Sample records for motion kinetic en

  1. Kinetic Model for Motion Compensation in Computed Tomography

    E-Print Network [OSTI]

    1 Kinetic Model for Motion Compensation in Computed Tomography Zhou Yu, Jean-Baptiste Thibault- gorithms have recently been applied to computed tomography and demonstrated superior image quality. MBIR to computed tomography and demonstrated superior image quality performance [1], [2], [3]. These methods

  2. Effects of electron drift on the collisionless damping of kinetic Alfv\\'en waves in the solar wind

    E-Print Network [OSTI]

    Tong, Yuguang; Chen, Christopher H K; Salem, Chadi S; Verscharen, Daniel

    2015-01-01T23:59:59.000Z

    The collisionless dissipation of anisotropic Alfv\\'enic turbulence is a promising candidate to solve the solar wind heating problem. Extensive studies examined the kinetic properties of Alfv\\'en waves in simple Maxwellian or bi-Maxwellian plasmas. However, the observed electron velocity distribution functions in the solar wind are more complex. In this study, we analyze the properties of kinetic Alfv\\'en waves in a plasma with two drifting electron populations. We numerically solve the linearized Maxwell-Vlasov equations and find that the damping rate and the proton-electron energy partition for kinetic Alfv\\'en waves are significantly modified in such plasmas, compared to plasmas without electron drifts. We suggest that electron drift is an important factor to take into account when considering the dissipation of Alfv\\'enic turbulence in the solar wind or other $\\beta \\sim 1$ astrophysical plasmas.

  3. Symmetries of particle motion

    E-Print Network [OSTI]

    Roy Maartens; David Taylor

    1997-12-11T23:59:59.000Z

    We define affine transport lifts on the tangent bundle by associating a transport rule for tangent vectors with a vector field on the base manifold. The aim is to develop tools for the study of kinetic/ dynamical symmetries in relativistic particle motion. The transport lift unifies and generalises the various existing lifted vector fields, with clear geometric interpretations. We find the affine dynamical symmetries of free particle motion, and compare this to previous results and to the alternative concept of "matter symmetry".

  4. Motion-to-Energy (M2Eâ?¢) Power Generation Technology

    ScienceCinema (OSTI)

    Idaho National Laboratory

    2010-01-08T23:59:59.000Z

    INL researchers developed M2E, a new technology that converts motion to energy. M2E uses an innovative, optimized microgenerator with power management circuitry that kinetically charges mobile batteries from natural motion such as walking. To learn more,

  5. Motion-to-Energy (M2E) Power Generation Technology

    ScienceCinema (OSTI)

    INL

    2009-09-01T23:59:59.000Z

    INL researchers developed M2E, a new technology that converts motion to energy. M2E uses an innovative, optimized microgenerator with power management circuitry that kinetically charges mobile batteries from natural motion such as walking.

  6. Motion-to-Energy (M2E) Power Generation Technology

    SciTech Connect (OSTI)

    INL

    2008-05-30T23:59:59.000Z

    INL researchers developed M2E, a new technology that converts motion to energy. M2E uses an innovative, optimized microgenerator with power management circuitry that kinetically charges mobile batteries from natural motion such as walking.

  7. Motion-to-Energy (M2Eâ„¢) Power Generation Technology

    SciTech Connect (OSTI)

    Idaho National Laboratory

    2008-05-30T23:59:59.000Z

    INL researchers developed M2E, a new technology that converts motion to energy. M2E uses an innovative, optimized microgenerator with power management circuitry that kinetically charges mobile batteries from natural motion such as walking. To learn more,

  8. Motion Constants

    SciTech Connect (OSTI)

    Frank Znidarsic

    2000-11-12T23:59:59.000Z

    A Bose condensate of electrons may exist in nickel hydrogen and palladium hydrogen systems. The motion constants associated with the gravitational and nuclear forces motion tend toward the electromagnetic in these systems. The change in the motion constants produces unexpected gravitomagnetic and nuclear affects.

  9. Cosmological Kinetic Mixing

    E-Print Network [OSTI]

    Ashok Das; Jorge Gamboa; Miguel Pino

    2015-04-15T23:59:59.000Z

    In this paper we generalize the kinetic mixing idea to time reparametrization invariant theories, namely, relativistic point particles and cosmology in order to obtain new insights for dark matter and energy. In the first example, two relativistic particles interact through an appropriately chosen coupling term. It is shown that the system can be diagonalized by means of a non-local field redefinition, and, as a result of this procedure, the mass of one the particles gets rescaled. In the second case, inspired by the previous example, two cosmological models (each with its own scale factor) are made to interact in a similar fashion. The equations of motion are solved numerically in different scenarios (dust, radiation or a cosmological constant coupled to each sector of the system). When a cosmological constant term is present, kinetic mixing rescales it to a lower value which may be more amenable to observations.

  10. Piezoelectric step-motion actuator

    DOE Patents [OSTI]

    Mentesana; Charles P. (Leawood, KS)

    2006-10-10T23:59:59.000Z

    A step-motion actuator using piezoelectric material to launch a flight mass which, in turn, actuates a drive pawl to progressively engage and drive a toothed wheel or rod to accomplish stepped motion. Thus, the piezoelectric material converts electrical energy into kinetic energy of the mass, and the drive pawl and toothed wheel or rod convert the kinetic energy of the mass into the desired rotary or linear stepped motion. A compression frame may be secured about the piezoelectric element and adapted to pre-compress the piezoelectric material so as to reduce tensile loads thereon. A return spring may be used to return the mass to its resting position against the compression frame or piezoelectric material following launch. Alternative embodiment are possible, including an alternative first embodiment wherein two masses are launched in substantially different directions, and an alternative second embodiment wherein the mass is eliminated in favor of the piezoelectric material launching itself.

  11. Kinetics of Silica Polymerization

    E-Print Network [OSTI]

    Weres, Oleh

    2011-01-01T23:59:59.000Z

    see S . ) It is the kinetic expression of the increase Therate is in part the kinetic expression of. the reducedrates calculated using kinetic expressions given in Chapter

  12. Topobo : a 3-D constructive assembly system with kinetic memory

    E-Print Network [OSTI]

    Raffle, Hayes Solos, 1974-

    2004-01-01T23:59:59.000Z

    We introduce Topobo, a 3-D constructive assembly system em- bedded with kinetic memory, the ability to record and playback physical motion. Unique among modeling systems is Topobo's coincident physical input and output ...

  13. Quantum potential energy as concealed motion

    E-Print Network [OSTI]

    Peter Holland

    2014-11-13T23:59:59.000Z

    It is known that the Schroedinger equation may be derived from a hydrodynamic model in which the Lagrangian position coordinates of a continuum of particles represent the quantum state. Using Routh\\s method of ignorable coordinates it is shown that the quantum potential energy of particle interaction that represents quantum effects in this model may be regarded as the kinetic energy of additional concealed freedoms. The method brings an alternative perspective to Planck\\s constant, which plays the role of a hidden variable, and to the canonical quantization procedure, since what is termed kinetic energy in quantum mechanics may be regarded literally as energy due to motion.

  14. An analysis of guard cell motion

    E-Print Network [OSTI]

    Wu, Hsin-i

    1977-01-01T23:59:59.000Z

    AN ANALYSIS OF GUARD CELL MOTION A Thesis by BSIN-I WU Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December, 1977 Ma]or Sub]ect: Industrial... Engineering AN ANALYSIS OF GUARD CELL MOTION A Thesis by HSIN-I WU Approved as to style and content by: L. Curry (I. En. ) Newton C. Ellis (I. En. ) c' eter J. H. Sharpe (B. E. ) Dar d J. Ha tfiel (Math) December 1977 I &'(2(i& R) ABSTRACT...

  15. Interactive motion planning with motion capture data

    E-Print Network [OSTI]

    Lo, Wan-Yen

    2012-01-01T23:59:59.000Z

    Abe, and Jovan Popovi´c. Interactive simulation of stylizedc. Motion fields for interactive character locomotion. ACMon Computer graphics and interactive techniques, SIGGRAPH ’

  16. Geometric dynamics of Vlasov kinetic theory and its moments

    E-Print Network [OSTI]

    Tronci, Cesare

    2008-01-01T23:59:59.000Z

    The Vlasov equation of kinetic theory is introduced and the Hamiltonian structure of its moments is presented. Then we focus on the geodesic evolution of the Vlasov moments. As a first step, these moment equations generalize the Camassa-Holm equation to its multi-component version. Subsequently, adding electrostatic forces to the geodesic moment equations relates them to the Benney equations and to the equations for beam dynamics in particle accelerators. Next, we develop a kinetic theory for self assembly in nano-particles. Darcy's law is introduced as a general principle for aggregation dynamics in friction dominated systems (at different scales). Then, a kinetic equation is introduced for the dissipative motion of isotropic nano-particles. The zeroth-moment dynamics of this equation recovers the classical Darcy's law at the macroscopic level. A kinetic-theory description for oriented nano-particles is also presented. At the macroscopic level, the zeroth moments of this kinetic equation recover the magnetiz...

  17. Effect of driving frequency on excitation of turbulence in a kinetic plasma T. N. Parashar,1

    E-Print Network [OSTI]

    Shay, Michael

    -point motions. Using 2.5D hybrid simula- tions, we drive the system magnetically and examine the evo- lution of turbulence generation through magnetic forcing is studied using kinetic hybrid simulations with fully kinetic in exciting turbulence and heating the plasma when the time period of the driving is larger than the nonlinear

  18. Motion Integration Using Competitive Priors

    E-Print Network [OSTI]

    Wu, Shuang; Lu, Hongjing; Lee, Alan; Yuille, Alan

    2009-01-01T23:59:59.000Z

    to investigate motion integration across orientation andspace. VSS 2006. Motion integration using competitive priorsMotion integration using competitive priors Shuang Wu 1 ,

  19. Motion Integration Using Competitive Priors

    E-Print Network [OSTI]

    Shuang Wu; Hongjing Lu; Alan Lee; Alan Yuille

    2011-01-01T23:59:59.000Z

    to investigate motion integration across orientation andspace. VSS 2006. Motion integration using competitive priorsMotion integration using competitive priors Shuang Wu 1 ,

  20. Imitating Human Dance Motions through Motion Structure Analysis

    E-Print Network [OSTI]

    Ikeuchi, Katsushi

    to apply this idea for importing human dance motions into humanoid robots. Our project overview is shown and Technology Abstract This paper presents the method for importing human dance motion into humanoid robots-kinematics and dynamic balancing technique. Keywords: human motion, humanoid robot, motion prim- itive, motion capture

  1. Bibliography 1. Motion Perception

    E-Print Network [OSTI]

    Rheingans, Penny

    and Patrick R. Green (1990), Visual Perception: Physiology, Psychology, and Ecology, 2nd edition, LawrenceBibliography 1. Motion Perception E. H. Adelson and J. R. Bergen. Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America, A, 2:284-299, February 1985. O. Braddick

  2. Erbium hydride decomposition kinetics.

    SciTech Connect (OSTI)

    Ferrizz, Robert Matthew

    2006-11-01T23:59:59.000Z

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  3. Kinetic theory viscosity

    E-Print Network [OSTI]

    C. J. Clarke; J. E. Pringle

    2004-03-17T23:59:59.000Z

    We show how the viscous evolution of Keplerian accretion discs can be understood in terms of simple kinetic theory. Although standard physics texts give a simple derivation of momentum transfer in a linear shear flow using kinetic theory, many authors, as detailed by Hayashi & Matsuda 2001, have had difficulties applying the same considerations to a circular shear flow. We show here how this may be done, and note that the essential ingredients are to take proper account of, first, isotropy locally in the frame of the fluid and, second, the geometry of the mean flow.

  4. On the Physics of Kinetic-Alfven Turbulence

    E-Print Network [OSTI]

    Boldyrev, Stanislav

    2013-01-01T23:59:59.000Z

    Observations reveal nearly power-law spectra of magnetic and density plasma fluctuations at subproton scales in the solar wind, which indicates the presence of a turbulent cascade. We discuss the three-field and two-field models for micro-scale plasma fluctuations, and then present the results of numerical simulations of a two-field model of kinetic-Alfven turbulence, which models plasma motion at sub-proton scales.

  5. Spectral Cascade and Energy Dissipation in Kinetic Alfven Wave Turbulence

    E-Print Network [OSTI]

    Lin, Zhihong

    Spectral Cascade and Energy Dissipation in Kinetic Alfv´en Wave Turbulence Xi Cheng, Zhihong Lin energy sources at large spatial scales. The energy of these non- linearly interacting Alfven waves. 2000). The wave-particle energy exchange rates of these channels depend on the spectral properties near

  6. Kinetic equilibrium and relativistic thermodynamics

    E-Print Network [OSTI]

    P. Ván

    2011-02-01T23:59:59.000Z

    Relativistic thermodynamics is treated from the point of view of kinetic theory. It is shown that the generalized J\\"uttner distribution suggested in [1] is compatible with kinetic equilibrium. The requirement of compatibility of kinetic and thermodynamic equilibrium reveals several generalizations of the Gibbs relation where the velocity field is an independent thermodynamic variable.

  7. Improving alternative fuel utilization: detailed kinetic combustion...

    Energy Savers [EERE]

    Improving alternative fuel utilization: detailed kinetic combustion modeling & experimental testing Improving alternative fuel utilization: detailed kinetic combustion modeling &...

  8. Ion kinetic energy conservation and magnetic field strength constancy in multi-fluid solar wind Alfv\\'enic turbulence

    E-Print Network [OSTI]

    Matteini, L; Pantellini, F; Velli, M; Schwartz, S J

    2015-01-01T23:59:59.000Z

    We investigate properties of the plasma fluid motion in the large amplitude low frequency fluctuations of highly Alfv\\'enic fast solar wind. We show that protons locally conserve total kinetic energy when observed from an effective frame of reference comoving with the fluctuations. For typical properties of the fast wind, this frame can be reasonably identified by alpha particles, which, owing to their drift with respect to protons at about the Alfv\\'en speed along the magnetic field, do not partake in the fluid low frequency fluctuations. Using their velocity to transform proton velocity into the frame of Alfv\\'enic turbulence, we demonstrate that the resulting plasma motion is characterized by a constant absolute value of the velocity, zero electric fields, and aligned velocity and magnetic field vectors as expected for unidirectional Alfv\\'enic fluctuations in equilibrium. We propose that this constraint, via the correlation between velocity and magnetic field in Alfv\\'enic turbulence, is at the origin of ...

  9. Motion detector and analyzer

    DOE Patents [OSTI]

    Unruh, W.P.

    1987-03-23T23:59:59.000Z

    Method and apparatus are provided for deriving positive and negative Doppler spectrum to enable analysis of objects in motion, and particularly, objects having rotary motion. First and second returned radar signals are mixed with internal signals to obtain an in-phase process signal and a quadrature process signal. A broad-band phase shifter shifts the quadrature signal through 90/degree/ relative to the in-phase signal over a predetermined frequency range. A pair of signals is output from the broad-band phase shifter which are then combined to provide a first side band signal which is functionally related to a negative Doppler shift spectrum. The distinct positive and negative Doppler spectra may then be analyzed for the motion characteristics of the object being examined.

  10. Human Motion Adrien Treuille

    E-Print Network [OSTI]

    Treuille, Adrien

    of animation in terms of a point cloud driven by the skeleton. Ideally this point cloud is a downsampling for making a transition from the ith frame of the first motion to the jth frame of the second. White values is over the number of points in each point cloud. The weights wi may be chosen both to assign more

  11. Motion Processing and From-from-Apparent-Motion in Infancy

    E-Print Network [OSTI]

    Hirshkowitz, Amy

    2014-08-05T23:59:59.000Z

    Motion-carried information is a salient visual cue used in object perception to parse form in the optical array. The present research examined infants’ ability to extract form shapes in apparent motion stimuli, controlling for color and luminance...

  12. Generation of Character Motion by Reactive Motion Capture System

    E-Print Network [OSTI]

    Thawonmas, Ruck

    in the human-scale virtual environment. Our purpose is to make character animations with character motion data: Force Feedback, Motion Cap- ture, Human-scale Virtual Environments, Virtual Human 1 Introduction To generate the human motions in virtual envi- ronments made by a computer that are similar to the real world

  13. Non-Markovian polymer reaction kinetics

    E-Print Network [OSTI]

    Thomas Guérin; Olivier Bénichou; Raphaël Voituriez

    2012-09-07T23:59:59.000Z

    Describing the kinetics of polymer reactions, such as the formation of loops and hairpins in nucleic acids or polypeptides, is complicated by the structural dynamics of their chains. Although both intramolecular reactions, such as cyclization, and intermolecular reactions have been studied extensively, both experimentally and theoretically, there is to date no exact explicit analytical treatment of transport-limited polymer reaction kinetics, even in the case of the simplest (Rouse) model of monomers connected by linear springs. We introduce a new analytical approach to calculate the mean reaction time of polymer reactions that encompasses the non-Markovian dynamics of monomer motion. This requires that the conformational statistics of the polymer at the very instant of reaction be determined, which provides, as a by-product, new information on the reaction path. We show that the typical reactive conformation of the polymer is more extended than the equilibrium conformation, which leads to reaction times significantly shorter than predicted by the existing classical Markovian theory.

  14. Motion blur removal from photographs

    E-Print Network [OSTI]

    Cho, Taeg Sang

    2010-01-01T23:59:59.000Z

    One of the long-standing challenges in photography is motion blur. Blur artifacts are generated from relative motion between a camera and a scene during exposure. While blur can be reduced by using a shorter exposure, this ...

  15. Kinetics of Oscillating Neutrinos

    E-Print Network [OSTI]

    P. Strack

    2005-05-12T23:59:59.000Z

    In the context of core-collapse supernovae, Strack and Burrows (Phys. Rev. D 71, 093004 (2005)) have recently developed an extension of the classical Boltzmann kinetic formalism that retains all the standard neutrino oscillation phenomenology, including resonant flavor conversion (the MSW effect), neutrino self-interactions, and the interplay between neutrino-matter coupling and flavor oscillations. In this thesis, I extend the Strack & Burrows formalism to incorporate general relativity, spin degrees of freedom, and a possible neutrino magnetic-moment/magnetic-field interaction.

  16. Chemical kinetics modeling

    SciTech Connect (OSTI)

    Westbrook, C.K.; Pitz, W.J. [Lawrence Livermore National Laboratory, CA (United States)

    1993-12-01T23:59:59.000Z

    This project emphasizes numerical modeling of chemical kinetics of combustion, including applications in both practical combustion systems and in controlled laboratory experiments. Elementary reaction rate parameters are combined into mechanisms which then describe the overall reaction of the fuels being studied. Detailed sensitivity analyses are used to identify those reaction rates and product species distributions to which the results are most sensitive and therefore warrant the greatest attention from other experimental and theoretical research programs. Experimental data from a variety of environments are combined together to validate the reaction mechanisms, including results from laminar flames, shock tubes, flow systems, detonations, and even internal combustion engines.

  17. Dimensional enhancement of kinetic energies

    E-Print Network [OSTI]

    W. P. Schleich; J. P. Dahl

    2002-03-14T23:59:59.000Z

    Simple thermodynamics considers kinetic energy to be an extensive variable which is proportional to the number, N, of particles. We present a quantum state of N non-interacting particles for which the kinetic energy increases quadratically with N. This enhancement effect is tied to the quantum centrifugal potential whose strength is quadratic in the number of dimensions of configuration space.

  18. Operationalization of Relativistic Motion

    E-Print Network [OSTI]

    Bruno Hartmann

    2015-01-08T23:59:59.000Z

    We apply the Helmholtz program of basic measurements to relativistic motion. We define a spatiotemporal order by practical comparison: "longer than" if one object or process covers the other. To express its value also numerically (how many times more) we cover them by a locally regular grid of light clocks. We define basic measures from physical operations. Interrelation of measurement operations by different observers reveals a genetic derivation of formal Lorentz transformation. Operationally impracticable configurations for accelerating observers clarify the way out of apparent Twin paradox. From simple measurement-methodical principles - without mathematical presuppositions - we derive all equations of relativistic Kinematics (and next same for classical and relativistic Dynamics).

  19. Active Brownian Motion Models and Applications to Ratchets

    E-Print Network [OSTI]

    Alessandro Fiasconaro; Werner Ebeling; Ewa Gudowska-Nowak

    2008-06-29T23:59:59.000Z

    We give an overview over recent studies on the model of Active Brownian Motion (ABM) coupled to reservoirs providing free energy which may be converted into kinetic energy of motion. First, we present an introduction to a general concept of active Brownian particles which are capable to take up energy from the source and transform part of it in order to perform various activities. In the second part of our presentation we consider applications of ABM to ratchet systems with different forms of differentiable potentials. Both analytical and numerical evaluations are discussed for three cases of sinusoidal, staircase-like and Mateos ratchet potentials, also with the additional loads modeled by tilted potential structure. In addition, stochastic character of the kinetics is investigated by considering perturbation by Gaussian white noise which is shown to be responsible for driving the directionality of the asymptotic flux in the ratchet. This \\textit{stochastically driven directionality} effect is visualized as a strong nonmonotonic dependence of the statistics of the right versus left trajectories of motion leading to a net current of particles. Possible applications of the ratchet systems to molecular motors are also briefly discussed

  20. Multidimensional simulation and chemical kinetics development...

    Broader source: Energy.gov (indexed) [DOE]

    Developing chemical kinetic mechanisms and applying them to simulating engine combustion processes. deer09aceves.pdf More Documents & Publications Chemical Kinetic Research on...

  1. Direct Observation of Aggregative Nanoparticle Growth: Kinetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aggregative Nanoparticle Growth: Kinetic Modeling of the Size Distribution and Growth Rate. Direct Observation of Aggregative Nanoparticle Growth: Kinetic Modeling of the Size...

  2. Temperature Independent Physisorption Kinetics and Adsorbate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperature Independent Physisorption Kinetics and Adsorbate Layer Compression for Ar Adsorbed on Pt (111). Temperature Independent Physisorption Kinetics and Adsorbate Layer...

  3. thermodynamics kinetics | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    its kinetic behavior is more complex. Very little reliable kinetic information on coal gasification reactions exists, partly because it is highly depended on the process...

  4. Role of Brownian Motion Hydrodynamics on Nanofluid Thermal Conductivity

    SciTech Connect (OSTI)

    W Evans, J Fish, P Keblinski

    2005-11-14T23:59:59.000Z

    We use a simple kinetic theory based analysis of heat flow in fluid suspensions of solid nanoparticles (nanofluids) to demonstrate that the hydrodynamics effects associated with Brownian motion have a minor effect on the thermal conductivity of the nanofluid. Our conjecture is supported by the results of molecular dynamics simulations of heat flow in a model nanofluid with well-dispersed particles. Our findings are consistent with the predictions of the effective medium theory as well as with recent experimental results on well dispersed metal nanoparticle suspensions.

  5. Nonlinear effects in kinetic resolutions

    E-Print Network [OSTI]

    Johnson, Derrell W.

    1999-01-01T23:59:59.000Z

    KTRIC AMPLIFICATION IN THE JACOBSEN HYDROLYTIC KINET RESOLUTION OF RACEMIC EPOXIDES 20 Applicability of Homocompetitive Reaction Kinetics to the Jacobsen HKR Effect of Catalyst EE and Choice of Epoxide on Amplification in the Jacobsen HKR.... . . . . . . . . . . . . . . . . . Effect of Temperature on Amplification and Reaction Rate in the Jacobsen HKR . Effect of Low EE Catalyst Generation on Amplification in the Jacobsen HKR. . . . 21 21 25 26 27 30 31 TABLE OF CONTENTS (Continued) CHAPTER Page V AS...

