Powered by Deep Web Technologies
Note: This page contains sample records for the topic "motor vehicle fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NREL: Vehicles and Fuels Research - Hybrid Electric Fleet Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Fleet Vehicle Testing How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to...

2

Executive Fleet Vehicles Report | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Executive Fleet Vehicles Report Executive Fleet Vehicles Report Executive Fleet Vehicles Report On May 24, 2011, the President issued a Presidential Memorandum on Federal Fleet Performance. In accordance with Section 1 (b) of the Presidential Memorandum and pursuant to Federal Management Regulation 102-34.50 (41 CFR 102-34.50), executive fleets are required to achieve maximum fuel efficiency; be limited in motor vehicle body size, engine size, and optional equipment to what is essential to meet agency mission; and be midsize or smaller sedans, except where larger sedans are essential to the agency mission. Executive fleet vehicles that are larger than midsize sedans or are not AFVs must be disclosed on the website of the agency operating the vehicles within 180 days of the date of the memorandum (on or before November 17,

3

Executive Fleet Vehicles DOE HQ 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Motor Vehicle Management Report Motor Vehicle Management Report U.S. Department of Energy - HQ Pursuant to Federal Management Regulation 102-34.50 (41 CFR 102-34.50) November 14, 2011 Background: On May 24, 2011, the President issued a Presidential Memorandum on Federal Fleet Performance. In accordance with Section 1 (b) of the Presidential Memorandum and pursuant to Federal Management Regulation 102-34.50 (41 CFR 102-34.50), executive fleets are required to achieve maximum fuel efficiency; be limited in motor vehicle body size, engine size, and optional equipment to what is essential to meet agency mission; and be midsize or smaller sedans, except where larger sedans are essential to the agency mission. Within 180 days of the date of the Presidential Memorandum, any executive fleet vehicles that are larger than a midsize sedan or do not comply with alternative fueled

4

Vehicle Technologies Office: Regulated Fleets | Department of...  

Energy Savers (EERE)

Alternative Fuels Vehicle Technologies Office: Regulated Fleets Vehicle Technologies Office: Regulated Fleets The Office of Energy Efficiency and Renewable Energy (EERE) manages...

5

NREL: Vehicles and Fuels Research - Hydraulic Hybrid Fleet Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydraulic Hybrid Fleet Vehicle Testing How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during...

6

Vehicle Technologies Office: Community and Fleet Readiness  

NLE Websites -- All DOE Office Websites (Extended Search)

Community and Fleet Readiness Community and Fleet Readiness As researchers work to lower the costs and increase the convenience of plug-in electric vehicles (PEVs), it's also necessary to make similar strides on the local level. State and local incentives, such as tax credits or access to HOV lanes, can encourage consumers and vehicle fleets to purchase PEVs. In contrast, difficult permitting procedures for chargers or a lack of signage can discourage adoption. To help communities prepare themselves for plug-in and other alternative fuel vehicles, the Office works with nearly 100 Clean Cities coalitions across the country. Clean Cities offers a wide variety of resources to cities and regions that want to encourage citizens and businesses to drive PEVs. They also offer resources to both public and private fleets that wish to adopt these vehicles.

7

Alternative Fuels Data Center: Fleet Vehicle Procurement Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Vehicle Fleet Vehicle Procurement Requirements to someone by E-mail Share Alternative Fuels Data Center: Fleet Vehicle Procurement Requirements on Facebook Tweet about Alternative Fuels Data Center: Fleet Vehicle Procurement Requirements on Twitter Bookmark Alternative Fuels Data Center: Fleet Vehicle Procurement Requirements on Google Bookmark Alternative Fuels Data Center: Fleet Vehicle Procurement Requirements on Delicious Rank Alternative Fuels Data Center: Fleet Vehicle Procurement Requirements on Digg Find More places to share Alternative Fuels Data Center: Fleet Vehicle Procurement Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fleet Vehicle Procurement Requirements When awarding a vehicle procurement contract, every city, county, and

8

Commercial Fleet Demand for Alternative-Fuel Vehicles in California  

E-Print Network (OSTI)

Precursors of demand for alternative-fuel vehicles: resultsFLEET DEMAND FOR ALTERNATIVE-FUEL VEHICLES IN CALIFORNIA*AbstractóFleet demand for alternative-fuel vehicles (ĎAFVsí

Golob, Thomas F; Torous, Jane; Bradley, Mark; Brownstone, David; Crane, Soheila Soltani; Bunch, David S

1996-01-01T23:59:59.000Z

9

Alternative Fuels Data Center: Clean Diesel Fleet Vehicle Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Diesel Fleet Clean Diesel Fleet Vehicle Grants to someone by E-mail Share Alternative Fuels Data Center: Clean Diesel Fleet Vehicle Grants on Facebook Tweet about Alternative Fuels Data Center: Clean Diesel Fleet Vehicle Grants on Twitter Bookmark Alternative Fuels Data Center: Clean Diesel Fleet Vehicle Grants on Google Bookmark Alternative Fuels Data Center: Clean Diesel Fleet Vehicle Grants on Delicious Rank Alternative Fuels Data Center: Clean Diesel Fleet Vehicle Grants on Digg Find More places to share Alternative Fuels Data Center: Clean Diesel Fleet Vehicle Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Clean Diesel Fleet Vehicle Grants The Oklahoma Department of Environmental Quality (DEQ) Air Quality Division

10

NREL: Transportation Research - Hybrid Electric Fleet Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to achieve a combination of emissions, fuel economy, and range benefits....

11

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Fleet Incentives to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Fleet Incentives on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Fleet Incentives on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Fleet Incentives on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Fleet Incentives on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Fleet Incentives on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Fleet Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

12

Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Connecticut Utility Connecticut Utility Fleet Operates Vehicles on Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Google Bookmark Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Delicious Rank Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Digg Find More places to share Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on AddThis.com...

13

Alternative Fuels Data Center: Rightsizing Your Vehicle Fleet to Conserve  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rightsizing Your Rightsizing Your Vehicle Fleet to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Rightsizing Your Vehicle Fleet to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Rightsizing Your Vehicle Fleet to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Rightsizing Your Vehicle Fleet to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Rightsizing Your Vehicle Fleet to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Rightsizing Your Vehicle Fleet to Conserve Fuel on Digg Find More places to share Alternative Fuels Data Center: Rightsizing Your Vehicle Fleet to Conserve Fuel on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior

14

The Department's Fleet Vehicle Sustainability Initiatives at Selected Locations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department's Fleet Vehicle Department's Fleet Vehicle Sustainability Initiatives at Selected Locations DOE/IG-0896 October 2013 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 October 24, 2013 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Department's Fleet Vehicle Sustainability Initiatives at Selected Locations" BACKGROUND In Fiscal Year (FY) 2012, the Department of Energy's fleet consisted of 14,457 vehicles operated at an annual cost of approximately $131 million. Nearly 72 percent of the vehicles were leased through the General Services Administration (GSA), with the remaining Department-owned and

15

Plug-In Electric Vehicle Handbook for Fleet Managers  

E-Print Network (OSTI)

Plug-In Electric Vehicle Handbook for Fleet Managers #12;Plug-In Electric Vehicle Handbook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Choosing Electric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Photo from Infrastructure Successfully deploying plug-in electric vehicles (PEVs) and charging infrastructure requires

16

Vehicle Technologies Office Merit Review 2014: California Fleets...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California Fleets and Workplace Alternative Fuels Project Presentation given by Bay Area Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

17

Alternative Fuels and Advanced Vehicles Data Center - Fleet Experiences |  

Open Energy Info (EERE)

Alternative Fuels and Advanced Vehicles Data Center - Fleet Experiences Alternative Fuels and Advanced Vehicles Data Center - Fleet Experiences Jump to: navigation, search Tool Summary Name: Alternative Fuels and Advanced Vehicles Data Center - Fleet Experiences Agency/Company /Organization: National Renewable Energy Laboratory Focus Area: Vehicles Topics: Best Practices Complexity/Ease of Use: Not Available Website: www.afdc.energy.gov/afdc/fleets/fleet_experiences.html Related Tools Finalize Historic National Program to Reduce Greenhouse Gases and Improve Fuel Economy for Cars and Trucks Diesel Idling Reduction Tool and Calculator (Transit, Fuel) ... further results Find Another Tool FIND TRANSPORTATION TOOLS This compilation of case studies shows how other fleets are using alternative fuel vehicles, dealing with infrastructure issues, obtaining

18

NREL: Vehicles and Fuels Research - Fleet Test and Evaluation  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map The Fleet Test and Evaluation Team at the National Renewable Energy Laboratory works in partnership with commercial and government fleets and industry groups to evaluate the performance of alternative fuels and advanced technologies in medium- and heavy-duty fleet vehicles. The team's project areas include: Fleet DNA: Vehicle Drive Cycle Analysis Hybrid Electric Drive Systems Electric and Plug-in Hybrid Electric Drive Systems Hydraulic Hybrid Drive Systems Truck Stop Electrification Alternative Fuels Truck Efficiency Key aspects of this work involve meeting with industry stakeholders to understand market factors and customer requirements, evaluating the performance of advanced technology vehicles versus their conventional

19

Biofuels, Climate Policy, and the European Vehicle Fleet  

E-Print Network (OSTI)

Biofuels, Climate Policy, and the European Vehicle Fleet Xavier Gitiaux, Sebastian Rausch, Sergey on the Science and Policy of Global Change. Abstract We examine the effect of biofuels mandates and climate incorporates current generation biofuels, accounts for stock turnover of the vehicle fleets, disaggregates

20

Colorado Vehicle Fleets Case Study Analysis  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Experiences with Compressed Natural Gas in Experiences with Compressed Natural Gas in Colorado Vehicle Fleets Case Study Analysis August 2012 Case Study Analysis August 2012 2 Acknowledgements The Colorado Energy Office would like to thank the following individuals and organizations for their participation in the case studies: Jay Valentine, City of Grand Junction Joseph Noorlag, Republic Services Victor Lovato, Denver International Airport The Colorado Energy Office would also like to thank the following people for their review and input to this document: Wendy DaFoe, National Renewable Energy Laboratory John Gonzales, National Renewable Energy Laboratory Alexine Hazarian, Encana Natural Gas Inc. Paul Kerkhoven, NGV America Charlie Kerr, Cummins-Westport Inc. Sheble McConnellogue, Northern Colorado Clean Cities

Note: This page contains sample records for the topic "motor vehicle fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Clean Cities Offers Fleets New Tool to Evaluate Benefits of Alternative Fuel Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

The AFLEET Tool allows fleets to calculate payback periods and emissions benefits of alternative fuel vehicles.

22

Audit Report VEHICLE FLEET MANAGEMENT AT THE IDAHO NATIONALENGINEERING...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In a prior report, Audit of Light Vehicle Fleet Management at the Idaho National Engineering Laboratory, WR-B-93-7, September 29, 1993, the Office of Inspector General...

23

Dynamic incentive scheme for rental vehicle fleet management  

E-Print Network (OSTI)

Mobility on Demand is a new transportation paradigm aimed to provide sustainable transportation in urban settings with a fleet of electric vehicles. Usage scenarios prpopsed by Mobility on Demand systems must allow one-way ...

Zhou, SiZhi

2012-01-01T23:59:59.000Z

24

Fleet Testing Advanced Vehicle Testing Activities - 2010 Honda...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Testing Activity Maintenance Sheet for 2010 Honda Insight LX VIN JHMZE2H59AS011748 HEV Fleet Testing Date Mileage Description Cost 842009 5,752 Changed oil and filter...

25

Vehicle Technologies Office Merit Review 2013: Fleet DNA  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by the National Renewable Energy Laboratory (NREL) at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a tool for analyzing fleet characteristics.

26

Vehicle Technologies Office Merit Review 2014: Fleet DNA  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fleet DNA.

27

Fleet-averaged engine matrices for Australian vehicles and their use in fuel economy modelling  

Science Journals Connector (OSTI)

Data obtained during standard chassis dynamometer testing at the University of Sydney is used to produce an engine fuel consumption matrix for the test vehicle. The matrix includes the effect of engine operational transients and is presented in a generalised engine parameter form which allows comparisons between dissimilar vehicles. A sufficient number of tests have been carried out to construct a fleet-averaged engine matrix for in-use Australian vehicles. A model is described which uses this matrix to predict the effect of variations in vehicle parameters and traffic flow patterns on the fuel consumption of a motor vehicle on the road or on the dynamometer.

T.J. Gibson; R.W. Bilger

1987-01-01T23:59:59.000Z

28

Hybrid Electric Vehicle Fleet and Baseline Performance Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Fleet and Vehicle Fleet and Baseline Performance Testing James Francfort Idaho National Laboratory 2 Paper #2006-01-1267 Presentation Outline Background & goals Testing partners Baseline performance testing new HEVs Fleet testing (160k miles in 36 months) End-of-life testing (fuel economy & battery testing at 160k miles) WWW information location 3 Paper #2006-01-1267 Background Advanced Vehicle Testing Activity (AVTA) - part of DOE's FreedomCAR and Vehicle Technologies Program Goal - provide benchmark data for technology modeling, and research and development programs Idaho National Laboratory manages these activities, and performs data analysis and reporting activities 4 Paper #2006-01-1267 Testing Partners Qualified Vehicle Testers hElectric Transportation Applications (lead)

29

Hybrid vehicle motor alignment  

DOE Patents (OSTI)

A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

Levin, Michael Benjamin (Ann Arbor, MI)

2001-07-03T23:59:59.000Z

30

HEV Fleet Testing Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Activity Activity Maintenance Sheet for 2007 Saturn Vue VIN # 5GZCZ33Z07S838122 Date Mileage Description Cost 12/8/2006 5,055 Changed oil $33.95 1/9/2007 12,509 Changed oil $25.88 2/8/2007 17,916 Changed oil $42.78 2/15/2007 19,841 Installed Lojack antitheft system $625.00 4/17/2007 30,124 Changed oil $42.36 6/19/2007 45,307 Changed oil $40.70 6/20/2007 45,695 Replaced two tires $257.46 7/10/2007 50,522 Changed oil $38.94 8/15/2007 55,654 Changed oil $32.85 9/3/2007 Vehicle involved in motor vehicle accident - deer hit car windshield and car was under repair 9/12/2007 60,395 Changed oil and replaced air filter $73.48 10/4/2007 65,226 Changed oil and replaced oil filter $37.16 10/19/2007 65,278 Transaxle service and replaced faulty AC compressor $1,056.62 (paid deductible) $100.00

31

Secretary Chu Announces Addition of Electric Vehicles to Federal Fleet |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces Addition of Electric Vehicles to Federal Secretary Chu Announces Addition of Electric Vehicles to Federal Fleet Secretary Chu Announces Addition of Electric Vehicles to Federal Fleet May 24, 2011 - 6:06pm Addthis Secretary Steven Chu and CEQ Chair Nancy Sutley testing a Chevy Volt | Photo: Dept of Energy Secretary Steven Chu and CEQ Chair Nancy Sutley testing a Chevy Volt | Photo: Dept of Energy Lindsey Geisler Lindsey Geisler Public Affairs Specialist, Office of Public Affairs What does this mean for me? Estimated to save taxpayers $109,000 each year. Today, White House Council on Environmental Quality Chair Nancy Sutley and U.S. General Services Administrator Martha Johnson presented Secretary Chu with the first set of keys for one of the Federal fleet's 116 new electric cars. "This builds on efforts already underway to reduce fuel use in Federal

32

Secretary Chu Announces Addition of Electric Vehicles to Federal Fleet |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Addition of Electric Vehicles to Federal Addition of Electric Vehicles to Federal Fleet Secretary Chu Announces Addition of Electric Vehicles to Federal Fleet May 24, 2011 - 6:06pm Addthis Secretary Steven Chu and CEQ Chair Nancy Sutley testing a Chevy Volt | Photo: Dept of Energy Secretary Steven Chu and CEQ Chair Nancy Sutley testing a Chevy Volt | Photo: Dept of Energy Lindsey Geisler Lindsey Geisler Public Affairs Specialist, Office of Public Affairs What does this mean for me? Estimated to save taxpayers $109,000 each year. Today, White House Council on Environmental Quality Chair Nancy Sutley and U.S. General Services Administrator Martha Johnson presented Secretary Chu with the first set of keys for one of the Federal fleet's 116 new electric cars. "This builds on efforts already underway to reduce fuel use in Federal

33

U.S. Department of Energy Fleet Alternative Fuel Vehicle Acquisition...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fleet Alternative Fuel Vehicle Acquisition Report for Fiscal Year 2008 U.S. Department of Energy Fleet Alternative Fuel Vehicle Acquisition Report for Fiscal Year 2008 U.S....

34

Stabilizer for motor vehicle  

SciTech Connect

This patent describes a stabilizer for a motor vehicle comprising: a rod-shaped torsion section extending in the transverse direction of a motor vehicle; a pair of arm sections continuous with both ends of the torsion section and extending in the longitudinal direction of the motor vehicle; a first member attached to the torsion section or at least one of the arm sections and formed with an axially penetrating cylindrical bore; a columnar second member inserted in the bore of the first member; at least one coil spring disposed between the inner peripheral surface of the bore of the first member and the outer peripheral surface of the second member and wound around the second member, at least one end of the coil spring being a free end; an operating member connected to the free end of the coil spring, at least a part of the operating member being located outside the first member; and drive means coupled to the operating member and adapted to apply a force in a direction such that the diameter of the coil spring is increased or reduced.

Takadera, I.; Kuroda, S.

1986-11-11T23:59:59.000Z

35

Fleet Management | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Property Property ¬Ľ Fleet Management Fleet Management Fleet management includes commercial and agency owned motor vehicles such as cars, vans, trucks, and buses. Fleet (vehicle) management at the headquarters level includes a range of functions, such as vehicle data base management of the FAST, FMVRS, FedFMS, and UNICOR systems, annual motor vehicle utilization and budget forecast data, as well as the use and monitoring of GSA systems in their Fleet DriveThru data base. Fleet Briefings DOE Fleet Management Contact your Fleet manager for access to these systems Federal Automotive Statistical Tool (FAST): Supports EPAct of 1992 requirements , the Energy Conservation Reauthorization Act of 1998 (PL105-388), Executive Order 13149 Greening the Government Through Federal

36

motor vehicles | OpenEI  

Open Energy Info (EERE)

motor vehicles motor vehicles Dataset Summary Description The data included in this submission is United States Department of Transportation (DOT) data on rates and revenue statistics up to 1995. The data includes state motor-fuel tax receipts, 1919-1995, state motor fuel taxes and related receipts, 1950-1995, and state and federal motor fuel tax rates, 1919-1995 The data is presented in .xlsx format. Source DOT Date Released Unknown Date Updated Unknown Keywords DOT highway motor vehicles rates revenues Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon State motor-fuel tax receipts, 1919-1995 (xlsx, 13.8 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon State motor fuel taxes and related receipts, 1950-1995 (xlsx, 78.5 KiB)

37

Evaluation of KDOT's Vehicle Fleet's CO2 Emissions and Possible Energy Reductions  

E-Print Network (OSTI)

across all major vehicle types in the fleet. Using more efficient means of transportation can significantly decrease their fuel demand, namely replacing truck travel with car travel. Additionally, increasing biofuel use in their fleet will decrease...

Nielsen, Eric

2012-12-31T23:59:59.000Z

38

VIA Motors electric vehicle platform  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Extended-Range Electric Trucks Extended-Range Electric Trucks The fuel economy of a Prius with the payload of a pickup VIA's E-REV powertrain is ideal for America's fleets, cutting fuel costs by up to 75%, while dramatically reducing petroleum consumption and emissions- electricity costs an average of 60 cents per equivalent gallon. Recharging daily, the average driver could expect to refill the gas tank less than 10 times a year rather than once a week. It offers all the advantages of an electric vehicle, without range limitations. Working with vehicle manufacturers, VIA plans to begin delivering E-REV trucks to government and utility fleets in 2011. The onboard generator provides a work site with 15 kW of exportable power Up to 40 miles in all-electric mode and up to 300 miles using the range extender

39

EM Rolls Ahead of DOE Goals to Trim Vehicle Fleet Inventory | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rolls Ahead of DOE Goals to Trim Vehicle Fleet Inventory Rolls Ahead of DOE Goals to Trim Vehicle Fleet Inventory EM Rolls Ahead of DOE Goals to Trim Vehicle Fleet Inventory March 12, 2013 - 12:00pm Addthis Workers use this mobile survey vehicle in American Recovery and Reinvestment Act work at the Hanford site to survey remediated areas for radiological contamination. Workers use this mobile survey vehicle in American Recovery and Reinvestment Act work at the Hanford site to survey remediated areas for radiological contamination. WASHINGTON, D.C. - EM exceeded a DOE goal to reduce its vehicle fleet inventory, advancing the Department's broader initiative to cut greenhouse gas emissions and decrease petroleum consumption across the complex. With a 45 percent cut to its fleet in fiscal year 2012, EM beat the Department's goal of a 35 percent drop by fiscal year 2013 a year early.

40

Applying Engineering and Fleet Detail to Represent Passenger Vehicle Transport in a  

E-Print Network (OSTI)

Applying Engineering and Fleet Detail to Represent Passenger Vehicle Transport in a Computable. It seeks to provide leadership in understanding scientific, economic, and ecological aspects://globalchange.mit.edu/ Printed on recycled paper #12;1 Applying Engineering and Fleet Detail to Represent Passenger Vehicle

Note: This page contains sample records for the topic "motor vehicle fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Evolution of the household vehicle fleet: Anticipating fleet composition, PHEV adoption and GHG emissions in Austin, Texas  

Science Journals Connector (OSTI)

In todayís world of volatile fuel prices and climate concerns, there is little study on the relationship between vehicle ownership patterns and attitudes toward vehicle cost (including fuel prices and feebates) and vehicle technologies. This work provides new data on ownership decisions and owner preferences under various scenarios, coupled with calibrated models to microsimulate Austinís personal-fleet evolution. Opinion survey results suggest that most Austinites (63%, population-corrected share) support a feebate policy to favor more fuel efficient vehicles. Top purchase criteria are price, type/class, and fuel economy. Most (56%) respondents also indicated that they would consider purchasing a Plug-in Hybrid Electric Vehicle (PHEV) if it were to cost $6000 more than its conventional, gasoline-powered counterpart. And many respond strongly to signals on the external (health and climate) costs of a vehicleís emissions, more strongly than they respond to information on fuel cost savings. Twenty five-year simulations of Austinís household vehicle fleet suggest that, under all scenarios modeled, Austinís vehicle usage levels (measured in total vehicle miles traveled or VMT) are predicted to increase overall, along with average vehicle ownership levels (both per household and per capita). Under a feebate, HEVs, \\{PHEVs\\} and Smart Cars are estimated to represent 25% of the fleetís VMT by simulation year 25; this scenario is predicted to raise total regional VMT slightly (just 2.32%, by simulation year 25), relative to the trend scenario, while reducing CO2 emissions only slightly (by 5.62%, relative to trend). Doubling the trend-case gas price to $5/gallon is simulated to reduce the year-25 vehicle use levels by 24% and CO2 emissions by 30% (relative to trend). Two- and three-vehicle households are simulated to be the highest adopters of \\{HEVs\\} and \\{PHEVs\\} across all scenarios. The combined share of vans, pickup trucks, sport utility vehicles (SUVs), and cross-over utility vehicles (CUVs) is lowest under the feebate scenario, at 35% (versus 47% in Austinís current household fleet). Feebate-policy receipts are forecasted to exceed rebates in each simulation year. In the longer term, gas price dynamics, tax incentives, feebates and purchase prices along with new technologies, government-industry partnerships, and more accurate information on range and recharging times (which increase customer confidence in EV technologies) should have added effects on energy dependence and greenhouse gas emissions.

Sashank Musti; Kara M. Kockelman

2011-01-01T23:59:59.000Z

42

Thermoelectric generator for motor vehicle  

SciTech Connect

A thermoelectric generator is described for producing electric power for a motor vehicle from the heat of the exhaust gases produced by the engine of the motor vehicle. The exhaust gases pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure. 8 figs.

Bass, J.C.

1997-04-29T23:59:59.000Z

43

Thermoelectric generator for motor vehicle  

DOE Patents (OSTI)

A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

Bass, John C. (6121 La Pintra Dr., La Jolla, CA 92037)

1997-04-29T23:59:59.000Z

44

Optimal Fleet Management Plan Excerpt from the Vehicle Allocation Methodology (VAM) required by  

E-Print Network (OSTI)

's Alternative Fuels and Advanced Vehicles Data Center: http://www.afdc.energy.gov/afdc/locator/stations/ which by Presidential Memorandum ­ Federal Fleet Performance, 24 May 2011 Alternative Fuel Vehicles (AFV): A) USACE has to AFV fueling stations during vehicle acquisitions beyond 31 DEC 2015; the Transportation Division

US Army Corps of Engineers

45

Mitsubishi iMiEV: An Electric Mini-Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)  

SciTech Connect

This fact sheet highlights the Mitsubishi iMiEV, an electric mini-car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In support of the U.S. Department of Energy's fast-charging research efforts, NREL engineers are conducting charge and discharge performance testing on the vehicle. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

Not Available

2011-10-01T23:59:59.000Z

46

Conventional vs Electric Commercial Vehicle Fleets 1 Paper published in the Proceedings of "The Seventh International Conference on City Logistics"  

E-Print Network (OSTI)

and lower per-mile operating and maintenance costs. However, the initial purchase cost of electric vehicles operating and maintenance costs of electric vehicles and their high initial capital costs. In this paper. Given the high capital costs associated with vehicle fleets, if fleet owners were to replace

Bertini, Robert L.

47

Economic costs and environmental impacts of alternative fuel vehicle fleets in local government: An interim assessment  

E-Print Network (OSTI)

Economic costs and environmental impacts of alternative fuel vehicle fleets in local government. This paper examines the cost effectiveness and environmental impact of the conversion of a 180 plus vehicle of Civil and Materials Engineering, and Institute for Environmental Science and Policy, University

Illinois at Chicago, University of

48

Fleet assessment for opportunities to effectively deploy light duty alternative fuel vehicles  

SciTech Connect

The City of Detroit conducted an initial program to assess the potential for substitution of vehicles currently in operation with alternative fuel vehicles. A key task involved the development of an operating profile of the participant light truck and van fleets involved in the study. To do this a survey of operators of light duty trucks and vans within the project participant fleets was conducted. These survey results were analyzed to define the potential for substitution of conventional vehicles with alternate fuel vehicles with alternate fuel vehicles and to identify candidates for participation in the Mini-Demonstration portion of the project. The test program involved the deployment of an electric van (two GM Griffon Electric Vans provided by Detroit Edison) at seven Mini-Demonstration sites for a period of four weeks each for test and evaluation. The Technical Work Group then analyzed vehicle performance data and used a questionnaire to obtain impressions and attitudes of the users toward the acceptability of the electric van. The Technical Work Group (TWG) and Management Assessment Group (MAG) then prepared recommendations and an implementation plan to develop further information aimed toward eventual expanded deployment of alternative fuel vehicles within project participant light duty fleets. The MAG concluded that the study had been beneficial in collecting and developing important quantitative information, introducing a set of public fleet managers to alternative fuel vehicle opportunities and features, and had provided specific experience with the Griffon van which provided some indications of requirements in such vehicles if they are to be a normal part of public fleet operations. These included the need for some increase of the mileage range of the Griffon, an improvement in the ride and handling of the Griffon, and several minor'' difficulties experienced with malfunctioning or inconvenient characteristics of the Griffon equipment. 25 figs., 1 tab.

Not Available

1990-05-01T23:59:59.000Z

49

Clean Fleets Truckin' On  

NLE Websites -- All DOE Office Websites (Extended Search)

Fleets Truckin' On Fleets Truckin' On JOHN DAVIS: In this edition of MotorWeek we're spending all of our time looking at vehicles that run on alternative fuel, something other than gasoline. Now electric and plug-in cars like the Focus, Leaf, and Volt are attracting a lot of interest from consumers looking to reduce the impact of daily driving on the environment. But, what about companies that share the same goal. They need bigger solutions. Well, that's motivated our FYI reporter Yolanda Vazquez to find out how commercial fleets are solving their bigger EV needs. YOLANDA VAZQUEZ: The success of the US Department of Energy's National Clean Fleets Partnership can be seen on the highways and byways of our nation's roads. Fleet partners like Frito-O-Lay, FedEx, Staples and Coca-Cola are working hard to

50

DYNAMIC RIDE-SHARING AND OPTIMAL FLEET SIZING FOR A SYSTEM OF1 SHARED AUTONOMOUS VEHICLES2  

E-Print Network (OSTI)

DYNAMIC RIDE-SHARING AND OPTIMAL FLEET SIZING FOR A SYSTEM OF1 SHARED AUTONOMOUS VEHICLES2 3 4 and for publication in Transportation21 22 23 ABSTRACT24 25 Shared autonomous (fully-automated) vehicles (SAVs

Kockelman, Kara M.

51

Audit Report VEHICLE FLEET MANAGEMENT AT THE IDAHO NATIONALENGINEERING AND ENVIRONMENTAL LABORATORY, WR-B-99-02  

Energy.gov (U.S. Department of Energy (DOE))

In a prior report, Audit of Light Vehicle Fleet Management at the Idaho National Engineering Laboratory, WR-B-93-7, September 29, 1993, the Office of Inspector General (OIG) concluded that vehicle...

52

An Empirical Study of Alternative Fuel Vehicle Choice by Commercial Fleets: Lessons in Transportation Choices, and Public Agencies' Organization  

E-Print Network (OSTI)

1990). ďThe Economics of Alternative Fuel Use: SubstitutingAn Empirical Study of Alternative Fuel Vehicle Choice byFleet Demand for Alternative-Fuel Vehicles,Ē with T. Golob,

Crane, Soheila Soltani

1996-01-01T23:59:59.000Z

53

1 THE LIGHT-DUTY-VEHICLE FLEET'S EVOLUTION: 2 ANTICIPATING PHEV ADOPTION AND GREENHOUSE GAS  

E-Print Network (OSTI)

1 THE LIGHT-DUTY-VEHICLE FLEET'S EVOLUTION: 2 ANTICIPATING PHEV ADOPTION AND GREENHOUSE GAS 3 patterns ­ and associated petroleum use 33 and greenhouse gas (GHG) emissions ­ can change under different microsimulation, travel behavior modeling, greenhouse gas emissions60 INTRODUCTION AND MOTIVATION61 Per

Kockelman, Kara M.

54

Non-Tactical & Tactical Fleet Electrification and Vehicle to...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(PJM signal) * Five EVSEs from Coritech, seven Electric vehicles (five purchased from Smith Electric and two from Boulder Electric - one purchased and one provided under CRADA...

55

Assessment of methane-related fuels for automotive fleet vehicles: technical, supply, and economic assessments  

SciTech Connect

The use of methane-related fuels, derived from a variety of sources, in highway vehicles is assessed. Methane, as used here, includes natural gas (NG) as well as synthetic natural gas (SNG). Methanol is included because it can be produced from NG or the same resources as SNG, and because it is a liquid fuel at normal ambient conditions. Technological, operational, efficiency, petroleum displacement, supply, safety, and economic issues are analyzed. In principle, both NG and methanol allow more efficient engine operation than gasoline. In practice, engines are at present rarely optimized for NG and methanol. On the basis of energy expended from resource extraction to end use, only optimized LNG vehicles are more efficient than their gasoline counterparts. By 1985, up to 16% of total petroleum-based highway vehicle fuel could be displaced by large fleets with central NG fueling depots. Excluding diesel vehicles, which need technology advances to use NG, savings of 8% are projected. Methanol use by large fleets could displace up to 8% of petroleum-based highway vehicle fuel from spark-ignition vehicles and another 9% from diesel vehicles with technology advances. The US NG supply appears adequate to accommodate fleet use. Supply projections, future price differential versus gasoline, and user economics are uncertain. In many cases, attractive paybacks can occur. Compressed NG now costs on average about $0.65 less than gasoline, per energy-equivalent gallon. Methanol supply projections, future prices, and user economics are even more uncertain. Current and projected near-term methanol supplies are far from adequate to support fleet use. Methanol presently costs more than gasoline on an equal-energy basis, but is projected to cost less if produced from coal instead of NG or petroleum.

