National Library of Energy BETA

Sample records for motion kinetic energy

  1. Sandia Energy - Combustion Kinetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kinetics Home Transportation Energy Predictive Simulation of Engines Combustion Chemistry Combustion Kinetics Combustion KineticsAshley Otero2015-10-28T02:45:13+00:00 The...

  2. Extending Newton's Law from Nonlocal-in-Time Kinetic Energy

    E-Print Network [OSTI]

    Extending Newton's Law from Nonlocal-in-Time Kinetic Energy J.A.K. Suykens K.U. Leuven, ESAT: nonlocal-in-time kinetic energy, higher order Euler-Lagrange equation, Newton's sec- ond law of motion the kinetic energy with a form of nonlocal-in-time kinetic energy. It leads to a hypothetical extension

  3. Motion-to-Energy (M2Eâ?¢) Power Generation Technology

    ScienceCinema (OSTI)

    Idaho National Laboratory

    2010-01-08

    INL researchers developed M2E, a new technology that converts motion to energy. M2E uses an innovative, optimized microgenerator with power management circuitry that kinetically charges mobile batteries from natural motion such as walking. To learn more,

  4. Motion-to-Energy (M2E) Power Generation Technology

    ScienceCinema (OSTI)

    INL

    2009-09-01

    INL researchers developed M2E, a new technology that converts motion to energy. M2E uses an innovative, optimized microgenerator with power management circuitry that kinetically charges mobile batteries from natural motion such as walking.

  5. Harvesting Kinetic Energy with Switched-Inductor DCDC Converters

    E-Print Network [OSTI]

    Rincon-Mora, Gabriel A.

    energy in motion may not compete with solar power but, in contrast to indoor lighting and thermal sources- power piezoelectric and electrostatic kinetic-harvesting sources. I. HARVESTING KINETIC ENERGY temperature gradients, the fundamental source from which the device draws energy [3]. Harvesting the kinetic

  6. Quantum potential energy as concealed motion

    E-Print Network [OSTI]

    Peter Holland

    2014-11-13

    It is known that the Schroedinger equation may be derived from a hydrodynamic model in which the Lagrangian position coordinates of a continuum of particles represent the quantum state. Using Routh\\s method of ignorable coordinates it is shown that the quantum potential energy of particle interaction that represents quantum effects in this model may be regarded as the kinetic energy of additional concealed freedoms. The method brings an alternative perspective to Planck\\s constant, which plays the role of a hidden variable, and to the canonical quantization procedure, since what is termed kinetic energy in quantum mechanics may be regarded literally as energy due to motion.

  7. Dimensional enhancement of kinetic energies

    E-Print Network [OSTI]

    W. P. Schleich; J. P. Dahl

    2002-03-14

    Simple thermodynamics considers kinetic energy to be an extensive variable which is proportional to the number, N, of particles. We present a quantum state of N non-interacting particles for which the kinetic energy increases quadratically with N. This enhancement effect is tied to the quantum centrifugal potential whose strength is quadratic in the number of dimensions of configuration space.

  8. Using Motion Planning to Map Protein Folding Landscapes and Analyze Folding Kinetics of Known Native Structures*

    E-Print Network [OSTI]

    Istrail, Sorin

    Using Motion Planning to Map Protein Folding Landscapes and Analyze Folding Kinetics of Known technique to study protein folding pathways of several small proteins and obtained encouraging results. In this pa- per, we describe how our motion planning framework can be used to study protein folding kinetics

  9. Sandia Energy - Combustion Kinetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjects Caterpillar, SandiaCombustion Kinetics Home

  10. Blue Motion Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-GasIllinois: EnergyHills, Connecticut: EnergyMotion Energy

  11. Department of Energy Files Motion to Withdraw Yucca Mountain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Files Motion to Withdraw Yucca Mountain License Application Department of Energy Files Motion to Withdraw Yucca Mountain License Application March 3, 2010 -...

  12. Eco Kinetics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of the NationalDynetek EuropeEPG|ElecSolutionsKinetics Jump

  13. Vision Research 40 (2000) 21352147 Visual motion of missing-fundamental patterns: motion energy

    E-Print Network [OSTI]

    He, Sheng

    2000-01-01

    Vision Research 40 (2000) 2135­2147 Visual motion of missing-fundamental patterns: motion energy-fundamental chromatic gratings and plaids, at approximate isoluminance, and missing-fundamen- tal luminance barberpoles: Motion energy; Feature tracking; Missing fundamental pattern; Plaids; Barberpole www

  14. Amber Kinetics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to: navigation, search Name:Ambata Capital Partners

  15. PHYS 626 --Fundamentals of Plasma Physics --Section 6.4-6.5 1. Using the ideal MHD equation of motion, an energy equation can be derived. It is

    E-Print Network [OSTI]

    Ng, Chung-Sang

    ). The energy of the wave is propagating along ^z, with group velocity vg = VA ^z. 4. The other two modes of motion, an energy equation can be derived. It is simply the continuity equation of energy density, which is the sum of kinetic energy density mU2 /2, magnetic energy density B2 /2µ0, and the internal energy

  16. Negative kinetic energy term of general relativity and its removing

    E-Print Network [OSTI]

    T. Mei

    2009-03-30

    We first present a new Lagrangian of general relativity, which can be divided into kinetic energy term and potential energy term. Taking advantage of vierbein formalism, we reduce the kinetic energy term to a sum of five positive terms and one negative term. Some gauge conditions removing the negative kinetic energy term are discussed. Finally, we present a Lagrangian that only include positive kinetic energy terms. To remove the negative kinetic energy term leads to a new field equation of general relativity in which there are at least five equations of constraint and at most five dynamical equations, this characteristic is different from the normal Einstein field equation in which there are four equations of constraint and six dynamical equations.

  17. Kinetic Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrderInformation Kilauea Southwest RiftKimble

  18. An action with positive kinetic energy term for general relativity

    E-Print Network [OSTI]

    T. Mei

    2007-11-02

    At first, we state some results in arXiv: 0707.2639, and then, using a positive kinetic energy coordinate condition given by arXiv: 0707.2639, we present an action with positive kinetic energy term for general relativity. Based on this action, the corresponding theory of canonical quantization is discussed.

  19. Motion to intervene and comments of the energy services group...

    Energy Savers [EERE]

    intervene and comments of the energy services group of Hydro-Quebec and H.Q. Energy Services (U.S.) Inc, on FE 99-1 Motion to intervene and comments of the energy services group of...

  20. Spectral Cascade and Energy Dissipation in Kinetic Alfven Wave Turbulence

    E-Print Network [OSTI]

    Lin, Zhihong

    Spectral Cascade and Energy Dissipation in Kinetic Alfv´en Wave Turbulence Xi Cheng, Zhihong Lin energy sources at large spatial scales. The energy of these non- linearly interacting Alfven waves. 2000). The wave-particle energy exchange rates of these channels depend on the spectral properties near

  1. Energy landscapes, folding mechanisms and kinetics of RNA tetraloop hairpins

    E-Print Network [OSTI]

    Chakraborty, Debayan; Collepardo-Guevara, Rosana; Wales, David J.

    2014-12-02

    of its biological functions, are poorly understood. In this work, we use the discrete path sampling (DPS) approach to explore the energy landscapes of two RNA tetraloop hairpins, and provide insights into their folding mechanisms and kinetics in atomistic...

  2. Kinetic Energy Is Important in the Nanoscale World Frank Rioux

    E-Print Network [OSTI]

    Rioux, Frank

    that a is the best trial function of the three because it gives the lowest total energy, the primary criterionKinetic Energy Is Important in the Nanoscale World Frank Rioux Department of Chemistry College phenomena found in textbooks are expressed in terms of potential-energy-only (PEO) models. Inclusion

  3. FREE ENERGIES OF STAGING A SCENARIO AND PERPETUAL MOTION

    E-Print Network [OSTI]

    Salamon, Peter

    CHAPTER 1 FREE ENERGIES OF STAGING A SCENARIO AND PERPETUAL MOTION MACHINES OF THE THIRD KIND Peter to a notion of staging free energy: the free energy invested in choreographing all the actors of a biochemical \\offprintinfo{(Title, Edition)}{(Author)} at the beginning of your document. 1 #12;2 FREE ENERGIES OF STAGING

  4. Conservation of Energy Academic Resource Center

    E-Print Network [OSTI]

    Heller, Barbara

    Concepts Kinetic Energy Gravitational Potential Energy Elastic Potential Energy · Example Conceptual thusly: "A body in motion has energy of motion, or kinetic energy." #12;Potential Energy According have the kinetic energy at the bottom of the swing in terms of the potential energy at the beginning

  5. Ocean Motion International LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd|Northfork ElectricName01988) | OpenThe NeedlesMotion

  6. Measuring kinetic energy changes in the mesoscale with low acquisition rates

    SciTech Connect (OSTI)

    Roldán, É.; Martínez, I. A.; Rica, R. A.; Dinis, L.

    2014-06-09

    We report on the measurement of the average kinetic energy changes in isothermal and non-isothermal quasistatic processes in the mesoscale, realized with a Brownian particle trapped with optical tweezers. Our estimation of the kinetic energy change allows to access to the full energetic description of the Brownian particle. Kinetic energy estimates are obtained from measurements of the mean square velocity of the trapped bead sampled at frequencies several orders of magnitude smaller than the momentum relaxation frequency. The velocity is tuned applying a noisy electric field that modulates the amplitude of the fluctuations of the position and velocity of the Brownian particle, whose motion is equivalent to that of a particle in a higher temperature reservoir. Additionally, we show that the dependence of the variance of the time-averaged velocity on the sampling frequency can be used to quantify properties of the electrophoretic mobility of a charged colloid. Our method could be applied to detect temperature gradients in inhomogeneous media and to characterize the complete thermodynamics of biological motors and of artificial micro and nanoscopic heat engines.

  7. Einstein-Maxwell Dirichlet walls, negative kinetic energies, and the adiabatic approximation for extreme black holes

    E-Print Network [OSTI]

    Andrade, T; Kelly, WR; Marolf, D

    2015-01-01

    a family of equal-energy solutions known as a moduli space.admit negative kinetic energy solutions with E energy of this solution to be written in

  8. When and how does a prominence-like jet gain kinetic energy?

    SciTech Connect (OSTI)

    Liu, Jiajia; Liu, Rui; Zhang, Quanhao; Liu, Kai; Shen, Chenglong; Wang, S.; Wang, Yuming

    2014-02-20

    A jet is a considerable amount of plasma being ejected from the chromosphere or lower corona into the higher corona and is a common phenomenon. Usually, a jet is triggered by a brightening or a flare, which provides the first driving force to push plasma upward. In this process, magnetic reconnection is thought to be the mechanism to convert magnetic energy into thermal, nonthermal, and kinetic energies. However, most jets could reach an unusual high altitude and end much later than the end of its associated flare. This fact implies that there is another way to continuously transfer magnetic energy into kinetic energy even after the reconnection. The picture described above is well known in the community, but how and how much magnetic energy is released through a way other than reconnection is still unclear. By studying a prominence-like jet observed by SDO/AIA and STEREO-A/EUVI, we find that the continuous relaxation of the post-reconnection magnetic field structure is an important process for a jet to climb up higher than it could through only reconnection. The kinetic energy of the jet gained through the relaxation is 1.6 times that gained from the reconnection. The resultant energy flux is hundreds of times larger than the flux required for the local coronal heating, suggesting that such jets are a possible source to keep the corona hot. Furthermore, rotational motions appear all the time during the jet. Our analysis suggests that torsional Alfvén waves induced during reconnection could not be the only mechanism to release magnetic energy and drive jets.

  9. A parametric sensitivity study of entropy production and kinetic energy dissipation using the FAMOUS AOGCM

    E-Print Network [OSTI]

    Tailleux, Remi

    A parametric sensitivity study of entropy production and kinetic energy dissipation using of APE and entropy production associated with kinetic energy dissipation, with the standard FAMOUS values of the conjecture of maximum APE production (or equivalently maximum dissipation of kinetic energy). Keywords

  10. The troposphere-to-stratosphere transition in kinetic energy spectra and nonlinear

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    The troposphere-to-stratosphere transition in kinetic energy spectra and nonlinear spectral fluxes) The troposphere-to-stratosphere transition in kinetic energy spectra and nonlinear spectral fluxes as seen-to-Stratosphere Transition in Kinetic Energy Spectra and Nonlinear Spectral Fluxes as Seen in ECMWF Analyses B. H. BURGESS

  11. Energy Conserving Equations of Motion for Gear Systems

    E-Print Network [OSTI]

    Barber, James R.

    Energy Conserving Equations of Motion for Gear Systems Sejoong Oh Senior Engineer General Motors Engineering, The University of Michigan, Ann Arbor, MI A system of two meshing gears exhibits a stiffness by dynamic simulation, using a sys- tem of two involute spur gears as an example. It is shown that the two

  12. Philips Color Kinetics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC Jump to:3Perrysburg,AlpenaNRELUNEP Green

  13. Foldtrack in Motion | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article) |FinalIndustrial TechnologiesEnergyServices »Goin C-110in

  14. Motion to Intervene Out of Time and Comments of FirstEnergy Service...

    Office of Environmental Management (EM)

    and Comments of FirstEnergy Service Company PP-230-3 Motion to Intervene Out of Time and Comments of FirstEnergy Service Company PP-230-3 Motion to Intervene Out of Time and...

  15. The propagation of kinetic energy across scales in turbulent flows

    E-Print Network [OSTI]

    Cardesa, José I; Dong, Siwei; Jiménez, Javier

    2015-01-01

    A temporal study of energy transfer across length scales is performed in 3D numerical simulations of homogeneous shear flow and isotropic turbulence, at Reynolds numbers in the range $Re_{\\lambda}=107-384$. The average time taken by perturbations in the energy flux to travel between scales is measured and shown to be additive, as inferred from the agreement between the total travel time from a given scale to the smallest dissipative motions, and the time estimated from successive jumps through intermediate scales. Our data suggests that the propagation of disturbances in the energy flux is independent of the forcing and that it defines a `velocity' that determines the energy flux itself. These results support that the cascade is, on average, a scale-local process where energy is continuously transmitted from one scale to the next in order of decreasing size.

  16. Split Kinetic Energy Method for Quantum Systems with Competing Potentials

    E-Print Network [OSTI]

    H. Mineo; Sheng D. Chao

    2012-06-11

    For quantum systems with competing potentials, the conventional perturbation theory often yields an asymptotic series and the subsequent numerical outcome becomes uncertain. To tackle such kind of problems, we develop a general solution scheme based on a new energy dissection idea. Instead of dividing the potential energy into "unperturbed" and "perturbed" terms, a partition of the kinetic energy is performed. By distributing the kinetic energy term in part into each individual potential, the Hamiltonian can be expressed as the sum of the subsystem Hamiltonians with respective competing potentials. The total wavefunction is expanded by using a linear combination of the basis sets of respective subsystem Hamiltonians. We first illustrate the solution procedure using a simple system consisting of a particle under the action of double delta-function potentials. Next, this method is applied to the prototype systems of a charged harmonic oscillator in strong magnetic field and the hydrogen molecule ion. Compared with the usual perturbation approach, this new scheme converges much faster to the exact solutions for both eigenvalues and eigenfunctions. When properly extended, this new solution scheme can be very useful for dealing with strongly coupling quantum systems.

  17. Kinetic Energy Decay Rates of Supersonic and Super-Alfvenic Turbulence in Star-Forming Clouds

    E-Print Network [OSTI]

    Mordecai-Mark Mac Low; Ralf S. Klessen; Andreas Burkert; Michael D. Smith

    1997-12-01

    We present numerical studies of compressible, decaying turbulence, with and without magnetic fields, with initial rms Alfven and Mach numbers ranging up to five, and apply the results to the question of the support of star-forming interstellar clouds of molecular gas. We find that, in 1D, magnetized turbulence actually decays faster than unmagnetized turbulence. In all the regimes that we have studied 3D turbulence-super-Alfvenic, supersonic, sub-Alfvenic, and subsonic-the kinetic energy decays as (t-t0)^(-x), with 0.85 < x < 1.2. We compared results from two entirely different algorithms in the unmagnetized case, and have performed extensive resolution studies in all cases, reaching resolutions of 256^3 zones or 350,000 particles. We conclude that the observed long lifetimes and supersonic motions in molecular clouds must be due to external driving, as undriven turbulence decays far too fast to explain the observations.

  18. Kinetic Energy Driven Pairing in Cuprate Superconductors Th. A. Maier,1

    E-Print Network [OSTI]

    Jarrell, Mark

    to the potential energy that electrons can gain by forming Cooper pairs. However, recent optical experiments showKinetic Energy Driven Pairing in Cuprate Superconductors Th. A. Maier,1 M. Jarrell,2 A. Macridin,2 of the electronic potential energy accompanied by an increase in kinetic energy. In the underdoped cuprates, optical

  19. Motion to Intervene Out of Time of Sumas Energy 2, Inc on Proposed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Sumas Energy 2, Inc on Proposed Open-Access Requirement International Electric Transmission Facilities and Delegation to the Federal Energy Regulatory Commission. Motion to...

  20. Correction to kinetic energy density using exactly solvable model

    E-Print Network [OSTI]

    Alexey Sergeev; Raka Jovanovic; Sabre Kais; Fahhad H Alharbi

    2015-06-03

    An accurate non-gradient-expansion based correction to Thomas--Fermi is developed using solvable model. The used model is a system of $N$ non-interacting electrons moving independently in the Coulomb field of the nuclear charge. The presented correction is applicable for atoms and should be extendable beyond that. The method exploits the fact that the difference between the Thomas--Fermi approximation and the non-interacting kinetic energy is comparable to the difference between the same values inside the proposed solvable model. The numerical experiments show that by adding this correction factor, the precision of Thomas--Fermi approximation is enhanced by an order of magnitude.

  1. Protein folding kinetics: timescales, pathways and energy landscapes in terms of sequence-dependent properties

    E-Print Network [OSTI]

    Thirumalai, Devarajan

    Protein folding kinetics: timescales, pathways and energy landscapes in terms of sequence and theoretical studies have revealed that protein folding kinetics can be quite complex and diverse depending theoretical understanding of the kinetics of protein folding [1­8]. The general scenarios that have emerged

  2. Energy dissipation in magnetic null points at kinetic scales

    E-Print Network [OSTI]

    Olshevsky, Vyacheslav; Eriksson, Elin; Markidis, Stefano; Lapenta, Giovanni

    2015-01-01

    We use kinetic particle-in-cell and magnetohydrodynamic simulations supported by an observational dataset to investigate magnetic reconnection in clusters of null points in space plasma. The magnetic configuration under investigation is driven by fast adiabatic flux rope compression that dissipates almost half of the initial magnetic field energy. In this phase powerful currents are excited producing secondary instabilities, and the system is brought into a state of `intermittent turbulence' within a few ion gyro-periods. Reconnection events are distributed all over the simulation domain and energy dissipation is rather volume-filling. Numerous spiral null points interconnected via their spines form null lines embedded into magnetic flux ropes; null point pairs demonstrate the signatures of torsional spine reconnection. However, energy dissipation mainly happens in the shear layers formed by adjacent flux ropes with oppositely directed currents. In these regions radial null pairs are spontaneously emerging an...

  3. On spherically symmetric metric satisfying the positive kinetic energy coordinate condition

    E-Print Network [OSTI]

    T. Mei

    2008-02-28

    Generally speaking, there is a negative kinetic energy term in the Lagrangian of the Einstein-Hilbert action of general relativity; On the other hand, the negative kinetic energy term can be vanished by designating a special coordinate system. For general spherically symmetric metric, the question that seeking special coordinate system that satisfies the positive kinetic energy coordinate condition is referred to solving a linear first-order partial differential equation. And then, we present a metric corresponding to the Reissner-Nordstrom solution that satisfies the positive kinetic energy coordinate condition. Finally, we discuss simply the case of the Tolman metric.

  4. A new water anomaly: the temperature dependence of the proton mean kinetic energy

    E-Print Network [OSTI]

    Davide Flammini; Fabio Bruni; Maria Antonietta Ricci

    2009-01-28

    The mean kinetic energy of protons in water is determined by Deep Inelastic Neutron Scattering experiments, performed above and below the temperature of maximum density and in the supercooled phase. The temperature dependence of this energy shows an anomalous behavior, as it occurs for many water properties. In particular two regions of maximum kinetic energy are identified: the first one, in the supercooled phase in the range 269 K - 272 K, and a second one above 273 K. In both these regions the measured proton kinetic energy exceedes the theoretical prediction based on a semi-classical model. Noteworthy, the proton mean kinetic energy has a maximum at 277 K, the temperature of the maximum density of water. In the supercooled metastable phase the measured mean kinetic energy and the proton momentum distribution clearly indicate proton delocalization between two H-bonded oxygens.

  5. The Excitation Energy Dependence of the Total Kinetic Energy Release in 235U(n,f)

    E-Print Network [OSTI]

    R. Yanez; L. Yao; J. King; W. Loveland; F. Tovesson; N. Fotiades

    2014-03-18

    The total kinetic energy release in the neutron induced fission of $^{235}$U was measured (using white spectrum neutrons from LANSCE) for neutron energies from E$_{n}$ = 3.2 to 50 MeV. In this energy range the average post-neutron total kinetic energy release drops from 167.4 $\\pm$ 0.7 to 162.1 $\\pm$ 0.8 MeV, exhibiting a local dip near the second chance fission threshold. The values and the slope of the TKE vs. E$_{n}$ agree with previous measurements but do disagree (in magnitude) with systematics. The variances of the TKE distributions are larger than expected and apart from structure near the second chance fission threshold, are invariant for the neutron energy range from 11 to 50 MeV. We also report the dependence of the total excitation energy in fission, TXE, on neutron energy.

  6. Mass independent kinetic energy reducing inlet system for vacuum environment

    DOE Patents [OSTI]

    Reilly, Peter T.A.

    2013-12-03

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  7. Mass independent kinetic energy reducing inlet system for vacuum environment

    DOE Patents [OSTI]

    Reilly, Peter T. A. [Knoxville, TN

    2010-12-14

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  8. Utilization of rotor kinetic energy storage for hybrid vehicles

    DOE Patents [OSTI]

    Hsu, John S. (Oak Ridge, TN)

    2011-05-03

    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  9. Mass independent kinetic energy reducing inlet system for vacuum environment

    DOE Patents [OSTI]

    Reilly, Peter T.A.

    2014-05-13

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  10. Power spectral analysis of Jupiter's clouds and kinetic energy from Cassini David S. Choi

    E-Print Network [OSTI]

    of wind vectors and atmospheric kinetic energy within Jupiter's troposphere. We computed power spectraPower spectral analysis of Jupiter's clouds and kinetic energy from Cassini David S. Choi , Adam P. Showman Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721, USA a r t i c l e i n f

  11. An Energy Localization Principle and its Application to Fast Kinetic Monte Carlo Simulation of Heteroepitaxial

    E-Print Network [OSTI]

    Schulze, Tim

    An Energy Localization Principle and its Application to Fast Kinetic Monte Carlo Simulation of Michigan, Ann Arbor, MI 48109-1109 Abstract Simulation of heteroepitaxial growth using kinetic Monte Carlo (KMC) is often based on rates determined by differences in elastic energy between two configurations

  12. Surface Response of Tungsten to Helium and Hydrogen Plasma Flux as a Function of Temperature and Incident Kinetic Energy

    E-Print Network [OSTI]

    Sefta, Faiza

    2013-01-01

    fusion reaction and ion energies as reproduced from http://incident helium kinetic energy with and without equilibriummi- crostructure evolution in low energy helium irradiated

  13. The distribution of eddy kinetic and potential energies in the global ocean

    E-Print Network [OSTI]

    Ferrari, Raffaele

    Understanding of the major sources, sinks, and reservoirs of energy in the ocean is briefly updated in a diagram. The nature of the dominant kinetic energy reservoir, that of the balanced variablity, is then found to be ...

  14. Piezoelectric step-motion actuator

    DOE Patents [OSTI]

    Mentesana; Charles P. (Leawood, KS)

    2006-10-10

    A step-motion actuator using piezoelectric material to launch a flight mass which, in turn, actuates a drive pawl to progressively engage and drive a toothed wheel or rod to accomplish stepped motion. Thus, the piezoelectric material converts electrical energy into kinetic energy of the mass, and the drive pawl and toothed wheel or rod convert the kinetic energy of the mass into the desired rotary or linear stepped motion. A compression frame may be secured about the piezoelectric element and adapted to pre-compress the piezoelectric material so as to reduce tensile loads thereon. A return spring may be used to return the mass to its resting position against the compression frame or piezoelectric material following launch. Alternative embodiment are possible, including an alternative first embodiment wherein two masses are launched in substantially different directions, and an alternative second embodiment wherein the mass is eliminated in favor of the piezoelectric material launching itself.

  15. Energy Conservation Tests of a Coupled Kinetic-kinetic Plasma-neutral Transport Code

    SciTech Connect (OSTI)

    Stotler, D. P.; Chang, C. S.; Ku, S. H.; Lang, J.; Park, G.

    2012-08-29

    A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

  16. Systematics of intermediate mass fragment kinetic energy spectra in the projectile fragmentation of gold nuclei

    SciTech Connect (OSTI)

    Warren, P.; Choi, Y.; Elliot, J.B.; Hauger, J.A. [and others

    1995-10-01

    The characteristics of intermediate mass fragment kinetic energy spectra produced in 1 AGeV Au+C collisions are investigated as a means of determining the conditions at freezeout in multiframentation.

  17. Ranges and kinetic energies of fragments from 14.5-mev neutrons induced fission of ²³?U 

    E-Print Network [OSTI]

    Desai, Rajanikant Dattatraya

    1966-01-01

    RANGES AND KINETIC ENERGIES OF FRAGMENTS FROM 238 14. 5-MEV NEJTRONS INDUCED FISSION OF U A Thesis By RAJANIKANT DATTATRAYA DESAI Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1966 Major Subject: 'Chemistry RANGES AND KINETIC ENERGIES OF FRAGMENTS FROM 14 ~ 5-ME% NEUTRONS INDUCED FISSION OF U A Thesis By RAJANIKANT DATTATRAYA DESAI Approved as to style and content by: airman o emmet...

  18. Buffed energy landscapes: Another solution to the kinetic paradoxes of protein folding

    E-Print Network [OSTI]

    Plotkin, Steven S.

    Buffed energy landscapes: Another solution to the kinetic paradoxes of protein folding Steven S, February 6, 2003 The energy landscapes of proteins have evolved to be different from most random structure that is stable at biological temperatures leads to energy landscapes having a single dominant

  19. 15.1 Preliminaries: Wave Motion and Light 15.2 Experimental Basis of Energy Quantization

    E-Print Network [OSTI]

    Ihee, Hyotcherl

    #12;15.1 Preliminaries: Wave Motion and Light #12;#12;#12;15.2 Experimental Basis of Energy the radical concept of energy quantization to explain two of these results. #12;Blackbody Radiation · Every object emits energy through thermal radiation from its surface. · This energy is carried

  20. Bounds on the vibrational energy that can be harvested from random base motion

    E-Print Network [OSTI]

    Langley, R. S.

    2014-11-29

    This paper is concerned with the development of upper bounds on the energy harvesting performance of a general multi-degree-of-freedom nonlinear electromechanical system that is subjected to random base motion and secondary applied periodic forces...

  1. Barotropic Impacts of Surface Friction on Eddy Kinetic Energy and Momentum Fluxes: An Alternative to the Barotropic Governor

    E-Print Network [OSTI]

    Barnes, Elizabeth A.

    Barotropic Impacts of Surface Friction on Eddy Kinetic Energy and Momentum Fluxes: An Alternative energy decreases, a response that is inconsistent with the conventional barotropic governor mechanism on eddy momentum fluxes and eddy kinetic energy. Analysis of the pseudomomentum budget shows

  2. Effects of short-range correlation reduced kinetic symmetry energy in heavy-ion collisions at intermediate energies

    E-Print Network [OSTI]

    Bao-An Li; Wen-Jun Guo; Zhaozhong Shi

    2015-03-20

    Besides earlier predictions based on both phenomenological models and modern microscopic many-body theories, circumstantial evidence was recently found for a reduced kinetic symmetry energy of isospin-asymmetric nucleonic matter compared to the free Fermi gas model prediction due to the short-range correlation of high-momentum neutron-proton pairs. While keeping the total symmetry energy near the saturation density of nuclear matter consistent with existing experimental constraints, we examine the correspondingly enhanced role of the isospin degree of freedom in heavy-ion collisions at intermediate energies due to the reduced (enhanced) kinetic (potential) symmetry energy. Important observable consequences are investigated.

  3. Ion kinetic energy conservation and magnetic field strength constancy in multi-fluid solar wind Alfv\\'enic turbulence

    E-Print Network [OSTI]

    Matteini, L; Pantellini, F; Velli, M; Schwartz, S J

    2015-01-01

    We investigate properties of the plasma fluid motion in the large amplitude low frequency fluctuations of highly Alfv\\'enic fast solar wind. We show that protons locally conserve total kinetic energy when observed from an effective frame of reference comoving with the fluctuations. For typical properties of the fast wind, this frame can be reasonably identified by alpha particles, which, owing to their drift with respect to protons at about the Alfv\\'en speed along the magnetic field, do not partake in the fluid low frequency fluctuations. Using their velocity to transform proton velocity into the frame of Alfv\\'enic turbulence, we demonstrate that the resulting plasma motion is characterized by a constant absolute value of the velocity, zero electric fields, and aligned velocity and magnetic field vectors as expected for unidirectional Alfv\\'enic fluctuations in equilibrium. We propose that this constraint, via the correlation between velocity and magnetic field in Alfv\\'enic turbulence, is at the origin of ...

  4. The Kinetic Energy of Hydrocarbons as a Function of Electron Density and Convolutional Neural Networks

    E-Print Network [OSTI]

    Yao, Kun

    2015-01-01

    We demonstrate a convolutional neural network trained to reproduce the Kohn-Sham kinetic energy of hydrocarbons from electron density. The output of the network is used as a non-local correction to the conventional local and semi-local kinetic functionals. We show that this approximation qualitatively reproduces Kohn-Sham potential energy surfaces when used with conventional exchange correlation functionals. Numerical noise inherited from the non-linearity of the neural network is identified as the major challenge for the model. Finally we examine the features in the density learned by the neural network to anticipate the prospects of generalizing these models.

  5. Analytic results for Gaussian wave packets in four model systems: I. Visualization of the kinetic energy

    E-Print Network [OSTI]

    R. W. Robinett; L. C. Bassett

    2004-08-06

    Using Gaussian wave packet solutions, we examine how the kinetic energy is distributed in time-dependent solutions of the Schrodinger equation corresponding to the cases of a free particle, a particle undergoing uniform acceleration, a particle in a harmonic oscillator potential, and a system corresponding to an unstable equilibrium. We find, for specific choices of initial parameters, that as much as 90% of the kinetic energy can be localized (at least conceptually) in the `front half' of such Gaussian wave packets, and we visualize these effects.

  6. EcoMotion GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of the NationalDynetekof Economic Activities onEcoMotion

  7. Cosmological Kinetic Mixing

    E-Print Network [OSTI]

    Das, Ashok; Pino, Miguel

    2015-01-01

    In this paper we generalize the kinetic mixing idea to time reparametrization invariant theories, namely, relativistic point particles and cosmology in order to obtain new insights for dark matter and energy. In the first example, two relativistic particles interact through an appropriately chosen coupling term. It is shown that the system can be diagonalized by means of a non-local field redefinition, and, as a result of this procedure, the mass of one the particles gets rescaled. In the second case, inspired by the previous example, two cosmological models (each with its own scale factor) are made to interact in a similar fashion. The equations of motion are solved numerically in different scenarios (dust, radiation or a cosmological constant coupled to each sector of the system). When a cosmological constant term is present, kinetic mixing rescales it to a lower value which may be more amenable to observations.

  8. Cosmological Kinetic Mixing

    E-Print Network [OSTI]

    Ashok Das; Jorge Gamboa; Miguel Pino

    2015-06-22

    In this paper we generalize the kinetic mixing idea to time reparametrization invariant theories, namely, relativistic point particles and cosmology in order to obtain new insights for dark matter and energy. In the first example, two relativistic particles interact through an appropriately chosen coupling term. It is shown that the system can be diagonalized by means of a non-local field redefinition, and, as a result of this procedure, the mass of one the particles gets rescaled. In the second case, inspired by the previous example, two cosmological models (each with its own scale factor) are made to interact in a similar fashion. The equations of motion are solved numerically in different scenarios (dust, radiation or a cosmological constant coupled to each sector of the system). When a cosmological constant term is present, kinetic mixing rescales it to a lower value which may be more amenable to observations.

  9. Mesoscale Equipartition of kinetic energy in Quantum Turbulence

    E-Print Network [OSTI]

    Salort, Julien; Lévêque, Emmanuel; 10.1209/0295-5075/94/24001

    2012-01-01

    The turbulence of superfluid helium is investigated numerically at finite temperature. Direct numerical simulations are performed with a "truncated HVBK" model, which combines the continuous description of the Hall-Vinen-Bekeravich-Khalatnikov equations with the additional constraint that this continuous description cannot extend beyond a quantum length scale associated with the mean spacing between individual superfluid vortices. A good agreement is found with experimental measurements of the vortex density. Besides, by varying the turbulence intensity only, it is observed that the inter-vortex spacing varies with the Reynolds number as $Re^{-3/4}$, like the viscous length scale in classical turbulence. In the high temperature limit, Kolmogorov's inertial cascade is recovered, as expected from previous numerical and experimental studies. As the temperature decreases, the inertial cascade remains present at large scales while, at small scales, the system evolves towards a statistical equipartition of kinetic ...

  10. Wind turbines convert the kinetic energy in moving air into rotational energy, which in turn is converted

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Wind turbines convert the kinetic energy in moving air into rotational energy, which in turn is converted to electricity. Since wind speeds vary from month to month and second to second, the amount of electricity wind can make varies constantly. Sometimes a wind turbine will make no power at all

  11. In conventional accelerators, energy from RF electro-magnetic waves in vacuum is transformed into kinetic energy

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    into kinetic energy of particles driven by the electric field. In high-energy- physics colliders, some, they will equip scientists with powerful new capabilities for answering key questions. Those machines will also charges, called a plasma wave or laser wake, supports a strong longitudinal electric field (see figure 1

  12. Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific

    E-Print Network [OSTI]

    Bretherton, Chris

    Geographic variability in the export of moist static energy and vertical motion profiles), Geographic variability in the export of moist static energy and vertical motion profiles in the tropical 31 July 2006; published 9 September 2006. [1] Column-integrated moist static energy (MSE) budgets

  13. Kinetic, potential and surface tension energies of solitary waves in deep water

    E-Print Network [OSTI]

    Vera Mikyoung Hur

    2015-09-01

    We present an exact relation among the kinetic, potential and surface tension energies of a solitary wave in deep water in all dimensions. We deduce its non-existence in the absence of the effects of surface tension, provided that gravity acts in a direction opposite to what is physically realistic.

  14. Kinetic, potential and surface tension energies of solitary waves in deep water

    E-Print Network [OSTI]

    Hur, Vera Mikyoung

    2015-01-01

    We present an exact relation among the kinetic, potential and surface tension energies of a solitary wave in deep water in all dimensions. We deduce its non-existence in the absence of the effects of surface tension, provided that gravity acts in a direction opposite to what is physically realistic.

  15. Heavy Quark Kinetic Energy in B Mesons by a QCD Relativistic Potential Model

    E-Print Network [OSTI]

    F. De Fazio

    1996-11-04

    The matrix element of the kinetic energy operator between B meson states is computed by means of a QCD relativistic potential model, with the result: $\\mu_\\pi^2=0.66 GeV^2$. A comparison with the outcome of other theoretical approaches and a discussion of the phenomenological implications of this result are carried out.

  16. Wave Turbulence in Superfluid 4 Energy Cascades, Rogue Waves & Kinetic Phenomena

    E-Print Network [OSTI]

    Fominov, Yakov

    Outline Wave Turbulence in Superfluid 4 He: Energy Cascades, Rogue Waves & Kinetic Phenomena Conference, Chernogolovka, 3 August 2009 McClintock Efimov Ganshin Kolmakov Mezhov-Deglin Wave Turbulence in Superfluid 4 He #12;Outline Outline 1 Introduction Motivation 2 Modelling wave turbulence Need for models

  17. CO2 sticking on Pt(111); the role of kinetic energy and internal degrees of freedom

    E-Print Network [OSTI]

    Persson, Mats

    CO2 sticking on Pt(111); the role of kinetic energy and internal, S-412 96, G"oteborg, Sweden Abstract CO2 adsorbed measurements of non-dissociative sticking coefficient, S0, of CO2 on the Pt(111) surfac* *e

  18. Time-dependent kinetic energy metrics for Lagrangians of electromagnetic type

    E-Print Network [OSTI]

    W. Sarlet; G. Prince; T. Mestdag; O. Krupkova

    2011-12-01

    We extend the results obtained in a previous paper about a class of Lagrangian systems which admit alternative kinetic energy metrics to second-order mechanical systems with explicit time-dependence. The main results are that a time-dependent alternative metric will have constant eigenvalues, and will give rise to a time-dependent coordinate transformation which partially decouples the system.

  19. Liu UCD Phy9B 07 22 15-5. Energy in Wave Motion

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    Liu UCD Phy9B 07 22 15-5. Energy in Wave Motion x txy FtxFy -= ),( ),( t txy x txy FtxvtxFtxP yy -== ),(),( ),(),(),( For any wave on a string, instantaneous rate of energy transfer 1 dimensional: wave on a string #12;Liu UCD Phy9B 07 23 Energy Transferred by Sinusoidal Wave )cos(),( tkxAtxy -= For a sinusoidal wave )(sin

  20. Proton Kinetic Effects and Turbulent Energy Cascade Rate in the Solar Wind

    E-Print Network [OSTI]

    Osman, Kareem T; Kiyani, Khurom H; Hnat, Bogdan; Chapman, Sandra C

    2013-01-01

    The first observed connection between kinetic instabilities driven by proton temperature anisotropy and estimated energy cascade rates in the turbulent solar wind is reported using measurements from the Wind spacecraft at 1 AU. We find enhanced cascade rates are concentrated along the boundaries of the ($\\beta_{\\parallel}$, $T_{\\perp}/T_{\\parallel}$)-plane, which includes regions theoretically unstable to the mirror and firehose instabilities. A strong correlation is observed between the estimated cascade rate and kinetic effects such as temperature anisotropy and plasma heating, resulting in protons 5-6 times hotter and 70-90% more anisotropic than under typical isotropic plasma conditions. These results offer new insights into kinetic processes in a turbulent regime.

  1. Low energy ion-molecule reactions and chemiionization kinetics

    SciTech Connect (OSTI)

    Farrar, J.M.

    1992-09-24

    Objective is to understand dynamics of elementary ionic collisions at the level of the underlying potential surface by measuring energy and angular distributions of reactively scattered products with crossed beam methods over the relative center-of-mass energy range from 0.3 to several eV. During the past few years, emphasis was on reaction dynamics of anionic species important in combustion, with special emphasis on O{sup {minus}} in proton and hydrogen atom transfer reactions with NH{sub 3}, H{sub 2}O, HF, and CH{sub 4}.

  2. 2. Conservation of momentum, heat and energy 2.1 Equation of motion

    E-Print Network [OSTI]

    2. Conservation of momentum, heat and energy 2.1 Equation of motion If the only external force. We can assume that is constant, with magnitude . The sidereal day is . The solar day, 86400 s in the rotating frame is . (2.7) More generally, the material derivative of any vector in rotating and inertial

  3. Energy-Saving Adaptive Robust Motion Control of Single-Rod Hydraulic Cylinders with Programmable Valves 1

    E-Print Network [OSTI]

    Yao, Bin

    to significantly reduce the fluid power energy usage in a number of motion and loading conditions to meet the sociEnergy-Saving Adaptive Robust Motion Control of Single-Rod Hydraulic Cylinders with Programmable Valves 1 Bin Yao · Chris DeBoer School of Mechanical Engineering Purdue University, West Lafayette

  4. Amber Kinetics, Inc. Smart Grid Demonstration Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to: navigation, search Name:Ambata Capital

  5. Department of Energy Files Motion to Withdraw Yucca Mountain License

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory |Education atTechnologies | DepartmentOffice

  6. Motion to Withdraw from Yucca Mountain application | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing SwimmingMicrosoft Word1 2Department ofLaboratoryDepartmentDOE's

  7. Intercomparison of the seasonal cycle in 200 hPa kinetic energy in AMIP GCM simulations

    SciTech Connect (OSTI)

    Boyle, J.S.

