustion by electric

Delucchi, Mark A.; McCubbin, Donald R.

1996-01-01T23:59:59.000Z

172

Powertrain Component Inspection from Mid-Level Blends Vehicle Aging Study  

DOE Green Energy (OSTI)

The Energy Independence and Security Act of 2007 calls on the nation to significantly increase its use of renewable fuels to meet its transportation energy needs. The law expands the renewable fuel standard to require use of 36 billion gallons of renewable fuel by 2022. Given that ethanol is the most widely used renewable fuel in the U.S. market, ethanol will likely make up a significant portion of the 36-billion-gallon requirement. The vast majority of ethanol used in the United States is blended with gasoline to create E10-gasoline with up to 10% ethanol. The remaining ethanol is sold in the form of E85 - a gasoline blend with as much as 85% ethanol that can only be used in flexible-fuel vehicles (FFVs). Consumption of E85 is at present limited by both the size of the FFV fleet and the number of E85 fueling stations. Gasoline consumption in the United States is currently about 140 billion gallons per year; thus the maximum use of ethanol as E10 is only about 14 billion gallons. While the U.S. Department of Energy (DOE) remains committed to expanding the E85 infrastructure, that market represented less than 1% of the ethanol consumed in 2010 and will not be able to absorb projected volumes of ethanol in the near term. Because of these factors, DOE and others have been assessing the viability of using mid-level ethanol blends (E15 or E20) as a way to accommodate growing volumes of ethanol. The DOE Mid-Level Ethanol Blends Test Program has been under way since 2007, supported jointly by the Office of the Biomass Program and the Vehicle Technologies Program. One of the larger projects, the Catalyst Durability Study, or Vehicle Aging Study, will be completed early in calendar year 2011. The following report describes a subproject of the Vehicle Aging Study in which powertrain components from 18 of the vehicles were examined at Southwest Research Institute under contract to Oak Ridge National Laboratory (ORNL).

Shoffner, Brent [Southwest Research Institute, San Antonio; Johnson, Ryan [Southwest Research Institute, San Antonio; Heimrich, Martin J. [Southwest Research Institute, San Antonio; Lochte, Michael [Southwest Research Institute, San Antonio

2010-11-01T23:59:59.000Z

173

The Annualized Social Cost of Motor-Vehicle Use in the U.S., 1990-1991: Summary of Theory, Data, Methods, and Results  

E-Print Network (OSTI)

of gasoline excludes retail sales taxes and the motor-fuelmotor gasoline, and add to it the refineries actual private cost (exclusive of taxes)motor vehicles, and certainly not to forward any particular position about what, for example, gasoline taxes

Delucchi, Mark A.

1997-01-01T23:59:59.000Z

174

Global Methodology to Integrate Innovative Models for Electric Motors in Complete Vehicle Simulators  

E-Print Network (OSTI)

. 66 (2011), No. 5878 ABBREVIATIONS EM Electric Motor FE Finite Element FEA Finite Element Analysis FEM: the Interior Magnet Synchronous Motor with V-shape mag- net, (V-IPMSM), technology used in the Toyota Prius II, the electro- magnetic parameters of the Toyota Prius II Electric Motor are estimated thanks to the presented

Paris-Sud XI, Université de

175

Subcontract Report: Final Report on Assessment of Motor Technologies for Traction Drives of Hybrid and Electric Vehicles (Subcontract #4000080341)  

DOE Green Energy (OSTI)

Currently, interior permanent magnet (IPM) motors with rare-earth (RE) magnets are almost universally used for hybrid and electric vehicles (EVs) because of their superior properties, particularly power density. However, there is now a distinct possibility of limited supply or very high cost of RE magnets that could make IPM motors unavailable or too expensive. Because development of electric motors is a critical part of the U.S. Department of Energy (DOE) Advanced Power Electronics and Motors activity, DOE needs to determine which options should be investigated and what barriers should be addressed. Therefore, in order to provide a basis for deciding which research topics should be pursued, an assessment of various motor technologies was conducted to determine which, if any, is potentially capable of meeting FreedomCAR 2015 and 2020 targets. Highest priority was given to IPM, surface mounted permanent magnet (SPM), induction, and switched reluctance (SR) motors. Also of interest, but with lesser emphasis, were wheel motors, multiple-rotor motors, motors with external excitation, and several others that emerged from the assessment. Cost and power density (from a design perspective, the power density criterion translates to torque density) are emerging as the two most important properties of motors for traction drives in hybrid and EVs, although efficiency and specific power also are very important. The primary approach for this assessment involved interviews with original equipment manufacturers (OEMs), their suppliers, and other technical experts. For each technology, the following issues were discussed: (1) The current state-of-the-art performance and cost; (2) Recent trends in the technology; (3) Inherent characteristics of the motor - which ones limit the ability of the technology to meet the targets and which ones aid in meeting the target; (4) What research and development (R&D) would be needed to meet the targets; and (5) The potential for the technology to meet the targets. The interviews were supplemented with information from past Oak Ridge National Laboratory (ORNL) reports, previous assessments that were conducted in 2004, and literature on magnet technology. The results of the assessment validated the DOE strategy involving three parallel paths: (1) there is enough of a possibility that RE magnets will continue to be available, either from sources outside China or from increased production in China, that development of IPM motors using RE magnets should be continued with emphasis on meeting the cost target. (2) yet the possibility that RE magnets may become unavailable or too expensive justifies efforts to develop innovative designs for permanent magnet (PM) motors that do not use RE magnets. Possible other magnets that may be substituted for RE magnets include samarium-cobalt (Sm-Co), Alnico, and ferrites. Alternatively, efforts to develop motors that do not use PMs but offer attributes similar to IPM motors also are encouraged. (3) New magnet materials using new alloys or processing techniques that would be less expensive or have comparable or superior properties to existing materials should be developed if possible. IPM motors are by far the most popular choice for hybrid and EVs because of their high power density, specific power, and constant power-speed ratio (CPSR). Performance of these motors is optimized when the strongest possible magnets - i.e., RE neodymium-iron-boron (NdFeB) magnets - are used.

Fezzler, Raymond [BIZTEK Consulting, Inc.

2011-03-01T23:59:59.000Z

176

State of California BOARD OF EQUALIZATION MOTOR VEHICLE FUEL TAX REGULATIONS Regulation 1111.  

E-Print Network (OSTI)

A highway includes a way or place, of whatever nature, within the exterior boundaries of the State including a way or place within a Federal area, publicly maintained and open to the use of the public for purposes of vehicular travel, notwithstanding private participation in the maintenance of the way or place. A way or place within a national or State forest which is entirely privately maintained, or a road over which forest products are transported in a national or State forest privately constructed or maintained pursuant to an existing agreement with the public authority having jurisdiction thereof will not be considered a highway notwithstanding the fact that it may be declared by the public authority to be a part of its road system. A way or place under the jurisdiction of the United States Department of Agriculture within a national forest including private property within or adjacent thereto, which way or place is open to public use, is a highway but the tax is refundable on the fuel used in the operation of a motor vehicle thereon by any person who for the use of such highway pays, or contributes to, the cost of construction or maintenance of the way or place pursuant to an agreement with, or permission of, the United States Department of Agriculture. (See Section 8101.1, Revenue and Taxation Code.) A way or place is not a highway within the meaning of Section 7319 of the Revenue and Taxation Code, during such times as it is closed by the governmental authority to the use of the public regardless of the

unknown authors

1958-01-01T23:59:59.000Z

177

Texas AgriLife Extension Service Procedure 24.01.01.X1.02 Motor Vehicle Accident Reports Page 1 of 2 Texas AgriLife Extension Service Procedures  

E-Print Network (OSTI)

Texas AgriLife Extension Service Procedure 24.01.01.X1.02 Motor Vehicle Accident Reports Page 1 of 2 Texas AgriLife Extension Service Procedures 24.01.01.X1.02 MOTOR VEHICLE ACCIDENT REPORTS Approved The Texas A&M University System covers system vehicles under a system-wide self insurance plan. Employees

178

Intelligent GPS-based predictive engine control for a motor vehicle  

Science Conference Proceedings (OSTI)

An intelligent Global Positioning System (GPS) based control system utilises information about the current vehicle position and upcoming terrain in order to reduce vehicle fuel consumption as well as improve road safety and comfort. The development of ...

S. H. Lee; S. M. Begg; S. D. Walters; R. J. Howlett

2010-08-01T23:59:59.000Z

179

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network (OSTI)

wood, grass, or corn. It considers fuel-cell electric vehicles (FCVs) as well as internal- combustion

Delucchi, Mark

2005-01-01T23:59:59.000Z

180

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

wood, grass, or corn. It considers fuel-cell electric vehicles (FCVs) as well as internal- combustion

Delucchi, Mark

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "motor vehicle inspection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Wireless Roadside Inspection Field Operations.pub  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Operational Test (FOT) Field Operational Test (FOT) Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract number DE-AC05-00OR22725 Research Areas Freight Flows Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies Research Brief T he U.S. Department of Transportation (DOT) Federal Motor Carrier Safety Administration (FMCSA) has commissioned the Wireless Roadside Inspection (WRI) Program to validate technologies and methodologies that can improve safety through inspections using wireless technologies that convey real-time identification of commercial vehicles, drivers, and carriers, as well as information about the status of the vehicles and their drivers. It is hypothesized that

182

Design and analysis of wheel hub to provide in-hub electric motor for HMMWV vehicle.  

E-Print Network (OSTI)

??This thesis describes the design of the wheel hub of hybrid HMMWV so as to introduce an electric in-hub motor inside the hub. Chapter I (more)

Thakur, Sandeep Singh

2004-01-01T23:59:59.000Z

183

A dual-channel flux-switching permanent magnet motor for hybrid electric vehicles  

Science Conference Proceedings (OSTI)

The flux-switching permanent magnet (FSPM) motor is a relatively novel brushless machine having both magnets and concentrated windings in the stator

Wei Hua; Zhongze Wu; Ming Cheng; Baoan Wang; Jianzhong Zhang; Shigui Zhou

2012-01-01T23:59:59.000Z

184

Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials....

185

Smart Infrared Inspection System Field Operational Test Final Report  

SciTech Connect

The Smart InfraRed Inspection System (SIRIS) is a tool designed to assist inspectors in determining which vehicles passing through the SIRIS system are in need of further inspection by measuring the thermal data from the wheel components. As a vehicle enters the system, infrared cameras on the road measure temperatures of the brakes, tires, and wheel bearings on both wheel ends of commercial motor vehicles (CMVs) in motion. This thermal data is then presented to enforcement personal inside of the inspection station on a user friendly interface. Vehicles that are suspected to have a violation are automatically alerted to the enforcement staff. The main goal of the SIRIS field operational test (FOT) was to collect data to evaluate the performance of the prototype system and determine the viability of such a system being used for commercial motor vehicle enforcement. From March 2010 to September 2010, ORNL facilitated the SIRIS FOT at the Greene County Inspection Station (IS) in Greeneville, Tennessee. During the course of the FOT, 413 CMVs were given a North American Standard (NAS) Level-1 inspection. Of those 413 CMVs, 384 were subjected to a SIRIS screening. A total of 36 (9.38%) of the vehicles were flagged by SIRIS as having one or more thermal issues; with brakes issues making up 33 (91.67%) of those. Of the 36 vehicles flagged as having thermal issues, 31 (86.11%) were found to have a violation and 30 (83.33%) of those vehicles were placed out-of-service (OOS). Overall the enforcement personnel who have used SIRIS for screening purposes have had positive feedback on the potential of SIRIS. With improvements in detection algorithms and stability, the system will be beneficial to the CMV enforcement community and increase overall trooper productivity by accurately identifying a higher percentage of CMVs to be placed OOS with minimal error. No future evaluation of SIRIS has been deemed necessary and specifications for a production system will soon be drafted.

Siekmann, Adam [ORNL; Capps, Gary J [ORNL; Franzese, Oscar [ORNL; Lascurain, Mary Beth [ORNL

2011-06-01T23:59:59.000Z

186

Speed-sensorless torque control of induction motors for hybrid electric vehicles.  

E-Print Network (OSTI)

??Hybrid Electric Vehicles (HEVs) are exciting new additions to the car markets since they combine the best features of conventional and electric cars to improve (more)

Fu, Tianjun

2005-01-01T23:59:59.000Z

187

Experimental analysis of disc thickness variation development in motor vehicle brakes.  

E-Print Network (OSTI)

??Over the past decade vehicle judder caused by Disc Thickness Variation (DTV) has become of major concern to automobile manufacturers worldwide. Judder is usually perceived (more)

Rodriguez, C

2006-01-01T23:59:59.000Z

188

Non-isolated integrated motor drive and battery charger based on the split-phase PM motor for plug-in vehicles.  

E-Print Network (OSTI)

??In electric vehicles and plug-in hybrid electric vehicles, the utility grid charges the vehicle battery through a battery charger. Different solutions have been proposed to (more)

Serrano Guilln, Isabel

2013-01-01T23:59:59.000Z

189

Advanced Vehicle Testing Activity: Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

motor of an electric vehicle. Other hybrids combine a fuel cell with batteries to power electric propulsion motors. Fuel Cell Concept: Fuel passes through an anode, electrolyte,...

190

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

assistance related to oil, and the cost of defending oil21 April 2008 Keywords: Oil importing cost Motor fuel socialexample, if the oil defense cost per gallon is proportional

Delucchi, Mark; Murphy, James

2008-01-01T23:59:59.000Z

191

Draft Supplemental Environmental Assessment For General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative White Marsh, Maryland, DOE/EA-1723S (December 2010)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT SUPPLEMENTAL ENVIRONMENTAL DRAFT SUPPLEMENTAL ENVIRONMENTAL ASSESSMENT For General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative White Marsh, Maryland May 2011 U.S. DEPARTMENT OF ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY U.S. Department of Energy General Motors National Energy Technology Laboratory Supplemental Environmental Assessment i May 2011 ACKNOWLEDGEMENT This report was prepared with the support of the U.S. Department of Energy (DOE) under Award Number DE-EE0002629. U.S. Department of Energy General Motors National Energy Technology Laboratory Supplemental Environmental Assessment ii May 2011 COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing

192

TAX AND FEE PAYMENTS BY MOTOR VEHICLE USERS FOR THE USE OF HIGHWAYS, FUELS, AND VEHICLES Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

oil inspection license fees for oil-well plugging drill andselective sales tax on oil and gas well- servicing, andSERVICES Drilling oil and gas wells Oil and gas exploration

Delucchi, Mark

2005-01-01T23:59:59.000Z

193

Impacts of Motor Vehicle Operation on Water Quality in the United States - Clean-up Costs and Policies  

E-Print Network (OSTI)

improperly discharged used motor oil pollute streams, lakes,refined products such as motor oil and gasoline are moreeasily. Third, used motor oil often contains contaminants,

Nixon, Hilary; Saphores, Jean-Daniel

2007-01-01T23:59:59.000Z

194

Wireless Roadside Inspection Phase II Tennessee Commercial Mobile Radio Services Pilot Test Final Report  

SciTech Connect

The Federal Motor Carrier Safety Administration (FMCSA) Wireless Roadside Inspection (WRI) Program is researching the feasibility and value of electronically assessing truck and bus driver and vehicle safety at least 25 times more often than is possible using only roadside physical inspections. The WRI program is evaluating the potential benefits to both the motor carrier industry and to government. These potential benefits include reduction in accidents, fatalities and injuries on our highways and keeping safe and legal drivers and vehicles moving on the highways. WRI Pilot tests were conducted to prototype, test and demonstrate the feasibility and benefits of electronically collecting safety data message sets from in-service commercial vehicles and performing wireless roadside inspections using three different communication methods. This report summarizes the design, conduct and results of the Tennessee CMRS WRI Pilot Test. The purpose of this Pilot test was to demonstrate the implementation of commercial mobile radio services to electronically request and collect safety data message sets from a limited number of commercial vehicles operating in Tennessee. The results of this test have been used in conjunction with the results of the complimentary pilot tests to support an overall assessment of the feasibility and benefits of WRI in enhancing motor carrier safety (reduction in accidents) due to increased compliance (change in motor carrier and driver behavior) caused by conducting frequent safety inspections electronically, at highway speeds, without delay or need to divert into a weigh station

Franzese, Oscar [ORNL; Lascurain, Mary Beth [ORNL; Capps, Gary J [ORNL; Siekmann, Adam [ORNL

2011-05-01T23:59:59.000Z

195

Household Vehicles Energy Consumption 1994 - PDF Tables  

U.S. Energy Information Administration (EIA)

Table 1 U.S. Number of Vehicles, Vehicle Miles, Motor Fuel Consumption and Expenditures, 1994 Table 2 U.S. per Household Vehicle Miles Traveled, Vehicle Fuel ...

196

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicles International - EVI-MD Electric Vehicles International - 260-hp AC permanent magnet motor with...

197

Microsoft PowerPoint - Wireless Roadside Inspection Pilot Test.ppt [Compatibility Mode]  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Every year the number of trucks on the road, and the numbers of miles those trucks drive increases while the roadside safety inspection resources remain constant. The likelihood of a roadside inspection is far less than of a truck being weighed. Only about 3.4 million annual truck inspections are performed annually, compared to the 85 million (92 M WIM) weight inspections. Safety Data Message Set Contents Data Bus: SAEJ1708/SAEJ1587, SAEJ1939 Electronic On-Board Recorder (EOBR) Data Driver's Log (Duty Status + Location of Duty Status Change over time) Identifiers Driver license jurisdiction and ID Vehicle identification number (VIN) Vehicle state and plate Motor carrier/coach USDOT number Shipping document ID Equipment (e.g., trailer) ID Vehicle Measures

198

Local government energy management: liquid petroleum gas (LPG) as a motor vehicle fuel  

SciTech Connect

The retrofit or conversion of automotive engines to operate on liquid petroleum gas (LPG) or propane fuel is one of many potentially cost-effective strategies for reducing a local government's annual fleet operating and maintenance costs. The cost effectiveness of an LPG conversion decision is highly dependent on the initial conversion cost, vehicle type, current and projected fuel costs, vehicle fuel economy (miles per gallon), and yearly average mileage. A series of plots have been developed which indicate simple paybacks for the conversion of several vehicle types (passenger car, small and standard pickups, and two and three ton trucks) over a wide range of fuel economies and annual usage patterns. A simple payback of less than three years can be achieved for vehicles with poor fuel economy and high annual use. The figures provided in this report may be used by fleet management personnel as a screening tool to identify those passenger cars, small or standard pickups, or light duty trucks which are candidates for LPG conversion. In addition to examining the benefits of an LPG conversion, local governments should also consider the competing energy management strategies of downsizing, and the acquisition of fuel efficient, diesel powered vehicles.

McCoy, G.A.; Kerstetter, J.