Not Available

1982-02-01T23:59:59.000Z

56

Physical context management for a motor vehicle  

DOE Patents (OSTI)

Computer software for and a method of enhancing safety for an operator of a motor vehicle comprising employing a plurality of sensors of vehicle and operator conditions, matching collective output from the sensors against a plurality of known dangerous conditions, and preventing certain activity of the operator if a known dangerous condition is detected.

Dixon, Kevin R. (Albuquerque, NM); Forsythe, James C. (Sandia Park, NM); Lippitt, Carl E. (Albuquerque, NM); Lippitt, legal representative, Lois Diane (Albuquerque, NM)

2009-10-27T23:59:59.000Z

57

HEV Fleet Testing Advanced Vehicle Testing Activities - 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Testing Advanced Vehicle Testing Activity Maintenance Sheet for 2010 Ford Fusion VIN 3FADP0L32AR194699 Date Mileage Description Cost 1012009 5915 Changed oil and filter 28.77...

58

Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor  

NLE Websites -- All DOE Office Websites (Extended Search)

1: December 14, 1: December 14, 2009 World Motor Vehicle Production to someone by E-mail Share Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on Facebook Tweet about Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on Twitter Bookmark Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on Google Bookmark Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on Delicious Rank Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on Digg Find More places to share Vehicle Technologies Office: Fact #601: December 14, 2009 World Motor Vehicle Production on AddThis.com... Fact #601: December 14, 2009

59

Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

7: August 23, 7: August 23, 2010 World Motor Vehicle Production to someone by E-mail Share Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on Facebook Tweet about Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on Twitter Bookmark Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on Google Bookmark Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on Delicious Rank Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on Digg Find More places to share Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on AddThis.com... Fact #637: August 23, 2010 World Motor Vehicle Production

60

University partners with China to help it develop electric vehicle fleet Anne C. Mulkern, E&E reporter  

E-Print Network (OSTI)

the purchase of battery electric and fuel cell powered vehicles." ARB and the Chinese government agencyUniversity partners with China to help it develop electric vehicle fleet Anne C. Mulkern, E to speed adoption of plug-in electric and fuel-cell electric vehicles, the school said yesterday. UC Davis

California at Davis, University of

Note: This page contains sample records for the topic "motor vehicle fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Impacts of Economic, Technological and Operational Factors on the1 Economic Competitiveness of Electric Commercial Vehicles in Fleet2  

E-Print Network (OSTI)

of Electric Commercial Vehicles in Fleet2 Replacement Decisions3 4 5 6 7 Wei Feng8 Ph.D. Student9 Department-miles traveled, commercial9 diesel powered vehicles can account for up to 90% of NOx and particulate matter (PM)10 emissions [2].11 12 Electric commercial vehicles (ECVs) are seen by many governments

Bertini, Robert L.

62

The Impact of Motor Vehicle Operation on Water Quality: A Premilinary Assessment  

E-Print Network (OSTI)

$) for the U.S. Water externalities from motor vehicles arepolicies addressing water pollution from motor vehicles areCosts Quantifying the water externalities of motor vehicle

Nixon, Hillary; Saphores, Jean-Daniel

2003-01-01T23:59:59.000Z

63

Impacts of motor vehicle operation on water quality - Clean-up Costs and Policies  

E-Print Network (OSTI)

preventing water pollution from motor vehicles would be muchNon-point Source Water Pollution from Motor Vehicles Motorof controlling water pollution from motor vehicles. For

Nixon, Hilary; Saphores, Jean-Daniel M

2007-01-01T23:59:59.000Z

64

The Impacts of Motor Vehicle Operation on Water Quality: A Preliminary Assessment  

E-Print Network (OSTI)

$) for the U.S. Water externalities from motor vehicles arepolicies addressing water pollution from motor vehicles areCosts Quantifying the water externalities of motor vehicle

Nixon, Hilary; Saphores, Jean-Daniel M

2003-01-01T23:59:59.000Z

65

Refueling Behavior of Flexible Fuel Vehicle Drivers in the Federal Fleet  

SciTech Connect

Federal fleets are a frequent subject of legislative and executive efforts to lead a national transition to alternative fuels and advanced vehicle technologies. Section 701 of the Energy Policy Act of 2005 requires that all dual-fueled alternative fuel vehicles in the federal fleet be operated on alternative fuel 100% of the time when they have access to it. However, in Fiscal Year (FY) 2012, drivers of federal flex fuel vehicles (FFV) leased through the General Services Administration refueled with E85 24% of the time when it was available--falling well short of the mandate. The U.S. Department of Energy's National Renewable Energy Laboratory completed a 2-year Laboratory Directed Research and Development project to identify the factors that influence the refueling behavior of federal FFV drivers. The project began with two primary hypotheses. First, information scarcity increases the tendency to miss opportunities to purchase E85. Second, even with perfect information, there are limits to how far drivers will go out of their way to purchase E85. This paper discusses the results of the project, which included a June 2012 survey of federal fleet drivers and an empirical analysis of actual refueling behavior from FY 2009 to 2012. This research will aid in the design and implementation of intervention programs aimed at increasing alternative fuel use and reducing petroleum consumption.

Daley, R.; Nangle, J.; Boeckman, G.; Miller, M.

2014-05-01T23:59:59.000Z

66

Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Motor Natural Gas Motor Vehicle Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Motor Vehicle Fuel Promotion An eight member Natural Gas Fuel Board (Board) was created to advise the

67

Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Cell Motor Fuel Cell Motor Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Cell Motor Vehicle Tax Credit A tax credit of up to $4,000 is available for the purchase of qualified

68

Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Cell Motor Fuel Cell Motor Vehicle Tax Deduction to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Google Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Delicious Rank Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Cell Motor Vehicle Tax Deduction A taxpayer is eligible for a $2,000 tax deduction for the purchase of a

69

Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)  

SciTech Connect

This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

Not Available

2011-10-01T23:59:59.000Z

70

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network (OSTI)

eet demand for alternative-fuel vehicles in California.Britain MYTHS REGARDING ALTERNATIVE FUEL VEHICLE DEMAND BYinitial market for alternative fuel vehicles (AFVs). We

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

71

A comparative analysis of alternative fuels for the INEL vehicle fleet  

SciTech Connect

This report summarizes the results of a comparative systems analysis of various alternative fuels for use in the buses, mid-size vehicles, and automobiles that make up the vehicle fleet at the Idaho National Engineering Laboratory (INEL). The study was performed as part of the Laboratory Directed Research and Development (LDRD) Program for EG G Idaho, Inc. Regulations will require the INEL to reduce total gasoline and diesel fuel use 10% by 1995 compared with 1991 levels, and will require that 50% of all new vehicles be fueled by some type of alternative fuel by 1998. A model was developed to analyze how these goals could be achieved, and what the cost would be to implement the goals.

Priebe, S.; Boyer, W.; Church, K.

1992-11-01T23:59:59.000Z

72

A comparative analysis of alternative fuels for the INEL vehicle fleet  

SciTech Connect

This report summarizes the results of a comparative systems analysis of various alternative fuels for use in the buses, mid-size vehicles, and automobiles that make up the vehicle fleet at the Idaho National Engineering Laboratory (INEL). The study was performed as part of the Laboratory Directed Research and Development (LDRD) Program for EG&G Idaho, Inc. Regulations will require the INEL to reduce total gasoline and diesel fuel use 10% by 1995 compared with 1991 levels, and will require that 50% of all new vehicles be fueled by some type of alternative fuel by 1998. A model was developed to analyze how these goals could be achieved, and what the cost would be to implement the goals.

Priebe, S.; Boyer, W.; Church, K.

1992-11-01T23:59:59.000Z

73

Energy use and CO2 emissions reduction potential in passenger car fleet using zero emission vehicles and lightweight materials  

Science Journals Connector (OSTI)

Introduction of \\{ZEVs\\} (zero emission vehicles) and lightweight materials in a conventional steel-intensive internal combustion engine vehicle fleet will affect energy consumption and automotive material requirements. We developed a bottom-up dynamic accounting model of the light-duty vehicle fleet, including vehicle production and disposal, with detailed coverage of powertrains and automotive materials. The model was used to study the potential for energy consumption and CO2 emissions reduction of \\{ZEVs\\} and lightweight materials in the Colombian passenger car fleet from 2010 to 2050. Results indicate that passenger car stock in Colombia is increased by 6.6 times between 2010 and 2050. In the base scenario energy consumption and CO2 emissions are increased by 5.5 and 4.9 times respectively. Lightweighting and battery electric vehicles offer the largest tank-to-wheel energy consumption and CO2 emissions reductions, 48 and 61% respectively, compared to 2050 baseline values. Slow stock turnover and fleet size increment prevent larger reductions. Switching to electric powertrains has larger impact than lightweighting on energy consumption and CO2 emissions. Iron and steel remain major materials in new cars. Aluminum consumption increases in all scenarios; while carbon fiber reinforced polymer consumption only increases due to fuel cell hybrid electric vehicle or lightweight vehicle use.

Juan C. GonzŠlez Palencia; Takaaki Furubayashi; Toshihiko Nakata

2012-01-01T23:59:59.000Z

74

Electric machine for hybrid motor vehicle  

DOE Patents (OSTI)

A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

Hsu, John Sheungchun (Oak Ridge, TN)

2007-09-18T23:59:59.000Z

75

ALTERNATIVE FUEL VEHICLE (AFV) INFORMATION Over 98% of the U-M auto passenger fleet is flex fuel vehicles (FFV). A FFV is capable of operating on  

E-Print Network (OSTI)

ALTERNATIVE FUEL VEHICLE (AFV) INFORMATION Over 98% of the U-M auto passenger fleet is flex fuel of both. FFV's are equipped with an engine and fuel system designed specifically to be compatible with ethanol's chemical properties. FFV's qualify as alternative fuel vehicles under the Energy Policy Act

Kirschner, Denise

76

Norcal Prototype LNG Truck Fleet: Final Data Report. Advanced Technology Vehicle Evaluation: Advanced Vehicle Testing Activity  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Data Report Data Report Norcal Prototype LNG Truck Fleet: Final Data Report By Kevin Chandler, Battelle Ken Proc, National Renewable Energy Laboratory February 2005 This report provides detailed data and analyses from the U.S. Department of Energy's evaluation of prototype liquefied natural gas (LNG) waste transfer trucks operated by Norcal Waste Systems, Inc. The final report for this evaluation, published in July 2004, is available from the Alternative Fuels Data Center at www.eere.energy.gov/afdc or by calling the National Alternative Fuels Hotline at 1-800-423-1363. Request Norcal Prototype LNG Truck Fleet: Final Results, document number DOE/GO-102004-1920. i NOTICE This report was prepared as an account of work sponsored by an agency of the United States

77

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network (OSTI)

MythsRegarding Alternative Fuel Vehicte Demand Light-Dutyregulation Myths Regarding Alternative Fuel Vehicle DemandBy00006-6 MYTHS REGARDING ALTERNATIVE FUEL VEHICLE LIGHT-DUTY

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

78

Best available practices for lng fueling of fleet vehicles. Topical report, March-November 1995, tasks 85 and 86  

SciTech Connect

The report provides essential information on the design and operation of liquefied natural gas (LNG) fueling stations for fleet vehicles. The report serves to evaluate current practices in LNG fleet vehicle fueling station designs, and provide fleet operators with a tool for use in discussions with permitting agencies, engineering firms, fabricators, and contractors who permit, design, or construct LNG fueling stations. Representative sites (i.e., LNG fueling stations) were evaluated for technical feasibility, customer satisfaction, economics, operating and maintenance history, problems encountered/overcome, and regulatory environment. The compiled information in this report reveals that LNG fueling stations have advanced to the point where LNG is a viable alternative to gasoline and/or diesel fuel.

Midgett, D.E.

1996-02-01T23:59:59.000Z

79

Gas Mileage of 1984 Vehicles by American Motors Corporation  

NLE Websites -- All DOE Office Websites (Extended Search)

4 American Motors Corporation Vehicles 4 American Motors Corporation Vehicles EPA MPG MODEL City Comb Hwy 1984 American Motors Corporation Eagle 4WD 4 cyl, 2.5 L, Manual 4-spd, Regular Gasoline Compare 1984 American Motors Corporation Eagle 4WD 19 City 20 Combined 22 Highway 1984 American Motors Corporation Eagle 4WD 4 cyl, 2.5 L, Manual 5-spd, Regular Gasoline Compare 1984 American Motors Corporation Eagle 4WD 19 City 21 Combined 23 Highway 1984 American Motors Corporation Eagle 4WD 6 cyl, 4.2 L, Automatic 3-spd, Regular Gasoline Compare 1984 American Motors Corporation Eagle 4WD 15 City 17 Combined 20 Highway 1984 American Motors Corporation Eagle 4WD 6 cyl, 4.2 L, Manual 4-spd, Regular Gasoline Compare 1984 American Motors Corporation Eagle 4WD 16 City 17 Combined 20 Highway 1984 American Motors Corporation Eagle 4WD 6 cyl, 4.2 L, Manual 5-spd, Regular Gasoline

80

Demonstration of Alternative Fuel, Light and Heavy Duty Vehicles in State and Municipal Vehicle Fleets  

SciTech Connect

This project involved the purchase of two Compressed Natural Gas School Buses and two electric Ford Rangers to demonstrate their viability in a municipal setting. Operational and maintenance data were collected for analysis. In addition, an educational component was undertaken with middle school children. The children observed and calculated how electric vehicles could minimize pollutants through comparison to conventionally powered vehicles.

Kennedy, John H.; Polubiatko, Peter; Tucchio, Michael A.

2002-02-06T23:59:59.000Z

Note: This page contains sample records for the topic "motor vehicle fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Impacts of Motor Vehicle Operation on Water Quality in the United States - Clean-up Costs and Policies  

E-Print Network (OSTI)

Non-point Source Water Pollution Motor vehicles are a majorpreventing water pollution from motor vehicles would be muchcosts of controlling water pollution from motor vehicles. It

Nixon, Hilary; Saphores, Jean-Daniel

2007-01-01T23:59:59.000Z

82

Electric propulsion motor for marine vehicles  

SciTech Connect

An electric propulsion motor for marine vehicles is described comprising: a disk-shaped rotor and two coaxial disk-shaped stators, the rotor being separated from each of the stators in an axial direction by an air gap; the rotor including a plurality of permanent magnets that produce a first magnetic field; each stator comprising an armature winding that is connected to a source of electrical current to produce a second magnetic field, the first and second magnetic fields being capable of interacting to create an electromagnetic torque; means for coupling the rotor to a propeller shaft for transferring the torque from the rotor to the shaft, and means for detecting the angle of the shaft; a current control means for receiving a current control signal and for employing pulse width modulation to control the source of electrical current; the current control means including means for storing compensation information related to torque variations that are a function of shaft angle; the current control means further including means connected and responsive to the shaft angle detecting means for selecting the compensation information as a function of shaft angle and means for combining the compensation information with the current control signal to control the source of electrical current such that the torque variations that are a function of shaft angle are minimized; and wherein the means for coupling the rotor to the propeller shaft includes means within the motor for isolating the shaft from sound produced by the motor.

Dade, T.B.; Leiding, K.W.; Mongeau, P.P.; Piercey, M.S.

1993-07-20T23:59:59.000Z

83

Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Managers Fleet Managers Plug-In Electric Vehicle Handbook for Fleets 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the ac- curacy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and

84

National Clean Fleets Partnership (Fact Sheet) (Revised), Vehicle Technologies Program (VTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Organizations with large fleets Organizations with large fleets that operate in multiple states have the potential to make significant reductions in petroleum use. Photo from UPS National Clean Fleets Partnership Large fleets throughout the country can work hand-in-hand with the U.S. Department of Energy (DOE) to reduce petroleum consumption by becoming a partner in Clean Cities' National Clean Fleets Partnership. This initiative provides fleets with specialized resources, expertise, and support to successfully incorporate alternative fuels and fuel-saving measures into their operations. The National Clean Fleets Partnership builds on the established success of DOE's Clean Cities program, which reduces petroleum consumption at the community level through a nationwide network of coalitions that work with

85

Motor Vehicle Emission Simulator (MOVES) | Open Energy Information  

Open Energy Info (EERE)

Motor Vehicle Emission Simulator (MOVES) Motor Vehicle Emission Simulator (MOVES) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Motor Vehicle Emission Simulator (MOVES) Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.epa.gov/otaq/models/moves/index.htm Cost: Free Equivalent URI: cleanenergysolutions.org/content/motor-vehicle-emission-simulator-move Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation References: http://www.epa.gov/otaq/models/moves/index.htm Intended to replace MOBILE6, NONROAD, and NMIM. Estimates energy consumption emissions from highway vehicles from 1999-2050 and accounts for

86

Vehicle Technologies Office: Fact #61: May 12, 1998 Growth in Motor  

NLE Websites -- All DOE Office Websites (Extended Search)

1: May 12, 1998 1: May 12, 1998 Growth in Motor Vehicles: 1940-1996 to someone by E-mail Share Vehicle Technologies Office: Fact #61: May 12, 1998 Growth in Motor Vehicles: 1940-1996 on Facebook Tweet about Vehicle Technologies Office: Fact #61: May 12, 1998 Growth in Motor Vehicles: 1940-1996 on Twitter Bookmark Vehicle Technologies Office: Fact #61: May 12, 1998 Growth in Motor Vehicles: 1940-1996 on Google Bookmark Vehicle Technologies Office: Fact #61: May 12, 1998 Growth in Motor Vehicles: 1940-1996 on Delicious Rank Vehicle Technologies Office: Fact #61: May 12, 1998 Growth in Motor Vehicles: 1940-1996 on Digg Find More places to share Vehicle Technologies Office: Fact #61: May 12, 1998 Growth in Motor Vehicles: 1940-1996 on AddThis.com... Fact #61: May 12, 1998 Growth in Motor Vehicles: 1940-1996

87

Solar powered hydrogen generating facility and hydrogen powered vehicle fleet. Final technical report, August 11, 1994--January 6, 1997  

SciTech Connect

This final report describes activities carried out in support of a demonstration of a hydrogen powered vehicle fleet and construction of a solar powered hydrogen generation system. The hydrogen generation system was permitted for construction, constructed, and permitted for operation. It is not connected to the utility grid, either for electrolytic generation of hydrogen or for compression of the gas. Operation results from ideal and cloudy days are presented. The report also describes the achievement of licensing permits for their hydrogen powered trucks in California, safety assessments of the trucks, performance data, and information on emissions measurements which demonstrate performance better than the Ultra-Low Emission Vehicle levels.

Provenzano, J.J.

1997-04-01T23:59:59.000Z

88

Nevada Department of Motor Vehicles | Open Energy Information  

Open Energy Info (EERE)

Motor Vehicles Motor Vehicles Jump to: navigation, search Logo: Nevada Department of Motor Vehicles Name Nevada Department of Motor Vehicles Address 555 Wright Way Place Carson City, Nevada Zip 89711 Phone number 702-486-4368 Website http://dmvnv.com/ Coordinates 39.1549237¬į, -119.7635207¬į Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1549237,"lon":-119.7635207,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

89

Texas Department of Motor Vehicles | Open Energy Information  

Open Energy Info (EERE)

Motor Vehicles Motor Vehicles Jump to: navigation, search Logo: Texas Department of Motor Vehicles Name Texas Department of Motor Vehicles Short Name TxDMV Address 4000 Jackson Ave. Place Austin, Texas Zip 78731 Phone number 1-888-368-4689 Website http://www.txdmv.gov/ Coordinates 30.3134782¬į, -97.7553907¬į Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3134782,"lon":-97.7553907,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

90

Gas Mileage of 1993 Vehicles by J.K. Motors  

NLE Websites -- All DOE Office Websites (Extended Search)

3 J.K. Motors Vehicles 3 J.K. Motors Vehicles EPA MPG MODEL City Comb Hwy 1993 J.K. Motors 190E 2.3 MERC BENZ 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors 190E 2.3 MERC BENZ 16 City 17 Combined 18 Highway 1993 J.K. Motors 230E MERC BENZ 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors 230E MERC BENZ 16 City 17 Combined 18 Highway 1993 J.K. Motors 300SL 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors 300SL 14 City 15 Combined 16 Highway 1993 J.K. Motors BMW535I 6 cyl, 3.4 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors BMW535I 12 City 14 Combined 18 Highway 1993 J.K. Motors BMW635CSI 6 cyl, 3.4 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors BMW635CSI 12 City 14 Combined 18

91

Research on Induction Motor for Mini Electric Vehicles  

Science Journals Connector (OSTI)

The motor of a mini electric vehicle uses dozens of storage batteries as power supply, which has low voltage and large current. Therefore, the loss and temperature raise of the motor is high. In this paper, the loss of different induction motors for mini electric vehicles is calculated and the effects of rotor materials and air gap length on the performance of these motors are studied. The analyses show that the efficiency of the motor with a copper mouse cage rotor is considerably higher than that of the motor with a aluminum rotor. The temperature raise of both an air-cooling and a water-cooling induction motor is analyzed, which demonstrates that the temperature raise of the motor windings is higher than that of the other parts, and the temperature raise of the water-cooling motor is lower than that of the air-cooling motor. To verify the results of the theoretical analyses, four prototype induction motors (aluminum rotor, copper mouse cage rotor, air-cooling and spiral groove machine) have been designed and processed. The experiments to measure the efficiency and temperature raise were carried out on these motors. The experimental results prove that the theoretical analyses are correct.

Shukang Cheng; Cuiping Li; feng Chai; Hailong Gong

2012-01-01T23:59:59.000Z

92

A Power Presizing Methodology for Electric Vehicle Traction Motors Bekheira Tabbache1,2  

E-Print Network (OSTI)

A Power Presizing Methodology for Electric Vehicle Traction Motors Bekheira Tabbache1,2 , Sofiane for presizing the power of an electric vehicle traction motor. Based on the vehicle desired performances motor, power presizing, driving cycle. Nomenclature EV = Electric Vehicle; V = Vehicle speed; Vb

Paris-Sud XI, Université de

93

MIT Electric Vehicle Team Porsche designing a cooling system for the AC24 electric motor  

E-Print Network (OSTI)

In this thesis I worked on the design and analysis of a cooling system for the electric motor of the MIT Electric Vehicle Team's Porsche 914 Battery Electric Vehicle. The vehicle's Azure Dynamics AC24 motor tended to ...

Meenen, Jordan N

2010-01-01T23:59:59.000Z

94

DOE Hydrogen Analysis Repository: MOVES (Motor Vehicle Emission Simulator)  

NLE Websites -- All DOE Office Websites (Extended Search)

MOVES (Motor Vehicle Emission Simulator) MOVES (Motor Vehicle Emission Simulator) Project Summary Full Title: MOVES (Motor Vehicle Emission Simulator) Previous Title(s): New Generation Mobile Source Emissions Model (NGM) Project ID: 179 Principal Investigator: Margo Oge Brief Description: Estimates emissions for on-road and nonroad sources, multiple pollutants, fine-scale analysis to national inventory estimation. Keywords: Vehicle; transportation; emissions Purpose Estimate emissions for on-road and nonroad sources, cover a broad range of pollutants, and allow multiple scale analysis, from fine-scale analysis to national inventory estimation. When fully implemented MOVES will serve as the replacement for MOBILE. Performer Principal Investigator: Margo Oge Organization: U.S. Environmental Protection Agency

95

Electric Motors for Vehicle Propulsion; Elektriska motorer fŲr fordonsframdrivning.  

E-Print Network (OSTI)

?? This work is intended to contribute with knowledge to the area of electic motorsfor propulsion in the vehicle industry. This is done by firstÖ (more)

Larsson, Martin

2014-01-01T23:59:59.000Z

96

Chapter 2. Vehicle Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

2. Vehicle Characteristics 2. Vehicle Characteristics Chapter 2. Vehicle Characteristics U.S. households used a fleet of nearly 157 million vehicles in 1994. Despite remarkable growth in the number of minivans and sport-utility vehicles, passenger cars continued to predominate in the residential vehicle fleet. This chapter looks at changes in the composition of the residential fleet in 1994 compared with earlier years and reviews the effect of technological changes on fuel efficiency (how efficiently a vehicle engine processes motor fuel) and fuel economy (how far a vehicle travels on a given amount of fuel). Using data unique to the Residential Transportation Energy Consumption Survey, it also explores the relationship between residential vehicle use and family income.

97

Techno-economic Assessment of Membrane Reactor Technologies for Pure Hydrogen Production for Fuel Cell Vehicle Fleets  

Science Journals Connector (OSTI)

In the pathway toward a future infrastructure based on renewable energy sources, a medium-term step would rely on the use of fossil fuels for on-site production of hydrogen, feeding small fleets of fuel cell vehicles. ... A fuel cell powered family car performing at approximately 105 km/kgH2,(11, 12) a value taken from real operation experiences and more conservative than typical results from standard driving cycles,(13) assuming a range of autonomy of 483 km, requires storage for 4.6 kgH2. ... European Association for Hydrogen and Fuel Cells and Electro-mobility in European Regions (HyER). ...

Leonardo Roses; Giampaolo Manzolini; Stefano Campanari; Ellart De Wit; Michael Walter

2013-03-05T23:59:59.000Z

98

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project  

SciTech Connect

General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

Stottler, Gary

2012-02-08T23:59:59.000Z

99

On-Road Motor Vehicle Emissions including Ammonia, Sulfur Dioxide and Nitrogen Dioxide Don Stedman, Gary Bishop, Allison Peddle, University of Denver Department of Chemistry and Biochemistry Denver CO 80208. www.feat.biochem.du.edu  

E-Print Network (OSTI)

On-Road Motor Vehicle Emissions including Ammonia, Sulfur Dioxide and Nitrogen Dioxide Don Stedman Nitrogen dioxide: Less than 5% of the NOx BUT with an outstanding peak for the 2007 MY in Fresno 0. Nitrogen dioxide: less than 5% of NOx except the Fresno fleet containing the 2007 Sprinter ambulances. #12;

Denver, University of

100

Hybrid Cascaded H-bridges Multilevel Motor Drive Control for Electric Vehicles  

E-Print Network (OSTI)

Hybrid Cascaded H-bridges Multilevel Motor Drive Control for Electric Vehicles Zhong Du1 , Leon M vehicle motor drive applications and hybrid electric vehicle motor drive applications. Keywords: hybrid cascaded H-bridge multilevel converter, DC voltage balance control, multilevel motor drive, electric

Tolbert, Leon M.

Note: This page contains sample records for the topic "motor vehicle fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Siting public electric vehicle charging stations in Beijing using big-data informed travel patterns of the taxi fleet  

Science Journals Connector (OSTI)

Abstract Charging infrastructure is critical to the development of electric vehicle (EV) system. While many countries have implemented great policy efforts to promote EVs, how to build charging infrastructure to maximize overall travel electrification given how people travel has not been well studied. Mismatch of demand and infrastructure can lead to under-utilized charging stations, wasting public resources. Estimating charging demand has been challenging due to lack of realistic vehicle travel data. Public charging is different from refueling from two aspects: required time and home-charging possibility. As a result, traditional approaches for refueling demand estimation (e.g. traffic flow and vehicle ownership density) do not necessarily represent public charging demand. This research uses large-scale trajectory data of 11,880 taxis in Beijing as a case study to evaluate how travel patterns mined from big-data can inform public charging infrastructure development. Although this study assumes charging stations to be dedicated to a fleet of PHEV taxis which may not fully represent the real-world situation, the methodological framework can be used to analyze private vehicle trajectory data as well to improve our understanding of charging demand for electrified private fleet. Our results show that (1) collective vehicle parking ďhotspotsĒ are good indicators for charging demand; (2) charging stations sited using travel patterns can improve electrification rate and reduce gasoline consumption; (3) with current grid mix, emissions of CO2, PM, SO2, and \\{NOx\\} will increase with taxi electrification; and (4) power demand for public taxi charging has peak load around noon, overlapping with Beijingís summer peak power.

Hua Cai; Xiaoping Jia; Anthony S.F. Chiu; Xiaojun Hu; Ming Xu

2014-01-01T23:59:59.000Z

102

NREL: Fleet Test and Evaluation - Electric and Plug-In Hybrid Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric and Plug-In Hybrid Electric Drive Systems Electric and Plug-In Hybrid Electric Drive Systems NREL's Fleet Test and Evaluation Team conducts performance evaluations of electric and plug-in hybrid electric drive systems in medium-duty trucks operated by fleets. Photo of medium-duty truck with the words "All Electric Vehicle" and "Plug-in" written on its side. NREL evaluates the performance of electric and plug-in hybrid electric vehicles in fleet operation. All-electric vehicles (EVs) use batteries to store the electric energy that powers the motor. EV batteries are charged by plugging the vehicle into an electric power source. Plug-in hybrid electric vehicles (PHEVs) are powered by an internal combustion engine that can run on conventional or alternative fuels and an electric motor that uses energy stored in batteries. The vehicle can be

103

Low cost, compact, and high efficiency traction motor for electric and hybrid electric vehicles  

SciTech Connect

A new motor drive, the switched reluctance motor drive, has been developed for hybrid-electric vehicles. The motor drive has been designed, built and tested in the test bed at a near vehicle scale. It has been shown that the switched reluctance motor drive is more suitable for traction application than any other motor drive.

Ehsani, Mark

2002-10-07T23:59:59.000Z

104

MOtor Vehicle Emission Simulator (MOVES) | Open Energy Information  

Open Energy Info (EERE)

MOtor Vehicle Emission Simulator (MOVES) MOtor Vehicle Emission Simulator (MOVES) Jump to: navigation, search Tool Summary Name: MOtor Vehicle Emission Simulator (MOVES) Agency/Company /Organization: U.S. Environmental Protection Agency Focus Area: GHG Inventory Development Topics: Analysis Tools Website: www.epa.gov/otaq/models/moves/index.htm This emission modeling system estimates emissions from mobile sources, including cars, trucks, and motorcycles. The modeling tool covers a broad range of pollutants and allows multiple scale analysis. How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air pollutants and greenhouse gas emissions.

105

Motor-Vehicle Infrastructure and Services Provided by the Public Sector: Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

7.8.3 The motor-vehicle fraction of air, water, and solid-7.8.3 The motor-vehicle fraction of air, water, and solid-travel. The motor-vehicle related costs of water treatment

Delucchi, Mark; Murphy, James

2005-01-01T23:59:59.000Z

106

MOTOR-VEHICLE INFRASTRUCTURE AND SERVICES PROVIDED BY THE PUBLIC SECTOR Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

7.8.3 The motor-vehicle fraction of air, water, and solid-7.8.3 The motor-vehicle fraction of air, water, and solid-travel. The motor-vehicle related costs of water treatment

Delucchi, Mark

2005-01-01T23:59:59.000Z

107

ENERGY STAR Focus on Energy Efficiency in Motor Vehicle Manufacturing |  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Vehicle Motor Vehicle Manufacturing Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Tools for benchmarking energy management practices Tools for tracking and benchmarking facility energy performance ENERGY STAR Energy Performance Indicators for plants

108

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

109

Design of Efficient In-Wheel Motor for Electric Vehicles  

Science Journals Connector (OSTI)

Abstract This research paper deals with the design and development of an in-wheel motor for electric vehicles. The proposed motor generates a 350-watt power drive with a power source of two 12†V batteries. The batteries are connected in series to increase the voltage to 24 volts and 18.23 A. The in-wheel motor is based on the principle of a DC electric motor to drive the vehicle wheels so that the mechanical components of the transmission and the energy loss are minimized. The proposed in-wheel motor has 46 poles, 51 slots and 51 teeth. In addition, the method lowers the maintenance cost. This research work assumes the maximum weight of 70†kg and the running speed of 20†km/hr. The experiment results show that the output power and efficiency of the in-wheel motor are subject to the variation in input power given that the input voltage remains constant at 25.41 volts. The maximum efficiency of the in-wheel motor of 82.56% is achieved at 2.5 N-m torque. The maximum torque of 6.25 N-m is achieved with the input power of 348.76 watts.