    1996-10-01

    The 200 hPa kinetic energy is represented by means of the spherical harmonic components for the Atmospheric Model Intercomparison Project (AMIP) simulations, the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis and the European Centre for Medium Range Weather Forecast Reanalysis (ERA). The data used are the monthly mean wind fields from 1979 to 1988. The kinetic energy is decomposed into the divergent (DKE) and rotational (RKE) components and emphasis is placed on examining the former. The two reanalysis data sets show reasonable agreement that is best for the rotational kinetic energy. The largest difference in the divergent kinetic energy occurs during the northern summer. As might be expected, the two analyses are closet in regions where there are sufficient observations such that the effect of the model used in the assimilation cycle are minimized. The observed RKE show only a slight seasonal cycle with a maximum occuring during the northern winter. The DKE, on the other hand, has a very pronounced seasonal cycle with maxima at the solsticial seasons and minima during the equinoctial seasons. The model results show a very large spread in the magnitudes of the RKE and DKE although the models all evince a seasonal variation in phase with that observed. The median values of the seasonal cycle of RKE and DKE for the models are usually superior to those of any individual model. Results are also presented for simulation following the AMIP protocol but using updated versions of the original AMIP entries. In most cases these new integrations show better agreement with the observations.

  8. Classification of metal-oxide bonded interactions based on local potential-and kinetic-energy densities

    E-Print Network [OSTI]

    Downs, Robert T.

    of the local potential-energy density and G rc is the local kinetic-energy density, each evaluated at a bond rc and the local electronic energy density, H rc =G rc +V rc , in the H­F study, yielded practically the bond critical point and local energy density properties with the bond lengths displayed by the H

  9. PHYS 101 Lecture 10 -Work and kinetic energy 10 -1 2001 by David Boal, Simon Fraser University. All rights reserved; further copying or resale is strictly prohibited.

    E-Print Network [OSTI]

    Boal, David

    - Work and kinetic energy 10 - 3 © 2001 by David Boal, Simon Fraser University. All rights reservedPHYS 101 Lecture 10 - Work and kinetic energy 10 - 1 © 2001 by David Boal, Simon Fraser University. All rights reserved; further copying or resale is strictly prohibited. Lecture 10 - Work and Kinetic

  10. Systematics of Kinetic Freeze-out Properties in High Energy Collisions from STAR

    E-Print Network [OSTI]

    Lokesh Kumar

    2014-08-19

    The main aim of the RHIC Beam Energy Scan (BES) program is to explore the QCD phase diagram which includes search for a possible QCD critical point and the phase boundary between QGP and hadronic phase. We report the collision energy and centrality dependence of kinetic freeze-out properties from the measured mid-rapidity ($|y|energy $\\sqrt{s_{NN}} =$ 7.7, 11.5, 19.6, 27, and 39 GeV. The STAR detector, with a large uniform acceptance and excellent particle identification is used in the data collection and analysis. The kinetic freeze-out temperature $T_{\\rm{kin}}$ and average collective velocity $\\langle \\beta \\rangle$ parameters are extracted from blast-wave fits to the identified hadron spectra and systematically compared with the results from other collision energies including those at AGS, SPS and LHC. It is found that all results fall into an anti-correlation band in the 2-dimension ($T_{\\rm{kin}}$, $\\langle \\beta \\rangle$) distribution: the largest value of collective velocity and lowest temperature is reached in the most central collisions at the highest collision energy. The energy dependence of these freeze-out parameters are discussed.

  11. Kinetic energy distributions of sputtered neutral aluminum clusters: Al--Al{sub 6}

    SciTech Connect (OSTI)

    Coon, S.R.; Calaway, W.F.; Pellin, M.J.; Curlee, G.A.; White, J.M.

    1992-12-01

    Neutral aluminum clusters sputtered from polycrystalline aluminum were analyzed by laser postionization time-of-flight (TOF) mass spectrometry. The kinetic energy distributions of Al through Al{sub 6} were measured by a neutrals time-of-flight technique. The interpretation of laser postionization TOF data to extract velocity and energy distributions is presented. The aluminum cluster distributions are qualitatively similar to previous copper cluster distribution measurements from our laboratory. In contrast to the steep high energy tails predicted by the single- or multiple- collision models, the measured cluster distributions have high energy power law dependences in the range of E{sup {minus}3} to E{sup {minus}4.5}. Correlated collision models may explain the substantial abundance of energetic clusters that are observed in these experiments. Possible influences of cluster fragmentation on the distributions are discussed.

  12. Kinetic energy distributions of sputtered neutral aluminum clusters: Al--Al[sub 6

    SciTech Connect (OSTI)

    Coon, S.R.; Calaway, W.F.; Pellin, M.J. ); Curlee, G.A. . Dept. of Physics); White, J.M. . Dept. of Chemistry and Biochemistry)

    1992-01-01

    Neutral aluminum clusters sputtered from polycrystalline aluminum were analyzed by laser postionization time-of-flight (TOF) mass spectrometry. The kinetic energy distributions of Al through Al[sub 6] were measured by a neutrals time-of-flight technique. The interpretation of laser postionization TOF data to extract velocity and energy distributions is presented. The aluminum cluster distributions are qualitatively similar to previous copper cluster distribution measurements from our laboratory. In contrast to the steep high energy tails predicted by the single- or multiple- collision models, the measured cluster distributions have high energy power law dependences in the range of E[sup [minus]3] to E[sup [minus]4.5]. Correlated collision models may explain the substantial abundance of energetic clusters that are observed in these experiments. Possible influences of cluster fragmentation on the distributions are discussed.

  13. Modeling and control for the reduction of wave induced motion of ramp-connected ships

    E-Print Network [OSTI]

    Doblack, Joseph L.

    2011-01-01

    the terms for kinetic and potential energy formulated, thecoordinate system, potential energy, and kinetic energy thewhere T is kinetic energy, U it the potential energy and ? j

  14. A Note on Gravitational Brownian Motion

    E-Print Network [OSTI]

    David Merritt

    2004-05-19

    Chandrasekhar's theory of stellar encounters predicts a dependence of the Brownian motion of a massive particle on the velocity distribution of the perturbing stars. One consequence is that the expectation value of the massive object's kinetic energy can be different from that of the perturbers. This effect is shown to be modest however, and substantially smaller than claimed in a recent study based on a more approximate treatment of the encounter equations.

  15. Einstein-Maxwell Dirichlet walls, negative kinetic energies, and the adiabatic approximation for extreme black holes

    E-Print Network [OSTI]

    Tomas Andrade; William R. Kelly; Donald Marolf

    2015-06-09

    The gravitational Dirichlet problem -- in which the induced metric is fixed on boundaries at finite distance from the bulk -- is related to simple notions of UV cutoffs in gauge/gravity duality and appears in discussions relating the low-energy behavior of gravity to fluid dynamics. We study the Einstein-Maxwell version of this problem, in which the induced Maxwell potential on the wall is also fixed. For flat walls in otherwise-asymptotically-flat spacetimes, we identify a moduli space of Majumdar-Papapetrou-like static solutions parametrized by the location of an extreme black hole relative to the wall. Such solutions may be described as balancing gravitational repulsion from a negative-mass image-source against electrostatic attraction to an oppositely-signed image charge. Standard techniques for handling divergences yield a moduli space metric with an eigenvalue that becomes negative near the wall, indicating a region of negative kinetic energy and suggesting that the Hamiltonian may be unbounded below. One may also surround the black hole with an additional (roughly spherical) Dirichlet wall to impose a regulator whose physics is more clear. Negative kinetic energies remain, though new terms do appear in the moduli-space metric. The regulator-dependence indicates that the adiabatic approximation may be ill-defined for classical extreme black holes with Dirichlet walls.

  16. Einstein-Maxwell Dirichlet walls, negative kinetic energies, and the adiabatic approximation for extreme black holes

    E-Print Network [OSTI]

    Tomas Andrade; William R. Kelly; Donald Marolf

    2015-09-17

    The gravitational Dirichlet problem -- in which the induced metric is fixed on boundaries at finite distance from the bulk -- is related to simple notions of UV cutoffs in gauge/gravity duality and appears in discussions relating the low-energy behavior of gravity to fluid dynamics. We study the Einstein-Maxwell version of this problem, in which the induced Maxwell potential on the wall is also fixed. For flat walls in otherwise-asymptotically-flat spacetimes, we identify a moduli space of Majumdar-Papapetrou-like static solutions parametrized by the location of an extreme black hole relative to the wall. Such solutions may be described as balancing gravitational repulsion from a negative-mass image-source against electrostatic attraction to an oppositely-signed image charge. Standard techniques for handling divergences yield a moduli space metric with an eigenvalue that becomes negative near the wall, indicating a region of negative kinetic energy and suggesting that the Hamiltonian may be unbounded below. One may also surround the black hole with an additional (roughly spherical) Dirichlet wall to impose a regulator whose physics is more clear. Negative kinetic energies remain, though new terms do appear in the moduli-space metric. The regulator-dependence indicates that the adiabatic approximation may be ill-defined for classical extreme black holes with Dirichlet walls.

  17. Energy-Harvesting Shock Absorber with a Mechanical Motion Zhongjie Li, Lei Zuo*, Jian Kuang, and George Luhrs

    E-Print Network [OSTI]

    Zuo, Lei

    ]. Vehicles exhaust causes more air pollution than anything else [2]. Considering only 10-16% of fuel energy and Zhang [5] estimated that 100-400 Watts of energy harvesting potential exist in the suspension1 Energy-Harvesting Shock Absorber with a Mechanical Motion Rectifier Zhongjie Li, Lei Zuo*, Jian

  18. SURFACE MOTION DUE TO SURFACE ENERGY REDUCTION Jean E. Taylor, Math Dept, Rutgers Univ., Piscataway NJ 08855

    E-Print Network [OSTI]

    Taylor, Jean

    of l* *east surface energy for a given volume is not a round ball but something else, like a hexagonal SURFACE MOTION DUE TO SURFACE ENERGY REDUCTION Jean E. Taylor, Math) and a unifying framework for different motio* *n laws and different surface free energy functions. It also

  19. Electromagnetic energy conversion in downstream fronts from three dimensional kinetic reconnection

    SciTech Connect (OSTI)

    Lapenta, Giovanni [Departement Wiskunde, KU Leuven, Universiteit Leuven (Belgium)] [Departement Wiskunde, KU Leuven, Universiteit Leuven (Belgium); Goldman, Martin; Newman, David [University of Colorado, Colorado 80309 (United States)] [University of Colorado, Colorado 80309 (United States); Markidis, Stefano [High Performance Computing and Visualization (HPCViz) Department, KTH Royal Institute of Technology, Stockholm (Sweden)] [High Performance Computing and Visualization (HPCViz) Department, KTH Royal Institute of Technology, Stockholm (Sweden); Divin, Andrey [Swedish Institute of Space Physics, Uppsala (Sweden)] [Swedish Institute of Space Physics, Uppsala (Sweden)

    2014-05-15

    The electromagnetic energy equation is analyzed term by term in a 3D simulation of kinetic reconnection previously reported by Vapirev et al. [J. Geophys. Res.: Space Phys. 118, 1435 (2013)]. The evolution presents the usual 2D-like topological structures caused by an initial perturbation independent of the third dimension. However, downstream of the reconnection site, where the jetting plasma encounters the yet unperturbed pre-existing plasma, a downstream front is formed and made unstable by the strong density gradient and the unfavorable local acceleration field. The energy exchange between plasma and fields is most intense at the instability, reaching several pW/m{sup 3}, alternating between load (energy going from fields to particles) and generator (energy going from particles to fields) regions. Energy exchange is instead purely that of a load at the reconnection site itself in a region focused around the x-line and elongated along the separatrix surfaces. Poynting fluxes are generated at all energy exchange regions and travel away from the reconnection site transporting an energy signal of the order of about S?10{sup ?3}W/m{sup 2}.

  20. The effect of turbulent kinetic energy on inferred ion temperature from neutron spectra

    SciTech Connect (OSTI)

    Murphy, T. J., E-mail: tjmurphy@lanl.gov [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-07-15

    Measuring the width of the energy spectrum of fusion-produced neutrons from deuterium (DD) or deuterium-tritium (DT) plasmas is a commonly used method for determining the ion temperature in inertial confinement fusion (ICF) implosions. In a plasma with a Maxwellian distribution of ion energies, the spread in neutron energy arises from the thermal spread in the center-of-mass velocities of reacting pairs of ions. Fluid velocities in ICF are of a similar magnitude as the center-of-mass velocities and can lead to further broadening of the neutron spectrum, leading to erroneous inference of ion temperature. Motion of the reacting plasma will affect DD and DT neutrons differently, leading to disagreement between ion temperatures inferred from the two reactions. This effect may be a contributor to observations over the past decades of ion temperatures higher than expected from simulations, ion temperatures in disagreement with observed yields, and different temperatures measured in the same implosion from DD and DT neutrons. This difference in broadening of DD and DT neutrons also provides a measure of turbulent motion in a fusion plasma.

  1. Hamilton's principle: why is the integrated difference of kinetic and potential energy minimized?

    E-Print Network [OSTI]

    Alberto G. Rojo

    2005-04-02

    I present an intuitive answer to an often asked question: why is the integrated difference K-U between the kinetic and potential energy the quantity to be minimized in Hamilton's principle? Using elementary arguments, I map the problem of finding the path of a moving particle connecting two points to that of finding the minimum potential energy of a static string. The mapping implies that the configuration of a non--stretchable string of variable tension corresponds to the spatial path dictated by the Principle of Least Action; that of a stretchable string in space-time is the one dictated by Hamilton's principle. This correspondence provides the answer to the question above: while a downward force curves the trajectory of a particle in the (x,t) plane downward, an upward force of the same magnitude stretches the string to the same configuration x(t).

  2. A Phase Diagram Unifies Energy Dissipation, Kinetics, and Rheology in Inertial Granular Flows

    E-Print Network [OSTI]

    E. DeGiuli; J. N. McElwaine; M. Wyart

    2015-09-11

    Flows of hard granular materials depend strongly on the interparticle friction coefficient $\\mu_p$ and on the inertial number ${\\cal I}$, which characterizes proximity to the jamming transition where flow stops. Guided by numerical simulations, we derive the phase diagram of dense inertial flow of spherical particles, finding three regimes for $10^{-4} \\lesssim {\\cal I} \\lesssim 0.1$: frictionless, frictional sliding, and rolling. These are distinguished by the dominant means of energy dissipation, changing from collisional to sliding friction, and back to collisional, as $\\mu_p$ increases from zero at constant ${\\cal I}$. The three regimes differ in their kinetics and rheology; in particular, the velocity fluctuations and the stress anisotropy both display non-monotonic behavior with $\\mu_p$, corresponding to transitions between the three regimes of flow. We characterize the scaling properties of these regimes, show that energy balance yields scaling relations for each of them, and explain why friction qualitatively affects flow.

  3. Covalent bonds are created by the drive of electron waves to lower their kinetic energy through expansion

    SciTech Connect (OSTI)

    Schmidt, Michael W; Ivanic, Joseph; Ruedenberg, Klaus

    2014-05-28

    An analysis based on the variation principle shows that in the molecules H2 +, H2, B2, C2, N2, O2, F2, covalent bonding is driven by the attenuation of the kinetic energy that results from the delocalization of the electronic wave function. For molecular geometries around the equilibrium distance, two features of the wave function contribute to this delocalization: (i) Superposition of atomic orbitals extends the electronic wave function from one atom to two or more atoms; (ii) intra-atomic contraction of the atomic orbitals further increases the inter-atomic delocalization. The inter-atomic kinetic energy lowering that (perhaps counter-intuitively) is a consequence of the intra-atomic contractions drives these contractions (which per se would increase the energy). Since the contractions necessarily encompass both, the intra-atomic kinetic and potential energy changes (which add to a positive total), the fact that the intra-atomic potential energy change renders the total potential binding energy negative does not alter the fact that it is the kinetic delocalization energy that drives the bond formation.

  4. Elementary gas kinetic theory. Today we will give kinetic theory definitions to main macroscopic

    E-Print Network [OSTI]

    Alexeenko, Alina

    proportional to mean kinetic energy of thermal motion. p= nmv- v0 2 3 = nm v 2 3 . #12;7 Derivation of Avogadro . #12;8 Avogadro's Law Number of molecules in a volume of gas is a quantity of particles in a given of C12 =6.022x1023 atoms. NA =6.022x1023 ­ Avogadro number. The volume V0 occupied by a mole of ideal

  5. Scaling of the known exact explicit forms of the non-interacting kinetic-energy density functional

    E-Print Network [OSTI]

    Lázaro Calderín

    2014-10-15

    It has been previously proven that the Kohn-Sham kinetic energy functional scales homogeneusly under generalized coordinate scaling, in a way that is obeyed by the von Weiz\\"acker functional, but seems to be in contradiction with the scaling of the Thomas-Fermi functional. A very puzzling situation, taking in to account that the von Weiz\\"acker and Thomas-Fermi functionals are exact cases of the Kohn-Sham kinetic energy functional for two electron systems, and the non-interacting electron gas, respectively. The apparent contradiction is resolved in this paper.

  6. Kinetic and electron-electron energies for convex sums of ground state densities with degeneracies and fractional electron number

    SciTech Connect (OSTI)

    Levy, Mel, E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States) [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, North Carolina A and T State University, Greensboro, North Carolina 27411 (United States); Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Anderson, James S. M.; Zadeh, Farnaz Heidar; Ayers, Paul W., E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario (Canada)

    2014-05-14

    Properties of exact density functionals provide useful constraints for the development of new approximate functionals. This paper focuses on convex sums of ground-level densities. It is observed that the electronic kinetic energy of a convex sum of degenerate ground-level densities is equal to the convex sum of the kinetic energies of the individual degenerate densities. (The same type of relationship holds also for the electron-electron repulsion energy.) This extends a known property of the Levy-Valone Ensemble Constrained-Search and the Lieb Legendre-Transform refomulations of the Hohenberg-Kohn functional to the individual components of the functional. Moreover, we observe that the kinetic and electron-repulsion results also apply to densities with fractional electron number (even if there are no degeneracies), and we close with an analogous point-wise property involving the external potential. Examples where different degenerate states have different kinetic energy and electron-nuclear attraction energy are given; consequently, individual components of the ground state electronic energy can change abruptly when the molecular geometry changes. These discontinuities are predicted to be ubiquitous at conical intersections, complicating the development of universally applicable density-functional approximations.

  7. Energy and Its Conservation Work: not always what you think

    E-Print Network [OSTI]

    Glashausser, Charles

    CHAPTER 6 Energy and Its Conservation Work: not always what you think Energy of motion: kinetic energy Energy of position: potential energy Gravitational potential energy The reference level Mechanical energy and its conservation Electric potential energy Springs: elastic potential energy Hooke's law

  8. The isospin quartic term in the kinetic energy of neutron-rich nucleonic matter

    E-Print Network [OSTI]

    Cai, Bao-Jun

    2015-01-01

    The energy of a free gas of neutrons and protons is well known to be approximately isospin parabolic with a negligibly small quartic term of only $0.45$ MeV at the saturation density of nuclear matter $\\rho_0=0.16/\\rm{fm}^3$. Using an isospin-dependent single-nucleon momentum distribution including a high (low) momentum tail (depletion) with its shape parameters constrained by recent high-energy electron scattering and medium-energy nuclear photodisintegration experiments as well as the state-of-the-art calculations of the deuteron wave function and the equation of state of pure neutron matter near the unitary limit within several modern microscopic many-body theories, we show for the first time that the kinetic energy of interacting nucleons in neutron-rich nucleonic matter has a significant quartic term of $7.18\\pm2.52\\,\\rm{MeV}$. Such a large quartic term has significant ramifications in determining the equation of state of neutron-rich nucleonic matter using both terrestrial and astrophysical observables.

  9. The isospin quartic term in the kinetic energy of neutron-rich nucleonic matter

    E-Print Network [OSTI]

    Bao-Jun Cai; Bao-An Li

    2015-06-18

    The energy of a free gas of neutrons and protons is well known to be approximately isospin parabolic with a negligibly small quartic term of only $0.45$ MeV at the saturation density of nuclear matter $\\rho_0=0.16/\\rm{fm}^3$. Using an isospin-dependent single-nucleon momentum distribution including a high (low) momentum tail (depletion) with its shape parameters constrained by recent high-energy electron scattering and medium-energy nuclear photodisintegration experiments as well as the state-of-the-art calculations of the deuteron wave function and the equation of state of pure neutron matter near the unitary limit within several modern microscopic many-body theories, we show for the first time that the kinetic energy of interacting nucleons in neutron-rich nucleonic matter has a significant quartic term of $7.18\\pm2.52\\,\\rm{MeV}$. Such a large quartic term has significant ramifications in determining the equation of state of neutron-rich nucleonic matter using both terrestrial and astrophysical observables.

  10. ON THE KINETIC ENERGY AND RADIATIVE EFFICIENCY OF GAMMA-RAY BURSTS Nicole M. Lloyd-Ronning1

    E-Print Network [OSTI]

    Zhang, Bing

    ON THE KINETIC ENERGY AND RADIATIVE EFFICIENCY OF GAMMA-RAY BURSTS Nicole M. Lloyd-Ronning1 of 17 gamma-ray bursts (GRBs) during the afterglow phase and ac- counting for radiative losses, we the implications of these results for the GRB radiation and jet models. Subject headinggs: gamma rays: bursts

  11. Free Energy & Kinetics from Molecular Dynamics Objective: To give a presentation of about 60 minutes at the end of the week covering the key aspects of how to get kinetic

    E-Print Network [OSTI]

    Goldschmidt, Christina

    Free Energy & Kinetics from Molecular Dynamics 14.6.10 Objective: To give a presentation of about of determining macroscopic parameters by simulations. One of the most important examples would be free energy and rate constants. The above illustration is the standard description of free energy and rates of going

  12. Dynamics of entropy perturbations in assisted dark energy with mixed kinetic terms

    SciTech Connect (OSTI)

    Karwan, Khamphee

    2011-02-01

    We study dynamics of entropy perturbations in the two-field assisted dark energy model. Based on the scenario of assisted dark energy, in which one scalar field is subdominant compared with the other in the early epoch, we show that the entropy perturbations in this two-field system tend to be constant on large scales in the early epoch and hence survive until the present era for a generic evolution of both fields during the radiation and matter eras. This behaviour of the entropy perturbations is preserved even when the fields are coupled via kinetic interaction. Since, for assisted dark energy, the subdominant field in the early epoch becomes dominant at late time, the entropy perturbations can significantly influence the dynamics of density perturbations in the universe. Assuming correlations between the entropy and curvature perturbations, the entropy perturbations can enhance the integrated Sachs-Wolfe (ISW) effect if the signs of the contributions from entropy perturbations and curvature perturbations are opposite after the matter era, otherwise the ISW contribution is suppressed. For canonical scalar field the effect of entropy perturbations on ISW effect is small because the initial value of the entropy perturbations estimated during inflation cannot be sufficiently large. However, in the case of k-essence, the initial value of the entropy perturbations can be large enough to affect the ISW effect to leave a significant imprint on the CMB power spectrum.

  13. The Energy Landscape, Folding Pathways and the Kinetics of a Knotted Protein

    E-Print Network [OSTI]

    Michael C. Prentiss; David J. Wales; Peter G. Wolynes

    2010-07-02

    The folding pathway and rate coefficients of the folding of a knotted protein are calculated for a potential energy function with minimal energetic frustration. A kinetic transition network is constructed using the discrete path sampling approach, and the resulting potential energy surface is visualized by constructing disconnectivity graphs. Owing to topological constraints, the low-lying portion of the landscape consists of three distinct regions, corresponding to the native knotted state and to configurations where either the N- or C-terminus is not yet folded into the knot. The fastest folding pathways from denatured states exhibit early formation of the N-terminus portion of the knot and a rate-determining step where the C-terminus is incorporated. The low-lying minima with the N-terminus knotted and the C-terminus free therefore constitute an off-pathway intermediate for this model. The insertion of both the N- and C-termini into the knot occur late in the folding process, creating large energy barriers that are the rate limiting steps in the folding process. When compared to other protein folding proteins of a similar length, this system folds over six orders of magnitude more slowly.

  14. LABORATORY III POTENTIAL ENERGY

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY III POTENTIAL ENERGY Lab III - 1 In previous problems, you have been introduced to the concepts of kinetic energy, which is associated with the motion of an object, and internal energy, which is associated with the internal structure of a system. In this section, you work with another form of energy

  15. Einstein-Maxwell Dirichlet walls, negative kinetic energies, and the adiabatic approximation for extreme black holes

    E-Print Network [OSTI]

    Andrade, Tomas; Marolf, Donald

    2015-01-01

    The gravitational Dirichlet problem -- in which the induced metric is fixed on boundaries at finite distance from the bulk -- is related to simple notions of UV cutoffs in gauge/gravity duality and appears in discussions relating the low-energy behavior of gravity to fluid dynamics. We study the Einstein-Maxwell version of this problem, in which the induced Maxwell potential on the wall is also fixed. For flat walls in otherwise-asymptotically-flat spacetimes, we identify a moduli space of Majumdar-Papapetrou-like static solutions parametrized by the location of an extreme black hole relative to the wall. Such solutions may be described as balancing gravitational repulsion from a negative-mass image-source against electrostatic attraction to an oppositely-signed image charge. Standard techniques for handling divergences yield a moduli space metric with an eigenvalue that becomes negative near the wall, indicating a region of negative kinetic energy and suggesting that the Hamiltonian may be unbounded below. O...

  16. Position and energy-resolved particle detection using phonon-mediated microwave kinetic inductance detectors

    SciTech Connect (OSTI)

    Moore, D. C.; Golwala, S. R.; Cornell, B. [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, California 91125 (United States); Bumble, B.; Day, P. K.; LeDuc, H. G. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States); Zmuidzinas, J. [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, California 91125 (United States); Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States)

    2012-06-04

    We demonstrate position and energy-resolved phonon-mediated detection of particle interactions in a silicon substrate instrumented with an array of microwave kinetic inductance detectors (MKIDs). The relative magnitude and delay of the signal received in each sensor allow the location of the interaction to be determined with < or approx. 1mm resolution at 30 keV. Using this position information, variations in the detector response with position can be removed, and an energy resolution of {sigma}{sub E} = 0.55 keV at 30 keV was measured. Since MKIDs can be fabricated from a single deposited film and are naturally multiplexed in the frequency domain, this technology can be extended to provide highly pixelized athermal phonon sensors for {approx}1 kg scale detector elements. Such high-resolution, massive particle detectors would be applicable to rare-event searches such as the direct detection of dark matter, neutrinoless double-beta decay, or coherent neutrino-nucleus scattering.

  17. Kinetic energy deficit in the symmetric fission of /sup 259/Md. [Light particle emission in /sup 256/Fm fission

    SciTech Connect (OSTI)

    Hulet, E.K.; Wild, J.F.; Lougheed, R.W.; Baisden, P.A.; Dougan, R.J.; Mustafa, M.G.

    1980-10-01

    The fragment energies of about 725 coincidence events have now been observed in the spontaneous fission (SF) decay of 105-min /sup 259/Md since its discovery in 1977. The fission of /sup 259/Md is characterized by a symmetric mass distribution, similar to those of /sup 258/Fm and /sup 259/Fm, but with a broad total kinetic energy (anti TKE) distribution which peaks at about 195 MeV, in contrast to those of /sup 258/Fm and /sup 259/Fm, for which the anti TKE is about 240 MeV. This kinetic energy deficit, approx. 40 MeV, has been postulated to be due to the emission of hydrogen-like particles by /sup 259/Md at the scission point in a large fraction of the fissions, leaving the residual fissioning nucleus with 100 protons. The residual nucleus would then be able to divide into two ultrastable tin-like fission fragments, but with less kinetic energy than that observed in the SF of /sup 258/Fm and /sup 259/Fm, because of binding-energy losses and a reduction in the Coulomb repulsion of the major fragments. To test this hypothesis, counter-telescope experiments aimed at detecting and identifying these light particles were performed. In 439 SF events 3 + 3 protons of the appropriate energy were observed, too few to account for the kinetic energy deficit in the fission of /sup 259/Md. There seems to be no explanation for this problem within the framework of current fission theory. These results are discussed along with preliminary measurements of light-particle emission in the SF of /sup 256/Fm. 5 figures.

  18. Ion-Kinetic-Energy Measurements and Energy Balance in a Z-Pinch Plasma at Stagnation E. Kroupp, D. Osin, A. Starobinets, V. Fisher, V. Bernshtam, and Y. Maron

    E-Print Network [OSTI]

    Kroupp, Eyal

    Ion-Kinetic-Energy Measurements and Energy Balance in a Z-Pinch Plasma at Stagnation E. Kroupp, D of Physics, Technion-Israeli Institute of Technology, Haifa, Israel C. Deeney Sandia National Laboratories with simultaneous imaging along the pinch, was employed. Over the emission period, a drop of the ion-kinetic energy

  19. Dynamical interpretation of average fission-fragment kinetic energy systematics and nuclear scission

    SciTech Connect (OSTI)

    Nadtochy, P.N. [GSI, Plankstrasse 1, D-64291 Darmstadt (Germany); Omsk State University, Department of Theoretical Physics, Mira Prospect 55-A, RU-644077 Omsk (Russian Federation); Adeev, G.D. [Omsk State University, Department of Theoretical Physics, Mira Prospect 55-A, RU-644077 Omsk (Russian Federation)

    2005-11-01

    A dynamical interpretation of the well-known systematics for average total kinetic energy of fission fragments over a wide range of the Coulomb parameter (600 on the Coulomb parameter. The results of dynamical calculations of within three-dimensional Langevin dynamics show that the mean distance between the centers of mass of nascent fragments at the scission configuration increases linearly with the parameter Z{sup 2}/A{sup 1/3}. This distance changes approximately from 2.35R{sub 0} for {sup 119}Xe to 2.6R{sub 0} for {sup 256}Fm. In spite of this increase in mean distance between future fragments at scission, the linear dependence of on the parameter Z{sup 2}/A{sup 1/3} remains approximately valid over a wide range of the Coulomb parameter Z{sup 2}/A{sup 1/3}.

  20. Bi-Directional Energy Cascades and the Origin of Kinetic Alfv\\'enic and Whistler Turbulence in the Solar Wind

    E-Print Network [OSTI]

    Che, H; Viñas, A F

    2013-01-01

    The observed sub-proton scale turbulence spectrum in the solar wind raises the question of how that turbulence originates. Observations of keV energetic electrons during solar quite-time suggest them as possible source of free energy to drive the turbulence. Using particle-in-cell simulations, we explore how free energy in energetic electrons, released by an electron two-stream instability drives Weibel-like electromagnetic waves that excite wave-wave interactions. Consequently, both kinetic Alfv\\'enic and whistler waves are excited that evolve through inverse and forward magnetic energy cascades.

  1. Laser sustained discharge nozzle apparatus for the production of an intense beam of high kinetic energy atomic species

    DOE Patents [OSTI]

    Cross, J.B.; Cremers, D.A.

    1986-01-10

    Laser sustained discharge apparatus for the production of intense beams of high kinetic energy atomic species is described. A portion of the plasma resulting from a laser sustained continuous optical discharge which generates energetic atomic species from a gaseous source thereof is expanded through a nozzle into a region of low pressure. The expanded plasma contains a significant concentration of the high kinetic energy atomic species which may be used to investigate the interaction of surfaces therewith. In particular, O-atoms having velocities in excess of 3.5 km/s can be generated for the purpose of studying their interaction with materials in order to develop protective materials for spacecraft which are exposed to such energetic O-atoms during operation in low earth orbit.

  2. Study of the low-lying states of Ge2 and Ge2 using negative ion zero electron kinetic energy spectroscopy

    E-Print Network [OSTI]

    Neumark, Daniel M.

    Study of the low-lying states of Ge2 and Ge2 using negative ion zero electron kinetic energy The low-lying states of Ge2 and Ge2 are probed using negative ion zero electron kinetic energy ZEKE spectroscopy. The ZEKE spectrum of Ge2 yields an electron affinity of 2.035 0.001 eV for Ge2, as well as term

  3. Kinetic Energy Estimates for the Accuracy of the Time-Dependent Hartree-Fock Approximation with Coulomb Interaction

    E-Print Network [OSTI]

    Volker Bach; Sébastien Breteaux; Sören Petrat; Peter Pickl; Tim Tzaneteas

    2015-03-03

    We study the time evolution of a system of $N$ spinless fermions in $\\mathbb{R}^3$ which interact through a pair potential, e.g., the Coulomb potential. We compare the dynamics given by the solution to Schr{\\"o}dinger's equation with the time-dependent Hartree-Fock approximation, and we give an estimate for the accuracy of this approximation in terms of the kinetic energy of the system. This leads, in turn, to bounds in terms of the initial total energy of the system.

  4. Application of a kinetic energy partitioning scheme for ab initio molecular dynamics to reactions associated with ionization in water tetramers

    SciTech Connect (OSTI)

    Furuhama, Ayako; Dupuis, Michel; Hirao, Kimihiko

    2008-05-29

    We give the details of a partitioning scheme of the kinetic energy in molecular dynamics based on instantaneous internal coordinates and atomic velocities. The scheme applied to the analysis of the short-time dynamics after ionization in ‘cyclic’ and ‘branched’ water tetramers illustrates that the tetrameric systems can be usefully partitioned into two subsystems, a ‘reactive trimer’ and a ‘solvent’ molecule. The partitioned kinetic energy exhibits a broad peak that can be assigned to the interaction between the two sub-systems, and a sharper peak arising from the proton transfer that occurs upon ionization. Comparison of the dynamics in tetramer clusters suggests that the stability of the hydroxyl radical formed upon ionization depends on the instantaneous configuration of the water molecules around the ionized water. These findings are consistent with those reported earlier for the (H2O)17 cluster. This work was supported in part by the Division of Chemical Sciences, Office of Basic Energy Sciences, of the U.S. Department of Energy (DOE). This research was performed in part using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at the Pacific Northwest National Laboratory (PNNL). The EMSL is funded by DOE’s Office of Biological and Environmental Research. PNNL is operated by Battelle for DOE.

  5. Extracting kinetic freeze-out temperature and radial flow velocity from transverse momentum spectra in high energy collisions

    E-Print Network [OSTI]

    Wei, Hua-Rong; Lacey, Roy A

    2015-01-01

    Experimental results of the transverse momentum spectra of final-state light flavour particles produced in gold-gold (Au-Au), copper-copper (Cu-Cu), lead-lead (Pb-Pb), proton-lead (p-Pb), and proton-proton (p-p) collisions at various energies, measured by the PHENIX, STAR, ALICE, and CMS Collaborations, are described by the Tsallis-standard (Tsallis form of Fermi-Dirac or Bose-Einstein) distribution, Tsallis distribution, and two- or three-component standard distribution, in the framework of a multisource thermal model. The effective temperatures and real temperatures (kinetic freeze-out temperatures) of interacting system at the stage of kinetic freeze-out, and the radial flow velocities of final-state particles are successively extracted from the transverse momentum spectra by the three distributions which can be in fact regarded as three types of "thermometers" and "speedometers". The dependences of effective temperatures on particle mass and centrality, and the dependences of kinetic freeze-out temperatur...

  6. Gas-phase reaction between calcium monocation and fluoromethane: Analysis of the potential energy hypersurface and kinetics calculations

    SciTech Connect (OSTI)

    Varela-Alvarez, Adrian; Sordo, Jose A. [Departamento de Quimica Fisica y Analitica, Laboratorio de Quimica Computacional, Facultad de Quimica, Universidad de Oviedo, Julian Claveria, 8. 33006 Oviedo, Principado de Asturias (Spain); Rayon, V. M.; Redondo, P.; Barrientos, C. [Departamento de Quimica Fisica y Quimica Inorganica, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid (Spain)

    2009-10-14

    The gas-phase reaction between calcium monocation and fluoromethane: Ca{sup +}+CH{sub 3}F{yields}CaF{sup +}+CH{sub 3} was theoretically analyzed. The potential energy hypersurface was explored by using density functional theory methodology with different functionals and Pople's, Dunning's, Ahlrichs', and Stuttgart-Dresden basis sets. Kinetics calculations (energy and total angular momentum resolved microcanonical variational/conventional theory) were accomplished. The theoretically predicted range for the global kinetic rate constant values at 295 K (7.2x10{sup -11}-5.9x10{sup -10} cm{sup 3} molecule{sup -1} s{sup -1}) agrees reasonably well with the experimental value at the same temperature [(2.6{+-}0.8)x10{sup -10} cm{sup 3} molecule{sup -1} s{sup -1}]. Explicit consideration of a two transition state model, where the formation of a weakly bounded prereactive complex is preceded by an outer transition state (entrance channel) and followed by an inner transition state connecting with a second intermediate that finally leads to products, is mandatory. Experimental observations on the correlation, or lack of correlation, between reaction rate constants and second ionization energies of the metal might well be rationalized in terms of this two transition state model.

  7. LABORATORY V In this lab, you will begin to use the principle of conservation of energy to determine the motion resulting from

    E-Print Network [OSTI]

    Minnesota, University of

    Lab V - 1 LABORATORY V ENERGY In this lab, you will begin to use the principle of conservation of energy to determine the motion resulting from interactions that are difficult to analyze using force should enable you to: · Use the conservation of energy to predict the outcome of interactions between

  8. Dynamical behavior of the entanglement, purity and energy between atomic qubits in motion under the influence of thermal environment

    E-Print Network [OSTI]

    L. Tan; Y. Q. Zhang; Z. H. Zhu; L. W. Liu

    2010-05-20

    The entanglement, purity and energy of two isolated two-level atoms which are initially prepared in Bell state and each interacts with a thermal cavity field are investigated by considering the atomic motion and the field-mode structure. We achieve the analytical solutions of the atomic qubits by using the algebraic dynamical approach and the influences of the field-mode structure parameter, the strength of the thermal field and the detuning on the entanglement, purity and energy are discussed. We also investigate the state evolution of the atomic qubits based on the entanglement-purity-energy diagrams. Our results show that the disentanglement process of the atomic qubits accompanies by excitations transferring from atomic subsystem to cavity field modes and atomic state from a pure state convert to the mixed states.

  9. Interplay of waves and eddies in rotating stratified turbulence and the link with kinetic-potential energy partition

    E-Print Network [OSTI]

    Marino, Raffaele; Herbert, Corentin; Pouquet, Annick

    2015-01-01

    The interplay between waves and eddies in stably stratified rotating flows is investigated by means of world-class direct numerical simulations using up to $3072^3$ grid points. Strikingly, we find that the shift from vortex to wave dominated dynamics occurs at a wavenumber $k_R$ which does not depend on Reynolds number, suggesting that partition of energy between wave and vortical modes is not sensitive to the development of turbulence at the smaller scales. We also show that $k_R$ is comparable to the wavenumber at which exchanges between kinetic and potential modes stabilize at close to equipartition, emphasizing the role of potential energy, as conjectured in the atmosphere and the oceans. Moreover, $k_R$ varies as the inverse of the Froude number as explained by the scaling prediction proposed, consistent with recent observations and modeling of the Mesosphere-Lower Thermosphere and of the ocean.

  10. Einstein-Maxwell Dirichlet walls, negative kinetic energies, and the adiabatic approximation for extreme black holes

    E-Print Network [OSTI]

    Andrade, T; Kelly, WR; Marolf, D

    2015-01-01

    s Proof of the Positive Energy Theorem”, Commun.Math.Phys.James W. , “Quasilocal energy and conserved charges derivedS. Deser and B. Tekin, “Energy in generic higher curvature

  11. Control and optimization of wave-induced motion of ramp- interconnected craft for cargo transfer

    E-Print Network [OSTI]

    Toubi, Jacob

    2009-01-01

    between the kinetic and potential energy of the system. ThenBase [rad] Kinetic Energy = T Potential Energy: V = V G + V

  12. Shape-Memory Transformations of NiTi: Minimum-Energy Pathways between Austenite, Martensites, and Kinetically Limited Intermediate States

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zarkevich, N. A.; Johnson, D. D.