  6. Kinetic models of opinion formation

    E-Print Network [OSTI]

    G. Toscani

    2006-05-17T23:59:59.000Z

    We introduce and discuss certain kinetic models of (continuous) opinion formation involving both exchange of opinion between individual agents and diffusion of information. We show conditions which ensure that the kinetic model reaches non trivial stationary states in case of lack of diffusion in correspondence of some opinion point. Analytical results are then obtained by considering a suitable asymptotic limit of the model yielding a Fokker-Planck equation for the distribution of opinion among individuals.

  7. Group Motion Editing Taesoo Kwon

    E-Print Network [OSTI]

    Takahashi, Shigeo

    : I.3.7 [Three-Dimensional Graphics and Realism]: Animation--Virtual reality Keywords: Group Motion Editing, Crowd Simulation, Human Motion, Character Animation 1 Introduction Crowd scenes appear frequently in crowd animation make it possible to synthesize convincing animations of virtual crowds by simulating

  8. Motion Capture Technologies Jessica Hodgins

    E-Print Network [OSTI]

    Treuille, Adrien

    a few dof) #12;Production Pipeline #12;What is captured? · Dynamic motions? House of Moves #12;What is captured? · Scale? Motion Analysis #12;What is captured? · Non-rigid objects? House of Moves #12;What is captured? · Props often cause problems ­ Ball in pingpong ­ Fly fishing ­ Sword · Passive behaviors

  9. 06241 Abstracts Collection Human Motion -Understanding, Modeling,

    E-Print Network [OSTI]

    06241 Abstracts Collection Human Motion - Understanding, Modeling, Capture and Animation. 13th Summary Human Motion - Understanding, Modeling, Capture and Animation. 13th Workshop Reinhard Klette 06241 Human Motion - Understanding, Modeling, Capture and Animation. 13th Workshop "Theoretical

  10. Motion Measurement for Synthetic Aperture Radar.

    SciTech Connect (OSTI)

    Doerry, Armin W.

    2015-01-01T23:59:59.000Z

    Synthetic Aperture Radar (SAR) measures radar soundings from a set of locations typically along the flight path of a radar platform vehicle. Optimal focusing requires precise knowledge of the sounding source locations in 3 - D space with respect to the target scene. Even data driven focusing techniques (i.e. autofocus) requires some degree of initial fidelity in the measurements of the motion of the radar. These requirements may be quite stringent especially for fine resolution, long ranges, and low velocities. The principal instrument for measuring motion is typically an Inertial Measurement Unit (IMU), but these instruments have inherent limi ted precision and accuracy. The question is %22How good does an IMU need to be for a SAR across its performance space?%22 This report analytically relates IMU specifications to parametric requirements for SAR. - 4 - Acknowledgements Th e preparation of this report is the result of a n unfunded research and development activity . Although this report is an independent effort, it draws heavily from limited - release documentation generated under a CRADA with General Atomics - Aeronautical System, Inc. (GA - ASI), and under the Joint DoD/DOE Munitions Program Memorandum of Understanding. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of En ergy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000.

  11. Elastohydrodynamics and kinetics of protein patterning in the immunological synapse

    E-Print Network [OSTI]

    Andreas Carlson; L. Mahadevan

    2015-05-26T23:59:59.000Z

    The cellular basis for the adaptive immune response during antigen recognition relies on a specialized protein interface known as the immunological synapse (IS). Understanding the biophysical basis for protein patterning by deciphering the quantitative rules for their formation and motion is an important aspect of characterizing immune cell recognition and thence the rules for immune system activation. We propose a minimal mathematical model for the physical basis of membrane protein patterning in the IS, which encompass membrane mechanics, protein binding kinetics and motion, and fluid flow in the synaptic cleft. Our theory leads to simple predictions for the spatial and temporal scales of protein cluster formation, growth and arrest as a function of membrane stiffness, rigidity and kinetics of the adhesive proteins, and the fluid in the synaptic cleft. Numerical simulations complement these scaling laws by quantifying the nucleation, growth and stabilization of proteins domains on the size of the cell. Direct comparison with experiment shows that passive elastohydrodynamics and kinetics of protein binding in the synaptic cleft can describe the short-time formation and organization of protein clusters, without evoking any active processes in the cytoskeleton. Despite the apparent complexity of the process, our analysis highlights the role of just two dimensionless parameters that characterize the spatial and temporal evolution of the protein pattern: a ratio of membrane elasticity to protein elasticity, and the ratio of a hydrodynamic time scale for fluid flow relative to the protein binding rate, and we present a simple phase diagram that encompasses the variety of patterns that can arise.

  12. Pebble-bed pebble motion: Simulation and Applications

    SciTech Connect (OSTI)

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2011-11-01T23:59:59.000Z

    Pebble bed reactors (PBR) have moving graphite fuel pebbles. This unique feature provides advantages, but also means that simulation of the reactor requires understanding the typical motion and location of the granular flow of pebbles. This report presents a method for simulation of motion of the pebbles in a PBR. A new mechanical motion simulator, PEBBLES, efficiently simulates the key elements of motion of the pebbles in a PBR. This model simulates gravitational force and contact forces including kinetic and true static friction. It's used for a variety of tasks including simulation of the effect of earthquakes on a PBR, calculation of packing fractions, Dancoff factors, pebble wear and the pebble force on the walls. The simulator includes a new differential static friction model for the varied geometries of PBRs. A new static friction benchmark was devised via analytically solving the mechanics equations to determine the minimum pebble-to-pebble friction and pebble-to-surface friction for a five pebble pyramid. This pyramid check as well as a comparison to the Janssen formula was used to test the new static friction equations. Because larger pebble bed simulations involve hundreds of thousands of pebbles and long periods of time, the PEBBLES code has been parallelized. PEBBLES runs on shared memory architectures and distributed memory architectures. For the shared memory architecture, the code uses a new O(n) lock-less parallel collision detection algorithm to determine which pebbles are likely to be in contact. The new collision detection algorithm improves on the traditional non-parallel O(n log(n)) collision detection algorithm. These features combine to form a fast parallel pebble motion simulation. The PEBBLES code provides new capabilities for understanding and optimizing PBRs. The PEBBLES code has provided the pebble motion data required to calculate the motion of pebbles during a simulated earthquake. The PEBBLES code provides the ability to determine the contact forces and the lengths of motion in contact. This information combined with the proper wear coefficients can be used to determine the dust production from mechanical wear. These new capabilities enhance the understanding of PBRs, and the capabilities of the code will allow future improvements in understanding.

  13. Motion Estimation from Disparity Images

    E-Print Network [OSTI]

    Demirdjian, D.

    2001-05-07T23:59:59.000Z

    A new method for 3D rigid motion estimation from stereo is proposed in this paper. The appealing feature of this method is that it directly uses the disparity images obtained from stereo matching. We assume that the stereo ...

  14. Chemical kinetics and combustion modeling

    SciTech Connect (OSTI)

    Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01T23:59:59.000Z

    The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

  15. Computer simulation of submarine motion

    E-Print Network [OSTI]

    Zurflueh, Jeffery Alan

    1991-01-01T23:59:59.000Z

    Subject: Mechanical Engineering COMPUTER SIMULATION OF SUBMARINE MOTION A Thesis by JEFFERY ALAN ZURFLUEH Approved as to style and content by: Make McDermott, Jr. ( Chair of Committee ) Glen Williams ( Member ) Lo 4verett ( Member ) gu r Walter...COMPUTER SIMULATION OF SUBMARINE MOTION A Thesis by JEFFERY ALAN ZURFLUEH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1991 Major...

  16. Solar Radiation and Asteroidal Motion

    E-Print Network [OSTI]

    Jozef Klacka

    2000-09-07T23:59:59.000Z

    Effects of solar wind and solar electromagnetic radiation on motion of asteroids are discussed. The results complete the statements presented in Vokrouhlick\\'{y} and Milani (2000). As for the effect of electromagnetic radiation, the complete equation of motion is presented to the first order in $v/c$ -- the shape of asteroid (spherical body is explicitly presented) and surface distribution of albedo should be taken into account. Optical quantities must be calculated in proper frame of reference.

  17. Desorption Kinetics of Methanol, Ethanol, and Water from Graphene...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Desorption Kinetics of Methanol, Ethanol, and Water from Graphene. Desorption Kinetics of Methanol, Ethanol, and Water from Graphene. Abstract: The desorption kinetics of methanol,...

  18. Kinetic Alfven waves in a homogeneous dusty magnetoplasma with dust charge fluctuation effects

    SciTech Connect (OSTI)

    Zubia, K.; Rubab, N.; Shah, H. A.; Salimullah, M.; Murtaza, G. [Department of Physics, Government College University, Lahore 54000 (Pakistan); Department of Physics, Government College University, Lahore 54000, Pakistan and Salam Chair in Physics, Government College University, Lahore 54000 (Pakistan); Department of Physics, Government College University, Lahore 54000 (Pakistan); Department of Physics, Government College University, Lahore 54000, Pakistan and Salam Chair in Physics, Government College University, Lahore 54000 (Pakistan); Salam Chair in Physics, Government College University, Lahore 54000 (Pakistan)

    2007-03-15T23:59:59.000Z

    Kinetic Alfven waves with finite Larmor radius effects have been examined rigorously in a uniform dusty plasma in the presence of an external/ambient magnetic field. Two-potential theory has been applied for these electromagnetic waves and the dispersion relation is derived which shows a cutoff frequency at the dust-lower-hybrid frequency due to the hybrid motion of magnetized ions and cold and unmagnetized dust dynamics. The dust charge fluctuation effect was analyzed for finding the damping of the electromagnetic kinetic Alfven waves, which arises on account of the electrostatic parallel component of the waves. The dust charge fluctuation damping is seen to be contributed dominantly by the perpendicular motion of electrons and ions in the dusty magnetoplasma.

  19. Brownian Motion of Black Holes in Dense Nuclei

    E-Print Network [OSTI]

    David Merritt; Peter Berczik; Frederik Laun

    2006-10-18T23:59:59.000Z

    We evaluate the Brownian motion of a massive particle ("black hole") at the center of a galaxy using N-body simulations. Our galaxy models have power-law central density cusps like those observed at the centers of elliptical galaxies. The simulations show that the black hole achieves a steady-state kinetic energy that is substantially different than would be predicted based on the properties of the galaxy model in the absence of the black hole. The reason appears to be that the black hole responds to stars whose velocities have themselves been raised by the presence of the black hole. Over a wide range of density slopes and black hole masses, the black hole's mean kinetic energy is equal to what would be predicted under the assumption that it is in energy equipartition with stars lying within a distance ~r_h/2 from it, where r_h is the black hole's influence radius. The dependence of the Brownian velocity on black hole mass is approximately ~ 1/M^{1/(3-gamma)} with gamma the power-law index of the stellar density profile, rho~1/r^gamma. This is less steep than the 1/M dependence predicted in a model where the effect of the black hole on the stellar velocities is ignored. The influence of a stellar mass spectrum on the black hole's Brownian motion is also evaluated and found to be consistent with predictions from Chandrasekhar's theory. We use these results to derive a probability function for the mass of the Milky Way black hole based on a measurement of its proper motion velocity. Interesting constraints on M will require a velocity resolution exceeding 0.5 km/s.

  20. Improving alternative fuel utilization: detailed kinetic combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving alternative fuel utilization: detailed kinetic combustion modeling & experimental testing Salvador Aceves, Daniel Flowers, Bill Pitz, Charlie Westbrook, Emma Silke,...

  1. Kinetic Modeling and Thermodynamic Closure Approximation of ...

    E-Print Network [OSTI]

    2007-10-03T23:59:59.000Z

    Oct 5, 2007 ... Kinetic Modeling and Thermodynamic Closure. Approximation of Liquid Crystal Polymers. Haijun Yu. Program in Applied and Computational ...

  2. On the motion and collisions of rigid bodies in an ideal fluid

    E-Print Network [OSTI]

    Boyer, Edmond

    with the free motion of rigid bodies in an incompressible, inviscid and irrotational fluid flow in R3 . We diffeomorphism P from QP onto a neighborhood of P (i.e. (QP, P) is a local chart of P). We call the elements Q that there exists a 6n × 6n symmetric matrix [K(Q)], called the virtual mass matrix (or the kinetic energy metric

  3. Photoinduced bimolecular electron transfer kinetics in small unilamellar vesicles

    SciTech Connect (OSTI)

    Choudhury, Sharmistha Dutta; Kumbhakar, Manoj; Nath, Sukhendu; Pal, Haridas [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2007-11-21T23:59:59.000Z

    Photoinduced electron transfer (ET) from N,N-dimethylaniline to some coumarin derivatives has been studied in small unilamellar vesicles (SUVs) of the phospholipid, DL-{alpha}-dimyristoyl-phosphatidylcholine, using steady-state and time-resolved fluorescence quenching, both below and above the phase transition temperature of the vesicles. The primary interest was to examine whether Marcus inversion [H. Sumi and R. A. Marcus, J. Chem. Phys. 84, 4894 (1986)] could be observed for the present ET systems in these organized assemblies. The influence of the topology of SUVs on the photophysical properties of the reactants and consequently on their ET kinetics has also been investigated. Absorption and fluorescence spectral data of the coumarins in SUVs and the variation of their fluorescence decays with temperature indicate that the dyes are localized in the bilayer of the SUVs. Time-resolved area normalized emission spectra analysis, however, reveals that the dyes are distributed in two different microenvironments in the SUVs, which we attribute to the two leaflets of the bilayer, one toward bulk water and the other toward the inner water pool. The microenvironments in the two leaflets are, however, not indicated to be that significantly different. Time-resolved anisotropy decays were biexponential for all the dyes in SUVs, and this has been interpreted in terms of the compound motion model according to which the dye molecules can experience a fast wobbling-in-cone type of motion as well as a slow overall rotating motion of the cone containing the molecule. The expected bimolecular diffusion-controlled rates in SUVs, as estimated by comparing the microviscosities in SUVs (determined from rotational correlation times) and that in acetonitrile solution, are much slower than the observed fluorescence quenching rates, suggesting that reactant diffusion (translational) does not play any role in the quenching kinetics in the present systems. Accordingly, clear inversions are observed in the correlation of the fluorescence quenching rate constants k{sub q} with the free energy change, {delta}G{sup 0} of the reactions. However, the coumarin dyes, C152 and C481 (cf. Scheme 1), show unusually high k{sub q} values and high activation barriers, which is not expected from Marcus ET theory. This unusual behavior is explained on the basis of participation of the twisted intramolecular charge transfer states of these two dyes in the ET kinetics.

  4. Estimating The Thermodynamics And Kinetics Of Chlorinated Hydrocarbon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimating The Thermodynamics And Kinetics Of Chlorinated Hydrocarbon Degradation. Estimating The Thermodynamics And Kinetics Of Chlorinated Hydrocarbon Degradation. Abstract: Many...

  5. Challenges and Progress Toward a Commercial Kinetic Hydropower System

    E-Print Network [OSTI]

    Walter, M.Todd

    Challenges and Progress Toward a Commercial Kinetic Hydropower System for its kinetic hydropower devices, and has made precise measurements

  6. Visually simulating realistic fluid motion

    E-Print Network [OSTI]

    Naithani, Priyanka

    2002-01-01T23:59:59.000Z

    's second law of motion and Conservation of Mass, which leads to the continuity equation. Newton's second law states that the total force F, acting on an element equals mass m times the element's acceleration a. In the case of fluids we do not consider...

  7. 1 Introduction Synthetic motion capture

    E-Print Network [OSTI]

    Terzopoulos, Demetri

    animation of animals in virtual worlds, but at significant computational cost. Syn- thetic motion capture). Lifelike virtual animals naturally beckon active in- volvement, and one feels compelled to interact also form the basis of Miller's snakes and worms (Miller 1988), the virtual humans of Hodgins et al

  8. Smoothing of respiratory motion traces for motion-compensated radiotherapy

    SciTech Connect (OSTI)

    Ernst, Floris; Schlaefer, Alexander; Schweikard, Achim [Institute for Robotics and Cognitive Systems, University of Luebeck, Ratzeburger Allee 160, Luebeck SH 23538 (Germany)

    2010-01-15T23:59:59.000Z

    Purpose: The CyberKnife system has been used successfully for several years to radiosurgically treat tumors without the need for stereotactic fixation or sedation of the patient. It has been shown that tumor motion in the lung, liver, and pancreas can be tracked with acceptable accuracy and repeatability. However, highly precise targeting for tumors in the lower abdomen, especially for tumors which exhibit strong motion, remains problematic. Reasons for this are manifold, like the slow tracking system operating at 26.5 Hz, and using the signal from the tracking camera ''as is''. Since the motion recorded with the camera is used to compensate for system latency by prediction and the predicted signal is subsequently used to infer the tumor position from a correlation model based on x-ray imaging of gold fiducials around the tumor, camera noise directly influences the targeting accuracy. The goal of this work is to establish the suitability of a new smoothing method for respiratory motion traces used in motion-compensated radiotherapy. The authors endeavor to show that better prediction--With a lower rms error of the predicted signal--and/or smoother prediction is possible using this method. Methods: The authors evaluated six commercially available tracking systems (NDI Aurora, PolarisClassic, Polaris Vicra, MicronTracker2 H40, FP5000, and accuTrack compact). The authors first tracked markers both stationary and while in motion to establish the systems' noise characteristics. Then the authors applied a smoothing method based on the a trous wavelet decomposition to reduce the devices' noise level. Additionally, the smoothed signal of the moving target and a motion trace from actual human respiratory motion were subjected to prediction using the MULIN and the nLMS{sub 2} algorithms. Results: The authors established that the noise distribution for a static target is Gaussian and that when the probe is moved such as to mimic human respiration, it remains Gaussian with the exception of the FP5000 and the Aurora systems. The authors also showed that the proposed smoothing method can indeed be used to filter noise. The signal's jitter dropped by as much as 95% depending on the tracking system employed. Subsequently, the 3D prediction error (rms) for a prediction horizon of 150 ms on a synthetic signal dropped by up to 37% when using a normalized LMS prediction algorithm (nLMS{sub 2}) and hardly changed when using a MULIN algorithm. When smoothing a real signal obtained in our laboratory, the improvement of prediction was similar: Up to 30% for both the nLMS{sub 2} and the best MULIN algorithm. The authors also found a noticeable increase in smoothness of the predicted signal, the relative jitter dropped by up to 95% on the real signal, and on the simulated signal. Conclusions: In conclusion, the authors can say that preprocessing of marker data is very useful in motion-compensated radiotherapy since the quality of prediction increases. This will result in better performance of the correlation model. As a side effect, since the prediction of a preprocessed signal is also less noisy, the authors expect less robot vibration resulting in better targeting accuracy and less strain on the robot gears.

  9. Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation

    SciTech Connect (OSTI)

    Bowers, K. J.; Albright, B. J.; Yin, L.; Bergen, B.; Kwan, T. J. T. [Plasma Theory and Applications (X-1-PTA), Los Alamos National Laboratory, MS F699, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)

    2008-05-15T23:59:59.000Z

    The algorithms, implementation details, and applications of VPIC, a state-of-the-art first principles 3D electromagnetic relativistic kinetic particle-in-cell code, are discussed. Unlike most codes, VPIC is designed to minimize data motion, as, due to physical limitations (including the speed of light{exclamation_point}), moving data between and even within modern microprocessors is more time consuming than performing computations. As a result, VPIC has achieved unprecedented levels of performance. For example, VPIC can perform {approx}0.17 billion cold particles pushed and charge conserving accumulated per second per processor on IBM's Cell microprocessor--equivalent to sustaining Los Alamos's planned Roadrunner supercomputer at {approx}0.56 petaflop (quadrillion floating point operations per second). VPIC has enabled previously intractable simulations in numerous areas of plasma physics, including magnetic reconnection and laser plasma interactions; next generation supercomputers like Roadrunner will enable further advances.

  10. Topology-based character motion synthesis 

    E-Print Network [OSTI]

    Ho, Shu Lim

    2011-06-30T23:59:59.000Z

    This thesis tackles the problem of automatically synthesizing motions of close-character interactions which appear in animations of wrestling and dancing. Designing such motions is a daunting task even for experienced ...

  11. Metrics for sampling-based motion planning 

    E-Print Network [OSTI]

    Morales Aguirre, Marco Antonio

    2009-05-15T23:59:59.000Z

    A motion planner finds a sequence of potential motions for a robot to transit from an initial to a goal state. To deal with the intractability of this problem, a class of methods known as sampling-based planners build ...

  12. Generalized Sampling-Based Feedback Motion Planners

    E-Print Network [OSTI]

    Kumar, Sandip

    2012-02-14T23:59:59.000Z

    The motion planning problem can be formulated as a Markov decision process (MDP), if the uncertainties in the robot motion and environments can be modeled probabilistically. The complexity of solving these MDPs grow exponentially as the dimension...

  13. Video looping of human cyclic motion

    E-Print Network [OSTI]

    Choi, Hye Mee

    2004-09-30T23:59:59.000Z

    In this thesis, a system called Video Looping is developed to analyze human cyclic motions. Video Looping allows users to extract human cyclic motion from a given video sequence. This system analyzes similarities from a large amount of live footage...

  14. A Smart Assistant for Shooting Virtual Cinematography with Motion-Tracked Cameras

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Smart Assistant for Shooting Virtual Cinematography with Motion-Tracked Cameras Christophe Lino This demonstration shows how an automated assistant en- coded with knowledge of cinematography practice can offer, called Director's Lens, uses an intelligent cinematography engine to compute, at the request

  15. Classical kinetic energy, quantum fluctuation terms and kinetic-energy functionals

    E-Print Network [OSTI]

    I. P. Hamilton; Ricardo A. Mosna; L. Delle Site

    2007-04-08T23:59:59.000Z

    We employ a recently formulated dequantization procedure to obtain an exact expression for the kinetic energy which is applicable to all kinetic-energy functionals. We express the kinetic energy of an N-electron system as the sum of an N-electron classical kinetic energy and an N-electron purely quantum kinetic energy arising from the quantum fluctuations that turn the classical momentum into the quantum momentum. This leads to an interesting analogy with Nelson's stochastic approach to quantum mechanics, which we use to conceptually clarify the physical nature of part of the kinetic-energy functional in terms of statistical fluctuations and in direct correspondence with Fisher Information Theory. We show that the N-electron purely quantum kinetic energy can be written as the sum of the (one-electron) Weizsacker term and an (N-1)-electron kinetic correlation term. We further show that the Weizsacker term results from local fluctuations while the kinetic correlation term results from the nonlocal fluctuations. For one-electron orbitals (where kinetic correlation is neglected) we obtain an exact (albeit impractical) expression for the noninteracting kinetic energy as the sum of the classical kinetic energy and the Weizsacker term. The classical kinetic energy is seen to be explicitly dependent on the electron phase and this has implications for the development of accurate orbital-free kinetic-energy functionals. Also, there is a direct connection between the classical kinetic energy and the angular momentum and, across a row of the periodic table, the classical kinetic energy component of the noninteracting kinetic energy generally increases as Z increases.

  16. Eco Kinetics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrictInformationEau ClaireEcoEco Kinetics Jump

  17. Amber Kinetics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgouraAlbatechFuels JumpKinetics Jump to:

  18. Ground motion input in seismic evaluation studies

    SciTech Connect (OSTI)

    Sewell, R.T.; Wu, S.C.