Winai Chanpeng; Prasert Hachanont

2014-01-01T23:59:59.000Z

110

Research on the Torque Dynamic Distribution Algorithm of In-Wheel-Motor Electric Vehicle  

Science Journals Connector (OSTI)

This paper focuses on developing the torque dynamic distribution algorithm of In-Wheel-Motor electric vehicle. The algorithm is developed to regulate ... the vehicle body yaw rate by changing the motor drive torq...

Zhengyi He; Yang Ou; Jingming Yuan

2013-01-01T23:59:59.000Z

111

Do Motor-Vehicle Users in the US Pay Their Way?  

E-Print Network (OSTI)

to Protect the Use of Persian-Gulf Oil for Motor Vehicles,related to the use of Persian-Gulf oil by MVs Annualizedto protect the use of Persian-Gulf oil for motor vehicles. 9

Delucchi, Mark

2007-01-01T23:59:59.000Z

112

Lung Adenocarcinoma Incidence Rates and Their Relation to Motor Vehicle Density  

Science Journals Connector (OSTI)

...with about one motor vehicle per square mile...study design. In ecological studies, none of...as follows: As an ecological study, the data of motor vehicle density was obtained...individuals; that is, the ecological fallacy could not...

Fan Chen; Haley Jackson; and William F. Bina

2009-03-01T23:59:59.000Z

113

Effects of motor vehicle exhaust on male reproductive function and associated proteins  

Science Journals Connector (OSTI)

Air pollution is consistently associated with various diseases and subsequent death among children, adult, and elderly people worldwide. Motor vehicle exhaust contributes to a large proportion of the air pollution present. The motor vehicle exhaust ...

Deivendran Rengaraj; Woo-Sung Kwon; Myung-Geol Pang

2014-10-20T23:59:59.000Z

114

Federal Energy Management Program: Sustainable Federal Fleets  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Fleets Federal Fleets The Federal Fleet Program Overview outlines FEMP services and assistance available to Federal fleet managers to increase the use of alternative fuels and advanced vehicles. FEMP's Sustainable Federal Fleets website provides guidance and assistance to help implement Federal legislative and regulatory requirements mandating reduced petroleum consumption and increased alternative fuel use. FEMP's efforts include assisting agencies with implementing and managing energy-efficient and alternative fuel vehicles and facilitating a coordinated effort to reduce petroleum consumption and increase alternative fuel use annually. Content on Sustainable Federal Fleets spans Federal requirements and reporting compliance, alternative fuels and advanced vehicles, fleet performance data, analysis services, information resources, and FEMP contacts.

115

Clean Cities: National Clean Fleets Partner: Staples  

NLE Websites -- All DOE Office Websites (Extended Search)

Staples Staples to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Staples on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Staples on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Staples on Google Bookmark Clean Cities: National Clean Fleets Partner: Staples on Delicious Rank Clean Cities: National Clean Fleets Partner: Staples on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Staples on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame

116

Clean Cities: National Clean Fleets Partner: Verizon  

NLE Websites -- All DOE Office Websites (Extended Search)

Verizon Verizon to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Verizon on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Verizon on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Verizon on Google Bookmark Clean Cities: National Clean Fleets Partner: Verizon on Delicious Rank Clean Cities: National Clean Fleets Partner: Verizon on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Verizon on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame

117

Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption . U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption and Expenditures, 1994 1993 Household and 1994 Vehicle Characteristics RSE Column Factor: Number of Vehicles Vehicle-Miles Traveled Motor Fuel Consumption Motor Fuel Expenditures RSE Row Factor: (million) (percent) (billion) (percent) (billion gallons) (gallon percent) (quadril- lion Btu) (billion dollars) (percent) 0.9 0.8 1.1 1.0 1.1 1.0 1.1 1.1 1.0 Household Characteristics Total .................................................... 156.8 100.0 1,793 100.0 90.6 100.0 11.2 104.7 100.0 2.8 Census Region and Division Northeast ........................................... 26.6 17.0 299 16.7 14.5 16.0 1.8 17.2 16.4 5.7 New England ................................... 7.6 4.8 84 4.7 4.1 4.5 0.5 4.8 4.6 13.8 Middle Atlantic

118

Dynamics in Behavioral Response to Fuel-Cell Vehicle Fleet and Hydrogen Infrastructure: An Exploratory Study  

E-Print Network (OSTI)

key motivation for alternative-fuel vehicles, such as FCVs,Energy and Alternative Fuels Committee sponsored publicationtoward hydrogen and alternative-fuel vehicles of F-cell ?eet

Shaheen, Susan; Martin, Elliot; Lipman, Timothy

2008-01-01T23:59:59.000Z

119

Control of a Fuel-Cell Powered DC Electric Vehicle Motor  

E-Print Network (OSTI)

Control of a Fuel-Cell Powered DC Electric Vehicle Motor Federico Zenith Sigurd Skogestad of a Fuel-Cell Powered DC Electric Vehicle Motor #12;3 Currently Available Models and Control Strategies Skogestad, Control of a Fuel-Cell Powered DC Electric Vehicle Motor #12;3 Currently Available Models

Skogestad, Sigurd

120

Design and Control of the Induction Motor Propulsion of an Electric Vehicle  

E-Print Network (OSTI)

Design and Control of the Induction Motor Propulsion of an Electric Vehicle B. Tabbache1,2 , A for presizing the induction motor propulsion of an Electric Vehicle (EV). Based on the EV desired performances for different induction motor-based EVs using a siding mode control technique. Index Terms--Electric Vehicle (EV

Brest, Université de

Note: This page contains sample records for the topic "motor vehicle fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Electric Vehicle Induction Motor DSVM-DTC with Torque Ripple Minimization  

E-Print Network (OSTI)

Electric Vehicle Induction Motor DSVM-DTC with Torque Ripple Minimization Farid Khoucha1 a sensorless DSVM-DTC of an induction motor that propels an electrical vehicle or a hybrid one. The drive uses, as demonstrated in experimental results. Keywords: Electric vehicle (EV), induction motor, Discrete Space Vector

Paris-Sud XI, Université de

122

EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCAR Vehicles Get Put to the Test at General Motors' Proving EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground June 13, 2011 - 5:57pm Addthis Virginia Tech puts their EcoCar vehicle through the paces at General Motors' Milford Proving Grounds. | Credit Department of Energy Advanced Vehicle Technology Competitions Virginia Tech puts their EcoCar vehicle through the paces at General Motors' Milford Proving Grounds. | Credit Department of Energy Advanced Vehicle Technology Competitions Connie Bezanson Education & Outreach Manager, Vehicle Technologies Program What does this project do? EcoCar challenges students to reduce the environmental impact of vehicles by minimizing the vehicle's fuel consumption and emissions -- while retaining the vehicle's performance, safety and consumer appeal.

123

A green fleet  

Science Journals Connector (OSTI)

......capturing and analysing data on fuel consumption, driving style and engine performance, measures can...in-vehicle solutions. More than fuel bills However, green fleet...its best to minimise fuel consumption and exhaust emissions. It......

Brian Martin

2009-03-01T23:59:59.000Z

124

Journal of Asian Electric Vehicles, Volume 9, Number 1, June 2011 Uncontrolled Generation of Traciton Motors in Hybrid Electric Vehicles  

E-Print Network (OSTI)

of Traciton Motors in Hybrid Electric Vehicles Xiaofeng Ding 1 , Jinglin Liu 2 , and Chris Mi 3 1 Department Generation of Traciton Motors in Hybrid Electric Vehicles 1460 2. SIMPLE ANALYTICAL MODEL OF UCG 2.1 ModelJournal of Asian Electric Vehicles, Volume 9, Number 1, June 2011 1459 Uncontrolled Generation

Mi, Chunting "Chris"

125

TAX AND FEE PAYMENTS BY MOTOR VEHICLE USERS FOR THE USE OF HIGHWAYS, FUELS, AND VEHICLES Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

to Protect the Use of Persian-Gulf Oil for Motor Vehicles (to Protect the Use of Persian-Gulf Oil for Motor Vehicles,related to the use of Persian-Gulf oil by MVs B.11

Delucchi, Mark

2005-01-01T23:59:59.000Z

126

Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters  

SciTech Connect

A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT diesel particulate filter. No engine modifications were made.

Alleman, T. L.; Eudy, L.; Miyasato, M.; Oshinuga, A.; Allison, S.; Corcoran, T.; Chatterjee, S.; Jacobs, T.; Cherrillo, R. A.; Clark, R.; Virrels, I.; Nine, R.; Wayne, S.; Lansing, R.

2005-11-01T23:59:59.000Z

127

EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES  

E-Print Network (OSTI)

-produced electricity for battery electric vehicles. Already, vehicles powered by compressed natural gas, propane. LIPMAN AND MARK A. DELUCCHI example, promising strategies for powering motor vehicles with reduced GHGEMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES

Kammen, Daniel M.

128

Motor control and torque coordination of an electric vehicle actuated by two in-wheel motors  

Science Journals Connector (OSTI)

In this research, an electric vehicle actuated by two in-wheel DC motors is developed. By properly coordinating the motor torques, both drive-by-wire and electrical steering can be achieved. Two critical issues respectively related to the design of motor controllers and the coordination of the two motor torques under control saturation are investigated in this study. Firstly, as for the in-wheel motors that are used for driving and steering simultaneously, their operation covers a wider dynamic range that forward acceleration (deceleration), and reverse acceleration (deceleration) may occur alternately. To perform driving and steering smoothly and efficiently, each motor should be switched to an appropriate mode to generate the torque demanded. Secondly, during the high-speed maneuvering, the high back-emf voltage in the motor coil substantially reduces the motorís torque generating capability. Since the electrical steering depends on the differential torque of two wheels, when electrical steering is demanded in this case, torque/current saturation may occur in either one of the motors and the electrical steering performance could be seriously degraded. To address these issues, controllers of two levels are proposed. For the low-level controller (the motor controller), it operates the motor automatically in an appropriate mode for performance and efficiency consideration. An input transformation is introduced to cancel the nonlinearity in current dynamics so as to control the motor torque easily and precisely regardless of mode switching. For the high-level controller (the torque coordination controller), besides generating reference commands to the low-level controllers, during control saturation it can also properly re-distributes control signals to maintain consistent steering performance and provides compensation for integrator windup. The control system is implemented and the performance is experimentally and numerically validated.

Feng-Kuang Wu; T.-J. Yeh; Chun-Feng Huang

2013-01-01T23:59:59.000Z

129

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

Science Journals Connector (OSTI)

In the present study we describe measurements of gas- and particle-phase carbonyl emissions from light-duty gasoline (LDV) and heavy-duty diesel (HDDV) motor vehicles operated on a chassis dynamometer under realistic driving cycles. ... Vehicles were tested under a five-mode driving cycle (HHDDT, heavy heavy-duty diesel truck) consisting of 30-min idle, 17-min creep, and 11-min transient stages and two cruise stages of 34 and 31 min, with a top speed of 65 miles h?1 for the second cruise (30). ... In general, as the volatility of the carbonyl decreased, so did the PUF/total particulate carbonyl ratio. ...

Chris A. Jakober; Michael A. Robert; Sarah G. Riddle; Hugo Destaillats; M. Judith Charles; Peter G. Green; Michael J. Kleeman

2008-05-24T23:59:59.000Z

130

Sustainable Federal Fleets | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Fleets Federal Fleets Sustainable Federal Fleets October 8, 2013 - 10:16am Addthis FEMP's Sustainable Federal Fleets website provides guidance and assistance to help implement Federal legislative and regulatory requirements mandating reduced petroleum consumption and increased alternative fuel use. FEMP's efforts include assisting agencies with implementing and managing energy-efficient and alternative fuel vehicles and facilitating a coordinated effort to reduce petroleum consumption and increase alternative fuel use annually. Content on Sustainable Federal Fleets spans Federal requirements and reporting compliance, alternative fuels and advanced vehicles, fleet performance data, analysis services, information resources, and FEMP contacts. Graphic of a button that reads Visit FEMP's Sustainable Federal Fleets Website.

131

Business Case for Compressed Natural Gas in Municipal Fleets...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Business Case for Compressed Natural Gas in Municipal Fleets Business Case for Compressed Natural Gas in Municipal Fleets This report describes how NREL used the CNG Vehicle and...

132

Geographic Information System for Visualization of PHEV Fleet...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geographic Information System for Visualization of PHEV Fleet Data Geographic Information System for Visualization of PHEV Fleet Data 2010 DOE Vehicle Technologies and Hydrogen...

133

RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

134

RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

135

National Clean Fleets Partnership Fact Sheet and Progress Update  

Office of Energy Efficiency and Renewable Energy (EERE)

The National Clean Fleets Partnership is helping America's largest commercial fleets speed the adoption of alternative fuels, electric vehicles, and fuel economy improvements.†

136

Vehicle Technologies Office Merit Review 2014: California Fleets and Workplace Alternative Fuels Project  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Bay Area Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

137

SDTC-EKF Control of an Induction Motor Based Electric Vehicle B. Tabbache1,2  

E-Print Network (OSTI)

SDTC-EKF Control of an Induction Motor Based Electric Vehicle B. Tabbache1,2 , A. Kheloui2 , M torque control of an induction motor based electric vehicle. In this case, stator flux and rotational, comprising the electric motor, power converter, and electronic controller, is the core of the EV propulsion

Paris-Sud XI, Université de

138

Independent Control of Two Induction Motors Fed by a Five Legs PWM Inverter for Electric Vehicles  

E-Print Network (OSTI)

Independent Control of Two Induction Motors Fed by a Five Legs PWM Inverter for Electric Vehicles B. NOMENCLATURE EV = Electric vehicle; IM = Induction motor; IFOC = Indirect field oriented control; PWM= Pulse force; Fcr = Climbing and downgrade resistance force; Pv = Vehicle driving power; J = Total inertia

Boyer, Edmond

139

Reconciling Sectoral Abatement Strategies with Global Climate Targets: The Case of the Chinese Passenger Vehicle Fleet  

Science Journals Connector (OSTI)

(7-11) The latter report(11) estimates future vehicle ownership based on per capita GDP and stresses the importance of a dynamic stock model and technological change. ... The annual kilometrage (K) and fuel consumption per km (F) for all model years, cohorts, and drive technologies as well as the CO2 intensity of gasoline determine direct energy demand and emissions. ...

Stefan Pauliuk; Ni Made A. Dhaniati; Daniel B. MŁller

2011-11-10T23:59:59.000Z

140

Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.  

SciTech Connect

As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate

Wang, M.; Huo, H.; Johnson, L.; He, D.

2006-12-20T23:59:59.000Z

Note: This page contains sample records for the topic "motor vehicle fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Projection of Chinese motor vehicle growth, oil demand, and Co{sub 2} emissions through 2050.  

SciTech Connect

As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected separately the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate th

Huo, H.; Wang, M.; Johnson, L.; He, D.; Energy Systems; Energy Foundation

2007-01-01T23:59:59.000Z

142

Alternative Fuels Data Center: Clean Fleet Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Grants to Fleet Grants to someone by E-mail Share Alternative Fuels Data Center: Clean Fleet Grants on Facebook Tweet about Alternative Fuels Data Center: Clean Fleet Grants on Twitter Bookmark Alternative Fuels Data Center: Clean Fleet Grants on Google Bookmark Alternative Fuels Data Center: Clean Fleet Grants on Delicious Rank Alternative Fuels Data Center: Clean Fleet Grants on Digg Find More places to share Alternative Fuels Data Center: Clean Fleet Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Clean Fleet Grants The Texas Commission on Environmental Quality (TCEQ) administers the Texas Clean Fleet Program (Program) as part of the Texas Emissions Reduction Plan. The Program encourages owners of fleets containing diesel vehicles to

143

Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)  

SciTech Connect

This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

Narumanchi, S.

2014-09-01T23:59:59.000Z

144

Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report  

Energy.gov (U.S. Department of Energy (DOE))

This report describes the progress made on the research and development projects funded by the Advanced Power Electronics and Electric Motors subprogram in the Vehicle Technologies Office.

145

On fuel-optimal velocity control of a motor vehicle  

Science Journals Connector (OSTI)

This paper presents the motor vehicle velocity control that, under certain well-defined conditions, ensures a minimum fuel consumption. To this purpose, a vehicle with a stepped mechanical transmission is considered, assuming that the gear is unchanged during the movement. The optimal control problem is formulated for different cases and solved by applying Pontryagin's maximum principle. Whenever there is a singular solution, it is shown to correspond to the uniform motion law. The optimal velocity controls include the following phases that may be combined in different ways: deceleration without engine shut-off (null engine power), strong decelerative braking, constant speed movement and full-throttle acceleration. Examples are presented by using the experimental data on engine fuel consumption. The stress falls on the significant reductions in fuel consumption that can be achieved compared to uniform motion.

A.P. Stoicescu

1995-01-01T23:59:59.000Z

146

Power control of dual-motor electric drive for tracked vehicles  

Science Journals Connector (OSTI)

The fundamental problem of the power control for the driving of a dual-motor drive electric tracked vehicle is analyzed. The tracked vehicle and its electric drive system are mathematically modeled. Power control...

Yuan Zou; Chengning Zhang; Fengchun SunÖ

2010-03-01T23:59:59.000Z

147

The Vibration Analysis of Eco-Friendly Vehicle Based on the Electric Motor Excitation  

Science Journals Connector (OSTI)

Using the Switched Reluctance Motor (SRM) as the excitation source, the ... multi-body dynamics model of the eco-friendly electric vehicle on ADAMS software platform; given out ... vehicle vibration system which ...

Peicheng Shi; Yuan Shang

2013-01-01T23:59:59.000Z

148

Shock absorber mount assembly for motor vehicle suspension  

SciTech Connect

A mount assembly is described for mounting a shock absorber/coil assembly in a motor vehicle suspension, the shock absorber/coil assembly including a fluid cylinder, a piston rod movable into and out of the cylinder, a vibration isolator mounted on an end of the piston rod, and a coil spring disposed around the fluid cylinder and the piston rod. The mount assembly consists of: a retainer adapted to be mounted on the vibration isolator and having an attachment portion adapted for attachment to a motor vehicle frame; a spring seat adapted to engage an end of the coil spring; and a thrust bearing interposed between the attachment portion of the retainer and the spring seat and adapted to extend around the vibration isolator, the thrust bearing including a pair of first and second races and a plurality of balls rotatably disposed between the first and second races, the first race engaging the retainer and the second race engaging the spring seat.

Kubo, K.

1987-09-01T23:59:59.000Z

149

Infrastructure for thulium-170 isotope power systems for autonomous underwater vehicle fleets  

SciTech Connect

The radioisotope thulium-170 is a safe and environmentally benign heat source for providing the high endurance and energy densities needed by advanced power systems for autonomous underwater vehicles (AUV). Thulium Isotope Power (TIP) systems have an endurance of {approximately}3000 h, and gravimetric and volumetric energy densities of 3 {times} 10{sup 4} Wh/kg and 3 {times} 10{sup 8} Wh/m{sup 3}, respectively. These energy densities are more than 200 times higher than those currently provided by Ag-Zn battery technology. In order to capitalize on these performance levels with about one hundred AUVs in continuous use, it will be necessary to establish an infrastructure for isotope production and heat-source refurbishment. The infrastructure cost is not trivial, and studies are needed to determine its optimum configuration. The major component of the projected infrastructure is the nuclear reactor used to produce Tm- 170 by neutron absorption in Tm-169. The reactor design should ideally be optimized for TM-170 production. Using the byproduct waste'' heat beneficially would help defray the cost of isotope production. However, generating electric power with the reactor would compromise both the cost of electricity and the isotope production capacity. A coastal location for the reactor would be most convenient from end-use considerations, and the waste'' heat could be used to desalinate seawater in water-thirsty states. 13 refs., 6 figs., 2 tabs.

Walter, C.E.

1991-07-01T23:59:59.000Z

150

Clean Cities: National Clean Fleets Partner: GE  

NLE Websites -- All DOE Office Websites (Extended Search)

GE to GE to someone by E-mail Share Clean Cities: National Clean Fleets Partner: GE on Facebook Tweet about Clean Cities: National Clean Fleets Partner: GE on Twitter Bookmark Clean Cities: National Clean Fleets Partner: GE on Google Bookmark Clean Cities: National Clean Fleets Partner: GE on Delicious Rank Clean Cities: National Clean Fleets Partner: GE on Digg Find More places to share Clean Cities: National Clean Fleets Partner: GE on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame Contacts National Clean Fleets Partner: GE

151

Clean Cities: National Clean Fleets Partner: UPS  

NLE Websites -- All DOE Office Websites (Extended Search)

UPS to UPS to someone by E-mail Share Clean Cities: National Clean Fleets Partner: UPS on Facebook Tweet about Clean Cities: National Clean Fleets Partner: UPS on Twitter Bookmark Clean Cities: National Clean Fleets Partner: UPS on Google Bookmark Clean Cities: National Clean Fleets Partner: UPS on Delicious Rank Clean Cities: National Clean Fleets Partner: UPS on Digg Find More places to share Clean Cities: National Clean Fleets Partner: UPS on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame Contacts National Clean Fleets Partner: UPS

152

Fleet DNA (Presentation)  

SciTech Connect

The Fleet DNA project objectives include capturing and quantifying drive cycle and technology variation for the multitude of medium- and heavy-duty vocations; providing a common data storage warehouse for medium- and heavy-duty vehicle fleet data across DOE activities and laboratories; and integrating existing DOE tools, models, and analyses to provide data-driven decision making capabilities. Fleet DNA advantages include: for Government - providing in-use data for standard drive cycle development, R&D, tech targets, and rule making; for OEMs - real-world usage datasets provide concrete examples of customer use profiles; for fleets - vocational datasets help illustrate how to maximize return on technology investments; for Funding Agencies - ways are revealed to optimize the impact of financial incentive offers; and for researchers -a data source is provided for modeling and simulation.

Walkokwicz, K.; Duran, A.

2014-06-01T23:59:59.000Z

153

Chemiion evolution in motor vehicle exhaust: Further evidence of its role in nanoparticle formation  

E-Print Network (OSTI)

Chemiion evolution in motor vehicle exhaust: Further evidence of its role in nanoparticle formation transfer line residence time, enhanced nanoparticle emission associated with reduced soot emission of the nanoparticles in motor vehicle exhaust. INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols

Yu, Fangqun

154

NREL: Fleet Test and Evaluation - Hybrid Electric Drive Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Drive Systems Hybrid Electric Drive Systems The Fleet Test and Evaluation Team conducts performance evaluations of hybrid electric drive systems in fleets of delivery vehicles and transit buses. Hybrid electric drive systems combine a primary power source, an energy storage system, and an electric motor to achieve a combination of emissions, fuel economy, and range benefits unattainable with any of these technologies alone. Hybrid electric drive systems use less petroleum-based fuel and capture energy created during breaking and idling. This collected energy is used to propel the vehicle during normal drive cycles. The batteries supply additional power for acceleration and hill climbing. Learn more about the team's hybrid electric drive system evaluations: Delivery Vehicles

155

Motor vehicle noise emission while accelerating up a hill  

Science Journals Connector (OSTI)

A noise survey was performed in 1975 to determine motor vehiclenoise emissions while accelerating up a grade. A?weighted sound levels were measured at locations 50 ft from urban streets with grades carrying between 4.3% and 9.6%. The recorded sound level data are presented as a function of grade for five classes of vechicles: passenger cars light trucks (GVW: under 8000 lb) light?medium trucks (GVW: 8Ė14 000 lb) medium trucks (GVW: 14Ė24 000 lb) and heavy trucks (GVW: over 24 000 lb). Statistical distributions of the recorded sound level data are presented for each class of vehicle and compared to level street acceleration data measured in 1974 [Michael F. Nechvatal and Robert D. Hellweg Jr. J. Acoust. Soc. Am. 56 S34(A) (1974)].

Robert D Hellweg Jr.; Michael F. Nechvatal

1975-01-01T23:59:59.000Z

156

Results Conclusions & Future Work TRADEOFF ANALYSIS OF Design of a Green Campus Motor Fleet Decision Support System  

E-Print Network (OSTI)

for Federal Fleet Performance. Additional reporting requirements. Community Clean local environment Additional Emissions ? Note Status Quo Yes $65100 Yes Yes Not on track to meet DOT requirements LSEV's Yes $5 the power to affect industry and increase the availability of alternative fuels 30% reduction in petroleum

157

Advanced Vehicle Testing & Evaluation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Provide benchmark data for advanced technology vehicles Develop lifecycle cost data for production vehicles utilizing advanced power trains Provide fleet...

158

Federal Fleet Program Overview (Fact Sheet)  

SciTech Connect

Fact sheet overview of FEMP services and assistance available to Federal fleet managers to implement alternative fuel and advanced vehicle strategies in compliance with Federal goals and requirements.

Not Available

2010-06-01T23:59:59.000Z

159

Case Study ? Propane School Bus Fleets  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

technicians about the safety of propane vehicles, particularly with regards to propane tanks. Data Analysis Results The five fleets operating the 110 school buses described in...

160

Controlled Hydrogen Fleet & Infrastructure Analysis | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Infrastructure Analysis Controlled Hydrogen Fleet & Infrastructure Analysis 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

Note: This page contains sample records for the topic "motor vehicle fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Sensor Fault-Tolerant Control of an Induction Motor Based Electric Vehicle Bekhera Tabbache1,2  

E-Print Network (OSTI)

Sensor Fault-Tolerant Control of an Induction Motor Based Electric Vehicle Bekhe√Įra Tabbache1://www.lbms.fr Keywords Electric Vehicle (EV), Induction motor, Sensor fault, Fault-tolerant control (FTC), Direct torque a reconfigurable direct torque control of an induction motor-based electric vehicle. The proposed strategy concerns

Paris-Sud XI, Université de

162

Economic and Environmental Optimization of Vehicle Fleets: A Case Study of the Impacts of Policy, Market, Utilization, and  

E-Print Network (OSTI)

, Electric Vehicles, Vehicle Characteristics, Emissions Price, Cost Comparison. TRB 2011 Annual Meeting Paper to denote different types of vehicles and engine technologies. Internal combustion engine vehicles, also is mostly recharged using the grid. Finally, electric vehicles (EV) only have an electrical engine

Bertini, Robert L.

163

Alternative Fuels Data Center: Fleet User Fee Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet User Fee Fleet User Fee Exemption to someone by E-mail Share Alternative Fuels Data Center: Fleet User Fee Exemption on Facebook Tweet about Alternative Fuels Data Center: Fleet User Fee Exemption on Twitter Bookmark Alternative Fuels Data Center: Fleet User Fee Exemption on Google Bookmark Alternative Fuels Data Center: Fleet User Fee Exemption on Delicious Rank Alternative Fuels Data Center: Fleet User Fee Exemption on Digg Find More places to share Alternative Fuels Data Center: Fleet User Fee Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fleet User Fee Exemption Fleets with 10 or more vehicles located in defined areas of the state must pay an annual user fee of $20 per vehicle. Owners of electric vehicles and

164

Dynamics in Behavioral Response to a Fuel Cell Vehicle Fleet and Hydrogen Fueling Infrastructure: An Exploratory Study  

E-Print Network (OSTI)

primary motivation for alternative fuel vehicles, such astowards hydrogen and alternative fuel vehicles of F-Cellbehavioral research on alternative fuels, a brief discussion

Shaheen, Susan; Martin, Elliot; Lipman, Timothy

2007-01-01T23:59:59.000Z

165

Clean Cities: National Clean Fleets Partner: Schwan's Home Service  

NLE Websites -- All DOE Office Websites (Extended Search)

Schwan's Schwan's Home Service to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Schwan's Home Service on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Schwan's Home Service on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Schwan's Home Service on Google Bookmark Clean Cities: National Clean Fleets Partner: Schwan's Home Service on Delicious Rank Clean Cities: National Clean Fleets Partner: Schwan's Home Service on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Schwan's Home Service on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions

166

Clean Cities: National Clean Fleets Partner: Advanced Disposal Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Advanced Disposal Services to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Google Bookmark Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Delicious Rank Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions

167

Clean Cities: National Clean Fleets Partner: Enterprise Holdings  

NLE Websites -- All DOE Office Websites (Extended Search)

Enterprise Holdings to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Enterprise Holdings on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Enterprise Holdings on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Enterprise Holdings on Google Bookmark Clean Cities: National Clean Fleets Partner: Enterprise Holdings on Delicious Rank Clean Cities: National Clean Fleets Partner: Enterprise Holdings on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Enterprise Holdings on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group

168

High-frequency equivalent model of AC motor for electric vehicle drive system  

Science Journals Connector (OSTI)

The application of the motor drive system in electric and hybrid-electric vehicles can lead to a significant increase in electromagnetic compatibility. The AC motor as an important part of motor drive system must be considered. In this paper, a high frequency modelling method of the AC motor is presented. The modelling method consists of deriving the motor model parameters from mathematical resolution of the electrical circuit equations and observation of the variations of the motor impedance with the frequency. All parameters of the proposed models are obtained by differential mode (DM) and common mode (CM) impedance measurement in the frequency domain. The model is verified by impedance measurement of a synchronous motor. The method proposed can be used to obtain a high-frequency equivalent circuit of an AC motor and predict conducted electromagnetic interference in a motor drive system.

Yongming Yang; Hemeng Peng; Quandi Wang

2013-01-01T23:59:59.000Z

169

What is the GREET Fleet Footprint Calculator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

GREET Fleet Calculator can estimate petroleum and carbon GREET Fleet Calculator can estimate petroleum and carbon footprints of both on-road vehicles and off-road equipment. What is the GREET Fleet Footprint Calculator? As early adopters of new vehicle technologies, fleets are vital to the success of alternative fuels and advanced vehicles (AFVs). The Greenhouse gases, Regulated Emis- sions, and Energy use in Transportation (GREET) Fleet Foot- print Calculator can help fleets decide on the AFVs that will best help them meet a variety of organizational goals and legal requirements, including reducing their petroleum use and greenhouse gas (GHG) emissions. Currently, the United States imports nearly half of its oil. 1 Because the United States uses about 70% of its oil for transportation, decreasing petroleum consumption in vehicles can substantially

170

Deployment of EVs in the Federal Fleet  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicles 101 Electric Vehicles 101 eere.energy.gov The Parker Ranch installation in Hawaii Deployment of EVs in the Federal Fleet FUPWG Rapid City, South Dakota October 20 th , 2010 Amanda Sahl Federal Energy Management Program 2 | Electric Vehicles 101 eere.energy.gov FEMP facilitates the Federal Government"s implementation of sound, cost-effective energy management and investment practices to enhance the nation"s energy security and environmental stewardship. 3 | Electric Vehicles 101 eere.energy.gov Agenda * Overview of the Federal Fleet * Infrastructure Requirements * Current implementation and activity * Ongoing barriers and questions 4 | Electric Vehicles 101 eere.energy.gov Federal Fleet Inventory

171

The Built Environment and Motor Vehicle Ownership and Use: Evidence from Santiago de Chile  

E-Print Network (OSTI)

This paper examines the relationships between the built environmentóboth Ďneighborhoodí design characteristics and relative locationóand motor vehicle ownership and use in a rapidly motorising, developing city context, ...