1983-10-01T23:59:59.000Z

199

Inhalation of primary motor vehicle emissions: Effects of urbanpopulation and land area  

SciTech Connect

Urban population density can influence transportation demand, as expressed through average daily vehicle-kilometers traveled per capita (VKT). In turn, changes in transportation demand influence total passenger vehicle emissions. Population density can also influence the fraction of total emissions that are inhaled by the exposed urban population. Equations are presented that describe these relationships for an idealized representation of an urban area. Using analytic solutions to these equations, we investigate the effect of three changes in urban population and urban land area (infill, sprawl, and constant-density growth) on per capita inhalation intake of primary pollutants from passenger vehicles. The magnitude of these effects depends on density-emissions elasticity ({var_epsilon}{sub e}), a normalized derivative relating change in population density to change in vehicle emissions. For example, if urban population increases, per capita intake is less with infill development than with constant-density growth if {var_epsilon}{sub e} is less than -0.5, while for {var_epsilon}{sub e} greater than -0.5 the reverse is true.

Marshall, Julian D.; McKone, Thomas E.; Nazaroff, William W.

2004-06-14T23:59:59.000Z

200

Quantifying the Heat-Related Hazard for Children in Motor Vehicles  

Science Conference Proceedings (OSTI)

Thirty-seven children on average die each year in the United States from vehicle-related hyperthermia. In many cases, the parent or care-giver intentionally left the child unattended in the car, unaware of how quickly temperatures may reach ...

Andrew Grundstein; John Dowd; Vernon Meentemeyer

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "motor vehicle inspection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Electric Vehicle Manufacturing in Southern California: Current Developments, Future Prospects  

E-Print Network (OSTI)

Planning. UCLA. Motor Vehicles Manufacturers Association (Authority MVMA Motor Vehicle Manufacturers AssoemUon NaSneedsof electric vehicle manufacturers. Thesesectors include

Scott, Allen J.

1993-01-01T23:59:59.000Z

202

Latest techniques and equipment for the conversion of motor vehicles to LPG/petroleum use  

SciTech Connect

Liquified petroleum gases (LPG) has been used for transportation in Europe, the United States, Japan and to a much lesser extent in Australia for many years. In most cases, the vehicles have been powered by engines designed for petrol operation and subsequently converted to use LPG. The application of LPG as an automotive fuel in different countries depends heavily on the availability of the fuel and the tax policy of the government. The demand for dual fuel equipment is increasing. Some of the problems facing Australia to convert vehicles to LPG use emphasize the institutional and hardware obstacles. Before LPG can be considered to be a safe, viable alternative fuel to petrol, improvements will have to be made in safety standards, in reduced exhaust emissions, in increased fuel efficiency, and in the involvement of car manufacturers. (SAC)

Armstrong, R.

1980-01-01T23:59:59.000Z

203

In-State Contract Vehicle Rental Rates (State Motor Pool Rental Contract for Business Travel)  

E-Print Network (OSTI)

# · Rates require that the vehicle be returned with a full tank of gas. · Unlimited mileage on all rentals Insurance. Large Truck 51 281 1,020 · Weekly rates are calculated at 5.5 times the Daily rate. Cargo Van/Truck 51 281 1,020 · Monthly rates will be calculated at 20 times the Daily rate. Van - 15 Passenger 90 495

Harms, Kyle E.

204

Aurica Motors | Open Energy Information  

Open Energy Info (EERE)

Product California-based Aurica Motors is planning to develop and manufacture an electric vehicle at a former Toyota plant in the state. References Aurica Motors1...

205

rail inspections matrix  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMPARISON OF COMMERCIAL VEHICLE SAFETY ALLIANCE RECOMMENDED NATIONAL PROCEDURES COMPARISON OF COMMERCIAL VEHICLE SAFETY ALLIANCE RECOMMENDED NATIONAL PROCEDURES AND OUT-OF-SERVICE CRITERIA FOR THE ENHANCED SAFETY INSPECTION OF COMERCIAL HIGHWAY VEHICLES TRANSPORTING TRANSURANICS, SPENT NUCLEAR FUEL, AND HIGH LEVEL WASTE TO RAIL INSPECTION STANDARDS -TEC-WG, RAIL TOPIC GROUP 1 Commercial Vehicle Safety Alliance Requirement Applicable Federal Regulation (All 49CFR unless otherwise noted) AAR Rule or Standard Applicable Industry / Regulatory Initiatives / Recommended Practices 1.0 GENERAL 215-RAILROAD FREIGHT CAR SAFETY STANDARDS 221-REAR END MARKING DEVICE-PASSENGER, COMMUTER AND FREIGHT TRAINS 223-SAFETY GLAZING STANDARDS-LOCOMOTIVES, PASSENGER CARS AND CABOOSES 229-RAILROAD LOCOMOTIVE

206

Journal of Asian Electric Vehicles, Volume 8, Number 1, June 2010 Simplified Thermal Model of PM Motors in Hybrid Vehicle Applications Taking  

E-Print Network (OSTI)

, thermal circuit, heat processes, pulse-width-modulated 1. INTRODUCTION Permanent magnet (PM) motors components in the system. Thermal studies on electric motors often approach the subject using FEA. Although to a cylinder. Reference [Hsu et al., 2005] shows that the thermal conductivity of Toyota Prius traction motor

Mi, Chunting "Chris"

207

Heavy and Overweight Vehicle Defects Interim Report  

SciTech Connect

The Federal Highway Administration (FHWA), along with the Federal Motor Carrier Safety Administration (FMCSA), has an interest in overweight commercial motor vehicles, how they affect infrastructure, and their impact on safety on the nation s highways. To assist both FHWA and FMCSA in obtaining more information related to this interest, data was collected and analyzed from two separate sources. A large scale nationwide data collection effort was facilitated by the Commercial Vehicle Safety Alliance as part of a special study on overweight vehicles and an additional, smaller set, of data was collected from the state of Tennessee which included a much more detailed set of data. Over a six-month period, 1,873 Level I inspections were performed in 18 different states that volunteered to be a part of this study. Of the 1,873 inspections, a vehicle out-of-service (OOS) violation was found on 44.79% of the vehicles, a rate significantly higher than the national OOS rate of 27.23%. The main cause of a vehicle being placed OOS was brake-related defects, with approximately 30% of all vehicles having an OOS brake violation. Only about 4% of vehicles had an OOS tire violation, and even fewer had suspension and wheel violations. Vehicle weight violations were most common on an axle group as opposed to a gross vehicle weight violation. About two thirds of the vehicles cited with a weight violation were overweight on an axle group with an average amount of weight over the legal limit of about 2,000 lbs. Data collection is scheduled to continue through January 2014, with more potentially more states volunteering to collect data. More detailed data collections similar to the Tennessee data collection will also be performed in multiple states.

Siekmann, Adam [ORNL; Capps, Gary J [ORNL

2012-12-01T23:59:59.000Z

208

Performance Evaluation of a Cascaded H-Bridge Multi Level Inverter Fed BLDC Motor Drive in an Electric Vehicle  

E-Print Network (OSTI)

The automobile industry is moving fast towards Electric Vehicles (EV); however this paradigm shift is currently making its smooth transition through the phase of Hybrid Electric Vehicles. There is an ever-growing need for integration of hybrid energy sources especially for vehicular applications. Different energy sources such as batteries, ultra-capacitors, fuel cells etc. are available. Usage of these varied energy sources alone or together in different combinations in automobiles requires advanced power electronic circuits and control methodologies. An exhaustive literature survey has been carried out to study the power electronic converter, switching modulation strategy to be employed and the particular machine to be used in an EV. Adequate amount of effort has been put into designing the vehicle specifications. Owing to stronger demand for higher performance and torque response in an EV, the Permanent Magnet Synchronous Machine has been favored over the traditional Induction Machine. The aim of this thesis is to demonstrate the use of a multi level inverter fed Brush Less Direct Current (BLDC) motor in a field oriented control fashion in an EV and make it follow a given drive cycle. The switching operation and control of a multi level inverter for specific power level and desired performance characteristics is investigated. The EV has been designed from scratch taking into consideration the various factors such as mass, coefficients of aerodynamic drag and air friction, tire radius etc. The design parameters are meant to meet the requirements of a commercial car. The various advantages of a multi level inverter fed PMSM have been demonstrated and an exhaustive performance evaluation has been done. The investigation is done by testing the designed system on a standard drive cycle, New York urban driving cycle. This highly transient driving cycle is particularly used because it provides rapidly changing acceleration and deceleration curves. Furthermore, the evaluation of the system under fault conditions is also done. It is demonstrated that the system is stable and has a ride-through capability under different fault conditions. The simulations have been carried out in MATLAB and Simulink, while some preliminary studies involving switching losses of the converter were done in PSIM.

Emani, Sriram S.

2010-05-01T23:59:59.000Z

209

AGNI Motors | Open Energy Information  

Open Energy Info (EERE)

Place India Zip 370 230 Sector Vehicles Product UK-based manufacturer of DC Motors and Battery Management Systems for Electric Vehicles References AGNI Motors1 LinkedIn...

210

Conventional and fuzzy PI control of voltage-source inverter-fed induction motor drive for electric vehicle  

Science Conference Proceedings (OSTI)

Keywords: adaptive control, control algorithm, electric vehicle, fuzzy control, inverter drive system

Tadeusz Stefanski

1995-12-01T23:59:59.000Z

211

Flexible ultrasonic pipe inspection apparatus  

DOE Patents (OSTI)

Pipe crawlers, pipe inspection {open_quotes}rabbits{close_quotes} and similar vehicles are widely used for inspecting the interior surfaces of piping systems, storage tanks and process vessels for damaged or flawed structural features. This paper describes the design of a flexible, modular ultrasonic pipe inspection apparatus.

Jenkins, C.F.; Howard, B.D.

1994-01-01T23:59:59.000Z

212

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

E27C177982 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 105 kW Battery: NiMH Seatbelt Positions: Five Payload: 981 lbs Features: Regenerative braking Traction...

213

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

E87C172351 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 105 kW Battery: NiMH Seatbelt Positions: Five Payload: 981 lbs Features: Regenerative braking Traction...

214

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Z07S838122 Vehicle Specifications Engine: 2.4 L 4 cylinder Electric Motor: 14.5 kW Battery: NiMH Seatbelt Positions: Five Payload: 1,244 lbs Features: Regenerative braking wABS 4...

215

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

2AR194699 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features: Regenerative braking Traction...

216

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

2WD VIN 1FMYU95H75KC45881 Vehicle Specifications Engine: 2.3 L 4-cylinder Electric Motor: 70 kW Battery: NiMH Seatbelt Positions: Five Features: Four wheel drive Regenerative...

217

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

4AR144757 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features: Regenerative braking Traction...

218

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Z37S813344 Vehicle Specifications Engine: 2.4 L 4 cylinder Electric Motor: 14.5 kW Battery: NiMH Seatbelt Positions: Five Payload: 1,244 lbs Features: Regenerative braking wABS 4...

219

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

4WD VIN 1FMCU96H15KE18237 Vehicle Specifications Engine: 2.4 L 4-cylinder Electric Motor: 70 kW Battery: NiMH Seatbelt Positions: Five Features: Four wheel drive Regenerative...

220

Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle Retrofit Emissions Inspection Process to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on AddThis.com...

Note: This page contains sample records for the topic "motor vehicle inspection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Motor vehicle fuel analyzer  

DOE Patents (OSTI)

A gas detecting system is described for classifying the type of liquid fuel in a container or tank. The system includes a plurality of semiconductor gas sensors, each of which differs from the other in its response to various organic vapors. The system includes a means of processing the responses of the plurality of sensors such that the responses to any particular organic substance or mixture is sufficiently distinctive to constitute a recognizable ``signature``. The signature of known substances are collected and divided into two classes based on some other known characteristic of the substances. A pattern recognition system classifies the signature of an unknown substance with reference to the two user-defined classes, thereby classifying the unknown substance with regard to the characteristic of interest, such as its suitability for a particular use. 14 figs.

Hoffheins, B.S.; Lauf, R.J.

1997-08-05T23:59:59.000Z

222

Motor vehicles in the 1990s: Emerging environmental constraints on current fuels, and emissions and energy trade-offs related to nonpetroleum alternatives  

DOE Green Energy (OSTI)

Manufacturers of motor vehicles and engines may face substantial compliance challenges because of existing or proposed environmental regulations. Among the challenges due to existing regulations is the need for improved control of evaporative emissions from gasoline vehicles and emissions of particulate matter from heavy-duty diesel trucks. Potential future challenges could arise from the need to control refueling emissions and from more stringent emission standards for hydrocarbons and oxides of nitrogen. Virtually all of these regulations require technological changes to vehicles and engines, assuming that gasoline and diesel fuel remain as the operating fuels. However, recent speculation has centered on the possibility of meeting some or all of these regulatory challenges with alternative fuels such as natural gas or methanol. This study addresses that possibility by examining current and potential standards, characterizing vehicles that use alternative fuels, and assessing -- via an informal canvass of manufacturers -- the likelihood of meeting the regulations with both conventional and alternative fuels. A selective literature review compares emissions, energy use, and costs associated with both types of fuels. Finally, a plausible scenario of introducing methanol- fueled autos and light trucks by the early 1990s is defined as the basis for examining changes in emission levels nationally. While the overall reduction -- from all transportation sources -- of reactive hydrocarbons and oxides of nitrogen due to these vehicles is less than 1% by 1997, the potential remains for greater levels of reduction within urbanized areas, especially if tax-based incentives and other measures are used to encourage the use of vehicles powered by alternative fuels. 68 refs., 2 figs., 23 tabs.

Singh, M.K.; Saricks, C.L.; LaBelle, S.J.

1988-01-01T23:59:59.000Z

223

A Review of the Literature on the Social Cost of Motor Vehicle Use in the United States  

E-Print Network (OSTI)

accidents, air pollution, noise, land use, and dissociationpollution Total societal costs Unquantified costs Wetlands lost Agricultural landland use Vehicle ownership and operation Vibration damage to buildings Water pollution

Murphy, James; Delucchi, Mark

1998-01-01T23:59:59.000Z

224

Trexa Motor Corporation TMC | Open Energy Information  

Open Energy Info (EERE)

Trexa Motor Corporation TMC Jump to: navigation, search Name Trexa Motor Corporation (TMC) Place Los Angeles, California Sector Vehicles Product Los Angeles - based subsidiary of...

225

Electric vehicle drive train with rollback detection and ...  

The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement.

226

Safety Criteria for Isolated Direct Current Systems in Electric Vehicles: Traction Motor and Control Circuitry Under Charging and Driving Conditions  

Science Conference Proceedings (OSTI)

This report explains some of the background of the requirements for isolated DC systems covered by the standard for personnel protection devices for electric vehicle charging circuits (UL2231). The report provides insight that is intended to help achieve better designs of electric vehicles and chargers.

1999-12-01T23:59:59.000Z

227

Tesla Motors Inc | Open Energy Information  

Open Energy Info (EERE)

Carlos, California Zip 94070 Sector Vehicles Product California-based producer of luxury electric vehicles, such as sports cars. References Tesla Motors Inc1 LinkedIn...

228

The design and construction of electronic motor control and network interface hardware for advance concept urban mobility vehicles  

E-Print Network (OSTI)

Over the past several years, the Smart Cities Group at MIT's Media Lab has engaged in research to develop several advanced concepts for vehicles to improve urban mobility. This research has focused on developing a modular ...

Morrissey, Bryan L. (Bryan Lawrence)

2008-01-01T23:59:59.000Z

229

Improving Costs and Efficiency of PEM Fuel Cell Vehicles by ...  

Fuel cell vehicles have the potential to reduce our dependence on foreign oil and lower emissions. Running the vehicles motor on hydrogen rather than gasoline ...

230

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Hybrid Electric Vehicle (HEV) Emissions Inspection and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Digg

231

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Hybrid Electric Vehicle (HEV) Emissions Inspection and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Digg

232

Vehicle Technologies Office: Program Plans, Implementation, and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Motors Annual Progress Report The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and...

233

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compatible Vehicles: Vision Motor Corp. - Tyrano Eaton - Hybrid Drive System Fuel Type: Hybrid - Diesel Electric...

234

MOTOR POOL RESERVATIONS Reservation Number:_______________  

E-Print Network (OSTI)

MOTOR POOL RESERVATIONS Reservation Number:_______________ Evanston campus: Chicago campus: 2020: 312/503-9243 E-mail: motor-pool@northwestern.edu E-mail: motor-pool@northwestern.edu Hours: 8:00 a reservations require the "Organization Authorization for University Vehicles" form to be faxed to Motor Pool

Shull, Kenneth R.

235

Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

Ford Motor Company to someone by E-mail Ford Motor Company to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging

236

Commercial Vehicle Safety Alliance Commercial Vehicle Safety Alliance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliance Alliance Commercial Vehicle Safety Alliance North American Standard Level VI Inspection Program Update: Ensuring Safe Transportation of Radioactive Material Carlisle Smith Director, Hazardous Materials Programs Commercial Vehicle Safety Alliance Email: carlisles@cvsa.org Phone: 301-830-6147 CVSA Levels of Inspections Level I Full inspection Level II Walk Around - Driver - Vehicle Level III Driver - Paperwork Level IV Special Project - Generally focus on one item CVSA Levels of Inspections Level V Vehicle Only Level VI Enhanced RAM Level VII Jurisdictional Mandated * 8 basic classes/year held in various states * Prerequisites: CVSA Level I and HAZMAT certified * Industry attends course * To date 135 classes/2268 attendees * Currently 702 certified Level VI

237

Incentive Policies for Neighborhood Electric Vehicles  

E-Print Network (OSTI)

of safety standards for electric and natural gas vehicles.electric in motor vehicles associated and equipment, consumer education programs, safety

Lipman, Timothy E.; Kuranu, Kenneth S.; Sperling, Daniel

1994-01-01T23:59:59.000Z

238

Incentive Policies for Neighborhood Electric Vehicles  

E-Print Network (OSTI)

of safety standards for electric and natural gas vehicles.electric in motor vehicles associated and equipment, consumer education programs, safety

Lipman, Timothy E.; Kurani, Kenneth S.; Sperling, Daniel

2001-01-01T23:59:59.000Z

239

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

Use of Persian-Gulf Oil for Motor Vehicles, Energy Policythe Use of Persian Gulf Oil for Motor Vehicles, UCD-ITS-RR-per gallon of motor fuel, Defense of oil on average; thus,

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

240

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 5 Page 1 of 5 VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Class: Mid-size Seatbelt Positions: 5 Type: EV Motor Type: Three-Phase, Four-Pole Permanent Magnet AC Synchronous Max. Power/Torque: 80 kW/280 Nm Max. Motor Speed: 10,390 rpm Cooling: Active - Liquid cooled Battery Manufacturer: Automotive Energy Supply Corporation Type: Lithium-ion - Laminate type Cathode/Anode Material: LiMn 2 O 4 with LiNiO 2 /Graphite Pack Location: Under center of vehicle Number of Cells: 192 Cell Configuration: 2 parallel, 96 series Nominal Cell Voltage: 3.8 V Nominal System Voltage: 364.8 V Rated Pack Capacity: 66.2 Ah Rated Pack Energy: 24 kWh Max. Cell Charge Voltage 2 : 4.2 V Min. Cell Discharge Voltage 2 : 2.5 V

Note: This page contains sample records for the topic "motor vehicle inspection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The experimental implementation and comparison of active, semiactive, and passive vehicle suspensions utilizing a linear electric motor  

E-Print Network (OSTI)

The primary objective of this research is the investigation of the experimental implementation of an active automobile suspension, three types of semiactive suspensions, and a passive suspension. These suspensions are realized via computer control of a linear electric motor. The details of the suspensions are explained in full assuming no prior knowledge by the reader. A theoretical quarter car model is developed and used to provide baseline performance criteria. Details of the design and development of the experimental test rig are given. The experimental results are compared to the theoretical results to study the effectiveness of the motor at realizing the control strategies. This gives an indication of the feasibility of electric motors for implementation of active and semiactive suspension control strategies. Furthermore, the control algorithms are compared to each other to rate each for performance versus complexity. Also, the experimental results are compared to previous experimental results for a resistance controlled semiactive suspension using dual dampers. The experimental test rig and theoretical simulation results agreed fairly well for all suspension performance criteria. The relative comparisons of each suspension when implemented on the test rig were almost identical to the rankings resulting from theory. The performance criteria showed that an active suspension is substantially better than a passive one. Also, only minimal differences exist between the active suspension and the three semiactive suspensions. This indicates that an active suspension is not needed for excellent suspension performance.