    1996-07-01T23:59:59.000Z

    This report documents research pertaining to conservatism and variability in seismic risk estimates. Specifically, it examines whether or not artificial motions produce unrealistic evaluation demands, i.e., demands significantly inconsistent with those expected from real earthquake motions. To study these issues, two types of artificial motions are considered: (a) motions with smooth response spectra, and (b) motions with realistic variations in spectral amplitude across vibration frequency. For both types of artificial motion, time histories are generated to match target spectral shapes. For comparison, empirical motions representative of those that might result from strong earthquakes in the Eastern U.S. are also considered. The study findings suggest that artificial motions resulting from typical simulation approaches (aimed at matching a given target spectrum) are generally adequate and appropriate in representing the peak-response demands that may be induced in linear structures and equipment responding to real earthquake motions. Also, given similar input Fourier energies at high-frequencies, levels of input Fourier energy at low frequencies observed for artificial motions are substantially similar to those levels noted in real earthquake motions. In addition, the study reveals specific problems resulting from the application of Western U.S. type motions for seismic evaluation of Eastern U.S. nuclear power plants.

  19. Flow and Plate Motion in Compressor Valves

    E-Print Network [OSTI]

    Twente, Universiteit

    Flow and Plate Motion in Compressor Valves #12;Flow and Plate Motion in Compressor Valves R.A. Habing Cover Image: 4-stage reciprocating compressor system, Courtesy of Ariel Corporation Thesis.A. Habing, Enschede, The Netherlands #12;FLOW AND PLATE MOTION IN COMPRESSOR VALVES PROEFSCHRIFT ter

  20. Learning Motion Style Synthesis from Perceptual Observations

    E-Print Network [OSTI]

    Bregler, Christoph

    that the learned model can apply a variety of motion styles to pre-recorded motion sequences and it can extrapolate models that are unable to fully capture the subtleties and complexities of human movement based on learned parametric models. The aim is to maintain the animated preci- sion of motion capture

  1. Colloidal Micromotors: Controlled Directed Motion

    E-Print Network [OSTI]

    Baraban, Larysa; Makarov, Denys; Leiderer, Paul; Erbe, Artur

    2008-01-01T23:59:59.000Z

    Here we demonstrate a synthetic micro-engine, based on long-range controlled movement of colloidal particles, which is induced by a local catalytic reaction. The directed motion at long timescales was achieved by placing specially designed magnetic capped colloids in a hydrogen peroxide solution at weak magnetic fields. The control of the motion of the particles was provided by changes of the concentration of the solution and by varying the strength of the applied magnetic field. Such synthetic objects can then be used not only to understand the fundamental driving processes but also be employed as small motors in biological environments, for example, for the transportation of molecules in a controllable way.

  2. Colloidal Micromotors: Controlled Directed Motion

    E-Print Network [OSTI]

    Larysa Baraban; Christian Kreidler; Denys Makarov; Paul Leiderer; Artur Erbe

    2008-07-10T23:59:59.000Z

    Here we demonstrate a synthetic micro-engine, based on long-range controlled movement of colloidal particles, which is induced by a local catalytic reaction. The directed motion at long timescales was achieved by placing specially designed magnetic capped colloids in a hydrogen peroxide solution at weak magnetic fields. The control of the motion of the particles was provided by changes of the concentration of the solution and by varying the strength of the applied magnetic field. Such synthetic objects can then be used not only to understand the fundamental driving processes but also be employed as small motors in biological environments, for example, for the transportation of molecules in a controllable way.

  3. Energy Conservation Equations of Motion

    E-Print Network [OSTI]

    Vinokurov, Nikolay A

    2015-01-01T23:59:59.000Z

    A conventional derivation of motion equations in mechanics and field equations in field theory is based on the principle of least action with a proper Lagrangian. With a time-independent Lagrangian, a function of coordinates and velocities that is called energy is constant. This paper presents an alternative approach, namely derivation of a general form of equations of motion that keep the system energy, expressed as a function of generalized coordinates and corresponding velocities, constant. These are Lagrange equations with addition of gyroscopic forces. The important fact, that the energy is defined as the function on the tangent bundle of configuration manifold, is used explicitly for the derivation. The Lagrangian is derived from a known energy function. A development of generalized Hamilton and Lagrange equations without the use of variational principles is proposed. The use of new technique is applied to derivation of some equations.

  4. Tracer diffusion at low temperature in kinetically constrained models

    E-Print Network [OSTI]

    Oriane Blondel

    2015-05-15T23:59:59.000Z

    We describe the motion of a tracer in an environment given by a kinetically constrained spin model (KCSM) at equilibrium. We check convergence of its trajectory properly rescaled to a Brownian motion and positivity of the diffusion coefficient $D$ as soon as the spectral gap of the environment is positive (which coincides with the ergodicity region under general conditions). Then we study the asymptotic behavior of $D$ when the density $1-q$ of the environment goes to $1$ in two classes of KCSM. For noncooperative models, the diffusion coefficient $D$ scales like a power of $q$, with an exponent that we compute explicitly. In the case of the Fredrickson-Andersen one-spin facilitated model, this proves a prediction made in Jung, Garrahan and Chandler [Phys. Rev. E 69 (2004) 061205]. For the East model, instead we prove that the diffusion coefficient is comparable to the spectral gap, which goes to zero faster than any power of $q$. This result contradicts the prediction of physicists (Jung, Garrahan and Chandler [Phys. Rev. E 69 (2004) 061205; J. Chem. Phys. 123 (2005) 084509]), based on numerical simulations, that suggested $D\\sim \\operatorname {gap}^{\\xi}$ with $\\xi<1$.

  5. Relativistic Motion with Superconducting Qubits

    E-Print Network [OSTI]

    Felicetti, S; Fuentes, I; Lamata, L; Romero, G; Solano, E

    2015-01-01T23:59:59.000Z

    We show how the dynamical modulation of the qubit-field coupling strength in a circuit quantum electrodynamics architecture mimics the motion of the qubit at relativistic speeds. This allows us to propose a realistic experiment to detect microwave photons coming from simulated acceleration radiation. Moreover, by combining this technique with the dynamical Casimir physics, we enhance the toolbox for studying relativistic phenomena in quantum field theory with superconducting circuits.

  6. Kinetic bounding volume hierarchies for deformable objects

    E-Print Network [OSTI]

    Gabriel Zachmann; Tu Clausthal

    2006-01-01T23:59:59.000Z

    We present novel algorithms for updating bounding volume hierarchies of objects undergoing arbitrary deformations. Therefore, we introduce two new data structures, the kinetic AABB tree and the kinetic BoxTree. The event-based approach of the kinetic data structures framework enables us to show that our algorithms are optimal in the number of updates. Moreover, we show a lower bound for the total number of BV updates, which is independent of the number of frames. We used our kinetic bounding volume hierarchies for collision detection and performed a comparison with the classical bottomup update method. The results show that our algorithms perform up to ten times faster in practically relevant scenarios.

  7. Kinetics of the decomposition of tungsten hexacarbonyl

    SciTech Connect (OSTI)

    Podoprigora, V.I.; Baev, A.K.

    1987-07-20T23:59:59.000Z

    A differential-flow apparatus is devised for the study of the kinetics of the thermal decomposition of volatile metal carbonyls under quasi-stationary conditions. The applicability of the general kinetic approach to the investigation of the thermodecomposition of carbonyl compounds and of the analysis of the experimental data on the basis of specific thermodecomposition rates was proved. Well-founded kinetic characteristics were obtained for the first time for the thermodecomposition of tungsten carbonyl in the kinetic region and under quasi-stationary pyrolysis conditions.

  8. CLEERS Coordination & Development of Catalyst Process Kinetic...

    Broader source: Energy.gov (indexed) [DOE]

    2: ORNL Research on LNT Sulfation & Desulfation (8744, 8746) Jae-Soon Choi Oak Ridge National Laboratory CLEERS Coordination & Development of Catalyst Process Kinetic Data...

  9. The Fractional Kinetic Equation and Thermonuclear Functions

    E-Print Network [OSTI]

    H. J. Haubold; A. M. Mathai

    2000-01-16T23:59:59.000Z

    The paper discusses the solution of a simple kinetic equation of the type used for the computation of the change of the chemical composition in stars like the Sun. Starting from the standard form of the kinetic equation it is generalized to a fractional kinetic equation and its solutions in terms of H-functions are obtained. The role of thermonuclear functions, which are also represented in terms of G- and H-functions, in such a fractional kinetic equation is emphasized. Results contained in this paper are related to recent investigations of possible astrophysical solutions of the solar neutrino problem.

  10. CLEERS Coordination & Development of Catalyst Process Kinetic...

    Energy Savers [EERE]

    CLEERS Coordination & Development of Catalyst Process Kinetic Data - Pres. 1: Coordination of CLEERS Project; Pres. 2: ORNL Research on LNT Sulfation & Desulfation CLEERS...

  11. RHIC stochastic cooling motion control

    SciTech Connect (OSTI)

    Gassner, D.; DeSanto, L.; Olsen, R.H.; Fu, W.; Brennan, J.M.; Liaw, CJ; Bellavia, S.; Brodowski, J.

    2011-03-28T23:59:59.000Z

    Relativistic Heavy Ion Collider (RHIC) beams are subject to Intra-Beam Scattering (IBS) that causes an emittance growth in all three-phase space planes. The only way to increase integrated luminosity is to counteract IBS with cooling during RHIC stores. A stochastic cooling system for this purpose has been developed, it includes moveable pick-ups and kickers in the collider that require precise motion control mechanics, drives and controllers. Since these moving parts can limit the beam path aperture, accuracy and reliability is important. Servo, stepper, and DC motors are used to provide actuation solutions for position control. The choice of motion stage, drive motor type, and controls are based on needs defined by the variety of mechanical specifications, the unique performance requirements, and the special needs required for remote operations in an accelerator environment. In this report we will describe the remote motion control related beam line hardware, position transducers, rack electronics, and software developed for the RHIC stochastic cooling pick-ups and kickers.

  12. Absolute Motion and Gravitational Effects

    E-Print Network [OSTI]

    Cahill, R T

    2003-01-01T23:59:59.000Z

    The new Process Physics provides a new explanation of space as a quantum foam system in which gravity is an inhomogeneous flow of the quantum foam into matter. An analysis of various experiments demonstrates that absolute motion relative to space has been observed experimentally by Michelson and Morley, Miller, Illingworth, Torr and Kolen, and by DeWitte. The Dayton Miller and Roland DeWitte data also reveal the in-flow of space into matter which manifests as gravity. The in-flow also manifests turbulence and the experimental data confirms this as well, which amounts to the observation of a gravitational wave phenomena. The Einstein assumptions leading to the Special and General Theory of Relativity are shown to be falsified by the extensive experimental data. Contrary to the Einstein assumptions absolute motion is consistent with relativistic effects, which are caused by actual dynamical effects of absolute motion through the quantum foam, so that it is Lorentzian relativity that is seen to be essentially co...

  13. Absolute Motion and Gravitational Effects

    E-Print Network [OSTI]

    Reginald T Cahill

    2003-06-29T23:59:59.000Z

    The new Process Physics provides a new explanation of space as a quantum foam system in which gravity is an inhomogeneous flow of the quantum foam into matter. An analysis of various experiments demonstrates that absolute motion relative to space has been observed experimentally by Michelson and Morley, Miller, Illingworth, Torr and Kolen, and by DeWitte. The Dayton Miller and Roland DeWitte data also reveal the in-flow of space into matter which manifests as gravity. The in-flow also manifests turbulence and the experimental data confirms this as well, which amounts to the observation of a gravitational wave phenomena. The Einstein assumptions leading to the Special and General Theory of Relativity are shown to be falsified by the extensive experimental data. Contrary to the Einstein assumptions absolute motion is consistent with relativistic effects, which are caused by actual dynamical effects of absolute motion through the quantum foam, so that it is Lorentzian relativity that is seen to be essentially correct.

  14. Kinetics of actinide complexation reactions

    SciTech Connect (OSTI)

    Nash, K.L.; Sullivan, J.C.

    1997-09-01T23:59:59.000Z

    Though the literature records extensive compilations of the thermodynamics of actinide complexation reactions, the kinetics of complex formation and dissociation reactions of actinide ions in aqueous solutions have not been extensively investigated. In light of the central role played by such reactions in actinide process and environmental chemistry, this situation is somewhat surprising. The authors report herein a summary of what is known about actinide complexation kinetics. The systems include actinide ions in the four principal oxidation states (III, IV, V, and VI) and complex formation and dissociation rates with both simple and complex ligands. Most of the work reported was conducted in acidic media, but a few address reactions in neutral and alkaline solutions. Complex formation reactions tend in general to be rapid, accessible only to rapid-scan and equilibrium perturbation techniques. Complex dissociation reactions exhibit a wider range of rates and are generally more accessible using standard analytical methods. Literature results are described and correlated with the known properties of the individual ions.

  15. Combustion kinetics and reaction pathways

    SciTech Connect (OSTI)

    Klemm, R.B.; Sutherland, J.W. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01T23:59:59.000Z

    This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

  16. PHYS 626 --Fundamentals of Plasma Physics --Section 6.4-6.5 1. Using the ideal MHD equation of motion, an energy equation can be derived. It is

    E-Print Network [OSTI]

    Ng, Chung-Sang

    of motion, an energy equation can be derived. It is simply the continuity equation of energy density, which is the sum of kinetic energy density mU2 /2, magnetic energy density B2 /2µ0, and the internal energy density p/( -1). The total energy obtained by integrating the energy density over the whole space

  17. ADVANCES IN ENVIRONMENTAL REACTION KINETICS AND THERMODYNAMICS

    E-Print Network [OSTI]

    Sparks, Donald L.

    1262 ADVANCES IN ENVIRONMENTAL REACTION KINETICS AND THERMODYNAMICS: LONG-TERM FATE thermodynamic and kinetic data is available with regard to the formation of these mixed metal precipitate phases to six months from the initial addition of aqueous nickel. Additionally, we have determined thermodynamic

  18. Chemical kinetics and oil shale process design

    SciTech Connect (OSTI)

    Burnham, A.K.

    1993-07-01T23:59:59.000Z

    Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

  19. Kinetic advantage of controlled intermediate nuclear fusion

    SciTech Connect (OSTI)

    Guo Xiaoming [Physics and Computer Science Department, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5 (Canada)

    2012-09-26T23:59:59.000Z

    The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

  20. The Excitation Energy Dependence of the Total Kinetic Energy Release in 235U(n,f)

    E-Print Network [OSTI]

    R. Yanez; L. Yao; J. King; W. Loveland; F. Tovesson; N. Fotiades

    2014-03-18T23:59:59.000Z

    The total kinetic energy release in the neutron induced fission of $^{235}$U was measured (using white spectrum neutrons from LANSCE) for neutron energies from E$_{n}$ = 3.2 to 50 MeV. In this energy range the average post-neutron total kinetic energy release drops from 167.4 $\\pm$ 0.7 to 162.1 $\\pm$ 0.8 MeV, exhibiting a local dip near the second chance fission threshold. The values and the slope of the TKE vs. E$_{n}$ agree with previous measurements but do disagree (in magnitude) with systematics. The variances of the TKE distributions are larger than expected and apart from structure near the second chance fission threshold, are invariant for the neutron energy range from 11 to 50 MeV. We also report the dependence of the total excitation energy in fission, TXE, on neutron energy.

  1. Hydrogen Atom in Relativistic Motion

    E-Print Network [OSTI]

    M. Jarvinen

    2005-04-11T23:59:59.000Z

    The Lorentz contraction of bound states in field theory is often appealed to in qualitative descriptions of high energy particle collisions. Surprisingly, the contraction has not been demonstrated explicitly even in simple cases such as the hydrogen atom. It requires a calculation of wave functions evaluated at equal (ordinary) time for bound states in motion. Such wave functions are not obtained by kinematic boosts from the rest frame. Starting from the exact Bethe-Salpeter equation we derive the equal-time wave function of a fermion-antifermion bound state in QED, i.e., positronium or the hydrogen atom, in any frame to leading order in alpha. We show explicitly that the bound state energy transforms as the fourth component of a vector and that the wave function of the fermion-antifermion Fock state contracts as expected. Transverse photon exchange contributes at leading order to the binding energy of the bound state in motion. We study the general features of the corresponding fermion-antifermion-photon Fock states, and show that they do not transform by simply contracting. We verify that the wave function reduces to the light-front one in the infinite momentum frame.

  2. Stochastic Ion Heating at the Magnetopause due to Kinetic Alfven Waves

    SciTech Connect (OSTI)

    Jay R. Johnson; C.Z. Cheng

    2001-08-10T23:59:59.000Z

    The magnetopause and boundary layer are typically characterized by large amplitude transverse wave activity with frequency below the ion cyclotron frequency. The signatures of the transverse waves suggest that they are kinetic Alfven waves with wavelength on the order of the ion gyroradius. We investigate ion motion in the presence of large amplitude kinetic Alfven waves with wavelength the order of rho(subscript ''i'') and demonstrate that for sufficiently large wave amplitude (delta B(subscript ''perpendicular'')/B(subscript ''0'') > 0.05) the particle orbits become stochastic. As a result, low energy particles in the core of the ion distribution can migrate to higher energy through the stochastic sea leading to an increase in T(subscript ''perpendicular'') and a broadening of the distribution. This process can explain transverse ion energization and formation of conics which have been observed in the low-latitude boundary layer.

  3. Non-equilibrium statistical field theory for classical particles: Basic kinetic theory

    E-Print Network [OSTI]

    Viermann, Celia; Kozlikin, Elena; Lilow, Robert; Bartelmann, Matthias

    2014-01-01T23:59:59.000Z

    Recently Mazenko and Das and Mazenko introduced a non-equilibrium field theoretical approach to describe the statistical properties of a classical particle ensemble starting from the microscopic equations of motion of each individual particle. We use this theory to investigate the transition from those microscopic degrees of freedom to the evolution equations of the macroscopic observables of the ensemble. For the free theory, we recover the continuity and Jeans equations of a collisionless gas. For a theory containing two-particle interactions in a canonical perturbation series, we find the macroscopic evolution equations to be described by the Born-Bogoliubov-Green-Kirkwood-Yvon hierarchy (BBGKY hierarchy) with a truncation criterion depending on the order in perturbation theory. This establishes a direct link between the classical and the field-theoretical approaches to kinetic theory that might serve as a starting point to investigate kinetic theory beyond the classical limits.

  4. Global kinetics for a commercial diesel oxidation catalyst with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    kinetics for a commercial diesel oxidation catalyst with two exhaust hydrocarbons Global kinetics for a commercial diesel oxidation catalyst with two exhaust hydrocarbons...

  5. Improving Combustion Software to Solve Detailed Chemical Kinetics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Software to Solve Detailed Chemical Kinetics for HECC Improving Combustion Software to Solve Detailed Chemical Kinetics for HECC 2012 DOE Hydrogen and Fuel Cells Program...

  6. Transport-controlled kinetics of dissolution and precipitation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transport-controlled kinetics of dissolution and precipitation in the sediments under alkaline and saline conditions . Transport-controlled kinetics of dissolution and...

  7. Uncertainty analysis of multi-rate kinetics of uranium desorption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uncertainty analysis of multi-rate kinetics of uranium desorption from sediments. Uncertainty analysis of multi-rate kinetics of uranium desorption from sediments. Abstract: A...

  8. Structure, Kinetics, and Thermodynamics of the Aqueous Uranyl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kinetics, and Thermodynamics of the Aqueous Uranyl(VI) Cation. Structure, Kinetics, and Thermodynamics of the Aqueous Uranyl(VI) Cation. Abstract: Molecular simulation techniques...

  9. Intercalation Kinetics and Ion Mobility in Electrode Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intercalation Kinetics and Ion Mobility in Electrode Materials for Advanced Lithium Ion Batteries Intercalation Kinetics and Ion Mobility in Electrode Materials for Advanced...

  10. Direct Visualization of Initial SEI Morphology and Growth Kinetics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Initial SEI Morphology and Growth Kinetics During Lithium Deposition by in situ Electrochemical Direct Visualization of Initial SEI Morphology and Growth Kinetics During Lithium...

  11. Design and operating characteristics of a transient kinetic analysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    operating characteristics of a transient kinetic analysis catalysis reactor system employing in situ transmission Design and operating characteristics of a transient kinetic...

  12. A Study and Comparison of SCR Reaction Kinetics from Reactor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Study and Comparison of SCR Reaction Kinetics from Reactor and Engine Experimental Data A Study and Comparison of SCR Reaction Kinetics from Reactor and Engine Experimental Data...

  13. Computing Vortex Sheet Motion Robert Krasny

    E-Print Network [OSTI]

    Krasny, Robert

    Computing Vortex Sheet Motion Robert Krasny Department of Mathematics, University of Michigan, Ann;1574 Robert Krasny with respect to the time variable and obtained results consistent with Moore

  14. Modeling of Reactor Kinetics and Dynamics

    SciTech Connect (OSTI)

    Matthew Johnson; Scott Lucas; Pavel Tsvetkov

    2010-09-01T23:59:59.000Z

    In order to model a full fuel cycle in a nuclear reactor, it is necessary to simulate the short time-scale kinetic behavior of the reactor as well as the long time-scale dynamics that occur with fuel burnup. The former is modeled using the point kinetics equations, while the latter is modeled by coupling fuel burnup equations with the kinetics equations. When the equations are solved simultaneously with a nonlinear equation solver, the end result is a code with the unique capability of modeling transients at any time during a fuel cycle.

  15. A Monte Carlo simulation for kinetic chemotaxis models: an application to the traveling population wave

    E-Print Network [OSTI]

    Yasuda, Shugo

    2015-01-01T23:59:59.000Z

    A Monte Carlo simulation for the chemotactic bacteria is developed on the basis of the kinetic modeling, i.e., the Boltzmann transport equation, and applied to the one-dimensional traveling population wave in a micro channel.In this method, the Monte Carlo method, which calculates the run-and-tumble motions of bacteria, is coupled with a finite volume method to solve the macroscopic transport of the chemical cues in the field. The simulation method can successfully reproduce the traveling population wave of bacteria which was observed experimentally. The microscopic dynamics of bacteria, e.g., the velocity autocorrelation function and velocity distribution function of bacteria, are also investigated. It is found that the bacteria which form the traveling population wave create quasi-periodic motions as well as a migratory movement along with the traveling population wave. Simulations are also performed with changing the sensitivity and modulation parameters in the response function of bacteria. It is found th...

  16. Kinetic limits of dynamical systems

    E-Print Network [OSTI]

    Jens Marklof

    2014-08-06T23:59:59.000Z

    Since the pioneering work of Maxwell and Boltzmann in the 1860s and 1870s, a major challenge in mathematical physics has been the derivation of macroscopic evolution equations from the fundamental microscopic laws of classical or quantum mechanics. Macroscopic transport equations lie at the heart of many important physical theories, including fluid dynamics, condensed matter theory and nuclear physics. The rigorous derivation of macroscopic transport equations is thus not only a conceptual exercise that establishes their consistency with the fundamental laws of physics: the possibility of finding deviations and corrections to classical evolution equations makes this subject both intellectually exciting and relevant in practical applications. The plan of these lectures is to develop a renormalisation technique that will allow us to derive transport equations for the kinetic limits of two classes of simple dynamical systems, the Lorentz gas and kicked Hamiltonians (or linked twist maps). The technique uses the ergodic theory of flows on homogeneous spaces (homogeneous flows for short), and is based on joint work with Andreas Str\\"ombergsson.