Zegras, P. Christopher

172

Analyzing spatial-temporal patterns of motor vehicle crashes using GIS: a case study in Dallas  

E-Print Network (OSTI)

This paper uses GIS to analyze the characteristics of temporal and spatial distributions of motor vehicle crashes. These characteristics include that traffic accidents are most likely to occur in the afternoon "rush hour" (4:00 - 6:00PM...

Lu, Bing

2012-06-07T23:59:59.000Z

173

Contributing Data to the Fleet DNA Project (Brochure)  

SciTech Connect

The Fleet DNA clearinghouse of commercial fleet transportation data helps vehicle manufacturers and developers optimize vehicle designs and helps fleet managers choose advanced technologies for their fleets. This online tool - available at www.nrel.gov/fleetdna - provides data summaries and visualizations similar to real-world 'genetics' for medium- and heavy-duty commercial fleet vehicles operating within a variety of vocations. To contribute your fleet data, please contact Adam Duran of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) at adam.duran@nrel.gov or 303-275-4586.

Not Available

2014-09-01T23:59:59.000Z

174

Design of outer-rotor-type multipolar switched reluctance motor for electric vehicle  

Science Journals Connector (OSTI)

In an electric vehicle(EV) with in-wheel motors reducing the weight of the motor is a very important problem in order to improve the driving performance. In this paper we examine the lightweight design of an outer-rotor-type multipolar switched reluctance (SR) motor applied to a prototype EV. We design three SR motors which have different yoke widths and calculate the motor characteristics at a steady rotational speed based on a finite element method. We discuss the optimum relationship between a pole and yoke widths.

Satoshi Fujishiro; Kazumi Ishikawa; Shinki Kikuchi; Kenji Nakamura; Osamu Ichinokura

2006-01-01T23:59:59.000Z

175

An Exploration of Bicycle-Motor Vehicle Crash Types and Causes in Portland-Metro, Oregon  

E-Print Network (OSTI)

An Exploration of Bicycle-Motor Vehicle Crash Types and Causes in Portland-Metro, Oregon by Kouros. This research project investigates ways to improve traffic safety, focusing specifically on bicycle- motor of BMV crashes resulted in fatal injury and 127 of resulted in incapacitating injury. Each bicycle crash

Bertini, Robert L.

176

NREL: Fleet Test and Evaluation - Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Development Research and Development The Fleet Test and Evaluation Team conducts research that supports the development and deployment of alternative fuel and advanced vehicle technologies in medium- and heavy-duty fleet vehicles. Technology evaluation projects focus on drive cycle analysis, hybrid electric vehicles, all-electric vehicles, truck stop electrification, and alternative fuels. Learn more about the team's project areas: Fleet DNA: Vehicle Drive Cycle Analysis Hybrid Electric Drive Systems Electric and Plug-in Hybrid Electric Drive Systems Hydraulic Hybrid Drive Systems Truck Stop Electrification Alternative Fuels Truck Efficiency Printable Version Fleet Test and Evaluation Home Research & Development Vehicle Drive Cycle Analysis Hybrid Electric Drive Systems

177

EA-1869: Supplement to General Motors Corp., Electric Vehicle/Battery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Supplement to General Motors Corp., Electric 9: Supplement to General Motors Corp., Electric Vehicle/Battery Manufacturing Application, White Marsh, Maryland, and Wixom, Michigan (DOE/EA-1723-S1) EA-1869: Supplement to General Motors Corp., Electric Vehicle/Battery Manufacturing Application, White Marsh, Maryland, and Wixom, Michigan (DOE/EA-1723-S1) Overview Based on the analysis in the Environmental Assessment DOE determined that its proposed action, to award a federal grant to General Motors to establish an electric motor components manufacturing and electric drive assembly facility would result in no significant adverse impacts. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download September 29, 2011 EA-1869: Final Environmental Assessment and Finding of No Significant

178

Efficient, High-Torque Electric Vehicle Motor: Advanced Electric Vehicle Motors with Low or No Rare Earth Content  

SciTech Connect

REACT Project: QM Power will develop a new type of electric motor with the potential to efficiently power future generations of EVs without the use of rare-earth-based magnets. Many of todayís EV motors use rare earth magnets to efficiently provide torque to the wheels. QM Powerís motors would contain magnets that use no rare earth minerals, are light and compact, and can deliver more power with greater efficiency and at reduced cost. Key innovations in this project include a new motor design with iron-based magnetic materials, a new motor control technique, and advanced manufacturing techniques that substantially reduce the cost of the motor. The ultimate goal of this project is to create a cost-effective EV motor that offers the rough peak equivalent of 270 horsepower.

None

2012-01-01T23:59:59.000Z

179

Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle  

DOE Patents (OSTI)

A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.

Boberg, Evan S. (Hazel Park, MI); Gebby, Brian P. (Hazel Park, MI)

1999-09-28T23:59:59.000Z

180

Clean Cities: National Clean Fleets Partner: Veolia Environmental Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Veolia Veolia Environmental Services to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Veolia Environmental Services on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Veolia Environmental Services on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Veolia Environmental Services on Google Bookmark Clean Cities: National Clean Fleets Partner: Veolia Environmental Services on Delicious Rank Clean Cities: National Clean Fleets Partner: Veolia Environmental Services on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Veolia Environmental Services on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program

Note: This page contains sample records for the topic "motor vehicle fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Barwood CNG Cab Fleet Study: Final Results  

SciTech Connect

This report describes a fleet study conducted over a 12-month period to evaluate the operation of dedicated compress natural gas (CNG) Ford Crown Victoria sedans in a taxicab fleet. In the study, we assess the performance and reliability of the vehicles and the cost of operating the CNG vehicles compared to gasoline vehicles. The study results reveal that the CNG vehicles operated by this fleet offer both economic and environmental advantages. The total operating costs of the CNG vehicles were about 25% lower than those of the gasoline vehicles. The CNG vehicles performed as well as the gasoline vehicles, and were just as reliable. Barwood representatives and drivers have come to consider the CNG vehicles an asset to their business and to the air quality of the local community.

Whalen, P.; Kelly, K.; John, M.

1999-05-03T23:59:59.000Z

182

The lived experience of post-traumatic stress disorder as described by motor vehicle accident victims in Jordan.  

E-Print Network (OSTI)

??Aim: To explore the lived experience of post-traumatic stress disorder (PTSD) as described by individuals who have been involved in a motor vehicle accident (MVA)Ö (more)

Al-Kofahy, Lilibeth

2011-01-01T23:59:59.000Z

183

Control methods of the switched reluctance motor in electric vehicle during acceleration  

Science Journals Connector (OSTI)

In this paper the equations describing the performance of the electric vehicle are derived. Performance characteristics for each part in the vehicle system are obtained when the vehicle is accelerated under voltage turn on and turn off angle control. A comparison between the different methods of control is established. From these comparisons it can be noticed that the acceleration time for the case at which the turn on angle is controlled will be smaller than that for the other cases; also the motor efficiency at the voltage control method has the highest value especially at the higher values of the vehicle speed.

Fathy El Sayed Abdel-Kader; M. Z. Elsherif; Naser M. B. Abdel-Rahim; Mohamed M. Fathy

2012-01-01T23:59:59.000Z

184

Rare-Earth-Free Traction Motor: Rare Earth-Free Traction Motor for Electric Vehicle Applications  

SciTech Connect

REACT Project: Baldor will develop a new type of traction motor with the potential to efficiently power future generations of EVs. Unlike todayís large, bulky EV motors which use expensive, imported rare-earth-based magnets, Baldorís motor could be light, compact, contain no rare earth materials, and have the potential to deliver more torque at a substantially lower cost. Key innovations in this project include the use of a unique motor design, incorporation of an improved cooling system, and the development of advanced materials manufacturing techniques. These innovations could significantly reduce the cost of an electric motor.

None

2012-01-01T23:59:59.000Z

185

Journal of Asian Electric Vehicles, Volume 8, Number 1, June 2010 Simplified Thermal Model of PM Motors in Hybrid Vehicle Applications Taking  

E-Print Network (OSTI)

to develop a complete and representative model of the heat processes in the electric motors. In this paper in Ansoft ePhysics soft- ware. Keywords hybrid electric vehicle, surface permanent magnet synchronous motors needs to be thor- oughly understood. The optimal design of electrical motors with solid thermal

Mi, Chunting "Chris"

186

Impacts of motor vehicle operation on water quality in the US Ė Cleanup costs and policies  

Science Journals Connector (OSTI)

This paper investigates the costs of controlling some of the environmental impacts of motor vehicle transportation on groundwater and on surface waters. We estimate that annualized costs of cleaning-up leaking underground storage tanks range from $0.8 billion to $2.1 billion per year over 10†years. Annualized costs of controlling highway runoff from principal arterials in the US are much larger: they range from $2.9 billion to $15.6 billion per year over 20†years (1.6Ė8.3% of annualized highway transportation expenditures). Some causes of non-point source pollution were unintentionally created by regulations or could be addressed by simple design changes of motor vehicles. A review of applicable measures suggests that effective policies should combine economic incentives, information campaigns, and enforcement, coupled with preventive environmental measures. In general, preventing water pollution from motor vehicles would be much cheaper than cleaning it up.

Hilary Nixon; Jean-Daniel Saphores

2007-01-01T23:59:59.000Z

187

Clean Cities: National Clean Fleets Partner: FedEx  

NLE Websites -- All DOE Office Websites (Extended Search)

FedEx to FedEx to someone by E-mail Share Clean Cities: National Clean Fleets Partner: FedEx on Facebook Tweet about Clean Cities: National Clean Fleets Partner: FedEx on Twitter Bookmark Clean Cities: National Clean Fleets Partner: FedEx on Google Bookmark Clean Cities: National Clean Fleets Partner: FedEx on Delicious Rank Clean Cities: National Clean Fleets Partner: FedEx on Digg Find More places to share Clean Cities: National Clean Fleets Partner: FedEx on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame Contacts National Clean Fleets Partner: FedEx

188

Vehicle Technologies Office Merit Review 2014: SCAQMD: Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by South Coast Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

189

Data Acquisition System for Electric Vehicle's Driving Motor Test Bench Based on VC++  

Science Journals Connector (OSTI)

In order to solve such problems as great labor intensity, high cost, low efficiency and accuracy during the performance experiment for driving motor system of electric vehicles, and realize data acquisition automatically and synchronously, a data acquisition system for driving motor test bench based on visual instruments is designed. This data acquisition system can be used to obtain the driving motor's parameters of currents and voltages at the same time. This system's hardware is based on electric vehicle's motor test bench in Beijing Institute of Technology, and combined with PXI2010 data acquisition card from ADLINK Company. Visual c++ software is adopted as development tool. In this paper, the design and realization of the hardware and software are presented. Experiment results show that this system improves the efficiency and quality of testing task with high utility. And experiment data can be obtained accurately.

Song Qiang; Lv Chenguang

2012-01-01T23:59:59.000Z

190

Alternative Fuels Data Center: State Fleet Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Fleet Idle State Fleet Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: State Fleet Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: State Fleet Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: State Fleet Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: State Fleet Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: State Fleet Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: State Fleet Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Fleet Idle Reduction Requirement State of Utah fleet vehicles must turn off their engines when stopped for

191

Capturing the Usage of the German Car Fleet for a One Year Period to Evaluate the Suitability of Battery Electric Vehicles Ė A Model based Approach  

Science Journals Connector (OSTI)

Abstract The low driving range of battery electric vehicles (BEV) is often considered as relevant reason for the low BEV sales. In order to verify this assumption, the usage of conventional cars in Germany needs to be analyzed. These analyses may help to make more reliable and realistic statements to what extent German cars could be replaced by \\{BEVs\\} without restrictions for their users. Most travel surveys do only consider a single day or a short period of time in the analysis. Longer time periods should be taken into consideration when analyzing the travel data since the daily car usage is not identical every day. Since there are no representative and detailed car usage surveys over longer periods available a hybrid car usage model was developed to close that gap. This model is mainly based on three mobility surveys: the German Mobility Panel (MOP), the car mileage and fuel consumption survey, and the long distance travel survey INVERMO. We show that 13% of the modeled German private car fleet never exceeds 100†km per day during a full year and could be replaced by \\{BEVs\\} without any usage restrictions for their car owners. Another 16% of the modeled private car fleet is driven more than 100†km on 1-4 days during a full year and can be substituted with slight adjustments. These cars are often second cars of a household and used less intensively (6,600†km/year resp. 7600†km/year) than cars not suited for BEV substitution (14,800†km/year). Households that could replace their cars tend to have a lower disposable income. The crux of the matter, however, is that substitution of conventional cars is often not feasible since the mobility budget of BEV suited households tends to be too low or does not make economic sense due to the low annual mileage.

Christine Weiss; Bastian Chlond; Michael Heilig; Peter Vortisch

2014-01-01T23:59:59.000Z

192

Motor Vehicle Plant Lighting Level Best Practices | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Vehicle Plant Lighting Level Best Practices Motor Vehicle Plant Lighting Level Best Practices Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

193

The 4 phase VSR motor: The ideal prime mover for electric vehicles  

SciTech Connect

4 phase variable switched reluctance motors are gaining acceptance in many applications due to their fault tolerant characteristics. A 4 phase variable switched reluctance motor (VSR) is modelled and its performance is predicted for several operating points for an electric vehicle application. The 4 phase VSR offers fault tolerance, high performance, and an excellent torque to weight ratio. The actual system performance was measured both on a teststand and on an actual vehicle. While the system described is used in a production electric motorscooter, the technology is equally applicable for high efficiency electric cars and buses. 4 refs.

Holling, G.H.; Yeck, M.M.

1994-12-31T23:59:59.000Z

194

MOTOR VEHICLE (Pursuant to RSA 260:14)  

E-Print Network (OSTI)

permitted pursuant to RSA 260:14, V (a ), other than for bulk distribution for surveys, marketing/I.D. #: _________________________________ Vehicle Identification #: _________________________________ Last Known Address/Town _______________________________ Other Identification Information: ________________________ ***Reverse Side Must Be Completed Before

New Hampshire, University of

195

News Release Off-Highway Motor Vehicle Recreation Division  

E-Print Network (OSTI)

the acceptable level of risk for public health." Abbott says he "welcomes the dialog" with the OHMVR Division at the CCMA to mitigate risk while still allowing access to this premier off-highway vehicle (OHV) recreation

196

Design and optimization of a torque controller for a switched reluctance motor drive for electric vehicles by simulation  

Science Journals Connector (OSTI)

This paper presents a study on an optimized controller for a switched reluctance motor drive intended for electric vehicle and hybrid electric vehicle applications. The proposed optimization approach using simulation is described. Simulation results obtained with an 8/6 switched reluctance motor drive are presented and exploited in the optimization process. The performance of the optimized controller is evaluated and validated by simulation.

David Cajander; Hoang Le-Huy

2006-01-01T23:59:59.000Z

197

Design and optimization of a torque controller for a switched reluctance motor drive for electric vehicles by simulation  

Science Journals Connector (OSTI)

This paper presents a study on an optimized controller for a switched reluctance motor drive intended for electric vehicle and hybrid electric vehicle applications. The proposed optimization approach using simulation is described. Simulation results ... Keywords: optimization, switched reluctance motor, torque control

David Cajander; Hoang Le-Huy

2006-06-01T23:59:59.000Z

198

Design and optimization of a torque controller for a switched reluctance motor drive for electric vehicles by simulation  

Science Journals Connector (OSTI)

This paper presents a study on an optimized controller for a switched reluctance motor drive intended for electric vehicle and hybrid electric vehicle applications. The proposed optimization approach using simulation is described. Simulation results ... Keywords: Optimization, Switched reluctance motor, Torque control

David Cajander; Hoang Le-Huy

2006-06-01T23:59:59.000Z

199

New National Clean Fleets Partners Build New Roads to Sustainability...  

Energy Savers (EERE)

in the country. Read how UPS, another National Clean Fleets Partner, is reducing petroleum use and emissions of its vehicles. From picking up our recyclables to fixing our...

200

The Fleet DNA Project (Fact Sheet), NREL (National Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fleet DNA Project aims to accelerate the evolution of advanced vehicle development and support the strategic deployment of market-ready technologies that reduce costs, fuel...

Note: This page contains sample records for the topic "motor vehicle fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

AVTA: 2013 Ford C-Max Energi Fleet  

Energy.gov (U.S. Department of Energy (DOE))

VTO's National Laboratories have tested and collected both dynamometer and fleet data for the Ford CMAX Energi (a plug-in hybrid electric vehicle).

202

Merit Review: EPAct State and Alternative Fuel Provider Fleets...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications 2012 Merit Review: EPAct State and Alternative Fuel Provider Fleets Vehicle Technologies Office Merit Review 2014: EPAct State and...

203

National Clean Fleets Partnership (Fact Sheet), Energy Efficiency...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

acknowledgement to help meet and celebrate fleets' petroleum-use reductions. Photo from Smith Electric Vehicles, NREL 22851 Tools and Resources Partners can take advantage of Clean...

204

New National Clean Fleets Partners Build New Roads to Sustainability  

Office of Energy Efficiency and Renewable Energy (EERE)

Energy Department welcomes three new fleets to the National Clean Fleets Partnership: Republic Services, Time Warner Cable, and CHS. The Partnership helps the countryís largest fleets reduce their petroleum use by switching to alternative fuels, adopting advanced technology vehicles, reducing their idling, and implementing other fuel saving techniques.

205

Intake of Toxic and Carcinogenic Volatile Organic Compounds from Secondhand Smoke in Motor Vehicles  

Science Journals Connector (OSTI)

...BR.Measurement of emissions from air pollution sources. 5. C1-C32 organic compounds...Ott W , Klepeis N, Switzer P.Air change rates of motor vehicles and...experimental investigation of tobacco smoke pollution in cars.Nicotine Tob Res 2009...

Gideon St.Helen; Peyton Jacob III; Margaret Peng; Delia A. Dempsey; S. Katharine Hammond; and Neal L. Benowitz

2014-12-01T23:59:59.000Z

206

Vehicle Technologies Office: 2010 Advanced Power Electronics and Electric Motors R&D Annual Progress Report  

Energy.gov (U.S. Department of Energy (DOE))

The APEEM subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies.

207

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

in order to bring the price of oil closer to its marginal social cost. There is in fact a long historyUS military expenditures to protect the use of Persian Gulf oil for motor vehicles Mark A. Delucchi l e i n f o Article history: Received 7 May 2007 Accepted 3 March 2008 Available online 21 April

Murphy, James J.

208

NREL: Fleet Test and Evaluation - Hydraulic Hybrid Drive Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydraulic Hybrid Drive Systems Hydraulic Hybrid Drive Systems NREL's Fleet Test and Evaluation Team conducts performance evaluations of hydraulic hybrid drive systems in delivery vehicles. Because hydraulic hybrids feature highly efficient regenerative braking systems and "engine off at idle" capabilities, they are ideal for parcel delivery applications where stop-and-go traffic is common. Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during braking. This energy drives a pump, which transfers hydraulic fluid from a low-pressure reservoir to a high-pressure accumulator. When the vehicle accelerates, fluid in the high-pressure accumulator moves to the lower-pressure reservoir, which drives a motor and provides extra torque. This process can improve the vehicle's fuel economy

209

Clean Cities: National Clean Fleets Partner: Best Buy  

NLE Websites -- All DOE Office Websites (Extended Search)

Best Buy Best Buy to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Best Buy on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Best Buy on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Best Buy on Google Bookmark Clean Cities: National Clean Fleets Partner: Best Buy on Delicious Rank Clean Cities: National Clean Fleets Partner: Best Buy on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Best Buy on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame

210

Clean Cities: National Clean Fleets Partner: Coca-Cola  

NLE Websites -- All DOE Office Websites (Extended Search)

Coca-Cola to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Coca-Cola on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Coca-Cola on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Coca-Cola on Google Bookmark Clean Cities: National Clean Fleets Partner: Coca-Cola on Delicious Rank Clean Cities: National Clean Fleets Partner: Coca-Cola on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Coca-Cola on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum

211

Clean Cities: National Clean Fleets Partner: AMP Americas  

NLE Websites -- All DOE Office Websites (Extended Search)

AMP AMP Americas to someone by E-mail Share Clean Cities: National Clean Fleets Partner: AMP Americas on Facebook Tweet about Clean Cities: National Clean Fleets Partner: AMP Americas on Twitter Bookmark Clean Cities: National Clean Fleets Partner: AMP Americas on Google Bookmark Clean Cities: National Clean Fleets Partner: AMP Americas on Delicious Rank Clean Cities: National Clean Fleets Partner: AMP Americas on Digg Find More places to share Clean Cities: National Clean Fleets Partner: AMP Americas on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum

212

Clean Cities: National Clean Fleets Partner: PepsiCo  

NLE Websites -- All DOE Office Websites (Extended Search)

PepsiCo PepsiCo to someone by E-mail Share Clean Cities: National Clean Fleets Partner: PepsiCo on Facebook Tweet about Clean Cities: National Clean Fleets Partner: PepsiCo on Twitter Bookmark Clean Cities: National Clean Fleets Partner: PepsiCo on Google Bookmark Clean Cities: National Clean Fleets Partner: PepsiCo on Delicious Rank Clean Cities: National Clean Fleets Partner: PepsiCo on Digg Find More places to share Clean Cities: National Clean Fleets Partner: PepsiCo on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame

213

Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric Motors R&D Annual Progress Report  

Energy.gov (U.S. Department of Energy (DOE))

The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrowźs automobiles will function as a unified system to improve fuel efficiency.

214

Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report  

Energy.gov (U.S. Department of Energy (DOE))

The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrowźs automobiles will function as a unified system to improve fuel efficiency.

215

Describing Current & Potential Markets for Alternative-Fuel Vehicles  

U.S. Energy Information Administration (EIA) Indexed Site

ways to fuel its fleet vehicles. Large commercial fleets tend to use their own fuel tanks located on a company site to fuel their vehicles. Fleets can also fuel at public...

216

MOTOR-VEHICLE INFRASTRUCTURE AND SERVICES PROVIDED BY THE PUBLIC SECTOR Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

FOR REVIEW 5. Robbery of gas station 6. Robbery in parkingvehicles 13. Arson to gas stations and car dealerships 14.to motor-vehicles Arson to gas stations and car dealerships

Delucchi, Mark

2005-01-01T23:59:59.000Z

217

Motor-Vehicle Infrastructure and Services Provided by the Public Sector: Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

FOR REVIEW 5. Robbery of gas station 6. Robbery in parkingvehicles 13. Arson to gas stations and car dealerships 14.to motor-vehicles Arson to gas stations and car dealerships

Delucchi, Mark; Murphy, James

2005-01-01T23:59:59.000Z

218

Motor-Vehicle Infrastructure and Services Provided by the Public Sector: Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

to Protect the Use of Persian-Gulf Oil for Motor Vehicles (related to the use of Persian-Gulf oil by MVs Annualizedas the cost of defending Persian-Gulf oil, that also can be

Delucchi, Mark; Murphy, James

2005-01-01T23:59:59.000Z

219

MOTOR-VEHICLE INFRASTRUCTURE AND SERVICES PROVIDED BY THE PUBLIC SECTOR Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

to Protect the Use of Persian-Gulf Oil for Motor Vehicles (related to the use of Persian-Gulf oil by MVs Annualizedas the cost of defending Persian-Gulf oil, that also can be

Delucchi, Mark

2005-01-01T23:59:59.000Z

220

U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

United States and the Persian Gulf Conflict, Policy Analysisof land forces allocated to Persian Gulf. Uses this ratio tobut did not consume Persian- Gulf oil oilc 5. Motor vehicles

Delucchi, Mark; Murphy, James

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "motor vehicle fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

U.S. Motor Vehicle Output and Other GDP, 1968-2007  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Vehicle Output and Other GDP, 1968-2007 Motor Vehicle Output and Other GDP, 1968-2007 Danilo J. Santini, Ph. D. Senior Economist Center for Transportation Research Argonne National Laboratory 9700 South Cass Avenue Phone: 630 252 3758 Fax: 630 252 3443 E-mail: dsantini@anl.gov David A Poyer, Ph.D. Associate Professor of Economics Morehouse College 830 Westview Dr. SW Atlanta, GA 30314 Phone: 404 681 2800, ext. 2553 E-mail: dpoyer@morehouse.edu THE 66th INTERNATIONAL ATLANTIC ECONOMIC CONFERENCE Montreal, Canada 9-12 October 2008 BUSINESS FLUCTUATIONS AND CYCLES 12 October 2008 Sunday 11:15 AM - 1:15 PM The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. . The U.S. Government

222

Dissipative Hamiltonian realisation and robust H? control of induction motor considering iron losses for electric vehicles  

Science Journals Connector (OSTI)

The dissipative Hamiltonian realisation and robust H? control of induction motor considering iron losses for electric vehicle are investigated in this paper. First, the dissipative Hamiltonian of the electric vehicle drive system is obtained based on the system's mathematical model in a synchronously rotating frame. Then, a robust co-ordinated tracking controller is designed based on the dissipative Hamiltonian form. One part of the controller is designed by using the method of interconnection and damping assignment to ensure the system's stability, and another part is designed by using the Hamiltonian system's robust H? technique to attenuate external disturbances. The simulation results show that the controller proposed in the paper works very well in robust tracking of induction motor.

Wenhui Pei; Chenghui Zhang; Naxin Cui; Ke Li

2013-01-01T23:59:59.000Z

223

The cell phone effect on motor vehicle fatality rates: A Bayesian and classical econometric evaluation  

Science Journals Connector (OSTI)

This paper examines the potential effect of cell phones on motor vehicle fatality rates normalized for other driving related and socioeconomic factors. The model used is non-linear so as to address both life-taking and life-saving attributes of cell phones. The model is evaluated using classical methods along with Bayesian Extreme Bounds Analysis (EBA). The use of both classical and Bayesian methods diminishes the model and parameter uncertainties which afflict more conventional modeling methods which rely on only one of the two methods. The results indicate the presence of both life-taking and life-saving attributes of cell phones on motor vehicle fatality rates depending on the volume of cell phone subscribers in existence.

Richard Fowles; Peter D. Loeb; Wm. A. Clarke

2010-01-01T23:59:59.000Z

224

Electromagnetic analysis and design of in-wheel motor of micro-electric vehicle based on Maxwell  

Science Journals Connector (OSTI)

To obtain a good drivability and high efficiency of the micro-electric vehicle, a new driving in-wheel motor design was analyzed and optimized. Maxwell software ... element simulation model of the driving in-whee...

Qi-ping Chen ???; Hong-yu Shu ???; Kai Ren ??Ö

2012-08-01T23:59:59.000Z

225

Major Corporate Fleets Align to Reduce Oil Consumption | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major Corporate Fleets Align to Reduce Oil Consumption Major Corporate Fleets Align to Reduce Oil Consumption Major Corporate Fleets Align to Reduce Oil Consumption April 1, 2011 - 1:07pm Addthis President Obama announces the National Clean Fleets Partnership to help companies reduce fuel usage by incorporating electric vehicles, alternative fuels, and conservation techniques. Dennis A. Smith Director, National Clean Cities What does this project do? Cuts oil imports and consumption Helps businesses save money Increases the efficiency of large-scale fleets Reduces emissions Surrounded by cutting-edge vehicles, from all-electric trucks to hydraulic hybrids, President Obama today announced the National Clean Fleets Partnership, an initiative of the Department's Clean Cities program, at a UPS fleet facility in Landover, Maryland. This public-private partnership

226

Major Corporate Fleets Align to Reduce Oil Consumption | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major Corporate Fleets Align to Reduce Oil Consumption Major Corporate Fleets Align to Reduce Oil Consumption Major Corporate Fleets Align to Reduce Oil Consumption April 1, 2011 - 1:07pm Addthis President Obama announces the National Clean Fleets Partnership to help companies reduce fuel usage by incorporating electric vehicles, alternative fuels, and conservation techniques. Dennis A. Smith Director, National Clean Cities What does this project do? Cuts oil imports and consumption Helps businesses save money Increases the efficiency of large-scale fleets Reduces emissions Surrounded by cutting-edge vehicles, from all-electric trucks to hydraulic hybrids, President Obama today announced the National Clean Fleets Partnership, an initiative of the Department's Clean Cities program, at a UPS fleet facility in Landover, Maryland. This public-private partnership

227

Fault-tolerant cruise control of electric vehicles with induction motors  

Science Journals Connector (OSTI)

A fault-tolerant control scheme is proposed for the cruise control of electric vehicles (trains, cars) that make use of induction motors. It relies on a rotor speed reference generator and on a flux observer which is adaptive with respect to the uncertain rotor and stator resistances and to the load torque as well. The closed loop on-line identification of those three critical uncertain parameters allows for: (i) on-line estimating and imposing the motor flux modulus reference value which minimizes power losses at steady-state and improves power efficiency; (ii) the on-line detection of speed sensor faults as well as the fast switching on redundant motor speed sensors. CarSim simulations illustrate the effectiveness of the proposed approach.

R. Marino; S. Scalzi; P. Tomei; C.M. Verrelli

2013-01-01T23:59:59.000Z

228

Cost effectiveness of converting to alternative motor vehicle fuels. A technical assistance study for the City of Longview  

SciTech Connect

The City of Longview can obtain significant fuel savings benefits by converting a portion of their vehicle fleet to operate on either compressed natural gas (CNG) or liquid petroleum gas (LPG) fuels. The conversion of 41 vehicles including police units, sedans, pickups, and light duty trucks to CNG use would offset approximately 47% of the city's 1982 gasoline consumption. The CNG conversion capital outlay of $115,000 would be recovered through fuel cost reductions. The Cascade Natural Gas Corporation sells natural gas under an interruptible tariff for $0.505 per therm, equivalent to slightly less than one gallon of gasoline. The city currently purchases unleaded gasoline at $1.115 per gallon. A payback analysis indicates that 39.6 months are required for the CNG fuel savings benefits to offset the initial or first costs of the conversion. The conversion of fleet vehicles to liquid petroleum gas (LPG) or propane produces comparable savings in vehicle operating costs. The conversion of 59 vehicles including police units, pickup and one ton trucks, street sweepers, and five cubic yard dump trucks would cost approximately $59,900. The annual purchase of 107,000 gallons of propane would offset the consumption of 96,300 gallons of gasoline, or approximately 67% of the city's 1982 usage. Propane is currently retailing for $0.68 to $0.74 per gallon. A payback analysis indicates that 27.7 months are required for the fuel savings benefits to offset the initial LPG conversion costs.

McCoy, G.A.

1983-11-18T23:59:59.000Z

229

Development of traction control for front-wheel drive in-wheel motor electric vehicles  

Science Journals Connector (OSTI)

This paper proposes a novel traction control for a front-wheel drive in-wheel motor electric vehicle. The presented vehicle has advantages on high fuel efficiency and cost effectiveness. In order to achieve specific control performance, this study employed a high speed microcontroller as the vehicle's electronic control unit. The anti-skid function based on a reliable traction control kernel is embedded in the system, which can guarantee the steering safety in a slippery and dangerous situation. This study verifies that the traction control based on maximum torque regulation cannot only constrain the slip to improve the longitudinal friction force and lateral friction force, but also provide some information on tyre-road conditions, which can ensure the performance and the effectiveness of two-dimensional motion control. The numerical simulation and demonstration video reveal its effectiveness and feasibility.

Jia-Sheng Hu; Ying-Ruei Huang; Feng-Rung Hu

2012-01-01T23:59:59.000Z

230

CleanFleet. Volume 2, Project Design and Implementation  

SciTech Connect

The CleanFleet alternative fuels demonstration project evaluated five alternative motorfuels in commercial fleet service over a two-year period. The five fuels were compressed natural gas, propane gas, California Phase 2 reformulated gasoline (RFG), M-85 (85 percent methanol and 15 percent RFG), and electric vans. Eight-four vans were operated on the alternative fuels and 27 vans were operated on gasoline as baseline controls. Throughout the demonstration information was collected on fleet operations, vehicle emissions, and fleet economics. In this volume of the CleanFleet findings, the design and implementation of the project are summarized.