    2014-12-24

    NiTi is the most used shape-memory alloy, nonetheless, a lack of understanding remains regarding the associated structures and transitions, including their barriers. Using a generalized solid-state nudge elastic band (GSSNEB) method implemented via density-functional theory, we detail the structural transformations in NiTi relevant to shape memory: those between body-centered orthorhombic (BCO) groundstate and a newly identified stable austenite (“glassy” B2-like) structure, including energy barriers (hysteresis) and intermediate structures (observed as a kinetically limited R-phase), and between martensite variants (BCO orientations). All results are in good agreement with available experiment. We contrast the austenite results to those from the often-assumed, butmore »unstable B2. These high- and low-temperature structures and structural transformations provide much needed atomic-scale detail for transitions responsible for NiTi shape-memory effects.« less

  13. Transition in the decay rates of stationary distributions of Lévy motion in an energy landscape

    E-Print Network [OSTI]

    Kamil Kaleta; József L?rinczi

    2015-09-01

    The time evolution of random variables with L\\'evy statistics has the ability to develop jumps, displaying very different behaviors from continuously fluctuating cases. Such patterns appear in an ever broadening range of examples including random lasers, non-Gaussian kinetics or foraging strategies. The penalizing or reinforcing effect of the environment, however, has been little explored so far. We report a new phenomenon which manifests as a qualitative transition in the spatial decay behavior of the stationary measure of a jump process under an external potential, occurring on a combined change in the characteristics of the process and the lowest eigenvalue resulting from the effect of the potential. This also provides insight into the fundamental question of what is the mechanism of the spatial decay of a ground state.

  14. A high-intensity, pulsed supersonii:, carbon source aivith C("Pi> kinetic energies of 0.08-0.7 eV for crossed beam experiments

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    1 A high-intensity, pulsed supersonii:, carbon source aivith C("Pi> kinetic energies of 0.08-0.7 e the laser pulse, the pulsed valve, and a chopper wheel located 40 mm after the laser ablation. Neither. INTRODUCTION Chemical reactions of ground state atomic carbon C(3Pj) play a major role in combustion processes

  15. Brownian shape motion on five-dimensional potential-energy surfaces: Nuclear fission-fragment mass distributions

    E-Print Network [OSTI]

    Jorgen Randrup; Peter Moller

    2011-03-02

    Although nuclear fission can be understood qualitatively as an evolution of the nuclear shape, a quantitative description has proven to be very elusive. In particular, until now, there exists no model with demonstrated predictive power for the fission fragment mass yields. Exploiting the expected strongly damped character of nuclear dynamics, we treat the nuclear shape evolution in analogy with Brownian motion and perform random walks on five-dimensional fission potential-energy surfaces which were calculated previously and are the most comprehensive available. Test applications give good reproduction of highly variable experimental mass yields. This novel general approach requires only a single new global parameter, namely the critical neck size at which the mass split is frozen in, and the results are remarkably insensitive to its specific value.

  16. A Semiclassical Kinetic Theory of Dirac Particles and Thomas Precession

    E-Print Network [OSTI]

    Dayi, O F

    2015-01-01

    Kinetic theory of Dirac fermions is studied within the matrix valued differential forms method. It is based on the symplectic form derived by employing the semiclassical wave packet build of the positive energy solutions of the Dirac equation. A satisfactory definition of the distribution matrix elements imposes to work in the basis where the helicity is diagonal which is also needed to attain the massless limit. We show that the kinematic Thomas precession correction can be studied straightforwardly within this approach. It contributes on an equal footing with the Berry gauge fields. In fact in equations of motion it eliminates the terms arising from the Berry gauge fields.

  17. Appearance Potentials and Kinetic Energies of Ions from N2, CO, and NO

    E-Print Network [OSTI]

    Hierl, Peter M.; Franklin, J. L.

    1967-01-01

    A recently developed method has permitted the measurement of excess translational energy of ions formed in a time?of?flight mass spectrometer. The method, in conjunction with the RPD technique for determining appearance ...

  18. Energy dependence of transient enhanced diffusion and defect kinetics Hugo Saleh and Mark E. Lawa)

    E-Print Network [OSTI]

    Florida, University of

    polishing with a fixed implant dose and energy.3 These effects are thought to be correlated, since of interstitials remains from the implanted ions, and these condense into 311 defects. This is known as the ``plus

  19. Capturing the Motion of the Ocean: Wave Energy Explained | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchersOctober 22, 2012Department of EnergyEnergy

  20. Ground-State Magnetization for Interacting Fermions in a Disordered Potential : Kinetic Energy, Exchange Interaction and Off-Diagonal Fluctuations

    E-Print Network [OSTI]

    Philippe Jacquod; A. Douglas Stone

    2001-10-05

    We study a model of interacting fermions in a disordered potential, which is assumed to generate uniformly fluctuating interaction matrix elements. We show that the ground state magnetization is systematically decreased by off-diagonal fluctuations of the interaction matrix elements. This effect is neglected in the Stoner picture of itinerant ferromagnetism in which the ground-state magnetization is simply determined by the balance between ferromagnetic exchange and kinetic energy, and increasing the interaction strength always favors ferromagnetism. The physical origin of the demagnetizing effect of interaction fluctuations is the larger number of final states available for interaction-induced scattering in the lower spin sectors of the Hilbert space. We analyze the energetic role played by these fluctuations in the limits of small and large interaction $U$. In the small $U$ limit we do second-order perturbation theory and identify explicitly transitions which are allowed for minimal spin and forbidden for higher spin. These transitions then on average lower the energy of the minimal spin ground state with respect to higher spin. For large interactions $U$ we amplify on our earlier work [Ph. Jacquod and A.D. Stone, Phys. Rev. Lett. 84, 3938 (2000)] which showed that minimal spin is favored due to a larger broadening of the many-body density of states in the low-spin sectors. Numerical results are presented in both limits.

  1. Motion to Intervene Out of Time and Comments of FirstEnergy Service Company

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department of Energy Moratorium and Suspension

  2. Motion to Intervene Out of Time of Sumas Energy 2, Inc on Proposed

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department of Energy Moratorium and SuspensionOpen-Access

  3. Motion to intervene and comments of the energy services group of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department of Energy Moratorium andDepartment of

  4. Motion to intervene of Consumers Energy Company. FE Docket No. 99-1 |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department of Energy Moratorium andDepartment ofDepartment of

  5. Dynamic Positioning System as Dynamic Energy Storage on Diesel-Electric Ships

    E-Print Network [OSTI]

    Johansen, Tor Arne

    1 Dynamic Positioning System as Dynamic Energy Storage on Diesel-Electric Ships Tor A. Johansen in order to implement energy storage in the kinetic and potential energy of the ship motion using the DP in order to relate the dynamic energy storage capacity to the maximum allowed ship position deviation

  6. Quantitative predictions of tokamak energy confinement from first-principles simulations with kinetic effects*

    E-Print Network [OSTI]

    Hammett, Greg

    Quantitative predictions of tokamak energy confinement from first-principles simulations Jersey 08543 (Received 14 November 1994; accepted 2 March 1995) A first-principles model of anomalous data from the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. 21, 1324 (1992)]. This model is based

  7. Quantitative Predictions of Tokamak Energy Confinement from FirstPrinciples Simulations with Kinetic Effects

    E-Print Network [OSTI]

    Hammett, Greg

    Quantitative Predictions of Tokamak Energy Confinement from First­Principles Simulations 451, Princeton, NJ, 08543 Abstract A first­principles model of anomalous thermal transport based Fusion Test Reactor (TFTR) [Fusion Technol. 21, 1324 (1992)]. This model is based on nonlinear gyrofluid

  8. TheChandraViewofRadiativeandKineticEnergyDissipationin Beyond Unification:An X-ray

    E-Print Network [OSTI]

    Evans, Dan

    the way in, so a disk is formed · Frictional forces internal to the disc heat it up, causing it to radiate angular resolution (Transmission Gratings Spectrometers (HETG and LETG) XMM-Newton: Moderate Energy Transmission Gratings Spectrometer well suited · Narrow core always attributed

  9. Chemical Kinetic Research on HCCI & Diesel Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels|Programs |Chart of breakout of funds by majorEnergy 12 DOE

  10. Chemical Kinetic Research on HCCI & Diesel Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels|Programs |Chart of breakout of funds by majorEnergy 12 DOE1 DOE

  11. Chemical Kinetic Research on HCCI & Diesel Fuels | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouthApplying caulkChapter

  12. Chemical Kinetic Research on HCCI & Diesel Fuels | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouthApplying caulkChapterace013_pitz_2013_o.pdf More

  13. Chemical Kinetic Research on HCCI & Diesel Fuels | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV) charging station in Rhode Island. |Moreit

  14. Active shapes : introducing guidelines for designing kinetic architectural structures

    E-Print Network [OSTI]

    El-Zanfaly, Dina E

    2011-01-01

    This thesis proposes guidelines for designing kinetic architectural structures, in which rules based on shape grammars, are used for motion capturing and design. There is an increasing demand for adaptive architecture that ...

  15. Topobo : a 3-D constructive assembly system with kinetic memory

    E-Print Network [OSTI]

    Raffle, Hayes Solos, 1974-

    2004-01-01

    We introduce Topobo, a 3-D constructive assembly system em- bedded with kinetic memory, the ability to record and playback physical motion. Unique among modeling systems is Topobo's coincident physical input and output ...

  16. Zero Energy Travel

    E-Print Network [OSTI]

    Othman Ahmad; Aroland Kiring; Ali Chekima

    2012-10-17

    It is fundamentally possible to travel with zero energy based on Newton Laws of Motion. According to the first law of motion, a body will continue to travel for infinite distance unless it is acted upon by another force. For a body in motion, the force which stops perpetual motion is friction. However, there are many circumstances that friction is zero, for example in space, where there is vacuum. On earth, gravity makes objects to be in constant contact with each other generating friction but technology exists to separate them in the air using powerful magnetic forces. At low speeds, the friction caused by air is minimal but we can create vacuum even on land for high speed travel. Another condition for travelling is for it to stop at its destination. On land, we can recover the kinetic energy back into electrical energy using brushless permanent magnet generators. These generators can also convert electric energy into kinetic energy in order to provide motion. This article reviews technologies that will allow us to travel with zero energy. It is easier to do it on land but in the air, it is not obvious.

  17. Measurement of the complete nuclide production and kinetic energies of the system 136Xe + hydrogen at 1 GeV per nucleon

    E-Print Network [OSTI]

    P. Napolitani; K. -H. Schmidt; L. Tassan-Got; P. Armbruster; T. Enqvist; A. Heinz; V. Henzl; D. Henzlova; A. Kelic; R. Pleskac; M. V. Ricciardi; C. Schmitt; O. Yordanov; L. Audouin; M. Bernas; A. Lafriaskh; F. Rejmund; C. Stephan; J. Benlliure; E. Casarejos; M. Fernandez Ordonez; J. Pereira; A. Boudard; B. Fernandez; S. Leray; C. Villagrasa; C. Volant

    2007-06-05

    We present an extensive overview of production cross sections and kinetic energies for the complete set of nuclides formed in the spallation of 136Xe by protons at the incident energy of 1 GeV per nucleon. The measurement was performed in inverse kinematics at the FRagment Separator (GSI, Darmstadt). Slightly below the Businaro-Gallone point, 136Xe is the stable nuclide with the largest neutron excess. The kinematic data and cross sections collected in this work for the full nuclide production are a general benchmark for modelling the spallation process in a neutron-rich nuclear system, where fission is characterised by predominantly mass-asymmetric splits.

  18. Convergent sum of gradient expansion of the kinetic-energy density functional up to the sixth order term using Pade approximant

    E-Print Network [OSTI]

    A. Sergeev; R. Jovanovic; S. Kais; F. H. Alharbi

    2015-08-27

    The gradient expansion of the kinetic energy functional, when applied for atoms or finite systems, usually grossly overestimates the energy in the fourth order and generally diverges in the sixth order. We avoid the divergence of the integral by replacing the asymptotic series including the sixth order term in the integrand by a rational function. Pade approximants show moderate improvements in accuracy in comparison with partial sums of the series. The results are discussed for atoms and Hooke law model for two electron atoms.

  19. Kinetic advantage of controlled intermediate nuclear fusion

    SciTech Connect (OSTI)

    Guo Xiaoming

    2012-09-26

    The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

  20. Diagnosing residual motion via the x-ray self emission from indirectly driven inertial confinement implosions

    SciTech Connect (OSTI)

    Pak, A., E-mail: pak5@llnl.gov; Field, J. E.; Benedetti, L. R.; Caggiano, J.; Hatarik, R.; Izumi, N.; Khan, S. F.; Ma, T.; Spears, B. K.; Town, R. P. J.; Bradley, D. K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Knauer, J. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States)

    2014-11-15

    In an indirectly driven implosion, non-radial translational motion of the compressed fusion capsule is a signature of residual kinetic energy not coupled into the compressional heating of the target. A reduction in compression reduces the peak pressure and nuclear performance of the implosion. Measuring and reducing the residual motion of the implosion is therefore necessary to improve performance and isolate other effects that degrade performance. Using the gated x-ray diagnostic, the x-ray Bremsstrahlung emission from the compressed capsule is spatially and temporally resolved at x-ray energies of >8.7 keV, allowing for measurements of the residual velocity. Here details of the x-ray velocity measurement and fitting routine will be discussed and measurements will be compared to the velocities inferred from the neutron time of flight detectors.

  1. Measurement of a complete set of nuclides, cross-sections and kinetic energies in spallation of 238U 1A GeV with protons

    E-Print Network [OSTI]

    P. Armbruster; J. Benlliure; M. Bernas; A. Boudard; E. Casarejos; S. Czajkowski; T. Enqvist; S. Leray; P. Napolitani; J. Pereira; F. Rejmund; M. -V. Ricciardi; K. -H. Schmidt; C. Stephan; J. Taieb; L. Tassan-Got; C. Volant

    2004-06-28

    Spallation residues and fission fragments from 1A GeV 238U projectiles irradiating a liquid hydrogen target were investigated by using the FRagment Separator at GSI for magnetic selection of reaction products including ray-tracing, energy-loss and time-of-flight techniques. The longitudinal-momentum spectra of identified fragments were analysed, and evaporation residues and fission fragments could be separated. For 1385 nuclides, production cross-sections covering 3 orders of magnitude with a mean accuracy of 15%, velocities in the U-rest frame and kinetic energies were determined. In the reaction all elements from uranium to nitrogen were found, each with a large number of isotopes.

  2. Combined valence bond-molecular mechanics potential-energy surface and direct dynamics study of rate constants and kinetic isotope

    E-Print Network [OSTI]

    Truhlar, Donald G

    Combined valence bond-molecular mechanics potential-energy surface and direct dynamics study of the MPW54 potential-energy surface are then used to parametrize a new kind of analytical potential-energy of molecular mechanics to treat a reactive potential-energy surface or a new kind of combined quantum

  3. Comparison of the energy spectra and number fluxes from a simple flare model to observations

    E-Print Network [OSTI]

    Hannah, Iain G; Fletcher, L

    2006-01-01

    column) and the kinetic energy gain (right- hand column) forcolumn) and the kinetic energy gain (right- hand column) forcolumn) and the kinetic energy gain (right- hand column) for

  4. Perceiving Motion and Events Image motion vs. Object Motion

    E-Print Network [OSTI]

    Majumder, Aditi

    ? But can we always "see" it moving? ­ What about the moon... ­ Or the blades of a helicopter? #12;10 What;14 Apparent Motion If video is just a sequence of frames, why do we see motion? First Tested by Sigmund

  5. Volume146,number6 CHEMICALPHYSICSLETTERS 20May 1988 KINETIC ENERGY ENHANCED MOLECULAR BEAM EPITAXIAL GROWTH OF Si(100)

    E-Print Network [OSTI]

    Brenner, Donald W.

    than requiring the long times associated with surface diffusion processes. The optimal energy range thermal energy de- position [ 16,171. 0 009-2614/88/$ 03.50 0 Elsevier Science Publishers B.V. (North. Only four layers of the ten used in the simulation are shown. The initial stages of thermal energy MBE

  6. Analysis of Flow Cytometry DNA Damage Response Protein Activation Kinetics Following X-rays and High Energy Iron Nuclei Exposure

    SciTech Connect (OSTI)

    Universities Space Research Association; Chappell, Lori J.; Whalen, Mary K.; Gurai, Sheena; Ponomarev, Artem; Cucinotta, Francis A.; Pluth, Janice M.

    2010-12-15

    We developed a mathematical method to analyze flow cytometry data to describe the kinetics of {gamma}H2AX and pATF2 phosphorylations ensuing various qualities of low dose radiation in normal human fibroblast cells. Previously reported flow cytometry kinetic results for these DSB repair phospho-proteins revealed that distributions of intensity were highly skewed, severely limiting the detection of differences in the very low dose range. Distributional analysis reveals significant differences between control and low dose samples when distributions are compared using the Kolmogorov-Smirnov test. Radiation quality differences are found in the distribution shapes and when a nonlinear model is used to relate dose and time to the decay of the mean ratio of phosphoprotein intensities of irradiated samples to controls. We analyzed cell cycle phase and radiation quality dependent characteristic repair times and residual phospho-protein levels with these methods. Characteristic repair times for {gamma}H2AX were higher following Fe nuclei as compared to X-rays in G1 cells (4.5 {+-} 0.46 h vs 3.26 {+-} 0.76 h, respectively), and in S/G2 cells (5.51 {+-} 2.94 h vs 2.87 {+-} 0.45 h, respectively). The RBE in G1 cells for Fe nuclei relative to X-rays for {gamma}H2AX was 2.05 {+-} 0.61 and 5.02 {+-} 3.47, at 2 h and 24-h postirradiation, respectively. For pATF2, a saturation effect is observed with reduced expression at high doses, especially for Fe nuclei, with much slower characteristic repair times (>7 h) compared to X-rays. RBEs for pATF2 were 0.66 {+-} 0.13 and 1.66 {+-} 0.46 at 2 h and 24 h, respectively. Significant differences in {gamma}H2AX and pATF2 levels comparing irradiated samples to control were noted even at the lowest dose analyzed (0.05 Gy) using these methods of analysis. These results reveal that mathematical models can be applied to flow cytometry data to uncover important and subtle differences following exposure to various qualities of low dose radiation.

  7. Transport Phenomena and Interfacial Kinetics in Planar Microfluidic

    Office of Scientific and Technical Information (OSTI)

    Transport Phenomena and Interfacial Kinetics in Planar Microfluidic Membraneless Fuel Cells Abruna, Hector Daniel Cornell University 30 DIRECT ENERGY CONVERSION Our work is...

  8. Kinetic neoclassical transport in the H-mode pedestal

    SciTech Connect (OSTI)

    Battaglia, D. J.; Chang, C. S.; Ku, S.; Grierson, B. A.; Burrell, K. H.; Grassie, J. S. de

    2014-07-15

    Multi-species kinetic neoclassical transport through the QH-mode pedestal and scrape-off layer on DIII-D is calculated using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. Quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density, and orthogonal measurements of impurity temperature and flow profiles is achieved by adding random-walk particle diffusion to the guiding-center drift motion. The radial electric field (E{sub r}) that maintains ambipolar transport across flux surfaces and to the wall is computed self-consistently on closed and open magnetic field lines and is in excellent agreement with experiment. The E{sub r} inside the separatrix is the unique solution that balances the outward flux of thermal tail deuterium ions against the outward neoclassical electron flux and inward pinch of impurity and colder deuterium ions. Particle transport in the pedestal is primarily due to anomalous transport, while the ion heat and momentum transport are primarily due to the neoclassical transport. The full-f treatment quantifies the non-Maxwellian energy distributions that describe a number of experimental observations in low-collisionallity pedestals on DIII-D, including intrinsic co-I{sub p} parallel flows in the pedestal, ion temperature anisotropy, and large impurity temperatures in the scrape-off layer.

  9. Ion Temperature and Hydrodynamic-Energy Measurements in a Z-Pinch Plasma at Stagnation E. Kroupp, D. Osin, A. Starobinets, V. Fisher, V. Bernshtam, L. Weingarten, and Y. Maron

    E-Print Network [OSTI]

    Kroupp, Eyal

    Ion Temperature and Hydrodynamic-Energy Measurements in a Z-Pinch Plasma at Stagnation E. Kroupp, D. Fisher Faculty of Physics, Technion-Israeli Institute of Technology, Haifa, Israel M. E. Cuneo Sandia and the random hydrodynamic motion to the line shapes. In Z-pinch ex- periments [1,3], the plasma kinetic energy

  10. Test particle motion in modified gravity theories

    E-Print Network [OSTI]

    Mahmood Roshan

    2013-02-05

    We derive the equations of motion of an electrically neutral test particle for modified gravity theories in which the covariant divergence of the ordinary matter energy-momentum tensor dose not vanish (i.e. $\

  11. Theoretical investigation of the origin of the multipeak structure of kinetic-energy-release spectra from charge-resonance-enhanced ionization of H{sub 2}{sup +} in intense laser fields

    SciTech Connect (OSTI)

    He Haixiang; Guo Yahui [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); China and Graduate School of the Chinese Academy of Sciences, Beijing, 10039 (China); Lu Ruifeng [Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094 (China); Zhang Peiyu; Han Keli; He Guozhong [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2011-09-15

    The dynamics of hydrogen molecular ions in intense laser pulses (100 fs, I = 0.77 x 10{sup 14} W/cm{sup 2} to 2.5 x 10{sup 14} W/cm{sup 2}) has been studied, and the kinetic-energy-release spectra of Coulomb explosion channel have been calculated by numerically solving the time-dependent Schroedinger equation. In a recent experiment, a multipeak structure from charge-resonance-enhanced ionization is interpreted by a vibrational 'comb' at a critical nuclear distance. We found that the peaks could not be attributed to a single vibrational level but a collective contribution of some typical vibrational states in our calculated Coulomb explosion spectra, and the main peak shifts toward the low-energy region with increasing vibrational level, which is also different from the explanation in that experiment. We have also discussed the proton's kinetic-energy-release spectra for different durations with the same laser intensity.

  12. Low energy ion-molecule reactions and chemiionization kinetics. Progress report, February 1, 1992--January 31, 1993

    SciTech Connect (OSTI)

    Farrar, J.M.

    1992-09-24

    Objective is to understand dynamics of elementary ionic collisions at the level of the underlying potential surface by measuring energy and angular distributions of reactively scattered products with crossed beam methods over the relative center-of-mass energy range from 0.3 to several eV. During the past few years, emphasis was on reaction dynamics of anionic species important in combustion, with special emphasis on O{sup {minus}} in proton and hydrogen atom transfer reactions with NH{sub 3}, H{sub 2}O, HF, and CH{sub 4}.

  13. Constrained geometric dynamics of the Fenna-Matthews-Olson complex: The role of correlated motion in reducing uncertainty in excitation energy transfer

    E-Print Network [OSTI]

    Alexander S. Fokas; Daniel J. Cole; Alex W. Chin

    2014-07-08

    The Fenna Mathews Olson (FMO) complex of green sulphur bacteria is an example of a photosynthetic pigment protein complex, in which the electronic properties of the pigments are modified by the protein environment to promote efficient excitonic energy transfer from antenna complexes to the reaction centres. Many of the electronic properties of the FMO complex can be extracted from knowledge of the static crystal structure. However, the recent observation and analysis of long lasting quantum dynamics in the FMO complex point to protein dynamics as a key factor in protecting and generating quantum coherence under laboratory conditions. While fast inter and intra molecular vibrations have been investigated extensively, the slow dynamics which effectively determine the optical inhomogeneous broadening of experimental ensembles has received less attention. Our study employs constrained geometric dynamics to study the flexibility in the protein network by efficiently generating the accessible conformational states from the published crystal structure. Statistical and principle component analysis reveal highly correlated low frequency motions between functionally relevant elements, including strong correlations between pigments that are excitonically coupled. Our analysis reveals a hierarchy of structural interactions which enforce these correlated motions, from the level of monomer monomer interfaces right down to the alpha helices, beta sheets and pigments. In addition to inducing strong spatial correlations across the conformational ensemble, we find that the overall rigidity of the FMO complex is exceptionally high. We suggest that these observations support the idea of highly correlated inhomogeneous disorder of the electronic excited states, which is further supported by the remarkably low variance of the excitonic couplings of the conformational ensemble.

  14. Kinetic decoupling of WIMPs: analytic expressions

    E-Print Network [OSTI]

    Visinelli, Luca

    2015-01-01

    We present a general expression for the values of the average kinetic energy and of the temperature of kinetic decoupling of a WIMP, valid for any cosmological model. We show an example of the usage of our solution when the Hubble rate has a power-law dependence on temperature, and we show results for the specific cases of kination cosmology and low- temperature reheating cosmology.

  15. Low energy ion-molecule reaction dynamics and chemiionization kinetics. Progress report, February 1, 1980-January 31, 1981

    SciTech Connect (OSTI)

    Farrar, J.M.

    1981-01-01

    Reactive scattering studies were completed over a wide energy range on the systems H/sub 2//sup +/ + Ar, H/sub 2//sup +/ + H/sub 2/O, H/sub 2//sup +/ + D/sub 2/O, and H/sub 2//sup +/ + Ne. Work was begun on the proton transfer system HCO/sup +/ + H/sub 2/O ..-->.. H/sub 3/O/sup +/ + CO.

  16. Potential energy of atmospheric water vapor and the air motions induced by water vapor condensation on different spatial scales

    E-Print Network [OSTI]

    Anastassia M. Makarieva; Victor G. Gorshkov

    2010-03-29

    Basic physical principles are considered that are responsible for the origin of dynamic air flow upon condensation of water vapor, the partial pressure of which represents a store of potential energy in the atmosphere of Earth. Quantitative characteristics of such flow are presented for several spatial scales. It is shown that maximum condensation-induced velocities reach 160 m/s and are realized in compact circulation patterns like tornadoes.

  17. Experimental search for solar hidden photons in the eV energy range using kinetic mixing with photons

    E-Print Network [OSTI]

    T. Mizumoto; R. Ohta; T. Horie; J. Suzuki; Y. Inoue; M. Minowa

    2013-06-18

    We have searched for solar hidden photons in the eV energy range using a dedicated hidden photon detector. The detector consisted of a parabolic mirror with a diameter of 500mm and a focal length of 1007mm installed in a vacuum chamber, and a photomultiplier tube at its focal point. The detector was attached to the Tokyo axion helioscope, Sumico which has a mechanism to track the sun. From the result of the measurement, we found no evidence for the existence of hidden photons and set a limit on the photon-hidden photon mixing parameter \\chi depending on the hidden photon mass m_{\\gamma '}.

  18. Experimental search for solar hidden photons in the eV energy range using kinetic mixing with photons

    SciTech Connect (OSTI)

    Mizumoto, T. [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Ohta, R.; Horie, T.; Suzuki, J.; Minowa, M. [Department of Physics, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Inoue, Y., E-mail: mizumoto@cr.scphys.kyoto-u.ac.jp, E-mail: comic@icepp.s.u-tokyo.ac.jp, E-mail: horiemon@icepp.s.u-tokyo.ac.jp, E-mail: jsuzuki@icepp.s.u-tokyo.ac.jp, E-mail: berota@icepp.s.u-tokyo.ac.jp, E-mail: minowa@phys.s.u-tokyo.ac.jp [International Center for Elementary Particle Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2013-07-01

    We have searched for solar hidden photons in the eV energy range using a dedicated hidden photon detector. The detector consisted of a parabolic mirror with a diameter of 500 mm and a focal length of 1007 mm installed in a vacuum chamber, and a photomultiplier tube at its focal point. The detector was attached to the Tokyo axion helioscope, Sumico which has a mechanism to track the sun. From the result of the measurement, we found no evidence for the existence of hidden photons and set a limit on the photon-hidden photon mixing parameter ? depending on the hidden photon mass m{sub ?'}.

  19. RANGE-ENERGY TABLES

    E-Print Network [OSTI]

    Rich, Marvin

    2010-01-01

    Particles. II. PROTON RANGE-ENERGY DATA Stopping Medium: Be2301 III. PION RANGE-ENERGY DATA Mev. Pion Kinetic Energy2301 IV. DEUTERON RANGE-ENERGY DATA Deuteron Kinetic Energy

  20. Design and Control of a Ship Motion Simulation Platform from...

    Office of Scientific and Technical Information (OSTI)

    Article: Design and Control of a Ship Motion Simulation Platform from an Energy Efficiency Perspective Citation Details In-Document Search Title: Design and Control of a Ship...

  1. Exploring the Potential of Fulvalene Dimetals as Platforms for Molecular Solar Thermal Energy Storage: Computations, Syntheses, Structures, Kinetics, and Catalysis

    SciTech Connect (OSTI)

    Borjesson, K; Coso, D; Gray, V; Grossman, JC; Guan, JQ; Harris, CB; Hertkorn, N; Hou, ZR; Kanai, Y; Lee, D; Lomont, JP; Majumdar, A; Meier, SK; Moth-Poulsen, K; Myrabo, RL; Nguyen, SC; Segalman, RA; Srinivasan, V; Tolman, WB; Vinokurov, N; Vollhardt, KPC; Weidman, TW

    2014-10-03

    A study of the scope and limitations of varying the ligand framework around the dinuclear core of FvRu(2) in its function as a molecular solar thermal energy storage framework is presented. It includes DFT calculations probing the effect of substituents, other metals, and CO exchange for other ligands on Delta H-storage. Experimentally, the system is shown to be robust in as much as it tolerates a number of variations, except for the identity of the metal and certain substitution patterns. Failures include 1,1',3,3'-tetra-tert-butyl (4), 1,2,2',3'-tetraphenyl (9), diiron (28), diosmium (24), mixed iron-ruthenium (27), dimolybdenum (29), and di-tungsten (30) derivatives. An extensive screen of potential catalysts for the thermal reversal identified AgNO3-SiO2 as a good candidate, although catalyst decomposition remains a challenge.

  2. Nonlinear effects in kinetic resolutions 

    E-Print Network [OSTI]

    Johnson, Derrell W.

    1999-01-01

    The impact of nonlinear effects in the asymmetric catalysis of kinetic resolutions is analyzed. It is found with minimal assumptions that the kinetics of homocompetitive reactions should apply generally to kinetic resolutions involving partially...

  3. Compensation of Wave-Induced Motion and Force Phenomena for Ship-Based High Performance Robotic and Human Amplifying Systems

    SciTech Connect (OSTI)

    Love, LJL

    2003-09-24

    The decrease in manpower and increase in material handling needs on many Naval vessels provides the motivation to explore the modeling and control of Naval robotic and robotic assistive devices. This report addresses the design, modeling, control and analysis of position and force controlled robotic systems operating on the deck of a moving ship. First we provide background information that quantifies the motion of the ship, both in terms of frequency and amplitude. We then formulate the motion of the ship in terms of homogeneous transforms. This transformation provides a link between the motion of the ship and the base of a manipulator. We model the kinematics of a manipulator as a serial extension of the ship motion. We then show how to use these transforms to formulate the kinetic and potential energy of a general, multi-degree of freedom manipulator moving on a ship. As a demonstration, we consider two examples: a one degree-of-freedom system experiencing three sea states operating in a plane to verify the methodology and a 3 degree of freedom system experiencing all six degrees of ship motion to illustrate the ease of computation and complexity of the solution. The first series of simulations explore the impact wave motion has on tracking performance of a position controlled robot. We provide a preliminary comparison between conventional linear control and Repetitive Learning Control (RLC) and show how fixed time delay RLC breaks down due to the varying nature wave disturbance frequency. Next, we explore the impact wave motion disturbances have on Human Amplification Technology (HAT). We begin with a description of the traditional HAT control methodology. Simulations show that the motion of the base of the robot, due to ship motion, generates disturbances forces reflected to the operator that significantly degrade the positioning accuracy and resolution at higher sea states. As with position-controlled manipulators, augmenting the control with a Repetitive Learning Controller has little impact due to the variable nature of the wave period. We then introduce a new approach to HAT control, Ship Motion Compensation for Force Control Systems (SMCFCS). This basic approach uses inclinometer and acceleration information from the base of the robot to compensate for ship motion disturbances. Results of the simulation study show over an order of magnitude decrease in the disturbance force reflected back to the operator and an order of magnitude increase in positioning accuracy and resolution.

  4. Motion in Quantum Gravity

    E-Print Network [OSTI]

    Karim Noui

    2010-03-31

    We tackle the question of motion in Quantum Gravity: what does motion mean at the Planck scale? Although we are still far from a complete answer we consider here a toy model in which the problem can be formulated and resolved precisely. The setting of the toy model is three dimensional Euclidean gravity. Before studying the model in detail, we argue that Loop Quantum Gravity may provide a very useful approach when discussing the question of motion in Quantum Gravity.

  5. Sandia Energy - CEC Array Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    turbulent kinetic energy and turbulent kinetic energy dissipation rate, New, advanced sediment dynamics routines, Augmented water quality modules, and The ability to design new...

  6. Kinetic vs. energetic discrimination in biological copying

    E-Print Network [OSTI]

    Pablo Sartori; Simone Pigolotti

    2013-04-12

    We study stochastic copying schemes in which discrimination between a right and a wrong match is achieved via different kinetic barriers or different binding energies of the two matches. We demonstrate that, in single-step reactions, the two discrimination mechanisms are strictly alternative and can not be mixed to further reduce the error fraction. Close to the lowest error limit, kinetic discrimination results in a diverging copying velocity and dissipation per copied bit. On the opposite, energetic discrimination reaches its lowest error limit in an adiabatic regime where dissipation and velocity vanish. By analyzing experimentally measured kinetic rates of two DNA polymerases, T7 and Pol{\\gamma}, we argue that one of them operates in the kinetic and the other in the energetic regime. Finally, we show how the two mechanisms can be combined in copying schemes implementing error correction through a proofreading pathway

  7. MSE 3050, Thermodynamics and Kinetics of Materials, Leonid Zhigilei Review of classical thermodynamics

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    MSE 3050, Thermodynamics and Kinetics of Materials, Leonid Zhigilei Review of classical thermodynamics Fundamental Laws, Properties and Processes (1) First Law - Energy Balance Thermodynamic functions material in any other textbook on thermodynamics #12;MSE 3050, Thermodynamics and Kinetics of Materials

  8. Vortical Motions of Baryonic Gas in the Cosmic Web: Growth History and Scaling Relation

    E-Print Network [OSTI]

    Zhu, Weishan

    2015-01-01

    The vortical motions of the baryonic gas residing in large scale structures are investigated by cosmological hydrodynamic simulations. Proceeding in the formation of the cosmic web, the vortical motions of baryonic matter are pumped up by baroclinity in two stages, i.e., the formation of sheets, and filaments. The mean curl velocity are about $< 1$, 1-10, 10-150, 5-50 km/s in voids, sheets, filaments and knots at $z=0$, respectively. The scaling of the vortical velocity of gas can be well described by the She-Leveque hierarchical turbulence model in the range of $l<0.65(1.50) h^{-1}$ Mpc in simulation of box size 25(100) $h^{-1}$ Mpc. The fractal Hausdorff dimension of vortical motions, $d$, revealed by velocity structure functions, is $\\sim 2.1-2.3$($\\sim 1.8-2.1$). It is slightly larger than the fractal dimension of mass distribution in filaments, $\\textit{D}^f \\sim 1.9-2.2$, and smaller than the fractal dimension of sheets, $\\textit{D}^s \\sim 2.4-2.7$. The vortical kinetic energy of baryonic gas is m...

  9. Bistable illusory rebound motion: Event-related functional magnetic resonance imaging of perceptual states and switches

    E-Print Network [OSTI]

    Bucci, David J.

    Bistable illusory rebound motion: Event-related functional magnetic resonance imaging of perceptual of a recently discovered visual illusion that we call Fillusory rebound motion_ (IRM) are described. This illusion is remarkable because motion is perceived in the absence of any net motion energy in the stimulus

  10. Predicting Protein Folding Kinetics via Temporal Logic Model Checking

    E-Print Network [OSTI]

    Predicting Protein Folding Kinetics via Temporal Logic Model Checking Christopher James Langmead award from the U.S. Department of Energy. #12;Keywords: protein folding, model checking, temporal logic #12;Abstract We present a novel approach for predicting protein folding kinetics using techniques from

  11. Motion to Intervene and Comments of Public Utility District No...

    Energy Savers [EERE]

    & Publications Motion to intervene and comments of the energy services group of Hydro-Quebec and H.Q. Energy Services (U.S.) Inc, on FE 99-1 PP-34 Public Utility District...

  12. BROWNIAN MOTION JUSTIN HARTMANN

    E-Print Network [OSTI]

    May, J. Peter

    BROWNIAN MOTION JUSTIN HARTMANN Abstract. This paper begins to explore a rigorous introduction: August 24, 2009. 1 #12;2 JUSTIN HARTMANN Definition 1.3. If S is a topological space, then the sigma

  13. DNA Nanomechanical Switches under Folding Kinetics Control

    E-Print Network [OSTI]

    Meller, Amit

    DNA Nanomechanical Switches under Folding Kinetics Control Virgile Viasnoff,, Amit Meller operate at equilibrium under changes in solution composition. We propose an alternative DNA switch design after heat denaturation drives the switch to its lowest energy conformation, while rapid cooling (>100

  14. Hamiltonian fluid reductions of drift-kinetic equations and the correspondence with water-bag distribution functions

    E-Print Network [OSTI]

    Perin, Maxime; Tassi, Emanuele

    2015-01-01

    Hamiltonian models for the first three moments of the drift-kinetic distribution function, namely the density, the fluid velocity and the parallel pressure, are derived from the Hamiltonian structure of the drift-kinetic equations. The link with the water-bag closure is established, showing that, unlike the one-dimensional Vlasov equations, these solutions are the only Hamiltonian fluid reductions for the drift-kinetic equation. These models are discussed through their equations of motion and their Casimir invariants.

  15. Hamiltonian fluid reductions of drift-kinetic equations and the correspondence with water-bag distribution functions

    E-Print Network [OSTI]

    Maxime Perin; Cristel Chandre; Emanuele Tassi

    2015-10-12

    Hamiltonian models for the first three moments of the drift-kinetic distribution function, namely the density, the fluid velocity and the parallel pressure, are derived from the Hamiltonian structure of the drift-kinetic equations. The link with the water-bag closure is established, showing that, unlike the one-dimensional Vlasov equations, these solutions are the only Hamiltonian fluid reductions for the drift-kinetic equation. These models are discussed through their equations of motion and their Casimir invariants.

  16. Motion of free spins and NMR imaging without a radio-frequency magnetic field

    E-Print Network [OSTI]

    Kees van Schenk Brill; Jassem Lahfadi; Tarek Khalil; Daniel Grucker

    2015-04-19

    NMR imaging without any radio-frequency magnetic field is explained by a quantum treatment of independent spin~$\\tfrac 12$. The total magnetization is determined by means of their individual wave function. The theoretical treatment, based on fundamental axioms of quantum mechanics and solving explicitly the Schr\\"{o}dinger equation with the kinetic energy part which gives the motion of free spins, is recalled. It explains the phase shift of the spin noise spectrum with its amplitude compared to the conventional NMR spectrum. Moreover it explains also the relatively good signal to noise ratio of NMR images obtained without a RF pulse. This derivation should be helpful for new magnetic resonance imaging sequences or for developing quantum computing by NMR.

  17. Paint decontamination kinetics

    SciTech Connect (OSTI)

    Thornton, E.W.

    1984-04-01

    Decontamination kinetics of a high-gloss polyurethane paint have been investigated using a novel flow cell experiment where the sample was counted in situ during decontamination. The /sup 134/Cs, /sup 137/Cs, and /sup 90/Y decontaminations follow a rate law that can be predicted theoretically for contaminant ion desorption from weakly heterogeneous random surface adsorption sites. Paint surfaces show the same decontamination kinetics after damage by abrasion or ultraviolet irradiation prior to contamination. The systems investigated exhibit Freundlich adsorption isotherm behavior during contamination; this is also characteristic of weakly heterogeneous random surfaces and is very commonly observed in ion adsorption studies at low concentrations.