  17. Cross-fixation transfer of motion aftereffects with expansion motion Xin Meng a,1

    E-Print Network [OSTI]

    Columbia University

    by expanding random-dots stimuli. We also used rightward translational motion for comparison. Subjects adapted, a test pattern without net motion elicits more response in the opposite direction than the adapted

  18. Diagnosing residual motion via the x-ray self emission from indirectly driven inertial confinement implosions

    SciTech Connect (OSTI)

    Pak, A., E-mail: pak5@llnl.gov; Field, J. E.; Benedetti, L. R.; Caggiano, J.; Hatarik, R.; Izumi, N.; Khan, S. F.; Ma, T.; Spears, B. K.; Town, R. P. J.; Bradley, D. K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Knauer, J. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States)

    2014-11-15T23:59:59.000Z

    In an indirectly driven implosion, non-radial translational motion of the compressed fusion capsule is a signature of residual kinetic energy not coupled into the compressional heating of the target. A reduction in compression reduces the peak pressure and nuclear performance of the implosion. Measuring and reducing the residual motion of the implosion is therefore necessary to improve performance and isolate other effects that degrade performance. Using the gated x-ray diagnostic, the x-ray Bremsstrahlung emission from the compressed capsule is spatially and temporally resolved at x-ray energies of >8.7 keV, allowing for measurements of the residual velocity. Here details of the x-ray velocity measurement and fitting routine will be discussed and measurements will be compared to the velocities inferred from the neutron time of flight detectors.

  19. Mechanistic studies using kinetic isotope effects

    E-Print Network [OSTI]

    Schulmeier, Brian E.

    1999-01-01T23:59:59.000Z

    Understanding reaction mechanisms is an important aspect of chemistry. A now convenient way to study reaction mechanisms is kinetic isotope effects at natural abundance. This technique circumvents the cumbersome methods of traditional isotope effect...

  20. Kinetic vs. energetic discrimination in biological copying

    E-Print Network [OSTI]

    Pablo Sartori; Simone Pigolotti

    2013-04-12T23:59:59.000Z

    We study stochastic copying schemes in which discrimination between a right and a wrong match is achieved via different kinetic barriers or different binding energies of the two matches. We demonstrate that, in single-step reactions, the two discrimination mechanisms are strictly alternative and can not be mixed to further reduce the error fraction. Close to the lowest error limit, kinetic discrimination results in a diverging copying velocity and dissipation per copied bit. On the opposite, energetic discrimination reaches its lowest error limit in an adiabatic regime where dissipation and velocity vanish. By analyzing experimentally measured kinetic rates of two DNA polymerases, T7 and Pol{\\gamma}, we argue that one of them operates in the kinetic and the other in the energetic regime. Finally, we show how the two mechanisms can be combined in copying schemes implementing error correction through a proofreading pathway

  1. Kinetics of Anionic Surfactant Anoxic Degradation 

    E-Print Network [OSTI]

    Camacho, Julianna G.

    2010-07-14T23:59:59.000Z

    The biodegradation kinetics of Geropon TC-42 (trademark) by an acclimated culture was investigated in anoxic batch reactors to determine biokinetic coefficients to be implemented in two biofilm mathematical models. Geropon TC-42 (trademark...

  2. NAAP Motions of the Sun 1/7 Motions of the Sun Student Guide

    E-Print Network [OSTI]

    Farritor, Shane

    Name: NAAP ­ Motions of the Sun 1/7 Motions of the Sun ­ Student Guide Seasonal Motion Work through in these pages are used in the Paths of the Sun Simulator. Question 1: For each of the following statements questions. (A) On May 25th , the sun is in the constellation of ___________________. (B) What would

  3. Kinetic decoupling of WIMPs: analytic expressions

    E-Print Network [OSTI]

    Visinelli, Luca

    2015-01-01T23:59:59.000Z

    We present a general expression for the values of the average kinetic energy and of the temperature of kinetic decoupling of a WIMP, valid for any cosmological model. We show an example of the usage of our solution when the Hubble rate has a power-law dependence on temperature, and we show results for the specific cases of kination cosmology and low- temperature reheating cosmology.

  4. Electromagnetic Radiation and Motion of Real Particle

    E-Print Network [OSTI]

    Jozef Klacka

    2001-06-21T23:59:59.000Z

    Relativistically covariant equation of motion for real dust particle under the action of electromagnetic radiation is derived. The particle is neutral in charge. Equation of motion is expressed in terms of particle's optical properties, standardly used in optics for stationary particles.

  5. Roadmapbased Motion Planning in Dynamic Environments

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Roadmap­based Motion Planning in Dynamic Environments Jur P. van den Berg Mark H. Overmars.cs.uu.nl #12; Roadmap­based Motion Planning in Dynamic Environments Jur P. van den Berg Mark H. Overmars April obstacles. We propose a practical algorithm based on a roadmap that is created for the static part

  6. Robot Motion Planning with Uncertainty The Challenge

    E-Print Network [OSTI]

    Whitton, Mary C.

    Roadmap (SMR), a new motion planning framework that explicitly considers uncertainty in robot motion approach. Our framework builds on the highly successful approach used in Probabilistic Roadmaps (PRMs of discrete states is selected in the state space, and a roadmap is built that represents their collision

  7. Metrics for sampling-based motion planning

    E-Print Network [OSTI]

    Morales Aguirre, Marco Antonio

    2009-05-15T23:59:59.000Z

    A motion planner finds a sequence of potential motions for a robot to transit from an initial to a goal state. To deal with the intractability of this problem, a class of methods known as sampling-based planners build approximate representations...

  8. The apsidal motion in close binary stars

    E-Print Network [OSTI]

    B. V. Vasiliev

    2001-10-10T23:59:59.000Z

    It is usually accepted to consider an apsidal motion in binary stars as a direct confirmation that a substance inside stars is not uniformly distributed. It is shown in this paper that the apsidal motion in binary systems observation data is in a good agreement with an existence of uniform plasma cores inside stars if they consist of hydrogen-deuterium-helium mixture.

  9. Computing realizations of reaction kinetic networks with given properties

    E-Print Network [OSTI]

    Gorban, Alexander N.

    chemical reactions, reaction kinetic systems are the main building blocks of highly interconnected´avid Csercsik, Katalin M. Hangos Process Control Research Group, Computer and Automation Research Institute}@scl.sztaki.hu Keywords: Applications: (bio)chemical kinetics, reaction kinetic systems, mass action kinet- ics

  10. A Mobile Motion Analysis System Using Intertial Sensors for Analysis of Lower Limb Prosthetics

    SciTech Connect (OSTI)

    Mueller, John Kyle P [ORNL] [ORNL; Ericson, Milton Nance [ORNL] [ORNL; Farquhar, Ethan [ORNL] [ORNL; Lind, Randall F [ORNL] [ORNL; Evans III, Boyd Mccutchen [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    Soldiers returning from the global war on terror requiring lower leg prosthetics generally have different concerns and requirements than the typical lower leg amputee. These subjects are usually young, wish to remain active and often desire to return to active military duty. As such, they demand higher performance from their prosthetics, but are at risk for chronic injury and joint conditions in their unaffected limb. Motion analysis is a valuable tool in assessing the performance of new and existing prosthetic technologies as well as the methods in fitting these devices to both maximize performance and minimize risk of injury for the individual soldier. We are developing a mobile, low-cost motion analysis system using inertial measurement units (IMUs) and two custom force sensors that detect ground reaction forces and moments on both the unaffected limb and prosthesis. IMUs were tested on a robot programmed to simulate human gait motion. An algorithm which uses a kinematic model of the robot and an extended Kalman filter (EKF) was used to convert the rates and accelerations from the gyro and accelerometer into joint angles. Compared to encoder data from the robot, which was considered the ground truth in this experiment, the inertial measurement system had a RMSE of <1.0 degree. Collecting kinematic and kinetic data without the restrictions and expense of a motion analysis lab could help researchers, designers and prosthetists advance prosthesis technology and customize devices for individuals. Ultimately, these improvements will result in better prosthetic performance for the military population.

  11. Seismic switch for strong motion measurement

    DOE Patents [OSTI]

    Harben, Philip E. (Oakley, CA); Rodgers, Peter W. (Santa Barbara, CA); Ewert, Daniel W. (Patterson, CA)

    1995-01-01T23:59:59.000Z

    A seismic switching device that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period.

  12. Seismic switch for strong motion measurement

    DOE Patents [OSTI]

    Harben, P.E.; Rodgers, P.W.; Ewert, D.W.

    1995-05-30T23:59:59.000Z

    A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.

  13. Noncommutative minisuperspace, gravity-driven acceleration and kinetic inflation

    E-Print Network [OSTI]

    S. M. M. Rasouli; Paulo Vargas Moniz

    2014-11-05T23:59:59.000Z

    In this paper, we introduce a noncommutative version of the Brans-Dicke (BD) theory and obtain the Hamiltonian equations of motion for a spatially flat Friedmann--Lema\\^{\\i}tre--Robertson--Walker universe filled with a perfect fluid. We focus on the case where the scalar potential as well as the ordinary matter sector are absent. Then, we investigate gravity-driven acceleration and kinetic inflation in this noncommutative BD cosmology. In contrast to the commutative case, in which the scale factor and BD scalar field are in a power-law form, in the noncommutative case the power-law scalar factor is multiplied by a dynamical exponential warp factor. This warp factor depends on the noncommutative parameter as well as the momentum conjugate associated to the BD scalar field. We show that the BD scalar field and the scale factor effectively depend on the noncommutative parameter. For very small values of this parameter, we obtain an appropriate inflationary solution, which can overcome problems within BD standard cosmology in a more efficient manner. Furthermore, a graceful exit from an early acceleration epoch towards a decelerating radiation epoch is provided. For late times, due to the presence of the noncommutative parameter, we obtain a zero acceleration epoch, which can be interpreted as the coarse-grained explanation.

  14. Chemical Kinetic Modeling of Advanced Transportation Fuels

    SciTech Connect (OSTI)

    PItz, W J; Westbrook, C K; Herbinet, O

    2009-01-20T23:59:59.000Z

    Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

  15. Saffman-Taylor fingers with kinetic undercooling

    E-Print Network [OSTI]

    Gardiner, Bennett P J; Dallaston, Michael C; Moroney, Timothy J

    2015-01-01T23:59:59.000Z

    The mathematical model of a steadily propagating Saffman-Taylor finger in a Hele-Shaw channel has applications to two-dimensional interacting streamer discharges which are aligned in a periodic array. In the streamer context, the relevant regularisation on the interface is not provided by surface tension, but instead has been postulated to involve a mechanism equivalent to kinetic undercooling, which acts to penalise high velocities and prevent blow-up of the unregularised solution. Previous asymptotic results for the Hele-Shaw finger problem with kinetic undercooling suggest that for a given value of the kinetic undercooling parameter, there is a discrete set of possible finger shapes, each analytic at the nose and occupying a different fraction of the channel width. In the limit in which the kinetic undercooling parameter vanishes, the fraction for each family approaches 1/2, suggesting that this 'selection' of 1/2 by kinetic undercooling is qualitatively similar to the well-known analogue with surface tens...

  16. Slow motion responses of compliant offshore structures

    E-Print Network [OSTI]

    Cao, Peimin

    1996-01-01T23:59:59.000Z

    -HEAVE-PITCH MOTION ANALYSIS 3. 1 Mathematical Formulation . 3. 1. 1 Governing equation for surge-heave-pitch motions 3. 1. 2 Numerical scheme 3. 2 Comparisons of the JIP Spar . 3. 2. 1 Experimental set-up 3. 2. 2 Regular wave 3. 2. 3 Irregular wave 3. 2. 4... structural analyses. Courtesy of American Petroleum Institute. SDOF surge motion model of the JIP Spar. S?rge static offset test of the JIP Spar in the calm water. Surge RAOs of the JIP Spar: experiment ( ~ ); present ( ? ? ); and HOBEM ( ? - ? ). 14...

  17. A model of ATL ground motion for storage rings

    E-Print Network [OSTI]

    Wolski, Andrzej; Walker, Nicholas J.

    2003-01-01T23:59:59.000Z

    A MODEL OF ATL GROUND MOTION FOR STORAGE RINGS A. WolskiMODEL OF ATL GROUND MOTION FOR STORAGE RINGS* A. Wolski # ,

  18. advanced motion control: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25 MARCH 2012 | DOI: 10.1038NPHYS2269 Attosecond control of collective electron motion Materials Science Websites Summary: electron motion in plasmas Antonin Borot1 , Arnaud...

  19. Effects of Seismic Motion Incoherency on SSI and SSSI Responses...

    Office of Environmental Management (EM)

    Effects of Seismic Motion Incoherency on SSI and SSSI Responses of Nuclear Structures for Different Soil Site Conditions Effects of Seismic Motion Incoherency on SSI and SSSI...

  20. Hydrogen Species Motion in Piezoelectrics: A Quasi-Elastic Neutron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Species Motion in Piezoelectrics: A Quasi-Elastic Neutron Scattering Study. Hydrogen Species Motion in Piezoelectrics: A Quasi-Elastic Neutron Scattering Study. Abstract: Hydrogen...

  1. Neptunium Binding Kinetics with Arsenazo(III)

    SciTech Connect (OSTI)

    Leigh R. Martin; Aaron T. Johnson; Stephen P. Mezyk

    2014-08-01T23:59:59.000Z

    This document has been prepared to meet FCR&D level 2 milestone M2FT-14IN0304021, “Report on the results of actinide binding kinetics with aqueous phase complexants” This work was carried out under the auspices of the Thermodynamics and Kinetics of Advanced Separations Systems FCR&D work package. The report details kinetics experiments that were performed to measure rates of aqueous phase complexation for pentavalent neptunium with the chromotropic dye Arsenazo III (AAIII). The studies performed were designed to determine how pH, ionic strength and AAIII concentration may affect the rate of the reaction. A brief comparison with hexavalent neptunium is also made. It was identified that as pH was increased the rate of reaction also increased, however increasing the ionic strength and concentration of AAIII had the opposite effect. Interestingly, the rate of reaction of Np(VI) with AAIII was found to be slower than that of the Np(V) reaction.

  2. A simple theory of protein folding kinetics

    E-Print Network [OSTI]

    Pande, Vijay S

    2010-01-01T23:59:59.000Z

    We present a simple model of protein folding dynamics that captures key qualitative elements recently seen in all-atom simulations. The goals of this theory are to serve as a simple formalism for gaining deeper insight into the physical properties seen in detailed simulations as well as to serve as a model to easily compare why these simulations suggest a different kinetic mechanism than previous simple models. Specifically, we find that non-native contacts play a key role in determining the mechanism, which can shift dramatically as the energetic strength of non-native interactions is changed. For protein-like non-native interactions, our model finds that the native state is a kinetic hub, connecting the strength of relevant interactions directly to the nature of folding kinetics.

  3. Kinetic model for quartz and spinel dissolution during melting of high-level-waste glass batch

    SciTech Connect (OSTI)

    Pokorny, Richard; Rice, Jarrett A.; Crum, Jarrod V.; Schweiger, Michael J.; Hrma, Pavel R.

    2013-07-24T23:59:59.000Z

    The dissolution of quartz particles and the growth and dissolution of crystalline phases during the conversion of batch to glass potentially affects both the glass melting process and product quality. Crystals of spinel exiting the cold cap to molten glass below can be troublesome during the vitrification of iron-containing high-level wastes. To estimate the distribution of quartz and spinel fractions within the cold cap, we used kinetic models that relate fractions of these phases to temperature and heating rate. Fitting the model equations to data showed that the heating rate, apart from affecting quartz and spinel behavior directly, also affects them indirectly via concurrent processes, such as the formation and motion of bubbles. Because of these indirect effects, it was necessary to allow one kinetic parameter (the pre-exponential factor) to vary with the heating rate. The resulting kinetic equations are sufficiently simple for the detailed modeling of batch-to-glass conversion as it occurs in glass melters. The estimated fractions and sizes of quartz and spinel particles as they leave the cold cap, determined in this study, will provide the source terms needed for modeling the behavior of these solid particles within the flow of molten glass in the melter.

  4. Measuring kinetic energy changes in the mesoscale with low acquisition rates

    SciTech Connect (OSTI)

    Roldán, É. [ICFO–Institut de Ciències Fotòniques, Mediterranean Technology Park, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona) (Spain); GISC–Grupo Interdisciplinar de Sistemas Complejos, Madrid (Spain); Martínez, I. A.; Rica, R. A., E-mail: rul@ugr.es [ICFO–Institut de Ciències Fotòniques, Mediterranean Technology Park, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona) (Spain); Dinis, L. [GISC–Grupo Interdisciplinar de Sistemas Complejos, Madrid (Spain); Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2014-06-09T23:59:59.000Z

    We report on the measurement of the average kinetic energy changes in isothermal and non-isothermal quasistatic processes in the mesoscale, realized with a Brownian particle trapped with optical tweezers. Our estimation of the kinetic energy change allows to access to the full energetic description of the Brownian particle. Kinetic energy estimates are obtained from measurements of the mean square velocity of the trapped bead sampled at frequencies several orders of magnitude smaller than the momentum relaxation frequency. The velocity is tuned applying a noisy electric field that modulates the amplitude of the fluctuations of the position and velocity of the Brownian particle, whose motion is equivalent to that of a particle in a higher temperature reservoir. Additionally, we show that the dependence of the variance of the time-averaged velocity on the sampling frequency can be used to quantify properties of the electrophoretic mobility of a charged colloid. Our method could be applied to detect temperature gradients in inhomogeneous media and to characterize the complete thermodynamics of biological motors and of artificial micro and nanoscopic heat engines.

  5. Test particle motion in modified gravity theories

    E-Print Network [OSTI]

    Mahmood Roshan

    2013-02-05T23:59:59.000Z

    We derive the equations of motion of an electrically neutral test particle for modified gravity theories in which the covariant divergence of the ordinary matter energy-momentum tensor dose not vanish (i.e. $\

  6. Information Fusion for Improved Motion Estimation 

    E-Print Network [OSTI]

    Peacock, Andrew M

    Motion Estimation is an important research field with many commercial applications including surveillance, navigation, robotics, and image compression. As a result, the field has received a great deal of attention and ...

  7. On learning task-directed motion plans

    E-Print Network [OSTI]

    Finney, Sarah, 1974-

    2009-01-01T23:59:59.000Z

    Robotic motion planning is a hard problem for robots with more than just a few degrees of freedom. Modern probabilistic planners are able to solve many problems very quickly, but for difficult problems, they are still ...

  8. The Design of Shape from Motion Constraints

    E-Print Network [OSTI]

    Caine, Michael E.

    1993-09-01T23:59:59.000Z

    This report presents a set of representations methodologies and tools for the purpose of visualizing, analyzing and designing functional shapes in terms of constraints on motion. The core of the research is an interactive ...

  9. DYNAMIC CHARACTERISTICSOFLIQUID MOTION INPARTIALLYFILLEDTANKS OF SPINNING SPACECRAFT

    E-Print Network [OSTI]

    . I. Introduction A recent trend in geosynchronousspacecraft design is using liquid apogee motors. In these spacecraft, liquid motion significantly influence the spacecraft attitude stability and control. LEASAT, a geosynchronous spacecraft with liquid apogee motor, launched in September 1984, experienced attitudecontrol

  10. Collective motion in quantum diffusive environment

    E-Print Network [OSTI]

    V. M. Kolomietz; S. Å berg; S. V. Radionov

    2007-06-16T23:59:59.000Z

    The general problem of dissipation in macroscopic large-amplitude collective motion and its relation to energy diffusion of intrinsic degrees of freedom of a nucleus is studied. By applying the cranking approach to the nuclear many-body system, a set of coupled dynamical equations for the collective classical variable and the quantum mechanical occupancies of the intrinsic nuclear states is derived. Different dynamical regimes of the intrinsic nuclear motion and its consequences on time properties of collective dissipation are discussed.

  11. Simulating plant motion with levels of detail

    E-Print Network [OSTI]

    Flannery, Rebecca Lynn

    2013-02-22T23:59:59.000Z

    SIMULATING PLANT MOTION WITH LEVELS OF DETAIL A Senior Honors Thesis by REBECCA LYNN FLANNERY Submitted to the Office of Honors Programs k. Academic Scholarships Texas AkM University in partial fulfillment of the requirements... of the UNIVERSITY UNDERGRADUATE RESEARCH FELLOWS April 2003 Group: Engineering & Physics I SIMULATING PLANT MOTION WITH LEVELS OF DETAIL A Senior Honors Thesis by REBECCA LYNN FLANNERY Submitted to the Office of Honors Programs & Academic Scholarships...

  12. Ground motion: An introduction for accelerator builders

    SciTech Connect (OSTI)

    Fischer, G.E.

    1992-02-01T23:59:59.000Z

    In this seminar we will review some of the characteristics of the major classes of ground motion in order to determine whether their effects must be considered or place fundamental limits on the sitting and/or design of modern storage rings and linear colliders. The classes discussed range in frequency content from tidal deformation and tectonic motions through earthquakes and microseisms. Countermeasures currently available are briefly discussed.

  13. Kinetic determination of selenium in biological material

    SciTech Connect (OSTI)

    Efremenko, O.A.; Krasnyuk, I.I.; Kudrin, A.N.; Rudenko, B.A.

    1986-05-10T23:59:59.000Z

    A very promising method for selenium determination is a kinetic analytical procedure that combines the simplicity and availability of physical instrumentation with a low analyte detection limit. This paper reports a modification of the method to enable the determination of selenium in rat blood and involves decomposing the sample with a mixture of nitric and perchloric acids, separation of the selenium (IV) from other decomposition products, and quantitatively determining selenium by the described kinetic method using the indicator reaction of iron (II) edetate oxidation by sodium nitrate.

  14. Model Independent Bounds on Kinetic Mixing

    SciTech Connect (OSTI)

    Hook, Anson; Izaguirre, Eder; Wacker, Jay G.; /SLAC

    2011-08-22T23:59:59.000Z

    New Abelian vector bosons can kinetically mix with the hypercharge gauge boson of the Standard Model. This letter computes the model independent limits on vector bosons with masses from 1 GeV to 1 TeV. The limits arise from the numerous e{sup +}e{sup -} experiments that have been performed in this energy range and bound the kinetic mixing by {epsilon} {approx}< 0.03 for most of the mass range studied, regardless of any additional interactions that the new vector boson may have.

  15. Kinetic studies of elementary chemical reactions

    SciTech Connect (OSTI)

    Durant, J.L. Jr. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01T23:59:59.000Z

    This program concerning kinetic studies of elementary chemical reactions is presently focussed on understanding reactions of NH{sub x} species. To reach this goal, the author is pursuing experimental studies of reaction rate coefficients and product branching fractions as well as using electronic structure calculations to calculate transition state properties and reaction rate calculations to relate these properties to predicted kinetic behavior. The synergy existing between the experimental and theoretical studies allow one to gain a deeper insight into more complex elementary reactions.

  16. On the Kinematics of Undulator Girder Motion

    SciTech Connect (OSTI)

    Welch, J; /SLAC; ,

    2011-08-18T23:59:59.000Z

    The theory of rigid body kinematics is used to derive equations that govern the control and measurement of the position and orientation of undulator girders. The equations form the basis of the girder matlab software on the LCLS control system. The equations are linear for small motion and easily inverted as desired. For reference, some relevant girder geometrical data is also given. Equations 6-8 relate the linear potentiometer readings to the motion of the girder. Equations 9-11 relate the cam shaft angles to the motion of the girder. Both sets are easily inverted to either obtain the girder motion from the angles or readings, or, to find the angles and readings that would give a desired motion. The motion of any point on the girder can be calculated by applying either sets of equations to the two cam-planes and extrapolating in the z coordinate using equation 19. The formulation of the equations is quite general and easily coded via matrix and vector methods. They form the basis of the girder matlab software on the LCLS control system.