NONE

1995-12-01T23:59:59.000Z

231

Fleet DNA Project Data Summary Report (Presentation)  

SciTech Connect

This presentation includes graphical data summaries that highlight statistical trends for medium- and heavy-duty commercial fleet vehicles operating in a variety of vocations. It offers insight for the development of vehicle technologies that reduce costs, fuel consumption, and emission.

Walkowicz, K.; Duran, A.; Burton, E.

2014-04-01T23:59:59.000Z

232

National Clean Fleets Partners Get the Best of Both Worlds with Hybrid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Fleets Partners Get the Best of Both Worlds with Clean Fleets Partners Get the Best of Both Worlds with Hybrid Vehicles National Clean Fleets Partners Get the Best of Both Worlds with Hybrid Vehicles March 8, 2013 - 2:20pm Addthis FedEx, a National Clean Fleets partner, is expanding its advanced technology vehicle fleets in Kansas and Michigan with the support of Clean Cities projects in those states. | Photo courtesy of Jonathan Burton, NREL. FedEx, a National Clean Fleets partner, is expanding its advanced technology vehicle fleets in Kansas and Michigan with the support of Clean Cities projects in those states. | Photo courtesy of Jonathan Burton, NREL. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the different types of hybrid vehicles? Hybrid electric vehicles combine a combustion engine with an

233

National Clean Fleets Partners Get the Best of Both Worlds with Hybrid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Clean Fleets Partners Get the Best of Both Worlds with National Clean Fleets Partners Get the Best of Both Worlds with Hybrid Vehicles National Clean Fleets Partners Get the Best of Both Worlds with Hybrid Vehicles March 8, 2013 - 2:20pm Addthis FedEx, a National Clean Fleets partner, is expanding its advanced technology vehicle fleets in Kansas and Michigan with the support of Clean Cities projects in those states. | Photo courtesy of Jonathan Burton, NREL. FedEx, a National Clean Fleets partner, is expanding its advanced technology vehicle fleets in Kansas and Michigan with the support of Clean Cities projects in those states. | Photo courtesy of Jonathan Burton, NREL. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the different types of hybrid vehicles? Hybrid electric vehicles combine a combustion engine with an

234

Federal Fleet Files, FEMP, Vol. 1, No. 2 - June 2009 (Fact Sheet)  

SciTech Connect

June 2009 issue of the FEMP Federal Fleet Files monthly newsletter for the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2009-06-01T23:59:59.000Z

235

Clean Cities Coordinators and Stakeholders Awarded at the Green Fleet Conference and Expo  

Energy.gov (U.S. Department of Energy (DOE))

At the 2013 Green Fleet Conference and Expo, a number of Clean Cities coordinators and stakeholders received awards for their dedication to increasing the environmental sustainability of vehicle fleets.

236

Six New Corporations Join the National Clean Fleets Partnership |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Six New Corporations Join the National Clean Fleets Partnership Six New Corporations Join the National Clean Fleets Partnership Six New Corporations Join the National Clean Fleets Partnership July 7, 2011 - 2:45pm Addthis UPS began incorporating alternative fuels and advanced vehicles into its fleet in the late 1980s. Today, the company operates nearly 2,000 vehicles that run on electricity, compressed natural gas, and other alternative fuels. UPS began incorporating alternative fuels and advanced vehicles into its fleet in the late 1980s. Today, the company operates nearly 2,000 vehicles that run on electricity, compressed natural gas, and other alternative fuels. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? Cuts oil imports and consumption Helps businesses save money

237

Motorization, Vehicle Purchase and Use Behavior in China: A Shanghai Survey????????????????????????????  

E-Print Network (OSTI)

49: Motorized Two-wheeler / Motorcycle Use vs. Motorized98 Table 50: Motorized Two-wheeler / Motorcycle Use vs.Motorcycle Ownership 98 Table 51: Motorized Two-

Ni, Jason

2008-01-01T23:59:59.000Z

238

A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives  

SciTech Connect

The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105?C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

None, None

2012-01-31T23:59:59.000Z

239

Modelling and simulation of the electronic differential system for an electric vehicle with two-motor-wheel drive  

Science Journals Connector (OSTI)

In-wheel-motor drive electric vehicle (EV) is an innovative configuration, in which each wheel is driven individually by an electric motor. It is possible to use an electronic differential (ED) instead of the heavy mechanical differential because of the fast response time of the motor. A new control approach for ED of a two in-wheel-motor drive EV is proposed based on the fuzzy logic control. The fuzzy logic method employs to estimate the slip rate of each wheel considering the complex and non-linear of the system. Consequently, the ED system distributes torque and power to each motor according to requirements. The effectiveness of the control method is validated in the Matlab/Simulink environment. By simulation results, it is demonstrated that the present ED control system is effective on keeping the slip rate within the optimal range and ensuring the stability of the vehicle either on a straight or curvilinear line.

Yan-e Zhao; Jianwu Zhang

2009-01-01T23:59:59.000Z

240

NREL: Fleet Test and Evaluation - Alternative Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuels Alternative Fuels NREL's Fleet Test and Evaluation Team works with industry partners to evaluate the use of alternative fuels in delivery, transit, and freight vehicles. Although biodiesel is the most commonly used alternative fuel in medium- and heavy-duty diesel vehicles, compressed and liquefied natural gas and Fischer-Tropsch diesel are also viable options for trucking companies. Learn more about the team's evaluations of alternative fuels in fleet operations: Biodiesel Compressed Natural Gas Fischer-Tropsch Diesel Liquefied Natural Gas Printable Version Fleet Test and Evaluation Home Research & Development Vehicle Drive Cycle Analysis Hybrid Electric Drive Systems Electric & Plug-in Hybrid Electric Drive Systems Hydraulic Hybrid Drive Systems Truck Stop Electrification

Note: This page contains sample records for the topic "motor vehicle fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Pacific Pacific Gas and Electric Company to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on Google Bookmark Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on Delicious Rank Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program

242

Chevrolet Volt Vehicle Demonstration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Volt Vehicle Demonstration Fleet Summary Report Reporting period: January 2013 through March 2013 Number of vehicles: 146 Number of vehicle days driven: 6,680 4292013 2:38:13 PM...

243

Technology in Motion Vehicle (TMV) To promote truck and bus safety programs and  

E-Print Network (OSTI)

Technology in Motion Vehicle (TMV) Goal To promote truck and bus safety programs and technologies messages at multiple venues Demonstrate proven and emerging safety technologies to state and motor carrier stakeholders Promote deployment of safety technologies by fleets and state MCSAP agencies Evaluate program

244

Analysis on cogging torque of driving in-wheel motor for electric vehicle  

Science Journals Connector (OSTI)

In order to reduce the torque fluctuation, vibration and acoustic noise of driving in-wheel motor for electric vehicle, this paper researches the generation mechanism and influence factors of cogging torque. Based on energy method and Fourier expansion, an analytical method is proposed to establish the expression of cogging torque, which can express its relation with design parameters. Based on the expression, the match of pole and slot, pole arc coefficient and permanent magnet eccentric distance are analysed and studied. Ansoft software is used to establish a time-varying movement electromagnetic field finite element model, which can compute the cogging torque about the different match of the pole and slot, different pole arc coefficient and different permanent magnet eccentric distance, in order to obtain the change regularity of the corresponding cogging torque. The conformity of the final simulation computation results with the theoretical analysis indicates this method can be used to provide a theoretical basis to make further optimal design of the new driving in-wheel motor and its control system, so as to reduce torque ripple of in-wheel motor.

Qiping Chen; Hongyu Shu; Limin Chen; Bo Chen; Jianhui Du

2012-01-01T23:59:59.000Z

245

UPS CNG Truck Fleet Final Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

¬ģ ¬ģ ¬ģ ¬ģ ¬ģ ¬ģ ¬ģ ¬ģ Clean Air Natural Gas Vehicle This is a Clean Air Natural Gas Vehicle This is a UPS CNG Truck Fleet UPS CNG Truck Fleet UPS CNG Truck Fleet Final results Final Results Produced for the U.S. Department of Energy (DOE) by the National Renewable Energy Laboratory (NREL), a DOE national laboratory Alternative Fuel Trucks DOE/NREL Truck Evaluation Project By Kevin Chandler, Battelle Kevin Walkowicz, National Renewable Energy Laboratory Nigel Clark, West Virginia University Acknowledgments This evaluation would not have been possible without the cooperation, support, and responsiveness of the staff at UPS in Hartford and Atlanta. Thanks are due to the following UPS personnel: On-Site Headquarters Tom Robinson Ken Henrie Bill Jacob Rick Rufolo

246

Federal Fleet Files, FEMP, Vol. 2, No. 12 - November 2010 (Fact Sheet)  

SciTech Connect

November 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2010-11-01T23:59:59.000Z

247

Federal Fleet Files, FEMP, Vol. 2, No. 11 - October 2010 (Fact Sheet)  

SciTech Connect

October 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2010-10-01T23:59:59.000Z

248

Federal Fleet Files, FEMP, Vol. 2, No. 2 - November 2009 (Fact Sheet)  

SciTech Connect

November 2009 issue of monthly news from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2009-11-01T23:59:59.000Z

249

Federal Fleet Files, FEMP, Vol. 2, No. 7 - May 2010 (Fact Sheet)  

SciTech Connect

May 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2010-05-01T23:59:59.000Z

250

Federal Fleet Files, FEMP, Vol. 2, No. 8 - June 2010 (Fact Sheet)  

SciTech Connect

June 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2010-06-01T23:59:59.000Z

251

Federal Fleet Files, FEMP, Vol. 1, No. 4 - September 2009 (Fact Sheet)  

SciTech Connect

September 2009 issue of the monthly newsletter for the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2009-09-01T23:59:59.000Z

252

Federal Fleet Files, FEMP, Vol. 2, No. 5 - March 2010 (Fact Sheet)  

SciTech Connect

March 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2010-03-01T23:59:59.000Z

253

AVTA: 2013 Ford C-Max Energi Fleet PHEV Testing Results  

Energy.gov (U.S. Department of Energy (DOE))

VTO's National Laboratories have tested and collected both dynamometer and fleet data for the Ford CMAX Energi (a plug-in hybrid electric vehicle).

254

Clean Cities Launches Improved Tool to Help Fleets Evaluate CNG Investments  

Energy.gov (U.S. Department of Energy (DOE))

The popular VICE Model is newly updated to allow fleets greater flexibility in determining payback periods for natural gas vehicles and fueling infrastructure.

255

Federal Fleet Files, FEMP, Vol. 2, No. 1 - October 2009 (Fact Sheet)  

SciTech Connect

October 2009 issue of monthly news from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2009-10-01T23:59:59.000Z

256

Business Case for Compressed Natural Gas in Municipal Fleets  

SciTech Connect

This report describes how NREL used the CNG Vehicle and Infrastructure Cash-Flow Evaluation (VICE) model to establish guidance for fleets making decisions about using compressed natural gas.

Johnson, C.

2010-06-01T23:59:59.000Z

257

Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

95% fleet cost split * 151 PHEVs in various testing stages, AVTA paid for 2 vehicles, 14 conversions and 60 data loggers. 15% DOE and 85% fleet cost split 7 FY08 PHEV Testing...

258

Novel estimation of tyre-road friction coefficient and slip ratio using electrical parameters of traction motor for electric vehicles  

Science Journals Connector (OSTI)

The estimation of the friction coefficient and the slip ratio is crucial for advanced traction control or anti-brake control of electric vehicles. In this paper, dynamic behaviours of electrical parameters of the traction motor under road change are modelled and analysed. Novel estimation only using the measurements of the armature voltage and the current is proposed. The proposed method is much quicker than traditional methods, contributing to adjust the vehicle's motion state more quickly and precisely. Further, it can eliminate the speed measuring devices of the wheel speed and the vehicle speed. Simulations verify the effectiveness.

Guoqing Xu; Kun Xu; Weimin Li

2013-01-01T23:59:59.000Z

259

A permit is required for ALL motorized vehicles parking on the Vanderbilt University Campus. Motorcycles, motorized bicycles, motor scooters and mopeds are  

E-Print Network (OSTI)

. Motorcycles, motorized bicycles, motor scooters and mopeds are required to display "U" permits. The cost. Motorcycle, motorized bicycle, motor scooter and moped parking areas can be found on the parking map (http://www.vanderbilt.edu/parking and click on "Maps") as designated by the motorcycle symbols. Parking is authorized only in spaces marked

Simaan, Nabil

260

ON-ROAD MOTOR VEHICLE EMISSIONS FROM AROUND THE WORLD Donald H. Stedman and Gary A. Bishop  

E-Print Network (OSTI)

ON-ROAD MOTOR VEHICLE EMISSIONS FROM AROUND THE WORLD Donald H. Stedman and Gary A. Bishop@du.edu ABSTRACT In 1993, on-road emissions in Continental Europe showed a pronounced South/North declining gradient for CO, HC and NO fuel specific emissions (gm/kg). Emissions in Hamburg and Rotterdam were

Denver, University of

Note: This page contains sample records for the topic "motor vehicle fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Study on controlling chaos of permanent magnet synchronous motor in electric vehicles  

Science Journals Connector (OSTI)

The objective of this study is to analyse chaotic motion and its control in a Permanent Magnet Synchronous Motor (PMSM) in an Electric Vehicle (EV). Complex non-linear behaviours are observed over a range of parameter values in the bifurcation diagram. Hopf bifurcation and chaos may even occur in the PMSMs if the PMSMs are not properly sized. The Lyapunov exponent approach is utilised to identify the onset of chaotic motion and to verify the above analyses. Finally, an approach for effectively controlling a chaotic PMSM system is presented. The state feedback control procedure is employed to control chaotic motions in the PMSM effectively. Simulation results are presented to demonstrate the feasibility of the proposed approach.

Shun-Chang Chang; Hai-Ping Lin

2012-01-01T23:59:59.000Z

262

Hoover Police Fleet Reaches Alternative Fuel Milestone | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hoover Police Fleet Reaches Alternative Fuel Milestone Hoover Police Fleet Reaches Alternative Fuel Milestone Hoover Police Fleet Reaches Alternative Fuel Milestone June 25, 2010 - 3:51pm Addthis Mayor Petelos and Senator Jeff Sessions filling up a Hoover Police Tahoe with certified fuel made from Hoover's very own wood-waste last year. | Photo courtesy of Lori Salter | Mayor Petelos and Senator Jeff Sessions filling up a Hoover Police Tahoe with certified fuel made from Hoover's very own wood-waste last year. | Photo courtesy of Lori Salter | Lindsay Gsell When Tony Petelos became the mayor of Hoover, Alabama in 2004, the police fleet was run down. Within the next year, Petelos, with support from the community, called for a big change: switch out the old police fleet with new, flexible-fueled vehicles. Flexible-fueled vehicles are specially designed to run on gasoline or any

263

Study of the Advantages of Internal Permanent Magnet Drive Motor with Selectable Windings for Hybrid-Electric Vehicles  

SciTech Connect

This report describes research performed on the viability of changing the effectively active number of turns in the stator windings of an internal permanent magnet (IPM) electric motor to strengthen or weaken the magnetic fields in order to optimize the motor's performance at specific operating speeds and loads. Analytical and simulation studies have been complemented with research on switching mechanisms to accomplish the task. The simulation studies conducted examine the power and energy demands on a vehicle following a series of standard driving cycles and the impact on the efficiency and battery size of an electrically propelled vehicle when it uses an IPM motor with turn-switching capabilities. Both full driving cycle electric propulsion and propulsion limited starting from zero to a set speed have been investigated.

Otaduy, P.J.; Hsu, J.S.; Adams, D.J.

2007-11-30T23:59:59.000Z

264

Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet  

SciTech Connect

The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GMís Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team also completed four GM engineering development Buy-Off rides/milestones. The project included numerous engineering vehicle and systems development trips including extreme hot, cold and altitude exposure. The final fuel economy performance demonstrated met the objectives of the PHEV collaborative GM/DOE project. Charge depletion fuel economy of twice that of the non-PHEV model was demonstrated. The project team also designed, developed and tested a high voltage battery module concept that appears to be feasible from a manufacturability, cost and performance standpoint. The project provided important product development and knowledge as well as technological learnings and advancements that include multiple U.S. patent applications.

No, author

2013-09-29T23:59:59.000Z

265

Estimating commercial truck VMT (vehicle miles of travel) of interstate motor carriers: Data evaluation  

SciTech Connect

This memorandum summarizes the evaluation results of six data sources in terms of their ability to estimate the number of commercial trucks operating in interstate commerce and their vehicle miles of travel (VMT) by carrier type and by state. The six data sources are: (1) Truck Inventory and Use Survey (TIUS) from the Bureau of the Census, (2) nationwide truck activity and commodity survey (NTACS) from the Bureau of the Census, (3) National Truck Trip Information Survey (NTTIS) from the University of Michigan Transportation Research Institute (UMTRI), (4) highway performance monitoring system (HPMS) from the Federal Highway Administration (FHWA), Department of Transportation, (5) state fuel tax reports from each individual state and the international fuel tax agreement (IFTA), and (6) International Registration Plan (IRP) of the American Association of Motor Vehicle Administrators (AAMVA). TIUS, NTACS, and NTTIS are designed to provide data on the physical and operational characteristics of the Nation's truck population (or sub-population); HPMS is implemented to collect information on the physical and usage characteristics of various highway systems; and state fuel tax reports and IRP are tax-oriented registrations. 16 figs., 13 tabs.

Hu, P.S.; Wright, T.; Miaou, Shaw-Pin; Beal, D.J.; Davis, S.C. (Oak Ridge National Lab., TN (USA); Tennessee Univ., Knoxville, TN (USA))

1989-11-01T23:59:59.000Z

266

Advanced Vehicle Technologies Awards Table | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Awards Table Vehicle Technologies Awards Table Advanced Vehicle Technologies Awards Table The table contains a listing of the applicants, their locations, the amounts of the awards, and description of each project. The sub-categories of the table include: Advanced fuels and lubricants Light-weighting materials Demonstration Project for a Multi-Material Light-Weight Prototype Vehicle Advanced cells and design technology for electric drive batteries Advanced power electronics and electric motor technology Solid State Thermoelectric Energy Conversion Devices Fleet Efficiency Advanced Vehicle Testing and Evaluation Microsoft Word - VTP $175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 More Documents & Publications Advanced Vehicle Technologies Awards advanced vehicle technologies awards table

267

Multi-vehicle Mobility Allowance Shuttle Transit (MAST) System - An Analytical Model to Select the Fleet Size and a Scheduling Heuristic  

E-Print Network (OSTI)

The mobility allowance shuttle transit (MAST) system is a hybrid transit system in which vehicles are allowed to deviate from a fixed route to serve flexible demand. A mixed integer programming (MIP) formulation for the static scheduling problem...

Lu, Wei

2012-10-19T23:59:59.000Z

268

Control of a Linear Switched Reluctance Motor as a Propulsion System for Autonomous Railway Vehicles  

E-Print Network (OSTI)

Control of a Linear Switched Reluctance Motor as a Propulsion System for Autonomous Railway) and the linear switched reluctance motor (LSRM). Switched reluctance motors generally offer a very simple issue with the switched reluctance motors is the highly nonlinear magnetisation characteristic

Paderborn, Universität

269

PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application  

SciTech Connect

The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a high power density.

Staunton, R.H.

2004-10-11T23:59:59.000Z

270

PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report  

SciTech Connect

The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a power density surpassed by no other machine design.

Staunton, R.H.

2004-08-11T23:59:59.000Z

271

OPERATING A FLEET OF ELECTRIC TAXIS BERNAT GACIAS AND FREDERIC MEUNIER  

E-Print Network (OSTI)

of electric taxi fleets is highly desirable from a sustainable point of view. Nevertheless, the weak autonomy of such fleets finds is main motivation in sustainable issues: electric vehicles release almost no air pollutants. However, the main drawback of an electric vehicle is its weak autonomy ­ 80 km in the case of the Centrale

Boyer, Edmond

272

EA-1723: General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative Application White Marsh, Maryland and Wixom, Michigan  

Energy.gov (U.S. Department of Energy (DOE))

DOEís Proposed Action is to provide GM with $105,387,000 in financial assistance in a cost sharing arrangement to facilitate construction and operation of a manufacturing facility to produce electric motor components and assemble an electric drive unit. This Proposed Action through the Vehicle Technologies Program will accelerate the development and production of electric-drive vehicle systems and reduce the United Statesí consumption of petroleum. This Proposed Action will also meaningfully assist in the nationís economic recovery by creating manufacturing jobs in the United States in accordance with the objectives of the Recovery Act.

273

AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Grand Canyon National Park  

SciTech Connect

This report focuses on the Grand Canyon National Park (GCNP) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agenciesí fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively PEVs) can fulfill the mission requirements.

Stephen Schey; Jim Francfort; Ian Nienhueser

2014-08-01T23:59:59.000Z

274

Compare Fuel Cell Vehicles Side-by-Side  

NLE Websites -- All DOE Office Websites (Extended Search)

Recently Tested Vehicles Recently Tested Vehicles Fuel cell vehicles (FCVs) are not yet for sale in the United States. However, manufacturers are producing small fleets of FCVs for evaluation and have estimated the fuel economy of some vehicles using EPA test procedures. Fuel economy estimates and other information for recently tested vehicles are provided below. 2012 Honda FCX Clarity Honda FCX Clarity 2012 Mercedes-Benz F-Cell Mercedes F-Cell Fuel Economy and Driving Range Fuel Economy (miles/kg) Note: One kg of hydrogen is roughly equivalent to one gallon of gasoline. Hydrogen 60 Combined 60 City 60 Hwy Hydrogen 52 Combined 52 City 53 Hwy Range (miles) 240 190 Vehicle Characteristics Vehicle Class Midsize Car Small Station Wagon Motor DC Brushless 100kW DC Permanent Magnet (brushless) Type of Fuel Cell Proton Exchange Membrane Proton Exchange Membrane

275

AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for NASA White Sands Test Facility  

SciTech Connect

This report focuses on the NASA White Sands Test Facility (WSTF) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agenciesí fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

Stephen Schey; Jim Francfort

2014-10-01T23:59:59.000Z

276

FACT SHEET: National Clean Fleets Partnership | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACT SHEET: National Clean Fleets Partnership FACT SHEET: National Clean Fleets Partnership FACT SHEET: National Clean Fleets Partnership April 1, 2011 - 12:00am Addthis THE WHITE HOUSE Office of the Press Secretary In 2008, America imported 11 million barrels of oil a day. On Wednesday, the President announced a bold goal of cutting that amount by one-third by 2025. To achieve this goal we will harness a broad range of resources including domestic oil and gas production, while at the same time leveraging cleaner, alternative fuels and technologies that increase efficiency in the vehicles we drive. A key area of opportunity is the large commercial fleets that companies operate across our country every day, which with the proper incentives can offer significant potential reductions in fuel use. On Friday, the President is highlighting the National Clean Fleets

277

"Y/N","Status","Efficiency Measure(s)/ECMs","System Type","End Use","Grid","Fed or Indian","RECs Retained","Scope","Term","Purchased","Biomass1","Biomass2","Funding Source","Fleet Strategy","Vehicle","Size","Fuel","Fleet Fund","Compliance Path","GP Status","Version","HPSB","2015 Status","Power data"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Y/N","Status","Efficiency Measure(s)/ECMs","System Type","End Use","Grid","Fed or Indian","RECs Retained","Scope","Term","Purchased","Biomass1","Biomass2","Funding Source","Fleet Strategy","Vehicle","Size","Fuel","Fleet Fund","Compliance Path","GP Status","Version","HPSB","2015 Status","Power data" Y/N","Status","Efficiency Measure(s)/ECMs","System Type","End Use","Grid","Fed or Indian","RECs Retained","Scope","Term","Purchased","Biomass1","Biomass2","Funding Source","Fleet Strategy","Vehicle","Size","Fuel","Fleet Fund","Compliance Path","GP Status","Version","HPSB","2015 Status","Power data" "No","Identified","Advanced Metering Systems","Biomass","Excluded","Electric On-Grid","On Federal or Indian Land, On User Site",0,"Scope 1","Long-Term (> 10)","Electric Renewable Energy","Agricultural byproducts","NA","Line Item","Acquire More Fuel-Efficient Vehicles","Compressed Natural Gas (CNG)","Buses","B100","Direct","Guiding Principles","Met",2.2,"LEED¬ģ Certified","D&D in Progress","Actual"

278

Operation algorithm for a parallel hybrid electric vehicle with a relatively small electric motor  

Science Journals Connector (OSTI)

In this paper, operation algorithms for a parallel HEV equipped with a relatively small motor are investigated. For the HEV, the ... proposed. In the power assist algorithm, an electric motor is used to assist th...

Kyoungcheol Oh; Donghyeon Kim; Talchol Kim; Chulsoo KimÖ

2004-01-01T23:59:59.000Z

279

Sustainable Federal Fleets | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Fleets Sustainable Federal Fleets FEMP's Sustainable Federal Fleets website provides guidance and assistance to help implement Federal legislative and regulatory...

280

Perspectives on AFVs: 1996 Federal Fleet Manager Survey  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

1996 Federal Fleet Manager Survey 1996 Federal Fleet Manager Survey Produced for the U.S. Department of Energy (DOE) by the National Renewable Energy Laboratory (NREL), a U.S. DOE national laboratory Perspectives on AFVs: N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Perspectives on AFVs i Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Survey Development, Implementation, and Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . .3 Respondent and Fleet Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Results: Vehicle Use, Performance, and Acceptability . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

Note: This page contains sample records for the topic "motor vehicle fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

FY 12 FLEET DATA REPORTING INSTRUCTIONS Page 1 of 4 Instruction Sheet for Fleet Data Reporting  

E-Print Network (OSTI)

combination of the fuels. Electric: a vehicle powered primarily by an electric motor that draws current from rechargeable storage batteries or other sources of electric current. Hybrid Electric*: a vehicle primarily powered by an electric motor drawing current from rechargeable storage batteries, fuel cells, or other

Arizona, University of

282

Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)  

SciTech Connect

Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

Not Available

2013-08-01T23:59:59.000Z

283

EM Reports Success in Drive to Meet DOE Fleet Reduction Goals | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reports Success in Drive to Meet DOE Fleet Reduction Goals Reports Success in Drive to Meet DOE Fleet Reduction Goals EM Reports Success in Drive to Meet DOE Fleet Reduction Goals July 18, 2012 - 12:00pm Addthis Secretary Chu, right, discusses electric vehicles with Brian Wynne, president of the Electric Drive Transportation Association, at an event in 2011. Secretary Chu, right, discusses electric vehicles with Brian Wynne, president of the Electric Drive Transportation Association, at an event in 2011. WASHINGTON, D.C. - EM is on pace to meet the first of a series of goals to reduce its vehicle fleet and help DOE accomplish a broader initiative to cut greenhouse gas emissions and decrease petroleum consumption across the complex. In January 2011, Secretary Chu challenged DOE to reduce its vehicle fleet by 35 percent over three years, and EM committed to a 15 percent drop in

284

The Fleet DNA Project (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet DNA Project Fleet DNA Project aims to accelerate the evolution of advanced vehicle development and support the strategic deployment of market-ready technologies that reduce costs, fuel consumption, and emissions. At the heart of the Fleet DNA Project is a clearinghouse of medium- and heavy-duty commercial fleet transportation data for optimizing the design of advanced vehicle technologies or for selecting a given technology to invest in. Designed by the U.S. Department of Energy's National Renewable Energy Laboratory in partnership with Oak Ridge National Laboratory, this online tool will help vehicle manufacturers and fleets understand the broad operational range for many of today's commercial vehicle vocations. Transportation Data Now in the early stages of development, this bench-

285

EM Reports Success in Drive to Meet DOE Fleet Reduction Goals | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Reports Success in Drive to Meet DOE Fleet Reduction Goals EM Reports Success in Drive to Meet DOE Fleet Reduction Goals EM Reports Success in Drive to Meet DOE Fleet Reduction Goals July 18, 2012 - 12:00pm Addthis Secretary Chu, right, discusses electric vehicles with Brian Wynne, president of the Electric Drive Transportation Association, at an event in 2011. Secretary Chu, right, discusses electric vehicles with Brian Wynne, president of the Electric Drive Transportation Association, at an event in 2011. WASHINGTON, D.C. - EM is on pace to meet the first of a series of goals to reduce its vehicle fleet and help DOE accomplish a broader initiative to cut greenhouse gas emissions and decrease petroleum consumption across the complex. In January 2011, Secretary Chu challenged DOE to reduce its vehicle fleet by 35 percent over three years, and EM committed to a 15 percent drop in

286

An improved energy management strategy for FC/UC hybrid electric vehicles propelled by motor-wheels  

Science Journals Connector (OSTI)

Abstract The hybridization of the fuel-cell electric-vehicle (FCEV) by a second energy source has the advantage of improving the system's dynamic response and efficiency. Indeed, an ultra-capacitor (UC) system used as an energy storage device fulfills the FC slowest dynamics during fast power transitions and recovers the braking energy. In FC/UC hybrid vehicles, the search for a suitable power management approach is one of the main objectives. In this paper, an improved control strategy managing the active power distribution between the two energy sources is proposed. The UC reference power is calculated through the DC link voltage regulation. For the FC power demand, an algorithm with five operating modes is developed. This algorithm, depending on the UC state of charge (SOC) and the vehicle speed level, minimizes the FC power demand transitions and therefore ameliorates its durability. The traction power is provided using two permanent magnetic synchronous motor-wheels to free more space in the vehicle. The models of the FC/UC vehicle system parts and the control strategy are developed using MATLAB software. Simulation results show the effectiveness of the proposed energy management strategy.

Islem Lachhab; Lotfi Krichen

2014-01-01T23:59:59.000Z

287

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

288

Straight Vegetable Oil as a Vehicle Fuel? (Fact Sheet), Energy...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

many vehicle owners and fleet managers seek- ing to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with...

289

Alternative Fuels Data Center: Vehicle Acquisition and Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Federal Fleets to someone by E-mail Federal Fleets to someone by E-mail Share Alternative Fuels Data Center: Vehicle Acquisition and Fuel Use Requirements for Federal Fleets on Facebook Tweet about Alternative Fuels Data Center: Vehicle Acquisition and Fuel Use Requirements for Federal Fleets on Twitter Bookmark Alternative Fuels Data Center: Vehicle Acquisition and Fuel Use Requirements for Federal Fleets on Google Bookmark Alternative Fuels Data Center: Vehicle Acquisition and Fuel Use Requirements for Federal Fleets on Delicious Rank Alternative Fuels Data Center: Vehicle Acquisition and Fuel Use Requirements for Federal Fleets on Digg Find More places to share Alternative Fuels Data Center: Vehicle Acquisition and Fuel Use Requirements for Federal Fleets on AddThis.com... More in this section...

290

Thermal performance of oil spray cooling system for in-wheel motor in electric vehicles  

Science Journals Connector (OSTI)

Abstract The cooling of the motor in an in-wheel system is critical to its performance and durability. In the present study, the shape of the channel in the hollow shaft for the oil spray cooling of a high-capacity 35†kW in-wheel motor was optimized, and the thermal performance of the motor was evaluated by numerical analysis and experiments. The thermal flow was analyzed by evaluating the thermal performance of two conventional cooling models of in-wheel motors under conditions of continuous rating base speed. For conventional model #1, in which the cooling oil is stagnant in the lower end of the motor, the maximum temperature of the coil was 221.7†įC. For conventional model #2, in which the cooling oil circulates through the exit and entrance of the housing and jig, the maximum temperature of the coil was 155.4†įC. Both models thus proved to be unsuitable for in-wheel motors because the motor control specifications limit the maximum temperature to 150†įC. We designed and manufactured an enhanced model for in-wheel motors, which we equipped with an optimized channel for the oil spray cooling mode, and evaluated its thermal performance under continuous rating conditions. The maximum temperatures of the coil at the base and maximum speeds, which were set as the design points, were below the motor temperature limit, being 138.1 and 137.8†įC, respectively.