Williams, Monte Glen

1994-01-01T23:59:59.000Z

242

Quantifying the benefits of hybrid vehicles  

E-Print Network (OSTI)

Pollution from motor vehicles Crude oil, gasoline, andMOTOR VEHICLES .. 2 T HE OILmotor fuels, and the road system unfortunately pollute our air, soil and water, depend on limited oil

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

243

Hydrogen Station & Hydrogen ICE Vehicles Operation  

NLE Websites -- All DOE Office Websites (Extended Search)

19 INL Alternative Fuel Fleet (318 vehicles) * 79 B20 motor coach buses * 7 Dedicated LNG motor coach buses * 154 Bi-fuel light-duty CNG vehicles * 52 Bi-fuel E85 (85% ethanol)...

244

Electric vehicles  

SciTech Connect

Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

Not Available

1990-03-01T23:59:59.000Z

245

State of California BOARD OF EQUALIZATION USE FUEL TAX REGULATIONS Regulation 1322. CONSUMPTION OF LIQUEFIED PETROLEUM GAS IN VEHICLES FUELED  

E-Print Network (OSTI)

Users who operate motor vehicles powered by liquefied petroleum gas supplied directly to the engine from the cargo tank of the motor vehicle are authorized for the purpose of making tax returns to compute the gallons used on a mileper-gallon basis. The mile-per-gallon basis will be determined by tests. The tests will be made by the user and will be subject to review by the Board. All detail and test data should be retained for inspection by the Board. This method of computing use is authorized only for the purpose of making tax returns. Determinations may be imposed or refunds granted, if the Board upon audit of the users accounts and records, or upon the basis of tests made or other information determines that the return did not disclose the proper amount of tax due. See Regulation 1332 with respect to records on those motor vehicles powered by fuel not supplied directly to the

unknown authors

1963-01-01T23:59:59.000Z

246

Vision Industries dba Vision Motor Corp | Open Energy Information  

Open Energy Info (EERE)

Vision Motor Corp) Place Santa Monica, California Zip 90405 Product Santa Monica-based electric vehicle manufacturer. References Vision Industries (dba Vision Motor Corp)1...

247

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle (AFV) Emissions Inspection Exemption to someone by E-mail Vehicle (AFV) Emissions Inspection Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on AddThis.com... More in this section...

248

Realising low carbon vehicles  

E-Print Network (OSTI)

MorganMotorCompany #12;Hybrid and electric vehicle design and novel power trains Cranfield has an impressive track record in the design and integration of near-to-market solutions for hybrid, electric and fuel cell vehicles coupe body the vehicle is powered by advanced lithium-ion batteries, and also features a novel all-electric

249

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BUI00815 Class: Compact Seatbelt Positions: 4 Type 2 : Multi-Mode PHEV (EV, Series, and Power-split) Motor Type: 12-pole permanent magnet AC synchronous Max. Power/Torque: 111 kW/370 Nm Max. Motor Speed: 9500 rpm Cooling: Active - Liquid cooled Generator Type: 16-pole permanent magnet AC synchronous Max. Power/Torque: 55 kW/200 Nm Max. Generator Speed: 6000 rpm Cooling: Active - Liquid cooled Battery Manufacturer: LG Chem Type: Lithium-ion Cathode/Anode Material: LiMn 2 O 4 /Hard Carbon Number of Cells: 288 Cell Config.: 3 parallel, 96 series Nominal Cell Voltage: 3.7 V Nominal System Voltage: 355.2 V Rated Pack Capacity: 45 Ah Rated Pack Energy: 16 kWh Weight of Pack: 435 lb

250

Ultrasonic inspection and deployment apparatus  

DOE Patents (OSTI)

An ultrasonic inspection apparatus for the inspection of metal structures, especially installed pipes. The apparatus combines a specimen inspection element, an acoustical velocity sensing element, and a surface profiling element, all in one scanning head. A scanning head bellows contains a volume of oil above the pipe surface, serving as acoustical couplant between the scanning head and the pipe. The scanning head is mounted on a scanning truck which is mobile around a circular track surrounding the pipe. The scanning truck has sufficient motors, gears, and position encoders to allow the scanning head six degrees of motion freedom. A computer system continually monitors acoustical velocity, and uses that parameter to process surface profiling and inspection data. The profiling data is used to automatically control scanning head position and alignment and to define a coordinate system used to identify and interpret inspection data. The apparatus is suitable for highly automated, remote application in hostile environments, particularly high temperature and radiation areas.

Michaels, Jennifer E. (Ithaca, NY); Michaels, Thomas E. (Ithaca, NY); Mech, Jr., Stephen J. (Pasco, WA)

1984-01-01T23:59:59.000Z

251

Vehicle Technologies Office: Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

the motor. In addition, hybrid vehicles will require ACDC converters to interconnect the high-voltage bus and the low-voltage bus for vehicle auxiliary loads. Technical issues to...

252

Piping inspection carriage having axially displaceable sensor  

DOE Patents (OSTI)

A pipe inspection instrument carriage is described for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a Y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure. 4 figures.

Zollinger, W.T.; Treanor, R.C.

1994-12-06T23:59:59.000Z

253

Advanced Motors  

SciTech Connect

Project Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, ???????????????¢????????????????????????????????Motors and Generators for the 21st Century???????????????¢???????????????????????????????. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to motor fabrication opens up a new dimension in motor design. Feasibility Results We were able to optimize a IPMSM rotor to take advantage of the powder co-filling and DMC compaction processing methods. The minimum low speed torque requirement of 5 N-m can be met through an optimized design with magnet material having a Br capability of 0.2 T. This level of magnetic performance can be met with a variety of bonded magnet compositions. The torque ripple was found to drop significantly by using thinner magnet segments. The powder co-filling and subsequent compaction processing allow for thinner magnet structures to be formed. Torque ripple can be further reduced by using skewing and pole shaping techniques. The techniques can be incorporated into the rotor during the powder co-filling process.

Knoth, Edward A.; Chelluri, Bhanumathi; Schumaker, Edward J.

2012-12-14T23:59:59.000Z

254

The California Zero-Emission Vehicle Mandate: A Study of the Policy Process, 1990-2004  

E-Print Network (OSTI)

ZEV program, the vehicle manufacturers did not believe thatof fuel-cell vehicles: manufacturers would produce theirHonda Motor Vehicle Manufacturers Association Mercedes Benz

Collantes, Gustavo O

2006-01-01T23:59:59.000Z

255

Household Vehicles Energy Use: Latest Data and Trends - Table A01  

U.S. Energy Information Administration (EIA)

Table A1. U.S. Number of Vehicles, Vehicles-Miles, Motor Fuel Consumption and Expenditures, 2001: 2001 Household and Vehicle Characteristics

256

Tax and Fee Payments by Motor-Vehicle Users for the Use of Highways, Fuels, and Vehicles: Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

oil inspection license fees for oil-well plugging drill andselective sales tax on oil and gas well- servicing, andSERVICES Drilling oil and gas wells Oil and gas exploration

Delucchi, Mark

2005-01-01T23:59:59.000Z

257

Electrical Motor Drive Apparatus and Method - Energy Innovation Portal  

Vehicles and Fuels Industrial Technologies Electrical ... Auto manufacturers ; Industrial motor drive manufacturers; Patents and Patent Applications. ID Number.

258

Inspection Report REPORT ON INSPECTION REGARDINGSMALL BUSINESS...  

NLE Websites -- All DOE Office Websites (Extended Search)

REPORT ON INSPECTION REGARDINGSMALL BUSINESS CONTRACTING STATISTICS REPORTING ANDPRESENTATION, INS-O-98-02 Inspection Report REPORT ON INSPECTION REGARDINGSMALL BUSINESS...

259

Parametric electric motor study  

DOE Green Energy (OSTI)

Technology for the axial gap motor was developed by DOE with an investment of approximately $15 million. This development effort is for motor technologies of high power density and high efficiency. Such motors that are also small and light-weight are not available on the commercial market because high-power motors have typically been used in large industrial applications where small size and light weight are not requirements. AC Delco has been developing motors since 1918 and is interested in leveraging its research and development dollars to produce an array of motor systems for vehicles and to develop a future line of propulsion products. The DOE focus of the study was applied to machining applications. The most attractive feature of this motor is the axial air gap, which may make possible the removal of the motor`s stationary component from a total enclosure of the remainder of the machine if the power characteristics are adequate. The objectives of this project were to evaluate alternative electric drive systems for machine tools and automotive electric drive systems and to select a best machine type for each of those applications. A major challenge of this project was to produce a small, light-weight, highly efficient motor at a cost-effective price. The project developed machine and machine drive systems and design criteria for the range of applications. The final results included the creation of a baseline for developing electric vehicle powertrain system designs, conventional vehicle engine support system designs, and advanced machine tool configurations. In addition, an axial gap permanent magnet motor was built and tested, and gave, said one engineer involved, a sterling performance. This effort will commercialize advanced motor technology and extend knowledge and design capability in the most efficient electric machine design known today.

Adams, D. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Stahura, D. [GM-AC Delco Systems, Indianapolis, IN (United States)

1995-04-30T23:59:59.000Z

260

Department of Electrical Engineering Fall 2009 Electridyne Motor  

E-Print Network (OSTI)

PENNSTATE Department of Electrical Engineering Fall 2009 Electridyne Motor Overview Our sponsored project was to design an elecrtic motor for an urban transportation vehicle, the challenges involved included research into motor design, consideration of the materials, and the electromagnetic parameters

Demirel, Melik C.

Note: This page contains sample records for the topic "motor vehicle inspection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Optimization of a plug-in hybrid electric vehicle .  

E-Print Network (OSTI)

??A plug-in hybrid electric vehicle (PHEV) is a vehicle powered by a combination of an internal combustion engine and an electric motor with a battery (more)

Golbuff, Sam

2006-01-01T23:59:59.000Z

262

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicles International - EVI-MD Application: Vocational truck Fuel Type: Electricity Power Source(s): Electric Vehicles International - 260-hp AC permanent magnet motor...

263

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Boulder Electric Vehicle - DV-500 Delivery Truck Application: Van Fuel Type: Electricity Power Source(s): Boulder Electric Vehicle - AC brushless induction motor with lithium-ion...

264

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Boulder Electric Vehicle - DV-500 Delivery Truck Boulder Electric Vehicle - AC brushless induction motor with lithium-ion batteries Fuel Type: Electricity...

265

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

local gasoline taxes ($/gal) This is equal to total motorgasoline tax in cents/mi) Vehicle efficiency parameters: input data 0.89 0.89 Once-through efficiency of electric motor,

Delucchi, Mark

1992-01-01T23:59:59.000Z

266

Motor Pool Department The Motor Pool Department is responsible for the maintenance of over 550 Georgia Tech state  

E-Print Network (OSTI)

Motor Pool Department The Motor Pool Department is responsible for the maintenance of over 550 and equipment costing $3,000 or more for the Institute's vehicle fleet program. The mission of the Motor Pool form when bringing their vehicles, LSVs, golf carts or equipment to the Motor Pool for service (see

Li, Mo

267

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emissions Inspection Exemption to someone by E-mail Emissions Inspection Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on AddThis.com... More in this section...

268

Hydrogen Storage Requirements for Fuel Cell Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

GENERAL MOTORS GENERAL MOTORS HYDROGEN STORAGE REQUIREMENTS FOR FUEL CELL VEHICLES Brian G. Wicke GM R&D and Planning DOE Hydrogen Storage Workshop August 14-15, 2002 Argonne National Laboratory General Motors Fuel Cell Vehicles * GM fuel cell vehicle Goal - be the first to profitably sell one million fuel cell vehicles * Fuel cell powerplant must be suitable for a broad range of light-duty vehicles (not just niche) * UNCOMPROMISED performance & reliability are REQUIRED * SAFETY IS A GIVEN * Evolutionary and Revolutionary vehicle designs are included-GM AUTONOMY-as long as the customer is (more than) satisfied GENERAL MOTORS AUTONOMY GENERAL MOTORS AUTONOMY General Motors Fuel Cell Vehicles * Focus on PEM fuel cell technology * Must consider entire hydrogen storage & (unique) fuel delivery systems,

269

Advanced Vehicle Testing Activity Hybrids, Hydrogen and other...  

NLE Websites -- All DOE Office Websites (Extended Search)

avoided 318 INL Alternative Fuel Vehicles * 79 B20 motor coach buses * 7 Dedicated LNG motor coach buses * 154 Bi-fuel light-duty CNG vehicles * 52 Bi-fuel E85 (85% ethanol)...

270

Chapter 2. Vehicle Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

2. Vehicle Characteristics 2. Vehicle Characteristics Chapter 2. Vehicle Characteristics U.S. households used a fleet of nearly 157 million vehicles in 1994. Despite remarkable growth in the number of minivans and sport-utility vehicles, passenger cars continued to predominate in the residential vehicle fleet. This chapter looks at changes in the composition of the residential fleet in 1994 compared with earlier years and reviews the effect of technological changes on fuel efficiency (how efficiently a vehicle engine processes motor fuel) and fuel economy (how far a vehicle travels on a given amount of fuel). Using data unique to the Residential Transportation Energy Consumption Survey, it also explores the relationship between residential vehicle use and family income.

271

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Trans Tech - ETrans Smith Electric Vehicles - 120kW induction motor with lithium-ion batteries Fuel Type: Electricity...

272

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

maximum, and restricts regenerative energy to be less thanthe extra energy made available by regenerative braking. Theregenerative braking (for fuel-cell vehicles without electro-chemical energy

Delucchi, Mark

2003-01-01T23:59:59.000Z

273

Alternative Fuels Data Center: Vehicle Registration Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Registration Vehicle Registration Requirement to someone by E-mail Share Alternative Fuels Data Center: Vehicle Registration Requirement on Facebook Tweet about Alternative Fuels Data Center: Vehicle Registration Requirement on Twitter Bookmark Alternative Fuels Data Center: Vehicle Registration Requirement on Google Bookmark Alternative Fuels Data Center: Vehicle Registration Requirement on Delicious Rank Alternative Fuels Data Center: Vehicle Registration Requirement on Digg Find More places to share Alternative Fuels Data Center: Vehicle Registration Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vehicle Registration Requirement Motor vehicle registration applicants must provide proof of compliance with

274

Vehicle Technologies Office: Electrical Machines  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Machines to Electrical Machines to someone by E-mail Share Vehicle Technologies Office: Electrical Machines on Facebook Tweet about Vehicle Technologies Office: Electrical Machines on Twitter Bookmark Vehicle Technologies Office: Electrical Machines on Google Bookmark Vehicle Technologies Office: Electrical Machines on Delicious Rank Vehicle Technologies Office: Electrical Machines on Digg Find More places to share Vehicle Technologies Office: Electrical Machines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Electrical Machines Emphasis in the electrical machines activity is on advanced motor

275

motor | OpenEI  

Open Energy Info (EERE)

0 0 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142279950 Varnish cache server motor Dataset Summary Description The data included in this submission is United States Department of Transportation (DOT) data up to 1995. The data includes motor-fuel gallonage taxes 1950-1995, motor-fuel use 1919-1995, private and commercial highway use of special fuels, by state 1949-1995, highway use of gasoline, by state 1949-1995, gasohol sales by state, 1980-1992, and estimated use of gasohol, 1993-1995. The data is presented in .xlsx format. Source DOT Date Released Unknown Date Updated Unknown Keywords DOT Fuel highway motor vehicle Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Motor-fuel gallonage taxes 1950-1995 (xlsx, 37.3 KiB)

276

Electric Vehicle Manufacturing in Southern California: Current Developments, Future Prospects  

E-Print Network (OSTI)

Future Electric Vehicle FMVSS . Federal Motor Vehicle SafetySafety and Systems Management), 1992. "The Impact Electric Vehiclesas pure electric-powered vehicles. 2.3. Safety, Comfort, and

Scott, Allen J.

1993-01-01T23:59:59.000Z

277

Vehicle Technologies Office: U.S. DRIVE  

NLE Websites -- All DOE Office Websites (Extended Search)

electrochemical energy storage Electric propulsion systems (e.g., power electronics, electric motors) Fuel cell power systems Lightweight materials Vehicle systems and...

278

DOE Hydrogen Analysis Repository: Hydrogen Vehicle Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas. ProductsDeliverables Description: Report Publication Title:...