  17. Slow Sorption Kinetics of Pentachlorophenol on Soil

    E-Print Network [OSTI]

    Sparks, Donald L.

    -term sorption kinetic data and a void in the understanding of the factors that control the slow sorption stage virtually unexplored. A complete understanding of the mechanisms that control the slow sorption of organic.1; cation exchange capacity (CEC), 5.02 cmol/kg; 1.7% organic matter (measured by incineration); 29.6% sand

  18. CHEMICAL THERMODYNAMICS AND KINETICS Class Meetings

    E-Print Network [OSTI]

    Sherrill, David

    CHEM 6471 CHEMICAL THERMODYNAMICS AND KINETICS Class Meetings 9:35 ­ 10:55 am, Tuesday and Thursday of October 22-26 Textbooks Molecular Thermodynamics by D.A McQuarrie and J.D. Simon, University Science Books the laws of classical thermodynamics and some of their chemical applications. It also covers basic

  19. Interpreting the Aggregation Kinetics of Amyloid Peptides

    E-Print Network [OSTI]

    Caflisch, Amedeo

    Amyloid fibrils are insoluble mainly -sheet aggregates of proteins or peptides. The multi-step process) and amyloid-protected states, is used to investigate the kinetics of aggregation and the pathways of fibril state. The minimal-size aggregate able to form a fibril is generated by collisions of oligomers

  20. STATISTICAL ANALYSIS OF PROTEIN FOLDING KINETICS

    E-Print Network [OSTI]

    Dinner, Aaron

    STATISTICAL ANALYSIS OF PROTEIN FOLDING KINETICS AARON R. DINNER New Chemistry Laboratory for Protein Folding: Advances in Chemical Physics, Volume 120. Edited by Richard A. Friesner. Series Editors Experimental and theoretical studies have led to the emergence of a unified general mechanism for protein

  1. Thermodynamic and kinetic modeling of transcriptional pausing

    E-Print Network [OSTI]

    Chen, Kuang-Yu

    in the cotranscriptional RNA secondary structure upstream of the RNA exit channel. The calculations involve no adjustable of recovery of backtracked paused complexes. A crucial ingredient of our model is the incorporation of kinetic secondary structure, an aspect not included explicitly in previous attempts at modeling the transcrip- tion

  2. Ethylbenzene dehydrogenation into styrene: kinetic modeling and reactor simulation

    E-Print Network [OSTI]

    Lee, Won Jae

    2007-04-25T23:59:59.000Z

    and physicochemical criteria. The kinetic model yielded an excellent fit of the experimental data. The intrinsic kinetic parameters were used with the heterogeneous fixed bed reactor model which is explicitly accounting for the diffusional limitations inside...

  3. On the Geometrical Gyro-Kinetic Theory Emmanuel Frnod

    E-Print Network [OSTI]

    Boyer, Edmond

    On the Geometrical Gyro-Kinetic Theory Emmanuel Frénod Mathieu Lutz Abstract - Considering introduced : Partial Lie Sums. Keywords - Tokamak; Stellarator; Gyro-Kinetic Approximation; Hamiltonian.6 The Darboux Coordinates System . . . . . . . . . . . . . . . . . . . . . . . . 32 3.7 Expression

  4. Ethylbenzene dehydrogenation into styrene: kinetic modeling and reactor simulation 

    E-Print Network [OSTI]

    Lee, Won Jae

    2007-04-25T23:59:59.000Z

    detailed kinetic model for coke formation and gasification, which was coupled to the kinetic model for the main reactions. The calculation of the dynamic equilibrium coke content provided a crucial guideline for the selection of the steam to ethylbenzene...

  5. Paper # XXX Topic: Reaction Kinetics Eastern State Fall Technical Meeting

    E-Print Network [OSTI]

    Knyazev, Vadim D.

    Paper # XXX Topic: Reaction Kinetics 1 Eastern State Fall Technical Meeting Chemical & Physical ­ 1017 s-1 #12;Paper # XXX Topic: Reaction Kinetics 2 and activation energy values close to the C-C bond

  6. Adsorption, Desorption, and Displacement Kinetics of H2O and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Displacement Kinetics of H2O and CO2 on TiO2(110). Adsorption, Desorption, and Displacement Kinetics of H2O and CO2 on TiO2(110). Abstract: The adsorption, desorption, and...

  7. Direct kinetic correlation of carriers and ferromagnetism in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kinetic correlation of carriers and ferromagnetism in Co2+ : ZnO. Direct kinetic correlation of carriers and ferromagnetism in Co2+ : ZnO. Abstract: We report the use of controlled...

  8. Products and Kinetics of the Reactions of an Alkane Monolayer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Products and Kinetics of the Reactions of an Alkane Monolayer and a Terminal Alkene Monolayer with NO Radicals. Products and Kinetics of the Reactions of an Alkane Monolayer and a...

  9. “Batch” Kinetics in Flow: Online IR Analysis and Continuous Control

    E-Print Network [OSTI]

    Moore, Jason S.

    Currently, kinetic data is either collected under steady-state conditions in flow or by generating time-series data in batch. Batch experiments are generally considered to be more suitable for the generation of kinetic ...

  10. Jeff Haack: Applications of computational kinetic theory | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jeff Haack: Applications of computational kinetic theory Jan 28 2014 10:15 AM - 11:15 AM ORNL CONTACT : Email: Billy Fields Phone: Add to Calendar SHARE Kinetic theory describes...

  11. Crustal motion in Indonesia from Global Positioning System measurements

    E-Print Network [OSTI]

    McCaffrey, Robert

    Crustal motion in Indonesia from Global Positioning System measurements Y. Bock,1 L. Prawirodirdjo: crustal motion, Indonesia tectonics, GPS, current plate motions, Southeast Asia Citation: Bock, Y., L, Crustal motion in Indonesia from Global Positioning System measurements, J. Geophys. Res., 108(B8), 2367

  12. Chemical Kinetic Modeling of Hydrogen Combustion Limits

    SciTech Connect (OSTI)

    Pitz, W J; Westbrook, C K

    2008-04-02T23:59:59.000Z

    A detailed chemical kinetic model is used to explore the flammability and detonability of hydrogen mixtures. In the case of flammability, a detailed chemical kinetic mechanism for hydrogen is coupled to the CHEMKIN Premix code to compute premixed, laminar flame speeds. The detailed chemical kinetic model reproduces flame speeds in the literature over a range of equivalence ratios, pressures and reactant temperatures. A series of calculation were performed to assess the key parameters determining the flammability of hydrogen mixtures. Increased reactant temperature was found to greatly increase the flame speed and the flammability of the mixture. The effect of added diluents was assessed. Addition of water and carbon dioxide were found to reduce the flame speed and thus the flammability of a hydrogen mixture approximately equally well and much more than the addition of nitrogen. The detailed chemical kinetic model was used to explore the detonability of hydrogen mixtures. A Zeldovich-von Neumann-Doring (ZND) detonation model coupled with detailed chemical kinetics was used to model the detonation. The effectiveness on different diluents was assessed in reducing the detonability of a hydrogen mixture. Carbon dioxide was found to be most effective in reducing the detonability followed by water and nitrogen. The chemical action of chemical inhibitors on reducing the flammability of hydrogen mixtures is discussed. Bromine and organophosphorus inhibitors act through catalytic cycles that recombine H and OH radicals in the flame. The reduction in H and OH radicals reduces chain branching in the flame through the H + O{sub 2} = OH + O chain branching reaction. The reduction in chain branching and radical production reduces the flame speed and thus the flammability of the hydrogen mixture.

  13. Can We Distinguish Biological Motions of Virtual Humans? Perceptual Study With Captured Motions of Weight Lifting.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Information Systems-- Animations ­ Artificial, augmented, and virtual realities Keywords: Human Motions of Weight Lifting. Ludovic Hoyet IRISA - INRIA Bunraku Team, Rennes Franck Multon Mouvement Sport Sant of Edinburgh Figure 1: Subject lifting a 6kg dumbbell: video of a real motion (up) and corresponding captured

  14. AER1301: KINETIC THEORY OF GASES Assignment #4

    E-Print Network [OSTI]

    Groth, Clinton P. T.

    - equilibrium cases, up to second order. (b) Derive an expression for the non-conservative form of the kineticAER1301: KINETIC THEORY OF GASES Assignment #4 1. Consider a monatomic gas with one translational by the relaxation time approx- imation. Neglecting external forces, the conserved form of the kinetic equation

  15. Kinetic modelling of the thermal decomposition of ettringite into metaettringite

    E-Print Network [OSTI]

    Boyer, Edmond

    the validity of kinetic assumptions (rate-determining step, expression of the rate as d/dt = k f() ...), a good1 Kinetic modelling of the thermal decomposition of ettringite into metaettringite J. Pourchez on nucleation and growth mechanisms of metaettringite remained. Therefore, a better understanding of the kinetic

  16. MODELING OF HYDRATION KINETICS AND SHRINKAGE OF PORTLAND CEMENT PASTE

    E-Print Network [OSTI]

    Meyer, Christian

    MODELING OF HYDRATION KINETICS AND SHRINKAGE OF PORTLAND CEMENT PASTE Feng Lin Submitted in partial and Sciences COLUMBIA UNIVERSITY 2006 #12;MODELING OF HYDRATION KINETICS AND SHRINKAGE OF PORTLAND CEMENT PASTE;ABSTRACT MODELING OF HYDRATION KINETICS AND SHRINKAGE OF PORTLAND CEMENT PASTE Feng Lin A mathematical

  17. Adsorption Kinetics of Surfactants at Fluid-Fluid Interfaces

    E-Print Network [OSTI]

    Andelman, David

    Adsorption Kinetics of Surfactants at Fluid-Fluid Interfaces Haim Diamant and David Andelman School-Fluid Interfaces, Adsorption, Adsorption Kinetics, Interfacial Tension. 1 #12;Abstract We review a new theoretical approach to the kinetics of surfactant adsorption at fluid-fluid interfaces. It yields a more complete

  18. Worldwide Oil Production Michaelis-Menten Kinetics Correlation and Regression

    E-Print Network [OSTI]

    Watkins, Joseph C.

    Michaelis-Menten Kinetics Worldwide Oil Production Example. The modern history of petroleum began in the 19Worldwide Oil Production Michaelis-Menten Kinetics Topic 4 Correlation and Regression Transformed Variables 1 / 13 #12;Worldwide Oil Production Michaelis-Menten Kinetics Outline Worldwide Oil Production

  19. The Inverse Kinetics Method and PID Compensation of the

    E-Print Network [OSTI]

    The Inverse Kinetics Method and PID Compensation of the Annular Core Research Reactor by Benjamin Kinetics Method and PID Compensation of the Annular Core Research Reactor by Benjamin Garnas ABSTRACT Kinetics Method and PID Compensation of the Annular Core Research Reactor by Benjamin Garnas B.S. General

  20. Kinetic and Macroscopic Models for Semiconductors Ansgar Jungel

    E-Print Network [OSTI]

    Jüngel, Ansgar

    Kinetic and Macroscopic Models for Semiconductors Ansgar J¨ungel Vienna University of Technology, Austria www.jungel.at.vu Ansgar J¨ungel (TU Wien) Kinetic Semiconductor Models www.jungel.at.vu 1 / 165 #12;Contents 1 Introduction 2 Semiconductor modeling Basics of semiconductor physics Kinetic models 3

  1. Fuel-motion diagnostics and cineradiography

    SciTech Connect (OSTI)

    DeVolpi, A.

    1982-09-01T23:59:59.000Z

    Nuclear and non-nuclear applications of cineradiography are reviewed, with emphasis on diagnostic instrumentation for in-pile transient-reactor safety testing of nuclear fuel motion. The primary instrument for this purpose has been the fast-neutron hodoscope, which has achieved quantitative monitoring of time, location, mass, and velocity of fuel movement under the difficult conditions associated with transient-reactor experiments. Alternative diagnostic devices that have been developed have not matched the capabilities of the hodoscope. Other applications for the fuel-motion diagnostic apparatus are also evolving, including time-integrated radiography and direct time- and space-resolved fuel-pin power monitoring. Although only two reactors are now actively equipped with high-resolution fuel-motion diagnostic systems, studies and tests have been carried out in and for many other reactors.

  2. Kinetics of small single particle combustion of zirconium alloy

    SciTech Connect (OSTI)

    Wei Haoyan; Yoo, Choong-Shik [Department of Chemistry and Institute for Shock Physics, Washington State University, Pullman, Washington 99164-2816 (United States)

    2012-01-15T23:59:59.000Z

    We present quantitative kinetic information regarding small, 1-10 {mu}m in diameter, single particle combustion of Zr-rich metal alloy foils subjected to either mechanical impacts or laser-ablation. The lights from combustion of metal fragments were recorded on a high-speed camera. The particle size was determined by the motion analysis of individual particle trajectory based on an aerodynamic drag law and further verified by the microstructure and chemical composition analysis of recovered post-burn particles. The measured particle sizes show a log-normal distribution centered at around 3.1 {mu}m in diameter, and the composition of recovered particles is that of fully oxidized ZrO{sub 2}. The temperature evolution of each particle along the space/time-trajectory is determined based on the thermal emission from combustion using a single-color photographic spectro-pyrometry. The result indicates that the particle has reached the maximum combustion temperature of 4000 K, well beyond the melting temperature of ZrO{sub 2}, and undergone the solidification of molten ZrO{sub 2} during the cooling stage. It also shows that the maximum combustion temperature decreases linearly with increasing the particle diameter, following the correlation t aD{sup 1.5-1.8} between the burn time (t) and the particle diameter (D). Combining the particle size, the burn time, and the particle temperature, both temperature and mass burn rates are obtained as a function of particle size. As the particle size increases, the temperature burn rate decreases, whereas the mass burn rate goes in the opposite direction.

  3. Ion mediated crosslink driven mucous swelling kinetics

    E-Print Network [OSTI]

    Sircar, S

    2015-01-01T23:59:59.000Z

    We present an experimentally guided, multi-phasic, multi-species ionic gel model to compare and make qualitative predictions on the rheology of mucus of healthy individuals (Wild Type) versus those infected with Cystic Fibrosis. The mixture theory consists of the mucus (polymer phase) and water (solvent phase) as well as several different ions: H+, Na+ and Ca++. The model is linearized to study the hydration of spherically symmetric mucus gels and calibrated against the experimental data of mucus diffusivities. Near equilibrium, the linearized form of the equation describing the radial size of the gel, reduces to the well-known expression used in the kinetic theory of swelling hydrogels. Numerical studies reveal that the Donnan potential is the dominating mechanism driving the mucus swelling/deswelling transition. However, the altered swelling kinetics of the Cystic Fibrosis infected mucus is not merely governed by the hydroelectric composition of the swelling media, but also due to the altered movement of el...

  4. Niobium Silicon alloys for Kinetic Inductance Detectors

    E-Print Network [OSTI]

    Calvo, M; Monfardini, A; Benoit, A; Boudou, N; Bourrion, O; Catalano, A; Dumoulin, L; Goupy, J; Sueur, H Le; Marnieros, S

    2013-01-01T23:59:59.000Z

    We are studying the properties of Niobium Silicon amorphous alloys as a candidate material for the fabrication of highly sensitive Kinetic Inductance Detectors (KID), optimized for very low optical loads. As in the case of other composite materials, the NbSi properties can be changed by varying the relative amounts of its components. Using a NbSi film with T_c around 1 K we have been able to obtain the first NbSi resonators, observe an optical response and acquire a spectrum in the band 50 to 300 GHz. The data taken show that this material has very high kinetic inductance and normal state surface resistivity. These properties are ideal for the development of KID. More measurements are planned to further characterize the NbSi alloy and fully investigate its potential.

  5. The feasibility of head motion tracking in helical CT: A step toward motion correction

    SciTech Connect (OSTI)

    Kim, Jung-Ha [Medical Radiation Sciences, University of Sydney, NSW 2141 (Australia); Nuyts, Johan [Department of Nuclear Medicine, Katholieke Universiteit, Leuven, Belgium and Medical Imaging Research Center, Katholieke Universiteit, Leuven (Belgium); Kuncic, Zdenka [School of Physics, University of Sydney, NSW 2006 (Australia); Fulton, Roger [Medical Radiation Sciences, University of Sydney, NSW 2141 (Australia); School of Physics, University of Sydney, NSW 2006 (Australia); Department of Medical Physics, Westmead Hospital, Westmead, NSW 2145 (Australia)

    2013-04-15T23:59:59.000Z

    Purpose: To establish a practical and accurate motion tracking method for the development of rigid motion correction methods in helical x-ray computed tomography (CT). Methods: A commercially available optical motion tracking system provided 6 degrees of freedom pose measurements at 60 Hz. A 4 Multiplication-Sign 4 calibration matrix was determined to convert raw pose data acquired in tracker coordinates to a fixed CT coordinate system with origin at the isocenter of the scanner. Two calibration methods, absolute orientation (AO), and a new method based on image registration (IR), were compared by means of landmark analysis and correlation coefficient in phantom images coregistered using the derived motion transformations. Results: Transformations calculated using the IR-derived calibration matrix were found to be more accurate, with positional errors less than 0.5 mm (mean RMS), and highly correlated image voxel intensities. The AO-derived calibration matrix yielded larger mean RMS positional errors ( Asymptotically-Equal-To 1.0 mm), and poorer correlation coefficients. Conclusions: The authors have demonstrated the feasibility of accurate motion tracking for retrospective motion correction in helical CT. Their new IR-based calibration method based on image registration and function minimization was simpler to perform and delivered more accurate calibration matrices. This technique is a useful tool for future work on rigid motion correction in helical CT and potentially also other imaging modalities.

  6. A New Spin on Neutrino Quantum Kinetics

    E-Print Network [OSTI]

    Vincenzo Cirigliano; George M. Fuller; Alexey Vlasenko

    2014-06-20T23:59:59.000Z

    We present and discuss the quantum kinetic equations (QKEs) which govern neutrino flavor and spin evolution in hot, dense, and anisotropic media. A novel feature of these QKEs is the presence of a coherent spin-flip term which can mediate neutrino-antineutrino transformation for Majorana neutrinos and active-sterile transformation for Dirac neutrinos. We provide an alternative derivation of this term based on a standard effective Hamiltonian.

  7. Kinetic regulation of coated vesicle secretion

    E-Print Network [OSTI]

    Lionel Foret; Pierre Sens

    2008-07-28T23:59:59.000Z

    The secretion of vesicles for intracellular transport often rely on the aggregation of specialized membrane-bound proteins into a coat able to curve cell membranes. The nucleation and growth of a protein coat is a kinetic process that competes with the energy-consuming turnover of coat components between the membrane and the cytosol. We propose a generic kinetic description of coat assembly and the formation of coated vesicles, and discuss its implication to the dynamics of COP vesicles that traffic within the Golgi and with the Endoplasmic Reticulum. We show that stationary coats of fixed area emerge from the competition between coat growth and the recycling of coat components, in a fashion resembling the treadmilling of cytoskeletal filaments. We further show that the turnover of coat components allows for a highly sensitive switching mechanism between a quiescent and a vesicle producing membrane, upon a slowing down of the exchange kinetics. We claim that the existence of this switching behaviour, also triggered by factors such as the presence of cargo and variation of the membrane mechanical tension, allows for efficient regulation of vesicle secretion. We propose a model, supported by different experimental observations, in which vesiculation of secretory membranes is impaired by the energy consuming desorption of coat proteins, until the presence of cargo or other factors triggers a dynamical switch into a vesicle producing state.

  8. Inertial range turbulence in kinetic plasmas

    E-Print Network [OSTI]

    Howes, G G

    2007-01-01T23:59:59.000Z

    The transfer of turbulent energy through an inertial range from the driving scale to dissipative scales in a kinetic plasma followed by the conversion of this energy into heat is a fundamental plasma physics process. A theoretical foundation for the study of this process is constructed, but the details of the kinetic cascade are not well understood. Several important properties are identified: (a) the conservation of a generalized energy by the cascade; (b) the need for collisions to increase entropy and realize irreversible plasma heating; and (c) the key role played by the entropy cascade--a dual cascade of energy to small scales in both physical and velocity space--to convert ultimately the turbulent energy into heat. A strategy for nonlinear numerical simulations of kinetic turbulence is outlined. Initial numerical results are consistent with the operation of the entropy cascade. Inertial range turbulence arises in a broad range of space and astrophysical plasmas and may play an important role in the ther...

  9. Kinetics and morphology of erbium silicide formation

    SciTech Connect (OSTI)

    Knapp, J.A.; Picraux, S.T.; Wu, C.S.; Lau, S.S.

    1985-11-15T23:59:59.000Z

    The growth kinetics and surface morphology of erbium silicide formation from Er layers on Si(100) substrates are examined using both fast e-beam annealing and furnace annealing. Very smooth erbium silicide layers have been grown using a line-source e beam to heat and react the Er overlayers with the substrate. This contrasts to the severe pitting observed when Er layers are reacted with Si in conventional furnace annealing. The pitting phenomenon can be explained by a thin contaminant layer at the interface between Er and Si. Our results suggest the contamination barrier is not due to oxygen, as usually assumed, but may be related to the presence of carbon. Rapid e-beam heating to reaction temperatures of approx.1200 K permits dispersion of the barrier layer before substantial silicide growth can occur, allowing smooth silicide growth. Heating to shorter times to just disperse the interface barrier allows uniform layer growth by subsequent furnace annealing and has permitted measurement of the kinetics of erbium silicide formation on crystalline Si. The reaction obeys (time)/sup 1//sup ///sup 2/ kinetics but is shown to be not totally diffusion limited by the ability to sustain multiple interface growth from a single Si source. The growth rates are nearly an order of magnitude slower for the Er/Si(100) interface than for the Er/amorphous-Si, but with a similar activation energy near 1.75 eV in both cases.

  10. Inertial range turbulence in kinetic plasmas

    E-Print Network [OSTI]

    G. G. Howes

    2007-11-27T23:59:59.000Z

    The transfer of turbulent energy through an inertial range from the driving scale to dissipative scales in a kinetic plasma followed by the conversion of this energy into heat is a fundamental plasma physics process. A theoretical foundation for the study of this process is constructed, but the details of the kinetic cascade are not well understood. Several important properties are identified: (a) the conservation of a generalized energy by the cascade; (b) the need for collisions to increase entropy and realize irreversible plasma heating; and (c) the key role played by the entropy cascade--a dual cascade of energy to small scales in both physical and velocity space--to convert ultimately the turbulent energy into heat. A strategy for nonlinear numerical simulations of kinetic turbulence is outlined. Initial numerical results are consistent with the operation of the entropy cascade. Inertial range turbulence arises in a broad range of space and astrophysical plasmas and may play an important role in the thermalization of fusion energy in burning plasmas.