Dong Hyun Lim; Sung Chul Kim

2014-01-01T23:59:59.000Z

291

National Clean Fleets Partnership (Fact Sheet)  

SciTech Connect

Describes Clean Cities' National Clean Fleets Partnership, an initiative that helps large private fleets reduce petroleum use.

Not Available

2011-03-01T23:59:59.000Z

292

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

293

Vehicle Technologies Office Merit Review 2014: Permanent Magnet Development for Automotive Traction Motors  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Ames Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about permanent magnet development...

294

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

295

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

296

Vehicle Technologies Office Merit Review 2014: Convective Cooling and Passive Stack Improvements in Motors  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

297

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ape08elrefaie...

298

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland. merit08salasoo...

299

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. ape013elrefaie2010o...

300

Alternative Fuels Data Center: Community Alternative Fuel Vehicle (AFV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Community Alternative Community Alternative Fuel Vehicle (AFV) Fleet Grants to someone by E-mail Share Alternative Fuels Data Center: Community Alternative Fuel Vehicle (AFV) Fleet Grants on Facebook Tweet about Alternative Fuels Data Center: Community Alternative Fuel Vehicle (AFV) Fleet Grants on Twitter Bookmark Alternative Fuels Data Center: Community Alternative Fuel Vehicle (AFV) Fleet Grants on Google Bookmark Alternative Fuels Data Center: Community Alternative Fuel Vehicle (AFV) Fleet Grants on Delicious Rank Alternative Fuels Data Center: Community Alternative Fuel Vehicle (AFV) Fleet Grants on Digg Find More places to share Alternative Fuels Data Center: Community Alternative Fuel Vehicle (AFV) Fleet Grants on AddThis.com... More in this section... Federal State Advanced Search

Note: This page contains sample records for the topic "motor vehicle fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Torque Vector Control System of the Switched Reluctance Motor Used in Electric Vehicle  

Science Journals Connector (OSTI)

In the paper, the micro-step method based on the phase current aiming to reduce the torque ripple is proposed. The SRM driving system used in the electric vehicle is presented by TMS320LF2407 as main controller. The hardware circuit and the software ... Keywords: SRM, micro-step, DSP controller, the electric vehicle

Li Jisheng; Gu Ye; Lei Shuying

2010-06-01T23:59:59.000Z

302

AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Sleeping Bear Dunes National Lakeshore  

SciTech Connect

This report focuses on the Sleeping Bear Dunes National Lakeshore (SLBE) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agenciesí fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

Stephen Schey; Jim Francfort

2014-11-01T23:59:59.000Z

303

Draft Supplemental Environmental Assessment For General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative White Marsh, Maryland, DOE/EA-1723S (December 2010)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT SUPPLEMENTAL ENVIRONMENTAL DRAFT SUPPLEMENTAL ENVIRONMENTAL ASSESSMENT For General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative White Marsh, Maryland May 2011 U.S. DEPARTMENT OF ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY U.S. Department of Energy General Motors National Energy Technology Laboratory Supplemental Environmental Assessment i May 2011 ACKNOWLEDGEMENT This report was prepared with the support of the U.S. Department of Energy (DOE) under Award Number DE-EE0002629. U.S. Department of Energy General Motors National Energy Technology Laboratory Supplemental Environmental Assessment ii May 2011 COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing

304

Julie Crenshaw Van Fleet  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Julie Crenshaw Van Fleet Julie Crenshaw Van Fleet 127 S. Fairfax Street, PMB#110 Alexandria, VA 22314 7 January 2007 Mr. Samuel W. Bodman Secretary of Energy Via Mr. Anthony J. Comco SEA Document Manager US DOE anthony.comco@hq.doe.gov 202/287-5736 fax and Ms. Carol Borgstrom, Director Office of NEPA Policy and Compliance US DOE askNEPA@hq.doe.gov 202/586-7031 fax RE: DOE/SEA-04, Special Environmental Analysis: For Actions Taken Under U.S. Department of Energy Emergency Orders Regarding Operation of the Potomac River Generating Station in Alexandria, Virginia, November 2006 Dear Mr. Bodman, Thank you for the opportunity to comment on the above named document hereafter referred to as DOE/SEA-04. It seems given the findings of DOE/SEA-04, that neither DOE nor EPA are aware

305

Electric Wheel Hub Motor  

Science Journals Connector (OSTI)

Wheel hub motors are an innovative drive concept for electric vehicles where the electric machine and, in some cases, the...

Dipl.-Ing. Michael GrŲninger; Dipl.-Ing. Felix HorchÖ

2012-02-01T23:59:59.000Z

306

Phase 1 STTR flywheel motor/alternator for hybrid electric vehicles. CRADA final report  

SciTech Connect

Visual Computing Systems (VCS) and the Oak Ridge National Laboratory (ORNL) have teamed, through a Phase 1 Small Business Technology Transfer (STTR) grant from the US Department of Energy (DOE), to develop an advanced, low-cost motor/alternator drive system suitable for Flywheel Energy Storage (FES) applications. During Phase 1, system performance and design requirements were established, design concepts were generated, and preliminary motor/alternator designs were developed and analyzed. ORNL provided mechanical design and finite element collaboration and Lynx Motion Technology, a spin-off from VCS to commercialize their technology, constructed a proof-of-concept axial-gap permanent magnet motor/alternator that employed their Segmented Electromagnetic Array (SEMA) with a survivable design speed potential of 10,000 rpm. The VCS motor/alternator was successfully tested in ORNL`s Motor Test Tank using an ORNL inverter and ORNL control electronics. It was first operated as an unloaded motor to 6,000 rpm and driven as an unloaded generator to 6,000 rpm. Output from the generator was then connected to a resistance bank, which caused the loaded generator to decelerate to 3,860 rpm where data was collected. After about 4-1/2 minutes, the test was terminated because of an impact noise. Subsequent inspection and operation at low speeds did not reveal the source of the noise. Electrical performance of the motor was excellent, encouraging continued development of this technology. Phase 2 efforts will focus on further design development and optimization, manufacturing development and prototype construction, testing, and evaluation.

McKeever, J.W.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P. [Oak Ridge National Lab., TN (United States); Kessinger, R.L. Jr.; Robinson, S.T.; Seymour, K.P.; Dockstadter, K.D. [Visual Computer Systems Corp., Greenville, IN (United States)

1997-12-31T23:59:59.000Z

307

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicles International - EVI-MD Electric Vehicles International - 260-hp AC permanent magnet motor with...

308

Developing a methodology to account for commercial motor vehicles using microscopic traffic simulation models  

E-Print Network (OSTI)

vehicle (CMV) weight and classification data used as input to critical tasks in transportation design, operations, and planning. The evolution of Intelligent Transportation System (ITS) technologies has been providing transportation engineers and planners...

Schultz, Grant George

2004-09-30T23:59:59.000Z

309

Vehicle Technologies Office Merit Review 2014: Scalable Non-Rare Earth Motor Development  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about scalable non...

310

Vehicle Technologies Office Merit Review 2014: SAE J2907 Hybrid Motor Ratings Support  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SAE J2907...

311

Vehicle Technologies Office Merit Review 2014: Unique Lanthide-Free Motor Construction  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by UQM Technologies, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about unique lanthide-free...

312

Vehicle Technologies Office: EV Everywhere Grand Challenge |...  

Energy Savers (EERE)

electric vehicles or adopt them in your fleet. Workforce Development activities help train college students and those in the workforce on development, maintenance, and emergency...

313

Advanced Vehicle Testing & Evaluation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Toyota Prius Plug-in 2013 Ford C-Max Hybrid 2013 Ford C-Max Energi 2013 Ford Fusion Energi 2014 VW Jetta Hybrid 2013 FLEET TEST VEHICLES 2 Honda CR-Z HEV 2...

314

Alternative Fuels Data Center: Vehicle Acquisition and Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Private and Local Government Fleets to Private and Local Government Fleets to someone by E-mail Share Alternative Fuels Data Center: Vehicle Acquisition and Fuel Use Requirements for Private and Local Government Fleets on Facebook Tweet about Alternative Fuels Data Center: Vehicle Acquisition and Fuel Use Requirements for Private and Local Government Fleets on Twitter Bookmark Alternative Fuels Data Center: Vehicle Acquisition and Fuel Use Requirements for Private and Local Government Fleets on Google Bookmark Alternative Fuels Data Center: Vehicle Acquisition and Fuel Use Requirements for Private and Local Government Fleets on Delicious Rank Alternative Fuels Data Center: Vehicle Acquisition and Fuel Use Requirements for Private and Local Government Fleets on Digg Find More places to share Alternative Fuels Data Center: Vehicle

315

Greenhouse Gas Mitigation Planning for Vehicles and Mobile Equipment  

Energy.gov (U.S. Department of Energy (DOE))

Fleets, non-fleet vehicles, aircraft, ships, and mobile equipment contribute to a large percentage of the Federal government's comprehensive Scope 1 and 2 greenhouse gas (GHG) emissions inventory.

316

Business Case for Compressed Natural Gas in Municipal Fleets | Open Energy  

Open Energy Info (EERE)

Business Case for Compressed Natural Gas in Municipal Fleets Business Case for Compressed Natural Gas in Municipal Fleets Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Business Case for Compressed Natural Gas in Municipal Fleets Agency/Company /Organization: National Renewable Energy Laboratory Focus Area: Fuels & Efficiency Topics: Analysis Tools, Best Practices Website: www.afdc.energy.gov/afdc/pdfs/47919.pdf This report describes how the compressed natural gas (CNG) Vehicle and Infrastructure Cash-Flow Evaluation (VICE) model can be used to establish guidance for fleets making decisions about using CNG. The model assists fleets and businesses in evaluating the profitability of potential CNG projects by demonstrating the relationship between project profitability and fleet operating parameters.

317

Fleet Compliance Results for MY 2010/FY 2011, EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report (Brochure)  

SciTech Connect

This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2010/fiscal year 2011. The U.S. Department of Energy (DOE) regulates covered state and alternative fuel provider (SFP) fleets under the Energy Policy Act of 1992 (EPAct), as amended. For model year (MY) 2010, the compliance rate for the 2911 covered SFP fleets was 100%. Fleets used either Standard Compliance or Alternative Compliance. The 279 fleets that used Standard Compliance exceeded their aggregate MY 2010 acquisition requirements by 61%. The 12 covered fleets that complied using Alternative Compliance exceeded their aggregate MY 2010 petroleum-use-reduction requirements by 89%. Overall, DOE saw modest decreases from MY 2009 in biodiesel fuel use credits earned and in the number of light-duty vehicles (LDVs) acquired. Compared to years before MY 2009, these rates were far lower. Because covered fleets acquired fewer new vehicles overall in MY 2010, the requirement for alternative fuel vehicles (AFVs), which is proportional to new acquisitions, also dropped.

Not Available

2012-03-01T23:59:59.000Z

318

GSA Doubles the Federal Hybrid Fleet, DOE Takes the Lead in Updating to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GSA Doubles the Federal Hybrid Fleet, DOE Takes the Lead in GSA Doubles the Federal Hybrid Fleet, DOE Takes the Lead in Updating to Hybrids GSA Doubles the Federal Hybrid Fleet, DOE Takes the Lead in Updating to Hybrids March 31, 2010 - 12:00am Addthis WASHINGTON - President Obama announced today that the Federal Government will lead by example in replacing older cars in the federal fleet with fuel efficient hybrids and plug-in hybrid electric vehicles, reducing our dependence on foreign oil as well as cutting carbon dioxide and other pollution. The U.S. General Services Administration will double the federal hybrid fleet this year and has committed to purchasing approximately 100 plug-in hybrid vehicles in 2011. These steps are part of a broad effort to implement the Executive Order signed by President Obama in October which

319

HEV Fleet Testing Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

VIN # 1N4CL21E87C172351 Date Mileage Description Cost 10/22/2007 3,658 Changed oil $36.39 11/14/2007 7,562 Changed oil $36.39 12/4/2007 12,008 Changed oil $36.41 1/3/2008 15,418 Changed oil $42.31 1/24/2008 19,057 Changed oil $27.60 1/29/2008 19,109 Replaced one tire $82.13 3/4/2008 24,662 Changed oil and filter $35.84 4/8/2008 32,703 Changed oil and filter $27.85 4/30/2008 37,495 Changed oil and filter $27.91 5/21/2008 40,655 Replaced and balanced four tires $258.41 5/29/2008 44,833 Changed oil and filter $27.91 7/2/2008 53,778 Changed oil and filter $27.91 8/4/2008 62,686 Changed oil and filter, replaced air filter and cabin air filter, replaced coolant, and rotated tires $246.04 8/22/2008 66,967 Changed oil and filled windshield washer $41.30

320

HEV Fleet Testing Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Ford Escape 2WD 5 Ford Escape 2WD VIN # 1FMYU95H75KC45881 Date Mileage Description Cost 5/25/2005 6,707 Changed oil (5W20 synthetic) and purchased oil for three oil changes $105.47 7/15/2005 17,236 15K service $438.65 8/17/2005 22,221 Changed oil and rotated tires $27.44 9/26/2005 27,425 Changed oil and rotated tires $28.20 11/8/2005 32,703 30K service $211.63 11/25/2005 33,560 Repaired tire $20.00 1/12/2006 42,632 45K service (included: tire balancing, replacing fuel filter and replacing cabin filter) $274.16 3/8/2006 52,141 Changed oil and rotated tires $31.56 4/19/2006 59,883 60K service $317.80 4/19/2006 59,883 HV traction battery connection failed $262.50 5/17/2006 64,641 Changed oil and rotated tires $34.73 6/5/2006 66,059 Recall for absorbing materials being insufficient above forward corner of the interior headliner no charge

Note: This page contains sample records for the topic "motor vehicle fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

HEV Fleet Testing Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Lexus RX400h Lexus RX400h VIN # JTJHW31U160002575 Date Mileage Description Cost 7/27/2005 5,159 Changed oil no charge 10/5/2005 10,375 10K service $212.23 1/4/2006 15,835 Changed oil and rotated tires $18.21 4/11/2006 21,752 Changed oil and rotated tires $18.69 8/16/2006 26,957 Changed oil and rotated tires $18.69 9/7/2006 27,641 Replaced power switch on rear door Warranty 11/20/2006 29,275 13 trouble codes with install of data box - replaced auxiliary battery Warranty 12/13/2006 32,283 Changed oil and rotated tires $23.18 1/4/2007 36,620 Changed oil $32.38 1/26/2007 41,491 changed oil and replaced filter $55.78 2/19/2007 45,948 Changed oil $40.47 3/29/2007 57,021 Changed oil $31.78 4/20/2007 61,238 Changed oil $35.92 5/11/2007 66,417 Changed oil $33.28

322

Vehicle Technologies and Bus Fleet Replacement Optimization  

E-Print Network (OSTI)

with multiple bus drivetrain technologies (electric trolley buses, conventional diesel buses, hybrid diesel (conventional diesel, hybrid, electric trolley, etc.), bus designs, and operating environments (congested utilizing real-world data from King County (Seattle) transit agency. Two distinct technologies, diesel

Bertini, Robert L.

323

NREL: Transportation Research - Alternative Fuel Fleet Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

reduced particulate matter, carbon monoxide, and hydrocarbon emissions. Regional Transportation District Biodiesel Transit Buses In partnership with the Regional Transportation...

324

Cell fleet planning : an industry case study  

E-Print Network (OSTI)

The objective of this thesis is to demonstrate the practical use of the Cell Fleet Planning Model in planning the fleet for the U.S. airline industry. The Cell Model is a cell theory, linear programming approach to fleet ...

Silva, Armando C.

1984-01-01T23:59:59.000Z

325

Alternative Fuels Data Center: Vehicle Acquisition and Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Acquisition Vehicle Acquisition and Fuel Use Requirements for State and Alternative Fuel Provider Fleets to someone by E-mail Share Alternative Fuels Data Center: Vehicle Acquisition and Fuel Use Requirements for State and Alternative Fuel Provider Fleets on Facebook Tweet about Alternative Fuels Data Center: Vehicle Acquisition and Fuel Use Requirements for State and Alternative Fuel Provider Fleets on Twitter Bookmark Alternative Fuels Data Center: Vehicle Acquisition and Fuel Use Requirements for State and Alternative Fuel Provider Fleets on Google Bookmark Alternative Fuels Data Center: Vehicle Acquisition and Fuel Use Requirements for State and Alternative Fuel Provider Fleets on Delicious Rank Alternative Fuels Data Center: Vehicle Acquisition and Fuel Use Requirements for State and Alternative Fuel Provider Fleets on Digg

326

Federal Energy Management Program: Sustainable Federal Fleets  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Sustainable Federal Fleets to someone by E-mail Share Federal Energy Management Program: Sustainable Federal Fleets on Facebook Tweet about Federal Energy Management Program: Sustainable Federal Fleets on Twitter Bookmark Federal Energy Management Program: Sustainable Federal Fleets on Google Bookmark Federal Energy Management Program: Sustainable Federal Fleets on Delicious Rank Federal Energy Management Program: Sustainable Federal Fleets on Digg Find More places to share Federal Energy Management Program: Sustainable Federal Fleets on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Water Efficiency Data Center Energy Efficiency Industrial Facilities Sustainable Federal Fleets Laboratories for the 21st Century Institutional Change

327

EPAct Programs Celebrate Regulated Fleet Successes  

SciTech Connect

Fact sheet features the success stories of four fleets covered under the EPAct State& Alternative Fuel Provider and Federal Fleets Programs

Not Available

2003-05-01T23:59:59.000Z

328

Working With the Federal Fleets (Presentation)  

SciTech Connect

Presentation about federal fleet data, working with the federal government, and results from a survey of Clean Cities coordinators about their experiences with regulated fleets.

Daley, R.

2010-10-25T23:59:59.000Z

329

A Unique Approach to Power Electronics and Motor Cooling in a Hybrid Electric Vehicle Environment  

SciTech Connect

An innovative system for cooling the power electronics of hybrid electric vehicles is presented. This system uses a typical automotive refrigerant R-134a (1,1,1,2 tetrafluoroethane) as the cooling fluid in a system that can be used as either part of the existing vehicle passenger air conditioning system or separately and independently of the existing air conditioner. Because of the design characteristics, the cooling coefficient of performance is on the order of 40. Because liquid refrigerant is used to cool the electronics directly, high heat fluxes can result while maintaining an electronics junction temperature at an acceptable value. In addition, an inverter housing that occupies only half the volume of a conventional inverter has been designed to take advantage of this cooling system. Planned improvements should result in further volume reductions while maintaining a high power level.

Ayers, Curtis William [ORNL; Hsu, John S [ORNL; Lowe, Kirk T [ORNL; Conklin, Jim [ORNL

2007-01-01T23:59:59.000Z

330

Cascaded H-bridge inverter motor drives for hybrid electric vehicle applications  

Science Journals Connector (OSTI)

This paper presents the asymmetric cascaded H-bridge multilevel inverter for electric vehicles (EV) and hybrid electric vehicles (HEV) applications. Currently available power inverter systems for HEVs use a DC-DC boost converter to boost the battery voltage for a traditional three-phase inverter. The present HEV drive inverters have low power density, are expensive, and have low efficiency because they need a bulky inductor. Asymmetric cascaded H-bridge multilevel inverter design for EV and HEV applications without the use of inductors to output a boosted AC voltage is proposed in this paper. Traditionally, each H-bridge needs a DC power supply having equal values of DC power sources. The proposed design uses the asymmetric cascaded multilevel inverter using non-equal DC power sources based on specified ratios. A fundamental switching scheme is used to do modulation control and to produce a seven-level phase voltage.

P. Renuga; T. Prathiba

2012-01-01T23:59:59.000Z

331

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Association Conference Transportation Association Conference Vancouver, Canada December 2005 Hybrid Electric Vehicle Testing Jim Francfort U.S. Department of Energy - FreedomCAR & Vehicle Technologies Program, Advanced Vehicle Testing Activity INL/CON-05-00964 Presentation Outline * Background & goals * Testing partners * Hybrid electric vehicle testing - Baseline performance testing (new HEV models) - 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) - Benchmark data: vehicle & battery performance, fuel economy, maintenance & repairs, & life-cycle costs * WWW information location Background * Advanced Vehicle Testing Activity (AVTA) - part of the

332

Clean Fleets Announcement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fleets Announcement Fleets Announcement Clean Fleets Announcement Addthis Clean Fleets Announcement 1 of 14 1 of 14 Clean Fleets Announcement 1 of 14 Sec. Steven Chu, Department of Energy, inspects a Chevy Volt newly purchased as part of the Department of Energy Fleet. | Energy Department Image | Photo by Charles Watkins, Contractor | Public Domain | Clean Fleets Announcement 2 of 14 2 of 14 Clean Fleets Announcement 2 of 14 Nancy Sutley, White House Council on Environmental Council Chairwoman, speaks at a Clean Fleets event held at the Department of Energy. | Energy Department Image | Photo by Charles Watkins, Contractor | Public Domain | Clean Fleets Announcement 3 of 14 3 of 14 Clean Fleets Announcement 3 of 14 Sec. Steven Chu inspects a Chevy Volt newly purchased as part of the

333

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop: Workshop: Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles December 11, 2009 John Garbak, Todd Ramsden Keith Wipke, Sam Sprik, Jennifer Kurtz Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project National Renewable Energy Laboratory 2 Innovation for Our Energy Future Fuel Cell Vehicle Learning Demonstration Project Objectives and Targets * Objectives - Validate H 2 FC Vehicles and Infrastructure in Parallel - Identify Current Status and Evolution of the Technology - Objectively Assess Progress Toward Technology Readiness - Provide Feedback to H 2 Research and Development Photo: NREL Solar Electrolysis Station, Sacramento, CA Performance Measure

334

Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)  

SciTech Connect

This presentation summarizes controlled hydrogen fleet & infrastructure analysis undertaken for the DOE Fuel Cell Technologies Program.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2010-06-10T23:59:59.000Z

335

Vehicle Technologies Office: Ambassadors  

NLE Websites -- All DOE Office Websites (Extended Search)

Ambassadors to someone Ambassadors to someone by E-mail Share Vehicle Technologies Office: Ambassadors on Facebook Tweet about Vehicle Technologies Office: Ambassadors on Twitter Bookmark Vehicle Technologies Office: Ambassadors on Google Bookmark Vehicle Technologies Office: Ambassadors on Delicious Rank Vehicle Technologies Office: Ambassadors on Digg Find More places to share Vehicle Technologies Office: Ambassadors on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Ambassadors Workplace Charging Challenge Clean Cities Coalitions Clean Cities logo. Clean Cities National: A network of nearly 100 Clean Cities coalitions, supported by the

336

Vehicle Technologies Office: Software Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Software Tools Software Tools Several software programs are available, either for free or for a nominal charge, that can assist fleet managers and technology developers in assessing the potential impacts of implementing new technologies. Autonomie Autonomie is a Plug-and-Play Powertrain and Vehicle Model Architecture and Development Environment to support the rapid evaluation of new powertrain/propulsion technologies for improving fuel economy through virtual design and analysis in a math-based simulation environment. Developed in partnership with General Motors, Autonomie is an open architecture to support the rapid integration and analysis of powertrain/propulsion systems and technologies for rapid technology sorting and evaluation of fuel economy improvement under dynamic/transient testing conditions. The capability to sort technologies rapidly in a virtual design environment results in faster improvements in real-world fuel consumption by reducing the time necessary to develop and bring new technologies onto our roads.

337

First interim report of the Federal Fleet Conversion Task Force  

SciTech Connect

The Federal Fleet Conversion Task Force was created by Executive Order 12844, signed by President Clinton on April 21, 1993. In the Order, the President directed that purchases of alternative fueled vehicles by the Federal Government be substantially increased beyond the levels required by current law. The President charged the Task Force with developing recommendations for carrying out the Executive Order, with special emphasis on setting a course that will lead to the widespread use of alternative fueled vehicles by Federal, State, and local government fleets, by private fleets and, ultimately, by individuals. The chief recommendation of the Task Force is the establishment of a Presidential Clean Cities Initiative. To support creation of the Presidential Initiative, the Task Force identified 38 cities and regions, prioritized into three tiers, for concentrating the Initiative`s efforts in Fiscal Years 1994 through 1996. This concentration of effort is key to the effectiveness of the Initiative. The 38 cities and regions would receive priority funding for Federal vehicle purchases and for infrastructure development. In addition, the Task Force has made specific recommendations for overcoming numerous regulatory, economic, and technical barriers that have slowed the introduction of alternative fueled vehicles into general use.

Not Available

1993-08-01T23:59:59.000Z

338

Sliding mode-based DTC-SVM control of permanent magnet synchronous motors for plug-in electric and hybrid vehicles  

Science Journals Connector (OSTI)

This paper presents a sliding mode controller design for a permanent magnet synchronous motor used in an integrated powertrain for plug-in electric and hybrid vehicles. In order to adapt to complicated driving environment and improve the robustness of the system, a sliding mode-based torque controller is developed. At the same time, a sliding mode speed controller is also proposed to meet the need of gear shift of the integrated powertrain. The stability and robustness of the proposed controllers are analysed. Computer simulations are performed to verify the effectiveness of the proposed control system. The simulation results illustrate that fast response and small ripples are achieved using the proposed control scheme. It is also shown that the control system is robust against load variations, measurement errors and parameter uncertainty. In addition, the transition during shift is smooth. Therefore, the proposed control scheme is suitable for control of the propulsion motor for plug-in electric and hybrid vehicles.

Hong Fu; Yaobin Chen; Guangyu Tian; Quanshi Chen

2011-01-01T23:59:59.000Z

339

Obama Administration Takes Major Step toward Advanced Vehicles...  

Office of Environmental Management (EM)

step in moving the Federal fleet further towards advanced vehicles and decreased petroleum consumption, while also cutting costs associated with fuel consumption. Furthering...

340

IMPROVED PRUNING IN COLUMN GENERATION OF A VEHICLE ROUTING PROBLEM  

E-Print Network (OSTI)

column generation, shadow price model 1. Introduction The German automobile club ADAC (Allgemeiner Deutscher Automobil- Club) maintains a heterogeneous fleet of service vehicles in order to assist people

Krumke, Sven O.

Note: This page contains sample records for the topic "motor vehicle fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Remedial neural network inverse control of a multi-phase fault-tolerant permanent-magnet motor drive for electric vehicles  

Science Journals Connector (OSTI)

A five-phase in-wheel fault-tolerant interior permanent-magnet (FT-IPM) motor incorporates the merits of high efficiency, high power density and high reliability, suitable for Electric Vehicles (EVs). A new remedial Neural Networks Inverse (NNI) control strategy is proposed to attain the post-fault operation. In this scheme, the NN is used to approximate the inverse model of the FT-IPM motor. With this NNI system and the original motor drive combined, a pseudo-linear compound system can be obtained. The simulation demonstrates that the proposed control strategy leads to excellent control performance at the faulty mode and offers good robustness against load disturbance.

Duo Zhang; Guohai Liu; Wenxiang Zhao

2013-01-01T23:59:59.000Z

342

Alternative Fuels Data Center: Fuel-Efficient Green Fleets Policy and Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel-Efficient Green Fuel-Efficient Green Fleets Policy and Fleet Management Program Development to someone by E-mail Share Alternative Fuels Data Center: Fuel-Efficient Green Fleets Policy and Fleet Management Program Development on Facebook Tweet about Alternative Fuels Data Center: Fuel-Efficient Green Fleets Policy and Fleet Management Program Development on Twitter Bookmark Alternative Fuels Data Center: Fuel-Efficient Green Fleets Policy and Fleet Management Program Development on Google Bookmark Alternative Fuels Data Center: Fuel-Efficient Green Fleets Policy and Fleet Management Program Development on Delicious Rank Alternative Fuels Data Center: Fuel-Efficient Green Fleets Policy and Fleet Management Program Development on Digg Find More places to share Alternative Fuels Data Center:

343

STATEMENT OF CONSIDERATIONS REQUEST BY GENERAL MOTORS CORPORATION FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FC26-08NT04386, W(A)-Q9-Q03 CH·1467 FC26-08NT04386, W(A)-Q9-Q03 CH·1467 The Petitioner, General Motors Corporation (GM) was awarded this cooperative agreement for the performance of work entitled, "Development of Production-Intent Hybrid Vehicle using' Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet." The purpose of the cooperative agreement is to speed development of one of the first commercially available, Original Equipment Manufacturer (OEM}-produced plug-in hybrid vehicles (PHEV). The project will develop, fully integrate, and validate the plug-in specific systems and controls by using GM's Global Vehicle Development Process (GVDP) for production vehicles. Additional details describing the scope and purpose of this cooperative agreement are provided in response to

344

At the new General Motors, we are passionate about designing, building and selling the world's best vehicles. This vision unites us as a team each and every day and is the hallmark  

E-Print Network (OSTI)

electrification with advancements in batteries, electric motors and power controls. The GM team is also working vehicles. This vision unites us as a team each and every day and is the hallmark of our customer-driven culture. Making the world's best vehicles can only happen with the world's greatest employees. We take

Ghosh, Joydeep

345

Vehicle Technologies Office: Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Lubricants Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is essential. Because 11.5 percent of fuel energy is consumed by engine friction, decreasing this friction through lubricants can lead to substantial improvements in the fuel economy of current vehicles, without needing to wait for the fleet to turn over. In fact, a 1 percent fuel savings in the existing vehicle fleet possible through lubricants could save 97 thousand barrels of oil a day or $3.5 billion a year. Because of these benefits, the Vehicle Technologies Office supports research on lubricants that can improve the efficiency of internal combustion engine vehicles, complementing our work on advanced combustion engine technology.

346

Advanced Technology Vehicle Testing  

SciTech Connect

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

347

Fleet Biodiesel | Open Energy Information  

Open Energy Info (EERE)

Fleet Biodiesel Fleet Biodiesel Jump to: navigation, search Name Fleet Biodiesel Address 7710 Balboa Ave Place San Diego, California Zip 92111 Sector Biofuels Product Develops and sells diagnostic test kits for new biofuels coming to market Website http://www.fleetbiodiesel.com/ Coordinates 32.822245¬į, -117.157914¬į Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.822245,"lon":-117.157914,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

348

HEV Fleet Testing - Summary Fact Sheet for 2010 Ford Fusion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ford Fusion VIN 3FADP0L32AR194699 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features:...

349

HEV Fleet Testing - Summary Fact Sheet for 2010 Honda Insight  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

courts, law offices, and medical facilities on city streets and urban freeways. Vehicle Specifications Engine: 1.3 L 4-cylinder Electric Motor: 10 kW Battery: NiMH Seatbelt...

350

HEV Fleet Testing - Summary Fact Sheet for 2010 Toyota Prius  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

courts, law offices, and medical facilities on city streets and urban freeways. Vehicle Specifications Engine: 1.8 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt...

351

HEV Fleet Testing - Summary Fact Sheet 2011 Hyundai Sonata vin...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hyundai Sonata VIN KMHEC4A47BA003539 Vehicle Specifications Engine: 2.4 L Electric Motor: 30 kW Battery: Lithium Polymer Seatbelt Positions: Five Payload: 1074 lbs Features:...

352

HEV Fleet Testing - Summary Fact Sheet 2011 Hyundai Sonata vin...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2011 Hyundai Sonata VIN KMHEC4A43BA004932 Vehicle Specifications Engine: 2.4 L Electric Motor: 30 kW Battery: Lithium Polymer Seatbelt Positions: Five Payload: 1074 lbs Features:...

353

HEV Fleet Testing - Summary Fact Sheet 2010 Toyota Prius  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Toyota Prius VIN JTDKN3DU2A5010462 Vehicle Specifications Engine: 1.8 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 885 lbs Features:...