279

Hybrid electric vehicles take to the streets  

Science Conference Proceedings (OSTI)

In this paper, the authors describe how, equipped with a gasoline engine and an electric motor, hybrid electric vehicles can now bridge the gap between vehicle range and environmental concerns

D. Hermance; S. Sasaki

1998-11-01T23:59:59.000Z

280

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California  

E-Print Network (OSTI)

to approximately 40 kW. The hybrid vehicles are of interestat $0.84/therm). The hybrid vehicles in motor-generator modegas reformer, and the hybrid vehicle. However, the simple

Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "motor vehicle inspection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

CMVRTC: Overweight Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy and overweight vehicle brake testing for combination five-axle Heavy and overweight vehicle brake testing for combination five-axle tractor-flatbed scale The Federal Motor Carrier Safety Administration, in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a

282

Vehicle Technologies Office: Annual Progress Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Progress Reports Annual Progress Reports 2013 DOE Vehicle Technologies Office Annual Merit Review 2012 Advanced Combustion Engine Research and Development Advanced Power Electronics and Electric Motors DOE Vehicle Technologies Office Annual Merit Review Energy Storage Research and Development Fuel & Lubricant Technologies Lightweight Materials Propulsion Materials Vehicle and Systems Simulation and Testing 2011 Advanced Combustion Engine Research and Development Advanced Power Electronics and Electric Motors DOE Vehicle Technologies Office Annual Merit Review Energy Storage Research and Development Lightweighting Materials Propulsion Materials Vehicle and Systems Simulation and Testing 2010 Advanced Combustion Engine Research and Development Advanced Power Electronics and Electric Motors

283

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

fuel or power generation (coal, natural gas, fuel oil,generation mix for power used to compress fossil natural gas.power (% of electricity generation [EVs, hydrogen vehicles]) NGL = natural gas

Delucchi, Mark

2003-01-01T23:59:59.000Z

284

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

change to Ethanol, E85 corn, C0/NG50/B50, where the B50on five fuels: RFG, M85, E85, LPG, and CNG. The vehicle wasPM E85 CNG LPG Off-cycle emissions,

Delucchi, Mark

2003-01-01T23:59:59.000Z

285

Page 1 of 9 Vehicle Buyers' Guide  

E-Print Network (OSTI)

vehicle. Hybrid þ Gasoline only: · A small battery and electric motor assist the engine to give help be refueled at any gasoline station. Plug-in hybrid and electric vehicles can operate using electricity fromPage 1 of 9 Vehicle Buyers' Guide An introduction to vehicle technologies Thank you in advance

286

Short-Term Energy Outlook Model Documentation: Motor Gasoline Consumption Model  

Reports and Publications (EIA)

The motor gasoline consumption module of the Short-Term Energy Outlook (STEO) model is designed to provide forecasts of total U.S. consumption of motor gasolien based on estimates of vehicle miles traveled and average vehicle fuel economy.

Tancred Lidderdale

2011-11-30T23:59:59.000Z

287

System Modeling and Energy Management Strategy Development for Series Hybrid Vehicles .  

E-Print Network (OSTI)

??A series hybrid electric vehicle is a vehicle that is powered by both an engine and a battery pack. An electric motor provides all of (more)

Cross, Patrick Wilson

2008-01-01T23:59:59.000Z

288

VEHICLE ACCESS PORTALS  

NLE Websites -- All DOE Office Websites (Extended Search)

East Jemez Road (Map 1) East Jemez Road (Map 1) VEHICLE ACCESS PORTALS Traffic Lane 1: Closed except for emergencies and maintenance operations. Traffic Lanes 2-7: Drivers required to stop and present LANL badges or other form of valid identification to Protective Force officers. Drivers may proceed upon direction of the officers. Note: Commercial delivery vehicle drivers must also pres- ent their inspection passes from Post 10. More Information: spp-questions@lanl.gov Non-work Hours Vehicles entering LANL at the East Jemez VAPs during non-work hours (between 7

289

Vehicle Technologies Office: Fact #784: June 17, 2013 Direct Employment of  

NLE Websites -- All DOE Office Websites (Extended Search)

4: June 17, 2013 4: June 17, 2013 Direct Employment of Motor Vehicle Parts Manufacturing by State to someone by E-mail Share Vehicle Technologies Office: Fact #784: June 17, 2013 Direct Employment of Motor Vehicle Parts Manufacturing by State on Facebook Tweet about Vehicle Technologies Office: Fact #784: June 17, 2013 Direct Employment of Motor Vehicle Parts Manufacturing by State on Twitter Bookmark Vehicle Technologies Office: Fact #784: June 17, 2013 Direct Employment of Motor Vehicle Parts Manufacturing by State on Google Bookmark Vehicle Technologies Office: Fact #784: June 17, 2013 Direct Employment of Motor Vehicle Parts Manufacturing by State on Delicious Rank Vehicle Technologies Office: Fact #784: June 17, 2013 Direct Employment of Motor Vehicle Parts Manufacturing by State on Digg

290

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emissions Inspection Exemption to someone by E-mail Emissions Inspection Exemption to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on AddThis.com... More in this section...

291

Vehicle Technologies Office: 2009 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

9 Archive to someone 9 Archive to someone by E-mail Share Vehicle Technologies Office: 2009 Archive on Facebook Tweet about Vehicle Technologies Office: 2009 Archive on Twitter Bookmark Vehicle Technologies Office: 2009 Archive on Google Bookmark Vehicle Technologies Office: 2009 Archive on Delicious Rank Vehicle Technologies Office: 2009 Archive on Digg Find More places to share Vehicle Technologies Office: 2009 Archive on AddThis.com... 2009 Archive #603 Where Does Lithium Come From? December 28, 2009 #602 Freight Statistics by Mode, 2007 Commodity Flow Survey December 21, 2009 #601 World Motor Vehicle Production December 14, 2009 #600 China Produced More Vehicles than the U.S. in 2008 December 7, 2009 #599 Historical Trend for Light Vehicle Sales November 30, 2009

292

Uncertainty-driven view planning for underwater inspection  

E-Print Network (OSTI)

We discuss the problem of inspecting an underwater structure, such as a submerged ship hull, with an autonomous underwater vehicle (AUV). In such scenarios, the goal is to construct an accurate 3D model of the structure ...

Hollinger, Geoffrey A.

293

Demodulation circuit for AC motor current spectral analysis  

DOE Patents (OSTI)

A motor current analysis method for the remote, noninvasive inspection of electric motor-operated systems. Synchronous amplitude demodulation and phase demodulation circuits are used singly and in combination along with a frequency analyzer to produce improved spectral analysis of load-induced frequencies present in the electric current flowing in a motor-driven system.

Hendrix, Donald E. (Oak Ridge, TN); Smith, Stephen F. (Knoxville, TN)

1990-12-18T23:59:59.000Z

294

The Ability of Automakers to Introduce a Costly, Regulated New Technology: A Case Study of Automotive Airbags in the U.S. Light-Duty Vehicle Market with Implications for Future Automobile and Light Truck Regulation  

E-Print Network (OSTI)

Cir. 1972). Motor Vehicle Manufacturers Association of theon the vehicle model and manufacturer. [31] An additionalgreatly across manufacturers and vehicle segments leading to

Abeles, Ethan

2004-01-01T23:59:59.000Z

295

Vehicle for carrying an object of interest  

SciTech Connect

A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface.

Zollinger, W. Thor (Idaho Falls, ID); Ferrante, Todd A. (Westerville, OH)

1998-01-01T23:59:59.000Z

296

Vehicle for carrying an object of interest  

DOE Patents (OSTI)

A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface. 8 figs.

Zollinger, W.T.; Ferrante, T.A.

1998-10-13T23:59:59.000Z

297

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network (OSTI)

a sidebar to a longer article on electric vehicles. ) Cogan,R. Electric vehicles: Powerplay on the auto circuit. MotorA Critical Review of Electric Vehicle Market Studies",

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

298

Future Inspection of Overhead Transmission Lines  

Science Conference Proceedings (OSTI)

This report documents scenarios and technologies that can be applied in the future for the inspection of transmission lines. Scenarios describe the utilization of a range of concepts, including distributed sensors, unmanned airborne vehicles, RF communication, and robotics. An approach to performing demonstration projects using currently available technologies is provided and will be implemented in the following phases of the project.

2008-06-23T23:59:59.000Z

299

Myers Motors | Open Energy Information  

Open Energy Info (EERE)

Myers Motors Myers Motors Jump to: navigation, search Name Myers Motors Place Tallmadge, Ohio Zip 44278 Sector Vehicles Product Myers Motors produces three wheeled electric vehicles. Coordinates 41.10294°, -81.440864° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.10294,"lon":-81.440864,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

300

Tesla Motors | Open Energy Information  

Open Energy Info (EERE)

Tesla Motors Tesla Motors Jump to: navigation, search Logo: Tesla Motors Name Tesla Motors Address 1050 Bing Street Place San Carlos, California Zip 94070 Sector Vehicles Product Produces electric vehicles Website http://www.teslamotors.com/ Coordinates 37.496737°, -122.245323° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.496737,"lon":-122.245323,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "motor vehicle inspection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Wireless Roadside Inspection Proof of Concept Test Final Report  

SciTech Connect

The U.S. Department of Transportation (DOT) FMCSA commissioned the Wireless Roadside Inspection (WRI) Program to validate technologies and methodologies that can improve safety through inspections using wireless technologies that convey real-time identification of commercial vehicles, drivers, and carriers, as well as information about the condition of the vehicles and their drivers. It is hypothesized that these inspections will: -- Increase safety -- Decrease the number of unsafe commercial vehicles on the road; -- Increase efficiency -- Speed up the inspection process, enabling more inspections to occur, at least on par with the number of weight inspections; -- Improve effectiveness -- Reduce the probability of drivers bypassing CMV inspection stations and increase the likelihood that fleets will attempt to meet the safety regulations; and -- Benefit industry -- Reduce fleet costs, provide good return-on-investment, minimize wait times, and level the playing field. The WRI Program is defined in three phases which are: Phase 1: Proof of Concept Test (POC) Testing of commercially available off-the-shelf (COTS) or near-COTS technology to validate the wireless inspection concept. Phase 2: Pilot Test Safety technology maturation and back office system integration Phase 3: Field Operational Test Multi-vehicle testing over a multi-state instrumented corridor This report focuses on Phase 1 efforts that were initiated in March, 2006. Technical efforts dealt with the ability of a Universal Wireless Inspection System (UWIS) to collect driver, vehicle, and carrier information; format a Safety Data Message Set from this information; and wirelessly transmit a Safety Data Message Set to a roadside receiver unit or mobile enforcement vehicle.

Capps, Gary J [ORNL; Franzese, Oscar [ORNL; Knee, Helmut E [ORNL; Plate, Randall S [ORNL; Lascurain, Mary Beth [ORNL

2009-03-01T23:59:59.000Z

302

Household vehicles energy consumption 1991  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

Not Available

1993-12-09T23:59:59.000Z

303

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Aggregate Aggregate Ratio: See Mean and Ratio Estimate. AMPD: Average miles driven per day. See Appendix B, "Estimation Methodologies." Annual Vehicle Miles Traveled: See Vehicle Miles Traveled. Automobile: Includes standard passenger car, 2-seater car and station wagons; excludes passenger vans, cargo vans, motor homes, pickup trucks, and jeeps or similar vehicles. See Vehicle. Average Household Energy Expenditures: A ratio estimate defined as the total household energy expenditures for all RTECS households divided by the total number of households. See Ratio Estimate, and Combined Household Energy Expenditures. Average Number of Vehicles per Household: The average number of vehicles used by a household for personal transportation during 1991. For this report, the average number of vehicles per household is computed as the ratio of the total number of vehicles to the

304

Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Qualified Plug-In Qualified Plug-In Electric Drive Motor Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on AddThis.com... More in this section...

305

Alternative Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

There are a number of alternative and advanced vehiclesor vehicles that run on alternative fuels. Learn more about the following types of vehicles:

306

Crossarm Inspection and Assessment  

Science Conference Proceedings (OSTI)

Linemen frequently use wood pole inspection methods to inspect crossarms, and little work has been done to specifically address the inspection of wood, steel, or fiberglass crossarms. This report outlines the development of a test bed and associated protocols required to assess currently available and prospective inspection technologies and techniques for evaluation of in-service crossarms.

2009-12-23T23:59:59.000Z

307

Drum inspection robots: Application development  

Science Conference Proceedings (OSTI)

Throughout the Department of Energy (DOE), drums containing mixed and low level stored waste are inspected, as mandated by the Resource Conservation and Recovery Act (RCRA) and other regulations. The inspections are intended to prevent leaks by finding corrosion long before the drums are breached. The DOE Office of Science and Technology (OST) has sponsored efforts towards the development of robotic drum inspectors. This emerging application for mobile and remote sensing has broad applicability for DOE and commercial waste storage areas. Three full scale robot prototypes have been under development, and another project has prototyped a novel technique to analyze robotically collected drum images. In general, the robots consist of a mobile, self-navigating base vehicle, outfitted with sensor packages so that rust and other corrosion cues can be automatically identified. They promise the potential to lower radiation dose and operator effort required, while improving diligence, consistency, and documentation.

Hazen, F.B. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Warner, R.D. [USDOE, Washington, DC (United States)

1996-02-01T23:59:59.000Z

308

Modelling, Simulation, Testing, and Optimization of Advanced Hybrid Vehicle Powertrains  

E-Print Network (OSTI)

FCV: fuel cell vehicle FEA: finite element analysis GA: Genetic Algorithms GCM: Global Circulation of a power-split architecture with two modes (or configurations) introduced by General Motors Corporation.2 General Motors Designs

Victoria, University of

309

Isolated Multiple Flux Path (IMFP) Reluctance Motors  

2 Managed by UT-Battelle for the U.S. Department of Energy Overview IMFP reluctance electric motor developed for passenger vehicle propulsion (i.e. small trucks ...

310

UAV Path Planning for Structure Inspection in Windy Environments  

Science Conference Proceedings (OSTI)

In this paper, we consider the structure inspection problem using a miniature unmanned aerial vehicle (UAV). The influence of the wind on the UAV behavior and onboard energy limitations are important parameters that must be taken into account in the ... Keywords: Path planning, Traveling salesman problem, Vehicle routing problem, Zermelo navigation

Jose Alfredo Guerrero; Yasmina Bestaoui

2013-01-01T23:59:59.000Z

311

Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)  

SciTech Connect

Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

Rugh, J. P.

2013-07-01T23:59:59.000Z

312

Environmental Knowledge, Environmental Attitudes, and Vehicle Ownership and Use  

E-Print Network (OSTI)

1996) and the social costs of transportation (Delucchi 2000,Social Cost of Motor Vehicle Use in the United States. Journal of Transportation and

Flamm, Bradley John

2006-01-01T23:59:59.000Z

313

Electric vehicle drive train with direct coupling transmission ...  

An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode ...

314

Hybrid Control System for Reversing a Multibody Vehicle.  

E-Print Network (OSTI)

?? This thesis deals with the problem of prototyping a vehicle, made up by a motorized body and two passive trailers using LOGO Mindstorms, and (more)

Bromand, Homan

2004-01-01T23:59:59.000Z

315

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric (Dedicated) Class: Neighborhood Electric Vehicle Estimated Range: 40 city Battery: 9 8-volt gel batteries Engine: 7.0 hp motor Dealer: Locate a dealer Description: The...

316

Analysis Tool Generates Custom Vehicle Drive Cycles Based on...  

NLE Websites -- All DOE Office Websites (Extended Search)

usage, supplying information needed to perform vital development tasks, such as sizing electric motors in a hybrid vehicle configuration or optimizing battery storage in an...

317

Energy control strategy for a hybrid electric vehicle - Energy ...  

An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10 ...

318

Vehicle Technologies Office: Fact #747: October 1, 2012 Behind...  

NLE Websites -- All DOE Office Websites (Extended Search)

more on transportation in a year than on food. Vehicle purchases, along with gasoline and motor oil, make up a large part of vehicle expenditures, but insurance, finance charges,...

319

Acronyms and Abbreviations for Advanced Technology Vehicle Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Project LDV Light-duty vehicle LEV Low emission vehicle LF Low-floor Li Lithium LNG Liquid natural gas LPG Liquid petroleum gas LSR Low storage requirement MCI Motor Coach...

320

Advanced Vehicle Testing Activity: American Recovery and Reinvestment...  

NLE Websites -- All DOE Office Websites (Extended Search)

deployment of 5,700 battery electric vehicle (BEV) Nissan Leafs and 2,600 extended range electric vehicle (EREV) General Motors Volts, that will be recharged in private residence,...

Note: This page contains sample records for the topic "motor vehicle inspection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

AQWON Motors | Open Energy Information  

Open Energy Info (EERE)

AQWON Motors AQWON Motors Jump to: navigation, search Name AQWON-Motors Place Speinshart, Germany Zip 92676 Sector Hydro, Hydrogen Product AQWON-Motors has developed the first hydrogen powered 2 stroke-engine scooter. It has been approved by the German TÃœVÂ (the official technical inspection agency). Coordinates 49.78699°, 11.820385° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.78699,"lon":11.820385,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

322

Oscillation control system for electric motor drive  

DOE Patents (OSTI)

A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify the torque commands applied to the motor. 5 figs.

Slicker, J.M.; Sereshteh, A.

1988-08-30T23:59:59.000Z

323

Oscillation control system for electric motor drive  

DOE Patents (OSTI)

A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify thetorque commands applied to the motor.

Slicker, James M. (Union Lake, MI); Sereshteh, Ahmad (Union Lake, MI)

1988-01-01T23:59:59.000Z

324

Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicle Basics Electric Vehicle Basics Electric Vehicle Basics July 30, 2013 - 4:45pm Addthis Text Version Photo of an electric bus driving up a hill. Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery. The electricity powers the vehicle's wheels via an electric motor. EVs have limited energy storage capacity, which must be replenished by plugging into an electrical source. In an electric vehicle, a battery or other energy storage device is used to store the electricity that powers the motor. EV batteries must be replenished by plugging the vehicle to a power source. Some EVs have onboard chargers; others plug into a charger located outside the vehicle. Both types use electricity that comes from the power grid. Although

325

Microsoft PowerPoint - 2009.10.27 Bridge Inspection Follow-up  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bridge Inspection Status Bridge Inspection Status Cindy Hunt, P.E., LEED AP Facilities Engineer Office of Engineering and Construction Management U. S. Department of Energy October 27, 2009 Status of Operating Assets June 2009 October 2009 Compliant Inspection Date Compliant Inspection Date No Inspection Date All Vehicle Bridges 44% 65% 21% - Public Access 67% 44% 44% Train Bridges 50% 75% 25% All Pedestrian Bridges 43% 67% 0% - Public Access 100% 100% 0% 2 DOE Inventory: 60 Assets Vehicle Bridges: 43 (34 controlled, 9 public) Train Bridges: 5 controlled Pedestrian Bridges: 12 (7 controlled, 5 public) 3 What's Coming Next * FIMS change to provide Usage Codes for publically accessible bridges * FIMS change to provide Safety Inspection Date for all bridges * Programs complete necessary inspections, update usage codes and populate inspection dates

326

Propulsion and stabilization system for magnetically levitated vehicles  

DOE Patents (OSTI)

A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and stabilized by a system which includes propulsion windings mounted above and parallel to vehicle-borne suspension magnets. A linear synchronous motor is part of the vehicle guideway and is mounted above and parallel to superconducting magnets attached to the magnetically levitated vehicle.