  11. Motion Perception Model and Its Application

    E-Print Network [OSTI]

    Oliva, Aude

    of the blind, and brain-computer interface system etc. Furthermore, brain-like motion detection algorithms also a meaningful challenge to be solved. This thesis first introduces the psychophysical experiments on human applica- tions. Main contributions of this thesis are listed as follows. #12; First of all, we collect

  12. Strong-Motion Instrumentation Programs in Taiwan

    E-Print Network [OSTI]

    Wu, Yih-Min

    western Taiwan, with high- rise buildings as a consequence of developing economy, is vulnerable-Motion Accelerograph Array in Taiwan, Phase 1 (SMART-1 Array) SMART-1 Array was set up in Lotung in 1980 and closed and University of California, Berkeley. The SMART-1 Array consisted of a central site and accelerographs in three

  13. Motional Spin Relaxation in Large Electric Fields

    E-Print Network [OSTI]

    Schmid, Riccardo; Filippone, B W

    2008-01-01T23:59:59.000Z

    We discuss the precession of spin-polarized Ultra Cold Neutrons (UCN) and $^{3}\\mathrm{He}$ atoms in uniform and static magnetic and electric fields and calculate the spin relaxation effects from motional $v\\times E$ magnetic fields. Particle motion in an electric field creates a motional $v\\times E$ magnetic field, which when combined with collisions, produces variations of the total magnetic field and results in spin relaxation of neutron and $^{3}\\mathrm{He}$ samples. The spin relaxation times $T_{1}$ (longitudinal) and $T_{2}$ (transverse) of spin-polarized UCN and $^{3}\\mathrm{He}$ atoms are important considerations in a new search for the neutron Electric Dipole Moment at the SNS \\emph{nEDM} experiment. We use a Monte Carlo approach to simulate the relaxation of spins due to the motional $v\\times E$ field for UCN and for $^{3}\\mathrm{He}$ atoms at temperatures below $600 \\mathrm{mK}$. We find the relaxation times for the neutron due to the $v\\times E$ effect to be long compared to the neutron lifetime, ...

  14. Motional Spin Relaxation in Large Electric Fields

    E-Print Network [OSTI]

    Riccardo Schmid; B. Plaster; B. W. Filippone

    2008-07-02T23:59:59.000Z

    We discuss the precession of spin-polarized Ultra Cold Neutrons (UCN) and $^{3}$He atoms in uniform and static magnetic and electric fields and calculate the spin relaxation effects from motional $v\\times E$ magnetic fields. Particle motion in an electric field creates a motional $v\\times E$ magnetic field, which when combined with collisions, produces variations of the total magnetic field and results in spin relaxation of neutron and $^{3}$He samples. The spin relaxation times $T_{1}$ (longitudinal) and $T_{2}$ (transverse) of spin-polarized UCN and $^{3}$He atoms are important considerations in a new search for the neutron Electric Dipole Moment at the SNS \\emph{nEDM} experiment. We use a Monte Carlo approach to simulate the relaxation of spins due to the motional $v\\times E$ field for UCN and for $^{3}$He atoms at temperatures below $600,\\mathrm{mK}$. We find the relaxation times for the neutron due to the $v\\times E$ effect to be long compared to the neutron lifetime, while the $^{3}$He relaxation times may be important for the \\emph{nEDM} experiment.

  15. 5. Wavelengths and periods of field motions

    E-Print Network [OSTI]

    Finlay, Christopher

    . Using a technique based on the Radon transform [2], we determined the amount of power propagating5. Wavelengths and periods of field motions 2D frequency-wavenumber (FK) power spectra were of the large scale magnetic field at the surface of the core. Here we deconstruct such a model (gufm1

  16. Ship Motion Prediction for Maritime Flight Operations

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    prediction model, resulting from complicated wave-excitation dynamics caused by the local stochastic sea and stochastic sea state disturbances. An appropriate model aiming to feature the characteristics of the dynamic estimation model in the presence of uncertain stochastic processes (e.g. wind, sea wave), unknown ship motion

  17. N000149510521 Estimating Relative Vehicle Motions

    E-Print Network [OSTI]

    Markovitch, Shaul

    CAR­TR­881 CS­TR­3882 N00014­95­1­0521 March 1998 Estimating Relative Vehicle Motions in Traffic for Automation Research University of Maryland College Park, MD 20742­3275 2 Computer Science Department George of Technology Haifa, Israel 32000 Abstract Autonomous operation of a vehicle on a road calls for understanding

  18. Clearance Based Path Optimization for Motion Planning

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Abstract Many motion planning techniques, like the probabilistic roadmap method (PRM), gen- erate low] and humanoid robot planning [13]. A commonly used technique for planning paths is the Probabilistic Roadmap. 1.1 Probabilistic Roadmap Method The probabilistic roadmap method consists of two phases

  19. Clearance Based Path Optimization for Motion Planning

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Abstract Many motion planning techniques, like the probabilistic roadmap method (PRM), gen­ erate low] and humanoid robot planning [13]. A commonly used technique for planning paths is the Probabilistic Roadmap.1 Probabilistic Roadmap Method The probabilistic roadmap method consists of two phases: a construction and a query

  20. On the Topic of Motion Integrals

    E-Print Network [OSTI]

    Bertinato, Christopher

    2013-04-02T23:59:59.000Z

    An integral of motion is a function of the states of a dynamical system that is constant along the system’s trajectories. Integrals are known for their utility as a means of reducing the dimension of a system, effectively leaving only one...

  1. Chemistry in Motion: Tiny Synthetic Motors

    E-Print Network [OSTI]

    Peter H. Colberg; Shang Yik Reigh; Bryan Robertson; Raymond Kapral

    2014-11-03T23:59:59.000Z

    In this Account, we describe how synthetic motors that operate by self-diffusiophoresis make use of a self-generated concentration gradient to drive motor motion. A description of propulsion by self-diffusiophoresis is presented for Janus particle motors comprising catalytic and noncatalytic faces. The properties of the dynamics of chemically powered motors are illustrated by presenting the results of particle-based simulations of sphere-dimer motors constructed from linked catalytic and noncatalytic spheres. The geometries of both Janus and sphere-dimer motors with asymmetric catalytic activity support the formation of concentration gradients around the motors. Because directed motion can occur only when the system is not in equilibrium, the nature of the environment and the role it plays in motor dynamics are described. Rotational Brownian motion also acts to limit directed motion, and it has especially strong effects for very small motors. We address the following question: how small can motors be and still exhibit effects due to propulsion, even if only to enhance diffusion? Synthetic motors have the potential to transform the manner in which chemical dynamical processes are carried out for a wide range of applications.

  2. Motion Control of Robot Manipulators with MATLAB

    E-Print Network [OSTI]

    Siena, Università di

    Motion Control of Robot Manipulators with MATLAB · By Francesco Chinello, Stefano Scheggi, Fabio Morbidi, and Domenico Prattichizzo 1070-9932/11/$26.00ª2011 IEEE DECEMBER 2011 · IEEE ROBOTICS robot manipulators. The KUKA Control Toolbox (KCT) is a collection of MATLAB functions developed

  3. Electromagnetic Radiation and Motion of Really Shaped Particle

    E-Print Network [OSTI]

    Jozef Klacka

    2001-08-13T23:59:59.000Z

    Relativistically covariant form of equation of motion for real particle (neutral in charge) under the action of electromagnetic radiation is derived. Various formulations of the equation of motion in the proper frame of reference of the particle are used. Main attention is devoted to the reformulation of the equation of motion in the general frame of reference, e. g., in the frame of reference of the source of electromagnetic radiation. This is the crucial form of equation of motion in applying it to motion of particles (cosmic dust, asteroids, ...) in the Universe if electromagnetic radiation acts on the particles. General relativistic equation of motion is presented.

  4. Kinetic Energy Decay Rates of Supersonic and Super-Alfvenic Turbulence in Star-Forming Clouds

    E-Print Network [OSTI]

    Mordecai-Mark Mac Low; Ralf S. Klessen; Andreas Burkert; Michael D. Smith

    1997-12-01T23:59:59.000Z

    We present numerical studies of compressible, decaying turbulence, with and without magnetic fields, with initial rms Alfven and Mach numbers ranging up to five, and apply the results to the question of the support of star-forming interstellar clouds of molecular gas. We find that, in 1D, magnetized turbulence actually decays faster than unmagnetized turbulence. In all the regimes that we have studied 3D turbulence-super-Alfvenic, supersonic, sub-Alfvenic, and subsonic-the kinetic energy decays as (t-t0)^(-x), with 0.85 < x < 1.2. We compared results from two entirely different algorithms in the unmagnetized case, and have performed extensive resolution studies in all cases, reaching resolutions of 256^3 zones or 350,000 particles. We conclude that the observed long lifetimes and supersonic motions in molecular clouds must be due to external driving, as undriven turbulence decays far too fast to explain the observations.

  5. MCAMC: An Advanced Algorithm for Kinetic Monte Carlo Simulations: from Magnetization Switching to Protein Folding

    E-Print Network [OSTI]

    M. A. Novotny; Shannon M. Wheeler

    2002-11-02T23:59:59.000Z

    We present the Monte Carlo with Absorbing Markov Chains (MCAMC) method for extremely long kinetic Monte Carlo simulations. The MCAMC algorithm does not modify the system dynamics. It is extremely useful for models with discrete state spaces when low-temperature simulations are desired. To illustrate the strengths and limitations of this algorithm we introduce a simple model involving random walkers on an energy landscape. This simple model has some of the characteristics of protein folding and could also be experimentally realizable in domain motion in nanoscale magnets. We find that even the simplest MCAMC algorithm can speed up calculations by many orders of magnitude. More complicated MCAMC simulations can gain further increases in speed by orders of magnitude.

  6. Motion of free spins and NMR imaging without a radio-frequency magnetic field

    E-Print Network [OSTI]

    Kees van Schenk Brill; Jassem Lahfadi; Tarek Khalil; Daniel Grucker

    2015-04-19T23:59:59.000Z

    NMR imaging without any radio-frequency magnetic field is explained by a quantum treatment of independent spin~$\\tfrac 12$. The total magnetization is determined by means of their individual wave function. The theoretical treatment, based on fundamental axioms of quantum mechanics and solving explicitly the Schr\\"{o}dinger equation with the kinetic energy part which gives the motion of free spins, is recalled. It explains the phase shift of the spin noise spectrum with its amplitude compared to the conventional NMR spectrum. Moreover it explains also the relatively good signal to noise ratio of NMR images obtained without a RF pulse. This derivation should be helpful for new magnetic resonance imaging sequences or for developing quantum computing by NMR.

  7. Self-organization at low Reynolds numbers in randomly forced isotropic fluid motion

    E-Print Network [OSTI]

    McComb, W D; Berera, A; Yoffe, S R; Jankauskas, B

    2014-01-01T23:59:59.000Z

    We observe the formation at long times of a self-organized state in direct numerical simulation (DNS) of the Navier-Stokes equation with random, isotropic forcing. In this state the kinetic energy is contained only in modes at the lowest resolved wavenumber, the skewness vanishes, and visualization of the flows shows a lack of small-scale structure. Accordingly we conclude that the state is not turbulent. Furthermore, we observe that this state is maximally helical. That is, the velocity field is an eigenfunction of the curl operator and is thus a Beltrami field. We put forward numerical evidence suggesting the presence of critical behavior, and outline arguments to support the existence of an upper Reynolds number bound for the occurrence of such self-organized states in forced isotropic fluid motion.

  8. Frequency analysis and sheared reconstruction for rendering motion blur

    E-Print Network [OSTI]

    Egan, Kevin

    Motion blur is crucial for high-quality rendering, but is also very expensive. Our first contribution is a frequency analysis of motion-blurred scenes, including moving objects, specular reflections, and shadows. We show ...

  9. Production-Intent Lost-Motion Variable Valve Actuation Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production-Intent Lost-Motion Variable Valve Actuation Systems Production-Intent Lost-Motion Variable Valve Actuation Systems Variable valve actuation with onoff IEGR pre-bump is...

  10. Intuitive Generation of Realistic Motions for Articulated Human Characters

    E-Print Network [OSTI]

    Min, Jianyuan

    2013-01-15T23:59:59.000Z

    create and control life-like human motions. This dissertation focuses on exploring theory, algorithms and applications that enable novice users to quickly and easily create and control natural-looking motions, including both full-body movement and hand...

  11. Perception and processing of self-motion cues 

    E-Print Network [OSTI]

    Smith, Michael Thomas

    2013-11-28T23:59:59.000Z

    The capacity of animals to navigate through familiar or novel environments depends crucially on the integration of a disparate set of self motion cues. The study begins with one of the most simple, planar visual motion, ...

  12. Robust hybrid control for autonomous vehicle motion planning

    E-Print Network [OSTI]

    Frazzoli, Emilio, 1970-

    2001-01-01T23:59:59.000Z

    This dissertation focuses on the problem of motion planning for agile autonomous vehicles. In realistic situations, the motion planning problem must be solved in real-time, in a dynamic and uncertain environment. The ...

  13. absolute proper motions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H. Lenhardt; H. Schwan 2000-07-21 25 Lick Northern Proper Motion Program. III. Lick NPM2 Catalog Astrophysics (arXiv) Summary: The Lick Northern Proper Motion (NPM) program, a...

  14. apparent proper motion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with a... Hirshkowitz, Amy 2014-08-05 46 Lick Northern Proper Motion Program. III. Lick NPM2 Catalog Astrophysics (arXiv) Summary: The Lick Northern Proper Motion (NPM) program, a...

  15. Optimal Motion Planning with constraints for mobile robot navigation

    E-Print Network [OSTI]

    Pearce, Roger Allan

    2013-02-22T23:59:59.000Z

    -dimensional space. Motion Planning, or path planning for robots, becomes increasing difficult as the dimension of the planning space increases with the robot's degrees of freedom (dof). While the running time of deterministic motion planning algorithms grows...

  16. Exploiting quaternions to support expressive interactive character motion

    E-Print Network [OSTI]

    Johnson, Michael Patrick, 1971-

    2003-01-01T23:59:59.000Z

    A real-time motion engine for interactive synthetic characters, either virtual or physical, needs to allow expressivity and interactivity of motion in order to maintain the illusion of life. Canned animation examples from ...

  17. M. Flierl, A. Mavlankar, and B. Girod: Motion and Disparity Compensated Coding for Video Camera Arrays, PCS 2006, Beijing, China, April 2006. 1

    E-Print Network [OSTI]

    Flierl, Markus

    of a three-dimensional TV system which en- ables users to view a distant 3D world freely [1]. A critical for video coding with motion-compen- sated lifted wavelet transforms in [3] is extended This work has been

  18. KINETIC MODELING OF PARTICLE ACCELERATION IN A SOLAR NULL-POINT RECONNECTION REGION

    SciTech Connect (OSTI)

    Baumann, G.; Haugbolle, T.; Nordlund, A., E-mail: gbaumann@nbi.ku.dk [Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark)

    2013-07-10T23:59:59.000Z

    The primary focus of this paper is on the particle acceleration mechanism in solar coronal three-dimensional reconnection null-point regions. Starting from a potential field extrapolation of a Solar and Heliospheric Observatory (SOHO) magnetogram taken on 2002 November 16, we first performed magnetohydrodynamics (MHD) simulations with horizontal motions observed by SOHO applied to the photospheric boundary of the computational box. After a build-up of electric current in the fan plane of the null point, a sub-section of the evolved MHD data was used as initial and boundary conditions for a kinetic particle-in-cell model of the plasma. We find that sub-relativistic electron acceleration is mainly driven by a systematic electric field in the current sheet. A non-thermal population of electrons with a power-law distribution in energy forms in the simulated pre-flare phase, featuring a power-law index of about -1.78. This work provides a first step toward bridging the gap between macroscopic scales on the order of hundreds of Mm and kinetic scales on the order of centimeter in the solar corona, and explains how to achieve such a cross-scale coupling by utilizing either physical modifications or (equivalent) modifications of the constants of nature. With their exceptionally high resolution-up to 135 billion particles and 3.5 billion grid cells of size 17.5 km-these simulations offer a new opportunity to study particle acceleration in solar-like settings.

  19. Learning Probabilistic Models for Visual Motion David Alexander Ross

    E-Print Network [OSTI]

    Roweis, Sam

    Mellon University Motion Capture Database http://mocap.cs.cmu.edu/ (created with funding from NSF EIA

  20. Kinetic Bounding Volume Hierarchies for Collision Detection of Deformable Objects

    E-Print Network [OSTI]

    Gabriel Zachmann; Rene Weller

    2006-01-01T23:59:59.000Z

    We present novel algorithms for updating bounding volume hierarchies of objects undergoing arbitrary deformations. Therefore, we introduce two new data structures, the kinetic AABB tree and the kinetic BoxTree. The event-based approach of the kinetic data structures framework enables us to show that our algorithms are optimal in the number of updates. Moreover, we show a lower bound for the total number of BV updates, which is independent of the number of frames. Furthermore, we present a kinetic data structures which uses the kinetic AABB tree for collision detection and show that this structure can be easily extended for continuous collision detection of deformable objects. We performed a comparison of our kinetic approaches with the classical bottom-up update method. The results show that our algorithms perform up to ten times faster in practically relevant scenarios.

  1. A New Spin on Neutrino Quantum Kinetics

    E-Print Network [OSTI]

    Vincenzo Cirigliano; George M. Fuller; Alexey Vlasenko

    2015-05-05T23:59:59.000Z

    Recent studies have demonstrated that in anisotropic environments a coherent spin-flip term arises in the Quantum Kinetic Equations (QKEs) which govern the evolution of neutrino flavor and spin in hot and dense media. This term can mediate neutrino-antineutrino transformation for Majorana neutrinos and active-sterile transformation for Dirac neutrinos. We discuss the physical origin of the coherent spin-flip term and provide explicit expressions for the QKEs in a two-flavor model with spherical geometry. In this context, we demonstrate that coherent neutrino spin transformation depends on the absolute neutrino mass and Majorana phases.

  2. Benchmarks for the point kinetics equations

    SciTech Connect (OSTI)

    Ganapol, B. [Department of Aerospace and Mechanical Engineering (United States); Picca, P. [Department of Systems and Industrial Engineering, University of Arizona (United States); Previti, A.; Mostacci, D. [Laboratorio di Montecuccolino Alma Mater Studiorum, Universita di Bologna (Italy)

    2013-07-01T23:59:59.000Z

    A new numerical algorithm is presented for the solution to the point kinetics equations (PKEs), whose accurate solution has been sought for over 60 years. The method couples the simplest of finite difference methods, a backward Euler, with Richardsons extrapolation, also called an acceleration. From this coupling, a series of benchmarks have emerged. These include cases from the literature as well as several new ones. The novelty of this presentation lies in the breadth of reactivity insertions considered, covering both prescribed and feedback reactivities, and the extreme 8- to 9- digit accuracy achievable. The benchmarks presented are to provide guidance to those who wish to develop further numerical improvements. (authors)

  3. 5, 1036910408, 2005 Products and kinetics

    E-Print Network [OSTI]

    Boyer, Edmond

    and Physics Discussions The heterogeneous chemical kinetics of N2O5 on CaCO3 and other atmospheric mineral. At [N2O5]0=(4.0±1.0)×10 11 cm -3 we have found ss values ranging from (3.5±1.1)×10 -2 for CaCO3 to (0 and CaCO3 are lower. On CaCO3 the disappearance10 of N2O5 was also accompanied by the formation of CO2

  4. Studies of combustion kinetics and mechanisms

    SciTech Connect (OSTI)

    Gutman, D. [Catholic Univ. of America, Washington, DC (United States)

    1993-12-01T23:59:59.000Z

    The objective of the current research is to gain new quantitative knowledge of the kinetics and mechanisms of polyatomic free radicals which are important in hydrocarbon combustion processes. The special facility designed and built for these (which includes a heatable tubular reactor coupled to a photoionization mass spectrometer) is continually being improved. Where possible, these experimental studies are coupled with theoretical ones, sometimes conducted in collaboration with others, to obtain an improved understanding of the factors determining reactivity. The decomposition of acetyl radicals, isopropyl radicals, and n-propyl radicals have been studied as well as the oxidation of methylpropargyl radicals.

  5. Direct Kinetic Measurements of a Criegee Intermediate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDiesel pricesDiesel28, 2007,DiracDirect Kinetic

  6. Direct Kinetic Measurements of a Criegee Intermediate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederal Financial InterventionsDirectDirect Kinetic

  7. Direct Kinetic Measurements of a Criegee Intermediate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederal FinancialDirect Kinetic Measurements of a

  8. ForPeerReview SMC Framework in Motion Control Systems

    E-Print Network [OSTI]

    Yanikoglu, Berrin

    , Interconnected Systems. 1. INTRODUCTION Modern motion control systems are more and more acting as "agentsForPeerReview SMC Framework in Motion Control Systems Journal: International Journal of Adaptive, Mechatronics Keywords: Motion Control, Sliding Mode Control, Bilateral Control , Interconnected Systems http

  9. Electromagnetic radiation and motion of arbitrarily shaped particle

    E-Print Network [OSTI]

    Jozef Klacka

    2001-07-06T23:59:59.000Z

    Covariant form of equation of motion for arbitrarily shaped particle in the electromagnetic radiation field is presented. Equation of motion in the proper frame of the particle uses the radiation pressure cross section 3 $\\times$ 3 matrix. The obtained equation of motion is compared with known result.

  10. Computational Modeling of Brain Dynamics during Repetitive Head Motions

    E-Print Network [OSTI]

    Burtscher, Martin

    Computational Modeling of Brain Dynamics during Repetitive Head Motions Igor Szczyrba School the HIC scale to arbitrary head motions. Our simulations of the brain dynamics in sagittal and horizontal injury modeling, resonance effects 1 Introduction A rapid head motion can result in a severe brain injury

  11. Motion Prediction for Moving Objects: a Statistical Approach

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Motion Prediction for Moving Objects: a Statistical Approach Dizan Vasquez & Thierry Fraichard with those objects requires the ability to predict their future motion (e.g. for predator evasion, prey hunting, collision avoidance, etc.). Motion prediction is a research area with applications in many

  12. Bounded, Periodic Relative Motion using Canonical Epicyclic Orbital Elements

    E-Print Network [OSTI]

    Rowley, Clarence W.

    Bounded, Periodic Relative Motion using Canonical Epicyclic Orbital Elements N. Jeremy Kasdin using canonical perturbation theory for studying relative motion trajectories and for finding simple motion [2, 3, 4, 5]. This has the advantage that Lagrange's planetary equations (LPEs) or Gauss

  13. Atlas: A Novel Kinematic Architecture for Six DOF Motion Platforms

    E-Print Network [OSTI]

    Hayes, John

    Atlas: A Novel Kinematic Architecture for Six DOF Motion Platforms M.J.D. HAYES, R.G. LANGLOIS alternative motion platform configurations and developed a novel concept that overcomes existing limitations. This paper presents an overview of the Atlas platform: a novel six DOF motion platform architecture

  14. Ground motion data for International Collider models

    SciTech Connect (OSTI)

    Volk, J.T.; LeBrun, P.; Shiltsev, V.; Singatulin, S.; /Fermilab

    2007-11-01T23:59:59.000Z

    The proposed location for the International Linear Collider (ILC) in the Americas region is Fermilab in Batavia Illinois. If built at this location the tunnels would be located in the Galena Platteville shale at a depth of 100 or more meters below the surface. Studies using hydro static water levels and seismometers have been conducted in the MINOS hall and the LaFrange Mine in North Aurora Illinois to determine the level of ground motion. Both these locations are in the Galena Platteville shale and indicate the typical ground motion to be expected for the ILC. The data contains both natural and cultural noise. Coefficients for the ALT law are determined. Seismic measurements at the surface and 100 meters below the surface are presented.

  15. Controlling inertial focussing using rotational motion

    E-Print Network [OSTI]

    Prohm, Christopher; Stark, Holger

    2014-01-01T23:59:59.000Z

    In inertial microfluidics lift forces cause a particle to migrate across streamlines to specific positions in the cross section of a microchannel. We control the rotational motion of a particle and demonstrate that this allows to manipulate the lift-force profile and thereby the particle's equilibrium positions. We perform two-dimensional simulation studies using the method of multi-particle collision dynamics. Particles with unconstrained rotational motion occupy stable equilibrium positions in both halfs of the channel while the center is unstable. When an external torque is applied to the particle, two equilibrium positions annihilate by passing a saddle-node bifurcation and only one stable fixpoint remains so that all particles move to one side of the channel. In contrast, non-rotating particles accumulate in the center and are pushed into one half of the channel when the angular velocity is fixed to a non-zero value.