  18. Fully kinetic simulations of megajoule-scale dense plasma focus

    SciTech Connect (OSTI)

    Schmidt, A.; Link, A.; Tang, V.; Halvorson, C.; May, M.; Welch, D.; Meehan, B. T.; Hagen, E. C.

    2014-10-15

    Dense plasma focus (DPF) Z-pinch devices are sources of copious high energy electrons and ions, x-rays, and neutrons. Megajoule-scale DPFs can generate 10{sup 12} neutrons per pulse in deuterium gas through a combination of thermonuclear and beam-target fusion. However, the details of the neutron production are not fully understood and past optimization efforts of these devices have been largely empirical. Previously, we reported on the first fully kinetic simulations of a kilojoule-scale DPF and demonstrated that both kinetic ions and kinetic electrons are needed to reproduce experimentally observed features, such as charged-particle beam formation and anomalous resistivity. Here, we present the first fully kinetic simulation of a MegaJoule DPF, with predicted ion and neutron spectra, neutron anisotropy, neutron spot size, and time history of neutron production. The total yield predicted by the simulation is in agreement with measured values, validating the kinetic model in a second energy regime.

  19. Elastohydrodynamics and kinetics of protein patterning in the immunological synapse

    E-Print Network [OSTI]

    Carlson, Andreas

    2015-01-01

    The cellular basis for the adaptive immune response during antigen recognition relies on a specialized protein interface known as the immunological synapse (IS). Understanding the biophysical basis for protein patterning by deciphering the quantitative rules for their formation and motion is an important aspect of characterizing immune cell recognition and thence the rules for immune system activation. We propose a minimal mathematical model for the physical basis of membrane protein patterning in the IS, which encompass membrane mechanics, protein binding kinetics and motion, and fluid flow in the synaptic cleft. Our theory leads to simple predictions for the spatial and temporal scales of protein cluster formation, growth and arrest as a function of membrane stiffness, rigidity and kinetics of the adhesive proteins, and the fluid in the synaptic cleft. Numerical simulations complement these scaling laws by quantifying the nucleation, growth and stabilization of proteins domains on the size of the cell. Dire...

  20. Inertial range turbulence in kinetic plasmas

    E-Print Network [OSTI]

    G. G. Howes

    2007-11-27

    The transfer of turbulent energy through an inertial range from the driving scale to dissipative scales in a kinetic plasma followed by the conversion of this energy into heat is a fundamental plasma physics process. A theoretical foundation for the study of this process is constructed, but the details of the kinetic cascade are not well understood. Several important properties are identified: (a) the conservation of a generalized energy by the cascade; (b) the need for collisions to increase entropy and realize irreversible plasma heating; and (c) the key role played by the entropy cascade--a dual cascade of energy to small scales in both physical and velocity space--to convert ultimately the turbulent energy into heat. A strategy for nonlinear numerical simulations of kinetic turbulence is outlined. Initial numerical results are consistent with the operation of the entropy cascade. Inertial range turbulence arises in a broad range of space and astrophysical plasmas and may play an important role in the thermalization of fusion energy in burning plasmas.

  1. Kinetic freeze out

    E-Print Network [OSTI]

    Magas, V K; Csernai, László P; Grassi, Frédérique; Greiner, W; Hama, Y; Kodama, T; Lázár, Z I; Stöcker, H; Lázár, Zs.I.

    1999-01-01

    Freeze out of particles across a space-time hypersurface is discussed in kinetic models. The calculation of final momentum distribution of emitted particles is described for freeze out surfaces, with spacelike normals. The resulting non-equilibrium distribution does not resemble, the previously proposed, cut Juttner distribution, and shows non-exponential p_t-spectra similar to the ones observed in experiments.

  2. Integrating Acclimated Kinetic Envelopes into Sustainable Building Design 

    E-Print Network [OSTI]

    Wang, Jialiang

    2014-05-28

    affects the energy usage of a building. In an effort to simultaneously consider and satisfy all of the various indoor comfort requirements, changing climatic conditions can generate conflicting conditions. Acclimated Kinetic Envelope (AKE) is a notion...

  3. Motion detector and analyzer

    DOE Patents [OSTI]

    Unruh, W.P.

    1987-03-23

    Method and apparatus are provided for deriving positive and negative Doppler spectrum to enable analysis of objects in motion, and particularly, objects having rotary motion. First and second returned radar signals are mixed with internal signals to obtain an in-phase process signal and a quadrature process signal. A broad-band phase shifter shifts the quadrature signal through 90/degree/ relative to the in-phase signal over a predetermined frequency range. A pair of signals is output from the broad-band phase shifter which are then combined to provide a first side band signal which is functionally related to a negative Doppler shift spectrum. The distinct positive and negative Doppler spectra may then be analyzed for the motion characteristics of the object being examined.

  4. LLNL Chemical Kinetics Modeling Group

    SciTech Connect (OSTI)

    Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

    2008-09-24

    The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

  5. Kinetic equilibrium and relativistic thermodynamics

    E-Print Network [OSTI]

    P. Ván

    2011-02-01

    Relativistic thermodynamics is treated from the point of view of kinetic theory. It is shown that the generalized J\\"uttner distribution suggested in [1] is compatible with kinetic equilibrium. The requirement of compatibility of kinetic and thermodynamic equilibrium reveals several generalizations of the Gibbs relation where the velocity field is an independent thermodynamic variable.

  6. Simulation of ship motion and deck-wetting due to steep random seas 

    E-Print Network [OSTI]

    Adil, Adam Mohamed

    2005-02-17

    The extreme motion and load of ships have been assessed using a linear frequency domain method or a linear energy spectral method and RAOs, which may be too approximate to be used for estimation of ship motion in severest ...

  7. Inertial range turbulence in kinetic plasmas

    E-Print Network [OSTI]

    Howes, G G

    2007-01-01

    The transfer of turbulent energy through an inertial range from the driving scale to dissipative scales in a kinetic plasma followed by the conversion of this energy into heat is a fundamental plasma physics process. A theoretical foundation for the study of this process is constructed, but the details of the kinetic cascade are not well understood. Several important properties are identified: (a) the conservation of a generalized energy by the cascade; (b) the need for collisions to increase entropy and realize irreversible plasma heating; and (c) the key role played by the entropy cascade--a dual cascade of energy to small scales in both physical and velocity space--to convert ultimately the turbulent energy into heat. A strategy for nonlinear numerical simulations of kinetic turbulence is outlined. Initial numerical results are consistent with the operation of the entropy cascade. Inertial range turbulence arises in a broad range of space and astrophysical plasmas and may play an important role in the ther...

  8. Multidimensional simulation and chemical kinetics development...

    Energy Savers [EERE]

    Multidimensional simulation and chemical kinetics development for high efficiency clean combustion engines Multidimensional simulation and chemical kinetics development for high...

  9. LABORATORY IV CIRCULAR MOTION

    E-Print Network [OSTI]

    Minnesota, University of

    Lab IV - 1 LABORATORY IV CIRCULAR MOTION The problems in this laboratory will help you investigate. OBJECTIVES: After successfully completing this laboratory, you should be able to: · Determine Laboratories I, II, and III. Before coming to the lab you should be able to: · Determine an object

  10. KineticsFinal Report Cover Page Bakajin, O 59 BASIC BIOLOGICAL...

    Office of Scientific and Technical Information (OSTI)

    KineticsFinal Report Cover Page Bakajin, O 59 BASIC BIOLOGICAL SCIENCES; 42 ENGINEERING; CONSUMPTION RATES; DEAD TIME; DETECTION; DIFFUSION; DNA; ENERGY TRANSFER; FABRICATION;...

  11. Note on numerical study of the beam energy spread in NDCX-I

    E-Print Network [OSTI]

    Vay, J.-L.

    2011-01-01

    energy vs z\\ (top-right) kinetic energy vz (r,z), colored byenergy vs z; (top-right) kinetic energy vz (r,z), colored byenergy vs z; (top-right) kinetic energy vz (r,z), colored by

  12. Hamiltonian theory of adiabatic motion of relativistic charged particles

    SciTech Connect (OSTI)

    Tao Xin; Chan, Anthony A.; Brizard, Alain J. [Department of Physics and Astronomy, Rice University, Houston, Texas 77005 (United States); Department of Chemistry and Physics, Saint Michael's College, Colchester, Vermont 05439 (United States)

    2007-09-15

    A general Hamiltonian theory for the adiabatic motion of relativistic charged particles confined by slowly varying background electromagnetic fields is presented based on a unified Lie-transform perturbation analysis in extended phase space (which includes energy and time as independent coordinates) for all three adiabatic invariants. First, the guiding-center equations of motion for a relativistic particle are derived from the particle Lagrangian. Covariant aspects of the resulting relativistic guiding-center equations of motion are discussed and contrasted with previous works. Next, the second and third invariants for the bounce motion and drift motion, respectively, are obtained by successively removing the bounce phase and the drift phase from the guiding-center Lagrangian. First-order corrections to the second and third adiabatic invariants for a relativistic particle are derived. These results simplify and generalize previous works to all three adiabatic motions of relativistic magnetically trapped particles.

  13. Generation of Character Motion by Reactive Motion Capture System

    E-Print Network [OSTI]

    Thawonmas, Ruck

    in the human-scale virtual environment. Our purpose is to make character animations with character motion data: Force Feedback, Motion Cap- ture, Human-scale Virtual Environments, Virtual Human 1 Introduction To generate the human motions in virtual envi- ronments made by a computer that are similar to the real world

  14. Modeling the Kinetics of Bimolecular Reactions Antonio Fernandez-Ramos

    E-Print Network [OSTI]

    Truhlar, Donald G

    -dependent energy transfer processes. The section on thermal reactions has a heavy emphasis on (generalized-Phase Thermal Reactions 4518 2.1. Thermodynamics: Enthalpies and Free Energies of Reaction 4518 2.2. Kinetics 4520 2.2.1. Arrhenius Parameters and Free Energy of Activation 4520 2.2.2. Collision Theory 4521 2

  15. Motion blur removal from photographs

    E-Print Network [OSTI]

    Cho, Taeg Sang

    2010-01-01

    One of the long-standing challenges in photography is motion blur. Blur artifacts are generated from relative motion between a camera and a scene during exposure. While blur can be reduced by using a shorter exposure, this ...

  16. Kinetic Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro JumpHuariKeewatinKenya:

  17. An Energy-Based Approach to Power System Analysis

    E-Print Network [OSTI]

    Caliskan, Sina Yamac

    2015-01-01

    the sum of kinetic and potential energies, i.e. Hamiltonian,the sum of the kinetic and the potential energy, of a single

  18. Kinetic distance and kinetic maps from molecular dynamics simulation

    E-Print Network [OSTI]

    Noe, Frank

    2015-01-01

    Characterizing macromolecular kinetics from molecular dynamics (MD) simulations requires a distance metric that can distinguish slowly-interconverting states. Here we build upon diffusion map theory and define a kinetic distance for irreducible Markov processes that quantifies how slowly molecular conformations interconvert. The kinetic distance can be computed given a model that approximates the eigenvalues and eigenvectors (reaction coordinates) of the MD Markov operator. Here we employ the time-lagged independent component analysis (TICA). The TICA components can be scaled to provide a kinetic map in which the Euclidean distance corresponds to the kinetic distance. As a result, the question of how many TICA dimensions should be kept in a dimensionality reduction approach becomes obsolete, and one parameter less needs to be specified in the kinetic model construction. We demonstrate the approach using TICA and Markov state model (MSM) analyses for illustrative models, protein conformation dynamics in bovine...

  19. Compliant MEMS Motion Characterization by Nanoindentation Joseph Goerges Choueifati1

    E-Print Network [OSTI]

    Volinsky, Alex A.

    compliant mechanisms [6]. Furthermore, compliant mechanisms combine energy storage and motion, thus) deposited oxide (PSG) is used as the sacrificial layer and silicon nitride is used as electrical isolation

  20. Chemical kinetics modeling

    SciTech Connect (OSTI)

    Westbrook, C.K.; Pitz, W.J. [Lawrence Livermore National Laboratory, CA (United States)

    1993-12-01

    This project emphasizes numerical modeling of chemical kinetics of combustion, including applications in both practical combustion systems and in controlled laboratory experiments. Elementary reaction rate parameters are combined into mechanisms which then describe the overall reaction of the fuels being studied. Detailed sensitivity analyses are used to identify those reaction rates and product species distributions to which the results are most sensitive and therefore warrant the greatest attention from other experimental and theoretical research programs. Experimental data from a variety of environments are combined together to validate the reaction mechanisms, including results from laminar flames, shock tubes, flow systems, detonations, and even internal combustion engines.

  1. Physics 321 Energy Conservation Potential Energy in

    E-Print Network [OSTI]

    Hart, Gus

    Physics 321 Hour 7 Energy Conservation ­ Potential Energy in One Dimension Bottom Line · Energy is conserved. · Kinetic energy is a definite concept. · If we can determine the kinetic energy at all points in space by knowing it at one point in space, we can invent a potential energy so that energy can

  2. Kinetics of coal pyrolysis

    SciTech Connect (OSTI)

    Seery, D.J.; Freihaut, J.D.; Proscia, W.M. ); Howard, J.B.; Peters, W.; Hsu, J.; Hajaligol, M.; Sarofim, A. ); Jenkins, R.; Mallin, J.; Espindola-Merin, B. ); Essenhigh, R.; Misra, M.K. )

    1989-07-01

    This report contains results of a coordinated, multi-laboratory investigation of coal devolatilization. Data is reported pertaining to the devolatilization for bituminous coals over three orders of magnitude in apparent heating rate (100 to 100,000 + {degree}C/sec), over two orders of magnitude in particle size (20 to 700 microns), final particle temperatures from 400 to 1600{degree}C, heat transfer modes ranging from convection to radiative, ambient pressure ranging from near vacuum to one atmosphere pressure. The heat transfer characteristics of the reactors are reported in detail. It is assumed the experimental results are to form the basis of a devolatilization data base. Empirical rate expressions are developed for each phase of devolatilization which, when coupled to an awareness of the heat transfer rate potential of a particular devolatilization reactor, indicate the kinetics emphasized by a particular system reactor plus coal sample. The analysis indicates the particular phase of devolatilization that will be emphasized by a particular reactor type and, thereby, the kinetic expressions appropriate to that devolatilization system. Engineering rate expressions are developed from the empirical rate expressions in the context of a fundamental understanding of coal devolatilization developed in the course of the investigation. 164 refs., 223 figs., 44 tabs.

  3. Operationalization of Relativistic Motion

    E-Print Network [OSTI]

    Bruno Hartmann

    2015-01-08

    We apply the Helmholtz program of basic measurements to relativistic motion. We define a spatiotemporal order by practical comparison: "longer than" if one object or process covers the other. To express its value also numerically (how many times more) we cover them by a locally regular grid of light clocks. We define basic measures from physical operations. Interrelation of measurement operations by different observers reveals a genetic derivation of formal Lorentz transformation. Operationally impracticable configurations for accelerating observers clarify the way out of apparent Twin paradox. From simple measurement-methodical principles - without mathematical presuppositions - we derive all equations of relativistic Kinematics (and next same for classical and relativistic Dynamics).

  4. Kinetic Vlasov Simulations of collisionless magnetic Reconnection H. Schmitz and R. Grauer

    E-Print Network [OSTI]

    Grauer, Rainer

    Theoretische Physik I, Ruhr-Universit¨at, 44780 Bochum, Germany A fully kinetic Vlasov simulation which allows magnetized plasmas to convert the energy stored in the field lines into kinetic energy it allows par- ticles from the solar wind to enter the magnetosphere. Also it is believed to be the main

  5. Energy 101: Hydropower

    SciTech Connect (OSTI)

    2013-04-01

    Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

  6. Energy 101: Hydropower

    ScienceCinema (OSTI)

    None

    2013-04-24

    Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

  7. Danny Byrd Controlling Lights with PWM and Motion Detectors

    E-Print Network [OSTI]

    Kachroo, Pushkin

    been used to save power by turning off a light when no motion is detected for many decades now. Just a machine that will taper down the power consumption as time goes by, saving energy by the second to shine will slowly slowed, saving energy in the meantime. Though it will not be a huge save in energy

  8. Kinetic regulation of coated vesicle secretion

    E-Print Network [OSTI]

    Lionel Foret; Pierre Sens

    2008-07-28

    The secretion of vesicles for intracellular transport often rely on the aggregation of specialized membrane-bound proteins into a coat able to curve cell membranes. The nucleation and growth of a protein coat is a kinetic process that competes with the energy-consuming turnover of coat components between the membrane and the cytosol. We propose a generic kinetic description of coat assembly and the formation of coated vesicles, and discuss its implication to the dynamics of COP vesicles that traffic within the Golgi and with the Endoplasmic Reticulum. We show that stationary coats of fixed area emerge from the competition between coat growth and the recycling of coat components, in a fashion resembling the treadmilling of cytoskeletal filaments. We further show that the turnover of coat components allows for a highly sensitive switching mechanism between a quiescent and a vesicle producing membrane, upon a slowing down of the exchange kinetics. We claim that the existence of this switching behaviour, also triggered by factors such as the presence of cargo and variation of the membrane mechanical tension, allows for efficient regulation of vesicle secretion. We propose a model, supported by different experimental observations, in which vesiculation of secretory membranes is impaired by the energy consuming desorption of coat proteins, until the presence of cargo or other factors triggers a dynamical switch into a vesicle producing state.

  9. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    the working fluid’s kinetic and potential energies have alsoworking fluid’s kinetic and potential energies changes areChanges in kinetic and potential energies are neglected and

  10. Stratospheric sulfur oxidation kinetics

    SciTech Connect (OSTI)

    Jayne, J.T.; Worsnop, D.R.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States)] [and others

    1995-12-31

    Oxidation of SO2 to H2SO4 in the atmosphere is believed to involve the reaction of SO3 with water. It is commonly assumed that this is an important step leading to homogeneous nucleation of H2SO4 aerosol particles. Heterogeneous chemistry on sulfuric acid aerosols regulate much of the ozone photochemistry in the lower stratosphere and are also believed to have significant effect on the climate. Understanding aerosol loading requires a detailed knowledge of the stratospheric sulfur budget, including its oxidation kinetics. Here we present results of a laboratory project studying a key step in the oxidation process, the homogeneous reaction between SO3 and H2O vapor. Kinetic measurements are performed in a high-pressure turbulent fast-flow reactor (fabricated at MIT) which minimizes heterogeneous loss of SO3 on reactorwalls. The rate of decay of SO3 and the appearance of H2SO4 is monitored in the presence of excess water vapor. Gas phase reactants and products are detected via an atmospheric pressure chemical ionization mass spectrometer which is coupled to the exit of the flow reactor. Sulfuric acid nucleation studies can also be performed using the turbulent flow reactor. Initial measurements using a particle detector (based on Mie scattering) showed that aerosol formation and particle size distribution are controlled by varying the SO3/H2O gas ratio and the reactor temperature. Results for the reaction SO3J+ H2O show a second order dependence in water vapor density and a strong negative temperature dependence. The results, measured in the range -30C to +95C, imply that an SO3.H2O adduct and/or a water dimer species is likely involved in the reaction mechanism. Results of recent theoretical calculations on the SO3 + H2O system also support the finding that two water molecules are involved. Implications for the gas phase production of sulfuric acid in the atmosphere will be discussed.

  11. FEATURE ARTICLE Highly Excited Motion in Molecules: Saddle-Node Bifurcations and Their Fingerprints in

    E-Print Network [OSTI]

    Farantos, Stavros C.

    picture usually is valid only for low energies or, alternatively, for motion confined to small displace, employing global potential energy surfaces, as well as in terms of a spectroscopic Hamiltonian and its energy surface (PES), vibrational motion can be well described by normal modes.1 The normal mode picture

  12. Direct Kinetic Measurements of a Criegee Intermediate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Kinetic Measurements of a Criegee Intermediate Direct Kinetic Measurements of a Criegee Intermediate Print Wednesday, 25 January 2012 00:00 In the earth's troposphere, which...

  13. Scaling Behavior of Transverse Kinetic Energy Distributions in Au+Au Collisions at $\\sqrt{s_{\\rm NN}}=200$ GeV

    E-Print Network [OSTI]

    L. L. Zhu; H. Zheng; C. B. Yang

    2008-01-15

    With the experimental data from STAR on the centrality dependence of transverse momentum $p_T$ spectra of pions and protons in Au+Au collisions at $\\sqrt{s_{NN}}=200 {\\rm GeV}$, we investigate the scaling properties of transverse energy $E_T$ distributions at different centralities. In the framework of cluster formation and decay mechanism for particle production, the universal transverse energy distributions for pion and proton can be described separately but not simultaneously.

  14. Detailed Chemical Kinetic Modeling of Cyclohexane Oxidation

    SciTech Connect (OSTI)

    Silke, E J; Pitz, W J; Westbrook, C K; Ribaucour, M

    2006-11-10

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of cyclohexane at both low and high temperatures. Reaction rate constant rules are developed for the low temperature combustion of cyclohexane. These rules can be used for in chemical kinetic mechanisms for other cycloalkanes. Since cyclohexane produces only one type of cyclohexyl radical, much of the low temperature chemistry of cyclohexane is described in terms of one potential energy diagram showing the reaction of cyclohexyl radical + O{sub 2} through five, six and seven membered ring transition states. The direct elimination of cyclohexene and HO{sub 2} from RO{sub 2} is included in the treatment using a modified rate constant of Cavallotti et al. Published and unpublished data from the Lille rapid compression machine, as well as jet-stirred reactor data are used to validate the mechanism. The effect of heat loss is included in the simulations, an improvement on previous studies on cyclohexane. Calculations indicated that the production of 1,2-epoxycyclohexane observed in the experiments can not be simulated based on the current understanding of low temperature chemistry. Possible 'alternative' H-atom isomerizations leading to different products from the parent O{sub 2}QOOH radical were included in the low temperature chemical kinetic mechanism and were found to play a significant role.

  15. On the relationships between Michaelis–Menten kinetics, reverse Michaelis–Menten kinetics, Equilibrium Chemistry Approximation kinetics and quadratic kinetics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tang, J. Y.

    2015-09-03

    The Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how microbes and plants would respond to changes in substrate abundance. However, the criteria of when to use which of the two are often ambiguous. Here I show that these two kinetics are special approximations to the Equilibrium Chemistry Approximation kinetics, which is the first order approximation to the quadratic kinetics that solves the equation of enzyme-substrate complex exactly for a single enzyme single substrate biogeochemical reaction with the law of mass action and the assumption of quasi-steady-state formore »the enzyme-substrate complex and that the product genesis from enzyme-substrate complex is much slower than the equilibration between enzyme-substrate complexes, substrates and enzymes. In particular, I showed that the derivation of the Michaelis–Menten kinetics does not consider the mass balance constraint of the substrate, and the reverse Michaelis–Menten kinetics does not consider the mass balance constraint of the enzyme, whereas both of these constraints are taken into account in the Equilibrium Chemistry Approximation kinetics. By benchmarking against predictions from the quadratic kinetics for a wide range of substrate and enzyme concentrations, the Michaelis–Menten kinetics was found to persistently under-predict the normalized sensitivity ? ln v / ? ln k2+ of the reaction velocity v with respect to the maximum product genesis rate k2+, persistently over-predict the normalized sensitivity ? ln v / ? ln k1+ of v with respect to the intrinsic substrate affinity k1+, persistently over-predict the normalized sensitivity ? ln v / ? ln [ E ]T of v with respect the total enzyme concentration [ E ]T and persistently under-predict the normalized sensitivity ? ln v / ? ln [ S ]T of v with respect to the total substrate concentration [ S ]T. Meanwhile, the reverse Michaelis–Menten kinetics persistently under-predicts ? ln v / ? ln k2+ and ? ln v / ? ln [ E ]T, and persistently over-predicts ? ln v / ? ln k1+ and ? ln v / ? ln [ S ]T. In contrast, the Equilibrium Chemistry Approximation kinetics always gives consistent predictions of ? ln v / ? ln k2+, ? ln v / ? ln k1+, ? ln v / ? ln [ E ]T and ? ln v / ? ln [ S ]T. Since the Equilibrium Chemistry Approximation kinetics includes the advantages from both the Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics and it is applicable for almost the whole range of substrate and enzyme abundances, soil biogeochemical modelers therefore no longer need to choose when to use the Michaelis–Menten kinetics or the reverse Michaelis–Menten kinetics. I expect removing this choice ambiguity will make it easier to formulate more robust and consistent land biogeochemical models.« less

  16. General non-minimal kinetic coupling to gravity

    SciTech Connect (OSTI)

    Granda, L.N.; Cardona, W. E-mail: wilalbca@univalle.edu.co

    2010-07-01

    We study a model of scalar field with a general non-minimal kinetic coupling to itself and to the curvature, as a source of dark energy, and analyze the cosmological dynamics of this model and the issue of accelerated expansion. Solutions giving rise to power-law expansion have been found. The dynamical equation of state is studied for the two cases, without and with free kinetic term . In the first case, a behavior very close to that of the cosmological constant was found. In the second case, a solution was found, which match the current phenomenology of the dark energy. The model shows a rich variety of dynamical scenarios.

  17. Group Motion Editing Taesoo Kwon

    E-Print Network [OSTI]

    Takahashi, Shigeo

    : I.3.7 [Three-Dimensional Graphics and Realism]: Animation--Virtual reality Keywords: Group Motion Editing, Crowd Simulation, Human Motion, Character Animation 1 Introduction Crowd scenes appear frequently in crowd animation make it possible to synthesize convincing animations of virtual crowds by simulating

  18. Particle Motion and Perturbed Dynamical System in Warped Product Spacetimes

    E-Print Network [OSTI]

    Pinaki Bhattacharya; Sarbari Guha

    2015-06-01

    In this paper we have used the dynamical systems analysis to study the dynamics of a five-dimensional universe in the form of a warped product spacetime with a spacelike dynamic extra dimension. We have decomposed the geodesic equations to get the motion along the extra dimension and have studied the associated dynamical system when the cross-diagonal element of the Einstein tensor vanishes, and also when it is non-vanishing. In the first case, introducing the concept of an energy function along the phase path in terms of the extra-dimensional coordinate, we have examined how the energy function depends on the warp factor. The energy function has been used as a measure of the amount of perturbation caused by a brane displacement. Geometrically the effect of brane displacement is manifested in terms of a coordinate translation along the extra dimension, thereby producing a change in the geodesic motion along the extra dimension in the region close to the brane. Then we studied the geodesic motion under a conventional metric perturbation in the form of homothetic motion and conformal motion and examined the nature of critical points for a Mashhoon-Wesson-type metric. Finally we investigated the motion for null and timelike geodesics under the condition when the cross-diagonal element of the Einstein tensor is non-vanishing and examined the effects of perturbation on the critical points of the dynamical system.

  19. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    http:energy.goveerevideosenergy-101-wind-turbines-2014-update Video Energy 101: Hydroelectric Power Learn how hydropower captures the kinetic energy of flowing water and...

  20. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy.goveerevideosenergy-101-wind-turbines-2014-update Video Energy 101: Hydroelectric Power Learn how hydropower captures the kinetic energy of flowing water and turns it...

  1. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in 2007. http:energy.goveerevideosre-building-greensburg Video Energy 101: Hydroelectric Power Learn how hydropower captures the kinetic energy of flowing water and turns it...

  2. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    http:energy.goveerevideosenergy-101-fuel-cell-technology Video Energy 101: Hydroelectric Power Learn how hydropower captures the kinetic energy of flowing water and turns it...

  3. Integrating a discrete motion model into GMM based background subtraction

    E-Print Network [OSTI]

    Wolf, Christian

    consecutive frames minimizing a global energy function taking into account spatial and temporal re- lationships. A discrete approximative optical-flow like motion model is integrated into the energy function, for instance for track- ing algorithms. Most existing methods build an explicit background model either using

  4. Magnetic Field Rotations in the Solar Wind at Kinetic Scales

    E-Print Network [OSTI]

    Chen, C H K; Burgess, D; Horbury, T S

    2015-01-01

    The solar wind magnetic field contains rotations at a broad range of scales, which have been extensively studied in the MHD range. Here we present an extension of this analysis to the range between ion and electron kinetic scales. The distribution of rotation angles was found to be approximately log-normal, shifting to smaller angles at smaller scales almost self-similarly, but with small, statistically significant changes of shape. The fraction of energy in fluctuations with angles larger than $\\alpha$ was found to drop approximately exponentially with $\\alpha$, with e-folding angle $9.8^\\circ$ at ion scales and $0.66^\\circ$ at electron scales, showing that large angles ($\\alpha > 30^\\circ$) do not contain a significant amount of energy at kinetic scales. Implications for kinetic turbulence theory and the dissipation of solar wind turbulence are discussed.

  5. NL3281 Brownian motion 1 NL3281 Brownian motion

    E-Print Network [OSTI]

    Kramer, Peter

    in the relation between the drag force Fdrag and velocity v of the particle in steady state motion (assuming a low Reynolds number): Fdrag = mv. (4) For a sphere of radius a moving through a fluid with dynamic viscosity µ

  6. Thermodynamics and kinetics of vapor bubbles nucleation in one-component liquids

    E-Print Network [OSTI]

    Nikolay V. Alekseechkin

    2012-05-01

    The multivariable theory of nucleation [J. Chem. Phys. 124, 124512 (2006)] is applied to the problem of vapor bubbles formation in pure liquids. The presented self-consistent macroscopic theory of this process employs thermodynamics (classical, statistical and linear non-equilibrium), hydrodynamics and interfacial kinetics. As a result of thermodynamic study of the problem, the work of formation of a bubble is obtained and parameters of the critical bubble are determined. The variables V (the bubble volume), \\rho (the vapor density), and T (the vapor temperature) are shown to be natural for the given task. An algorithm of writing the equations of motion of a bubble in the space {V, \\rho, T} - equations for V, \\rho, and T - is offered. This algorithm ensures symmetry of the matrix of kinetic coefficients. The equation for written on the basis of this algorithm is shown to represent the first law of thermodynamics for a bubble. The negative eigenvalue of the motion equations which alongside with the work of the critical bubble formation determines the stationary nucleation rate of bubbles is obtained. Various kinetic limits are considered. One of the kinetic constraints leads to the fact that the nucleation cannot occur in the whole metastable region; it occurs only in some subregion of the latter. Zeldovich theory of cavitation is shown to be a limiting case of the theory presented. The limiting effects of various kinetic processes on the nucleation rate of bubbles are shown analytically. These are the inertial motion of a liquid as well as the processes of particles exchange and heat exchange between a bubble and surrounding liquid. The nucleation rate is shown to be determined by the slowest kinetic process at positive and moderately negative pressures in a liquid. The limiting effect vanishes at high negative pressures.

  7. Sandia Energy - Chemistry of Autoignition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry of Autoignition Home Transportation Energy Predictive Simulation of Engines Combustion Chemistry Combustion Kinetics Chemistry of Autoignition Chemistry of...

  8. An Alternative Derivation of Gas Pressure Using the Kinetic Theory Frank Rioux

    E-Print Network [OSTI]

    Rioux, Frank

    and Co., New York, 1998, pp 23-25. 2. Carpenter, D. K. J. Chem. Educ. 1966, 43, 332. 3. A survey of 15An Alternative Derivation of Gas Pressure Using the Kinetic Theory Frank Rioux Department that we conclude that the average molar kinetic energy of a gas is proportional to its absolute

  9. Effect of driving frequency on excitation of turbulence in a kinetic plasma T. N. Parashar,1

    E-Print Network [OSTI]

    Shay, Michael

    Heating of solar corona and heating of solar wind (e.g., Refs. 1 and 2) are two long standing questions to transport energy to the small scales where it is dissipated through kinetic processes. The details of which include self-consistent kinetic dissipation at ion scales. Building on previous hybrid simulation studies

  10. Motion Estimation from Disparity Images

    E-Print Network [OSTI]

    Demirdjian, D.

    2001-05-07

    A new method for 3D rigid motion estimation from stereo is proposed in this paper. The appealing feature of this method is that it directly uses the disparity images obtained from stereo matching. We assume that the stereo ...

  11. Motion at low Reynolds number

    E-Print Network [OSTI]

    Tam, Daniel See Wai, 1980-

    2008-01-01

    The work described in this thesis centers on inertialess motion at low Reynolds numbers at the crossroad between biofluids and microfluids. Here we address questions regarding locomotion of micro-swimmers, transport of ...

  12. On the Crab Proper Motion

    E-Print Network [OSTI]

    PATRIZIA A. CARAVEO; ROBERTO MIGNANI

    1998-11-24

    Owing to the dramatic evolution of telescopes as well as optical detectors in the last 20 yrs, we are now able to measure anew the proper motion of the Crab pulsar, after the classical result of Wyckoff and Murray (1977) in a time span 40 times shorter. The proper motion is aligned with the axis of symmetry of the inner Crab nebula and, presumably, with the pulsar spin axis.

  13. Solar Radiation and Asteroidal Motion

    E-Print Network [OSTI]

    Jozef Klacka

    2000-09-07

    Effects of solar wind and solar electromagnetic radiation on motion of asteroids are discussed. The results complete the statements presented in Vokrouhlick\\'{y} and Milani (2000). As for the effect of electromagnetic radiation, the complete equation of motion is presented to the first order in $v/c$ -- the shape of asteroid (spherical body is explicitly presented) and surface distribution of albedo should be taken into account. Optical quantities must be calculated in proper frame of reference.

  14. Electron beam kinetics: numerical results Discussion of the experiments

    E-Print Network [OSTI]

    Zharkova, Valentina V.

    Electron beam kinetics: numerical results Discussion of the experiments In all the experiments the first set of Figures presents the differential energy spectra dN/dE for electron beams at a given depth presents the beam's mean electron flux. For comparison all the results for Experiments 1-3 are presented

  15. Thermal Decomposition of Natural Fibers: Global Kinetic Modeling with Nonisothermal

    E-Print Network [OSTI]

    with consideration of fiber as one pseudocomponent. Ma´lek method with activation energy values previously obtainedThermal Decomposition of Natural Fibers: Global Kinetic Modeling with Nonisothermal.interscience.wiley.com). ABSTRACT: The modeling of thermal decomposition process of ten natural fibers commonly used in polymer

  16. Disk Accretion Flow Driven by Large-Scale Magnetic Fields: Solutions with Constant Specific Energy

    E-Print Network [OSTI]

    Li-Xin Li

    2003-05-29

    (Abridged) We study the dynamical evolution of a stationary, axisymmetric, and perfectly conducting cold accretion disk containing a large-scale magnetic field around a Kerr black hole, trying to understand the relation between accretion and the transportation of angular momentum and energy. We solve the radial momentum equation for solutions corresponding to an accretion flow that starts from a subsonic state at infinity, smoothly passes the fast critical point, then supersonically falls into the horizon of the black hole. The solutions always have the following features: 1) The specific energy of fluid particles remains constant but the specific angular momentum is effectively removed by the magnetic field. 2) At large radii, where the disk motion is dominantly rotational, the energy density of the magnetic field is equipartitioned with the rotational energy density of the disk. 3) Inside the fast critical point, where radial motion becomes important, the ratio of the electromagnetic energy density to the kinetic energy density drops quickly. The results indicate that: 1) Disk accretion does not necessarily imply energy dissipation since magnetic fields do not have to transport or dissipate a lot of energy as they effectively transport angular momentum. 2) When resistivity is small, the large-scale magnetic field is amplified by the shearing rotation of the disk until the magnetic energy density is equipartitioned with the rotational energy density, ending up with a geometrically thick disk. This is in contrast with the evolution of small-scale magnetic fields where if the resistivity is nonzero the magnetic energy density is likely to be equipartitioned with the kinetic energy density associated with local random motions (e.g., turbulence), making a thin Keplerian disk possible.

  17. Pebble-bed pebble motion: Simulation and Applications

    SciTech Connect (OSTI)

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2011-11-01

    Pebble bed reactors (PBR) have moving graphite fuel pebbles. This unique feature provides advantages, but also means that simulation of the reactor requires understanding the typical motion and location of the granular flow of pebbles. This report presents a method for simulation of motion of the pebbles in a PBR. A new mechanical motion simulator, PEBBLES, efficiently simulates the key elements of motion of the pebbles in a PBR. This model simulates gravitational force and contact forces including kinetic and true static friction. It's used for a variety of tasks including simulation of the effect of earthquakes on a PBR, calculation of packing fractions, Dancoff factors, pebble wear and the pebble force on the walls. The simulator includes a new differential static friction model for the varied geometries of PBRs. A new static friction benchmark was devised via analytically solving the mechanics equations to determine the minimum pebble-to-pebble friction and pebble-to-surface friction for a five pebble pyramid. This pyramid check as well as a comparison to the Janssen formula was used to test the new static friction equations. Because larger pebble bed simulations involve hundreds of thousands of pebbles and long periods of time, the PEBBLES code has been parallelized. PEBBLES runs on shared memory architectures and distributed memory architectures. For the shared memory architecture, the code uses a new O(n) lock-less parallel collision detection algorithm to determine which pebbles are likely to be in contact. The new collision detection algorithm improves on the traditional non-parallel O(n log(n)) collision detection algorithm. These features combine to form a fast parallel pebble motion simulation. The PEBBLES code provides new capabilities for understanding and optimizing PBRs. The PEBBLES code has provided the pebble motion data required to calculate the motion of pebbles during a simulated earthquake. The PEBBLES code provides the ability to determine the contact forces and the lengths of motion in contact. This information combined with the proper wear coefficients can be used to determine the dust production from mechanical wear. These new capabilities enhance the understanding of PBRs, and the capabilities of the code will allow future improvements in understanding.

  18. Horizontal displacements contribution to tsunami wave energy balance

    E-Print Network [OSTI]

    Dutykh, Denys; Chubarov, Leonid; Shokin, Yuriy

    2010-01-01

    The main reason for the generation of tsunamis is the deformation of the bottom of the ocean caused by an underwater earthquake. Usually, only the vertical bottom motion is taken into accound while the horizontal displacements are neglected. In the present paper we study both the vertical and the horizontal bottom motion while we propose a novel methodology for reconstructing the bottom coseismic displacements field which is transmitted to the free surface using a new three-dimensional Weakly Nonlinear (WN) approach. We pay a special attention to the evolution of kinetic and potential energies of the resulting wave while the contribution of horizontal displacements into wave energy balance is also quantified. Approaches proposed in this study are illustrated on the July 17, 2006 Java tsunami.

  19. Constrained geometric dynamics of the Fenna-Matthews-Olson complex: The role of correlated motion in reducing uncertainty in excitation energy transfer

    E-Print Network [OSTI]

    Fokas, Alexander S; Chin, Alex W

    2014-01-01

    The Fenna Mathews Olson (FMO) complex of green sulphur bacteria is an example of a photosynthetic pigment protein complex, in which the electronic properties of the pigments are modified by the protein environment to promote efficient excitonic energy transfer from antenna complexes to the reaction centres. Many of the electronic properties of the FMO complex can be extracted from knowledge of the static crystal structure. However, the recent observation and analysis of long lasting quantum dynamics in the FMO complex point to protein dynamics as a key factor in protecting and generating quantum coherence under laboratory conditions. While fast inter and intra molecular vibrations have been investigated extensively, the slow dynamics which effectively determine the optical inhomogeneous broadening of experimental ensembles has received less attention. Our study employs constrained geometric dynamics to study the flexibility in the protein network by efficiently generating the accessible conformational states ...

  20. Kinetic theory of the electron bounce instability in two dimensional current sheets—Full electromagnetic treatment

    SciTech Connect (OSTI)

    Tur, A.; Fruit, G.; Louarn, P.