Coffey, Howard T. (Darien, IL)

1993-06-29T23:59:59.000Z

327

Propulsion and stabilization system for magnetically levitated vehicles  

DOE Patents (OSTI)

A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and stabilized by a system which includes propulsion windings mounted above and parallel to vehicle-borne suspension magnets. A linear synchronous motor is part of the vehicle guideway and is mounted above and parallel to superconducting magnets attached to the magnetically levitated vehicle.

Coffey, H.T.

1992-12-31T23:59:59.000Z

328

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid and plug-in electric vehicles Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three cat- egories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use. Hybrid Electric Vehicles HEVs are powered by an internal combus- tion engine or other propulsion source that runs on conventional or alternative fuel and an electric motor that uses energy stored in a battery. The extra power provided by the electric motor allows for a smaller engine, resulting in better fuel

329

Vehicle Technologies Office: Propulsion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in components such as the engine, transmission, fuel system, and exhaust after-treatment systems. Electric drive vehicles use propulsion materials in their electric motors and power electronics. Developing advanced propulsion materials is essential to commercializing new, highly efficient automotive technologies that have technical requirements that existing powertrain materials cannot meet. The Vehicle Technology Office's (VTO) research in propulsion materials focuses on four areas: Materials for hybrid and electric drive systems Materials for high efficiency combustion engines Materials to enable energy recovery systems and control exhaust gases

330

Electric vehicle drive train with rollback detection and compensation  

DOE Patents (OSTI)

An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.

Konrad, Charles E. (Roanoke, VA)

1994-01-01T23:59:59.000Z

331

Electric vehicle drive train with rollback detection and compensation  

DOE Patents (OSTI)

An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared. 6 figures.

Konrad, C.E.

1994-12-27T23:59:59.000Z

332

User Electrical Inspection Criteria  

NLE Websites -- All DOE Office Websites (Extended Search)

User Electronic and Electrical Equipment Inspection Criteria User Electronic and Electrical Equipment Inspection Criteria Any electrical or electronic equipment users bring to the APS will have to be inspected. In some cases, this inspection will be quite simple, e.g., if the equipment has already been inspected by a Nationally Recognized Testing Laboratory (NRTL) and is used for its designed purpose. Other equipment will require a more thorough inspection (this may include NRTL inspected equipment if it is assembled into an apparatus with other components). The inspection is based on an eight-part list of criteria. Paraphrased, those criteria are: The equipment must be suitable for its intended use (and if appropriate, installation). For example, a heater controller intended to control a 1000W heater cannot be used to control a 2000W heater. The

333

VIRTUAL E-MOTOR AS A TOOL FOR THE DEVELOPMENT  

E-Print Network (OSTI)

VIRTUAL E-MOTOR AS A TOOL FOR THE DEVELOPMENT OF POWERTRAIN CONTROLLERS The introduction of electric motors in powertrains provides many possibilities to influence the vehicle driveability using the inverter. The high dynamic response of electric motors can be put to use for the compensation of powertrain

Noé, Reinhold

334

Aptera Motors | Open Energy Information  

Open Energy Info (EERE)

Aptera Motors Aptera Motors Jump to: navigation, search Name Aptera Motors Address 2778 Loker Avenue West Place Carlsbad, California Zip 92008 Sector Vehicles Product Aims to to make an aerodynamic two-seater hybrid electric vehicle Website http://www.aptera.com/ Coordinates 33.1412124°, -117.3205123° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.1412124,"lon":-117.3205123,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

335

Modelling of Components for Conventional Car and Hybrid Electric Vehicle in Modelica; Modellering av komponenter fr vanlig bil och hybridbil i Modelica.  

E-Print Network (OSTI)

?? Hybrid electric vehicles have two power sources - an internal combustion engine and an electric motor. These vehicles are of great interest because they (more)

Walln, Johanna

2004-01-01T23:59:59.000Z

336

VIN# JTNBB46K773007129 Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

K773007129 Vehicle Specifications Engine: 2.4 L 4-cylinder Electric Motor: 105 kW Battery: NiMH Seatbelt Positions: Five Payload: 1,109 lbs Features: Four-wheel disk brakes ABS w...

337

VIN# JHMFA36216S019329 Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

16S019329 Vehicle Specifications Engine: 1.3 L 4-cylinder Electric Motor: 15 kW Battery: NiMH Seatbelt Positions: Five Payload: 968 lbs Features: Front disk brakes wEBD brake...

338

VIN# JTNBB46K673006330 Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

K673006330 Vehicle Specifications Engine: 2.4 L 4-cylinder Electric Motor: 105 kW Battery: NiMH Seatbelt Positions: Five Payload: 1,109 lbs Features: Four-wheel disk brakes ABS w...

339

VIN# JHMFA36246S018725 Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

46S018725 Vehicle Specifications Engine: 1.3 L 4-cylinder Electric Motor: 15 kW Battery: NiMH Seatbelt Positions: Five Payload: 968 lbs Features: Front disk brakes wEBD brake...

340

VIN# JTDKB20U740012721 Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Toyota Prius VIN JTDKB20U740012721 Vehicle Specifications Engine: 1.5 L 4-cylinder Electric Motor: 50 kW Battery: NiMH Seatbelt Positions: Five Payload: 905 lbs Features: CVT...

Note: This page contains sample records for the topic "motor vehicle inspection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy 101: Electric Vehicles | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

your style. These vehicles rely primarily on an electric motor, but switch over to a gasoline-fueled engine to supplement power when the battery is low. The costs of today's EVs...

342

A MOOS MODULE FOR MONITORING ENERGY USAGE OF AUTONOMOUS VEHICLES  

E-Print Network (OSTI)

A MOOS MODULE FOR MONITORING ENERGY USAGE OF AUTONOMOUS VEHICLES Anthony Kanago, Kevin Roos, James--Tracking the energy usage of an autonomous underwater vehicle (AUV) and making accurate data available provides especially effectively in energy-aware systems, allowing inspection vehicles (which typically travel farther

Idaho, University of

343

Energy Basics: Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

344

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

345

Energy Basics: Alternative Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

346

Energy Basics: Alternative Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels. Learn more about the following types of vehicles: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

347

NREL: Learning - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles Hybrid Electric Vehicles Photo of the front and part of the side of a bus parked at the curb of a city street with tall buildings in the background. This diesel hybrid electric bus operated by the Metropolitan Transit Authority, New York City Transit, was part of a test study that recently investigated the fuel efficiency and reliability of these buses. Credit: Leslie Eudy Today's hybrid electric vehicles (HEVs) range from small passenger cars to sport utility vehicles (SUVs) and large trucks. Though they often look just like conventional vehicles, HEVs usually include an electric motor as well as a small internal combustion engine (ICE). This combination provides greater fuel economy and fewer emissions than most conventional ICE vehicles do. HEVs are powered by two energy sources: an energy conversion unit, such as

348

Vehicle security apparatus and method  

DOE Patents (OSTI)

A vehicle security apparatus for use in a motor vehicle, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle.

Veligdan, James T. (Manorville, NY)

1996-02-13T23:59:59.000Z

349

Vehicle security apparatus and method  

DOE Patents (OSTI)

A vehicle security apparatus for use in a motor vehicle is disclosed, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle. 7 figs.

Veligdan, J.T.

1996-02-13T23:59:59.000Z

350

Powertrain system for a hybrid electric vehicle  

DOE Patents (OSTI)

A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

1999-08-31T23:59:59.000Z

351

Powertrain system for a hybrid electric vehicle  

DOE Patents (OSTI)

A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

1999-08-31T23:59:59.000Z

352

Household vehicles energy consumption 1994  

SciTech Connect

Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

NONE

1997-08-01T23:59:59.000Z

353

EERE: Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Office and initiatives, using efficient vehicles, and access vehicle and fuel information. Photo of a ethanol and biodiesel fueling station Photo of three big-rig...

354

Golf Cart/Utility Vehicle Operation Policy & Procedures To establish standards for to the safe operation and use of Golf Cart/Utility Vehicles  

E-Print Network (OSTI)

is an extremely powerful tool in maximizing vehicle resources. · Maintenance and safety inspections of specific vehicles. Examples include vehicles with reported design flaws, safety recalls, or high repair (Hybrid/FFV/Diesel/Electric), color (if known), VIN (if known) and the tradein vehicle identification

Wood, Stephen L.

355

Vehicle Technologies Office: Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Glossary A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Adsorption: The adhesion of the molecules of gases, dissolved substances, or liquids in more or less concentrated form to the surface of solids or liquids with which they are in contact. Commercial adsorbent materials have enormous internal surfaces. AEMD (Automotive Electric Drive Motor): A U.S. Department of Energy program to develop low-cost traction drive motors for automotive applications. Aerosol: A cloud consisting of particles dispersed in a gas or gases. AIPM (Automotive Integrated Power Module) A U.S. Department of Energy program to integrate the power devices, control electronics, and thermal management of a vehicle into a single low-cost package that will meet all requirements for automotive motor control applications.

356

Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Motor Fuel Motor Carrier Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Motor Carrier Fuel Tax Effective January 1, 2014, a person who operates a commercial motor vehicle

357

Hybrid Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles. Hybrid electric vehicles typically combine the internal combustion engine of a conventional vehicle with the battery and electric motor of an electric vehicle. The combination offers low emissions and convenience-HEVs never need to be plugged in.

358

Hybrid Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles. Hybrid electric vehicles typically combine the internal combustion engine of a conventional vehicle with the battery and electric motor of an electric vehicle. The combination offers low emissions and convenience-HEVs never need to be plugged in.

359

Fuel Economy of Hybrids, Diesels, and Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

You are here: Find a Car - Home > Hybrids, Diesels, and Alternative Fuel You are here: Find a Car - Home > Hybrids, Diesels, and Alternative Fuel Vehicles Hybrids, Diesels, and Alternative Fuel Vehicles Search by Vehicle Type 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 Select Vehicle Type Diesel Electric Ethanol-Gasoline Hybrid Plug-in Hybrid Natural Gas Bifuel Natural Gas Bifuel Propane Go More Search Options Browse New Cars Hybrid Vehicles Plug-in Hybrid Vehicles Battery Electric Vehicles Diesel Vehicles Flex-Fuel Vehicles CNG Vehicles Related Information How Hybrid Vehicles Work How Fuel Cell Vehicles Work MotorWeek Videos Compare Hybrids Compare Diesels Extreme MPG Tax Incentive Information Center Alternative Fuel Station Locator Alternative Fuel and Advanced Vehicle Data Center | Share I want to... Compare Side-by-Side

360

Inspection Report: IG-0774  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inspection Report Inspection Report Material Control and Accountability at Los Alamos National Laboratory DOE/IG-0774 September 2007 U.S. Department of Energy Office of Inspector General Office of Inspections and Special Inquiries Department of Energy Washington, DC 20585 September 7,2007 MEMORANDUM FOR FROM: Insp~ct& General SUBJECT: INFORMATION: Inspection Report on "Material Control and Accountability at Los Alamos National Laboratory" BACKGROUND The Department of Energy's Los Alamos National Laboratory (LANL) has a national security mission that includes responsibility for the science, engineering and technology related to certain radioactive materials supporting the Nation's nuclear weapons program. These include materials

Note: This page contains sample records for the topic "motor vehicle inspection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Optical fiber inspection system  

DOE Patents (OSTI)

A remote optical inspection system including an inspection head. The inspection head has a passageway through which pellets or other objects are passed. A window is provided along the passageway through which light is beamed against the objects being inspected. A plurality of lens assemblies are arranged about the window so that reflected light can be gathered and transferred to a plurality of coherent optical fiber light guides. The light guides transfer the light images to a television or other image transducer which converts the optical images into a representative electronic signal. The electronic signal can then be displayed on a signal viewer such as a television monitor for inspection by a person. A staging means can be used to support the objects for viewing through the window. Routing means can be used to direct inspected objects into appropriate exit passages for accepted or rejected objects. The inspected objects are advantageously fed in a singular manner to the staging means and routing means. The inspection system is advantageously used in an enclosure when toxic or hazardous materials are being inspected.

Moore, Francis W. (Richland, WA)

1987-01-01T23:59:59.000Z

362

Optical fiber inspection system  

DOE Patents (OSTI)

A remote optical inspection system including an inspection head. The inspection head has a passageway through which pellets or other objects are passed. A window is provided along the passageway through which light is beamed against the objects being inspected. A plurality of lens assemblies are arranged about the window so that reflected light can be gathered and transferred to a plurality of coherent optical fiber light guides. The light guides transfer the light images to a television or other image transducer which converts the optical images into a representative electronic signal. The electronic signal can then be displayed on a signal viewer such as a television monitor for inspection by a person. A staging means can be used to support the objects for viewing through the window. Routing means can be used to direct inspected objects into appropriate exit passages for accepted or rejected objects. The inspected objects are advantageously fed in a singular manner to the staging means and routing means. The inspection system is advantageously used in an enclosure when toxic or hazardous materials are being inspected. 10 figs.

Moore, F.W.

1985-04-05T23:59:59.000Z

363

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Displacement: 1.5 L Fuel Tank Capacity: 13.2 US gal Fuel Type: Regular Unleaded Motor Type: Permanent magnet Max. PowerTorque: 17 kW144 Nm Max. Motor Speed: 9500 rpm...

364

Total Cost of Motor-Vehicle Use  

E-Print Network (OSTI)

Grand total social cost of highway transportation Subtotal:of alternative transportation investments. A social-costtransportation option that has These costs will be inefficiently incurred if people do not fully lower total social costs.

Delucchi, Mark A.

1996-01-01T23:59:59.000Z

365

On-Road Motor Vehicle Emissions Measurements  

E-Print Network (OSTI)

and maintenance are both important. Propane and CNG are NOT "cleaner burning". RSD is a very good tool but ... Measured grams pollutant per kg of fuel from RSD -quantifiable uncertainty Fuel sales from tax department inventories · Only need one week of work and fuel sales to get fuel based emissions inventories · RSD

Denver, University of

366

Perspective: Power Lines and Motor Vehicle Electronics  

Science Conference Proceedings (OSTI)

Recent news reports have suggested that the operation of automotive electronic systems (including sudden acceleration) could be affected by the electric and magnetic fields associated with power transmission lines. Based on electromagnetic fundamentals and knowledge of the levels of electric fields, magnetic fields and RF fields from transmission lines, one can evaluate the possibility of an interaction between these exposures and the electronic systems within automobiles, both electric and conventional.

2010-06-06T23:59:59.000Z

367

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Hybrid and Vehicle Systems to someone by E-mail Share Vehicle Technologies Office: Hybrid and Vehicle Systems on Facebook Tweet about Vehicle Technologies Office: Hybrid and Vehicle Systems on Twitter Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Google Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Delicious Rank Vehicle Technologies Office: Hybrid and Vehicle Systems on Digg Find More places to share Vehicle Technologies Office: Hybrid and Vehicle Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Modeling & Simulation Integration & Validation Benchmarking Parasitic Loss Reduction Propulsion Systems Advanced Vehicle Evaluations Energy Storage Advanced Power Electronics & Electrical Machines

368

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing...

369

Advanced Vehicle Testing Activity: Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Urban Electric Vehicles Toyota Urban Electric Vehicle Urban electric vehicles (UEVs) are regular passenger vehicles with top speeds of about 60 miles per hour (mph) and a...

370

Advanced Vehicle Testing Activity: Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Urban Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Urban...

371

Advanced Vehicle Testing Activity: Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Hybrid...

372

Laboratory to change vehicle traffic-screening regimen at vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

Changes to vehicle traffic-screening Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and won't be staffed by a Laboratory protective force officer. September 1, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

373

Executive Fleet Vehicles DOE HQ 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Motor Vehicle Management Report Motor Vehicle Management Report U.S. Department of Energy - HQ Pursuant to Federal Management Regulation 102-34.50 (41 CFR 102-34.50) November 14, 2011 Background: On May 24, 2011, the President issued a Presidential Memorandum on Federal Fleet Performance. In accordance with Section 1 (b) of the Presidential Memorandum and pursuant to Federal Management Regulation 102-34.50 (41 CFR 102-34.50), executive fleets are required to achieve maximum fuel efficiency; be limited in motor vehicle body size, engine size, and optional equipment to what is essential to meet agency mission; and be midsize or smaller sedans, except where larger sedans are essential to the agency mission. Within 180 days of the date of the Presidential Memorandum, any executive fleet vehicles that are larger than a midsize sedan or do not comply with alternative fueled

374

Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor  

DOE Patents (OSTI)

A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.

Coffey, Howard T. (Darien, IL)

1993-01-01T23:59:59.000Z

375

Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor  

DOE Patents (OSTI)

A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle levitation. 3 figures.

Coffey, H.T.

1993-10-19T23:59:59.000Z

376

Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor  

DOE Patents (OSTI)

A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.

Coffey, H.T.

1992-12-31T23:59:59.000Z

377

Utility Line Inspections and Audits  

Science Conference Proceedings (OSTI)

Utility Line Inspections and Audits provides utility engineers with a concise reference for the pros, cons, and how to related to performing various line inspections and audits.

2007-03-21T23:59:59.000Z

378

Development of a particle number and particle mass vehicle emissions inventory for an urban fleet  

Science Conference Proceedings (OSTI)

Motor vehicles are major emitters of gaseous and particulate matter pollution in urban areas, and exposure to particulate matter pollution can have serious health effects, ranging from respiratory and cardiovascular disease to mortality. Motor vehicle ... Keywords: Emission factors, Motor vehicle inventory, PM 1, PM 10, PM 2.5, Particle emissions, Particle mass, Particle number, South-East Queensland, Traffic modelling, Transport modelling, Ultrafine particles

Diane U. Keogh; Luis Ferreira; Lidia Morawska

2009-11-01T23:59:59.000Z

379

Mission Motors | Open Energy Information  

Open Energy Info (EERE)

Motors Motors Jump to: navigation, search Name Mission Motors Place San Francisco, California Sector Vehicles Product Electric Motorcycles Year founded 2007 Number of employees 11-50 Website http://www.ridemission.com/ Coordinates 37.7749295°, -122.4194155° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7749295,"lon":-122.4194155,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

380

Chinese Rural Vehicles: An Explanatory Analysis of Technology, Economics, Industrial Organization, Energy Use, Emissions, and Policy  

E-Print Network (OSTI)

done before the linkage between rural motorization and cropconcern in China, due to huge rural population, diminishingcity roads are filled with rural vehicles! Many many 3-w

Sperling, Dan; Lin, Zhenhong; Hamilton, Peter

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "motor vehicle inspection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

New-vehicle fuel economy continues to increase - Today in Energy ...  

U.S. Energy Information Administration (EIA)

Other qualified vehicles are non-hybrid natural gas and electric vehicles, for which the NHTSA fuel economy values are 6.667 times the EPA motor gasoline-based values.