354

Bus Fleet Type and Age Replacement Optimization: A case study utilizing King County Metro fleet data  

E-Print Network (OSTI)

1 Bus Fleet Type and Age Replacement Optimization: A case study utilizing King County Metro fleet and a hybrid bus. Employing real-world bus fleet data from King County Metro (Washington State, USA) multiple multiple fleets of buses with different types of buses serving different routes. For example, King County

Bertini, Robert L.

355

National Clean Fleets Partnership (Fact Sheet)  

SciTech Connect

Clean Cities' National Clean Fleets Partnership establishes strategic alliances with large fleets to help them explore and adopt alternative fuels and fuel economy measures to cut petroleum use. The initiative leverages the strength of nearly 100 Clean Cities coalitions, nearly 18,000 stakeholders, and more than 20 years of experience. It provides fleets with top-level support, technical assistance, robust tools and resources, and public acknowledgement to help meet and celebrate fleets' petroleum-use reductions.

Not Available

2014-01-01T23:59:59.000Z

356

Controlled Hydrogen Fleet and Infrastructure Demonstration and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3veenstra.pdf More Documents & Publications Technology Validation Controlled Hydrogen Fleet & Infrastructure Analysis HYDROGEN TO THE HIGHWAYS...

357

NOVA-NREL Optimal Vehicle Acquisition Analysis (Brochure)  

SciTech Connect

Federal fleet managers face unique challenges in accomplishing their mission - meeting agency transportation needs while complying with Federal goals and mandates. Included in these challenges are a variety of statutory requirements, executive orders, and internal goals and objectives that typically focus on petroleum consumption and greenhouse gas (GHG) emissions reductions, alternative fuel vehicle (AFV) acquisitions, and alternative fuel use increases. Given the large number of mandates affecting Federal fleets and the challenges faced by all fleet managers in executing day-to-day operations, a primary challenge for agencies and other organizations is ensuring that they are as efficient as possible in using constrained fleet budgets. An NREL Optimal Vehicle Acquisition (NOVA) analysis makes use of a mathematical model with a variety of fleet-related data to create an optimal vehicle acquisition strategy for a given goal, such as petroleum or GHG reduction. The analysis can helps fleets develop a vehicle acquisition strategy that maximizes petroleum and greenhouse gas reductions.

Blakley, H.

2011-03-01T23:59:59.000Z

358

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network (OSTI)

kW) Vehicle Mass (kg) Electric Motor (kW) Fuel Cell StackkW) Vehicle Mass (kg) Electric Motor (kW) Fuel Cell Stack

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

359

Fleet Inventory.xlsx  

NLE Websites -- All DOE Office Websites (Extended Search)

LOCATION LOCATION MODEL YEAR VEHICLE TYPE CURRENT MILEAGE Fernald, OH C1500HEV 2011 Pick up truck 5315 " CG3300 2011 15 passenger van 511 " K1500HEV 2011 Pick up truck 5325 " K1500HEV 2011 Pick up truck 5963 " K1500HEV 2011 Pick up truck 8073 " DAKOTA 2008 Pick up truck 10236 " ESCAPE HYBRID 2010 SUV 10557 " BLAZER 2004 SUV 32046 " K1500 2002 Pick up truck 33311 " F 250 2002 Diesel Pick up truck 36524 " F350 2002 Diesel Pick up truck 66035 " F250 2002 Diesel Pick up truck 22119 " RAM 1500 2004 Diesel Pick up truck 27265 " F350 2002 Diesel Pick up truck 3621 Mound, OH SUBURBAN 150 2007 SUV 19776 " F350 2002 Pick up truck 85528 Grand Junction, CO TAHOE 2010 SUV 33115 " TAHOE 2011 SUV 13884 " TAHOE 2011 SUV 7676 "

360

Environmental Protection Agency (EPA) evaluation of the Super-Mag Fuel Extender under Section 511 of the Motor Vehicle Information and Cost Savings Act. Technical report  

SciTech Connect

This document announces the conclusions of the EPA evaluation of the 'Super-Mag Fuel Extender' device under provisions of Section 511 of the Motor Vehicle Information and Cost Savings Act. On December 10, 1980, the EPA received a written request from the Metropolitan Denver District Attorney's Office of Consumer Fraud and Economic Crime to test at least one 'cow magnet' type of fuel economy device. Following a survey of devices being marketed, the Metropolitan Denver District Attorney's Office selected the 'Super-Mag' device as typical of its category and on April 13, 1981 provided EPA with units for testing. The EPA evaluation of the device using three vehicles showed neither fuel economy nor exhaust emissions were affected by the installation of the 'Super-Mag' device. In addition, any differences between baseline test results and results from tests with the device installed were within the range of normal test variability.

Ashby, H.A.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "motor vehicle fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Electric Motor Thermal Management | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Peer Evaluation Meeting ape030bennion2012o.pdf More Documents & Publications Electric Motor Thermal Management Electric Motor Thermal Management Vehicle Technologies...

362

Trexa Motor Corporation TMC | Open Energy Information  

Open Energy Info (EERE)

Trexa Motor Corporation TMC Jump to: navigation, search Name: Trexa Motor Corporation (TMC) Place: Los Angeles, California Sector: Vehicles Product: Los Angeles - based subsidiary...

363

AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Golden Gate National Recreation Area  

SciTech Connect

Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy's Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activity's Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the utilization of advanced electric drive vehicle transportation. This report focuses on the Golden Gate National Recreation Area (GGNRA) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies' fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. GGNRA identified 182 vehicles in its fleet, which are under the management of the U.S. General Services Administration. Fleet vehicle mission categories are defined in Section 4, and while the GGNRA vehicles conduct many different missions, only two (i.e., support and law enforcement missions) were selected by agency management to be part of this fleet evaluation. The selected vehicles included sedans, trucks, and sport-utility vehicles. This report will show that battery electric vehicles and/or PHEVs are capable of performing the required missions and providing an alternative vehicle for support vehicles and PHEVs provide the same for law enforcement, because each has a sufficient range for individual trips and time is available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicle home base, high-use work areas, or intermediately along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in significant reductions in the emission of greenhouse gases and petroleum use, while also reducing fuel costs. The San Francisco Bay Area is a leader in the adoption of PEVs in the United States. PEV charging stations, or more appropriately identified as electric vehicle supply equipment, located on the GGNRA facility would be a benefit for both GGNRA fleets and general public use. Fleet drivers and park visitors operating privately owned PEVs benefit by using the charging infrastructure. ITSNA recommends location analysis of the GGNRA site to identify the optimal placement of the electric vehicle supply equipment station. ITSNA recognizes the support of Idaho National Laboratory and ICF International for their efforts to initiate communication with the National Parks Service and GGNRA for participation in the study. ITSNA is pleased to provide this report and is encouraged by the high interest and support from the National Park Service and GGNRA personnel.

Stephen Schey; Jim Francfort

2014-03-01T23:59:59.000Z

364

DOE Announces 6 New Corporate Partners Join the National Clean Fleets  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 New Corporate Partners Join the National Clean 6 New Corporate Partners Join the National Clean Fleets Partnership DOE Announces 6 New Corporate Partners Join the National Clean Fleets Partnership July 5, 2011 - 12:00am Addthis Washington, D.C. - Furthering the Obama Administration's goal to cut U.S. oil imports by one-third by 2025, U.S. Energy Secretary Steven Chu today announced that six new corporate partners have joined the National Clean Fleets Partnership. The new partners - Coca-Cola, Enterprise Holdings, General Electric, OSRAM SYLVANIA, Ryder, and Staples - operate a total of nearly a million commercial vehicles nationwide. The National Clean Fleets Partnership, announced by President Obama in April, is a public-private partnership that helps large companies reduce diesel and gasoline use in

365

Secretary Chu Announces Major Steps to Green The Federal Fleet | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major Steps to Green The Federal Fleet Major Steps to Green The Federal Fleet Secretary Chu Announces Major Steps to Green The Federal Fleet May 24, 2011 - 1:00pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs How can I participate? Watch the announcement live at 1:30 PM EST. Editor's Note: This event has concluded. Check back later today for a full re-cap. At 1:30 EST, Secretary Chu will join U.S. General Services Administrator Martha Johnson and White House Council on Environmental Quality Chair Nancy Sutley to announce next steps in moving the Federal fleet further towards advanced vehicles and decreased petroleum consumption. The announcement will help advance President Obama's goals of reducing Federal agency petroleum fuel use by 30 percent by 2020 and cutting our

366

Vehicle Technologies Office Merit Review 2014: Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel...

367

National Clean Fleets Partnership (Fact Sheet)  

SciTech Connect

Provides an overview of Clean Cities National Clean Fleets Partnership (NCFP). The NCFP is open to large private-sector companies that have fleet operations in multiple states. Companies that join the partnership receive customized assistance to reduce petroleum use through increased efficiency and use of alternative fuels. This initiative provides fleets with specialized resources, expertise, and support to successfully incorporate alternative fuels and fuel-saving measures into their operations. The National Clean Fleets Partnership builds on the established success of DOE's Clean Cities program, which reduces petroleum consumption at the community level through a nationwide network of coalitions that work with local stakeholders. Developed with input from fleet managers, industry representatives, and Clean Cities coordinators, the National Clean Fleets Partnership goes one step further by working with large private-sector fleets.

Not Available

2012-01-01T23:59:59.000Z

368

Model Year 2006: Alternative Fuel and Advanced Technology Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

06: Alternative Fuel and Advanced Technology Vehicles 06: Alternative Fuel and Advanced Technology Vehicles Fuel Type EPAct Compliant? Model Vehicle Type Emission Class Powertrain Fuel Capacity Range American Honda Motor Corporation 888-CCHONDA www.honda.com CNG Dedicated EPAct Yes Civic GX Compact Sedan SULEV Tier 2 Bin II 1.7L, 4-cylinder 8 GGE 200 mi HEV (NiMH) EPAct No Accord Hybrid Sedan ULEV 3.0L V6 144 volt NiMH + 17.1 Gal Gasoline TBD HEV (NiMH) EPAct No Civic Hybrid Sedan CA ULEV 1.3L, 4-cylinder 144 volt NiMH + 13.2 Gal Gasoline TBD HEV (NiMH) EPAct No Insight Two-seater SULEV (CVT model) ULEV (MT model) 1.0L, 3-cylinder 144 volt NiMH + 10.6 Gal Gasoline 636 mi DaimlerChrysler 800-999-FLEET www.fleet.chrysler.com E85 FFV EPAct Yes Dodge Ram Pickup 1500 Series 1 Pickup Tier 2 Bin 10A 4.7L V8 26 Gal 416 mi E85 FFV

369

Chapter 8 - Hydrogen, Fuel Cells and Fuel Cell Vehicles  

Science Journals Connector (OSTI)

Abstract Hydrogen has long been advocated as the ultra-clean fuel because its combustion produces pure water and no pollutants. As long ago as the 1930s, a German engineer demonstrated that an internal-combustion engine could be made to run on hydrogen. More recently, the automotive company BMW has built and demonstrated a small fleet of cars fuelled by hydrogen with the fuel stored on board as cryogenic liquid. An alternative approach to utilizing hydrogen is in an electrochemical fuel cell to generate electricity to drive an electric motor. This mode of transport is the counterpart of the battery electric vehicle (BEV). Fuel cell vehicles provide greater driving range and faster refuelling than \\{BEVs\\} and are therefore clearly a desirable way forward for electric traction. Unfortunately, there remain problems with the generation, the distribution and the storage of hydrogen, as well as with the cost of the fuel cells themselves. This chapter discusses these matters and concludes that, with the possible exception of fleets of buses, it will be some while yet before fuel cell vehicles become commonplace.

Ronald M. Dell; Patrick T. Moseley; David A.J. Rand

2014-01-01T23:59:59.000Z

370

Clean Cities: Electric Vehicle Infrastructure Training Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Infrastructure Electric Vehicle Infrastructure Training Program to someone by E-mail Share Clean Cities: Electric Vehicle Infrastructure Training Program on Facebook Tweet about Clean Cities: Electric Vehicle Infrastructure Training Program on Twitter Bookmark Clean Cities: Electric Vehicle Infrastructure Training Program on Google Bookmark Clean Cities: Electric Vehicle Infrastructure Training Program on Delicious Rank Clean Cities: Electric Vehicle Infrastructure Training Program on Digg Find More places to share Clean Cities: Electric Vehicle Infrastructure Training Program on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions

371

GREET Fleet | Open Energy Information  

Open Energy Info (EERE)

GREET Fleet GREET Fleet Jump to: navigation, search Tool Summary Name: The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET) Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Transportation Phase: Determine Baseline, Evaluate Options Topics: Baseline projection, GHG inventory Resource Type: Online calculator, Software/modeling tools User Interface: Spreadsheet Website: greet.es.anl.gov/carbon_footprint_calculator OpenEI Keyword(s): EERE tool References: http://greet.es.anl.gov/carbon_footprint_calculator Logo: The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET) The Department of Energy's Clean Cities Program has enlisted the expertise of Argonne to assist in measuring the petroleum displacement and greenhouse

372

AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the United States Forest Service: Caribou-Targhee National Forest  

SciTech Connect

Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energyís Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect and evaluate data on federal fleet operations as part of the Advanced Vehicle Testing Activityís Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect and evaluate data to validate the utilization of advanced electric drive vehicle transportation. This report focuses on the Caribou-Targhee National Forest (CTNF) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agenciesí fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements. ITSNA acknowledges the support of Idaho National Laboratory and CTNF for participation in the study. ITSNA is pleased to provide this report and is encouraged by enthusiasm and support from the Forest Service and CTNF personnel.

Stephen Schey; Jim Francfort; Ian Nienhueser

2014-06-01T23:59:59.000Z

373

Costs Associated With Propane Vehicle Fueling Infrastructure  

SciTech Connect

This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

Smith, M.; Gonzales, J.

2014-08-01T23:59:59.000Z

374

Vehicle Technologies Office Merit Review 2014: Overview of the DOE Advanced Power Electronics and Electric Motor R&D Program  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting providing an overview of...

375

Geospatial Analysis and Optimization of Fleet Logistics to Exploit Alternative Fuels and Advanced Transportation Technologies: Preprint  

SciTech Connect

This paper describes how the National Renewable Energy Laboratory (NREL) is developing geographical information system (GIS) tools to evaluate alternative fuel availability in relation to garage locations and to perform automated fleet-wide optimization to determine where to deploy alternative fuel and advanced technology vehicles and fueling infrastructure.

Sparks, W.; Singer, M.

2010-06-01T23:59:59.000Z

376

The University of Texas at Austin Energy Savings Program for Fleet  

E-Print Network (OSTI)

of vehicle and engine size offering the highest fuel economy from the state contract while maintainingThe University of Texas at Austin Energy Savings Program for Fleet Introduction The University,412,449 miles and used 229,211 gallons of fuel. The average fuel economy for the year was 10.50 miles per gallon

Yang, Zong-Liang

377

Vehicle Technologies Office: Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Partners to someone by Partners to someone by E-mail Share Vehicle Technologies Office: Partners on Facebook Tweet about Vehicle Technologies Office: Partners on Twitter Bookmark Vehicle Technologies Office: Partners on Google Bookmark Vehicle Technologies Office: Partners on Delicious Rank Vehicle Technologies Office: Partners on Digg Find More places to share Vehicle Technologies Office: Partners on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Partners The interactive map below highlights Workplace Charging Challenge Partners across the country who are installing plug-in electric vehicle charging infrastructure for their employees. Select a worksite to learn more about

378

Vehicle Technologies Office: 2012 Advanced Power Electronics...  

Energy Savers (EERE)

2 Advanced Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress...

379

Alternative Fuels Data Center: Vehicle Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Doosan Infracore America Corp. Electric Vehicles International Emission Solutions Inc. Energy Conversions Inc. Enova Systems Ford Motor Co. General Motors Hino Hydrogenics ISE...

380

AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Fort Vancouver National Historic Site  

SciTech Connect

Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energyís Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energyís Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activityís Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the use of advanced electric drive vehicle transportation. This report focuses on the Fort Vancouver National Historic Site (FVNHS) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of electric vehicles (EVs) into the agenciesí fleet. Individual observations of the selected vehicles provided the basis for recommendations related to EV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles) could fulfill the mission requirements. FVNHS identified three vehicles in its fleet for consideration. While the FVNHS vehicles conduct many different missions, only two (i.e., support and pool missions) were selected by agency management to be part of this fleet evaluation. The logged vehicles included a pickup truck and a minivan. This report will show that BEVs and PHEVs are capable of performing the required missions and providing an alternative vehicle for both mission categories, because each has sufficient range for individual trips and time available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicleís home base, high-use work areas, or in intermediate areas along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in significant reductions in emission of greenhouse gases and petroleum use, while also reducing fuel costs. The Vancouver, Washington area and neighboring Portland, Oregon are leaders in adoption of PEVs in the United States1. PEV charging stations, or more appropriately identified as electric vehicle supply equipment, located on the FVNHS facility would be a benefit for both FVNHS fleets and general public use. Fleet drivers and park visitors operating privately owned plug-in electric vehicles benefit by using the charging infrastructure. ITSNA recommends location analysis of the FVNHS site to identify the optimal station placement for electric vehicle supply equipment. ITSNA recognizes the support of Idaho National Laboratory and ICF International for their efforts to initiate communication with the National Parks Service and FVNHS for participation in this study. ITSNA is pleased to provide this report and is encouraged by the high interest and support from the National Park Service and FVNHS personnel

Stephen Schey; Jim Francfort

2014-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "motor vehicle fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

NREL: Climate Neutral Research Campuses - Fleet Management  

NLE Websites -- All DOE Office Websites (Extended Search)

can be significant, representing one of the more challenging sources of greenhouse gas (GHG) emissions to reduce. Fortunately, there are many options to improve fleet efficiency...

382

Sustainable Federal Fleets Catalog of Services  

Energy.gov (U.S. Department of Energy (DOE))

Document details the Federal Energy Management Program's catalog of technical assistance services it offers for federal agencies that want to implement sustainable fleet projects.

383

Vehicle Technologies Office: EPAct Transportation Regulatory Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technologies Office: EPAct Transportation Vehicle Technologies Office: EPAct Transportation Regulatory Activities to someone by E-mail Share Vehicle Technologies Office: EPAct Transportation Regulatory Activities on Facebook Tweet about Vehicle Technologies Office: EPAct Transportation Regulatory Activities on Twitter Bookmark Vehicle Technologies Office: EPAct Transportation Regulatory Activities on Google Bookmark Vehicle Technologies Office: EPAct Transportation Regulatory Activities on Delicious Rank Vehicle Technologies Office: EPAct Transportation Regulatory Activities on Digg Find More places to share Vehicle Technologies Office: EPAct Transportation Regulatory Activities on AddThis.com... Home About Covered Fleets Compliance Methods Alternative Fuel Petitions Resources The U.S. Department of Energy's (DOE) Vehicle Technologies Office manages

384

Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

Ford Motor Company to someone by E-mail Ford Motor Company to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging

385

FxLMS method for suppressing in-wheel switched reluctance motor vertical force based on vehicle active suspension system  

Science Journals Connector (OSTI)

The vibration of SRM obtains less attention for in-wheel motor applications according to the present research works. In this paper, the vertical component of SRM unbalanced radial force, which is named as SRM vertical force, is taken into account in ...

Yan-yang Wang, Yi-nong Li, Wei Sun, Chao Yang, Guang-hui Xu

2014-01-01T23:59:59.000Z

386

Please note: A decal-restricted area is defined as an area within which an motor vehicle may be parked if it bears the appropriate decal for that area (eg. Red, Orange, Blue, Green, etc.). Parking facilities  

E-Print Network (OSTI)

/scooter parking areas Annual -- $154.00 ($6.42/pay period) Semester -- $51.33 2014-15 Faculty and Staff DecalPlease note: A decal-restricted area is defined as an area within which an motor vehicle may be parked if it bears the appropriate decal for that area (eg. Red, Orange, Blue, Green, etc.). Parking

Mazzotti, Frank

387

Please note: A decal-restricted area is defined as an area within which an motor vehicle may be parked if it bears the appropriate decal for that area (eg. Red, Orange, Blue, Green, etc.). Parking facilities  

E-Print Network (OSTI)

/scooter parking areas Annual -- $154.00 ($6.42/pay period) Semester -- $51.33 2013-14 Faculty and Staff DecalPlease note: A decal-restricted area is defined as an area within which an motor vehicle may be parked if it bears the appropriate decal for that area (eg. Red, Orange, Blue, Green, etc.). Parking

Roy, Subrata

388

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 5 Page 1 of 5 VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Class: Mid-size Seatbelt Positions: 5 Type: EV Motor Type: Three-Phase, Four-Pole Permanent Magnet AC Synchronous Max. Power/Torque: 80 kW/280 Nm Max. Motor Speed: 10,390 rpm Cooling: Active - Liquid cooled Battery Manufacturer: Automotive Energy Supply Corporation Type: Lithium-ion - Laminate type Cathode/Anode Material: LiMn 2 O 4 with LiNiO 2 /Graphite Pack Location: Under center of vehicle Number of Cells: 192 Cell Configuration: 2 parallel, 96 series Nominal Cell Voltage: 3.8 V Nominal System Voltage: 364.8 V Rated Pack Capacity: 66.2 Ah Rated Pack Energy: 24 kWh Max. Cell Charge Voltage 2 : 4.2 V Min. Cell Discharge Voltage 2 : 2.5 V

389

Chemical Composition of Gas-Phase Organic Carbon Emissions from Motor Vehicles and Implications for Ozone Production  

E-Print Network (OSTI)

gasoline and diesel vehicles via two methods. First we use speciated measurements of exhaust emissions from and comprise 32 ¬Ī 2% of gasoline exhaust and 26 ¬Ī 1% of diesel exhaust by mass. We calculate and compare ozone production potentials of diesel exhaust, gasoline exhaust, and nontailpipe gasoline emissions. Per mass

Cohen, Ronald C.

390

Alternative Fuel Vehicles  

SciTech Connect

This Federal Technology Alert on alternative fuel vehicles (AFVs), prepared for the U.S. Department of Energy's Federal Energy Management Program (FEMP), is intended for fleet managers in government agencies and other government officials who need to use more alternative fuels and AFVs in their fleets of cars and trucks. This publication describes the government's plans and progress in meeting goals for the use of AFVs, which are stated in the Energy Policy Act and various Executive Orders. It describes the types of AFVs available, lists actual and potential federal uses, makes some general recommendations, and presents field experiences to date.

Not Available

2003-09-01T23:59:59.000Z

391

Scalable Statistical Monitoring of Fleet , Dimitry Gorinevsky  

E-Print Network (OSTI)

LLC, Palo Alto, CA e-mail: dimitry@mitekan.com Abstract: This paper considers the problem of fitting monitoring of data from a fleet (population) of similar units. A fleet-wide extension of the multivariable historical cruise flight data. 1. INTRODUCTION 1.1 Population monitoring problems This paper considers

392

Business Case for CNG in Municipal Fleets (Presentation)  

SciTech Connect

Presentation about compressed natural gas in municipal fleets, assessing investment profitability, the VICE model, base-case scenarios, and pressing questions for fleet owners.

Johnson, C.

2010-07-27T23:59:59.000Z

393

Alternative Fuels Data Center: Fleet Emissions Reduction Requirements -  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Emissions Fleet Emissions Reduction Requirements - South Coast to someone by E-mail Share Alternative Fuels Data Center: Fleet Emissions Reduction Requirements - South Coast on Facebook Tweet about Alternative Fuels Data Center: Fleet Emissions Reduction Requirements - South Coast on Twitter Bookmark Alternative Fuels Data Center: Fleet Emissions Reduction Requirements - South Coast on Google Bookmark Alternative Fuels Data Center: Fleet Emissions Reduction Requirements - South Coast on Delicious Rank Alternative Fuels Data Center: Fleet Emissions Reduction Requirements - South Coast on Digg Find More places to share Alternative Fuels Data Center: Fleet Emissions Reduction Requirements - South Coast on AddThis.com... More in this section... Federal State Advanced Search

394

Yosemite Waters Vehicle Evaluation Report: Final Results (Brochure)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Results Results Prepared for South Coast Air Quality Management District by the National Renewable Energy Laboratory CRD-01-098 Fischer-Tropsch Synthetic Fuel Demonstration in a Southern California Vehicle Fleet Yosemite Waters Vehicle Evaluation Report Yosemite Waters Vehicle Evaluation Report i Alternative Fuel Trucks YOSEMITE WATERS VEHICLE EVALUATION REPORT Authors Leslie Eudy, National Renewable Energy Laboratory (NREL)

395

The risk of pedestrian injury and fatality in collisions with motor vehicles, a social ecological study of state routes and city streets in King County, Washington  

Science Journals Connector (OSTI)

This study examined the correlates of injury severity using police records of pedestrianĖmotor-vehicle collisions on state routes and city streets in King County, Washington. Levels of influence on collision outcome considered (1) the characteristics of individual pedestrians and drivers and their actions; (2) the road environment; and (3) the neighborhood environment. Binary logistic regressions served to estimate the risk of a pedestrian being severely injured or dying versus suffering minor or no injury. Significant individual-level influences on injury severity were confirmed for both types of roads: pedestrians being older or younger; the vehicle moving straight on the roadway. New variables associated with increased risk of severe injury or death included: having more than two pedestrians involved in a collision; and on city streets, the driver being inebriated. Road intersection design was significant only in the state route models, with pedestrians crossing at intersections without signals increasing the risk of being injured or dying. Adjusting for pedestriansí and driversí characteristics and actions, neighborhood medium home values and higher residential densities increased the risk of injury or death. No other road or neighborhood environment variable remained significant, suggesting that pedestrians were not safer in areas with high pedestrian activity.

Anne Vernez Moudon; Lin Lin; Junfeng Jiao; Philip Hurvitz; Paula Reeves

2011-01-01T23:59:59.000Z

396

NREL: Vehicles and Fuels Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects Projects NREL's vehicles and fuels projects focus on developing, evaluating, and demonstrating innovative technologies that reduce the nation's dependence on imported petroleum and improve air quality. We work in partnership with vehicle manufacturers, equipment suppliers, fuel providers, and others to develop and commercialize vehicle and fuel technologies that meet our nation's energy and environmental goals. Advanced Combustion and Fuels Biofuels Electric Vehicle Grid Integration Energy Storage Fleet Test and Evaluation Power Electronics ReFUEL Laboratory Secure Transportation Data Vehicle Ancillary Loads Reduction Vehicle Systems Analysis Printable Version Vehicles & Fuels Research Home Projects Advanced Combustion & Fuels Biofuels Electric Vehicle Grid Integration

397

Fueling the Navy's Great Green Fleet with Advanced Biofuels | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fueling the Navy's Great Green Fleet with Advanced Biofuels Fueling the Navy's Great Green Fleet with Advanced Biofuels Fueling the Navy's Great Green Fleet with Advanced Biofuels December 5, 2011 - 5:44pm Addthis Idaho National Laboratory describes R&D efforts to transform raw biomass into quality feedstocks for the production of renewable fuels, power and bioproducts. Aaron Crowell Senior Technical Research Analyst What does this project do? Develops and utilizes domestically produced biofuels to make our military and the nation more secure. From transporting the oil necessary to fuel jets and vehicles to supplying battery packs to infantry, energy plays a central role in almost everything the U.S. military does. Because of this reliance, it's imperative that the military cultivate energy sources that are not subject to the whims of

398

Fleet Evaluation and Factory Installation of Aerodynamic Heavy Duty Truck Trailers  

SciTech Connect

The purpose of DE-EE0001552 was to develop and deploy a combination of trailer aerodynamic devices and low rolling resistance tires that reduce fuel consumption of a class 8 heavy duty tractor-trailer combination vehicle by 15%. There were 3 phases of the project: Phase 1 Ė Perform SAE Typed 2 track tests with multiple device combinations. Phase 2 Ė Conduct a fleet evaluation with selected device combination. Phase 3 Ė Develop the devices required to manufacture the aerodynamic trailer. All 3 phases have been completed. There is an abundance of available trailer devices on the market, and fleets and owner operators have awareness of them and are purchasing them. The products developed in conjunction with this project are at least in their second round of refinement. The fleet test undertaken showed an improvement of 5.5 Ė 7.8% fuel economy with the devices (This does not include tire contribution).

Beck, Jason; Salari, Kambiz; Ortega, Jason; Brown, Andrea

2013-09-30T23:59:59.000Z

399

Multiple-vehicle resource-constrained navigation in the deep ocean  

E-Print Network (OSTI)

This thesis discusses sensor management methods for multiple-vehicle fleets of autonomous underwater vehicles, which will allow for more efficient and capable infrastructure in marine science, industry, and naval applications. ...

Reed, Brooks Louis-Kiguchi

2011-01-01T23:59:59.000Z

400

Vision Industries dba Vision Motor Corp | Open Energy Information  

Open Energy Info (EERE)

Vision Motor Corp) Place: Santa Monica, California Zip: 90405 Product: Santa Monica-based electric vehicle manufacturer. References: Vision Industries (dba Vision Motor Corp)1...

Note: This page contains sample records for the topic "motor vehicle fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Introduction to LNG vehicle safety. Topical report  

SciTech Connect

Basic information on the characteristics of liquefied natural gas (LNG) is assembled in this report to provide an overview of safety issues and practices for the use of LNG vehicles. This document is intended for those planning or considering the use of LNG vehicles, including vehicle fleet owners and operators, public transit officials and boards, local fire and safety officials, manufacturers and distributors, and gas industry officials. Safety issues and mitigation measures that should be considered for candidate LNG vehicle projects are addressed.

Bratvold, D.; Friedman, D.; Chernoff, H.; Farkhondehpay, D.; Comay, C.

1994-03-01T23:59:59.000Z

402

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BUI00815 Class: Compact Seatbelt Positions: 4 Type 2 : Multi-Mode PHEV (EV, Series, and Power-split) Motor Type: 12-pole permanent magnet AC synchronous Max. Power/Torque: 111 kW/370 Nm Max. Motor Speed: 9500 rpm Cooling: Active - Liquid cooled Generator Type: 16-pole permanent magnet AC synchronous Max. Power/Torque: 55 kW/200 Nm Max. Generator Speed: 6000 rpm Cooling: Active - Liquid cooled Battery Manufacturer: LG Chem Type: Lithium-ion Cathode/Anode Material: LiMn 2 O 4 /Hard Carbon Number of Cells: 288 Cell Config.: 3 parallel, 96 series Nominal Cell Voltage: 3.7 V Nominal System Voltage: 355.2 V Rated Pack Capacity: 45 Ah Rated Pack Energy: 16 kWh Weight of Pack: 435 lb

403

Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Michigan Fleet Reduces Michigan Fleet Reduces Gasoline and Diesel Use to someone by E-mail Share Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Facebook Tweet about Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Twitter Bookmark Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Google Bookmark Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Delicious Rank Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Digg Find More places to share Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on AddThis.com... Feb. 11, 2010 Michigan Fleet Reduces Gasoline and Diesel Use D iscover how the City of Ann Arbor reduced municipal fleet gas and diesel

404

Alternative Fuels Data Center: Federal Fleet Operation Regulations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Federal Fleet Federal Fleet Operation Regulations to someone by E-mail Share Alternative Fuels Data Center: Federal Fleet Operation Regulations on Facebook Tweet about Alternative Fuels Data Center: Federal Fleet Operation Regulations on Twitter Bookmark Alternative Fuels Data Center: Federal Fleet Operation Regulations on Google Bookmark Alternative Fuels Data Center: Federal Fleet Operation Regulations on Delicious Rank Alternative Fuels Data Center: Federal Fleet Operation Regulations on Digg Find More places to share Alternative Fuels Data Center: Federal Fleet Operation Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Federal Fleet Operation Regulations Federal fleets based in Arizona that operate primarily in counties with a

405

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Energy Storage Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental sustainability. In fact, transitioning to a light-duty fleet of HEVs and PEVs could reduce U.S. foreign oil dependence by 30-60% and greenhouse gas emissions by 30-45%, depending on the exact mix of technologies. For a general overview of electric drive vehicles, see the DOE's Alternative Fuel Data Center's pages on Hybrid and Plug-in Electric Vehicles and Vehicle Batteries. While a number of electric drive vehicles are available on the market, further improvements in batteries could make them more affordable and convenient to consumers. In addition to light-duty vehicles, some heavy-duty manufacturers are also pursuing hybridization of medium and heavy-duty vehicles to improve fuel economy and reduce idling.