    2014-03-15

    In the general context of understanding the possible destabilization of a current sheet with applications to magnetospheric substorms or solar flares, a kinetic model is proposed for studying the resonant interaction between electromagnetic fluctuations and trapped bouncing electrons in a 2D current sheet. Tur et al. [A. Tur et al., Phys. Plasmas 17, 102905 (2010)] and Fruit et al. [G. Fruit et al., Phys. Plasmas 20, 022113 (2013)] already used this model to investigate the possibilities of electrostatic instabilities. Here, the model is completed for full electromagnetic perturbations. Starting with a modified Harris sheet as equilibrium state, the linearized gyrokinetic Vlasov equation is solved for electromagnetic fluctuations with period of the order of the electron bounce period. The particle motion is restricted to its first Fourier component along the magnetic field and this allows the complete time integration of the non local perturbed distribution functions. The dispersion relation for electromagnetic modes is finally obtained through the quasineutrality condition and the Ampere's law for the current density. It is found that for mildly strechted current, undamped modes oscillate at typical electron bounce frequency with wavelength of the order of the plasma sheet half thickness. As the stretching of the plasma sheet becomes more intense, the frequency of these normal modes decreases and beyond a certain threshold in ??=?B{sub z}/B{sub lobes}, the mode becomes explosive with typical growth rate of a few tens of seconds. The free energy contained in the bouncing motion of the electrons may trigger an electromagnetic instability able to disrupt the cross-tail current in a few seconds. This new instability–electromagnetic electron-bounce instability–may explain fast and global scale destabilization of current sheets as required to describe substorm phenomena.

  1. Active Polymers Confer Fast Reorganization Kinetics

    E-Print Network [OSTI]

    Douglas Swanson; Ned S. Wingreen

    2011-10-02

    Many cytoskeletal biopolymers are "active," consuming energy in large quantities. In this Letter, we identify a fundamental difference between active polymers and passive, equilibrium polymers: for equal mean lengths, active polymers can reorganize faster than equilibrium polymers. We show that equilibrium polymers are intrinsically limited to linear scaling between mean lifetime and mean length, MFPT ~ , by analogy to 1-d Potts models. By contrast, we present a simple active-polymer model that improves upon this scaling, such that MFPT ~ ^{1/2}. Since to be biologically useful, structural biopolymers must typically be many monomers long, yet respond dynamically to the needs of the cell, the difference in reorganization kinetics may help to justify active polymers' greater energy cost. PACS numbers: 87.10.Ed, 87.16.ad, 87.16.Ln

  2. Chemical kinetics and combustion modeling

    SciTech Connect (OSTI)

    Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

  3. Chemical Kinetic Research on HCCI & Diesel Fuels | Department...

    Office of Environmental Management (EM)

    alternative fuel utilization: detailed kinetic combustion modeling & experimental testing Chemical Kinetic Modeling of Fuels Chemical Kinetic Research on HCCI & Diesel Fuels...

  4. Kinetics of the carbon monoxide oxidation reaction under microwave heating

    SciTech Connect (OSTI)

    Perry, W.L.; Katz, J.D.; Rees, D.; Paffett, M.T. [Los Alamos National Lab., NM (United States); Datye, A. [Univ. of New Mexico, Albuquerque, NM (United States)

    1996-06-01

    915 MHz microwave heating has been used to drive the CO oxidation reaction over Pd/Al{sub 2}O{sub 3} with out significantly affecting the reaction kinetics. As compared to an identical conventionally heated system, the activation energy, pre-exponential factor, and reaction order with respect to CO were unchanged. Temperature was measured using a thermocouple extrapolation technique. Microwave-induced thermal gradients were found to play a significant role in kinetic observations. The authors chose the CO oxidation reaction over a supported metal catalyst because the reaction kinetics are well known, and because of the diverse dielectric properties of the various elements in the system: CO is a polar molecule, O{sub 2} and CO{sub 2} are non-polar, Al{sub 2}O{sub 3} is a dielectric, and Pt and Pd are conductors.

  5. Widening the Axion Window via Kinetic and Stückelberg Mixings

    E-Print Network [OSTI]

    Gary Shiu; Wieland Staessens; Fang Ye

    2015-11-17

    We point out that kinetic and St\\"uckelberg mixings that are generically present in the low energy effective action of axions can significantly widen the window of axion decay constants. We show that an effective super-Planckian decay constant can be obtained even when the axion kinetic matrix has only sub-Planckian entries. Our minimal model involves only two axions, a St\\"uckelberg U(1) and a modest rank instanton generating non-Abelian group. Below the mass of the St\\"uckelberg U(1), there is only a single axion with a non-perturbatively generated potential. In contrast to previous approaches, the enhancement of the axion decay constant is not tied to the number of degrees of freedom introduced. We also discuss how kinetic mixings can lower the decay constant to the desired axion dark matter window. String theory embeddings of this scenario and their phenomenological features are briefly discussed.

  6. Medicinal Chemistry and Enzyme Kinetics

    E-Print Network [OSTI]

    Truhlar, Donald G

    Prof. Donald G. Truhlar, Department of Chemistry, February 2007 Recent Results ·Novel analytic functionMedicinal Chemistry and Enzyme Kinetics Elizabeth Amin and C. R. Wagner, Medicinal Chemistry Jiali Gao, Chemistry Don Truhlar, Chemistry February 2007 #12;Zn Metalloprotein Force Field Design ·Zn

  7. Constants of geodesic motion in higher-dimensional black-hole spacetimes

    SciTech Connect (OSTI)

    Krtous, Pavel [Institute of Theoretical Physics, Charles University, V Holesovickach 2, Prague (Czech Republic); Kubiznak, David [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta, T6G 2G7 (Canada); Institute of Theoretical Physics, Charles University, V Holesovickach 2, Prague (Czech Republic); Page, Don N. [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta, T6G 2G7 (Canada); Vasudevan, Muraari [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta, T6G 2G7 (Canada); JLR Engineering, 111 SE Everett Mall Way, E-201, Everett, Washington 98208-3236 (United States)

    2007-10-15

    In [Phys. Rev. Lett. 98, 061102 (2007)], we announced the complete integrability of geodesic motion in the general higher-dimensional rotating black-hole spacetimes. In the present paper we prove all the necessary steps leading to this conclusion. In particular, we demonstrate the independence of the constants of motion and the fact that they Poisson commute. The relation to a different set of constants of motion constructed in [J. High Energy Phys. 02 (2007) 004] is also briefly discussed.

  8. Separating the Kinetic and Sorption Parameters of Mixed Chlorinated Solvents in Contact with Granular Iron

    E-Print Network [OSTI]

    Huang, Bei

    2011-08-31

    , validating the methodology. Finally, the activation energy of the 4-chloronitrobenzene reacting with two types of granular iron, Connelly iron and QMP, in batch reactors was obtained to assess the role of mass transfer in controlling the kinetics. Previous...

  9. The Hydriding Kinetics of Organic Hydrogen Getters

    SciTech Connect (OSTI)

    Powell, G. L.

    2002-02-11

    The aging of hermetically sealed systems is often accompanied by the gradual production of hydrogen gas that is a result of the decay of environmental gases and the degradation of organic materials. In particular, the oxygen, water, hydrogen ''equilibrium'' is affected by the removal of oxygen due the oxidation of metals and organic materials. This shift of the above ''equilibrium'' towards the formation of hydrogen gas, particularly in crevices, may eventually reach an explosive level of hydrogen gas or degrade metals by hydriding them. The latter process is generally delayed until the oxidizing species are significantly reduced. Organic hydrogen getters introduced by Allied Signal Aerospace Company, Kansas City Division have proven to be a very effective means of preventing hydrogen gas accumulation in sealed containers. These getters are relatively unaffected by air and environmental gases. They can be packaged in a variety of ways to fit particular needs such as porous pellets, fine or coarse [gravel] powder, or loaded into silicone rubber. The hydrogen gettering reactions are extremely irreversible since the hydrogen gas is converted into an organic hydrocarbon. These getters are based on the palladium-catalyzed hydrogenation of triple bonds to double and then single bonds in aromatic aryl compounds. DEB (1,4 bis (phenyl ethynyl) benzene) typically mixed with 25% by weight carbon with palladium (1% by weight of carbon) is one of the newest and best of these organic hydrogen getters. The reaction mechanisms are complex involving solid state reaction with a heterogeneous catalyst leading to the many intermediates, including mixed alkyl and aryl hydrocarbons with the possibilities of many isomers. The reaction kinetics mechanisms are also strongly influenced by the form in which they are packaged. For example, the hydriding rates for pellets and gravel have a strong dependence on reaction extent (i.e., DEB reduction) and a kinetic order in pressure of 0.76. Silicone rubber based DEB getters hydride at a much lower rate, have little dependence on reaction extent, have a higher kinetic order in pressure (0.87), and have a lower activation energy. The kinetics of the reaction as a function of hydrogen pressure, stoichiometry, and temperature for hydrogen and deuterium near ambient temperature (0 to 75 C) for pressures near or below 100 Pa over a wide range (in some cases, the complete) hydrogenation range are presented along with multi-dimensional rate models.

  10. Energy flux fluctuations in a finite volume of turbulent flow

    E-Print Network [OSTI]

    Mahesh Bandi; Walter Goldburg; John Cressman Jr.; Alain Pumir

    2006-07-19

    The flux of turbulent kinetic energy from large to small spatial scales is measured in a small domain B of varying size R. The probability distribution function of the flux is obtained using a time-local version of Kolmogorov's four-fifths law. The measurements, made at a moderate Reynolds number, show frequent events where the flux is backscattered from small to large scales, their frequency increasing as R is decreased. The observations are corroborated by a numerical simulation based on the motion of many particles and on an explicit form of the eddy damping.

  11. Motion Processing and From-from-Apparent-Motion in Infancy 

    E-Print Network [OSTI]

    Hirshkowitz, Amy

    2014-08-05

    information within the displays. In these form-from-apparent-motion (FFAM) displays, red “background” random dots are set against an overall white background, with a portion of the random dots set as green “foreground” dots. Although the dots do not move...

  12. Nonequilibrium free energy, H theorem and self-sustained oscillations for Boltzmann-BGK descriptions of semiconductor superlattices

    E-Print Network [OSTI]

    M Alvaro; L L Bonilla

    2010-12-14

    Semiconductor superlattices (SL) may be described by a Boltzmann-Poisson kinetic equation with a Bhatnagar-Gross-Krook (BGK) collision term which preserves charge, but not momentum or energy. Under appropriate boundary and voltage bias conditions, these equations exhibit time-periodic oscillations of the current caused by repeated nucleation and motion of charge dipole waves. Despite this clear nonequilibrium behavior, if we `close' the system by attaching insulated contacts to the superlattice and keeping its voltage bias to zero volts, we can prove the H theorem, namely that a free energy $\\Phi(t)$ of the kinetic equations is a Lyapunov functional ($\\Phi\\geq 0$, $d\\Phi/dt\\leq 0$). Numerical simulations confirm that the free energy decays to its equilibrium value for a closed SL, whereas for an `open' SL under appropriate dc voltage bias and contact conductivity $\\Phi(t)$ oscillates in time with the same frequency as the current self-sustained oscillations.

  13. Lab 6: Forced Harmonic Motion Driven harmonic oscillation

    E-Print Network [OSTI]

    Gustafsson, Torgny

    Lab 6: Forced Harmonic Motion Driven harmonic oscillation Example: Atomic force microscope watch, circuit, ... #12;A constant energy flow at steady state ( )F t dF Rx= - 0oin ut PP + = #12;Forced harmonic t - = + #12;Forced harmonic oscillation (cont.) ( ) ( ) ( ) 0 2 2 0 cos 2 sin cos cosF m

  14. Motion Planning of Large Scale Vehicles for Remote Material Transportation

    E-Print Network [OSTI]

    -frame based on new technologies and alternative energies such as solar, geothermal and nuclear, fission between the Tokamak Building and the Hot Cell Building, the two main buildings of the ITER facility described in this chapter are the definition of motion planning strategies that cope with the building maps

  15. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    results Search results Enter terms Search Showing 1 - 10 of 11 results. Video Energy 101: Hydroelectric Power Learn how hydropower captures the kinetic energy of flowing water and...

  16. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    results Search results Enter terms Search Showing 1 - 2 of 2 results. Video Energy 101: Hydroelectric Power Learn how hydropower captures the kinetic energy of flowing water and...

  17. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Search results Search results Enter terms Search Showing 1 - 10 of 10 results. Video Energy 101: Hydroelectric Power Learn how hydropower captures the kinetic energy of...

  18. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewables Search results Search results Enter terms Search Showing 1 - 2 of 2 results. Video Energy 101: Hydroelectric Power Learn how hydropower captures the kinetic energy of...

  19. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Search results Search results Enter terms Search Showing 1 - 2 of 2 results. Video Energy 101: Hydroelectric Power Learn how hydropower captures the kinetic energy of...

  20. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    results Enter terms Search Showing 1 - 10 of 11 results. Video Energy 101: Hydroelectric Power Learn how hydropower captures the kinetic energy of flowing water and turns it...

  1. Space and motion : data based rules of public space pedestrian motion

    E-Print Network [OSTI]

    Gonzalez Rojas, Paloma (Paloma Francisca)

    2015-01-01

    The understanding of space relies on motion, as we experience space by crossing it. While in motion we sense the environment in time, interacting with space. The vision of this thesis is to incorporate people's motion into ...

  2. Can We Distinguish Biological Motions of Virtual Humans? Perceptual Study With Captured Motions of Weight Lifting.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Information Systems-- Animations ­ Artificial, augmented, and virtual realities Keywords: Human Motions performing various interactions in VE. Animating virtual humans to perform these tasks involves taking manyCan We Distinguish Biological Motions of Virtual Humans? Perceptual Study With Captured Motions

  3. 1 Introduction Synthetic motion capture

    E-Print Network [OSTI]

    Terzopoulos, Demetri

    animation of animals in virtual worlds, but at significant computational cost. Syn- thetic motion capture). Lifelike virtual animals naturally beckon active in- volvement, and one feels compelled to interact also form the basis of Miller's snakes and worms (Miller 1988), the virtual humans of Hodgins et al

  4. AER NY Kinetics LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgram |RecentSulfonate as401 WaterADNRAEP Ohio Place:AER

  5. Kinetic Wave Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItronKanoshKetchikan Public UtilitiesKiloa metamorphic

  6. Kinetics of wet sodium vapor complex plasma

    SciTech Connect (OSTI)

    Mishra, S. K., E-mail: nishfeb@rediffmail.com [Institute for Plasma Research (IPR), Gandhinagar 382428 (India); Sodha, M. S. [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)] [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)

    2014-04-15

    In this paper, we have investigated the kinetics of wet (partially condensed) Sodium vapor, which comprises of electrons, ions, neutral atoms, and Sodium droplets (i) in thermal equilibrium and (ii) when irradiated by light. The formulation includes the balance of charge over the droplets, number balance of the plasma constituents, and energy balance of the electrons. In order to evaluate the droplet charge, a phenomenon for de-charging of the droplets, viz., evaporation of positive Sodium ions from the surface has been considered in addition to electron emission and electron/ion accretion. The analysis has been utilized to evaluate the steady state parameters of such complex plasmas (i) in thermal equilibrium and (ii) when irradiated; the results have been graphically illustrated. As a significant outcome irradiated, Sodium droplets are seen to acquire large positive potential, with consequent enhancement in the electron density.

  7. Help:Motion Chart | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea, California | OpenHeliotronicsManaging files

  8. Danotek Motion Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9) WindGrid Project) | OpenCoopDaneA S

  9. Benchmarking kinetic calculations of resistive wall mode stability

    SciTech Connect (OSTI)

    Berkery, J. W.; Sabbagh, S. A.; Liu, Y. Q.; Betti, R.

    2014-05-15

    Validating the calculations of kinetic resistive wall mode (RWM) stability is important for confidently predicting RWM stable operating regions in ITER and other high performance tokamaks for disruption avoidance. Benchmarking the calculations of the Magnetohydrodynamic Resistive Spectrum—Kinetic (MARS-K) [Y. Liu et al., Phys. Plasmas 15, 112503 (2008)], Modification to Ideal Stability by Kinetic effects (MISK) [B. Hu et al., Phys. Plasmas 12, 057301 (2005)], and Perturbed Equilibrium Nonambipolar Transport (PENT) [N. Logan et al., Phys. Plasmas 20, 122507 (2013)] codes for two Solov'ev analytical equilibria and a projected ITER equilibrium has demonstrated good agreement between the codes. The important particle frequencies, the frequency resonance energy integral in which they are used, the marginally stable eigenfunctions, perturbed Lagrangians, and fluid growth rates are all generally consistent between the codes. The most important kinetic effect at low rotation is the resonance between the mode rotation and the trapped thermal particle's precession drift, and MARS-K, MISK, and PENT show good agreement in this term. The different ways the rational surface contribution was treated historically in the codes is identified as a source of disagreement in the bounce and transit resonance terms at higher plasma rotation. Calculations from all of the codes support the present understanding that RWM stability can be increased by kinetic effects at low rotation through precession drift resonance and at high rotation by bounce and transit resonances, while intermediate rotation can remain susceptible to instability. The applicability of benchmarked kinetic stability calculations to experimental results is demonstrated by the prediction of MISK calculations of near marginal growth rates for experimental marginal stability points from the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)].

  10. Machine Learning for Humanoid Robot Modeling and Control /

    E-Print Network [OSTI]

    Wu, Tingfan

    2013-01-01

    Figure 7.5: Kinetic energy for left arm, right arm, and legsLeft Wrist Infant Right Wrist Motion Energy Motion Energy (e studies with Kinetic Energy Left Arm Right Arm Legs Time (

  11. MSE 3050, Phase Diagrams and Kinetics, Leonid Zhigilei Review of classical thermodynamics

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    and Kinetics, Leonid Zhigilei Gibbs Free Energy: Equilibrium is Trade-off Between Enthalpy and Entropy G = H Fundamental Laws, Properties and Processes (3) Fundamental equations The Helmholtz Free Energy The Gibbs Free function is the Gibbs free energy (also called free enthalpy) G = H - TS V and T pair ­ easy to examine

  12. Tailored charged particle beams from single-component plasmas

    E-Print Network [OSTI]

    Weber, Tobin Robert

    2010-01-01

    has su?cient kinetic and potential energy to pass over asum of the potential and kinetic energy in motion parallel

  13. Automatic Head Motion Prediction from Speech Data 

    E-Print Network [OSTI]

    Hofer, Gregor; Shimodaira, Hiroshi

    2007-01-01

    In this paper we present a novel approach to generate a sequence of head motion units given some speech. The modelling approach is based on the notion that head motion can be divided into a number of short homogeneous ...

  14. Metrics for sampling-based motion planning 

    E-Print Network [OSTI]

    Morales Aguirre, Marco Antonio

    2009-05-15

    A motion planner finds a sequence of potential motions for a robot to transit from an initial to a goal state. To deal with the intractability of this problem, a class of methods known as sampling-based planners build ...

  15. Experimental wave effect on vertical relative motion 

    E-Print Network [OSTI]

    Padmanabhan, Rajith

    2007-09-17

    Ship motions are influenced by the sea state. Conventionally the responses are calculated in the frequency domain. This method, however, is valid only for narrow band spectra. As the seaway becomes more nonlinear, the ship motions cannot be readily...

  16. A kinetic-MHD model for low frequency phenomena

    SciTech Connect (OSTI)

    Cheng, C.Z.

    1991-07-01

    A hybrid kinetic-MHD model for describing low-frequency phenomena in high beta anisotropic plasmas that consist of two components: a low energy core component and an energetic component with low density. The kinetic-MHD model treats the low energy core component by magnetohydrodynamic (MHD) description, the energetic component by kinetic approach such as the gyrokinetic equation, and the coupling between the dynamics of these two components through plasma pressure in the momentum equation. The kinetic-MHD model optimizes both the physics contents and the theoretical efforts in studying low frequency MHD waves and transport phenomena in general magnetic field geometries, and can be easily modified to include the core plasma kinetic effects if necessary. It is applicable to any magnetized collisionless plasma system where the parallel electric field effects are negligibly small. In the linearized limit two coupled eigenmode equations for describing the coupling between the transverse Alfven type and the compressional Alfven type waves are derived. The eigenmode equations are identical to those derived from the full gyrokinetic equation in the low frequency limit and were previously analyzed both analytically nd numerically to obtain the eigenmode structure of the drift mirror instability which explains successfully the multi-satellite observation of antisymmetric field-aligned structure of the compressional magnetic field of Pc 5 waves in the magnetospheric ring current plasma. Finally, a quadratic form is derived to demonstrate the stability of the low-frequency transverse and compressional Alfven type instabilities in terms of the pressure anisotropy parameter {tau} and the magnetic field curvature-pressure gradient parameter. A procedure for determining the stability of a marginally stable MHD wave due to wave-particle resonances is also presented.

  17. Simple Harmonic Motion and Newton's 3rd

    E-Print Network [OSTI]

    Yu, Jaehoon

    Simple Harmonic Motion and Newton's 3rd Law Theory Simple Harmonic Motion is not as simpleperiod where m is the mass of the object in kilograms and k is the spring constant. Newton's 3rd Law Newton's 3rd Law using two Force sensors. Procedure: Simple Harmonic Motion Getting the data 1. Open

  18. Wave Motion Unit code: MATH35012

    E-Print Network [OSTI]

    Sidorov, Nikita

    MATH35012 Wave Motion Unit code: MATH35012 Credit Rating: 10 Unit level: Level 3 Teaching period This course unit aims to elucidate some of the physical properties of important types of wave motion and their mathematical descriptions. Overview Wave motion occurs in the oceans, atmosphere and in the earth. Problems

  19. Kinetic Modeling and Assessment of Lime Pretreatment of Poplar Wood 

    E-Print Network [OSTI]

    Sierra Ramirez, Rocio

    2012-02-14

    , industrial, and agricultural). 5. Appropriate selection of feedstock and conversion technology. 6. Improved efficiency of the production technology obtained through intensive research and development. 7. More efficient use of energy, including vehicle...-1 KINETIC MODELING AND ASSESSMENT OF LIME PRETREATMENT OF POPLAR WOOD A Dissertation by ROCIO SIERRA RAMIREZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree...

  20. Master equation approach to protein folding and kinetic traps

    E-Print Network [OSTI]

    Marek Cieplak; Malte Henkel; Jan Karbowski; Jayanth R. Banavar

    1998-04-21

    The master equation for 12-monomer lattice heteropolymers is solved numerically and the time evolution of the occupancy of the native state is determined. At low temperatures, the median folding time follows the Arrhenius law and is governed by the longest relaxation time. For good folders, significant kinetic traps appear in the folding funnel whereas for bad folders, the traps also occur in non-native energy valleys.

  1. The effects of wave groups on the nonlinear simulation of ship motion in random seas 

    E-Print Network [OSTI]

    Richer, Jeffrey A.

    2006-04-12

    Historically, the analysis of ship motion and loading responses has been performed in the frequency domain with both linear response amplitude operators and wave energy density spectra. This method, therefore, did not account for the nonlinear...

  2. Solid state engine with alternating motion

    DOE Patents [OSTI]

    Golestaneh, A.A.

    1980-01-21

    Heat energy is converted to mechanical motion utilizing apparatus including a cylinder, a piston having openings therein reciprocable in the cylinder, inlet and outlet ports for warm water at one end of the cylinder, inlet and outlet ports for cool water at the other end of the cylinder, gates movable with the piston and slidably engaging the cylinder wall to alternately open and close the warm and cool water ports, a spring bearing against the warm water side of the piston and a double helix of a thermal shape memory material attached to the cool end of the cylinder and to the piston. The piston is caused to reciprocate by alternately admitting cool water and warm water to the cylinder.

  3. Solid state engine with alternating motion

    SciTech Connect (OSTI)

    Golestaneh, A.A.

    1982-04-20

    Heat energy is converted to mechanical motion utilizing apparatus including a cylinder, a piston having openings therein reciprocable in the cylinder, inlet and outlet ports for warm water at one end of the cylinder, inlet and outlet ports for cool water at the other end of the cylinder, gates movable with the piston and slidably engaging the cylinder wall to alternately open and close the warm and cool water ports, a spring bearing against the warm water side of the piston and a double helix of a thermal shape memory material attached to the cool end of the cylinder and to the piston. The piston is caused to reciprocate by alternately admitting cool water and warm water to the cylinder.

  4. Pyrolysis kinetics of Melon (Citrullus colocynthis L.) seed husk

    E-Print Network [OSTI]

    Nyakuma, Bemgba Bevan

    2015-01-01

    This study is aimed at investigating the thermochemical fuel characteristics and kinetic decomposition of melon seed husks (MSH) under inert (pyrolysis) conditions. The calorific value, elemental composition, proximate analyses and thermal kinetics of MSH was examined. The kinetic parameters; activation energy E and frequency factor A for MSH decomposition under pyrolysis conditions were determined using the Kissinger and isoconversional Flynn-Wall-Ozawa (FWO) methods. The values of E for MSH ranged from 146.81 to 296 kJ/mol at degrees of conversion {\\alpha} = 0.15 to 0.60 for FWO. The decomposition of MSH process was fastest at {\\alpha} = 0.15 and slowest at {\\alpha} = 0.60 with average E and A values of 192.96 kJ/mol and 2.86 x 1026 min-1, respectively at correlation values of 0.9847. The kinetic values of MSH using the Kissinger method are E = 161.26 kJ/mol and frequency factor, A = 2.08 x 1010 min-1 with the correlation value, R2 = 0.9958. The results indicate that MSH possesses important characteristics ...

  5. Thermodynamics of Potassium Exchange in Soil Using a Kinetics Approach1 D. L. SPARKS AND P. M. JARDINEZ

    E-Print Network [OSTI]

    Sparks, Donald L.

    Thermodynamics of Potassium Exchange in Soil Using a Kinetics Approach1 D. L. SPARKS AND P. M. JARDINEZ ABSTRACT Thermodynamics of potassium (K) exchange using a kinetics ap- proach was investigated that more energy was needed to desorb K than to adsorb K. Thermodynamic and pseudother- modynamic parameters

  6. Motion Patches: Building Blocks for Virtual Environments Annotated with Motion Data

    E-Print Network [OSTI]

    Lee, Jehee

    Motion Patches: Building Blocks for Virtual Environments Annotated with Motion Data Kang Hoon Lee motion data can be transferred to the target environment. These building blocks annotated Myung Geol Choi Jehee Lee Seoul National University Motion capture from the source environment Building

  7. Kinetic theory of nonlinear transport phenomena in complex plasmas

    SciTech Connect (OSTI)

    Mishra, S. K. [Institute for Plasma Research (IPR), Gandhinagar 382428 (India); Sodha, M. S. [Centre for Energy Studies (CES), Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)

    2013-03-15

    In contrast to the prevalent use of the phenomenological theory of transport phenomena, a number of transport properties of complex plasmas have been evaluated by using appropriate expressions, available from the kinetic theory, which are based on Boltzmann's transfer equation; in particular, the energy dependence of the electron collision frequency has been taken into account. Following the recent trend, the number and energy balance of all the constituents of the complex plasma and the charge balance on the particles is accounted for; the Ohmic loss has also been included in the energy balance of the electrons. The charging kinetics for the complex plasma comprising of uniformly dispersed dust particles, characterized by (i) uniform size and (ii) the Mathis, Rumpl, and Nordsieck power law of size distribution has been developed. Using appropriate expressions for the transport parameters based on the kinetic theory, the system of equations has been solved to investigate the parametric dependence of the complex plasma transport properties on the applied electric field and other plasma parameters; the results are graphically illustrated.

  8. Kinetic Modeling of Microbiological Processes

    SciTech Connect (OSTI)

    Liu, Chongxuan; Fang, Yilin

    2012-09-17

    Kinetic description of microbiological processes is vital for the design and control of microbe-based biotechnologies such as waste water treatment, petroleum oil recovery, and contaminant attenuation and remediation. Various models have been proposed to describe microbiological processes. This editorial article discusses the advantages and limiation of these modeling approaches in cluding tranditional, Monod-type models and derivatives, and recently developed constraint-based approaches. The article also offers the future direction of modeling researches that best suit for petroleum and environmental biotechnologies.

  9. Multiscale Mathematics For Plasma Kinetics Spanning Multiple...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Multiscale Mathematics For Plasma Kinetics Spanning Multiple Collisionality Regimes Citation Details In-Document Search Title: Multiscale Mathematics For Plasma...

  10. Direct Kinetic Measurements of a Criegee Intermediate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Kinetic Measurements of a Criegee Intermediate Print In the earth's troposphere, which blankets the planet surface where we live and breathe, dust particles, gas molecules,...

  11. The Fractional Kinetic Equation and Thermonuclear Functions

    E-Print Network [OSTI]

    H. J. Haubold; A. M. Mathai

    2000-01-16

    The paper discusses the solution of a simple kinetic equation of the type used for the computation of the change of the chemical composition in stars like the Sun. Starting from the standard form of the kinetic equation it is generalized to a fractional kinetic equation and its solutions in terms of H-functions are obtained. The role of thermonuclear functions, which are also represented in terms of G- and H-functions, in such a fractional kinetic equation is emphasized. Results contained in this paper are related to recent investigations of possible astrophysical solutions of the solar neutrino problem.

  12. PCA-based lung motion model

    E-Print Network [OSTI]

    Li, Ruijiang; Jia, Xun; Zhao, Tianyu; Lamb, James; Yang, Deshan; Low, Daniel A; Jiang, Steve B

    2010-01-01

    Organ motion induced by respiration may cause clinically significant targeting errors and greatly degrade the effectiveness of conformal radiotherapy. It is therefore crucial to be able to model respiratory motion accurately. A recently proposed lung motion model based on principal component analysis (PCA) has been shown to be promising on a few patients. However, there is still a need to understand the underlying reason why it works. In this paper, we present a much deeper and detailed analysis of the PCA-based lung motion model. We provide the theoretical justification of the effectiveness of PCA in modeling lung motion. We also prove that under certain conditions, the PCA motion model is equivalent to 5D motion model, which is based on physiology and anatomy of the lung. The modeling power of PCA model was tested on clinical data and the average 3D error was found to be below 1 mm.

  13. Combustion kinetics and reaction pathways

    SciTech Connect (OSTI)

    Klemm, R.B.; Sutherland, J.W. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01

    This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

  14. Method and an apparatus to control the lateral motion of a long metal bar being formed by a mechanical process such as rolling or drawing

    DOE Patents [OSTI]

    Chang, Tzyy-Shuh (Ann Arbor, MI); Huang, Hsun-Hau (Ann Arbor, MI); Lin, Chang-Hung (Ann Arbor, MI)

    2007-10-02

    An adjustable guide, includes two or more mechanisms each having a rotatable retaining element containing a retaining groove with a variable radius in its perimeter surface. The grooves form a guidance path to control the lateral, i.e. non-axial, motion of a long bar moving along a longitudinal axis during a production process.The diameter of the guidance path varies according to the variable radii of the grooves. The guidance path increases in size at a predetermined rate, from a point of origin to an end point on the retaining groove. Rotating the retaining elements causes the diameter of the retaining grooves to change so that the size of the guidance path can be changed to match the diameter of the bar being rolled, size of the guidance path can be changed to fit the diameter of a new bar rolled without having to exchange the guide for a different sized guide, reduce fiction between the bar and the guide, a media, such as compressed air, can be injected between the retaining elements via orifices.Each retaining element is attached to a mounting apparatus. The mounting apparatus can be fixed or flexible. The flexible mounting apparatus includes one or more springs and one or more shock absorbers. A force neutral position of the flexible mounting apparatus is designed to be located on the predetermined ideal bar path line. The flexible mounting apparatus dissipates kinetic energy from the bar thereby reducing the bar's lateral motion relative to the ideal bar path line.The damping ratio of the mounting apparatus can be adjustable to alter the product's vibration mode to enable better control of the bar's lateral motion.

  15. Complex motion of precipitation bands

    E-Print Network [OSTI]

    Lagzi, I; Rácz, Z; Lagzi, Istvan; Papai, Peter; Racz, Zoltan

    2006-01-01

    Formation and dynamics of an Al(OH)_3 precipitation ring is studied by diffusing NaOH into a gel containing AlCl_3. Limited feeding of the outer electrolyte (NaOH) is found to yield an intricate ring-dynamics which involves stopping and reversal of the direction of motion of the precipitation ring, and evolution into stationary multi-ring structures. A model of the ring-dynamics is developed by combining a phase separation scenario for the precipitation with the redissolution (complex formation) of the precipitate in the excess of the outer electrolyte.

  16. Enhancement of vortex induced forces and motion through surface roughness control

    DOE Patents [OSTI]

    Bernitsas, Michael M. (Saline, MI); Raghavan, Kamaldev (Houston, TX)

    2011-11-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to increase Vortex Induced Forces and Motion. Enhancement is needed in such applications as harnessing of clean and renewable energy from ocean/river currents using the ocean energy converter VIVACE (Vortex Induced Vibration for Aquatic Clean Energy).

  17. Reduced kinetic description of weakly-driven plasma wavesa... R. R. Lindberg,b

    E-Print Network [OSTI]

    Wurtele, Jonathan

    on the adiabatic motion of electrons in the wave to describe Bernstein­Greene­ Kruskal-like Langmuir waves over to determine the electrostatic energy required to develop the phase-mixed, asymptotic state. From this incoherent energy, energy conservation is employed to determine a simplified model of nonlinear Landau

  18. Femtosecond laser pulse driven melting in gold nanorod aqueous colloidal suspension: Identification of a transition from stretched to exponential kinetics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Yuelin; Jiang, Zhang; Lin, Xiao -Min; Wen, Haidan; Walko, Donald A.; Deshmukh, Sanket A.; Subbaraman, Ram; Sankaranarayanan, Subramanian K. R. S.; Gray, Stephen K.; Ho, Phay

    2015-01-30

    Many potential industrial, medical, and environmental applications of metal nanorods rely on the physics and resultant kinetics and dynamics of the interaction of these particles with light. We report a surprising kinetics transition in the global melting of femtosecond laser-driven gold nanorod aqueous colloidal suspension. At low laser intensity, the melting exhibits a stretched exponential kinetics, which abruptly transforms into a compressed exponential kinetics when the laser intensity is raised. It is found the relative formation and reduction rate of intermediate shapes play a key role in the transition. Supported by both molecular dynamics simulations and a kinetic model, themore »behavior is traced back to the persistent heterogeneous nature of the shape dependence of the energy uptake, dissipation and melting of individual nanoparticles. These results could have significant implications for various applications such as water purification and electrolytes for energy storage that involve heat transport between metal nanorod ensembles and surrounding solvents.« less

  19. Liouville Brownian motion at criticality

    E-Print Network [OSTI]

    Rémi Rhodes; Vincent Vargas

    2015-02-15

    In this paper, we construct the Brownian motion of Liouville Quantum Gravity with central charge $c=1$ (more precisely we restrict to the corresponding free field theory). Liouville quantum gravity with $c=1$ corresponds to two-dimensional string theory and is the conjectural scaling limit of large planar maps weighted with a $O(n=2)$ loop model or a $Q=4$-state Potts model embedded in a two dimensional surface in a conformal manner. Following \\cite{GRV1}, we start by constructing the critical LBM from one fixed point $x\\in\\mathbb{R}^2$ (or $x\\in\\S^2$), which amounts to changing the speed of a standard planar Brownian motion depending on the local behaviour of the critical Liouville measure $M'(dx)=-X(x)e^{2X(x)}\\,dx$ (where $X$ is a Gaussian Free Field, say on $\\mathbb{S}^2$). Extending this construction simultaneously to all points in $\\mathbb{R}^2$ requires a fine analysis of the potential properties of the measure $M'$. This allows us to construct a strong Markov process with continuous sample paths living on the support of $M'$, namely a dense set of Hausdorff dimension $0$. We finally construct the associated Liouville semigroup, resolvent, Green function, heat kernel and Dirichlet form. In passing, we extend to quite a general setting the construction of the critical Gaussian multiplicative chaos that was initiated in \\cite{Rnew7,Rnew12} and also establish new capacity estimates for the critical Gaussian multiplicative chaos.

  20. Motion of a helical vortex

    E-Print Network [OSTI]

    Fuentes, Oscar Velasco

    2015-01-01

    We study the motion of a single helical vortex in an unbounded, inviscid, incompressible fluid. The vortex is an infinite tube whose centerline is a helix and whose cross section is a circle of small radius (compared to the radius of curvature) where the vorticity is uniform and parallel to the centerline. Ever since Joukowsky (1912) deduced that this vortex translates and rotates steadily without change of form, numerous attempts have been made to compute these self-induced velocities. Here we use Hardin's (1982) solution for the velocity field to find new expressions for the vortex's linear and angular velocities. Our results, verified by numerically computing the Helmholtz integral and the Rosenhead-Moore approximation to the Biot-Savart law, are more accurate than previous results over the whole range of values of the vortex pitch and cross-section. We then use the new formulas to study the advection of passive particles near the vortex; we find that the vortex's motion and capacity to transport fluid dep...

  1. Chemical kinetics and oil shale process design

    SciTech Connect (OSTI)

    Burnham, A.K.

    1993-07-01

    Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

  2. Nonequilibrium sensing and its analogy to kinetic proofreading

    E-Print Network [OSTI]

    Hartich, David; Seifert, Udo

    2015-01-01

    For a paradigmatic model of chemotaxis, we analyze the effect how a nonzero affinity driving receptors out of equilibrium affects sensitivity. This affinity arises whenever changes in receptor activity involve ATP hydrolysis. The sensitivity integrated over a ligand concentration range is shown to be enhanced by the affinity, providing a measure of how much energy consumption improves sensing. With this integrated sensitivity we can establish an intriguing analogy between sensing with nonequilibrium receptors and kinetic proofreading: the increase in integrated sensitivity is equivalent to the decrease of the error in kinetic proofreading. The influence of the occupancy of the receptor on the phosphorylation and dephosphorylation reaction rates is shown to be crucial for the relation between integrated sensitivity and affinity. This influence can even lead to a regime where a nonzero affinity decreases the integrated sensitivity, which corresponds to anti-proofreading.

  3. Active transport: A kinetic description based on thermodynamic grounds

    E-Print Network [OSTI]

    S. Kjelstrup; J. M. Rubi; D. Bedeaux

    2004-12-17

    We show that active transport processes in biological systems can be understood through a local equilibrium description formulated at the mesoscale, the scale to describe stochastic processes. This new approach uses the method established by nonequilibrium thermodynamics to account for the irreversible processes occurring at this scale and provides nonlinear kinetic equations for the rates in terms of the driving forces. The results show that the application domain of nonequilibrium thermodynamics method to biological systems goes beyond the linear domain. A model for transport of Ca$^{2+}$ by the Ca$^{2+}$-ATPase, coupled to the hydrolysis of adenosine-triphosphate is analyzed in detail showing that it depends on the reaction Gibbs energy in a non-linear way. Our results unify thermodynamic and kinetic descriptions, thereby opening new perspectives in the study of different transport phenomena in biological systems.

  4. infall is balanced by outward radiation pressure. Consequently, the kinetic power of the wind is

    E-Print Network [OSTI]

    Baker, David

    infall is balanced by outward radiation pressure. Consequently, the kinetic power of the wind activity phase, such powerful winds would have provided the energy and momentum to self-regulate the black = 0.25 c), the minimum plausible starting point of the wind. The mechanical energy released over

  5. Symmetry in the retinogeniculate motion circuit /

    E-Print Network [OSTI]

    Kaye, Alfred

    2013-01-01

    cortical stages of processing, retinal direction selectivityfeatures of retinal mo- tion processing with the efficientretinal ganglion cell subtypes and brain structures involved in motion processing.

  6. Cooling-rate dependence of kinetic and mechanical stability of simulated glasses

    E-Print Network [OSTI]

    Hannah Staley; Elijah Flenner; Grzegorz Szamel

    2015-01-14

    Recently, ultrastable glasses have been created through vapor deposition. Subsequently, computer simulation algorithms have been proposed that mimic the vapor deposition process and result in simulated glasses with increased stability. In addition, random pinning has been used to generate very stable glassy configurations without the need for lengthy annealing or special algorithms inspired by vapor deposition. Kinetic and mechanical stability of experimental ultrastable glasses is compared to those of experimental glasses formed by cooling. We provide the basis for a similar comparison for simulated stable glasses: we analyze the kinetic and mechanical stability of simulated glasses formed by cooling at a constant rate by examining the transformation time to a liquid upon rapid re-heating, the inherent structure energies, and the shear modulus. The kinetic and structural stability increases slowly with decreasing cooling rate. The methods outlined here can be used to assess kinetic and mechanical stability of simulated glasses generated by using specialized algorithms.