382

Just build it! : a fully functional concept vehicle using robotic wheels  

E-Print Network (OSTI)

Interest in electric vehicle drive units is resurging with the proliferation of hybrid and electric vehicles. Currently emerging key-technologies are: in-wheel motors, electric braking, integrated steering activators and ...

Schmitt, Peter, S.M. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

383

Vehicle Technologies Office: Vehicle Technologies Office Recognizes  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technologies Vehicle Technologies Office Recognizes Outstanding Researchers to someone by E-mail Share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Facebook Tweet about Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Twitter Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Google Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Delicious Rank Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Digg Find More places to share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on AddThis.com...

384

Power-Factor and Torque Calculation with Consideration of Cross Saturation of the Interior Permanent Magnet Synchronous Motor with  

E-Print Network (OSTI)

Permanent Magnet Synchronous Motor with Brushless Field Excitation Seong Taek Lee1,2 , Timothy A. Burress1 permanent magnet synchronous motor (IPMSM). The conventional two-axis IPMSM model is modified to include motor of a hybrid electric vehicle. I. INTRODUCTION The interior permanent magnet synchronous motor

Tolbert, Leon M.

385

Remote Inspection, Measurement and Handling for LHC  

E-Print Network (OSTI)

Personnel access to the LHC tunnel will be restricted to varying extents during the life of the machine due to radiation, cryogenic and pressure hazards. The ability to carry out visual inspection, measurement and handling activities remotely during periods when the LHC tunnel is potentially hazardous offers advantages in terms of safety, accelerator down time, and costs. The first applications identified were remote measurement of radiation levels at the start of shut-down, remote geometrical survey measurements in the collimation regions, and remote visual inspection during pressure testing and initial machine cool-down. In addition, for remote handling operations, it will be necessary to be able to transmit several real-time video images from the tunnel to the control room. The paper describes the design, development and use of a remotely controlled vehicle to demonstrate the feasibility of meeting the above requirements in the LHC tunnel. Design choices are explained along with operating experience to-dat...

Kershaw, K; Coin, A; Delsaux, F; Feniet, T; Grenard, J L; Valbuena, R

2007-01-01T23:59:59.000Z

386

EV Everywhere Grand Challenge - Electric Motors and Critical Materials Breakout  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Motors and Critical Electric Motors and Critical Materials Breakout Laura Marlino Oak Ridge National Laboratory Iver Anderson Ames Laboratory Facilitators July 24, 2012 EV Everywhere Grand Challenge Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov Electric Drive Status and Targets Current Status* PHEV 40** AEV 100** AEV 300+ System Cost $/kW 20 ($1100) 5 ($600) 14 ($1680) 4 ($600) Motor Specific Power kW/kg 1.3 1.9 1.5 2 PE Specific Power kW/kg 10.5 16 12 16.7 System Peak Efficiency % 90 97 91 98 2022 EV Everywhere Targets Extremely Aggressive Targets Especially Challenging for the Electric Motor * 55kW system ** 120kW system + 150 kW system Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov

387

Electric vehicle regenerative antiskid braking and traction control system  

DOE Patents (OSTI)

An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

Cikanek, Susan R. (Wixom, MI)

1995-01-01T23:59:59.000Z

388

Electric vehicle regenerative antiskid braking and traction control system  

DOE Patents (OSTI)

An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

Cikanek, S.R.

1995-09-12T23:59:59.000Z

389

Study of Shifting without Driving Force Interrupt for Double Electric Motor HEV  

Science Conference Proceedings (OSTI)

For traditional gearbox, the engine power is cut off while shifting, which will interrupt the power of power-train, make velocity down, affect the acceleration of up gear and lower the vehicle dynamic. A double electric motor hybrid electric vehicle ... Keywords: Double Electric Motor HEV, Shifting Without Driving Force Interrupt (SWDFI), Integrated Power-train

Wang Jiaxue; Wang Qingnian; Wang Weihua; Zeng Xiaohua; Li Chuan

2009-10-01T23:59:59.000Z

390

Vehicle Technologies Office: 2006 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Archive 6 Archive #449 Biodiesel to Conventional Diesel: An Emissions Comparison December 25, 2006 #448 Fuel Purchasing Habits December 18, 2006 #447 World Ethanol Production December 11, 2006 #446 More Likely to Buy a Hybrid or Other More Fuel Efficient Vehicle? December 4, 2006 #445 U.S. Population Growth and Light Vehicle Sales November 27, 2006 #444 Opinions on Plug-In Hybrid Vehicles November 20, 2006 #443 Motor Vehicle Trade between the U.S. and China November 13, 2006 #442 Automotive Parts Trade between the U.S. and China November 6, 2006 #441 Knowledge about E85 October 30, 2006 #440 Public Attitude on Hybrids 2005 October 23, 2006 Due to system upgrades, the Fact of the Week was not posted for the weeks of September 4 through October 16, 2006.

391

As Electric Vehicles Take Charge, Costs Power Down | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

As Electric Vehicles Take Charge, Costs Power Down As Electric Vehicles Take Charge, Costs Power Down As Electric Vehicles Take Charge, Costs Power Down January 13, 2012 - 1:29pm Addthis Thanks to a cost-sharing project with the Energy Department, General Motors has been able to develop the capacity to build electric and hybrid motors internally. That capacity has made cars like the upcoming Chevy Spark EV (above) possible. | Image courtesy of General Motors. Thanks to a cost-sharing project with the Energy Department, General Motors has been able to develop the capacity to build electric and hybrid motors internally. That capacity has made cars like the upcoming Chevy Spark EV (above) possible. | Image courtesy of General Motors. Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager The record number of electric-drive vehicles on the floor of Detroit's

392

Alternative Fuels Data Center: Fuel Inefficient Vehicle Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Inefficient Fuel Inefficient Vehicle Fee to someone by E-mail Share Alternative Fuels Data Center: Fuel Inefficient Vehicle Fee on Facebook Tweet about Alternative Fuels Data Center: Fuel Inefficient Vehicle Fee on Twitter Bookmark Alternative Fuels Data Center: Fuel Inefficient Vehicle Fee on Google Bookmark Alternative Fuels Data Center: Fuel Inefficient Vehicle Fee on Delicious Rank Alternative Fuels Data Center: Fuel Inefficient Vehicle Fee on Digg Find More places to share Alternative Fuels Data Center: Fuel Inefficient Vehicle Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Inefficient Vehicle Fee New passenger vehicles meeting one of the following criteria are subject to an additional fee payable to the New Jersey Motor Vehicle Commission:

393

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards Maine has adopted the California motor vehicle emissions standards

394

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards New Jersey has adopted California motor vehicle emissions standards as set

395

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards Washington adopted the California motor vehicle emission standards in Title

396

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards Maryland has adopted the California motor vehicle emission standards in

397

Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery.

398

Piping inspection round robin  

Science Conference Proceedings (OSTI)

The piping inspection round robin was conducted in 1981 at the Pacific Northwest National Laboratory (PNNL) to quantify the capability of ultrasonics for inservice inspection and to address some aspects of reliability for this type of nondestructive evaluation (NDE). The round robin measured the crack detection capabilities of seven field inspection teams who employed procedures that met or exceeded the 1977 edition through the 1978 addenda of the American Society of Mechanical Engineers (ASME) Section 11 Code requirements. Three different types of materials were employed in the study (cast stainless steel, clad ferritic, and wrought stainless steel), and two different types of flaws were implanted into the specimens (intergranular stress corrosion cracks (IGSCCs) and thermal fatigue cracks (TFCs)). When considering near-side inspection, far-side inspection, and false call rate, the overall performance was found to be best in clad ferritic, less effective in wrought stainless steel and the worst in cast stainless steel. Depth sizing performance showed little correlation with the true crack depths.

Heasler, P.G.; Doctor, S.R. [Pacific Northwest National Lab., Richland, WA (United States)

1996-04-01T23:59:59.000Z

399

Brake blending strategy for a hybrid vehicle  

DOE Patents (OSTI)

A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.

Boberg, Evan S. (Hazel Park, MI)

2000-12-05T23:59:59.000Z

400

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

gasoline vehicles. Dedicated propane vehicles are designed to run only on propane; bi-fuel propane vehicles have two separate fueling systems that enable the vehicle to use...

Note: This page contains sample records for the topic "motor vehicle inspection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Flex-fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Stations that Sell E85 (Alternative Fuels and Advanced Vehicles Data Center AFDC) Flexible Fuel Vehicle (FFV) Cost Calculator (compare costs for operating your vehicle...

402

Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles A neighborhood electric vehicle (NEV) is 4-wheeled vehicle, larger than a golf cart but smaller than most light-duty passenger vehicles. NEVs are...

403

Vehicle systems design optimization study  

DOE Green Energy (OSTI)

The optimization of an electric vehicle layout requires a weight distribution in the range of 53/47 to 62/38 in order to assure dynamic handling characteristics comparable to current production internal combustion engine vehicles. It is possible to achieve this goal and also provide passenger and cargo space comparable to a selected current production sub-compact car either in a unique new design or by utilizing the production vehicle as a base. Necessary modification of the base vehicle can be accomplished without major modification of the structure or running gear. As long as batteries are as heavy and require as much space as they currently do, they must be divided into two packages - one at front under the hood and a second at the rear under the cargo area - in order to achieve the desired weight distribution. The weight distribution criteria requires the placement of batteries at the front of the vehicle even when the central tunnel is used for the location of some batteries. The optimum layout has a front motor and front wheel drive. This configuration provides the optimum vehicle dynamic handling characteristics and the maximum passsenger and cargo space for a given size vehicle.

Gilmour, J. L.

1980-04-01T23:59:59.000Z

404

Inspection Report: IG-0770  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy U.S. Department of Energy Office of Inspector General Office of Inspections and Special Inquiries Inspection Report Protective Force MK-19 Grenade Launcher Use at the National Nuclear Security Administration's Pantex Facility DOE/IG-0770 July 2007 Department of Energy Washington, DC 20585 July 2 0 , 2007 MEMORANDUM FOR TWSECRETARY FROM: 4- Greg ry . riedman Inspector General SUBJECT: INFORMATION: Inspection Report on "Protective Force MK-19 Grenade Launcher Use at the National Nuclear Security Administration's Pantex Facility" BACKGROUND The National Nuclear Security Administration's (NNSA) Pantex Facility is this Nation's only nuclear weapons assembly and disassembly facility. The nature of such work necessitates the development and implementation of protection strategies based upon the

405

Inspection Report: IG-0746  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

l nspector General l nspector General Office of Inspections and Special Inquiries Inspection Report Work Packages for Site Support Service; at Los Alamos National Laboratory Department of Energy Washington, DC 20585 November 29, 2006 MEMORANDUM FOR TI38 S E C m U R Y FROM: h p Gregor - . riedman Inspector General SUBJECT: INFORMATION: Inspection Report on "Work Packages for Site Support Services at Los Alalnos National Laboratory" The Department of Energy's Los Alarnos National Laboratory (LANL) enhances global security by ensuring the safety and reliability of the U.S. nuclear weapons stockpile; developing technical solutioils to reduce the threat of weapons of mass destnlction; and solving problems related to energy, environn~ent, infrastructure, healtl~, and national security. Site support services at the

406

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle Special Projects on Facebook Tweet about Advanced Vehicle Testing...

407

Advanced Vehicle Testing Activity: Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuel Vehicles SuperShuttle CNG Van Alternative fuel vehicles (AFVs) are vehicles designed to operate on alternative fuels such as compressed and liquefied natural gas,...

408

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the technology research and development (R&D) activities of...

409

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

410

Advanced Vehicle Testing Activity - Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles What's New 2013 BRP Commander Electric (PDF 195KB) A Neighborhood Electric Vehicle (NEV) is technically defined as a Low Speed Vehicle (LSV)...

411

Advanced Vehicle Testing Activity - Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

NEVAmerica Baseline Performance Testing 2010 Electric Vehicles International Neighborhood Electric Vehicle 2010 Electric Vehicles International E-Mega 2009 NEVAmerica Baseline...

412

VIN# JHMZE2H59AS011748 Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

H59AS011748 Vehicle Specifications Engine: 1.3 L 4-cylinder Electric Motor: 10 kW Battery: NiMH Seatbelt Positions: Five Payload: 907 lbs Features: Regenerative braking Traction...

413

VIN# KMHEC4A43BA004932 Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

3BA004932 Vehicle Specifications Engine: 2.4 L Electric Motor: 30 kW Battery: Lithium Polymer Seatbelt Positions: Five Payload: 1074 lbs Features: Regenerative braking Traction...

414

VIN# JHMZE2H78AS010141 Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

H78AS010141 Vehicle Specifications Engine: 1.3 L 4-cylinder Electric Motor: 10 kW Battery: NiMH Seatbelt Positions: Five Payload: 907 lbs Features: Regenerative braking Traction...

415

VIN# JTDKN3DU5A0006063 Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

DU5A0006063 Vehicle Specifications Engine: 1.8 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 885 lbs Features: Regenerative braking Traction...

416

VIN# JTDKN3DU2A5010462 Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

DU2A5010462 Vehicle Specifications Engine: 1.8 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 885 lbs Features: Regenerative braking Traction...

417

VIN# KMHEC4A47BA003539 Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

7BA003539 Vehicle Specifications Engine: 2.4 L Electric Motor: 30 kW Battery: Lithium Polymer Seatbelt Positions: Five Payload: 1074 lbs Features: Regenerative braking Traction...

418

Vehicle Specifications Engine: 5.3 L V8  

NLE Websites -- All DOE Office Websites (Extended Search)

Silverado VIN 1GCEC19T34Z309284 Vehicle Specifications Engine: 5.3 L V8 Electric Motor: 14 kW Battery: Lead acid Seatbelt Positions: Five Features: Onboard 20 A, 2.4 kW...

419

VIN# JTEDW21A160006395 Vehicle Specifications Engine...  

NLE Websites -- All DOE Office Websites (Extended Search)

Toyota Highlander VIN JTEDW21A160006395 Vehicle Specifications Engine: 3.3 L V6 Electric Motor: Front - 123 kW Battery: NiMH Seatbelt Positions: Seven Payload: 1,557 lbs Features:...

420

New Energy 101 Video: Electric Vehicles | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

trips easier by switching to a gasoline-fueled engine to power the car's electric motor when the battery is low. Visit the Vehicle Cost Calculator on DOE's Alternative Fuels...

Note: This page contains sample records for the topic "motor vehicle inspection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compatible Vehicles: StarTrans - Senator Turtle Top - Odyssey XL Turtle Top - Odyssey Goshen Coach - GCIIG-Force Turtle Top - Van Terra Capacity Trucks - TJ5000TJ7000 Ford Motor...

422

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Trans Tech - ETrans Application: Bus - School Fuel Type: Electricity Maximum Seating: 52 Power Source(s): Smith Electric Vehicles - 120kW induction motor with lithium-ion...

423

Think City Electric Vehicle Democstration Program Final Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

7182005 AWARD DE-FG26-O1ID14048 THNK city ELECTRIC VEHICLE DEMONSTRATION PROGRAM FINAL PROJECT REPORT June 2005 Ford Motor Company Sustainable Mobility Technologies 2 7182005...

424

Utilities Inspection Technologies  

E-Print Network (OSTI)

Preventive and predictive maintenance programs are enhanced by using various inspection technologies to detect problems and potential failures before catastrophic failure. This paper discusses successful inspection technologies that have been employed in industrial facilities within the Navy. Specific systems include compressed air, electrical distribution, natural gas, steam, and hot water. Technologies include: Enhanced optical methods (infrared thermography, boroscopes, and fiberscopes) Acoustic emissions and vibration signature analysis Locating and quantifying methods (deep probe temperature analysis, electromagnetic pipe and cable locators, holiday and fault locators, and radar mapping).

Messock, R. K.

1993-03-01T23:59:59.000Z

425

Independent Oversight Inspection, Argonne National Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inspection, Argonne National Laboratory, Volume 1 - May 2005 Independent Oversight Inspection, Argonne National Laboratory, Volume 1 - May 2005 May 2005 Inspection of Environment,...

426

Inspection Report: IG-0383 | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Inspection Report: IG-0383 January 16, 1996 Inspection of Human Subject Research in Intelligence and Intelligence-Related Projects Inspection Report: IG-0383...

427

Inspection Report: IG-0367 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Inspection Report: IG-0367 March 16, 1995 Report on Inspection of an Intelligence Work-For-Others Project at the Idaho Operations Office Inspection Report: IG-0367...

428

Inspection Report: INS-9601 | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

601 Inspection Report: INS-9601 October 13, 1996 Report on the Intelligence Oversight Inspection of the Special Technologies Laboratory Inspection Report: INS-9601...

429

Inspection, Sandia National Laboratories - April 2008 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inspection, Sandia National Laboratories - April 2008 Inspection, Sandia National Laboratories - April 2008 April 2008 Inspection of Environment, Safety and Health Programs at the...

430

Independent Oversight Inspection, Idaho National Laboratory ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inspection, Idaho National Laboratory - August 2007 Independent Oversight Inspection, Idaho National Laboratory - August 2007 August 2007 Inspection of Environment, Safety, and...

431

The Department's Fleet Vehicle Sustainability Initiatives at Selected Locations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department's Fleet Vehicle Department's Fleet Vehicle Sustainability Initiatives at Selected Locations DOE/IG-0896 October 2013 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 October 24, 2013 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Department's Fleet Vehicle Sustainability Initiatives at Selected Locations" BACKGROUND In Fiscal Year (FY) 2012, the Department of Energy's fleet consisted of 14,457 vehicles operated at an annual cost of approximately $131 million. Nearly 72 percent of the vehicles were leased through the General Services Administration (GSA), with the remaining Department-owned and

432

Inspection of compressed natural gas cylinders on school buses  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) is sponsoring compressed natural gas (CNF)-powered school bus demonstrations in various locations around the country. Early in 1994, two non-DOE-sponsored CNG pickup trucks equipped with composite-reinforced-aluminum fuel cylinders experienced cylinder ruptures during refueling. As reported by the Gas Research Institute (GRI): ...analysis of the cylinder ruptures on the pickup trucks revealed that they were due to acid-induced stress corrosion cracking (SCC) of the overwrap. The overwrap that GRI refers to is a resin-impregnated fiber that is wrapped around the outside of the gas cylinder for added strength. Because ensuring the safety of the CNG vehicles it sponsors is of paramount concern to DOE, the Department, through the National Renewable Energy Laboratory (NREL), conducted inspections of DOE-sponsored vehicles nationwide. The work had three objectives: inspection, documentation, and education. First, inspectors visited sites where CNG-powered school buses sponsored by DOE are based, and inspected the CNG cylinders for damage. Second, information learned during the inspections was collected for DOE. Third, the inspections found that the education and awareness of site personnel, in terms of cylinder damage detection, needed to be increased.