  16. Intelligent Motion Planning and Analysis with Probabilistic Roadmap Methods for the Study of Complex and High-Dimensional Motions

    E-Print Network [OSTI]

    Tapia, Lydia

    2011-02-22T23:59:59.000Z

    robots and proteins is highly dependent on their motions. In order to study motions in these two divergent domains, the same underlying algorithmic framework can be applied. This method is derived from probabilistic roadmap methods (PRMs) originally...

  17. Collective Motion of Vibrated Polar Disks

    E-Print Network [OSTI]

    Julien Deseigne; Olivier Dauchot; Hugues Chatè

    2010-04-09T23:59:59.000Z

    We experimentally study a monolayer of vibrated disks with a built-in polar asymmetry which enables them to move quasi-balistically on a large persistence length. Alignment occurs during collisions as a result of self-propulsion and hard core repulsion. Varying the amplitude of the vibration, we observe the onset of large-scale collective motion and the existence of giant number fluctuations with a scaling exponent in agreement with the predicted theoretical value.

  18. Compression of ground-motion data

    SciTech Connect (OSTI)

    Long, J.W.

    1981-04-01T23:59:59.000Z

    Ground motion data has been recorded for many years at Nevada Test Site and is now stored on thousands of digital tapes. The recording format is very inefficient in terms of space on tape. This report outlines a method to compress the data onto a few hundred tapes while maintaining the accuracy of the recording and allowing restoration of any file to the original format for future use. For future digitizing a more efficient format is described and suggested.

  19. ON HYDRODYNAMIC MOTIONS IN DEAD ZONES

    SciTech Connect (OSTI)

    Oishi, Jeffrey S. [Department of Astronomy, 601 Campbell Hall, University of California at Berkeley, Berkeley, CA 94720-3411 (United States); Mac Low, Mordecai-Mark, E-mail: jsoishi@astro.berkeley.ed, E-mail: mordecai@amnh.or [Department of Astrophysics, American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024-5192 (United States)

    2009-10-20T23:59:59.000Z

    We investigate fluid motions near the midplane of vertically stratified accretion disks with highly resistive midplanes. In such disks, the magnetorotational instability drives turbulence in thin layers surrounding a resistive, stable dead zone. The turbulent layers in turn drive motions in the dead zone. We examine the properties of these motions using three-dimensional, stratified, local, shearing-box, non-ideal, magnetohydrodynamical simulations. Although the turbulence in the active zones provides a source of vorticity to the midplane, no evidence for coherent vortices is found in our simulations. It appears that this is because of strong vertical oscillations in the dead zone. By analyzing time series of azimuthally averaged flow quantities, we identify an axisymmetric wave mode particular to models with dead zones. This mode is reduced in amplitude, but not suppressed entirely, by changing the equation of state from isothermal to ideal. These waves are too low frequency to affect sedimentation of dust to the midplane, but may have significance for the gravitational stability of the resulting midplane dust layers.

  20. Chemical Kinetic Modeling of Non-Petroleum Based Fuels

    Broader source: Energy.gov (indexed) [DOE]

    kinetic models for fuel components and their mixtures are a critical need to enable optimization of fuel formulations for high engine efficiency and very low emissions Targets:...

  1. Geothermal: Sponsored by OSTI -- The solubility and kinetics...

    Office of Scientific and Technical Information (OSTI)

    The solubility and kinetics of minerals under CO2-EGS geothermal conditions: Comparison of experimental and modeling results Geothermal Technologies Legacy Collection HelpFAQ |...

  2. air plasma kinetics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    explains the kinetic mechanism of nonequilibrium plasma-chemical transformations in the gas-liquid system and the evolution of hydrogen during the reforming as a function of...

  3. Coupled Kinetic, Thermal, and Mechanical Modeling of FIB Micro...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Intercalation Kinetics and Ion Mobility in Electrode Materials for Advanced Lithium Ion Batteries Materials Characterization Capabilities at the High Temperature...

  4. agonist dissociation kinetics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: supposes that the transition states for dissociation coincide with the free energy maximum along rionKinetic Pathways of Ion Pair Dissociation in Water Phillip...

  5. average kinetic energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy by kinetic averaging Pierre-Emmanuel Jabin Ecole Normale Sup-Landau energy for two dimensional divergence free fields ap- pearing in the gradient theory of...

  6. Chemical Kinetic Modeling of Non-Petroleum Based Fuels

    Broader source: Energy.gov (indexed) [DOE]

    FY11 Objectives: * Develop a chemical kinetic models for an actual components in biodiesel Methyl palmitate Methyl linoleate Methyl linolenate * Develop a chemical...

  7. Kinetics, Mechanics and Microstructure Changes in Storage Media...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Kinetics, Mechanics and Microstructure Changes in Storage Media given at the DOE Theory Focus Session on Hydrogen Storage Materials on May 18, 2006. storagetheorysessionei...

  8. Ion mediated crosslink driven mucous swelling kinetics

    E-Print Network [OSTI]

    S. Sircar; A. J. Roberts

    2015-01-20T23:59:59.000Z

    We present an experimentally guided, multi-phasic, multi-species ionic gel model to compare and make qualitative predictions on the rheology of mucus of healthy individuals (Wild Type) versus those infected with Cystic Fibrosis. The mixture theory consists of the mucus (polymer phase) and water (solvent phase) as well as several different ions: H+, Na+ and Ca++. The model is linearized to study the hydration of spherically symmetric mucus gels and calibrated against the experimental data of mucus diffusivities. Near equilibrium, the linearized form of the equation describing the radial size of the gel, reduces to the well-known expression used in the kinetic theory of swelling hydrogels. Numerical studies reveal that the Donnan potential is the dominating mechanism driving the mucus swelling/deswelling transition. However, the altered swelling kinetics of the Cystic Fibrosis infected mucus is not merely governed by the hydroelectric composition of the swelling media, but also due to the altered movement of electrolytes as well as due to the defective properties of the mucin polymer network.

  9. Actuar en asociacin Asociaciones en el mundo

    E-Print Network [OSTI]

    las contaminaciones por metales en los Andes, en Bolivia · Taller sobre la variabilidad de El Niño y

  10. The solubility and kinetics of minerals under CO2-EGS geothermal conditions: Comparison of experimental and modeling results

    E-Print Network [OSTI]

    Xu, T.

    2014-01-01T23:59:59.000Z

    of rate parameters of water-mineral interaction kinetics forKinetic rate law for mineral dissolution and precipitationwhere n denotes kinetic mineral index, positive values of r

  11. AER1301: KINETIC THEORY OF GASES Assignment #4

    E-Print Network [OSTI]

    Groth, Clinton P. T.

    AER1301: KINETIC THEORY OF GASES Assignment #4 1. Consider a monatomic gas with one translational by the relaxation time approx- imation. Neglecting external forces, the conserved form of the kinetic equation function, in both the equilibrium and non- equilibrium cases, up to second order. (b) Derive an expression

  12. Nano Research Kinetics of Molecular Recognition Mediated Nanoparticle

    E-Print Network [OSTI]

    Nano Research Kinetics of Molecular Recognition Mediated Nanoparticle Self-Assembly Chinmay Soman1 is an important phenomenon in many biological systems. Assembly of virus coat proteins into capsids [1 diseases. This approach to studying the kinetics of nanoparticle self-assembly may also provide a valuable

  13. Parametric and Kinetic Minimum Spanning Trees Pankaj K. Agarwal 1

    E-Print Network [OSTI]

    Eppstein, David

    Parametric and Kinetic Minimum Spanning Trees Pankaj K. Agarwal 1 David Eppstein 2 Leonidas J. Guibas 3 Monika R. Henzinger 4 Abstract We consider the parametric minimum spanning tree problem- pute the sequence of minimum spanning trees generated as varies. We also consider the kinetic minimum

  14. Rotational and divergent kinetic energy in the mesoscale model ALADIN

    E-Print Network [OSTI]

    Zagar, Nedjeljka

    energy, divergent energy, ALADIN, limited-area modelling 1. Introduction Horizontal divergenceRotational and divergent kinetic energy in the mesoscale model ALADIN By V. BLAZ ICA1 *, N. Z AGAR1 received 7 June 2012; in final form 7 March 2013) ABSTRACT Kinetic energy spectra from the mesoscale

  15. Kinetic Modeling of Non-thermal Escape: Planets and Exoplanets

    E-Print Network [OSTI]

    Johnson, Robert E.

    Kinetic Modeling of Non-thermal Escape: Planets and Exoplanets Valery I. Shematovich Institute of Astronomy, Russian Academy of Sciences Modeling Atmospheric Escape Workshop - Spring 2012 University are populated by the atoms and molecules with both thermal and suprathermal kinetic energies (Johnson et al

  16. Desorption Kinetics for Field-Aged Polycyclic Aromatic Hydrocarbons

    E-Print Network [OSTI]

    Rockne, Karl J.

    Harbor Estuary. Desorption kinetics for PAHs with a log octanol- water partition coefficient greater than This study considers desorption kinetics for 12 field-aged polycyclic aromatic hydrocarbons (PAHs) desorbing 6 were well- described by a one-domain diffusion model that assumes that PAHs are initially

  17. Kinetic study of hydrogen sulfide absorption in aqueous chlorine solution

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    rate. To design, optimize and scale-up scrubbers, knowledge of the reaction kinetics and mechanism-1 s-1 ). Keywords Hydrogen sulfide, chlorine, kinetics, mass transfer, absorption, scrubber located at the bottom of the scrubber and is recirculated. pH and chlorine concentration are regulated

  18. An action with positive kinetic energy term for general relativity

    E-Print Network [OSTI]

    T. Mei

    2007-11-02T23:59:59.000Z

    At first, we state some results in arXiv: 0707.2639, and then, using a positive kinetic energy coordinate condition given by arXiv: 0707.2639, we present an action with positive kinetic energy term for general relativity. Based on this action, the corresponding theory of canonical quantization is discussed.

  19. The DNA binding activity of p53 displays reactiondiffusion kinetics

    E-Print Network [OSTI]

    Hinow, Peter

    The DNA binding activity of p53 displays reaction­diffusion kinetics 26th Southeastern 37240 The DNA binding activity of p53 displays reaction­diffusion kinetics ­ p. 1/2 #12;Collaborators, Vanderbilt University · Emmanuele DiBenedetto, PhD, Department of Mathematics, Vanderbilt University The DNA

  20. Detailed chemical kinetic oxidation mechanism for a biodiesel Olivier Herbineta

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate Olivier Herbineta , William of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO2 production from

  1. Kinetics of wet sodium vapor complex plasma

    SciTech Connect (OSTI)

    Mishra, S. K., E-mail: nishfeb@rediffmail.com [Institute for Plasma Research (IPR), Gandhinagar 382428 (India); Sodha, M. S. [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)] [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)

    2014-04-15T23:59:59.000Z

    In this paper, we have investigated the kinetics of wet (partially condensed) Sodium vapor, which comprises of electrons, ions, neutral atoms, and Sodium droplets (i) in thermal equilibrium and (ii) when irradiated by light. The formulation includes the balance of charge over the droplets, number balance of the plasma constituents, and energy balance of the electrons. In order to evaluate the droplet charge, a phenomenon for de-charging of the droplets, viz., evaporation of positive Sodium ions from the surface has been considered in addition to electron emission and electron/ion accretion. The analysis has been utilized to evaluate the steady state parameters of such complex plasmas (i) in thermal equilibrium and (ii) when irradiated; the results have been graphically illustrated. As a significant outcome irradiated, Sodium droplets are seen to acquire large positive potential, with consequent enhancement in the electron density.

  2. Kinetic Gravity Braiding and axion inflation

    E-Print Network [OSTI]

    Debaprasad Maity

    2013-03-11T23:59:59.000Z

    We constructed a new class of inflationary model with the higher derivative axion field which obeys constant shift symmetry. In the usual axion (natural) inflation, the axion decay constant is predicted to be in the super-Planckian regime which is believed to be incompatible with an effective field theory framework. With a novel mechanism originating from a higher derivative kinetic gravity braiding (KGB) of an axion field we found that there exist a huge parameter regime in our model where axion decay constant could be naturally sub-Planckian. Thanks to the KGB which effectively reduces the Planck constant. This effectively reduced Planck scale provides us the mechanism of further lowering down the speed of an axion field rolling down its potential without introducing super-Planckian axion decay constant. We also find that with that wide range of parameter values, our model induces almost scale invariant power spectrum as observed in CMB experiments.

  3. Active Polymers Confer Fast Reorganization Kinetics

    E-Print Network [OSTI]

    Douglas Swanson; Ned S. Wingreen

    2011-10-02T23:59:59.000Z

    Many cytoskeletal biopolymers are "active," consuming energy in large quantities. In this Letter, we identify a fundamental difference between active polymers and passive, equilibrium polymers: for equal mean lengths, active polymers can reorganize faster than equilibrium polymers. We show that equilibrium polymers are intrinsically limited to linear scaling between mean lifetime and mean length, MFPT ~ , by analogy to 1-d Potts models. By contrast, we present a simple active-polymer model that improves upon this scaling, such that MFPT ~ ^{1/2}. Since to be biologically useful, structural biopolymers must typically be many monomers long, yet respond dynamically to the needs of the cell, the difference in reorganization kinetics may help to justify active polymers' greater energy cost. PACS numbers: 87.10.Ed, 87.16.ad, 87.16.Ln

  4. Spectroscopy, Kinetics, and Dynamics of Combustion Radicals

    SciTech Connect (OSTI)

    Nesbitt, David J. [Research/Professor

    2013-08-06T23:59:59.000Z

    Spectroscopy, kinetics and dynamics of jet cooled hydrocarbon transients relevant to the DOE combustion mission have been explored, exploiting i) high resolution IR lasers, ii) slit discharge sources for formation of jet cooled radicals, and iii) high sensitivity detection with direct laser absorption methods and near the quantum shot noise limit. What makes this combination powerful is that such transients can be made under high concentrations and pressures characteristic of actual combustion conditions, and yet with the resulting species rapidly cooled (T ?10-15K) in the slit supersonic expansion. Combined with the power of IR laser absorption methods, this provides novel access to spectral detection and study of many critical combustion species.

  5. Atomistic Simulation of Slow Grain Boundary Motion

    SciTech Connect (OSTI)

    Deng Chuang; Schuh, Christopher A. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States)

    2011-01-28T23:59:59.000Z

    Existing atomistic simulation techniques to study grain boundary motion are usually limited to either high velocities or temperatures and are difficult to compare to realistic experimental conditions. Here we introduce an adapted simulation method that can access boundary velocities in the experimental range and extract mobilities in the zero driving force limit at temperatures as low as {approx}0.2T{sub m} (T{sub m} is the melting point). The method reveals three mechanistic regimes of boundary mobility at zero net velocity depending on the system temperature.

  6. Casimir friction: Relative motion more generally

    E-Print Network [OSTI]

    Johan S. Høye; Iver Brevik

    2014-09-23T23:59:59.000Z

    This paper extends our recent study on Casimir friction forces for dielectric plates moving parallel to each other [J. S. H{\\o}ye and I. Brevik, Eur. Phys. J. D {\\bf 68}, 61 (2014)], to the case where the plates are no longer restricted to rectilinear motion. Part of the mathematical formalism thereby becomes more cumbersome, but reduces in the end to the form that we could expect to be the natural one in advance. As an example, we calculate the Casimir torque on a planar disc rotating with constant angular velocity around its vertical symmetry axis next to another plate.

  7. Soret Motion of a Charged Spherical Colloid

    E-Print Network [OSTI]

    Seyyed Nader Rasuli; Ramin Golestanian

    2008-08-05T23:59:59.000Z

    The thermophoretic motion of a charged spherical colloidal particle and its accompanying cloud of counterions and co-ions in a temperature gradient is studied theoretically. Using the Debye-Huckel approximation, the Soret drift velocity of a weakly charged colloid is calculated analytically. For highly charged colloids, the nonlinear system of electrokinetic equations is solved numerically, and the effects of high surface potential, dielectrophoresis, and convection are examined. Our results are in good agreement with some of the recent experiments on highly charged colloids without using adjustable parameters.

  8. Collective motion in a Hamiltonian dynamical system

    E-Print Network [OSTI]

    Hidetoshi Morita; Kunihiko Kaneko

    2005-06-11T23:59:59.000Z

    Oscillation of macroscopic variables is discovered in a metastable state in the Hamiltonian dynamical system of mean field XY model, the duration of which is divergent with the system size. This long-lasting periodic or quasiperiodic collective motion appears through Hopf bifurcation, which is a typical route in low-dimensional dissipative dynamical systems. The origin of the oscillation is explained, with self-consistent analysis of the distribution function, as the emergence of self-excited ``swings'' through the mean-field. The universality of the phenomena is also discussed.

  9. The equation of motion of an electron

    SciTech Connect (OSTI)

    Kim, K. [Argonne National Laboratory, Argonne, Illinois 60439 and The University of Chicago, Chicago, Illinois 60637 (United States); Sessler, A.M. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    1999-07-01T23:59:59.000Z

    We review the current status of understanding of the equation of motion of an electron. Classically, a consistent, linearized theory exists for an electron of finite extent, as long as the size of the electron is larger than the classical electron radius. Nonrelativistic quantum mechanics seems to offer a fine theory even in the point particle limit. Although there is as yet no convincing calculation, it is probable that a quantum electrodynamical result will be at least as well-behaved as is the nonrelativistic quantum mechanical results. {copyright} {ital 1999 American Institute of Physics.}

  10. The equation of motion of an electron.

    SciTech Connect (OSTI)

    Kim, K.-J.

    1998-09-02T23:59:59.000Z

    We review the current status of understanding of the equation of motion of an electron. Classically, a consistent linearized theory exists for an electron of finite extent, as long as the size of the electron is larger than the classical electron radius. Nonrelativistic quantum mechanics seems to offer a fine theory even in the point particle limit. Although there is as yet no convincing calculation, it is probable that a quantum electrodynamical result will be at least as well-behaved as is the nonrelativistic quantum mechanical results.

  11. Quantization of singular systems and incomplete motions

    E-Print Network [OSTI]

    N. P. Landsman

    1998-07-24T23:59:59.000Z

    The need for a mathematically rigorous quantization procedure of singular spaces and incomplete motions is pointed out in connection with quantum cosmology. We put our previous suggestion for such a procedure, based on the theory of induced representations of C*-algebras, in the light of L. Schwartz' theory of Hilbert subspaces. This turns out to account for the freedom in the induction procedure, at the same time providing a basis for generalized eigenfunction expansions pertinent to the needs of quantum cosmology. Reinforcing our previous proposal for the wave-function of the Universe, we are now able to add a concrete prescription for its calculation.

  12. Relativistic Brownian motion on a graphene chip

    E-Print Network [OSTI]

    Andrey Pototsky; Fabio Marchesoni; Feodor V. Kusmartsev; Peter Hänggi; Sergey E. Savel'ev

    2012-02-28T23:59:59.000Z

    Relativistic Brownian motion can be inexpensively demonstrated on a graphene chip. The interplay of stochastic and relativistic dynamics, governing the transport of charge carrier in graphene, induces noise-controlled effects such as (i) a stochastic effective mass, detectable as a suppression of the particle mobility with increasing the temperature; (ii) a transverse ratchet effect, measurable as a net current orthogonal to an ac drive on an asymmetric substrate, and (iii) a chaotic stochastic resonance. Such properties can be of practical applications in the emerging graphene technology.

  13. Blue Motion Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 |BleckleyMotion Energy Jump to: navigation, search

  14. Danotek Motion Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs andCrops Ltd Jump1-EA JumpDalyDanotek Motion

  15. A Kinetic Theory Approach to Quantum Gravity

    E-Print Network [OSTI]

    B. L. Hu

    2002-04-22T23:59:59.000Z

    We describe a kinetic theory approach to quantum gravity -- by which we mean a theory of the microscopic structure of spacetime, not a theory obtained by quantizing general relativity. A figurative conception of this program is like building a ladder with two knotted poles: quantum matter field on the right and spacetime on the left. Each rung connecting the corresponding knots represent a distinct level of structure. The lowest rung is hydrodynamics and general relativity; the next rung is semiclassical gravity, with the expectation value of quantum fields acting as source in the semiclassical Einstein equation. We recall how ideas from the statistical mechanics of interacting quantum fields helped us identify the existence of noise in the matter field and its effect on metric fluctuations, leading to the establishment of the third rung: stochastic gravity, described by the Einstein-Langevin equation. Our pathway from stochastic to quantum gravity is via the correlation hierarchy of noise and induced metric fluctuations. Three essential tasks beckon: 1) Deduce the correlations of metric fluctuations from correlation noise in the matter field; 2) Reconstituting quantum coherence -- this is the reverse of decoherence -- from these correlation functions 3) Use the Boltzmann-Langevin equations to identify distinct collective variables depicting recognizable metastable structures in the kinetic and hydrodynamic regimes of quantum matter fields and how they demand of their corresponding spacetime counterparts. This will give us a hierarchy of generalized stochastic equations -- call them the Boltzmann-Einstein hierarchy of quantum gravity -- for each level of spacetime structure, from the macroscopic (general relativity) through the mesoscopic (stochastic gravity) to the microscopic (quantum gravity).

  16. Gravitationally Induced Particle Production: Thermodynamics and Kinetic Theory

    E-Print Network [OSTI]

    J. A. S. Lima; I. P. Baranov

    2014-11-24T23:59:59.000Z

    A relativistic kinetic description for the irreversible thermodynamic process of gravitationally induced particle production is proposed in the context of an expanding Friedmann-Robertson-Walker (FRW) geometry. We show that the covariant thermodynamic treatment referred to as "adiabatic" particle production provoked by the cosmic time-varying gravitational field has a consistent kinetic counterpart. The variation of the distribution function is associated to a non-collisional kinetic term of quantum-gravitational origin which is proportional to the ratio $\\Gamma/H$, where $\\Gamma$ is the gravitational particle production rate and H is the Hubble parameter. For $\\Gamma production process. The macroscopic temperature evolution law is also kinetically derived for massive and massless particles. The present approach points to the possibility of an exact (semi-classical) quantum-gravitational kinetic treatment by incorporating back-reaction effects in the cosmic background.

  17. Negative kinetic energy term of general relativity and its removing

    E-Print Network [OSTI]

    T. Mei

    2009-03-30T23:59:59.000Z

    We first present a new Lagrangian of general relativity, which can be divided into kinetic energy term and potential energy term. Taking advantage of vierbein formalism, we reduce the kinetic energy term to a sum of five positive terms and one negative term. Some gauge conditions removing the negative kinetic energy term are discussed. Finally, we present a Lagrangian that only include positive kinetic energy terms. To remove the negative kinetic energy term leads to a new field equation of general relativity in which there are at least five equations of constraint and at most five dynamical equations, this characteristic is different from the normal Einstein field equation in which there are four equations of constraint and six dynamical equations.