  7. Experimental observation of controllable kinetic constraints in a cold atomic gas

    E-Print Network [OSTI]

    Valado, M M; Hoogerland, M D; Lesanovsky, I; Garrahan, J P; Arimondo, E; Ciampini, D; Morsch, O

    2015-01-01

    Many-body systems relaxing to equilibrium can exhibit complex dynamics even if their steady state is trivial. At low temperatures or high densities their evolution is often dominated by steric hindrances affecting particle motion [1,2,3]. Local rearrangements are highly constrained, giving rise to collective - and often slow - relaxation.This dynamics can be difficult to analyse from first principles, but the essential physical ingredients are captured by idealized lattice models with so- called kinetic constraints [4]. Here we experimentally realize a many-body system exhibiting manifest kinetic constraints and measure its dynamical properties. In the cold Rydberg gas used in our experiments, the nature of the constraints can be tailored through the detuning of the excitation lasers from resonance [5,6,7,8], which controls whether the system undergoes correlated or anti- correlated dynamics. Our results confirm recent theoretical predictions [5,6], and highlight the analogy between the dynamics of interactin...

  8. Microfluidics: Kinetics of Hybridized DNA With Fluid Flow Variations...

    Office of Scientific and Technical Information (OSTI)

    Conference: Microfluidics: Kinetics of Hybridized DNA With Fluid Flow Variations. Citation Details In-Document Search Title: Microfluidics: Kinetics of Hybridized DNA With Fluid...

  9. Model simplification of chemical kinetic systems under uncertainty

    E-Print Network [OSTI]

    Coles, Thomas Michael Kyte

    2011-01-01

    This thesis investigates the impact of uncertainty on the reduction and simplification of chemical kinetics mechanisms. Chemical kinetics simulations of complex fuels are very computationally expensive, especially when ...

  10. Large kinetic asymmetry in the metal-insulator transition nucleated...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Large kinetic asymmetry in the metal-insulator transition nucleated at localized and extended defects Citation Details In-Document Search Title: Large kinetic...

  11. A Study and Comparison of SCR Reaction Kinetics from Reactor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Study and Comparison of SCR Reaction Kinetics from Reactor and Engine Experimental Data A Study and Comparison of SCR Reaction Kinetics from Reactor and Engine Experimental Data...

  12. Global kinetics for a commercial diesel oxidation catalyst with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    kinetics for a commercial diesel oxidation catalyst with two exhaust hydrocarbons Global kinetics for a commercial diesel oxidation catalyst with two exhaust hydrocarbons...

  13. Improving Combustion Software to Solve Detailed Chemical Kinetics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Software to Solve Detailed Chemical Kinetics for HECC Improving Combustion Software to Solve Detailed Chemical Kinetics for HECC 2012 DOE Hydrogen and Fuel Cells Program...

  14. A. La Rosa Lecture Notes ENERGY CONSERVATION

    E-Print Network [OSTI]

    ________________________________________________________________________ ENERGY CONSERVATION The Fisrt Law of Thermodynamics and the Classical Work Kinetic-Energy (CWE) Theorem I on a system II.4.B2 Heat-transfer Q II.4.C Fundamental Energy Conservation Law Generalization of the classic work/kinetic-energy theorem III CONSERVATION of ENERGY. Case: Pure Thermodynamics The First Law

  15. A ash-drag effect in random motion reveals involvement of preattentive motion processing

    E-Print Network [OSTI]

    Whitney, David

    A ash-drag effect in random motion reveals involvement of preattentive motion processing Department-ku, Tokyo, JapanIkuya Murakami The ash-drag (FDE) effect refers to the phenomenon in which the position of a stationary ashed object in one location appears shifted in the direction of nearby motion. Over the past

  16. Modeling of Reactor Kinetics and Dynamics

    SciTech Connect (OSTI)

    Matthew Johnson; Scott Lucas; Pavel Tsvetkov

    2010-09-01

    In order to model a full fuel cycle in a nuclear reactor, it is necessary to simulate the short time-scale kinetic behavior of the reactor as well as the long time-scale dynamics that occur with fuel burnup. The former is modeled using the point kinetics equations, while the latter is modeled by coupling fuel burnup equations with the kinetics equations. When the equations are solved simultaneously with a nonlinear equation solver, the end result is a code with the unique capability of modeling transients at any time during a fuel cycle.

  17. Motion to Withdraw.pdf

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department of Energy Moratorium andDepartment of Energy

  18. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    motions from Morison Equation forces for a floating Backward Bent Duct Buoy (BBDB). This Wave Energy Converter (WEC) is a particular style of Oscillating Water Column (OWC). The...

  19. On the relationships between the Michaelis–Menten kinetics, reverse Michaelis–Menten kinetics, equilibrium chemistry approximation kinetics, and quadratic kinetics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tang, J. Y.

    2015-12-01

    The Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how microbes and plants would respond to changes in substrate abundance. However, the criteria of when to use either of the two are often ambiguous. Here I show that these two kinetics are special approximations to the equilibrium chemistry approximation (ECA) kinetics, which is the first-order approximation to the quadratic kinetics that solves the equation of an enzyme–substrate complex exactly for a single-enzyme and single-substrate biogeochemical reaction with the law of mass action and the assumption of a quasi-steadymore »state for the enzyme–substrate complex and that the product genesis from enzyme–substrate complex is much slower than the equilibration between enzyme–substrate complexes, substrates, and enzymes. In particular, I show that the derivation of the Michaelis–Menten kinetics does not consider the mass balance constraint of the substrate, and the reverse Michaelis–Menten kinetics does not consider the mass balance constraint of the enzyme, whereas both of these constraints are taken into account in deriving the equilibrium chemistry approximation kinetics. By benchmarking against predictions from the quadratic kinetics for a wide range of substrate and enzyme concentrations, the Michaelis–Menten kinetics was found to persistently underpredict the normalized sensitivity ? ln v / ? ln k2+ of the reaction velocity v with respect to the maximum product genesis rate k2+, persistently overpredict the normalized sensitivity ? ln v / ? ln k1+ of v with respect to the intrinsic substrate affinity k1+, persistently overpredict the normalized sensitivity ? ln v / ? ln [E]T of v with respect the total enzyme concentration [E]T, and persistently underpredict the normalized sensitivity ? ln v / ? ln [S]T of v with respect to the total substrate concentration [S]T. Meanwhile, the reverse Michaelis–Menten kinetics persistently underpredicts ? ln v / ? ln k2+ and ? ln v / ? ln [E]T, and persistently overpredicts ? ln v / ? ln k1+ and ? ln v / ? ln [S]T. In contrast, the equilibrium chemistry approximation kinetics always gives consistent predictions of ? ln v / ? ln k2+, ? ln v / ? ln k1+, ? ln v / ? ln [E]T, and ? ln v / ? ln [S]T, indicating that ECA-based models will be more calibratable if the modeled processes do obey the law of mass action. Since the equilibrium chemistry approximation kinetics includes advantages from both the Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics and it is applicable for almost the whole range of substrate and enzyme abundances, land biogeochemical modelers therefore no longer need to choose when to use the Michaelis–Menten kinetics or the reverse Michaelis–Menten kinetics. I expect that removing this choice ambiguity will make it easier to formulate more robust and consistent land biogeochemical models.« less

  20. The Motion Of A Spring Released From Uniform Circular Motion

    E-Print Network [OSTI]

    Dooling, Thomas; Carnaghi, Matthew; Titus, Aaron

    2015-01-01

    A weak spring is connected at one end to a rotor turning at constant angular velocity. The spring extends to a stretched length as determined by the spring mass, rest length, spring constant, rotor radius and rotor angular velocity. When released from the rotor, the inner end of the spring pulls away as expected, causing a wave to travel down the spring as it collapses. During this time interval, the outer end of the spring continues to move along its original circular path in uniform circular motion, as if the spring were still connected to the rotor. This is analogous to the effect of a hanging Slinky released from rest whose bottom end remains at a fixed position above the ground until a wave from the top of the Slinky reaches the bottom of the Slinky. Values from a numerical model and measurements from video analysis show that upon release the inner end travels along a circle of similar radius as the outer end. The effect appears as a series of alternating semi-circles. In addition, the simulation and dat...

  1. Damped collective motion of many body systems: A variational approach to the quantal decay rate

    E-Print Network [OSTI]

    Christian Rummel; Helmut Hofmann

    2005-03-04

    We address the problem of collective motion across a barrier like encountered in fission. A formula for the quantal decay rate is derived which bases on a recently developed variational approach for functional integrals. This formula can be applied to low temperatures that have not been accessible within the former PSPA type approach. To account for damping of collective motion one particle Green functions are dressed with appropriate self-energies.

  2. An Architecture for Motion Capture Animation

    E-Print Network [OSTI]

    de Figueiredo, Luiz Henrique

    An Architecture for Motion Capture Animation Fernando Wagner da Silva Luiz Velho Jonas Gomes Paulo System's Architecture q Conclusions q Future work / Work in progress General Outline #12;q Motion systems Our Motivation #12;q MoCap as main animation tool q Modular architecture (Input, Processing

  3. DEFENDANTS' SUPPLEMENTAL MEMORANDUM RE: MOTIONS TO

    E-Print Network [OSTI]

    Gollin, George

    DEFENDANTS' SUPPLEMENTAL MEMORANDUM RE: MOTIONS TO SUPPRESS AND DISMISS - 1 - Richard D. Wall. ) ) ) ) ) ) ) ) ) ) ) ) ) Case No.: CR-05-180-7-LRS DEFENDANTS' SUPPLEMENTAL MEMORANDUM RE: MOTIONS TO SUPPRESS AND DISMISS ) Defendants jointly submit the following supplemental memorandum of points and authorities re: Defendants

  4. Learning Dynamic Arm Motions for Postural Recovery

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Learning Dynamic Arm Motions for Postural Recovery Scott Kuindersma, Roderic Grupen, Andrew Barto}@cs.umass.edu Abstract--The biomechanics community has recently made progress toward understanding the role of rapid arm of arm recovery motions in humans and experimentally demonstrate advantages of this behavior

  5. Robot Motion Planning with Uncertainty The Challenge

    E-Print Network [OSTI]

    Whitton, Mary C.

    Roadmap (SMR), a new motion planning framework that explicitly considers uncertainty in robot motion approach. Our framework builds on the highly successful approach used in Probabilistic Roadmaps (PRMs of discrete states is selected in the state space, and a roadmap is built that represents their collision

  6. Appendix E: Software Video Analysis of Motion

    E-Print Network [OSTI]

    Minnesota, University of

    E - 1 Appendix E: Software Video Analysis of Motion Analyzing pictures (movies or videos using a computer and data acquisition software. This appendix will guide a person somewhat familiar: SOFTWARE E - 2 Using video to analyze motion is a two-step process. The first step is recording a video

  7. Robot Motion Planning with Uncertainty The Challenge

    E-Print Network [OSTI]

    Pollefeys, Marc

    to address this problem. One of them, the Stochastic Motion Roadmap (SMR), is a new motion planning framework in Probabilistic Roadmaps (PRMs): a learning phase followed by a query phase. During the learning phase, a random (or quasi-random) sample of discrete states is selected in the state space, and a roadmap is built

  8. Roadmapbased Motion Planning in Dynamic Environments

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Roadmap­based Motion Planning in Dynamic Environments Jur P. van den Berg Mark H. Overmars.cs.uu.nl #12; Roadmap­based Motion Planning in Dynamic Environments Jur P. van den Berg Mark H. Overmars April obstacles. We propose a practical algorithm based on a roadmap that is created for the static part

  9. VISIBILITYBASED PROBABILISTIC ROADMAPS FOR MOTION PLANNING

    E-Print Network [OSTI]

    Cortés, Juan

    VISIBILITY­BASED PROBABILISTIC ROADMAPS FOR MOTION PLANNING T. Sim'eon, J­P. Laumond, and C a variant of Probabilistic Roadmap Methods (PRM) that recently appeared as a promising approach to motion to produce small roadmaps, called visibility roadmaps. Our algorithm integrates an original termination

  10. Sandia Energy - High Pressure Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Pressure Chemistry Home Transportation Energy Predictive Simulation of Engines Combustion Chemistry Combustion Kinetics High Pressure Chemistry High Pressure ChemistryAshley...

  11. Seismic switch for strong motion measurement

    DOE Patents [OSTI]

    Harben, Philip E. (Oakley, CA); Rodgers, Peter W. (Santa Barbara, CA); Ewert, Daniel W. (Patterson, CA)

    1995-01-01

    A seismic switching device that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period.

  12. Seismic switch for strong motion measurement

    DOE Patents [OSTI]

    Harben, P.E.; Rodgers, P.W.; Ewert, D.W.

    1995-05-30

    A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.

  13. Nonlinear response theory in chemical kinetics

    E-Print Network [OSTI]

    Kryvohuz, M; Mukamel, S

    2014-01-01

    ?D(t) are D 0 (t) = (1) Chemical reactions, N h i ( x , t) iOF NONLINEAR RESPONSE THEORY TO CHEMICAL KINETICS Equation (non- linear responses of chemical systems to perturbations

  14. Time integration methods for reactor kinetics

    E-Print Network [OSTI]

    Nóbrega, José de Anchieta Wanderley da

    A technique based on the Padé approximations is applied to the solution of the point kinetics equations. The method consists of treating explicitly the roots of the inhour formula which would make the Padé approximations ...

  15. Kinetics of Anionic Surfactant Anoxic Degradation 

    E-Print Network [OSTI]

    Camacho, Julianna G.

    2010-07-14

    The biodegradation kinetics of Geropon TC-42 (trademark) by an acclimated culture was investigated in anoxic batch reactors to determine biokinetic coefficients to be implemented in two biofilm mathematical models. Geropon ...

  16. Diffusion motions in hydrated sodium alginate by QENS

    SciTech Connect (OSTI)

    Tripadus, V.; Statescu, M.; Aranghel, D.; Gugiu, M.; Petre, M.; Precup, I. [Institute of Physics and Nuclear Engineerig, Bucuresti (Romania); Zanotti, J. M.; Mitra, S. [Laboratoire Leon Brillouin, CEA Saclay (France)

    2010-01-21

    QENS experiments are very suitable for the study of water-polysaccharides systems both for slow polymer chains dynamics as well as for faster solvent molecules dynamics. By a suitable choice of experimental conditions as well as a properly data processing we can get information about the motion modes of various molecular groups of polymer chains in aqueous solutions presumes. Virtually we can distinguish the polymer protons motions at nanosecond time scale by choosing a narrow energy resolution window. The present work presents the QENS measurements performed at LLB, MIBEMOL neutron spectrometer on sodium alginate hydrated samples. The experimental spectra were fitted using one lorentzian fit. At high polymer concentration the quasielastic part of the line is given by the translational-rotational diffusion performed by heavy water molecules in confined spaces created by the polymer coils. The experimental data are well described by Chudley Elliot and Hall-Ross models.

  17. A Mobile Motion Analysis System Using Intertial Sensors for Analysis of Lower Limb Prosthetics

    SciTech Connect (OSTI)

    Mueller, John Kyle P [ORNL] [ORNL; Ericson, Milton Nance [ORNL] [ORNL; Farquhar, Ethan [ORNL] [ORNL; Lind, Randall F [ORNL] [ORNL; Evans III, Boyd Mccutchen [ORNL] [ORNL

    2011-01-01

    Soldiers returning from the global war on terror requiring lower leg prosthetics generally have different concerns and requirements than the typical lower leg amputee. These subjects are usually young, wish to remain active and often desire to return to active military duty. As such, they demand higher performance from their prosthetics, but are at risk for chronic injury and joint conditions in their unaffected limb. Motion analysis is a valuable tool in assessing the performance of new and existing prosthetic technologies as well as the methods in fitting these devices to both maximize performance and minimize risk of injury for the individual soldier. We are developing a mobile, low-cost motion analysis system using inertial measurement units (IMUs) and two custom force sensors that detect ground reaction forces and moments on both the unaffected limb and prosthesis. IMUs were tested on a robot programmed to simulate human gait motion. An algorithm which uses a kinematic model of the robot and an extended Kalman filter (EKF) was used to convert the rates and accelerations from the gyro and accelerometer into joint angles. Compared to encoder data from the robot, which was considered the ground truth in this experiment, the inertial measurement system had a RMSE of <1.0 degree. Collecting kinematic and kinetic data without the restrictions and expense of a motion analysis lab could help researchers, designers and prosthetists advance prosthesis technology and customize devices for individuals. Ultimately, these improvements will result in better prosthetic performance for the military population.

  18. Relativistic (covariant) kinetic theory of linear plasma waves and instabilities

    SciTech Connect (OSTI)

    Lazar, M. [Institut fuer Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); 'Alexandru Ioan Cuza' University, Faculty of Physics, 6600 Iasi (Romania); Schlickeiser, R. [Institut fuer Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Centre for Plasma Science and Astrophysics, Ruhr-University, D-44780 Bochum (Germany)

    2006-06-19

    The fundamental kinetic description is of vital importance in high-energy astrophysics and fusion plasmas where wave phenomena evolve on scales small comparing with binary collision scales. A rigorous relativistic analysis is required even for nonrelativistic plasma temperatures for which the classical theory yielded unphysical results: e.g. collisonless damping of superluminal waves (phase velocity exceeds the speed of light). The existing nonrelativistic approaches are now improved by covariantly correct dispersion theory. As an important application, the Weibel instability has been recently investigated and confirmed as the source of primordial magnetic field in the intergalactic medium.

  19. Bio-butanol: Combustion properties and detailed chemical kinetic model

    SciTech Connect (OSTI)

    Black, G.; Curran, H.J.; Pichon, S.; Simmie, J.M.; Zhukov, V.

    2010-02-15

    Autoignition delay time measurements were performed at equivalence ratios of 0.5, 1 and 2 for butan-1-ol at reflected shock pressures of 1, 2.6 and 8 atm at temperatures from 1100 to 1800 K. High-level ab initio calculations were used to determine enthalpies of formation and consequently bond dissociation energies for each bond in the alcohol. A detailed chemical kinetic model consisting of 1399 reactions involving 234 species was constructed and tested against the delay times and also against recent jet-stirred reactor speciation data with encouraging results. The importance of enol chemistry is highlighted. (author)

  20. Non-minimal Kinetic coupling to gravity and accelerated expansion

    SciTech Connect (OSTI)

    Granda, L.N.

    2010-07-01

    We study a scalar field with kinetic term coupled to itself and to the curvature, as a source of dark energy, and analyze the role of this new coupling in the accelerated expansion at large times. In the case of scalar field dominance, the scalar field and potential giving rise to power-law expansion are found in some cases, and a dynamical equation of state is calculated for a given solution of the field equations. A behavior very close to that of the cosmological constant was found.

  1. Kinetic equation for a soliton gas Chernogolovka, July 2009

    E-Print Network [OSTI]

    Fominov, Yakov

    Kinetic equation for a soliton gas Gennady El Chernogolovka, July 2009 Gennady El Kinetic equation, Kinetic equation for solitons, JETP (1971) Here we consider only strongly integrable systems (like KdV, NLS etc.) Gennady El Kinetic equation for a soliton gas #12;From N-solitons/N-gap potentials

  2. Before the Senate Energy and Natural Resources Committee | Department...

    Office of Environmental Management (EM)

    Before the House Subcommittee on Energy and Power, Committee on Energy and Commerce Yucca Mountain - U.S. Department of Energy's Response to the Motion for Recusal...

  3. Fokker–Planck kinetic modeling of suprathermal ?-particles in a fusion plasma

    SciTech Connect (OSTI)

    Peigney, B.E.

    2014-12-01

    We present an ion kinetic model describing the transport of suprathermal ?-particles in inertial fusion targets. The analysis of the underlying physical model enables us to develop efficient numerical methods to simulate the creation, transport and collisional relaxation of fusion reaction products (?-particles) at a kinetic level. The model assumes spherical symmetry in configuration space and axial symmetry in velocity space around the mean flow velocity. A two-energy-scale approach leads to a self-consistent modeling of the coupling between suprathermal ?-particles and the thermal bulk of the imploding plasma. This method provides an accurate numerical treatment of energy deposition and transport processes involving suprathermal particles. The numerical tools presented here are then validated against known analytical results. This enables us to investigate the potential role of ion kinetic effects on the physics of ignition and thermonuclear burn in inertial confinement fusion schemes.

  4. MHK Projects/Ogdensburg Kinetic Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPTHalf|MyetteNavitas NaREC

  5. MHK Technologies/Blue Motion Energy marine turbine | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 < MHKKembla < MHKIrrigationInformation

  6. TEST & MOTION SIMULATION SYSTEMSSERVOTEST Tailored Solutions For Your Servohydraulic

    E-Print Network [OSTI]

    TEST & MOTION SIMULATION SYSTEMSSERVOTEST SERVOTEST ACTUATORS Tailored Solutions For Your Servohydraulic Test And Motion Simulation System Requirements #12;TEST & MOTION SIMULATION SYSTEMSSERVOTEST qualified engineers · Founded in 1958 as a Consultancy to service the growing test market · International

  7. Efficient Cost Measures for Motion Compensation at Low Bit Rates

    E-Print Network [OSTI]

    Hoang, Dzung T.; Long, Philip M.; Vitter, Jeffrey Scott

    1996-01-01

    We present and compare methods for choosing motion vectors for block-based motion-compensated video coding. The primary focus is on videophone and video- conferencing applications, where low bit rates are neces- sary, where motion is usually limited...

  8. Simulation levels of detail for plant motion 

    E-Print Network [OSTI]

    Beaudoin, Jacob Michael

    2013-02-22

    that motion interactive [PCOI, DCFOI, EMF03]. A comparison of our method with some of these other methods is provided in section 7. 1. SLODs have come into prominence only in the last few years [Ber97, CF97]. They have sometimes taken other names ? Endo et... al. refer to them as levels of motion detail, or LOmDs [EMF03]. There have been a wide variety of applications for SLODs. These include rigid body dynamics and motion [CIF99, DO01, CAF01], simple collision detection and response [CH97, ODG*03...

  9. Ultra-wideband radar motion sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1994-11-01

    A motion sensor is based on ultra-wideband (UWB) radar. UWB radar range is determined by a pulse-echo interval. For motion detection, the sensors operate by staring at a fixed range and then sensing any change in the averaged radar reflectivity at that range. A sampling gate is opened at a fixed delay after the emission of a transmit pulse. The resultant sampling gate output is averaged over repeated pulses. Changes in the averaged sampling gate output represent changes in the radar reflectivity at a particular range, and thus motion. 15 figs.

  10. Resonance Van Hove Singularities in Wave Kinetics

    E-Print Network [OSTI]

    Yi-Kang Shi; Gregory Eyink

    2015-07-29

    Wave kinetic theory has been developed to describe the statistical dynamics of weakly nonlinear, dispersive waves. However, we show that systems which are generally dispersive can have resonant sets of wave modes with identical group velocities, leading to a local breakdown of dispersivity. This shows up as a geometric singularity of the resonant manifold and possibly as an infinite phase measure in the collision integral. Such singularities occur widely for classical wave systems, including acoustical waves, Rossby waves, helical waves in rotating fluids, light waves in nonlinear optics and also in quantum transport, e.g. kinetics of electron-hole excitations (matter waves) in graphene. These singularities are the exact analogue of the critical points found by Van Hove in 1953 for phonon dispersion relations in crystals. The importance of these singularities in wave kinetics depends on the dimension of phase space $D=(N-2)d$ ($d$ physical space dimension, $N$ the number of waves in resonance) and the degree of degeneracy $\\delta$ of the critical points. Following Van Hove, we show that non-degenerate singularities lead to finite phase measures for $D>2$ but produce divergences when $D\\leq 2$ and possible breakdown of wave kinetics if the collision integral itself becomes too large (or even infinite). Similar divergences and possible breakdown can occur for degenerate singularities, when $D-\\delta\\leq 2,$ as we find for several physical examples, including electron-hole kinetics in graphene. When the standard kinetic equation breaks down, then one must develop a new singular wave kinetics. We discuss approaches from pioneering 1971 work of Newell \\& Aucoin on multi-scale perturbation theory for acoustic waves and field-theoretic methods based on exact Schwinger-Dyson integral equations for the wave dynamics.

  11. Effects of Seismic Motion Incoherency on SSI and SSSI Responses...

    Office of Environmental Management (EM)

    Effects of Seismic Motion Incoherency on SSI and SSSI Responses of Nuclear Structures for Different Soil Site Conditions Effects of Seismic Motion Incoherency on SSI and SSSI...

  12. ROCKING AND OVERTURNING RESPONSE OF RIGID BODIES TO EARTHQUAKE MOTIONS

    E-Print Network [OSTI]

    Aslam, M.

    2011-01-01

    Pendulum Structures During Earthquakes," Bulletin of theand Tsai, N.C. , "Simulated Earthquake Motions," CaliforniaResponse of Rigid Bodies to Earthquake Motions M. Aslam W.

  13. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    SciTech Connect (OSTI)

    Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

    2012-04-01

    Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a Power-Take-Off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drive train, power generator and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency, low maintenance and cost with a low impact on the device Cost-of-Energy (CoE).

  14. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    SciTech Connect (OSTI)

    Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

    2013-02-01

    Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a power-take-off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drivetrain, power generator, and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost, and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency and low maintenance and cost, with a low impact on the device cost-of-energy (CoE).

  15. Generalized Sampling-Based Feedback Motion Planners 

    E-Print Network [OSTI]

    Kumar, Sandip

    2012-02-14

    states. In the deterministic robotics motion planning community, sampling based algorithms like probabilistic roadmaps (PRM) and rapidly exploring random trees (RRTs) have been successful in solving very high dimensional deterministic problem. However...

  16. On learning task-directed motion plans

    E-Print Network [OSTI]

    Finney, Sarah, 1974-

    2009-01-01

    Robotic motion planning is a hard problem for robots with more than just a few degrees of freedom. Modern probabilistic planners are able to solve many problems very quickly, but for difficult problems, they are still ...

  17. Influence of Motion Cueing on Helicopter Stabilization

    E-Print Network [OSTI]

    Influence of Motion Cueing on Helicopter Stabilization Daniel R. Berger, Cengiz Terzibas, and Heinrich H. Bülthoff Max Planck Institute for Biological Cybernetics, Tübingen, Germany Helicopters vestibular and somatosensory cues. To test this hypothesis, we measured helicopter hovering performance

  18. Week 14: Chapter 15 Oscillatory Motion

    E-Print Network [OSTI]

    conditions and observe the resultant motion When the spring is neither stretched nor compressed, the block About Restoring Force, 2 The block is at the equilibrium position x = 0 The spring is neither

  19. Information Fusion for Improved Motion Estimation 

    E-Print Network [OSTI]

    Peacock, Andrew M

    Motion Estimation is an important research field with many commercial applications including surveillance, navigation, robotics, and image compression. As a result, the field has received a great deal of attention and ...

  20. Slow motion responses of compliant offshore structures 

    E-Print Network [OSTI]

    Cao, Peimin

    1996-01-01

    An efficient method is developed to predict slow motion responses of slender compliant offshore structures in the unidirectional irregular waves and currents. The environmental loads are computed using the modified Morison equation based on slender...

  1. Chemical Kinetic Modeling of Advanced Transportation Fuels

    SciTech Connect (OSTI)

    PItz, W J; Westbrook, C K; Herbinet, O

    2009-01-20

    Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

  2. Diabaticity of nuclear motion: problems and perspectives

    SciTech Connect (OSTI)

    Nazarewicz, W [Joint Inst. for Heavy Ion Research, Oak Ridge, TN (United States)] [Joint Inst. for Heavy Ion Research, Oak Ridge, TN (United States)

    1992-12-31

    The assumption of adiabatic motion lies in foundations of many models of nuclear collective motion. To what extend can nuclear modes be treated adiabatically? Due to the richness and complexity of the nuclear many-body problem there is no unique answer to this question. The challenges of nuclear collective dynamics invite exciting interactions between several areas of physics such as nuclear structure, field theory, nonlinear dynamics, transport theory, and quantum chaos.

  3. Kinetics of Slurry Phase Fischer-Tropsch Synthesis

    SciTech Connect (OSTI)

    Dragomir B. Bukur; Gilbert F. Froment; Tomasz Olewski; Lech Nowicki; Madhav Nayapati

    2006-12-31

    The overall objective of this project is to develop a comprehensive kinetic model for slurry-phase Fischer-Tropsch synthesis (FTS) employing iron-based catalysts. This model will be validated with experimental data obtained in a stirred-tank slurry reactor (STSR) over a wide range of process conditions. Three STSR tests of the Ruhrchemie LP 33/81 catalyst were conducted to collect data on catalyst activity and selectivity under 25 different sets of process conditions. The observed decrease in 1-olefin content and increase in 2-olefin and n-paraffin contents with the increase in conversion are consistent with a concept that 1-olefins participate in secondary reactions (e.g. 1-olefin hydrogenation, isomerization and readsorption), whereas 2-olefins and n-paraffins are formed in these reactions. Carbon number product distribution showed an increase in chain growth probability with increase in chain length. Vapor-liquid equilibrium calculations were made to check validity of the assumption that the gas and liquid phases are in equilibrium during FTS in the STSR. Calculated vapor phase compositions were in excellent agreement with experimental values from the STSR under reaction conditions. Discrepancies between the calculated and experimental values for the liquid-phase composition (for some of the experimental data) are ascribed to experimental errors in the amount of wax collected from the reactor, and the relative amounts of hydrocarbon wax and Durasyn 164 oil (start-up fluid) in the liquid samples. Kinetic parameters of four kinetic models (Lox and Froment, 1993b; Yang et al., 2003; Van der Laan and Beenackers, 1998, 1999; and an extended kinetic model of Van der Laan and Beenackers) were estimated from experimental data in the STSR tests. Two of these kinetic models (Lox and Froment, 1993b; Yang et al., 2003) can predict a complete product distribution (inorganic species and hydrocarbons), whereas the kinetic model of Van der Laan and Beenackers (1998, 1999) can be used only to fit product distribution of total olefins and n-paraffins. The kinetic model of Van der Laan and Beenackers was extended to account separately for formation of 1- and 2-olefins, as well as n-paraffins. A simplified form of the kinetic model of Lox and Froment (1993b) has only five parameters at isothermal conditions. Because of its relative simplicity, this model is well suited for initial studies where the main goal is to learn techniques for parameter estimation and statistical analysis of estimated values of model parameters. The same techniques and computer codes were used in the analysis of other kinetic models. The Levenberg-Marquardt (LM) method was employed for minimization of the objective function and kinetic parameter estimation. Predicted reaction rates of inorganic and hydrocarbon species were not in good agreement with experimental data. All reaction rate constants and activation energies (24 parameters) of the Yang et al. (2003) model were found to be positive, but the corresponding 95% confidence intervals were large. Agreement between predicted and experimental reaction rates has been fair to good. Light hydrocarbons were predicted fairly accurately, whereas the model predictions of higher molecular weight hydrocarbons values were lower than the experimental ones. The Van der Laan and Beenackers kinetic model (known as olefin readsorption product distribution model = ORPDM) provided a very good fit of the experimental data for hydrocarbons (total olefins and n-paraffins) up to about C{sub 20} (with the exception of experimental data that showed higher paraffin formation rates in C{sub 12}-C{sub 25} region, due to hydrocracking or other secondary reactions). Estimated values of all model parameters (true and pseudo-kinetic parameters) had high statistical significance after combining parameters related to olefin termination and readsorption into one (total of 7 model parameters). The original ORPDM was extended to account separately for formation of 1- and 2-olefins, and successfully employed to fit experimental data of three majo

  4. Thermodynamics and Kinetics of a Molecular Motor Ensemble Josh E. Baker* and David D. Thomas

    E-Print Network [OSTI]

    Thomas, David D.

    Thermodynamics and Kinetics of a Molecular Motor Ensemble Josh E. Baker* and David D. Thomas is transferred to work is accelerated by the free energy of a motor-catalyzed reaction. This thermodynamic model cargo at useful rates along long polymer tracks, and, in this paper, we develop a minimal thermodynamic

  5. Solvent Polarization and Kinetic Isotope Effects in Nitroethane Deprotonation and Implications to the Nitroalkane Oxidase Reaction

    E-Print Network [OSTI]

    Minnesota, University of

    Solvent Polarization and Kinetic Isotope Effects in Nitroethane Deprotonation and Implications proton abstraction, and nitroalkane ionization is predicted to have large solvent effects with increased free energy barrier in protic solvents.1,2 The deprotonation of nitroalkanes is catalyzed by the flavo

  6. Solvent relaxation effects on the kinetics of photoinduced electron transfer reactions

    E-Print Network [OSTI]

    Fayer, Michael D.

    Solvent relaxation effects on the kinetics of photoinduced electron transfer reactions J. Najbar formation and recombination of radical- ion pairs limited by solvent dielectric relaxation. The problem). Solvent relaxation moves the system to lower energy on the radical-ion pair surface where crossing

  7. Ab-initio Kinetic Monte Carlo Model of Ionic Conduction in Bulk Yttria-stabilized Zirconia

    E-Print Network [OSTI]

    Cai, Wei

    Ab-initio Kinetic Monte Carlo Model of Ionic Conduction in Bulk Yttria-stabilized Zirconia Eunseok in bulk single crystal Yttria-stabilized Zirconia. An interacting energy barrier model is developed dynamics to simulate the vacancy diffusion in Yttria-stabilized Zirconia (YSZ). They concluded

  8. Kinetics of hydrogen-transfer isomerizations of butoxyl radicalsw Jingjing Zheng and Donald G. Truhlar*

    E-Print Network [OSTI]

    Truhlar, Donald G

    energy density, ability to be blended at higher concentrations, and high tolerance to water contaminationKinetics of hydrogen-transfer isomerizations of butoxyl radicalsw Jingjing Zheng and Donald G on the web 25th May 2010 DOI: 10.1039/b927504e Five isomerization reactions involving intramolecular hydrogen

  9. The motion of point particles in curved spacetime

    E-Print Network [OSTI]

    Eric Poisson; Adam Pound; Ian Vega

    2011-09-26

    This review is concerned with the motion of a point scalar charge, a point electric charge, and a point mass in a specified background spacetime. In each of the three cases the particle produces a field that behaves as outgoing radiation in the wave zone, and therefore removes energy from the particle. In the near zone the field acts on the particle and gives rise to a self-force that prevents the particle from moving on a geodesic of the background spacetime. The field's action on the particle is difficult to calculate because of its singular nature: the field diverges at the position of the particle. But it is possible to isolate the field's singular part and show that it exerts no force on the particle. What remains after subtraction is a smooth field that is fully responsible for the self-force. The mathematical tools required to derive the equations of motion of a point scalar charge, a point electric charge, and a point mass in a specified background spacetime are developed here from scratch. The review begins with a discussion of the basic theory of bitensors. It then applies the theory to the construction of convenient coordinate systems to chart a neighbourhood of the particle's word line. It continues with a thorough discussion of Green's functions in curved spacetime. The review presents a detailed derivation of each of the three equations of motion. Because the notion of a point mass is problematic in general relativity, the review concludes with an alternative derivation of the equations of motion that applies to a small body of arbitrary internal structure.

  10. Utilization of Recently Enhanced Simulation Tools and Empirical Ground Motion Databases to Improve Ground Motion Prediction Capabilities

    E-Print Network [OSTI]

    Khodavirdi, Khatereh

    2013-01-01

    Mo- tion Prediction Equations for Subduction Earthquakes. ”motion prediction equations for subduction earthquakes.motion prediction for interface subduction zone earthquakes

  11. Neptunium Binding Kinetics with Arsenazo(III)

    SciTech Connect (OSTI)

    Leigh R. Martin; Aaron T. Johnson; Stephen P. Mezyk

    2014-08-01

    This document has been prepared to meet FCR&D level 2 milestone M2FT-14IN0304021, “Report on the results of actinide binding kinetics with aqueous phase complexants” This work was carried out under the auspices of the Thermodynamics and Kinetics of Advanced Separations Systems FCR&D work package. The report details kinetics experiments that were performed to measure rates of aqueous phase complexation for pentavalent neptunium with the chromotropic dye Arsenazo III (AAIII). The studies performed were designed to determine how pH, ionic strength and AAIII concentration may affect the rate of the reaction. A brief comparison with hexavalent neptunium is also made. It was identified that as pH was increased the rate of reaction also increased, however increasing the ionic strength and concentration of AAIII had the opposite effect. Interestingly, the rate of reaction of Np(VI) with AAIII was found to be slower than that of the Np(V) reaction.

  12. A simple theory of protein folding kinetics

    E-Print Network [OSTI]

    Pande, Vijay S

    2010-01-01

    We present a simple model of protein folding dynamics that captures key qualitative elements recently seen in all-atom simulations. The goals of this theory are to serve as a simple formalism for gaining deeper insight into the physical properties seen in detailed simulations as well as to serve as a model to easily compare why these simulations suggest a different kinetic mechanism than previous simple models. Specifically, we find that non-native contacts play a key role in determining the mechanism, which can shift dramatically as the energetic strength of non-native interactions is changed. For protein-like non-native interactions, our model finds that the native state is a kinetic hub, connecting the strength of relevant interactions directly to the nature of folding kinetics.

  13. Resonance Van Hove Singularities in Wave Kinetics

    E-Print Network [OSTI]

    Shi, Yi-Kang

    2015-01-01

    Wave kinetic theory has been developed to describe the statistical dynamics of weakly nonlinear, dispersive waves. However, we show that systems which are generally dispersive can have resonant sets of wave modes with identical group velocities, leading to a local breakdown of dispersivity. This shows up as a geometric singularity of the resonant manifold and possibly as an infinite phase measure in the collision integral. Such singularities occur widely for classical wave systems, including acoustical waves, Rossby waves, helical waves in rotating fluids, light waves in nonlinear optics and also in quantum transport, e.g. kinetics of electron-hole excitations (matter waves) in graphene. These singularities are the exact analogue of the critical points found by Van Hove in 1953 for phonon dispersion relations in crystals. The importance of these singularities in wave kinetics depends on the dimension of phase space $D=(N-2)d$ ($d$ physical space dimension, $N$ the number of waves in resonance) and the degree ...

  14. Kinetic model for quartz and spinel dissolution during melting of high-level-waste glass batch

    SciTech Connect (OSTI)

    Pokorny, Richard; Rice, Jarrett A.; Crum, Jarrod V.; Schweiger, Michael J.; Hrma, Pavel R.

    2013-07-24

    The dissolution of quartz particles and the growth and dissolution of crystalline phases during the conversion of batch to glass potentially affects both the glass melting process and product quality. Crystals of spinel exiting the cold cap to molten glass below can be troublesome during the vitrification of iron-containing high-level wastes. To estimate the distribution of quartz and spinel fractions within the cold cap, we used kinetic models that relate fractions of these phases to temperature and heating rate. Fitting the model equations to data showed that the heating rate, apart from affecting quartz and spinel behavior directly, also affects them indirectly via concurrent processes, such as the formation and motion of bubbles. Because of these indirect effects, it was necessary to allow one kinetic parameter (the pre-exponential factor) to vary with the heating rate. The resulting kinetic equations are sufficiently simple for the detailed modeling of batch-to-glass conversion as it occurs in glass melters. The estimated fractions and sizes of quartz and spinel particles as they leave the cold cap, determined in this study, will provide the source terms needed for modeling the behavior of these solid particles within the flow of molten glass in the melter.

  15. Twenty Five Years of Vibrational Kinetics and Negative Ion Production in H2 Plasmas: Modelling Aspects

    SciTech Connect (OSTI)

    Capitelli, M.; De Pascale, O.; Diomede, P.; Gorse, C.; Longo, S.; Pagano, D.; Gicquel, A.; Hassouni, K.

    2005-04-06

    Different approaches to study vibrational kinetics coupled to electron one for modeling different kinds of negative ion sources are presented. In particular two types of sources are investigated. The first one is a classical negative ion source in which the plasma is generated by thermoemitted electrons; in the second one, electrons already present in the mixture are accelerated by an RF field to sufficiently high energy to ionize the gas molecules. For the first kind of ion source a new computational scheme is presented to couple heavy particle and electron kinetics. Moreover models developed for an RF inductive discharge and for a parallel plate discharge are described.

  16. Kinetic studies of elementary chemical reactions

    SciTech Connect (OSTI)

    Durant, J.L. Jr. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    This program concerning kinetic studies of elementary chemical reactions is presently focussed on understanding reactions of NH{sub x} species. To reach this goal, the author is pursuing experimental studies of reaction rate coefficients and product branching fractions as well as using electronic structure calculations to calculate transition state properties and reaction rate calculations to relate these properties to predicted kinetic behavior. The synergy existing between the experimental and theoretical studies allow one to gain a deeper insight into more complex elementary reactions.