NONE

1995-07-01T23:59:59.000Z

433

Diesel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Vehicles Audi A3 Diesel vehicles may be making a comeback. Diesel engines are more powerful and fuel-efficient than similar-sized gasoline engines (about 30-35% more fuel efficient). Plus, today's diesel vehicles are much improved over diesels of the past. Better Performance Improved fuel injection and electronic engine control technologies have Increased power Improved acceleration Increased efficiency New engine designs, along with noise- and vibration-damping technologies, have made them quieter and smoother. Cold-weather starting has been improved also. Cleaner Mercedes ML320 BlueTEC Today's diesels must meet the same emissions standards as gasoline vehicles. Advances in engine technologies, ultra-low sulfur diesel fuel, and improved exhaust treatment have made this possible.

434

Energy Basics: Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

435

Energy Basics: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

436

Energy Basics: Hybrid Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

437

Energy Basics: Natural Gas Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

438

Executive Fleet Vehicles Report | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Executive Fleet Vehicles Report Executive Fleet Vehicles Report Executive Fleet Vehicles Report On May 24, 2011, the President issued a Presidential Memorandum on Federal Fleet Performance. In accordance with Section 1 (b) of the Presidential Memorandum and pursuant to Federal Management Regulation 102-34.50 (41 CFR 102-34.50), executive fleets are required to achieve maximum fuel efficiency; be limited in motor vehicle body size, engine size, and optional equipment to what is essential to meet agency mission; and be midsize or smaller sedans, except where larger sedans are essential to the agency mission. Executive fleet vehicles that are larger than midsize sedans or are not AFVs must be disclosed on the website of the agency operating the vehicles within 180 days of the date of the memorandum (on or before November 17,

439

Sticky bomb detection with other implications for vehicle security.  

Science Conference Proceedings (OSTI)

A 'sticky bomb' is a type of improvised explosive device (IED) placed on a motor vehicle by (for example) a terrorist. The bomb is typically attached with adhesive ('duct') tape, or with magnets. This paper reports some preliminary results for a very rudimentary demonstration of two techniques for detecting the placement of a sticky bomb on a motor vehicle. The two techniques are tire pressure and magnetic measurements. There are other possible security applications for these techniques as well.

Johnston, R. G.; Vetrone, J.; Warner, J. S. (Nuclear Engineering Division)

2010-01-01T23:59:59.000Z

440

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

4-Cylinder Displacement: 1.4 L Fuel Tank Capacity: 9.3 gal Fuel Type: Premium gasoline Motor Type: 12-pole permanent magnet AC synchronous Max. PowerTorque: 111 kW370 Nm Max....

Note: This page contains sample records for the topic "motor vehicle inspection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy: 0.5 kWh Weight of Pack: 65 lb Pack Location: TrunkRear Seat Cooling: Active - Fan cooled MotorGenerator Max. PowerTorque: 15 kW107 Nm Max. Generator Speed: 6000 rpm...

442

A rule-based energy management strategy for plug-in hybrid electric vehicle (PHEV)  

Science Conference Proceedings (OSTI)

Hybrid Electric Vehicles (HEV) combine the power from an electric motor with that from an internal combustion engine to propel the vehicle. The HEV electric motor is typically powered by a battery pack through power electronics. The HEV battery is recharged ...

Harpreetsingh Banvait; Sohel Anwar; Yaobin Chen

2009-06-01T23:59:59.000Z

443

Automated robotic equipment for ultrasonic inspection of pressurizer heater wells  

DOE Patents (OSTI)

A robotic device for remotely inspecting pressurizer heater wells is provided which has the advantages of quickly, precisely, and reliably acquiring data at reasonable cost while also reducing radiation exposure of an operator. The device comprises a prober assembly including a probe which enters a heater well, gathers data regarding the condition of the heater well and transmits a signal carrying that data; a mounting device for mounting the probe assembly at the opening of the heater well so that the probe can enter the heater well; a first motor mounted on the mounting device for providing movement of the probe assembly in an axial direction; and a second motor mounted on the mounting device for providing rotation of the probe assembly. This arrangement enables full inspection of the heater well to be carried out.

Nachbar, Henry D. (Ballston Lake, NY); DeRossi, Raymond S. (Amsterdam, NY); Mullins, Lawrence E. (Middle Grove, NY)

1993-01-01T23:59:59.000Z

444

Automated robotic equipment for ultrasonic inspection of pressurizer heater wells  

DOE Patents (OSTI)

A robotic device for remotely inspecting pressurizer heater wells is provided which has the advantages of quickly, precisely, and reliably acquiring data at reasonable cost while also reducing radiation exposure of an operator. The device comprises a probe assembly including a probe which enters a heater well, gathers data regarding the condition of the heater well and transmits a signal carrying that data; a mounting device for mounting the probe assembly at the opening of the heater well so that the probe can enter the heater well; a first motor mounted on the mounting device for providing movement of the probe assembly in an axial direction; and a second motor mounted on the mounting device for providing rotation of the probe assembly. This arrangement enables full inspection of the heater well to be carried out.

Nachbar, H.D.; DeRossi, R.S.; Mullins, L.E.

1991-12-31T23:59:59.000Z

445

MotorMaster+ International  

NLE Websites -- All DOE Office Websites (Extended Search)

Motors with MotorMaster+ International * Are your plant motor systems running at optimal energy efficiency? * Do you know how to cost-effectively determine whether to repair or...

446

Comparative analysis of selected fuel cell vehicles  

DOE Green Energy (OSTI)

Vehicles powered by fuel cells operate more efficiently, more quietly, and more cleanly than internal combustion engines (ICEs). Furthermore, methanol-fueled fuel cell vehicles (FCVs) can utilize major elements of the existing fueling infrastructure of present-day liquid-fueled ICE vehicles (ICEVs). DOE has maintained an active program to stimulate the development and demonstration o fuel cell technologies in conjunction with rechargeable batteries in road vehicles. The purpose of this study is to identify and assess the availability of data on FCVs, and to develop a vehicle subsystem structure that can be used to compare both FCVs and ICEV, from a number of perspectives--environmental impacts, energy utilization, materials usage, and life cycle costs. This report focuses on methanol-fueled FCVs fueled by gasoline, methanol, and diesel fuel that are likely to be demonstratable by the year 2000. The comparative analysis presented covers four vehicles--two passenger vehicles and two urban transit buses. The passenger vehicles include an ICEV using either gasoline or methanol and an FCV using methanol. The FCV uses a Proton Exchange Membrane (PEM) fuel cell, an on-board methanol reformer, mid-term batteries, and an AC motor. The transit bus ICEV was evaluated for both diesel and methanol fuels. The transit bus FCV runs on methanol and uses a Phosphoric Acid Fuel Cell (PAFC) fuel cell, near-term batteries, a DC motor, and an on-board methanol reformer. 75 refs.

NONE

1993-05-07T23:59:59.000Z

447

Airborne Inspection Technology: Market Survey  

Science Conference Proceedings (OSTI)

This report presents findings of an investigation into various airborne inspection technologies currently used within the electric utility industry.

2002-03-04T23:59:59.000Z

448

Rare-Earth-Free Nanostructure Magnets: Rare-Earth-Free Permanent Magnets for Electric Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite  

Science Conference Proceedings (OSTI)

REACT Project: The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to todays best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.

None

2012-01-01T23:59:59.000Z

449

Vehicle Technologies Office: Key Activities in Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Activities in Key Activities in Vehicles to someone by E-mail Share Vehicle Technologies Office: Key Activities in Vehicles on Facebook Tweet about Vehicle Technologies Office: Key Activities in Vehicles on Twitter Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Google Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Delicious Rank Vehicle Technologies Office: Key Activities in Vehicles on Digg Find More places to share Vehicle Technologies Office: Key Activities in Vehicles on AddThis.com... Key Activities Mission, Vision, & Goals Plans, Implementation, & Results Organization & Contacts National Laboratories Budget Partnerships Key Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or

450

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

SPECIFICATIONS 1 Vehicle VIN:19XFB5F57CE002590 Class: Compact Seatbelt Positions: 5 Type: Sedan CARB 2 : AT-PZEV EPA CityHwyCombined 3 : 273832 MPGe Tires Manufacturer:...

451

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

Box, W.D.

1997-02-11T23:59:59.000Z

452

Inspection Report: IG-0821  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fire Suppression and Related Services Fire Suppression and Related Services at Los Alamos National Laboratory DOE/IG-0821 September 2009 U.S. Department of Energy Office of Inspector General Office of Inspections Department of Energy Washington, DC 20585 September 11, 2009 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Inspection Report on "Fire Suppression and Related Services at Los Alamos National Laboratory" BACKGROUND The Department of Energy's (DOE's) Los Alamos National Laboratory (LANL) is a multidisciplinary research institution engaged in strategic science on behalf of national security. LANL operates in "unique" hazard environments, to include special nuclear materials, explosives, and hazardous chemicals, that create special fire suppression and

453

NSLS Electrical Equipment Inspection  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Equipment Inspection Information Electrical Equipment Inspection Information A note to vendors visiting NSLS A note to users visiting NSLS Proteus Electrical Conformity Remediation Currently Certified Electrical Equipment Inspectors: First Line Contacts Email Extension Poshka, Dennis poshka@bnl.gov 2825 Alternate Contacts Boerner Jr, Albert aboerner@bnl.gov 5990 Buda, Scott buda@bnl.gov 3914 Caruso, Michael caruso@bnl.gov 4100 Chmiel, Robert chmiel@bnl.gov 8141 Church, Randolph church@bnl.gov 2736 Clay, Barret clay@bnl.gov 7284 D'Alsace, Roy dalsace@bnl.gov 3973 Danneil, Christopher cdanneil@bnl.gov 8609 Davila, Peter davila@bnl.gov 7625 De Toll, Peter detoll@bnl.gov 4100 Durfee, Douglas ddurfee@bnl.gov 7625 Fulkerson, Michael fulkerso@bnl.gov 5194 Gallagher, John jgallagher@bnl.gov 5770 Harder, David dharder@bnl.gov 4978

454

Streamline magnetic inspection of OCTGs  

Science Conference Proceedings (OSTI)

This article reports that supply and demand imbalances in the drilling industry are allowing operators to make drilling contracts more stringent, despite reduced day rates. One typical requirement is more thorough inspection of drill string and bottomhole assemblies to ensure equipment-related failures don't increase costs. Magnetic inspection techniques for oil country tubular goods are becoming more advanced. However, common misperceptions often needlessly plague the inspection process. Today, almost all high-grade tubular goods are inspected in the plain-end state according to guidelines which are more stringent than those outlined by API inspection specification 5AX. Most tubular goods are inspected three to four times before the operator is satisfied they are suitable to run downhole. Often such inspections are conducted by different companies employing at least two techniques: magnetic flux leakage (MFL) and ultrasonics (US).

Stanley, R.

1987-01-01T23:59:59.000Z

455

Inspection tester for explosives  

DOE Patents (OSTI)

An inspection tester that can be used anywhere as a primary screening tool by non-technical personnel to determine whether a surface contains explosives. It includes a body with a sample pad. First and second explosives detecting reagent holders and dispensers are operatively connected to the body and the sample pad. The first and second explosives detecting reagent holders and dispensers are positioned to deliver the explosives detecting reagents to the sample pad. A is heater operatively connected to the sample pad.

Haas, Jeffrey S. (San Ramon, CA); Simpson, Randall L. (Livermore, CA); Satcher, Joe H. (Patterson, CA)

2010-10-05T23:59:59.000Z

456

Infrared microscope inspection apparatus  

DOE Patents (OSTI)

Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface. 4 figs.

Forman, S.E.; Caunt, J.W.

1985-02-26T23:59:59.000Z

457

Inspection tester for explosives  

DOE Patents (OSTI)

An inspection tester that can be used anywhere as a primary screening tool by non-technical personnel to determine whether a surface contains explosives. It includes a body with a sample pad. First and second explosives detecting reagent holders and dispensers are operatively connected to the body and the sample pad. The first and second explosives detecting reagent holders and dispensers are positioned to deliver the explosives detecting reagents to the sample pad. A is heater operatively connected to the sample pad.

Haas, Jeffrey S. (San Ramon, CA); Simpson, Randall L. (Livermore, CA); Satcher, Joe H. (Patterson, CA)

2007-11-13T23:59:59.000Z

458

New Energy 101 Video: Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Energy 101 Video: Electric Vehicles New Energy 101 Video: Electric Vehicles New Energy 101 Video: Electric Vehicles January 17, 2012 - 5:15am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Electric vehicles, sometimes called EVs, can give drivers like you a convenient way to get around, while saving you money on fuel, reducing emissions, and supporting the nation's energy security. Learn about the advantages of electric vehicles, see EVs in action, and find out how they work by checking out DOE's new Electric Vehicle 101 video. The basics principles behind this technology are this: the EV's battery transfers energy to an electric motor, the motor turns a drive train, which then turns the wheels. Up to 80% of the energy in the battery is

459

New Energy Tax Credit for Electric Vehicles Purchased in 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Tax Credits for Electric Vehicles Federal Tax Credits for Electric Vehicles Photo of cash and keys Federal Tax Credit Up To $7,500! Electric vehicles (EVs) purchased in 2009 may be eligible for a federal income tax credit of up to $7,500. The amount will vary based on the capacity of the battery used to power the vehicle. This credit was replaced with a similar credit for EVs purchased after 2009. The maximum amount of this credit is the same, but the the requirements and credit phase-out criteria are slightly different. For more information on the credit for EVs purchased after 2009, click here. Vehicle Make & Model Full Credit Phase Out No Credit 50% 25% Tesla Motors Jan. 1, 2010, to Present TBD TBD TBD Tesla Roadster 2008-10 Tesla Roadster $7,500 -- -- -- Qualified Plug-In Electric Drive Motor Vehicles (IRC 30D)

460

NREL: Vehicles and Fuels Research - Advanced Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map The electric drive system is the technology foundation for hybrid electric and fuel cell vehicles. That's why NREL's Advanced Power Electronics project supports and promotes the design, development, and demonstration of power electronic components and systems that will overcome major technical barriers to the commercialization of hybrid, advanced internal combustion, and fuel cell vehicle technologies. In support of DOE's Vehicle Technologies Office, our researchers focus on developing advanced power electronics and electric machinery technologies that improve reliability, efficiency, and ruggedness, and dramatically decrease systems costs for advanced vehicles. Key components for these vehicles include the motor controller, DC to DC converters, and inverters

Note: This page contains sample records for the topic "motor vehicle inspection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

An intelligent inspection and survey robot. Volume 1  

Science Conference Proceedings (OSTI)

ARIES {number_sign}1 (Autonomous Robotic Inspection Experimental System), has been developed for the Department of Energy to survey and inspect drums containing low-level radioactive waste stored in warehouses at DOE facilities. The drums are typically stacked four high and arranged in rows with three-foot aisle widths. The robot will navigate through the aisles and perform an inspection operation, typically performed by a human operator, making decisions about the condition of the drums and maintaining a database of pertinent information about each drum. A new version of the Cybermotion series of mobile robots is the base mobile vehicle for ARIES. The new Model K3A consists of an improved and enhanced mobile platform and a new turret that will permit turning around in a three-foot aisle. Advanced sonar and lidar systems were added to improve navigation in the narrow drum aisles. Onboard computer enhancements include a VMEbus computer system running the VxWorks real-time operating system. A graphical offboard supervisory UNIX workstation is used for high-level planning, control, monitoring, and reporting. A camera positioning system (CPS) includes primitive instructions for the robot to use in referencing and positioning the payload. The CPS retracts to a more compact position when traveling in the open warehouse. During inspection, the CPS extends up to deploy inspection packages at different heights on the four-drum stacks of 55-, 85-, and 110-gallon drums. The vision inspection module performs a visual inspection of the waste drums. This system will locate and identify each drum, locate any unique visual features, characterize relevant surface features of interest and update a data-base containing the inspection data.

NONE

1995-12-15T23:59:59.000Z

462

Control system and method for a hybrid electric vehicle  

DOE Patents (OSTI)

Several control methods are presented for application in a hybrid electric vehicle powertrain including in various embodiments an engine, a motor/generator, a transmission coupled at an input thereof to receive torque from the engine and the motor generator coupled to augment torque provided by the engine, an energy storage device coupled to receive energy from and provide energy to the motor/generator, an engine controller (EEC) coupled to control the engine, a transmission controller (TCM) coupled to control the transmission and a vehicle system controller (VSC) adapted to control the powertrain.

Tamor, Michael Alan (Toledo, OH)

2001-03-06T23:59:59.000Z

463

Robotics for waste storage inspection: A user`s perspective  

SciTech Connect

Self-navigating robotic vehicles are now commercially available, and the technology supporting other important system components has also matured. Higher reliability and the obtainability of system support now make it practical to consider robotics as a way of addressing the growing operational requirement for the periodic inspection and maintenance of radioactive, hazardous, and mixed waste inventories. This paper describes preparations for the first field deployment of an autonomous container inspection robot at a Department of Energy (DOE) site. The Stored Waste Autonomous Mobile Inspector (SWAMI) is presently being completed by engineers at the Savannah River Technology Center (SRTC). It is a modified version of a commercially available robot. It has been outfitted with sensor suites and cognition that allow it to perform inspections of drum inventories and their storage facilities.

Hazen, F.B.

1994-06-23T23:59:59.000Z

464

Multilevel Inverters for Electric Vehicle Applications  

DOE Green Energy (OSTI)

This paper presents multilevel inverters as an application for all-electric vehicle (EV) and hybrid-electric vehicle (HEV) motor drives. Diode-clamped inverters and cascaded H-bridge inverters, (1) can generate near-sinusoidal voltages with only fundamental frequency switching; (2) have almost no electromagnetic interference (EMI) and common-mode voltage; and (3) make an EV more accessible/safer and open wiring possible for most of an EV'S power system. This paper explores the benefits and discusses control schemes of the cascade inverter for use as an EV motor drive or a parallel HEV drive and the diode-clamped inverter as a series HEV motor drive. Analytical, simulated, and experimental results show the superiority of these multilevel inverters for this new niche.

Habetler, T.G.; Peng, F.Z.; Tolbert, L.M.

1998-10-22T23:59:59.000Z

465

Battery driven vehicle and recharging system  

SciTech Connect

A battery-driven car which has an electrical system including a minimum number of electric storage batteries as the power source, a high-voltage converter with a high-voltage capacitor bank for driving a direct current impulse motor combined with a generator for supplying current to motor/generator sets respectively integrated with the wheels of the vehicle to drive the same or for recharging the batteries in accordance with a microprocessor control system, the wheel-actuated generators providing recharging current for the batteries whenever the motor component is not being energized and in addition, said electrical system also including an air-driven turbine generator component for recharging the batteries when the vehicle reaches a predetermined speed in accordance with the microprocessor controls.