406

Deployment of EVs in the Federal Fleet  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the Deployment of EV's in the Federal Fleet and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

407

Obama Administration Takes Major Step toward Advanced Vehicles with New  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Takes Major Step toward Advanced Vehicles with Takes Major Step toward Advanced Vehicles with New Fleet Management Practices and Launch of First Federal Electric Vehicle Pilot Obama Administration Takes Major Step toward Advanced Vehicles with New Fleet Management Practices and Launch of First Federal Electric Vehicle Pilot May 24, 2011 - 12:00am Addthis WASHINGTON, DC - Today, Secretary of Energy Steven Chu, General Services Administrator Martha Johnson, and White House Council on Environmental Quality Chair Nancy Sutley announced a major step in moving the Federal fleet further towards advanced vehicles and decreased petroleum consumption, while also cutting costs associated with fuel consumption. Furthering the Administration's goals to cut oil imports by one-third by 2025 and to put one million advanced vehicles on the road by 2015,

408

EVOLUTION OF THE HOUSEHOLD VEHICLE FLEET: ANTICIPATING FLEET COMPOSITION, PHEV ADOPTION AND GHG  

E-Print Network (OSTI)

more significant effects on energy dependence and greenhouse gas emissions. INTRODUCTION AND MOTIVATION to the trend scenario) while reducing CO2 emissions only slightly (by 5.13 percent, relative to trend but produces 25% of all greenhouse gas (GHG) emissions (BBC, 2002), with 28% of these emanating from

Kockelman, Kara M.

409

Alcohol and Motor Accidents  

Science Journals Connector (OSTI)

... averaged 18 a day and the injuries more than 600. Half the deaths were among pedestrians and a fifth among pedal cyclists, while drivers of motor vehicles and their passengers ... vehicles and their passengers had only a third to a fourth as many accidents as pedestrians. Although the data of the Ministry of Transport indicate that only 1 in 80 ...

1937-01-30T23:59:59.000Z

410

Alternative Fuel and Advanced Vehicle Tools (AFAVT), AFDC (Fact Sheet)  

SciTech Connect

The Alternative Fuels and Advanced Vehicles Web site offers a collection of calculators, interactive maps, and informational tools to assist fleets, fuel providers, and others looking to reduce petroleum consumption in the transportation sector.

Not Available

2010-01-01T23:59:59.000Z

411

Alternative Fuels Data Center: State Fleet Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Fleet Biodiesel State Fleet Biodiesel Fuel Use to someone by E-mail Share Alternative Fuels Data Center: State Fleet Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: State Fleet Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: State Fleet Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: State Fleet Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: State Fleet Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: State Fleet Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Fleet Biodiesel Fuel Use The Missouri Biodiesel Fuel Revolving Fund uses the money generated by the sale of Energy Policy Act of 1992 (EPAct) credits to cover the incremental

412

Advanced Motors  

SciTech Connect

Project Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?Motors and Generators for the 21st Century√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ě. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to motor fabrication opens up a new dimension in motor design. Feasibility Results We were able to optimize a IPMSM rotor to take advantage of the powder co-filling and DMC compaction processing methods. The minimum low speed torque requirement of 5 N-m can be met through an optimized design with magnet material having a Br capability of 0.2 T. This level of magnetic performance can be met with a variety of bonded magnet compositions. The torque ripple was found to drop significantly by using thinner magnet segments. The powder co-filling and subsequent compaction processing allow for thinner magnet structures to be formed. Torque ripple can be further reduced by using skewing and pole shaping techniques. The techniques can be incorporated into the rotor during the powder co-filling process.

Knoth, Edward A.; Chelluri, Bhanumathi; Schumaker, Edward J.

2012-12-14T23:59:59.000Z

413

Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Maintenance to Vehicle Maintenance to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Digg Find More places to share Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior Fleet Rightsizing System Efficiency Vehicle Maintenance to Conserve Fuel A comprehensive vehicle maintenance strategy can help fleet managers and

414

NREL: Fleet Test and Evaluation - Truck Stop Electrification  

NLE Websites -- All DOE Office Websites (Extended Search)

Stop Electrification Stop Electrification NREL's Fleet Test and Evaluation Team is evaluating and documenting the use of 50 truck stop electrification (TSE) sites along the busiest transportation corridors in the United States. Truck drivers typically idle their vehicles during mandated rest periods to maintain access to air conditioning, heat, and electricity. TSE sites allow truckers to enjoy these auxiliary systems by plugging into the electric grid instead of running their engines. The American Recovery and Reinvestment Act (ARRA) provided funding for these TSE sites-which feature electric power pedestals at 1,250 truck parking spaces-and for rebates to upgrade 5,000 long-haul trucks for drivers who agreed to use the facilities. Site usage will be monitored for three years to study patterns across the

415

A Novel Approach to the Design of an In-Wheel Semi-Anhysteretic Axial-Flux Switched-Reluctance Motor Drive System for Electric Vehicles .  

E-Print Network (OSTI)

??This thesis presents the development of an in-wheel drive system consisting of an axial-flux switched-reluctance motor and a hub suspension. The motor is designed usingÖ (more)

Lambert, Tim

2013-01-01T23:59:59.000Z

416

Vehicle Technologies Office: Workplace Charging Challenge Partner:  

NLE Websites -- All DOE Office Websites (Extended Search)

Bloomberg LP to someone by E-mail Bloomberg LP to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Bloomberg LP on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: Bloomberg LP on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Bloomberg LP on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Bloomberg LP on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: Bloomberg LP on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: Bloomberg LP on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness

417

Department of Electrical Engineering Fall 2009 Electridyne Motor  

E-Print Network (OSTI)

PENNSTATE Department of Electrical Engineering Fall 2009 Electridyne Motor Overview Our sponsored project was to design an elecrtic motor for an urban transportation vehicle, the challenges involved included research into motor design, consideration of the materials, and the electromagnetic parameters

Demirel, Melik C.

418

Lubricants- Pathway to Improving Fuel Efficiency of Legacy Fleet Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Reviews recent studies on potential for low-viscosity lubricants and low-friction surfaces and additives to reduce fuel consumption, and impact of such approaches on other critical lubricant metrics

419

HEV Fleet Testing Advanced Vehicle Testing Activities - 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DU5A0006063 Date Mileage Description Cost 8192009 5,090 Changed oil and filter and rotated tires 39.28 9162009 14,484 Changed oil and filter and replaced flat tire 152.58 10...

420

NREL: Fleet Test and Evaluation - Truck Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Efficiency The Fleet Test and Evaluation team is working with industry partners to evaluate truck efficiency technologies in long-haul truck cabs. To keep their cabs at a comfortable temperature, heavy-duty truck drivers idle their engines an average of 1,400 hours annually, using more than 800 million gallons of fuel each year. With diesel prices at an all-time high, carrier companies are looking into ways to incorporate truck efficiency technologies to eliminate engine idling. By doing so, they not only save money on fuel but reduce tailpipe emissions. To find ways trucks can be more efficient without idling, the Fleet Test and Evaluation team is researching: Thermal Load Reduction Idle Reduction Printable Version Fleet Test and Evaluation Home Research & Development

Note: This page contains sample records for the topic "motor vehicle fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

HyFLEET:CUTE | Open Energy Information  

Open Energy Info (EERE)

HyFLEET:CUTE HyFLEET:CUTE Jump to: navigation, search Tool Summary LAUNCH TOOL Name: HyFLEET:CUTE Agency/Company /Organization: European Commission Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.global-hydrogen-bus-platform.com/ This demonstration project includes fuel cell buses in Europe, specifically the design, construction and testing of the next generation of fuel cell and internal combustion engine buses; development and testing of new fueling infrastructure; and development, optimization, and testing of existing infrastructure. How to Use This Tool This tool is most helpful when using these strategies: Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air pollutants and greenhouse gas emissions.

422

Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost  

E-Print Network (OSTI)

Optimal design and allocation of electrified vehicles and dedicated charging infrastructure infrastructure in US fleet. c Under US grid mix, PEVs provide minor GHG reductions and work chargers do little. c vehicles Plug-in hybrid electric vehicles Hybrid electric vehicles a b s t r a c t Electrified vehicles can

Michalek, Jeremy J.

423

NREL: Vehicle Systems Analysis - Plug-In Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles NREL's vehicle systems analysts work to advance the technology of plug-in hybrid electric vehicles (PHEVs), also known as grid-connected or grid-charged hybrids. Technology Targets and Metrics Analysis We use our Technical Targets Tool to determine pathways for maximizing the potential national impact of plug-in hybrid electric vehicles. This assessment includes consideration of how consumers will value the new vehicle technology based on attributes such as: Acceleration Fuel economy and consumption Cargo capacity Cost. We use the resulting competitiveness index to predict the vehicle's market penetration rate. Then, we can create a total national benefits picture after adding in other factors such as: Existing fleet turnover

424

Alternative Fuels Data Center: Massachusetts Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Massachusetts Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Massachusetts Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Massachusetts Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Massachusetts Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Massachusetts Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Massachusetts Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section...

425

Alternative Fuels Data Center: Idaho Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Idaho Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Idaho Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Idaho Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Idaho Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

426

Alternative Fuels Data Center: Florida Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

427

Alternative Fuels Data Center: Oregon Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Oregon Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Oregon Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Oregon Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Oregon Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

428

Alternative Fuels Data Center: Illinois Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Illinois Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Illinois Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Illinois Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Illinois Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

429

Alternative Fuels Data Center: Nevada Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Nevada Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Nevada Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Nevada Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Nevada Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

430

Alternative Fuels Data Center: Clean and Efficient Fleet Assistance  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean and Efficient Clean and Efficient Fleet Assistance to someone by E-mail Share Alternative Fuels Data Center: Clean and Efficient Fleet Assistance on Facebook Tweet about Alternative Fuels Data Center: Clean and Efficient Fleet Assistance on Twitter Bookmark Alternative Fuels Data Center: Clean and Efficient Fleet Assistance on Google Bookmark Alternative Fuels Data Center: Clean and Efficient Fleet Assistance on Delicious Rank Alternative Fuels Data Center: Clean and Efficient Fleet Assistance on Digg Find More places to share Alternative Fuels Data Center: Clean and Efficient Fleet Assistance on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Clean and Efficient Fleet Assistance Western Washington Clean Cities and the Puget Sound Clean Air Agency

431

Alternative Fuels Data Center: Strategies for Fleet Managers to Conserve  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Strategies for Fleet Strategies for Fleet Managers to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Strategies for Fleet Managers to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Strategies for Fleet Managers to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Strategies for Fleet Managers to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Strategies for Fleet Managers to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Strategies for Fleet Managers to Conserve Fuel on Digg Find More places to share Alternative Fuels Data Center: Strategies for Fleet Managers to Conserve Fuel on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior Management Strategies

432

Alternative Fuels Data Center: Alabama Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

433

Alternative Fuels Data Center: Ohio Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Ohio Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Ohio Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Ohio Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Ohio Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

434

Alternative Fuels Data Center: Utah Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

435

Alternative Fuels Data Center: Tennessee Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Tennessee Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Tennessee Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Tennessee Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Tennessee Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Tennessee Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Tennessee Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search

436

Alternative Fuels Data Center: Kansas Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Kansas Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Kansas Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Kansas Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Kansas Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

437

Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal

438

Alternative Fuels Data Center: Montana Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Montana Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Montana Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Montana Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Montana Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

439

Operability and Emissions from a Medium-Duty Fleet Operating...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Operability and Emissions from a Medium-Duty Fleet Operating with GTL Fuel and Catalyzed DPFs Operability and Emissions from a Medium-Duty Fleet Operating with GTL Fuel and...

440

Contributing Data to the Fleet DNA Project (Brochure), NREL ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Photo from iStock9420677 Contributing Data to the Fleet DNA Project Sponsored by the U.S. Department of Energy, the Fleet DNA project aims to accelerate the evolution of advanced...

Note: This page contains sample records for the topic "motor vehicle fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Alternative Fuels Data Center: Kentucky Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

442

Alternative Fuels Data Center: Colorado Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Colorado Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Colorado Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Colorado Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Colorado Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

443

Alternative Fuels Data Center: Oklahoma Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Oklahoma Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Oklahoma Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Oklahoma Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Oklahoma Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

444

Alternative Fuels Data Center: Arkansas Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Arkansas Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Arkansas Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Arkansas Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Arkansas Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

445

Alternative Fuels Data Center: Arizona Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Arizona Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Arizona Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Arizona Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Arizona Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

446

Alternative Fuels Data Center: Washington Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Washington Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Washington Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Washington Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Washington Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search

447

Alternative Fuels Data Center: Wisconsin Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Wisconsin Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search

448

Alternative Fuels Data Center: Delaware Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

449

Alternative Fuels Data Center: Louisiana Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search

450

Alternative Fuels Data Center: Mississippi Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Mississippi Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Mississippi Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Mississippi Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Mississippi Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State

451

Alternative Fuels Data Center: California Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: California Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: California Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: California Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: California Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: California Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: California Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search

452

Alternative Fuels Data Center: Maine Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

453

Alternative Fuels Data Center: Wyoming Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

454

Alternative Fuels Data Center: Texas Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Texas Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Texas Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Texas Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Texas Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

455

Alternative Fuels Data Center: Iowa Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Iowa Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Iowa Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Iowa Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Iowa Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

456

Alternative Fuels Data Center: Michigan Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Michigan Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Michigan Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Michigan Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Michigan Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

457

Alternative Fuels Data Center: Minnesota Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Minnesota Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Minnesota Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Minnesota Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Minnesota Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search

458

Alternative Fuels Data Center: Veolia Transportation Converts Taxi Fleet to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Veolia Transportation Veolia Transportation Converts Taxi Fleet to Propane to someone by E-mail Share Alternative Fuels Data Center: Veolia Transportation Converts Taxi Fleet to Propane on Facebook Tweet about Alternative Fuels Data Center: Veolia Transportation Converts Taxi Fleet to Propane on Twitter Bookmark Alternative Fuels Data Center: Veolia Transportation Converts Taxi Fleet to Propane on Google Bookmark Alternative Fuels Data Center: Veolia Transportation Converts Taxi Fleet to Propane on Delicious Rank Alternative Fuels Data Center: Veolia Transportation Converts Taxi Fleet to Propane on Digg Find More places to share Alternative Fuels Data Center: Veolia Transportation Converts Taxi Fleet to Propane on AddThis.com... Aug. 17, 2013 Veolia Transportation Converts Taxi Fleet to Propane

459

Alternative Fuels Data Center: Missouri Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Missouri Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Missouri Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Missouri Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Missouri Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

460

Alternative Fuels Data Center: Virginia Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Virginia Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Virginia Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Virginia Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Virginia Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

Note: This page contains sample records for the topic "motor vehicle fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Alternative Fuels Data Center: Indiana Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

462

Alternative Fuels Data Center: Connecticut Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State

463

Alternative Fuels Data Center: Georgia Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

464

Alternative Fuels Data Center: Vermont Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

465

Alternative Fuels Data Center: Hawaii Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

466

Alternative Fuels Data Center: Federal Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Federal Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Federal Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

467

Alternative Fuels Data Center: Nebraska Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Nebraska Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Nebraska Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Nebraska Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Nebraska Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

468

Alternative Fuels Data Center: Maryland Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Maryland Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Maryland Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Maryland Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Maryland Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

469

Vehicles News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 14, 2010 July 14, 2010 Department of Energy Releases New Report on Economic Impact of Recovery Act Advanced Vehicle Investments Report Finds Recovery Act Advanced Vehicle Projects Are Creating Jobs, Spurring Private Capital Investment and Cutting Electric Vehicle Cost May 26, 2010 Deputy Secretary Poneman Attends Ground Breaking at Tennessee Advanced Vehicle Battery Plant Smyrna Electric Vehicle Project Expected to provide up to 1,500 Jobs in Tennessee March 31, 2010 GSA Doubles the Federal Hybrid Fleet, DOE Takes the Lead in Updating to Hybrids Agencies Move to Increase Energy Security and Fuel Efficiency January 11, 2010 Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles October 15, 2009 2010 Annual Fuel Economy Guide Now Available

470

Hydrogen Storage Requirements for Fuel Cell Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

GENERAL MOTORS GENERAL MOTORS HYDROGEN STORAGE REQUIREMENTS FOR FUEL CELL VEHICLES Brian G. Wicke GM R&D and Planning DOE Hydrogen Storage Workshop August 14-15, 2002 Argonne National Laboratory General Motors Fuel Cell Vehicles * GM fuel cell vehicle Goal - be the first to profitably sell one million fuel cell vehicles * Fuel cell powerplant must be suitable for a broad range of light-duty vehicles (not just niche) * UNCOMPROMISED performance & reliability are REQUIRED * SAFETY IS A GIVEN * Evolutionary and Revolutionary vehicle designs are included-GM AUTONOMY-as long as the customer is (more than) satisfied GENERAL MOTORS AUTONOMY GENERAL MOTORS AUTONOMY General Motors Fuel Cell Vehicles * Focus on PEM fuel cell technology * Must consider entire hydrogen storage & (unique) fuel delivery systems,

471

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

to Protect the Use of Persian-Gulf Oil for Motor Vehicles,to Protect the Use of Persian Gulf Oil for Motor Vehicles,military expense for Persian Gulf and fraction of Persian

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

472

Clean Cities: Natural Gas Vehicle Technology Forum Leadership Committee  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technology Forum Vehicle Technology Forum Leadership Committee Meeting to someone by E-mail Share Clean Cities: Natural Gas Vehicle Technology Forum Leadership Committee Meeting on Facebook Tweet about Clean Cities: Natural Gas Vehicle Technology Forum Leadership Committee Meeting on Twitter Bookmark Clean Cities: Natural Gas Vehicle Technology Forum Leadership Committee Meeting on Google Bookmark Clean Cities: Natural Gas Vehicle Technology Forum Leadership Committee Meeting on Delicious Rank Clean Cities: Natural Gas Vehicle Technology Forum Leadership Committee Meeting on Digg Find More places to share Clean Cities: Natural Gas Vehicle Technology Forum Leadership Committee Meeting on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership

473

Chronological History of Federal Fleet Actions and Mandates (Brochure)  

SciTech Connect

This chronological history of Federal fleet actions and mandates provides a year-by-year timeline of the acts, amendments, executive orders, and other regulations that affect Federal fleets. The fleet actions and mandates included in the timeline span from 1988 to 2009.

Not Available

2011-04-01T23:59:59.000Z

474

NREL: Transportation Research - Fleet Test and Evaluation  

NLE Websites -- All DOE Office Websites (Extended Search)

truck-compared to conventional vehicles. Photo courtesy of Smith Electric Vehicles Photo of heavy-duty truck in a laboratory setting with tubes and chains connecting...

475

Evaluation of Oil Bypass Filter Technology on Heavy-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

(Advanced Vehicle Testing Activity) (Advanced Vehicle Testing Activity) Evaluation of Oil Bypass Filter Technology on Heavy-Duty Vehicles James Francfort American Filtration and Separations Society April 2005 Presentation Outline * Background & Objectives * Oil bypass filters - features & reported benefits * INL testing method * puraDYN oil bypass filters * Refined Global Solutions (RGS) oil bypass filters * Testing results & trends * Particulate and ferrography testing * Initial INL Oil Bypass Filter Economics * Potential fleet oil savings * Testing Status Bypass Filter Evaluation - Background * Funded by the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program (Advanced Vehicle Testing Activity) * Vehicles operated by Idaho National Laboratory's Fleet Operations group * Idaho National Laboratory

476

Waste Management's LNG Truck Fleet: Final Results  

SciTech Connect

Waste Management, Inc., began operating a fleet of heavy-duty LNG refuse trucks at its Washington, Pennsylvania, facility. The objective of the project was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel for heavy-duty trucking applications.

Chandler, K. [Battelle (US); Norton, P. [National Renewable Energy Laboratory (US); Clark, N. [West Virginia University (US)

2001-01-25T23:59:59.000Z

477

Characteristics of the Texas Shrimp Fleet, 197982  

E-Print Network (OSTI)

of their catch (Christmas and Etzold, 1977). The economic contribution of the total commercial landings in Texas/effort relation- ships (Christmas and Etzold, 1977), 1 Maril, R. 1979. Shrimping in Texas: Social and economic- ing 1979-82 and evaluates changes in the composition of the fleet in light of recent regulatory

478

Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Petroleum Reduction Strategies for Vehicles and Mobile Petroleum Reduction Strategies for Vehicles and Mobile Equipment Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment October 7, 2013 - 11:50am Addthis YOU ARE HERE: Step 3 As defined by the Federal Energy Management Program (FEMP), greenhouse gas (GHG) emission reduction strategies for Federal vehicles and equipment are based on the three driving principles of petroleum reduction: Reduce vehicle miles traveled Improve fuel efficiency Use alternative fuels. These strategies provide a framework for an agency to use when developing a strategic plan that can be specifically tailored to match the agency's fleet profile and meet its mission. Agency fleet managers should evaluate petroleum reduction strategies and tactics for each fleet location, based on an evaluation of site-specific

479

Vehicle Technologies Office: EPAct Transportation Regulatory Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

EPAct Transportation Regulatory Activities EPAct Transportation Regulatory Activities The U.S. Department of Energy's (DOE) Vehicle Technologies Office manages several Energy Policy Act (EPAct) transportation regulatory activities that aim to reduce U.S. petroleum consumption by building a core market for alternative fuel vehicles (AFVs). EPAct directed DOE to develop the Alternative Fuel Transportation Program to manage regulatory activities, including the State and Alternative Fuel Provider Fleet Program, which requires covered fleets to reduce petroleum consumption through one of two compliance methods. Features Discover how National Grid meets EPAct requirements Read the latest newsletter Learn about Alternative Compliance Quick Links Standard Compliance Reporting Standard Compliance Alternative Compliance

480

CMVRTC: Overweight Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

overweight vehicle data collection overweight vehicle data collection scale The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination

Note: This page contains sample records for the topic "motor vehicle fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles  

E-Print Network (OSTI)

hybrids with high power electric motors for which it may beusing only a 6 kW electric motor. Vehicle projects inhybrids with high power electric motors for which it may be

Burke, Andy

2009-01-01T23:59:59.000Z

482

Alternative Fuels Data Center: Local and Public Transportation Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Local and Public Local and Public Transportation Fleet Alternative Fuel Study to someone by E-mail Share Alternative Fuels Data Center: Local and Public Transportation Fleet Alternative Fuel Study on Facebook Tweet about Alternative Fuels Data Center: Local and Public Transportation Fleet Alternative Fuel Study on Twitter Bookmark Alternative Fuels Data Center: Local and Public Transportation Fleet Alternative Fuel Study on Google Bookmark Alternative Fuels Data Center: Local and Public Transportation Fleet Alternative Fuel Study on Delicious Rank Alternative Fuels Data Center: Local and Public Transportation Fleet Alternative Fuel Study on Digg Find More places to share Alternative Fuels Data Center: Local and Public Transportation Fleet Alternative Fuel Study on AddThis.com...

483

A novel approach to controlling the phase angle of a variable switched reluctance motor for electric vehicle propulsion using the statistic matrix norm  

SciTech Connect

Variable switched reluctance (VSR) motors are gaining importance for industrial applications. The paper will introduce a novel approach to simplify the computation involved in the control of VSR motors. Results are shown, that validate the approach and demonstrates the superior performance compared to tabulated control parameters with linear interpolation, which are widely used in implementations.

Holling, G.H. [Advanced Motion Controls Inc., Princeton, WI (United States)

1994-12-31T23:59:59.000Z

484

Alternative Fuels Data Center: Vehicle Registration Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Registration Vehicle Registration Requirement to someone by E-mail Share Alternative Fuels Data Center: Vehicle Registration Requirement on Facebook Tweet about Alternative Fuels Data Center: Vehicle Registration Requirement on Twitter Bookmark Alternative Fuels Data Center: Vehicle Registration Requirement on Google Bookmark Alternative Fuels Data Center: Vehicle Registration Requirement on Delicious Rank Alternative Fuels Data Center: Vehicle Registration Requirement on Digg Find More places to share Alternative Fuels Data Center: Vehicle Registration Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vehicle Registration Requirement Motor vehicle registration applicants must provide proof of compliance with

485

Vehicle Technologies Office: Electrical Machines  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Machines to Electrical Machines to someone by E-mail Share Vehicle Technologies Office: Electrical Machines on Facebook Tweet about Vehicle Technologies Office: Electrical Machines on Twitter Bookmark Vehicle Technologies Office: Electrical Machines on Google Bookmark Vehicle Technologies Office: Electrical Machines on Delicious Rank Vehicle Technologies Office: Electrical Machines on Digg Find More places to share Vehicle Technologies Office: Electrical Machines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Electrical Machines Emphasis in the electrical machines activity is on advanced motor

486

Quantifying the benefits of vehicle pooling with shareability networks  

Science Journals Connector (OSTI)

...wasted time and fuel caused by congestion...of Collaborative Consumption ( HarperCollins...factor of speed and engine load, which are...vehicle emissions and fuel consumption in urban driving...vehicle speed and engine load on motor vehicle...

Paolo Santi; Giovanni Resta; Michael Szell; Stanislav Sobolevsky; Steven H. Strogatz; Carlo Ratti

2014-01-01T23:59:59.000Z

487

FleetAtlas | Open Energy Information  

Open Energy Info (EERE)

FleetAtlas FleetAtlas Jump to: navigation, search Tool Summary LAUNCH TOOL Name: FleetAtlas Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Transportation Resource Type: Software/modeling tools User Interface: Website Website: maps.nrel.gov/fleetatlas Country: United States Web Application Link: maps.nrel.gov/fleetatlas Cost: Free OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools UN Region: Northern America Coordinates: 39.7405574¬į, -105.1719904¬į Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7405574,"lon":-105.1719904,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

488

LNG fleet increases in size and capabilities  

SciTech Connect

The LNG fleet as of early 1997 consisted of 99 vessels with total cargo capacity of 10.7 million cu m, equivalent to approximately 4.5 million tons. One of the newest additions to the fleet, the 137,000-cu m tanker Al Zubarah, is five times the size of the original commercial vessel Methane Princess. Al Zubarah`s first loading of more than 60,000 tons occurred in December 1996 for deliver to Japanese buyers from the newly commissioned Qatargas LNG plant at Ras Laffan. That size cargo contains enough clean-burning energy to heat 60,000 homes in Japan for 1 month. Measuring nearly 1,000 ft long, the tanker is among the largest in the industry fleet and joined 70 other vessels of more than 100,000 cu m. Most LNG tankers built since 1975 have been larger-capacity vessels. The paper discusses LNG shipping requirements, containment systems, vessel design, propulsion, construction, operations and maintenance, and the future for larger vessels.

Linser, H.J. Jr.; Drudy, M.J.; Endrizzi, F.; Urbanelli, A.A. [Mobil Shipping and Transportation, Fairfax, VA (United States)

1997-06-02T23:59:59.000Z

489

motor | OpenEI  

Open Energy Info (EERE)

0 0 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142279950 Varnish cache server motor Dataset Summary Description The data included in this submission is United States Department of Transportation (DOT) data up to 1995. The data includes motor-fuel gallonage taxes 1950-1995, motor-fuel use 1919-1995, private and commercial highway use of special fuels, by state 1949-1995, highway use of gasoline, by state 1949-1995, gasohol sales by state, 1980-1992, and estimated use of gasohol, 1993-1995. The data is presented in .xlsx format. Source DOT Date Released Unknown Date Updated Unknown Keywords DOT Fuel highway motor vehicle Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Motor-fuel gallonage taxes 1950-1995 (xlsx, 37.3 KiB)

490

Quantifying the benefits of hybrid vehicles  

E-Print Network (OSTI)

is not trueóremember the diesel electric locomotive. One bigrunning on gasoline or diesel with electric motors that usediesel vehicles, as well as encouraging improvements in electric

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

491

Vehicle Technologies Office: 2011 Advanced Power Electronics...  

Energy Savers (EERE)

2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and Inverters...

492

Alternative Fuels Data Center: Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

North American Bus Industries Nova Bus Peterbilt Motors Proterra Schwarze Industries Smith Electric Vehicles StarTrans TYMCO Thomas Built Buses Trans Tech Turtle Top Van Hool...

493

NREL: Learning - Fuel Cell Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

then stored in a battery that powers the vehicle's electric motor and other electric-powered equipment. For more information about fuel cell vehicles, visit the U.S. Department...

494

Vehicle Technologies Office: Electric Drive Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Advanced power electronics and electric motors (APEEM) that make up vehicles' electric drive system are essential to hybrid and plug-in electric vehicles. As such, improvements in these...

495

CMVRTC: Overweight Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy and overweight vehicle brake testing for combination five-axle Heavy and overweight vehicle brake testing for combination five-axle tractor-flatbed scale The Federal Motor Carrier Safety Administration, in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a

496

Vehicle Investment and Operating Costs and Savings for Greenhouse Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Investment and Operating Costs and Savings for Greenhouse Vehicle Investment and Operating Costs and Savings for Greenhouse Gas Mitigation Strategies Vehicle Investment and Operating Costs and Savings for Greenhouse Gas Mitigation Strategies October 7, 2013 - 1:17pm Addthis YOU ARE HERE: Step 4 To help estimate costs of implementing greenhouse gas (GHG) mitigation strategies for vehicles, the table below provides the initial investment, operating costs, and operating savings for each strategy. Table 1. Types and Ranges of Initial Investment Requirements and Annual Operating Costs and Savings. Strategies Initial Investment Operating Costs Operating Savings Consolidate trips Time to research & coordinate routes None Eliminate fleet vehicle trips; reduce cost & time (fuel, maintenance, etc) associated with fleet vehicle use. Could result in decreasing inventory & need for vehicles leading to long-term savings

497

Motors Motor controllers  

E-Print Network (OSTI)

Aluminium frame Motors Motor controllers Ultrasonic multi-channel acquisition PC Tank Tank 400 600 800 1000 0 50 2 4 6 8 x 10 -3 r/r 0 Range (mm) Depth(mm) 25 /t Tand / or #12;Shallow water

498

2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure  

Energy.gov (U.S. Department of Energy (DOE))

Introducing hydrogen as an energy carrier would involve major changes in the country's energy and vehicle fleet infrastructure. Technical challenges, costs, and risk will be highest in the near...

499

Traveled distance, stock and fuel efficiency of private vehicles in Canada: price elasticities and rebound effect  

Science Journals Connector (OSTI)

This paper presents estimates of the rebound effect and other elasticities for the Canadian light-duty vehicle fleet using panel data at the provincial level from 1990 to 2004. We estimate a simultaneous three-eq...

Philippe Barla; Bernard Lamonde; Luis F. Miranda-Moreno; Nathalie Boucher

2009-07-01T23:59:59.000Z

500

Vehicle Technologies Office: Annual Progress Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Progress Reports Annual Progress Reports 2013 DOE Vehicle Technologies Office Annual Merit Review 2012 Advanced Combustion Engine Research and Development Advanced Power Electronics and Electric Motors DOE Vehicle Technologies Office Annual Merit Review Energy Storage Research and Development Fuel & Lubricant Technologies Lightweight Materials Propulsion Materials Vehicle and Systems Simulation and Testing 2011 Advanced Combustion Engine Research and Development Advanced Power Electronics and Electric Motors DOE Vehicle Technologies Office Annual Merit Review Energy Storage Research and Development Lightweighting Materials Propulsion Materials Vehicle and Systems Simulation and Testing 2010 Advanced Combustion Engine Research and Development Advanced Power Electronics and Electric Motors