  17. Beilstein-Institut Reflections on Energy Conversion in

    E-Print Network [OSTI]

    2011 Abstract In principle any form of energy (light, electrical, potential, chemical, kinetic energy to drive metabolism involves no hydrolysis at all, and it is exactly because there is no hydrolysis potential energy, kinetic energy and electrical energy can be made directly, and with high efficiency

  18. Crustal motion in Indonesia from Global Positioning System measurements

    E-Print Network [OSTI]

    McCaffrey, Robert

    Crustal motion in Indonesia from Global Positioning System measurements Y. Bock,1 L. Prawirodirdjo: crustal motion, Indonesia tectonics, GPS, current plate motions, Southeast Asia Citation: Bock, Y., L, Crustal motion in Indonesia from Global Positioning System measurements, J. Geophys. Res., 108(B8), 2367

  19. Comparisons of dense-plasma-focus kinetic simulations with experimental measurements

    SciTech Connect (OSTI)

    Schmidt, A.; Link, A.; Welch, D.; Ellsworth, J.; Falabella, S.; Tang, V.

    2014-06-01

    Dense-plasma-focus (DPF) Z-pinch devices are sources of copious high-energy electrons and ions, x rays, and neutrons. The mechanisms through which these physically simple devices generate such high-energy beams in a relatively short distance are not fully understood and past optimization efforts of these devices have been largely empirical. Previously we reported on fully kinetic simulations of a DPF and compared them with hybrid and fluid simulations of the same device. Here we present detailed comparisons between fully kinetic simulations and experimental data on a 1.2 kJ DPF with two electrode geometries, including neutron yield and ion beam energy distributions. A more intensive third calculation is presented which examines the effects of a fully detailed pulsed power driver model. We also compare simulated electromagnetic fluctuations with direct measurement of radiofrequency electromagnetic fluctuations in a DPF plasma. These comparisons indicate that the fully kinetic model captures the essential physics of these plasmas with high fidelity, and provide further evidence that anomalous resistivity in the plasma arises due to a kinetic instability near the lower hybrid frequency.

  20. Growth kinetics of Al–Fe intermetallic compounds during annealing treatment of friction stir lap welds

    SciTech Connect (OSTI)

    Movahedi, M., E-mail: m_movahedi@sharif.edu [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Ave., Tehran (Iran, Islamic Republic of); Kokabi, A.H., E-mail: kokabi@sharif.edu [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Ave., Tehran (Iran, Islamic Republic of); Seyed Reihani, S.M., E-mail: reihani@sharif.edu [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Ave., Tehran (Iran, Islamic Republic of); Najafi, H., E-mail: hossein.najafi@epfl.ch [Institute of Condensed Matter Physics (ICMP), EPFL, CH-1015 Lausanne (Switzerland); Farzadfar, S.A., E-mail: seyed-amir.farzadfar@mail.mcgill.ca [McGill University, Department of Materials Engineering, Montreal, QC H3A 2B2 (Canada); Cheng, W.J., E-mail: d9603505@mail.ntust.edu.tw [Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, ROC (China); Wang, C.J., E-mail: cjwang@mail.ntust.edu.tw [Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, ROC (China)

    2014-04-01

    In this study, we explored the growth kinetics of the Al–Fe intermetallic (IM) layer at the joint interface of the St-12/Al-5083 friction stir lap welds during post-weld annealing treatment at 350, 400 and 450 °C for 30 to 180 min. Optical microscope (OM), field emission gun scanning electron microscope (FEG-SEM) and transmission electron microscope (TEM) were employed to investigate the structure of the weld zone. The thickness and composition of the IM layers were evaluated using image analysis system and electron back-scatter diffraction (EBSD), respectively. Moreover, kernel average misorientation (KAM) analysis was performed to evaluate the level of stored energy in the as-welded state. The results showed that the growth kinetics of the IM layer was not governed by a parabolic diffusion law. Presence of the IM compounds as well as high stored energy near the joint interface of the as-welded sample was recognized to be the origin of the observed deviation from the parabolic diffusion law. - Highlights: • This work provided a new insight into growth kinetics of Al–Fe IM thickness. • The growth kinetics of IM layer was not governed by a parabolic diffusion law. • IM near the joint interface was the origin of deviation from the parabolic law. • High stored energy at joint interface was origin of deviation from parabolic law.

  1. Aggregation kinetics of stiff polyelectrolytes in the presence of multivalent salt

    E-Print Network [OSTI]

    Hossein Fazli; Ramin Golestanian

    2007-09-04

    Using molecular dynamics simulations, the kinetics of bundle formation for stiff polyelectrolytes such as actin is studied in the solution of multivalent salt. The dominant kinetic mode of aggregation is found to be the case of one end of one rod meeting others at right angle due to electrostatic interactions. The kinetic pathway to bundle formation involves a hierarchical structure of small clusters forming initially and then feeding into larger clusters, which is reminiscent of the flocculation dynamics of colloids. For the first few cluster sizes, the Smoluchowski formula for the time evolution of the cluster size gives a reasonable account for the results of our simulation without a single fitting parameter. The description using Smoluchowski formula provides evidence for the aggregation time scale to be controlled by diffusion, with no appreciable energy barrier to overcome.

  2. Widening the Axion Window via Kinetic and St\\"uckelberg Mixings

    E-Print Network [OSTI]

    Shiu, Gary; Ye, Fang

    2015-01-01

    We point out that kinetic and St\\"uckelberg mixings that are generically present in the low energy effective action of axions can significantly widen the window of axion decay constants. We show that an effective super-Planckian decay constant can be obtained even when the axion kinetic matrix has only sub-Planckian entries. Our minimal model involves only two axions, a St\\"uckelberg U(1) and a modest rank instanton generating non-Abelian group. Below the mass of the St\\"uckelberg U(1), there is only a single axion with a non-perturbatively generated potential. In contrast to previous approaches, the enhancement of the axion decay constant is not tied to the number of degrees of freedom introduced. We also discuss how kinetic mixings can lower the decay constant to the desired axion dark matter window. String theory embeddings of this scenario and their phenomenological features are briefly discussed.

  3. Nonlocal kinetic equation: integrable hydrodynamic reductions, symmetries

    E-Print Network [OSTI]

    , Troitsk, Moscow Region, Russia Lebedev Physical Institute, Russian Academy of Sciences, Moscow § SISSA, Trieste, Italy, and Institute of Metal Physics, Urals Division of Russian Academy of Sciences, Ekaterinburg, Russia We study a new class of nonlinear kinetic equations recently derived in the context

  4. STATISTICAL ANALYSIS OF PROTEIN FOLDING KINETICS

    E-Print Network [OSTI]

    Dinner, Aaron

    STATISTICAL ANALYSIS OF PROTEIN FOLDING KINETICS AARON R. DINNER New Chemistry Laboratory for Protein Folding: Advances in Chemical Physics, Volume 120. Edited by Richard A. Friesner. Series Editors Experimental and theoretical studies have led to the emergence of a unified general mechanism for protein

  5. Calcite Reaction Kinetics in Saline Waters 

    E-Print Network [OSTI]

    Finneran, David

    2012-02-14

    The effect of ionic strength (I), pCO2, and temperature on the reaction kinetics of calcite was investigated in magnesium-free, phosphate-free, low calcium (mCa^2 ? 0.01 – 0.02 molal) simple KCl and NaCl solutions from both undersaturated...

  6. CHEMICAL THERMODYNAMICS AND KINETICS Class Meetings

    E-Print Network [OSTI]

    Sherrill, David

    CHEM 6471 CHEMICAL THERMODYNAMICS AND KINETICS Class Meetings 9:35 ­ 10:55 am, Tuesday and Thursday of October 22-26 Textbooks Molecular Thermodynamics by D.A McQuarrie and J.D. Simon, University Science Books the laws of classical thermodynamics and some of their chemical applications. It also covers basic

  7. Computationally Efficient Model for Dopant Precipitation Kinetics

    E-Print Network [OSTI]

    Dunham, Scott

    Computationally Efficient Model for Dopant Precipitation Kinetics Iuval Clejan and Scott T. Dunham and precipitates. Dopant deactivation is typically modeled using a steady­state solid solubility or clustering such as dopant activation/deactivation, it is essential to consider the fact that precipitation involves a range

  8. On the self-sustained nature of large-scale motions in turbulent Couette flow

    E-Print Network [OSTI]

    Rawat, Subhandu; Hwang, Yongyun; Rincon, François

    2015-01-01

    Large-scale motions in wall-bounded turbulent flows are frequently interpreted as resulting from an aggregation process of smaller-scale structures. Here, we explore the alternative possibility that such large-scale motions are themselves self-sustained and do not draw their energy from smaller-scale turbulent motions activated in buffer layers. To this end, it is first shown that large-scale motions in turbulent Couette flow at Re=2150 self-sustain even when active processes at smaller scales are artificially quenched by increasing the Smagorinsky constant Cs in large eddy simulations. These results are in agreement with earlier results on pressure driven turbulent channels. We further investigate the nature of the large-scale coherent motions by computing upper and lower-branch nonlinear steady solutions of the filtered (LES) equations with a Newton-Krylov solver,and find that they are connected by a saddle-node bifurcation at large values of Cs. Upper branch solutions for the filtered large scale motions a...

  9. Quantum Brownian motion induced by thermal noise in the presence of disorder

    E-Print Network [OSTI]

    Jürg Fröhlich; Jeffrey Schenker

    2015-06-05

    The motion of a quantum particle hopping on a simple cubic lattice under the influence of thermal noise and of a static random potential is expected to be diffusive, i.e., the particle is expected to exhibit `quantum Brownian motion', no matter how weak the thermal noise is. This is shown to be true in a model where the dynamics of the particle is governed by a Lindblad equation for a one-particle density matrix. The generator appearing in this equation is the sum of two terms: a Liouvillian corresponding to a random Schr\\"odinger operator and a Lindbladian describing the effect of thermal noise in the kinetic limit. Under suitable but rather general assumptions on the Lindbladian, the diffusion constant characterizing the asymptotics of the motion of the particle is proven to be strictly positive and finite. If the disorder in the random potential is so large that transport is completely suppressed in the limit where the thermal noise is turned off, then the diffusion constant tends to $0$ proportional to the coupling of the particle to the heat bath.

  10. Theoretical study of the ammonia nitridation rate on an Fe (100) surface: A combined density functional theory and kinetic Monte Carlo study

    E-Print Network [OSTI]

    Yeo, Sang Chul

    Ammonia (NH[subscript 3]) nitridation on an Fe surface was studied by combining density functional theory (DFT) and kinetic Monte Carlo (kMC) calculations. A DFT calculation was performed to obtain the energy barriers ...

  11. ORGANIC MASS SPECTROMETRY,VOL. 23,54-56 (1988) Thermochemical vs. Kinetic Control of Reactions in an Ion Trap Mass

    E-Print Network [OSTI]

    Wysocki, Vicki H.

    1988-01-01

    ORGANIC MASS SPECTROMETRY,VOL. 23,54-56 (1988) OMS Letter Dear Sir Thermochemical vs. Kinetic energies. 519 REACTlON COORDINATE Figure 1. Enthalpies associated with deamination and dehydratt o n

  12. Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas

    E-Print Network [OSTI]

    A. A. Schekochihin; S. C. Cowley; W. Dorland; G. W. Hammett; G. G. Howes; E. Quataert; T. Tatsuno

    2009-05-09

    We present a theoretical framework for plasma turbulence in astrophysical plasmas (solar wind, interstellar medium, galaxy clusters, accretion disks). The key assumptions are that the turbulence is anisotropic with respect to the mean magnetic field and frequencies are low compared to the ion cyclotron frequency. The energy injected at the outer scale scale has to be converted into heat, which ultimately cannot be done without collisions. A KINETIC CASCADE develops that brings the energy to collisional scales both in space and velocity. Its nature depends on the physics of plasma fluctuations. In each of the physically distinct scale ranges, the kinetic problem is systematically reduced to a more tractable set of equations. In the "inertial range" above the ion gyroscale, the kinetic cascade splits into a cascade of Alfvenic fluctuations, which are governed by the RMHD equations at both the collisional and collisionless scales, and a passive cascade of compressive fluctuations, which obey a linear kinetic equation along the moving field lines associated with the Alfvenic component. In the "dissipation range" between the ion and electron gyroscales, there are again two cascades: the kinetic-Alfven-wave (KAW) cascade governed by two fluid-like Electron RMHD equations and a passive phase-space cascade of ion entropy fluctuations. The latter cascade brings the energy of the inertial-range fluctuations that was damped by collisionless wave-particle interaction at the ion gyroscale to collisional scales in the phase space and leads to ion heating. The KAW energy is similarly damped at the electron gyroscale and converted into electron heat. Kolmogorov-style scaling relations are derived for these cascades. Astrophysical and space-physical applications are discussed in detail.

  13. Predicting Protein Folding Kinetics via Temporal Logic Model Checking: Extended

    E-Print Network [OSTI]

    Langmead, Christopher James

    Predicting Protein Folding Kinetics via Temporal Logic Model Checking: Extended Abstract Abstract. We present a novel approach for predicting protein folding kinetics using techniques from checking. We tested our method on 19 test proteins. The quantitative predictions regarding folding rates

  14. Jeff Haack: Applications of computational kinetic theory | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jeff Haack: Applications of computational kinetic theory Jan 28 2014 10:15 AM - 11:15 AM ORNL CONTACT : Email: Billy Fields Phone: Add to Calendar SHARE Kinetic theory describes...

  15. “Batch” Kinetics in Flow: Online IR Analysis and Continuous Control

    E-Print Network [OSTI]

    Moore, Jason S.

    Currently, kinetic data is either collected under steady-state conditions in flow or by generating time-series data in batch. Batch experiments are generally considered to be more suitable for the generation of kinetic ...

  16. Ethylbenzene dehydrogenation into styrene: kinetic modeling and reactor simulation 

    E-Print Network [OSTI]

    Lee, Won Jae

    2007-04-25

    A fundamental kinetic model based upon the Hougen-Watson formalism was derived as a basis not only for a better understanding of the reaction behavior but also for the design and simulation of industrial reactors. Kinetic ...

  17. Reflected kinetics model for nuclear space reactor kinetics and control scoping calculations

    SciTech Connect (OSTI)

    Washington, K.E.

    1986-05-01

    The objective of this research is to develop a model that offers an alternative to the point kinetics (PK) modelling approach in the analysis of space reactor kinetics and control studies. Modelling effort will focus on the explicit treatment of control drums as reactivity input devices so that the transition to automatic control can be smoothly done. The proposed model is developed for the specific integration of automatic control and the solution of the servo mechanism problem. The integration of the kinetics model with an automatic controller will provide a useful tool for performing space reactor scoping studies for different designs and configurations. Such a tool should prove to be invaluable in the design phase of a space nuclear system from the point of view of kinetics and control limitations.

  18. Bulk equations of motion from CFT correlators

    E-Print Network [OSTI]

    Daniel Kabat; Gilad Lifschytz

    2015-07-27

    To O(1/N) we derive, purely from CFT data, the bulk equations of motion for interacting scalar fields and for scalars coupled to gauge fields and gravity. We first uplift CFT operators to mimic local AdS fields by imposing bulk microcausality. This requires adding an infinite tower of smeared higher-dimension double-trace operators to the CFT definition of a bulk field, with coefficients that we explicitly compute. By summing the contribution of the higher-dimension operators we derive the equations of motion satisfied by these uplifted CFT operators and show that we precisely recover the expected bulk equations of motion. We exhibit the freedom in the CFT construction which corresponds to bulk field redefinitions.

  19. Bulk equations of motion from CFT correlators

    E-Print Network [OSTI]

    Kabat, Daniel

    2015-01-01

    To O(1/N) we derive, purely from CFT data, the bulk equations of motion for interacting scalar fields and for scalars coupled to gauge fields and gravity. We first uplift CFT operators to mimic local AdS fields by imposing bulk microcausality. This requires adding an infinite tower of smeared higher-dimension double-trace operators to the CFT definition of a bulk field, with coefficients that we explicitly compute. By summing the contribution of the higher-dimension operators we derive the equations of motion satisfied by these uplifted CFT operators and show that we precisely recover the expected bulk equations of motion. We exhibit the freedom in the CFT construction which corresponds to bulk field redefinitions.

  20. Hydro-kinetic approach to relativistic heavy ion collisions

    E-Print Network [OSTI]

    S. V. Akkelin; Y. Hama; Iu. A. Karpenko; Yu. M. Sinyukov

    2008-08-28

    We develop a combined hydro-kinetic approach which incorporates a hydrodynamical expansion of the systems formed in \\textit{A}+\\textit{A} collisions and their dynamical decoupling described by escape probabilities. The method corresponds to a generalized relaxation time ($\\tau_{\\text{rel}}$) approximation for the Boltzmann equation applied to inhomogeneous expanding systems; at small $\\tau_{\\text{rel}}$ it also allows one to catch the viscous effects in hadronic component - hadron-resonance gas. We demonstrate how the approximation of sudden freeze-out can be obtained within this dynamical picture of continuous emission and find that hypersurfaces, corresponding to a sharp freeze-out limit, are momentum dependent. The pion $m_{T}$ spectra are computed in the developed hydro-kinetic model, and compared with those obtained from ideal hydrodynamics with the Cooper-Frye isothermal prescription. Our results indicate that there does not exist a universal freeze-out temperature for pions with different momenta, and support an earlier decoupling of higher $p_{T}$ particles. By performing numerical simulations for various initial conditions and equations of state we identify several characteristic features of the bulk QCD matter evolution preferred in view of the current analysis of heavy ion collisions at RHIC energies.

  1. Chemical Kinetics in Support of Syngas Turbine Combustion

    SciTech Connect (OSTI)

    Dryer, Frederick

    2007-07-31

    This document is the final report on an overall program formulated to extend our prior work in developing and validating kinetic models for the CO/hydrogen/oxygen reaction by carefully analyzing the individual and interactive behavior of specific elementary and subsets of elementary reactions at conditions of interest to syngas combustion in gas turbines. A summary of the tasks performed under this work are: 1. Determine experimentally the third body efficiencies in H+O{sub 2}+M = HO{sub 2}+M (R1) for CO{sub 2} and H{sub 2}O. 2. Using published literature data and the results in this program, further develop the present H{sub 2}/O{sub 2}/diluent and CO/H{sub 2}/O{sub 2}/diluent mechanisms for dilution with CO{sub 2}, H{sub 2}O and N{sub 2} through comparisons with new experimental validation targets for H{sub 2}-CO-O{sub 2}-N{sub 2} reaction kinetics in the presence of significant diluent fractions of CO{sub 2} and/or H{sub 2}O, at high pressures. (task amplified to especially address ignition delay issues, see below). 3. Analyze and demonstrate issues related to NOx interactions with syngas combustion chemistry (task amplified to include interactions of iron pentacarbonyl with syngas combustion chemistry, see below). 4. Publish results, including updated syngas kinetic model. Results are summarized in this document and its appendices. Three archival papers which contain a majority of the research results have appeared. Those results not published elsewhere are highlighted here, and will appear as part of future publications. Portions of the work appearing in the above publications were also supported in part by the Department of Energy under Grant No. DE-FG02-86ER-13503. As a result of and during the research under the present contract, we became aware of other reported results that revealed substantial differences between experimental characterizations of ignition delays for syngas mixtures and ignition delay predictions based upon homogenous kinetic modeling. We adjusted emphasis of Task 2 to understand the source of these noted disparities because of their key importance to developing lean premixed combustion technologies of syngas turbine applications. In performing Task 3, we also suggest for the first time the very significant effect that metal carbonyls may have on syngas combustion properties. This work is fully detailed. The work on metal carbonyl effects is entirely computational in nature. Pursuit of experimental verification of these interactions was beyond the scope of the present work.

  2. Chemical Kinetics Research on HCCI and Diesel Fuels

    Broader source: Energy.gov [DOE]

    Discusses detailed chemical kinetics mechanisms for complex hydrocarbon fuels and computationally efficiecnt, accurate methodologies for modeling advanced combustion strategies.

  3. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Search Showing 1 - 10 of 11 results. Video Energy 101: Hydroelectric Power Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our...

  4. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Search results Enter terms Search Showing 1 - 2 of 2 results. Video Energy 101: Hydroelectric Power Learn how hydropower captures the kinetic energy of flowing water and turns it...

  5. PROPER-MOTION STUDY OF THE MAGELLANIC CLOUDS USING SPM MATERIAL

    SciTech Connect (OSTI)

    Vieira, Katherine; Girard, Terrence M.; Van Altena, William F.; Casetti-Dinescu, Dana I.; Korchagin, Vladimir I.; Herrera, David, E-mail: kvieira@cida.v, E-mail: terry.girard@yale.ed, E-mail: william.vanaltena@yale.ed [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States)

    2010-12-15

    Absolute proper motions are determined for stars and galaxies to V = 17.5 over a 450 deg{sup 2} area that encloses both Magellanic Clouds. The proper motions are based on photographic and CCD observations of the Yale/San Juan Southern Proper Motion program, which span a baseline of 40 years. Multiple, local relative proper-motion measures are combined in an overlap solution using photometrically selected Galactic disk stars to define a global relative system that is then transformed to absolute using external galaxies and Hipparcos stars to tie into the ICRS. The resulting catalog of 1.4 million objects is used to derive the mean absolute proper motions of the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC); ({mu}{sub {alpha}}cos {delta}, {mu}{sub {delta}}){sub LMC} = (1.89, + 0.39) {+-} (0.27, 0.27) masyr{sup -1} and ({mu}{sub {alpha}}cos {delta}, {mu}{sub {delta}}){sub SMC} = (0.98, - 1.01) {+-} (0.30, 0.29) masyr{sup -1}. These mean motions are based on best-measured samples of 3822 LMC stars and 964 SMC stars. A dominant portion (0.25 mas yr{sup -1}) of the formal errors is due to the estimated uncertainty in the inertial system of the Hipparcos Catalog stars used to anchor the bright end of our proper motion measures. A more precise determination can be made for the proper motion of the SMC relative to the LMC; ({mu}{sub {alpha}cos {delta}}, {mu}{sub {delta}}){sub SMC-LMC} = (-0.91, - 1.49) {+-} (0.16, 0.15) masyr{sup -1}. This differential value is combined with measurements of the proper motion of the LMC taken from the literature to produce new absolute proper-motion determinations for the SMC, as well as an estimate of the total velocity difference of the two clouds to within {+-}54 km s{sup -1}. The absolute proper-motion results are consistent with the Clouds' orbits being marginally bound to the Milky Way, albeit on an elongated orbit. The inferred relative velocity between the Clouds places them near their binding energy limit and, thus, no definitive conclusion can be made as to whether or not the Clouds are bound to one another.

  6. MODELING OF HYDRATION KINETICS AND SHRINKAGE OF PORTLAND CEMENT PASTE

    E-Print Network [OSTI]

    Meyer, Christian

    MODELING OF HYDRATION KINETICS AND SHRINKAGE OF PORTLAND CEMENT PASTE Feng Lin Submitted in partial and Sciences COLUMBIA UNIVERSITY 2006 #12;MODELING OF HYDRATION KINETICS AND SHRINKAGE OF PORTLAND CEMENT PASTE;ABSTRACT MODELING OF HYDRATION KINETICS AND SHRINKAGE OF PORTLAND CEMENT PASTE Feng Lin A mathematical

  7. Worldwide Oil Production Michaelis-Menten Kinetics Correlation and Regression

    E-Print Network [OSTI]

    Watkins, Joseph C.

    Worldwide Oil Production Michaelis-Menten Kinetics Topic 4 Correlation and Regression Transformed Variables 1 / 13 #12;Worldwide Oil Production Michaelis-Menten Kinetics Outline Worldwide Oil Production Michaelis-Menten Kinetics Lineweaver-Burke double reciprocal plot 2 / 13 #12;Worldwide Oil Production

  8. 58 June 2008/Vol. 51, No. 6 COMMUNICATIONS OF THE ACM DESIGNING KINETIC INTERACTIONS

    E-Print Network [OSTI]

    Poupyrev, Ivan

    developments of machines that transform energy into mechanical motion, in particular steam engines, under- pinned the industrial revolution of the late 19th century, it was the development of Considering "smart" materials, tiny motors and nanomanipulators, organic actuators and fast net- worked embedded

  9. To appear in Proc. 2012 AIAA GNC Dynamic Altitude Control for Motion

    E-Print Network [OSTI]

    Shapiro, Benjamin

    energy at a faster rate, strays from a desired formation, or provides irregu- lar measurement data. However, an autonomous or remotely piloted vehicle can also take advantage of the vertical variation presents results for motion coordination in an estimated flow- field with wind shear using a three

  10. Dynamics of stickslip motion, Whillans Ice Stream, Antarctica J. Paul Winberry a,

    E-Print Network [OSTI]

    an additional asperity in the northern part of the ice stream, producing another pulse of seismic energy 6Dynamics of stick­slip motion, Whillans Ice Stream, Antarctica J. Paul Winberry a, , Sridhar 6 April 2011 Editor: P. Shearer Keywords: glacial geophysics ice stream seismology The stick

  11. Coherent low-frequency motions of hydrogen bonded acetic acid dimers in the liquid phase

    E-Print Network [OSTI]

    Mukamel, Shaul

    of 1­2 ps. Calculations of the vibrational potential energy surface based on density functional theoryCoherent low-frequency motions of hydrogen bonded acetic acid dimers in the liquid phase Karsten; accepted 22 April 2004 Ultrafast vibrational dynamics of cyclic hydrogen bonded dimers and the underlying

  12. Kinetics of ion and prompt electron emission from laser-produced plasma

    SciTech Connect (OSTI)

    Farid, N. [Center for Materials Under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States) [Center for Materials Under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, School of Physics and Optical Engineering, Dalian University of Technology, Dalian (China); Harilal, S. S.; Hassanein, A. [Center for Materials Under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)] [Center for Materials Under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Ding, H. [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, School of Physics and Optical Engineering, Dalian University of Technology, Dalian (China)] [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, School of Physics and Optical Engineering, Dalian University of Technology, Dalian (China)

    2013-07-15

    We investigated ion emission dynamics of laser-produced plasma from several elements, comprised of metals and non-metals (C, Al, Si, Cu, Mo, Ta, W), under vacuum conditions using a Faraday cup. The estimated ion flux for various targets studied showed a decreasing tendency with increasing atomic mass. For metals, the ion flux is found to be a function of sublimation energy. A comparison of temporal ion profiles of various materials showed only high-Z elements exhibited multiple structures in the ion time of flight profile indicated by the observation of higher peak kinetic energies, which were absent for low-Z element targets. The slower ions were seen regardless of the atomic number of target material propagated with a kinetic energy of 1–5 keV, while the fast ions observed in high-Z materials possessed significantly higher energies. A systematic study of plasma properties employing fast photography, time, and space resolved optical emission spectroscopy, and electron analysis showed that there existed different mechanisms for generating ions in laser ablation plumes. The origin of high kinetic energy ions is related to prompt electron emission from high-Z targets.

  13. Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hoffman, Nelson M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)] (ORCID:000000030178767X); Zimmerman, George B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Molvig, Kim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rinderknecht, Hans G. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Rosenberg, Michael J. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Albright, B. J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Simakov, Andrei N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sio, Hong [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)] (ORCID:000000017274236X); Zylstra, Alex B. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Johnson, Maria Gatu [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Séguin, Fredrick H. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Frenje, Johan A. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)] (ORCID:0000000168460378); Li, C. K. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Petrasso, Richard D. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)] (ORCID:0000000258834054); Higdon, David M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Srinivasan, Gowri [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Glebov, Vladimir Yu. [Univ. of Rochester, NY (United States); Stoeckl, Christian [Univ. of Rochester, NY (United States); Seka, Wolf [Univ. of Rochester, NY (United States); Sangster, T. Craig [Univ. of Rochester, NY (United States)] (ORCID:0000000340402672)

    2015-05-01

    “Reduced” (i.e., simplified or approximate) ion-kinetic (RIK) models in radiation-hydrodynamic simulations permit a useful description of inertial-confinement-fusion (ICF) implosions where kinetic deviations from hydrodynamic behavior are important. For implosions in or near the kinetic regime (i.e., when ion mean free paths are comparable to the capsule size), simulations using a RIK model give a detailed picture of the time- and space-dependent structure of imploding capsules, allow an assessment of the relative importance of various kinetic processes during the implosion, enable explanations of past and current observations, and permit predictions of the results of future experiments. The RIK simulation method described here uses moment-based reduced kinetic models for transport of mass, momentum, and energy by long-mean-free-path ions, a model for the decrease of fusion reactivity owing to the associated modification of the ion distribution function, and a model of hydrodynamic turbulent mixing. The transport models are based on local gradient-diffusion approximations for the transport of moments of the ion distribution functions, with coefficients to impose flux limiting or account for transport modification. After calibration against a reference set of ICF implosions spanning the hydrodynamic-to-kinetic transition, the method has useful, quantifiable predictive ability over a broad range of capsule parameter space. Calibrated RIK simulations show that an important contributor to ion species separation in ICF capsule implosions is the preferential flux of longer-mean-free-path species out of the fuel and into the shell, leaving the fuel relatively enriched in species with shorter mean free paths. Also, the transport of ion thermal energy is enhanced in the kinetic regime, causing the fuel region to have a more uniform, lower ion temperature, extending over a larger volume, than implied by clean simulations. We expect that the success of our simple approach will motivate continued theoretical research into the development of first-principles-based, comprehensive, self-consistent, yet useable models of kinetic multispecies ion behavior in ICF plasmas.

  14. Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hoffman, Nelson M.; Zimmerman, George B.; Molvig, Kim; Rinderknecht, Hans G.; Rosenberg, Michael J.; Albright, B. J.; Simakov, Andrei N.; Sio, Hong; Zylstra, Alex B.; Johnson, Maria Gatu; et al

    2015-05-19

    “Reduced” (i.e., simplified or approximate) ion-kinetic (RIK) models in radiation-hydrodynamic simulations permit a useful description of inertial-confinement-fusion (ICF) implosions where kinetic deviations from hydrodynamic behavior are important. For implosions in or near the kinetic regime (i.e., when ion mean free paths are comparable to the capsule size), simulations using a RIK model give a detailed picture of the time- and space-dependent structure of imploding capsules, allow an assessment of the relative importance of various kinetic processes during the implosion, enable explanations of past and current observations, and permit predictions of the results of future experiments. The RIK simulation method describedmore »here uses moment-based reduced kinetic models for transport of mass, momentum, and energy by long-mean-free-path ions, a model for the decrease of fusion reactivity owing to the associated modification of the ion distribution function, and a model of hydrodynamic turbulent mixing. The transport models are based on local gradient-diffusion approximations for the transport of moments of the ion distribution functions, with coefficients to impose flux limiting or account for transport modification. After calibration against a reference set of ICF implosions spanning the hydrodynamic-to-kinetic transition, the method has useful, quantifiable predictive ability over a broad range of capsule parameter space. Calibrated RIK simulations show that an important contributor to ion species separation in ICF capsule implosions is the preferential flux of longer-mean-free-path species out of the fuel and into the shell, leaving the fuel relatively enriched in species with shorter mean free paths. Also, the transport of ion thermal energy is enhanced in the kinetic regime, causing the fuel region to have a more uniform, lower ion temperature, extending over a larger volume, than implied by clean simulations. We expect that the success of our simple approach will motivate continued theoretical research into the development of first-principles-based, comprehensive, self-consistent, yet useable models of kinetic multispecies ion behavior in ICF plasmas.« less

  15. Robotic Motion The linear algebra of Canadarm

    E-Print Network [OSTI]

    Murty, Ram

    Robotic Motion The linear algebra of Canadarm #12;The robot arm simulation The movements of the robotic arm can be described using orthogonal matrices. #12;Six degrees of freedom The first segment the robotic arm to the position (x,y), we need to rotate the first arm by an angle and the second arm

  16. Video motion detection for physical security applications

    SciTech Connect (OSTI)

    Matter, J.C.

    1990-01-01

    Physical security specialists have been attracted to the concept of video motion detection for several years. Claimed potential advantages included additional benefit from existing video surveillance systems, automatic detection, improved performance compared to human observers, and cost effectiveness. In recent years significant advances in image processing dedicated hardware and image analysis algorithms and software have accelerated the successful application of video motion detection systems to a variety of physical security applications. Currently Sandia is developing several advanced systems that employ image processing techniques for a broader set of safeguards and security applications. TCATS (Target Cueing and Tracking System) uses a set of powerful, flexible, modular algorithms and software to alarm on purposeful target motion. Custom TCATS hardware optimized for perimeter security applications is currently being evaluated with video input. VISDTA (Video Imaging System for Detection, Tracking, and Assessment) uses some of the same TCATS algorithms and operates with a thermal imager input. In the scan mode, VISDTA detects changes in a scene from the previous image at a given scan point; in the stare mode, VISDTA detects purposeful motion similar to TCATS.

  17. Motion Planning for a Tethered Mobile Robot 

    E-Print Network [OSTI]

    HosseiniTeshnizi, Reza

    2015-08-12

    Recently there has been surge of research in motion planning for tethered robots. In this problem a planar robot is connected via a cable of limited length to a fixed point in R2. The configuration space in this problem is more complicated than...

  18. Chemistry in Motion: Tiny Synthetic Motors

    E-Print Network [OSTI]

    Peter H. Colberg; Shang Yik Reigh; Bryan Robertson; Raymond Kapral

    2014-11-03

    In this Account, we describe how synthetic motors that operate by self-diffusiophoresis make use of a self-generated concentration gradient to drive motor motion. A description of propulsion by self-diffusiophoresis is presented for Janus particle motors comprising catalytic and noncatalytic faces. The properties of the dynamics of chemically powered motors are illustrated by presenting the results of particle-based simulations of sphere-dimer motors constructed from linked catalytic and noncatalytic spheres. The geometries of both Janus and sphere-dimer motors with asymmetric catalytic activity support the formation of concentration gradients around the motors. Because directed motion can occur only when the system is not in equilibrium, the nature of the environment and the role it plays in motor dynamics are described. Rotational Brownian motion also acts to limit directed motion, and it has especially strong effects for very small motors. We address the following question: how small can motors be and still exhibit effects due to propulsion, even if only to enhance diffusion? Synthetic motors have the potential to transform the manner in which chemical dynamical processes are carried out for a wide range of applications.

  19. Clearance Based Path Optimization for Motion Planning

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Abstract Many motion planning techniques, like the probabilistic roadmap method (PRM), gen­ erate low] and humanoid robot planning [13]. A commonly used technique for planning paths is the Probabilistic Roadmap.1 Probabilistic Roadmap Method The probabilistic roadmap method consists of two phases: a construction and a query

  20. Strong-Motion Instrumentation Programs in Taiwan

    E-Print Network [OSTI]

    Wu, Yih-Min

    western Taiwan, with high- rise buildings as a consequence of developing economy, is vulnerable-Motion Accelerograph Array in Taiwan, Phase 1 (SMART-1 Array) SMART-1 Array was set up in Lotung in 1980 and closed and University of California, Berkeley. The SMART-1 Array consisted of a central site and accelerographs in three

  1. On the Topic of Motion Integrals 

    E-Print Network [OSTI]

    Bertinato, Christopher

    2013-04-02

    An integral of motion is a function of the states of a dynamical system that is constant along the system’s trajectories. Integrals are known for their utility as a means of reducing the dimension of a system, effectively leaving only one...

  2. Motional Spin Relaxation in Large Electric Fields

    E-Print Network [OSTI]

    Riccardo Schmid; B. Plaster; B. W. Filippone

    2008-07-02

    We discuss the precession of spin-polarized Ultra Cold Neutrons (UCN) and $^{3}$He atoms in uniform and static magnetic and electric fields and calculate the spin relaxation effects from motional $v\\times E$ magnetic fields. Particle motion in an electric field creates a motional $v\\times E$ magnetic field, which when combined with collisions, produces variations of the total magnetic field and results in spin relaxation of neutron and $^{3}$He samples. The spin relaxation times $T_{1}$ (longitudinal) and $T_{2}$ (transverse) of spin-polarized UCN and $^{3}$He atoms are important considerations in a new search for the neutron Electric Dipole Moment at the SNS \\emph{nEDM} experiment. We use a Monte Carlo approach to simulate the relaxation of spins due to the motional $v\\times E$ field for UCN and for $^{3}$He atoms at temperatures below $600,\\mathrm{mK}$. We find the relaxation times for the neutron due to the $v\\times E$ effect to be long compared to the neutron lifetime, while the $^{3}$He relaxation times may be important for the \\emph{nEDM} experiment.

  3. Clearance Based Path Optimization for Motion Planning

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Abstract Many motion planning techniques, like the probabilistic roadmap method (PRM), gen- erate low] and humanoid robot planning [13]. A commonly used technique for planning paths is the Probabilistic Roadmap. 1.1 Probabilistic Roadmap Method The probabilistic roadmap method consists of two phases

  4. The motion of point particles in curved spacetime

    E-Print Network [OSTI]

    Eric Poisson

    2004-04-01

    This review is concerned with the motion of a point scalar charge, a point electric charge, and a point mass in a specified background spacetime. In each of the three cases the particle produces a field that behaves as outgoing radiation in the wave zone, and therefore removes energy from the particle. In the near zone the field acts on the particle and gives rise to a self-force that prevents the particle from moving on a geodesic of the background spacetime. The field's action on the particle is difficult to calculate because of its singular nature: the field diverges at the position of the particle. But it is possible to isolate the field's singular part and show that it exerts no force on the particle -- its only effect is to contribute to the particle's inertia. What remains after subtraction is a smooth field that is fully responsible for the self-force. Because this field satisfies a homogeneous wave equation, it can be thought of as a free (radiative) field that interacts with the particle; it is this interaction that gives rise to the self-force. The mathematical tools required to derive the equations of motion of a point scalar charge, a point electric charge, and a point mass in a specified background spacetime are developed here from scratch. The review begins with a discussion of the basic theory of bitensors (part I). It then applies the theory to the construction of convenient coordinate systems to chart a neighbourhood of the particle's word line (part II). It continues with a thorough discussion of Green's functions in curved spacetime (part III). The review concludes with a detailed derivation of each of the three equations of motion (part IV).

  5. Timelike Geodesic Motion in Horava-Lifshitz Spacetime

    E-Print Network [OSTI]

    Chen, Juhua

    2009-01-01

    In this paper by analyzing the behavior of the effective potential, we investigate the timelike geodesic motion in the H$\\breve{o}$rava-Lifshitz spacetime. For the timelike geodesics of nonradial particle, the particle fall from, in a finite distance, to the center when the energy of the particle is in an appropriate range. For the timelike geodesics of radial particle, there are different cases due to the energy of particle. When the energy of particle is higher than a critical value $E_{c}$, the particle will directly fall from infinity to the singularity; When the energy of particle equals to the critical value $E_{c}$, the particle orbit is unstable at $r=r_{C}$, i.e. the particle will escape from $r=r_{C}$ to the infinity, or to the singularity, which is determined by the initial conditions of the particle; When the energy of particle is in a proper range, the particle will rebound to the infinity, or plunge to the singularity from a infinite distance, which is also determined by initial conditions of th...

  6. On the kinetic foundations of Kaluza's magnetohydrodynamics

    E-Print Network [OSTI]

    A. Sandoval-Villalbazo; A. R. Sagaceta-Mejia; A. L. Garcia-Perciante

    2015-02-20

    Recent work has shown the existence of a relativistic effect present in a single component non-equilibrium fluid, corresponding to a heat flux due to an electric field. The treatment in that work was limited to a four-dimensional Minkowksi space-time in which the Boltzmann equation was treated in a special relativistic approach. The more complete framework of general relativity can be introduced to kinetic theory in order to describe transport processes associated to electromagnetic fields. In this context the original Kaluza's formalism is a promising approach. The present work contains a kinetic theory basis for Kaluza's magnetohydrodynamics and gives a novel description for the establishment of thermodynamic forces beyond the special relativistic description.