Arbisi, D. S.

1985-02-12T23:59:59.000Z

466

Multilevel Inverters for Electric Vehicle Applications  

SciTech Connect

This paper presents multilevel inverters as an application for all-electric vehicle (EV) and hybrid-electric vehicle (HEV) motor drives. Diode-clamped inverters and cascaded H-bridge inverters, (1) can generate near-sinusoidal voltages with only fundamental frequency switching; (2) have almost no electromagnetic interference (EMI) and common-mode voltage; and (3) make an EV more accessible/safer and open wiring possible for most of an EV'S power system. This paper explores the benefits and discusses control schemes of the cascade inverter for use as an EV motor drive or a parallel HEV drive and the diode-clamped inverter as a series HEV motor drive. Analytical, simulated, and experimental results show the superiority of these multilevel inverters for this new niche.

Habetler, T.G.; Peng, F.Z.; Tolbert, L.M.

1998-10-22T23:59:59.000Z

467

Advanced Vehicle Technologies Awards Table | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Awards Table Vehicle Technologies Awards Table Advanced Vehicle Technologies Awards Table The table contains a listing of the applicants, their locations, the amounts of the awards, and description of each project. The sub-categories of the table include: Advanced fuels and lubricants Light-weighting materials Demonstration Project for a Multi-Material Light-Weight Prototype Vehicle Advanced cells and design technology for electric drive batteries Advanced power electronics and electric motor technology Solid State Thermoelectric Energy Conversion Devices Fleet Efficiency Advanced Vehicle Testing and Evaluation Microsoft Word - VTP $175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 More Documents & Publications Advanced Vehicle Technologies Awards advanced vehicle technologies awards table

468

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decals  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Decals to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decals on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decals on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decals on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decals on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decals on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decals on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Decals An individual may place alternative fuel into the fuel tank of a motor

469

Search on Modeling and Collaborative Simulation for Electric Drive Wheeled Armored Vehicle  

Science Conference Proceedings (OSTI)

In order to evaluate the performance of electric transmission wheeled armored vehicle, models of motor driving system and dynamics of the 8 wheels drive vehicles based on ADAMS/Car were constructed, which compose the model of collaborative simulation ... Keywords: ADAMS/Car, Matlab, electric transmission, wheeled armored vehicle, collaborative simulation, dynamic performance

Zili Liao, Guibing Yang, Chunguang Liu, Yu Xiang

2012-07-01T23:59:59.000Z

470

Comparison of Early-stage Design Methods for a Two-mode Hybrid Electric Vehicle  

E-Print Network (OSTI)

Comparison of Early-stage Design Methods for a Two-mode Hybrid Electric Vehicle Kukhyun Ahn+ , J the propulsion system of a hybrid electric vehicle (HEV), engine, transmission, motor, battery, power electronics. In this paper, two design optimization methods for a two-mode hybrid vehicle are examined: The first integrates

Papalambros, Panos

471

Vehicles | Open Energy Information  

Open Energy Info (EERE)

Vehicles Jump to: navigation, search TODO: Add description Related Links List of Companies in Vehicles Sector List of Vehicles Incentives Retrieved from "http:en.openei.orgw...

472

Advanced Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban...

473

Alternative Vehicle Basics  

Energy.gov (U.S. Department of Energy (DOE))

There are a number of alternative and advanced vehiclesor vehicles that run on alternative fuels. Learn more about the following types of vehicles:

474

Electric vehicle drive train with direct coupling transmission  

DOE Patents (OSTI)

An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.

Tankersley, Jerome B. (Fredericksburg, VA); Boothe, Richard W. (Roanoke, VA); Konrad, Charles E. (Roanoke, VA)

1995-01-01T23:59:59.000Z

475

Electric vehicle drive train with direct coupling transmission  

DOE Patents (OSTI)

An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox. 6 figures.

Tankersley, J.B.; Boothe, R.W.; Konrad, C.E.

1995-04-04T23:59:59.000Z

476

Vehicles News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies http://energy.gov/eere/articles/energy-department-announces-45-million-advance-next-generation Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies

477

Analysis of Slanted Air-gap Structure of Interior Permanent Magnet Synchronous Motor with Brushless Field Excitation  

E-Print Network (OSTI)

Analysis of Slanted Air-gap Structure of Interior Permanent Magnet Synchronous Motor with Brushless permanent magnet synchronous motor (IPMSM) for application in a hybrid electric vehicle. This unique slanted permanent magnet synchronous motor FEA finite element analysis PM permanent magnet II. INTRODUCTION

Tolbert, Leon M.

478

Motor torque compensation of an induction electric motor by ...  

Motor torque compensation of an induction electric motor by adjusting a slip command during periods of supposed change in motor temperature United States Patent

479

Piping inspection instrument carriage  

DOE Patents (OSTI)

This invention, an instrument carriage for inspection of piping, comprises front and rear leg assemblies for engaging the interior of the piping and supporting and centering the carriage therein, an instrumentation arm carried by a shaft system running from front to rear leg assemblies. The shaft system has a screw shaft for moving the arm axially and a spline gear for moving the arm azimuthally. The arm has a pair of air cylinders that raise and lower a plate in the radial direction. On the plate are probes including, an eddy current probe and an ultrasonic testing probe. The ultrasonic testing probe is capable of spinning 360[degrees] about its axis.

Hapstack, M.; Talarek, T.R.; Zollinger, W.T.; Heckendorn, F.M. II; Park, L.R.

1991-01-01T23:59:59.000Z

480

Piping inspection instrument carriage  

DOE Patents (OSTI)

This invention, an instrument carriage for inspection of piping, comprises front and rear leg assemblies for engaging the interior of the piping and supporting and centering the carriage therein, an instrumentation arm carried by a shaft system running from front to rear leg assemblies. The shaft system has a screw shaft for moving the arm axially and a spline gear for moving the arm azimuthally. The arm has a pair of air cylinders that raise and lower a plate in the radial direction. On the plate are probes including, an eddy current probe and an ultrasonic testing probe. The ultrasonic testing probe is capable of spinning 360{degrees} about its axis.

Hapstack, M.; Talarek, T.R.; Zollinger, W.T.; Heckendorn, F.M. II; Park, L.R.

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "motor vehicle inspection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Inspection Technologies for Vegetation Management  

Science Conference Proceedings (OSTI)

Recent regulatory changes and budgetary pressures have prompted utilities to seek a more in-depth understanding of the terrain along their transmission line corridor rights-of-way (ROW) and the vegetation on that terrain. Vegetation inspections play an important role in acquiring this information and in avoiding costly vegetation-related outages. While the methods by which the inspections are conducted vary from utility to utility, some form of periodic inspections of transmission ROWs are ...

2012-12-14T23:59:59.000Z

482

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles Ford Think Neighbor A neighborhood electric vehicle (NEV) is a four-wheeled vehicle that has a top speed of 20-25 miles per hour (mph). It is larger...

483

VEHICLE DETAILS, BATTERY DESCRIPTION AND SPECIFICATIONS Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE DETAILS, BATTERY DESCRIPTION AND SPECIFICATIONS Vehicle Details Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Propulsion System: BEV Electric Machine: 80 kW...

484

Halbach array DC motor/generator  

DOE Patents (OSTI)

A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An ``inside-out`` design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then ``switched`` or ``commutated`` to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives. 17 figs.

Merritt, B.T.; Dreifuerst, G.R.; Post, R.F.

1998-01-06T23:59:59.000Z

485

Halbach array DC motor/generator  

DOE Patents (OSTI)

A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An "inside-out" design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then "switched" or "commutated" to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives.

Merritt, Bernard T. (Livermore, CA); Dreifuerst, Gary R. (Livermore, CA); Post, Richard F. (Walnut Creek, CA)

1998-01-01T23:59:59.000Z

486

Thermographic Inspections | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

being lost. Energy auditors may use thermography -- or infrared scanning -- to detect thermal defects and air leakage in building envelopes. How Thermographic Inspections Work...

487

BENCHMARKING EMERGING PIPELINE INSPECTION TECHNOLOGIES  

NLE Websites -- All DOE Office Websites (Extended Search)

FINAL REPORT Benchmarking Emerging Pipeline Inspection Technologies To Department of Energy National Energy Technology Laboratory (NETL) DE-AP26-04NT40361 and Department of...

488

Inspection system performance test procedure  

SciTech Connect

This procedure establishes requirements to administer a performance demonstration test. The test is to demonstrate that the double-shell tank inspection system (DSTIS) supplied by the contractor performs in accordance with the WHC-S-4108, Double-Shell Tank Ultrasonic Inspection Performance Specification, Rev. 2-A, January, 1995. The inspection system is intended to provide ultrasonic (UT) and visual data to determine integrity of the Westinghouse Hanford Company (WHC) site underground waste tanks. The robotic inspection system consists of the following major sub-systems (modules) and components: Mobile control center; Deployment module; Cable management assembly; Robot mechanism; Ultrasonic testing system; Visual testing system; Pneumatic system; Electrical system; and Control system.

Jensen, C.E.

1995-01-17T23:59:59.000Z

489

Ultrasonic methods for rail inspection  

E-Print Network (OSTI)

Impedance Measurements in Rail Steel, Materials Evaluation,Guided Wave System for Rail Inspection: An Update, JournalWave-based Monitoring of Rail Head: Laboratory and Field

Phillips, Robert Ronald

2012-01-01T23:59:59.000Z

490

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

Box, W.D.

1994-03-15T23:59:59.000Z

491

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

Box, W.D.

1996-03-12T23:59:59.000Z

492

Living with Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Living with Electric Vehicles Living with Electric Vehicles JOHN DAVIS: On any given weekend, somewhere you'll find a gathering of cars and a group of enthusiasts assembled around them. Be the hotrods classics or sports cars, each genre of the car's evolution has developed loyal following. And electric cars are no exception. The recent National Plug-in day included events held at hundreds of sites across the U.S. enticing EV aficionados to check out the latest models and share their passion for gas-free motoring. JOHN BARRACCA: The dealer gives you 9.3 gallons. I haven't used all of that yet. But, when I get 3 gallons low, I put 3 gallons in. So, I'm still at almost a full tank. The last time I put 3 gallons in was February and this is September 23rd. JOHN DAVIS: All of the owners we talked with were pleased with their plug-in car's fuel

493

Report on Toyota Prius Motor Thermal Management  

DOE Green Energy (OSTI)

In the current hybrid vehicle market, the Toyota Prius drive system is considered the leader in electrical, mechanical, and manufacturing innovations. It is a significant accomplishment that Toyota is able to manufacture and sell the vehicle for a profit. The Toyota Prius traction motor design approach for reducing manufacturing costs and the motor s torque capability have been studied and tested. The findings were presented in two previous Oak Ridge National Laboratory (ORNL) reports. The conclusions from this report reveal, through temperature rise tests, that the 2004 Toyota Prius (THSII) motor is applicable only for use in a hybrid automobile. It would be significantly undersized if used in a fuel cell vehicle application. The power rating of the Prius motor is limited by the permissible temperature rise of the motor winding (170 C) and the motor cooling oil (158 C). The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. They are approximately 15 kW with 105 C coolant and 21 kW with 35 C coolant. These continuous ratings are much lower than the 30 kW specified as a technical motor target of the U.S. Department of Energy FreedomCAR Program. All tests were conducted at about 24 C ambient temperature. The load angle of each torque adjustment was monitored to prevent a sudden stop of the motor if the peak torque were exceeded, as indicated by the load angle in the region greater than 90 electrical degrees. For peak power with 400 Nm torque at 1200 rpm, the permissible running time depends upon the initial winding temperature condition. The projected rate of winding temperature rise is approximately 2.1 C/sec. The cooling-oil temperature does not change much during short peak power operation. For light and medium load situations, the efficiency varies from 80% to above 90%, and the power factor varies from 70% to above 90%, depending on the load and speed. When the motor is loaded heavily near the peak-torque (400-Nm) region, the efficiency goes down to the 40-50% range, and the power factor is nearly 100%. The efficiency is not a major concern at the high-torque region. The water-ethylene-glycol heat exchanger attached to the motor is small. During continuous operation, it dissipates about 76% of the total motor heat loss with 35 C coolant. The heat exchanger is less effective when the coolant temperature increases. With 75 C coolant, the heat exchanger dissipates about 38% of the motor heat. When the coolant temperature is 105 C, the heat exchanger not only stops cooling the motor but also adds heat to the large motor housing that acts as an air-cooled heat sink. From start to the base speed, 400 Nms of torque can be produced by the Prius motor with a reasonably low stator current. However, the permissible running time of the motor depends on the load drawn from the motor and the coolant temperature. In the Toyota Prius hybrid configuration, if the motor gets too hot and cannot keep running, the load can be shifted back to the engine. The motor acts to improve the system efficiency without being overly designed. A detailed thermal model was developed to help predict the temperature levels in key motor components. The model was calibrated and compared with the experimentally measured temperatures. Very good agreement was obtained between model and experiment. This model can now be used to predict the temperature of key motor components at a variety of operating conditions and to evaluate the thermal characteristics of new motor designs. It should be pointed out that a fuel-cell motor does not have an engine to fall back on to provide the needed wheel power. Therefore, the design philosophy of a fuel-cell motor is very different from that of a hybrid Prius motor. Further thermal management studies in the high-speed region of the Prius motor, fed by its inverter, are planned.

Hsu, J.S.

2005-02-11T23:59:59.000Z

494

Vehicle Smart  

E-Print Network (OSTI)

Abstract: This article explores criteria necessary for reliable communication between electric vehicles (EVs) and electric vehicle service equipment (EVSE). Data will demonstrate that a G3-PLC system has already met the criteria established by the automotive and utility industries. Multiple international tests prove that a G3-PLC implementation is the optimal low-frequency solution. A similar version of this article appeared in the August 2011 issue of Power Systems Design magazine. For the first time, electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) are building a viable market of mobile electrical energy consumers. Not surprisingly, new relationships between electricity providers (the utility companies) and automobile owners are emerging. Many utilities already offer, or are planning to offer, special tariffs, including fixed monthly rates, to EV owners. EVs impose new dynamics and demands on the electrical supply itself. There is, in fact, a symbiotic relationship developing between the EV and energy provider. Because of their large storage capacity, often 10kVH, EVs draw currents of 80A or greater over a period of hours. This strains electrical grid components, especially low-voltage transformers which can overheat and fail while serving consumers ' homes. Meanwhile, the EVs ' electrical storage capacity can also reverse the current flow. It can then supply power back to the grid, thereby helping the utilities to meet demand peaks without starting up high-carbon-output diesel generators. To enable this new dynamic relationship, the EV and the energy provider must communicate. The utility must be able to authenticate the individual vehicle, and bidirectional communications is needed to support negotiation of power flow rates and direction. To

Jim Leclare; Principal Member; Technical Staff

2012-01-01T23:59:59.000Z

495

The Design of an Inspection Robot for Boiler Tubes Inspection  

Science Conference Proceedings (OSTI)

A climbing robot with magnetic wheels is designed for the inspection of boiler tubes in fossil power plants, which can inspect the boiler tubes automatically. The climbing robot will move on the boiler tubes. The magnetic wheels of the robot can be move ... Keywords: boiler tubes, climbing robot, magnetic flux leakage sensor, VSC controller

Lu Xueqin; Qiu Rongfu; Liu Gang; Huang Fuzhen

2009-11-01T23:59:59.000Z

496

Modular PM Motor Drives for Automotive Traction Applications  

DOE Green Energy (OSTI)

This paper presents modular permanent magnet (PM) motor drives for automotive traction applications. A partially modularized drive system consisting of a single PM motor and multiple inverters is described. The motor has multiple three-phase stator winding sets and each winding set is driven with a separate three-phase inverter module. A truly modularized inverter and motor configuration based on an axial-gap PM motor is then introduced, in which identical PM motor modules are mounted on a common shaft and each motor module is powered by a separate inverter module. The advantages of the modular approach for both inverter and motor include: (1) power rating scalability--one design meets different power requirements by simply stacking an adequate number of modules, thus avoiding redesigning and reducing the development cost, (2) increased fault tolerance, and (3) easy repairing. A prototype was constructed by using two inverters and an axial-gap PM motor with two sets of three-phase stat or windings, and it is used to assist the diesel engine in a hybrid electric vehicle converted from a Chevrolet Suburban. The effect of different pulse-width-modulation strategies for both motoring and regenerative modes on current control is analyzed. Torque and regenerative control algorithms are implemented with a digital signal processor. Analytical and initial testing results are included in the paper.

Su, G.J.

2001-10-29T23:59:59.000Z

497

Advanced Vehicle Testing Activity - Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

are designed to carry two or four passengers. Click here for more information About Urban Electric Vehicles (PDF 128KB) Vehicle Testing Reports Ford THINK City Ford Thnk...

498

Vehicle Technologies Office: Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

that feature one or more advanced technologies, including: Plug-in hybrid electric vehicle technologies Extended range electric vehicle technologies Hybrid electric, pure...

499

Electric vehicle using the vehicle's kinetic and mechanical power to regenerate it's energy storage device  

SciTech Connect

This patent describes an electrocombustible drive vehicle which consists of: a. motor means for driving the electrocombustible vehicle the motor means being activated by combustible fuel or a pulsating voltage; b. first means for storing electrical energy for use as DC voltage; c. chopper means for providing a pulsating voltage to the motor means for activation of electro portion of the motor means, the first means for storing electrical energy proving DC voltage input to the chopper means; d. means for controlling the quantity of the pulsating voltage supplied to the motor means; e. first generator means for producing electrical voltage, the first generator means mechanical input being connected to the direct output of the motor means independent of the movement of the vehicle allowing the generator to produce a voltage while the vehicle is in the idle position; f. means for charging the first means for storing electrical voltage produced by the generator; g. second means for storing electrical energy for use as a DC voltage; h. second generator means for producing electrical voltage, the second generator means mechanical input being connected to a velocity dependent moving portion of electric vehicle independent of the output of the motor means and dependent on air movement relative to the vehicle, means for selectively charging the first and second means for storing electrical voltage employing the electrical voltage produced by the second generator means; i. means for charging the second means for storing electrical energy employing the electrical voltage produced by the chopper means.

Barnard, R.

1986-07-01T23:59:59.000Z

500

Commercial Vehicle Safety Alliance (CVSA)/Department of Energy (DOE) cooperative agreement final report  

Science Conference Proceedings (OSTI)

This S and T product is a culmination of the activities, including research of the Commercial Vehicle Safety Alliance (CVSA) in developing and implementing inspection procedures and the out-of-service criteria for states and tribes to use when inspecting HRCQ and Transuranic shipments of radioactive materials. The report also contains the results of a pilot study to test the procedures.

Slavich, Antoinette; Daust, James E.

1999-10-01T23:59:59.000Z