  7. On the kinetic foundations of Kaluza's magnetohydrodynamics

    E-Print Network [OSTI]

    Sandoval-Villalbazo, A; Garcia-Perciante, A L

    2015-01-01

    Recent work has shown the existence of a relativistic effect present in a single component non-equilibrium fluid, corresponding to a heat flux due to an electric field. The treatment in that work was limited to a four-dimensional Minkowksy space-time in which the Boltzmann equation was treated in a special relativistic approach. The more complete framework of general relativity can be introduced to kinetic theory in order to describe transport processes associated to electromagnetic fields. In this context the original Kaluza's formalism is a promising approach. The present work contains a kinetic theory basis for Kaluza's magnetohydrodynamics and gives a novel description for the establishment of thermodynamic forces beyond the special relativistic description.

  8. Ion mediated crosslink driven mucous swelling kinetics

    E-Print Network [OSTI]

    Sircar, S

    2015-01-01

    We present an experimentally guided, multi-phasic, multi-species ionic gel model to compare and make qualitative predictions on the rheology of mucus of healthy individuals (Wild Type) versus those infected with Cystic Fibrosis. The mixture theory consists of the mucus (polymer phase) and water (solvent phase) as well as several different ions: H+, Na+ and Ca++. The model is linearized to study the hydration of spherically symmetric mucus gels and calibrated against the experimental data of mucus diffusivities. Near equilibrium, the linearized form of the equation describing the radial size of the gel, reduces to the well-known expression used in the kinetic theory of swelling hydrogels. Numerical studies reveal that the Donnan potential is the dominating mechanism driving the mucus swelling/deswelling transition. However, the altered swelling kinetics of the Cystic Fibrosis infected mucus is not merely governed by the hydroelectric composition of the swelling media, but also due to the altered movement of el...

  9. Gravitational energy

    E-Print Network [OSTI]

    Joseph Katz

    2005-10-20

    Observers at rest in a stationary spacetime flat at infinity can measure small amounts of rest-mass+internal energies+kinetic energies+pressure energy in a small volume of fluid attached to a local inertial frame. The sum of these small amounts is the total "matter energy" for those observers. The total mass-energy minus the matter energy is the binding gravitational energy. Misner, Thorne and Wheeler evaluated the gravitational energy of a spherically symmetric static spacetime. Here we show how to calculate gravitational energy in any static and stationary spacetime for isolated sources with a set of observers at rest. The result of MTW is recovered and we find that electromagnetic and gravitational 3-covariant energy densities in conformastatic spacetimes are of opposite signs. Various examples suggest that gravitational energy is negative in spacetimes with special symmetries or when the energy-momentum tensor satisfies usual energy conditions.

  10. Before the Senate Energy and Natural Resources Committee | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Before the Senate Committee on Energy and Natural Resources Yucca Mountain - U.S. Department of Energy's Response to the Motion for Recusal...

  11. On Optimal Information Capture by Energy-Constrained Mobile ...

    E-Print Network [OSTI]

    2009-09-27

    a realistic energy model of motion, and it allows the sensor speed to be ... Mobile sensor coverage, quality of monitoring, energy consumption, sensor network.

  12. Multiple-relaxation-time lattice Boltzmann kinetic model for combustion

    E-Print Network [OSTI]

    Aiguo Xu; Chuandong Lin; Guangcai Zhang; Yingjun Li

    2015-03-13

    To probe both the Hydrodynamic Non-Equilibrium (HNE) and Thermodynamic Non-Equilibrium (TNE) in the combustion process, a two-dimensional Multiple-Relaxation-Time (MRT) version of Lattice Boltzmann Kinetic Model(LBKM) for combustion phenomena is presented. The chemical energy released in the progress of combustion is dynamically coupled into the system by adding a chemical term to the LB kinetic equation. Beside describing the evolutions of the conserved quantities, the density, momentum and energy, which are what the Navier-Stokes model describes, the MRT-LBKM presents also a coarse-grained description on the evolutions of some non-conserved quantities. The current model works for both subsonic and supersonic flows with or without chemical reaction. In this model both the specific-heat ratio and the Prandtl number are flexible, the TNE effects are naturally presented in each simulation step. The model is verified and validated via well-known benchmark tests. As an initial application, various non-equilibrium behaviours, including the complex interplays between various HNEs, between various TNEs and between the HNE and TNE, around the detonation wave in the unsteady and steady one-dimensional detonation processes are preliminarily probed. It is found that the system viscosity (or heat conductivity) decreases the local TNE, but increase the global TNE around the detonation wave, that even locally, the system viscosity (or heat conductivity) results in two kinds of competing trends, to increase and to decrease the TNE effects. The physical reason is that the viscosity (or heat conductivity) takes part in both the thermodynamic and hydrodynamic responses.

  13. Bench-scale Kinetics Study of Mercury Reactions in FGD Liquors

    SciTech Connect (OSTI)

    Gary Blythe; John Currie; David DeBerry

    2008-03-31

    This document is the final report for Cooperative Agreement DE-FC26-04NT42314, 'Kinetics Study of Mercury Reactions in FGD Liquors'. The project was co-funded by the U.S. DOE National Energy Technology Laboratory and EPRI. The objective of the project has been to determine the mechanisms and kinetics of the aqueous reactions of mercury absorbed by wet flue gas desulfurization (FGD) systems, and develop a kinetics model to predict mercury reactions in wet FGD systems. The model may be used to determine optimum wet FGD design and operating conditions to maximize mercury capture in wet FGD systems. Initially, a series of bench-top, liquid-phase reactor tests were conducted and mercury species concentrations were measured by UV/visible light spectroscopy to determine reactant and byproduct concentrations over time. Other measurement methods, such as atomic absorption, were used to measure concentrations of vapor-phase elemental mercury, that cannot be measured by UV/visible light spectroscopy. Next, a series of bench-scale wet FGD simulation tests were conducted. Because of the significant effects of sulfite concentration on mercury re-emission rates, new methods were developed for operating and controlling the bench-scale FGD experiments. Approximately 140 bench-scale wet FGD tests were conducted and several unusual and pertinent effects of process chemistry on mercury re-emissions were identified and characterized. These data have been used to develop an empirically adjusted, theoretically based kinetics model to predict mercury species reactions in wet FGD systems. The model has been verified in tests conducted with the bench-scale wet FGD system, where both gas-phase and liquid-phase mercury concentrations were measured to determine if the model accurately predicts the tendency for mercury re-emissions. This report presents and discusses results from the initial laboratory kinetics measurements, the bench-scale wet FGD tests, and the kinetics modeling efforts.

  14. Full-f Neoclassical Simulations toward a Predictive Model for H-mode Pedestal Ion Energy, Particle and Momentum Transport

    SciTech Connect (OSTI)

    Battaglia, D. J.; Boedo, J. A.; Burrell, K. H.; Chang, C. S.; Canik, J. M.; deGrassie, J. S.; Gerhardt, S. P.; Grierson, B. A.; Groebner, R. J.; Maingi, Rajesh; Smith, S. P.

    2014-09-01

    Energy and particle transport rates are decoupled in the H-mode edge since the ion thermal transport rate is primarily set by the neoclassical transport of the deuterium ions in the tail of the thermal energy distribution, while the net particle transport rate is set by anomalous transport of the colder bulk ions. Ion orbit loss drives the energy distributions away from Maxwellian, and describes the anisotropy, poloidal asymmetry and local minimum near the separatrix observed in the Ti profile. Non-Maxwellian distributions also drive large intrinsic edge flows, and the interaction of turbulence at the top of the pedestal with the intrinsic edge flow can generate an intrinsic core torque. The primary driver of the radial electric field (Er) in the pedestal and scrapeoff layer (SOL) are kinetic neoclassical effects, such as ion orbit loss of tail ions and parallel electron loss to the divertor. This paper describes the first multi-species kinetic neoclassical transport calculations for ELM-free H-mode pedestal and scrape-off layer on DIII-D using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. Quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles is achieved by adding random-walk particle diffusion to the guiding-center drift motion. This interpretative technique quantifies the role of neoclassical, anomalous and neutral transport to the overall pedestal structure, and consequently illustrates the importance of including kinetic effects self-consistently in transport calculations around transport barriers.

  15. Physics of Microswimmers - Single Particle Motion and Collective Behavior

    E-Print Network [OSTI]

    Jens Elgeti; Roland G. Winkler; Gerhard Gompper

    2014-12-08

    Locomotion and transport of microorganisms in fluids is an essential aspect of life. Search for food, orientation toward light, spreading of off-spring, and the formation of colonies are only possible due to locomotion. Swimming at the microscale occurs at low Reynolds numbers, where fluid friction and viscosity dominates over inertia. Here, evolution achieved propulsion mechanisms, which overcome and even exploit drag. Prominent propulsion mechanisms are rotating helical flagella, exploited by many bacteria, and snake-like or whip-like motion of eukaryotic flagella, utilized by sperm and algae. For artificial microswimmers, alternative concepts to convert chemical energy or heat into directed motion can be employed, which are potentially more efficient. The dynamics of microswimmers comprises many facets, which are all required to achieve locomotion. In this article, we review the physics of locomotion of biological and synthetic microswimmers, and the collective behavior of their assemblies. Starting from individual microswimmers, we describe the various propulsion mechanism of biological and synthetic systems and address the hydrodynamic aspects of swimming. This comprises synchronization and the concerted beating of flagella and cilia. In addition, the swimming behavior next to surfaces is examined. Finally, collective and cooperate phenomena of various types of isotropic and anisotropic swimmers with and without hydrodynamic interactions are discussed.

  16. Evaluation of a hybrid kinetics/mixing-controlled combustion model for turbulent premixed and diffusion combustion using KIVA-2

    SciTech Connect (OSTI)

    Nguyen, H.L.; Wey, Mingjyh.

    1990-01-01

    Two dimensional calculations were made of spark ignited premixed-charge combustion and direct injection stratified-charge combustion in gasoline fueled piston engines. Results are obtained using kinetic-controlled combustion submodel governed by a four-step global chemical reaction or a hybrid laminar kinetics/mixing-controlled combustion submodel that accounts for laminar kinetics and turbulent mixing effects. The numerical solutions are obtained by using KIVA-2 computer code which uses a kinetic-controlled combustion submodel governed by a four-step global chemical reaction (i.e., it assumes that the mixing time is smaller than the chemistry). A hybrid laminar/mixing-controlled combustion submodel was implemented into KIVA-2. In this model, chemical species approach their thermodynamics equilibrium with a rate that is a combination of the turbulent-mixing time and the chemical-kinetics time. The combination is formed in such a way that the longer of the two times has more influence on the conversion rate and the energy release. An additional element of the model is that the laminar-flame kinetics strongly influence the early flame development following ignition.

  17. Nitrogen effects on crystallization kinetics of amorphous TiOxNy thin films

    SciTech Connect (OSTI)

    Hukari, Kyle; Dannenberg, Rand; Stach, E.A.

    2001-03-30

    The crystallization behavior of amorphous TiOxNy (x>>y) thin films was investigated by in-situ transmission electron microscopy. The Johnson-Mehl-Avrami-Kozolog (JMAK) theory is used to determine the Avrami exponent, activation energy, and the phase velocity pre-exponent. Addition of nitrogen inhibits diffusion, increasing the nucleation temperature, while decreasing the growth activation energy. Kinetic variables extracted from individual crystallites are compared to JMAK analysis of the fraction transformed and a change of 6 percent in the activation energy gives agreement between the methods. From diffraction patterns and index of refraction the crystallized phase was found to be predominantly anatase.

  18. Beyond pixels : exploring new representations and applications for motion analysis

    E-Print Network [OSTI]

    Liu, Ce, Ph. D. Massachusetts Institute of Technology

    2009-01-01

    The focus of motion analysis has been on estimating a flow vector for every pixel by matching intensities. In my thesis, I will explore motion representations beyond the pixel level and new applications to which these ...

  19. Stochastic Conformational Roadmaps for Computing Ensemble Properties of Molecular Motion

    E-Print Network [OSTI]

    Latombe, Jean-Claude

    Stochastic Conformational Roadmaps for Computing Ensemble Properties of Molecular Motion Mehmet intuition behind probabilistic roadmap planners for motion planning is that many collision-free paths stochas- tic conformational roadmap, whose nodes are randomly sampled molecule conformations. A roadmap

  20. Perception and processing of self-motion cues 

    E-Print Network [OSTI]

    Smith, Michael Thomas

    2013-11-28

    The capacity of animals to navigate through familiar or novel environments depends crucially on the integration of a disparate set of self motion cues. The study begins with one of the most simple, planar visual motion, ...

  1. The Duffing Oscillator And Linearization Techniques For Its Motion Constants 

    E-Print Network [OSTI]

    Rashdan, Mouath

    2014-01-16

    Analyzing the characteristics of higher order nonlinear dynamic systems is really difficult. This can involve giving solutions with respect to time. Motion constants are another way of studying the behavior of the dynamic system. If the motion...

  2. Production-Intent Lost-Motion Variable Valve Actuation Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production-Intent Lost-Motion Variable Valve Actuation Systems Production-Intent Lost-Motion Variable Valve Actuation Systems Variable valve actuation with onoff IEGR pre-bump is...

  3. Enhanced Generic Phase-field Model of Irradiation Materials: Fission Gas Bubble Growth Kinetics in Polycrystalline UO2

    SciTech Connect (OSTI)

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert O.; Gao, Fei; Sun, Xin

    2012-05-30

    Experiments show that inter-granular and intra-granular gas bubbles have different growth kinetics which results in heterogeneous gas bubble microstructures in irradiated nuclear fuels. A science-based model predicting the heterogeneous microstructure evolution kinetics is desired, which enables one to study the effect of thermodynamic and kinetic properties of the system on gas bubble microstructure evolution kinetics and morphology, improve the understanding of the formation mechanisms of heterogeneous gas bubble microstructure, and provide the microstructure to macroscale approaches to study their impact on thermo-mechanical properties such as thermo-conductivity, gas release, volume swelling, and cracking. In our previous report 'Mesoscale Benchmark Demonstration, Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing', we developed a phase-field model to simulate the intra-granular gas bubble evolution in a single crystal during post-irradiation thermal annealing. In this work, we enhanced the model by incorporating thermodynamic and kinetic properties at grain boundaries, which can be obtained from atomistic simulations, to simulate fission gas bubble growth kinetics in polycrystalline UO2 fuels. The model takes into account of gas atom and vacancy diffusion, vacancy trapping and emission at defects, gas atom absorption and resolution at gas bubbles, internal pressure in gas bubbles, elastic interaction between defects and gas bubbles, and the difference of thermodynamic and kinetic properties in matrix and grain boundaries. We applied the model to simulate gas atom segregation at grain boundaries and the effect of interfacial energy and gas mobility on gas bubble morphology and growth kinetics in a bi-crystal UO2 during post-irradiation thermal annealing. The preliminary results demonstrate that the model can produce the equilibrium thermodynamic properties and the morphology of gas bubbles at grain boundaries for given grain boundary properties. More validation of the model capability in polycrystalline is underway.

  4. On the relationship between photospheric footpoint motions and coronal heating in solar active regions

    SciTech Connect (OSTI)

    Van Ballegooijen, A. A.; Asgari-Targhi, M.; Berger, M. A.

    2014-05-20

    Coronal heating theories can be classified as either direct current (DC) or alternating current (AC) mechanisms, depending on whether the coronal magnetic field responds quasi-statically or dynamically to the photospheric footpoint motions. In this paper we investigate whether photospheric footpoint motions with velocities of 1-2 km s{sup –1} can heat the corona in active regions, and whether the corona responds quasi-statically or dynamically to such motions (DC versus AC heating). We construct three-dimensional magnetohydrodynamic models for the Alfvén waves and quasi-static perturbations generated within a coronal loop. We find that in models where the effects of the lower atmosphere are neglected, the corona responds quasi-statically to the footpoint motions (DC heating), but the energy flux into the corona is too low compared to observational requirements. In more realistic models that include the lower atmosphere, the corona responds more dynamically to the footpoint motions (AC heating) and the predicted heating rates due to Alfvén wave turbulence are sufficient to explain the observed hot loops. The higher heating rates are due to the amplification of Alfvén waves in the lower atmosphere. We conclude that magnetic braiding is a highly dynamic process.

  5. Entropy and Kinetics of Point-Defects in Two-Dimensional Dipolar Crystals

    E-Print Network [OSTI]

    Wolfgang Lechner; David Polster; Georg Maret; Christoph Dellago; Peter Keim

    2015-02-18

    We study in experiment and with computer simulation the free energy and the kinetics of vacancy and interstitial defects in two-dimensional dipolar crystals. The defects appear in different local topologies which we characterize by their point group symmetry; $C_n$ is the n-fold cyclic group and $D_n$ is the dihedral group, including reflections. The frequency of different local topologies is not determined by their almost degenerate energies but dominated by entropy for symmetric configurations. The kinetics of the defects is fully reproduced by a master equation in a multi-state Markov model. In this model, the system is described by the state of the defect and the time evolution is given by transitions occurring with particular rates. These transition rate constants are extracted from experiments and simulations using an optimisation procedure. The good agreement between experiment, simulation and master equation thus provides evidence for the accuracy of the model.

  6. Thermodynamic and kinetic behaviors of trinitrotoluene adsorption on powdered activated carbons

    SciTech Connect (OSTI)

    Lee, J.W.; Hwang, K.J.; Shim, W.G.; Moon, I.S. [Sunchon National University, Sunchon (Republic of Korea). Dept. of Chemical Engineering

    2006-07-01

    Regulations on the removal of trinitrotoluene (TNT) from wastewater have become increasingly more stringent, demanding faster, less expensive, and more efficient treatment. This study focuses on the adsorption equilibrium and kinetics of TNT on powered activated carbons (PAC). Three types of PACs (i.e., wood based, coal based, and coconut-shell based) were studied as functions of temperature and pH. Thermodynamic properties including Gibbs free energy, enthalpy, and entropy, were evaluated by applying the Van't Hoff equation. In addition, the adsorption energy distribution functions which describe heterogeneous characteristics of porous solid sorbents were calculated by using the generalized nonlinear regularization method. Adsorption kinetic studies were carried out in batch adsorber under important conditions such as PAC types, temperature, pH, and concentration. We found that fast and efficient removal of TNT dissolved in water can be successfully achieved by PAC adsorption.

  7. Correlated Fluctuations in Luminosity Distance and the (Surprising) Importance of Peculiar Motion in Supernova Surveys

    E-Print Network [OSTI]

    Lam Hui; Patrick B. Greene

    2006-05-12

    Large scale structure introduces two different kinds of errors in the luminosity distance estimates from standardizable candles such as supernovae Ia (SNe) - a Poissonian scatter for each SN and a coherent component due to correlated fluctuations between different SNe. Increasing the number of SNe helps reduce the first type of error but not the second. The coherent component has been largely ignored in forecasts of dark energy parameter estimation from upcoming SN surveys. For instance it is commonly thought, based on Poissonian considerations, that peculiar motion is unimportant, even for a low redshift SN survey such as the Nearby Supernova Factory (SNfactory; z = 0.03 - 0.08), which provides a useful anchor for future high redshift surveys by determining the SN zero-point. We show that ignoring coherent peculiar motion leads to an underestimate of the zero-point error by about a factor of 2, despite the fact that SNfactory covers almost half of the sky. More generally, there are four types of fluctuations: peculiar motion, gravitational lensing, gravitational redshift and what is akin to the integrated Sachs-Wolfe effect. Peculiar motion and lensing dominates at low and high redshifts respectively. Taking into account all significant luminosity distance fluctuations due to large scale structure leads to a degradation of up to 60% in the determination of the dark energy equation of state from upcoming high redshift SN surveys, when used in conjunction with a low redshift anchor such as the SNfactory. The most relevant fluctuations are the coherent ones due to peculiar motion and the Poissonian ones due to lensing, with peculiar motion playing the dominant role. We also discuss to what extent the noise here can be viewed as a useful signal, and whether corrections can be made to reduce the degradation.

  8. Motion Caused by Magnetic Field in Lobachevsky Space

    E-Print Network [OSTI]

    V. V. Kudryashov; Yu. A. Kurochkin; E. M. Ovsiyuk; V. M. Red'kov

    2010-06-27

    We study motion of a relativistic particle in the 3-dimensional Lobachevsky space in the presence of an external magnetic field which is analogous to a constant uniform magnetic field in the Euclidean space. Three integrals of motion are found and equations of motion are solved exactly in the special cylindrical coordinates. Motion on surface of the cylinder of constant radius is considered in detail.

  9. Energy-efficient comfort with a heated/cooled chair: Results from human subject tests

    E-Print Network [OSTI]

    Pasut, Wilmer; Zhang, Hui; Arens, Ed; Zhai, Yongchao

    2015-01-01

    Technology Roadmap. Energy-efficient Buildings: Heating andenergy-efficient approaches to thermal comfort using room air motion. Building

  10. Dynamical Objectivity in Quantum Brownian Motion

    E-Print Network [OSTI]

    J. Tuziemski; J. K. Korbicz

    2015-01-05

    We analyze one of the fundamental models of decoherence and quantum-to-classical transition---Quantum Brownian Motion, and show formation of a, so called, spectrum broadcast structure. As recently shown, this is a specific structure of multi-partite quantum states responsible for appearance of classical objective features in quantum mechanics. Working in the limit of a very massive central system and in a weak-coupling regime, we derive a surprising time-evolving, rather than time-asymptotic, spectrum broadcast structure, leading to perceived objectivity of a state of motion. We do it for realistic, noisy random environment, modeled as a thermal bath, and present some generalization to arbitrary single-mode Gaussian states. We study numerically the formation of the spectrum broadcast structure as a function of the temperature, showing its certain noise-robustness.

  11. An Alternative Approach to Elliptical Motion

    E-Print Network [OSTI]

    Mustafa Ozdemir

    2015-04-17

    Elliptical rotation is the motion of a point on an ellipse through some angle about a vector. The purpose of this paper is to examine the generation of elliptical rotations and to interpret the motion of a point on an elipsoid using elliptic inner product and elliptic vector product. To generate an elliptical rotation matrix, first we define an elliptical ortogonal matrix and an elliptical skew symmetric matrix using the associated inner product. Then we use elliptic versions of the famous Rodrigues, Cayley, and Householder methods to construct an elliptical rotation matrix. Finally, we define elliptic quaternions and generate an elliptical rotation matrix using those quaternions. Each method is proven and is provided with several numerical examples.

  12. Pedestal Fueling Simulations with a Coupled Kinetic-kinetic Plasma-neutral Transport Code

    SciTech Connect (OSTI)

    D.P. Stotler, C.S. Chang, S.H. Ku, J. Lang and G.Y. Park

    2012-08-29

    A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

  13. General Nth order integrals of the motion

    E-Print Network [OSTI]

    S. Post; P. Winternitz

    2015-02-11

    The general form of an integral of motion that is a polynomial of order N in the momenta is presented for a Hamiltonian system in two-dimensional Euclidean space. The classical and the quantum cases are treated separately, emphasizing both the similarities and the differences between the two. The main application will be to study Nth order superintegrable systems that allow separation of variables in the Hamilton-Jacobi and Schr\\"odinger equations, respectively.

  14. Compression of ground-motion data

    SciTech Connect (OSTI)

    Long, J.W.

    1981-04-01

    Ground motion data has been recorded for many years at Nevada Test Site and is now stored on thousands of digital tapes. The recording format is very inefficient in terms of space on tape. This report outlines a method to compress the data onto a few hundred tapes while maintaining the accuracy of the recording and allowing restoration of any file to the original format for future use. For future digitizing a more efficient format is described and suggested.

  15. Video looping of human cyclic motion 

    E-Print Network [OSTI]

    Choi, Hye Mee

    2004-09-30

    Library . ................ 30 IV.2.1. Walk . . . ....................... 34 IV.2.2. Run . . . . ....................... 37 IV.2.3. Hop and Jump . . . . . ................ 39 IV.2.4. Carrying a Heavy Object ................ 43 IV.3. Compositing Multiple... in Motion. Plate 115: Dog walk. [18] ... 4 4 Marey?s fusil photographique. [1] ..................... 6 5 Marey?s black costume for geometric chronophotography, 1884. [1] ... 6 6 Etienne-Jules Marey, (a) Joinville soldier walking, 1883. (b) Joinville soldier...

  16. ForPeerReview SMC Framework in Motion Control Systems

    E-Print Network [OSTI]

    Yanikoglu, Berrin

    ForPeerReview SMC Framework in Motion Control Systems Journal: International Journal of Adaptive, Mechatronics Keywords: Motion Control, Sliding Mode Control, Bilateral Control , Interconnected Systems http acsauth.cls [Version: 2002/11/11 v1.00] SMC Framework in Motion Control Systems A. S¸abanovi¸c Sabanci

  17. Ground motions and its effects in accelerator design

    SciTech Connect (OSTI)

    Fischer, G.E.

    1984-07-01

    This lecture includes a discussion of types of motion, frequencies of interest, measurements at SLAC, some general comments regarding local sources of ground motion at SLAC, and steps that can be taken to minimize the effects of ground motion on accelerators. (GHT)

  18. FIFTY YEARS OF GROUND-MOTION MODELS John Douglas1

    E-Print Network [OSTI]

    model for the prediction of earthquake ground motions accounting for both magnitude and distance called: ground-motion models or ground- motion prediction equations (GMPEs), but originally were referred a month and at the last count the total number of equations for the prediction of peak ground acceleration

  19. Motion in alternative theories of gravity

    E-Print Network [OSTI]

    Gilles Esposito-Farese

    2009-05-15

    Although general relativity (GR) passes all present experimental tests with flying colors, it remains important to study alternative theories of gravity for several theoretical and phenomenological reasons that we recall in these lecture notes. The various possible ways of modifying GR are presented, and we notably show that the motion of massive bodies may be changed even if one assumes that matter is minimally coupled to the metric as in GR. This is illustrated with the particular case of scalar-tensor theories of gravity, whose Fokker action is discussed, and we also mention the consequences of the no-hair theorem on the motion of black holes. The finite size of the bodies modifies their motion with respect to pointlike particles, and we give a simple argument showing that the corresponding effects are generically much larger in alternative theories than in GR. We also discuss possible modifications of Newtonian dynamics (MOND) at large distances, which have been proposed to avoid the dark matter hypothesis. We underline that all the previous classes of alternatives to GR may a priori be used to predict such a phenomenology, but that they generically involve several theoretical and experimental difficulties.

  20. The 16th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) A Symmetric 4D Registration Algorithm for Respiratory Motion Modeling

    E-Print Network [OSTI]

    Li, Xin "Shane"

    integrating both forward and inverse parameterizations, penalizing four energy terms defined on both clinical 4D CT scans, we construct the parametric deformation model to describe the motion extracted from the frame (Fig. e). Visit our project website: http

  1. Aspartate beta-decarboxylase from Alcaligenes faecalis: carbon-13 kinetic isotope effect and deuterium exchange experiments

    SciTech Connect (OSTI)

    Rosenberg, R.M.; O'Leary, M.H.

    1985-03-26

    The authors have measured the /sup 13/C kinetic isotope effect at pH 4.0, 5.0, 6.0, and 6.5 and in D/sub 2/O at pH 5.0 and the rate of D-H exchange of the alpha and beta protons of aspartic acid in D/sub 2/O at pH 5.0 for the reaction catalyzed by the enzyme aspartate beta-decarboxylase from Alcaligenes faecalis. The /sup 13/C kinetic isotope effect, with a value of 1.0099 +/- 0.0002 at pH 5.0, is less than the intrinsic isotope effect for the decarboxylation step, indicating that the decarboxylation step is not entirely rate limiting. The authors have been able to estimate probable values of the relative free energies of the transition states of the enzymatic reaction up to and including the decarboxylation step from the /sup 13/C kinetic isotope effect and the rate of D-H exchange of alpha-H. The pH dependence of the kinetic isotope effect reflects the pKa of the pyridine nitrogen of the coenzyme pyridoxal 5'-phosphate but not that of the imine nitrogen. A mechanism is proposed for the exchange of aspartate beta-H that is consistent with the stereochemistry suggested earlier.

  2. Stepping and crowding of molecular motors: statistical kinetics from an exclusion process perspective

    E-Print Network [OSTI]

    Luca Ciandrini; M. Carmen Romano; A. Parmeggiani

    2014-05-26

    Motor enzymes are remarkable molecular machines that use the energy derived from the hydrolysis of a nucleoside triphosphate to generate mechanical movement, achieved through different steps that constitute their kinetic cycle. These macromolecules, nowadays investigated with advanced experimental techniques to unveil their molecular mechanisms and the properties of their kinetic cycles, are implicated in many biological processes, ranging from biopolymerisation (e.g. RNA polymerases and ribosomes) to intracellular transport (motor proteins such as kinesins or dyneins). Although the kinetics of individual motors is well studied on both theoretical and experimental grounds, the repercussions of their stepping cycle on the collective dynamics still remains unclear. Advances in this direction will improve our comprehension of transport process in the natural intracellular medium, where processive motor enzymes might operate in crowded conditions. In this work, we therefore extend the current statistical kinetic analysis to study collective transport phenomena of motors in terms of lattice gas models belonging to the exclusion process class. Via numerical simulations, we show how to interpret and use the randomness calculated from single particle trajectories in crowded conditions. Importantly, we also show that time fluctuations and non-Poissonian behavior are intrinsically related to spatial correlations and the emergence of large, but finite, clusters of co-moving motors. The properties unveiled by our analysis have important biological implications on the collective transport characteristics of processive motor enzymes in crowded conditions.

  3. Use of Motion Estimation Algorithms for Improved Flux Measurements Using SO 2 Cameras

    E-Print Network [OSTI]

    Peters, N.; Hoffmann, A.; Barnie, T.; Herzog, M.; Oppenheimer, C.

    2014-01-01

    SGS anisotropic turbulent kinetic energy (TKE) closure scheme, described by (Herzog et al., 2003). The mixed-phase cloud microphysics included in the model correspond to a simple prognostic bulk Kessler-type approach, predicting cloud drop- lets, rain... modifies its thms for improved flux measurements using SO2 cameras, J. Volcanol. buoyancy and disperses tracers and temperature anomalies. Subgrid- scale (SGS) turbulence is treated as eddy diffusivity and parametrised on the basis of a 1.5-order prognostic...

  4. Desorption and sublimation kinetics for fluorinated aluminum nitride surfaces

    SciTech Connect (OSTI)

    King, Sean W., E-mail: sean.king@intel.com; Davis, Robert F. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Nemanich, Robert J. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-09-01

    The adsorption and desorption of halogen and other gaseous species from surfaces is a key fundamental process for both wet chemical and dry plasma etch and clean processes utilized in nanoelectronic fabrication processes. Therefore, to increase the fundamental understanding of these processes with regard to aluminum nitride (AlN) surfaces, temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) have been utilized to investigate the desorption kinetics of water (H{sub 2}O), fluorine (F{sub 2}), hydrogen (H{sub 2}), hydrogen fluoride (HF), and other related species from aluminum nitride thin film surfaces treated with an aqueous solution of buffered hydrogen fluoride (BHF) diluted in methanol (CH{sub 3}OH). Pre-TPD XPS measurements of the CH{sub 3}OH:BHF treated AlN surfaces showed the presence of a variety of Al-F, N-F, Al-O, Al-OH, C-H, and C-O surfaces species in addition to Al-N bonding from the AlN thin film. The primary species observed desorbing from these same surfaces during TPD measurements included H{sub 2}, H{sub 2}O, HF, F{sub 2}, and CH{sub 3}OH with some evidence for nitrogen (N{sub 2}) and ammonia (NH{sub 3}) desorption as well. For H{sub 2}O, two desorption peaks with second order kinetics were observed at 195 and 460?°C with activation energies (E{sub d}) of 51?±?3 and 87?±?5?kJ/mol, respectively. Desorption of HF similarly exhibited second order kinetics with a peak temperature of 475?°C and E{sub d} of 110?±?5?kJ/mol. The TPD spectra for F{sub 2} exhibited two peaks at 485 and 585?°C with second order kinetics and E{sub d} of 62?±?3 and 270?±?10?kJ/mol, respectively. These values are in excellent agreement with previous E{sub d} measurements for desorption of H{sub 2}O from SiO{sub 2} and AlF{sub x} from AlN surfaces, respectively. The F{sub 2} desorption is therefore attributed to fragmentation of AlF{sub x} species in the mass spectrometer ionizer. H{sub 2} desorption exhibited an additional high temperature peak at 910?°C with E{sub d}?=?370?±?10?kJ/mol that is consistent with both the dehydrogenation of surface AlOH species and H{sub 2} assisted sublimation of AlN. Similarly, N{sub 2} exhibited a similar higher temperature desorption peak with E{sub d}?=?535?±?40?kJ/mol that is consistent with the activation energy for direct sublimation of AlN.

  5. On the applicability of the standard kinetic theory to the study of nanoplasmas

    SciTech Connect (OSTI)

    D'Angola, A.; Boella, E.

    2014-08-15

    Kinetic theory applies to systems with a large number of particles, while nanoplasma generated by the interaction of ultra–short laser pulses with atomic clusters are systems composed by a relatively small number (10{sup 2} ÷ 10{sup 4}) of electrons and ions. In the paper, the applicability of the kinetic theory for studying nanoplasmas is discussed. In particular, two typical phenomena are investigated: the collisionless expansion of electrons in a spherical nanoplasma with immobile ions and the formation of shock shells during Coulomb explosions. The analysis, which is carried out comparing ensemble averages obtained by solving the exact equations of motion with reference solutions of the Vlasov-Poisson model, shows that for the dynamics of the electrons the error of the usually employed models is of the order of few percents (but the standard deviation in a single experiment can be of the order of 10%). Instead, special care must be taken in the study of shock formation, as the discrete structure of the electric charge can destroy or strongly modify the phenomenon.

  6. Validity of the Taylor hypothesis for linear kinetic waves in the weakly collisional solar wind

    SciTech Connect (OSTI)

    Howes, G. G.; Klein, K. G.; TenBarge, J. M.

    2014-07-10

    The interpretation of single-point spacecraft measurements of solar wind turbulence is complicated by the fact that the measurements are made in a frame of reference in relative motion with respect to the turbulent plasma. The Taylor hypothesis—that temporal fluctuations measured by a stationary probe in a rapidly flowing fluid are dominated by the advection of spatial structures in the fluid rest frame—is often assumed to simplify the analysis. But measurements of turbulence in upcoming missions, such as Solar Probe Plus, threaten to violate the Taylor hypothesis, either due to slow flow of the plasma with respect to the spacecraft or to the dispersive nature of the plasma fluctuations at small scales. Assuming that the frequency of the turbulent fluctuations is characterized by the frequency of the linear waves supported by the plasma, we evaluate the validity of the Taylor hypothesis for the linear kinetic wave modes in the weakly collisional solar wind. The analysis predicts that a dissipation range of solar wind turbulence supported by whistler waves is likely to violate the Taylor hypothesis, while one supported by kinetic Alfvén waves is not.

  7. Direct Kinetic Measurements of a Criegee Intermediate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent BondingMeetingDifferences BetweenDiracDirectDirectDirect Kinetic

  8. Studies of combustion kinetics and mechanisms

    SciTech Connect (OSTI)

    Gutman, D. [Catholic Univ. of America, Washington, DC (United States)

    1993-12-01

    The objective of the current research is to gain new quantitative knowledge of the kinetics and mechanisms of polyatomic free radicals which are important in hydrocarbon combustion processes. The special facility designed and built for these (which includes a heatable tubular reactor coupled to a photoionization mass spectrometer) is continually being improved. Where possible, these experimental studies are coupled with theoretical ones, sometimes conducted in collaboration with others, to obtain an improved understanding of the factors determining reactivity. The decomposition of acetyl radicals, isopropyl radicals, and n-propyl radicals have been studied as well as the oxidation of methylpropargyl radicals.

  9. Atomic Motion in an Optical Standing Wave 40 Chapter 2. Atomic Motion in an Optical Standing Wave

    E-Print Network [OSTI]

    Steck, Daniel A.

    Chapter 2 Atomic Motion in an Optical Standing Wave 39 #12;40 Chapter 2. Atomic Motion in an Optical Standing Wave 2.1 Overview In this chapter we will motivate the experiments in this dissertation by considering the basic setup common to all of the experiments: the motion of an atom in a standing wave of far

  10. Electron residual energy due to stochastic heating in field-ionized plasma

    E-Print Network [OSTI]

    Khalilzadeh, Elnaz; Jahanpanah, Jafar; Chakhmachi, Amir; Yazdani, Elnaz

    2015-01-01

    The electron residual energy originated from the stochastic heating in under-dense field-ionized plasma is here investigated. The optical response of plasma is initially modeled by using the concept of two counter-propagating electromagnetic waves. The solution of motion equation of a single electron indicates that by including the ionization, the electron with higher residual energy compared to the case without ionization could be obtained. In agreement with chaotic nature of the motion, it is found that the electron residual energy will significantly be changed by applying a minor change to the initial conditions. Extensive kinetic 1D-3V particle-in-cell (PIC) simulations have been performed in order to resolve full plasma reactions. In this way, two different regimes of plasma behavior are observed by varying the pulse length. The results indicate that the amplitude of scattered fields in sufficient long pulse length is high enough to act as a second counter-propagating wave for triggering the stochastic e...

  11. Picosecond Kinetics of Light Harvesting and Photoprotective Quenching in Wild-Type and Mutant Phycobilisomes Isolated from the

    E-Print Network [OSTI]

    van Stokkum, Ivo

    Picosecond Kinetics of Light Harvesting and Photoprotective Quenching in Wild-Type and Mutant In high light conditions, cyanobacteria dissipate excess absorbed energy as heat in the light-harvesting of water and the release of oxygen. The central parts of these photosystems, i.e., the reaction centers

  12. TpPt(IV)Me(H)2 Forms a -CH4 Complex That Is Kinetically Resistant to Methane Liberation

    E-Print Network [OSTI]

    Keinan, Ehud

    TpPt(IV)Me(H)2 Forms a -CH4 Complex That Is Kinetically Resistant to Methane Liberation H demonstra- tion that methane can be catalytically activated by an organometallic complex of Pt(II).2 report that although 1 has a very high energy barrier for the liberation of methane, it readily forms

  13. Cooperative motions in supercooled liquids and glasses

    E-Print Network [OSTI]

    Stevenson, Jacob D.

    2009-01-01

    free energy pro?le describing cooperative relaxationfree energy pro?le describing cooperative relaxation as aenergy pro?le governing nucleation of a spherical cooperative

  14. Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron

    E-Print Network [OSTI]

    Leone, Stephen R.

    2010-01-01

    novel measurements of chemical dynamics for clusters, Chemical Dynamics, Molecular Energetics, and Kinetics at theUniversity of California Chemical Sciences Division,

  15. Microscale Electrode Design Using Coupled Kinetic, Thermal and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. es17sastry.pdf More Documents & Publications Modeling-Thermo-electrochemistry, Capacity Degradation and Mechanics with SEI Layer Coupled Kinetic, Thermal, and...

  16. Evaluation of Thermal Evolution Profiles and Estimation of Kinetic...

    Office of Scientific and Technical Information (OSTI)

    Evaluation of Thermal Evolution Profiles and Estimation of Kinetic Parameters for Pyrolysis of CoalCorn Stover Blends Using Thermogravimetric Analysis Citation Details...

  17. Pressure Dependent Decomposition Kinetics of the Energetic Material...

    Office of Scientific and Technical Information (OSTI)

    Org: USDOE Country of Publication: United States Language: English Subject: 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ACCELERATION; DIAMONDS; KINETICS; PYROLYSIS...

  18. Ultrafast kinetics subsequent to shock in an unreacted, oxygen...

    Office of Scientific and Technical Information (OSTI)

    subsequent to shock in an unreacted, oxygen balanced mixture of nitromethane and hydrogen peroxide Citation Details In-Document Search Title: Ultrafast kinetics subsequent to...

  19. Microscale Electrode Design Using Coupled Kinetic, Thermal and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    geothermal systems (EGS) | geothermal 2015 peer review Coupled Kinetic, Thermal, and Mechanical Modeling of FIB Micro-machined Electrodes 2015 GTO Peer Review | Poster Session...

  20. Uranium and Strontium Batch Sorption and Diffusion Kinetics into...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uranium and Strontium Batch Sorption and Diffusion Kinetics into Mesoporous Silica Friday, February 27, 2015 Figure 1 Figure 1. Transmission electron microscopy images of (A)...