  18. Fully kinetic simulations of megajoule-scale dense plasma focus

    SciTech Connect (OSTI)

    Schmidt, A.; Link, A.; Tang, V.; Halvorson, C.; May, M. [Lawrence Livermore National Laboratory, Livermore California 94550 (United States); Welch, D. [Voss Scientific, LLC, Albuquerque, New Mexico 87108 (United States); Meehan, B. T.; Hagen, E. C. [National Security Technologies, LLC, Las Vegas, Nevada 89030 (United States)

    2014-10-15T23:59:59.000Z

    Dense plasma focus (DPF) Z-pinch devices are sources of copious high energy electrons and ions, x-rays, and neutrons. Megajoule-scale DPFs can generate 10{sup 12} neutrons per pulse in deuterium gas through a combination of thermonuclear and beam-target fusion. However, the details of the neutron production are not fully understood and past optimization efforts of these devices have been largely empirical. Previously, we reported on the first fully kinetic simulations of a kilojoule-scale DPF and demonstrated that both kinetic ions and kinetic electrons are needed to reproduce experimentally observed features, such as charged-particle beam formation and anomalous resistivity. Here, we present the first fully kinetic simulation of a MegaJoule DPF, with predicted ion and neutron spectra, neutron anisotropy, neutron spot size, and time history of neutron production. The total yield predicted by the simulation is in agreement with measured values, validating the kinetic model in a second energy regime.

  19. The Kinetic Engineering of Autonomous DNA-Based Robots and Computing

    E-Print Network [OSTI]

    Reif, John H.

    of gene expression · autonomous universal computers. #12;"Autonomous Kinetic Engineering" of IrreversibleThe Kinetic Engineering of Autonomous DNA-Based Robots and Computing Machines John H. Reif Kinetic Engineering" techniques in: · recombinant DNA, · nano-engineering, and · molecular computing

  20. A Kinetic-Fluid Model C. Z. Cheng and Jay R. Johnson

    E-Print Network [OSTI]

    A Kinetic-Fluid Model C. Z. Cheng and Jay R. Johnson Princeton University, Plasma Physics developed a kinetic-MHD model [Cheng, 1991] to study particle kinetic eects on MHD phenomena by taking

  1. A KineticFluid Model C. Z. Cheng and Jay R. Johnson

    E-Print Network [OSTI]

    A Kinetic­Fluid Model C. Z. Cheng and Jay R. Johnson Princeton University, Plasma Physics have previously developed a kinetic­MHD model [Cheng, 1991] to study particle kinetic effects on MHD

  2. Multi-camera Tracking of Articulated Human Motion Using Motion and Shape Cues

    E-Print Network [OSTI]

    Sundaresan, Aravind

    of this energy image. We can then obtain the pose that possesses the least energy using optimisation P cameras and an articulated human shape model. Tracking is performed using motion cues as well as image multi-scale parametric optimisation to estimate the pixel displacement for each body segment. We

  3. Motion Patches: Building Blocks for Virtual Environments Annotated with Motion Data

    E-Print Network [OSTI]

    Lee, Jehee

    time animation of human figures in virtual environments is an important problem in the context-Dimensional Graphics and Realism]: Animation--Virtual reality Keywords: Interactive character animation, human motion:{zoi,mingle,jehee}@mrl.snu.ac.kr The real time animation and control of human figures in complex virtual environments have been an important

  4. Lorentz transformations with arbitrary line of motion

    E-Print Network [OSTI]

    Chandru Iyer; G. M. Prabhu

    2008-09-18T23:59:59.000Z

    Sometimes it becomes a matter of natural choice for an observer (A) that he prefers a coordinate system of two-dimensional spatial x-y coordinates from which he observes another observer (B) who is moving at a uniform speed along a line of motion, which is not collinear with As chosen x or y axis. It becomes necessary in such cases to develop Lorentz transformations where the line of motion is not aligned with either the x or the y-axis. In this paper we develop these transformations and show that under such transformations, two orthogonal systems (in their respective frames) appear non-orthogonal to each other. We also illustrate the usefulness of the transformation by applying it to three problems including the rod-slot problem. The derivation has been done before using vector algebra. Such derivations assume that the axes of K and K-prime are parallel. Our method uses matrix algebra and shows that the axes of K and K-prime do not remain parallel, and in fact K and K-prime which are properly orthogonal are observed to be non-orthogonal by K-prime and K respectively. http://www.iop.org/EJ/abstract/0143-0807/28/2/004

  5. Simulations of magnetic nanoparticle Brownian motion

    E-Print Network [OSTI]

    Daniel B Reeves; John B Weaver

    2014-03-25T23:59:59.000Z

    Magnetic nanoparticles are useful in many medical applications because they interact with biology on a cellular level thus allowing microenvironmental investigation. An enhanced understanding of the dynamics of magnetic particles may lead to advances in imaging directly in magnetic particle imaging (MPI) or through enhanced MRI contrast and is essential for nanoparticle sensing as in magnetic spectroscopy of Brownian motion (MSB). Moreover, therapeutic techniques like hyperthermia require information about particle dynamics for effective, safe, and reliable use in the clinic. To that end, we have developed and validated a stochastic dynamical model of rotating Brownian nanoparticles from a Langevin equation approach. With no field, the relaxation time toward equilibrium matches Einstein's model of Brownian motion. In a static field, the equilibrium magnetization agrees with the Langevin function. For high frequency or low amplitude driving fields, behavior characteristic of the linearized Debye approximation is reproduced. In a higher field regime where magnetic saturation occurs, the magnetization and its harmonics compare well with the effective field model. On another level, the model has been benchmarked against experimental results, successfully demonstrating that harmonics of the magnetization carry enough information to infer environmental parameters like viscosity and temperature.

  6. Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solution

    E-Print Network [OSTI]

    DePaolo, D.

    2011-01-01T23:59:59.000Z

    form of the kinetic  r ate expression (e.g.  equations 2); in  these  expressions  are  the  two  kinetic  isotopic 

  7. E-Print Network 3.0 - accelerated search kinetics Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dependence of the elongation kinetics. Marked acceleration... to the slowing of protein folding kinetics by other denaturants (28) and the acceleration of folding by TFE (26......

  8. Effect of Grain Size on Uranium(VI) Surface Complexation Kinetics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grain Size on Uranium(VI) Surface Complexation Kinetics and Adsorption Additivity. Effect of Grain Size on Uranium(VI) Surface Complexation Kinetics and Adsorption Additivity....

  9. Motion of spinning test bodies in Kerr spacetime

    E-Print Network [OSTI]

    Eva Hackmann; Claus Lämmerzahl; Yuri N. Obukhov; Dirk Puetzfeld; Isabell Schaffer

    2014-09-23T23:59:59.000Z

    We investigate the motion of spinning test bodies in General Relativity. By means of a multipolar approximation method for extended test bodies we derive the equations of motion, and classify the orbital motion of pole-dipole test bodies in the equatorial plane of the Kerr geometry. An exact expression for the periastron shift of a spinning test body is given. Implications of test body spin corrections are studied and compared with the results obtained by means of other approximation schemes.

  10. Bulgarian Verbs of Motion: Slavic Verbs in a Balkan Context

    E-Print Network [OSTI]

    Lindsey, Traci Speed

    2011-01-01T23:59:59.000Z

    Jouko. 2000. Is there a Balkan verb system? In Milato South Slavic and Balkan Languages, Plovdiv Septemberof Motion: Slavic Verbs in a Balkan Context by Traci Speed

  11. Reducing Actuator Switchings for Motion Control of Autonomous Underwater Vehicles

    E-Print Network [OSTI]

    Smith, Ryan N.

    Reducing Actuator Switchings for Motion Control of Autonomous Underwater Vehicles Monique Chyba and energy minimization for AUVs). A major difficulty is to provide a formal estimation that compares

  12. Notes on the two-dimensional fractional Brownian motion

    E-Print Network [OSTI]

    Fabrice Baudoin , David Nualart

    2006-02-09T23:59:59.000Z

    Theory Related Fields 118 121–291. [12] PITMAN, J. and YOR, M. (1986). Asymptotic laws of planar Brownian motion. Ann. Probab. 14 733–779. [13] PITMAN ...

  13. Real Time Estimation of Ship Motions Using Kalman Filtering Techniques

    E-Print Network [OSTI]

    Triantafyllou, Michael S.

    1983-01-01T23:59:59.000Z

    The estimation of the heave, pitch, roll, sway, and yaw motions of a DD-963 destroyer is studied, using Kalman filtering

  14. Wall and laser spot motion in cylindrical hohlraums

    SciTech Connect (OSTI)

    Huser, G.; Courtois, C.; Monteil, M.-C. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2009-03-15T23:59:59.000Z

    Wall and laser spot motion measurements in empty, propane-filled and plastic (CH)-lined gold coated cylindrical hohlraums were performed on the Omega laser facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Wall motion was measured using axial two-dimensional (2D) x-ray imaging and laser spot motion was perpendicularly observed through a thinned wall using streaked hard x-ray imaging. Experimental results and 2D hydrodynamic simulations show that while empty targets exhibit on-axis plasma collision, CH-lined and propane-filled targets inhibit wall expansion, corroborated with perpendicular streaked imaging showing a slower motion of laser spots.

  15. Free motion in deformed (quantum) four-dimensional space

    E-Print Network [OSTI]

    A. N. Leznov

    2007-07-23T23:59:59.000Z

    It is shown that trajectories of free motion of the particles in deformed ("quantum") four dimensional space-time are quadratic curves.

  16. Adaptive motion mapping in pancreatic SBRT patients using Fourier transforms

    E-Print Network [OSTI]

    Jones, Bernard L; Miften, Moyed

    2015-01-01T23:59:59.000Z

    Recent studies suggest that 4DCT is unable to accurately measure respiratory-induced pancreatic tumor motion. In this work, we assessed the daily motion of pancreatic tumors treated with SBRT, and developed adaptive strategies to predict and account for this motion. The daily motion trajectory of pancreatic tumors during CBCT acquisition was calculated using a model which reconstructs the instantaneous 3D position in each 2D CBCT projection image. We developed a metric (termed "Spectral Coherence," SC) based on the Fourier frequency spectrum of motion in the SI direction, and analyzed the ability of SC to predict motion-based errors and classify patients according to motion characteristics. The amplitude of daily motion exceeded the predictions of pre-treatment 4DCT imaging by an average of 3.0 mm, 2.3 mm, and 3.5 mm in the AP, LR, and SI directions. SC was correlated with daily motion differences and tumor dose coverage. In a simulated adaptive protocol, target margins were adjusted based on SC, resulting in...

  17. adaptive head motion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and performs principal ... Balakrishnan, Guha 2014-01-01 7 Computational Modeling of Brain Dynamics during Repetitive Head Motions Computer Technologies and Information...

  18. amplitude rotational motion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    motion can help constrain the mass distribution inside the body, which in turn can lead to information on its geophysical history. Aims. We investigate the signature of the...

  19. artery rotational motion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    motion can help constrain the mass distribution inside the body, which in turn can lead to information on its geophysical history. Aims. We investigate the signature of the...

  20. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    SciTech Connect (OSTI)

    Stefano Orsino

    2005-03-30T23:59:59.000Z

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical reaction mechanism for the NBFZ tests.

  1. Evidence of critical balance in kinetic Alfven wave turbulence simulations

    SciTech Connect (OSTI)

    TenBarge, J. M.; Howes, G. G. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)

    2012-05-15T23:59:59.000Z

    A numerical simulation of kinetic plasma turbulence is performed to assess the applicability of critical balance to kinetic, dissipation scale turbulence. The analysis is performed in the frequency domain to obviate complications inherent in performing a local analysis of turbulence. A theoretical model of dissipation scale critical balance is constructed and compared to simulation results, and excellent agreement is found. This result constitutes the first evidence of critical balance in a kinetic turbulence simulation and provides evidence of an anisotropic turbulence cascade extending into the dissipation range. We also perform an Eulerian frequency analysis of the simulation data and compare it to the results of a previous study of magnetohydrodynamic turbulence simulations.

  2. Kinetics of the reactions of hydrogen fluoride with calcium oxide

    SciTech Connect (OSTI)

    Kossaya, A.M.; Belyakov, B.P.; Kuchma, Z.V.; Sandrozd, M.K.; Vasil'eva, V.G.

    1986-08-01T23:59:59.000Z

    This paper studies the kinetics of interaction of gaseous hydrogen fluoride with calcium oxide at temperatures 300-700 degrees. The experiments were conducted in a laboratory adsorption apparatus modified and adapted for work with corrosive hydrogen fluoride. Calcium oxide samples in granulated form and deposited on gamma-alumina were used in the experiments. Kinetic curves representing variations of the degree of conversion of the solid samples with time are shown. The influence of retardation dure to diffusion was observed in the experiments. The influence of diffusion control on the reaction rate was also observed in a study of the reaction kinetics on supported layers of calcium oxide.

  3. Kinetic Alfv\\'{e}n solitary and rogue waves in superthermal plasmas

    E-Print Network [OSTI]

    Bains, A; Xia, L -D

    2014-01-01T23:59:59.000Z

    We investigate the small but finite amplitude solitary Kinetic Alfv\\'{e}n waves (KAWs) in low $\\beta$ plasmas with superthermal electrons modeled by a kappa-type distribution. A nonlinear Korteweg-de Vries (KdV) equation describing the evolution of KAWs is derived by using the standard reductive perturbation method. Examining the dependence of the nonlinear and dispersion coefficients of the KdV equation on the superthermal parameter $\\kappa$, plasma $\\beta$ and obliqueness of propagation, we show that these parameters may change substantially the shape and size of solitary KAW pulses. Only sub-Alfv\\'enic, compressive solitons are supported. We then extend the study to examine kinetic Alfv\\'en rogue waves by deriving a nonlinear Schr\\"{o}dinger equation from {the KdV} equation. Rational solutions that form rogue wave envelopes are obtained. We examine how the behavior of rogue waves depends on the plasma parameters in question, finding that the rogue envelopes are lowered with increasing electron superthermal...

  4. Handling congestion in crowd motion modeling

    E-Print Network [OSTI]

    Maury, B; Santambrogio, F; Venel, J

    2011-01-01T23:59:59.000Z

    We address here the issue of congestion in the modeling of crowd motion, in the non-smooth framework: contacts between people are not anticipated and avoided, they actually occur, and they are explicitly taken into account in the model. We limit our approach to very basic principles in terms of behavior, to focus on the particular problems raised by the non-smooth character of the models. We consider that individuals tend to move according to a desired, or spontanous, velocity. We account for congestion by assuming that the evolution realizes at each time an instantaneous balance between individual tendencies and global constraints (overlapping is forbidden): the actual velocity is defined as the closest to the desired velocity among all admissible ones, in a least square sense. We develop those principles in the microscopic and macroscopic settings, and we present how the framework of Wasserstein distance between measures allows to recover the sweeping process nature of the problem on the macroscopic level, ...

  5. Solid state engine with alternating motion

    DOE Patents [OSTI]

    Golestaneh, Ahmad A. (Bolingbrook, IL)

    1982-01-01T23:59:59.000Z

    Heat energy is converted to mechanical motion utilizing apparatus including a cylinder, a piston having openings therein reciprocable in the cylinder, inlet and outlet ports for warm water at one end of the cylinder, inlet and outlet ports for cool water at the other end of the cylinder, gates movable with the piston and slidably engaging the cylinder wall to alternately open and close the warm and cool water ports, a spring bearing against the warm water side of the piston and a double helix of a thermal shape memory material attached to the cool end of the cylinder and to the piston. The piston is caused to reciprocate by alternately admitting cool water and warm water to the cylinder.

  6. Minimum and terminal velocities in projectile motion

    E-Print Network [OSTI]

    E. N. Miranda; S. Nikolskaya; R. Riba

    2012-08-13T23:59:59.000Z

    The motion of a projectile with horizontal initial velocity V0, moving under the action of the gravitational field and a drag force is studied analytically. As it is well known, the projectile reaches a terminal velocity Vterm. There is a curious result concerning the minimum speed Vmin; it turns out that the minimum velocity is lower than the terminal one if V0 > Vterm and is lower than the initial one if V0 < Vterm. These results show that the velocity is not a monotonous function. If the initial speed is not horizontal, there is an angle range where the velocity shows the same behavior mentioned previously. Out of that range, the volocity is a monotonous function. These results come out from numerical simulations.

  7. Granular Brownian motion with dry friction

    E-Print Network [OSTI]

    A. Gnoli; A. Puglisi; H. Touchette

    2013-04-12T23:59:59.000Z

    The interplay between Coulomb friction and random excitations is studied experimentally by means of a rotating probe in contact with a stationary granular gas. The granular material is independently fluidized by a vertical shaker, acting as a 'heat bath' for the Brownian-like motion of the probe. Two ball bearings supporting the probe exert nonlinear Coulomb friction upon it. The experimental velocity distribution of the probe, autocorrelation function, and power spectra are compared with the predictions of a linear Boltzmann equation with friction, which is known to simplify in two opposite limits: at high collision frequency, it is mapped to a Fokker-Planck equation with nonlinear friction, whereas at low collision frequency, it is described by a sequence of independent random kicks followed by friction-induced relaxations. Comparison between theory and experiment in these two limits shows good agreement. Deviations are observed at very small velocities, where the real bearings are not well modeled by Coulomb friction.

  8. Data Combinations Accounting for LISA Spacecraft Motion

    E-Print Network [OSTI]

    Daniel A. Shaddock; Massimo Tinto; Frank B. Estabrook; J. W. Armstrong

    2003-07-16T23:59:59.000Z

    LISA is an array of three spacecraft in an approximately equilateral triangle configuration which will be used as a low-frequency gravitational wave detector. We present here new generalizations of the Michelson- and Sagnac-type time-delay interferometry data combinations. These combinations cancel laser phase noise in the presence of different up and down propagation delays in each arm of the array, and slowly varying systematic motion of the spacecraft. The gravitational wave sensitivities of these generalized combinations are the same as previously computed for the stationary cases, although the combinations are now more complicated. We introduce a diagrammatic representation to illustrate that these combinations are actually synthesized equal-arm interferometers.

  9. Solid state engine with alternating motion

    DOE Patents [OSTI]

    Golestaneh, A.A.

    1980-01-21T23:59:59.000Z

    Heat energy is converted to mechanical motion utilizing apparatus including a cylinder, a piston having openings therein reciprocable in the cylinder, inlet and outlet ports for warm water at one end of the cylinder, inlet and outlet ports for cool water at the other end of the cylinder, gates movable with the piston and slidably engaging the cylinder wall to alternately open and close the warm and cool water ports, a spring bearing against the warm water side of the piston and a double helix of a thermal shape memory material attached to the cool end of the cylinder and to the piston. The piston is caused to reciprocate by alternately admitting cool water and warm water to the cylinder.

  10. Simulating galactic outflows with kinetic supernova feedback

    E-Print Network [OSTI]

    Claudio Dalla Vecchia; Joop Schaye

    2008-05-07T23:59:59.000Z

    Feedback from star formation is thought to play a key role in the formation and evolution of galaxies, but its implementation in cosmological simulations is currently hampered by a lack of numerical resolution. We present and test a sub-grid recipe to model feedback from massive stars in cosmological smoothed particle hydrodynamics simulations. The energy is distributed in kinetic form among the gas particles surrounding recently formed stars. The impact of the feedback is studied using a suite of high-resolution simulations of isolated disc galaxies embedded in dark halos with total mass 10^{10} and 10^{12} Msol/h. We focus in particular on the effect of pressure forces on wind particles within the disc, which we turn off temporarily in some of our runs to mimic a recipe that has been widely used in the literature. We find that this popular recipe gives dramatically different results because (ram) pressure forces on expanding superbubbles determine both the structure of the disc and the development of large-scale outflows. Pressure forces exerted by expanding superbubbles puff up the disc, giving the dwarf galaxy an irregular morphology and creating a galactic fountain in the massive galaxy. Hydrodynamic drag within the disc results in a strong increase of the effective mass loading of the wind for the dwarf galaxy, but quenches much of the outflow in the case of the high-mass galaxy.

  11. Kinetics of coal pyrolysis and devolatilization

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    Research continued on coal devolatilization. Results are presented for rapid devolatilization experiments performed with the 20 -- 30 micron size cut of the reference coal - PSOC 1451D - a high volatile bituminous, Appalachian Province coal. In agreement with behavior observed in rapid, radiant transient heating experiments -flash lamp - and moderate heating rate - heated grid - experiments for the same coal, the devolatilization process is observed to occur in four distinct phases: intraparticle heavy hydrocarbon detachment and transport; heavy hydrocarbon desorption; low temperature reformation reactions producing light gases; high temperature secondary reactions of tars and char degassing. Mass fraction yields light fast yields and tar and char characteristics are presented for a range of reactor temperatures which support the phenomenological picture. A phenomenological model is presented which indicates the distinct phases of devolatilization and the importance of heat transfer conditions on both the overall rate of particle mass loss and the observable volatiles product distribution. The approach taken to model heat transfer conditions in each of the devolatilization reactors employed in the overall investigation is outlined. Predicted weight loss results are shown for three different sets of overall devolatilization kinetic parameters given heat transfer conditions in the UTRC Hot Wall - Hot Gas reactor. 47 figs., 1 tab.

  12. THERMOSTATICS AND KINETICS OF TRANSFORMATIONS IN PU-BASED ALLOYS

    SciTech Connect (OSTI)

    Turchi, P; Kaufman, L; Liu, Z

    2006-06-30T23:59:59.000Z

    CALPHAD assessment of the thermodynamic properties of a series of Pu-based alloys is briefly presented together with some results on the kinetics of phase formation and transformations in Pu-Ga alloys.

  13. ash kinetics mechanism: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    close. Such an event we call a collision, and in a collision there is exchange of energy proportional to the average kinetic energy of a molecule. It is very satisfactory that...

  14. The Icarus Machine : a kinetic sculpture that demonstrates gyroscopic precision

    E-Print Network [OSTI]

    Nichols, Laura E

    2005-01-01T23:59:59.000Z

    Inspired by the desire to unite aspects of art and engineering into a comprehensive whole, I have designed and manufactured a kinetic sculpture that demonstrates gyroscopic precession. The aim of this project is to explore ...

  15. Ducted kinetic Alfven waves in plasma with steep density gradients

    SciTech Connect (OSTI)

    Houshmandyar, Saeid [Solar Observatory Department, Prairie View A and M University, Prairie View, Texas 77446 (United States); Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315 (United States); Scime, Earl E. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315 (United States)

    2011-11-15T23:59:59.000Z

    Given their high plasma density (n {approx} 10{sup 13} cm{sup -3}), it is theoretically possible to excite Alfven waves in a conventional, moderate length (L {approx} 2 m) helicon plasma source. However, helicon plasmas are decidedly inhomogeneous, having a steep radial density gradient, and typically have a significant background neutral pressure. The inhomogeneity introduces regions of kinetic and inertial Alfven wave propagation. Ion-neutral and electron-neutral collisions alter the Alfven wave dispersion characteristics. Here, we present the measurements of propagating kinetic Alfven waves in helium helicon plasma. The measured wave dispersion is well fit with a kinetic model that includes the effects of ion-neutral damping and that assumes the high density plasma core defines the radial extent of the wave propagation region. The measured wave amplitude versus plasma radius is consistent with the pile up of wave magnetic energy at the boundary between the kinetic and inertial regime regions.

  16. Kinetic studies of isoprene reactions with hydroxyl and chlorine radicals

    E-Print Network [OSTI]

    Suh, Inseon

    2000-01-01T23:59:59.000Z

    Kinetic studies of the isoprene oxidation reactions initiated by the hydroxyl radical OH and the chlorine atom Cl have been investigated using a fast-flow reactor in conjunction with chemical ionization mass spectrometry (CIMS) and using laser...

  17. Mechanistic kinetic modeling of the hydrocracking of complex feedstocks

    E-Print Network [OSTI]

    Kumar, Hans

    2009-05-15T23:59:59.000Z

    Two separate mechanistic kinetic models have been developed for the hydrocracking of complex feedstocks. The first model is targeted for the hydrocracking of vacuum gas oil. The second one addresses specifically the hydrocracking of long...

  18. RIS-M-2216 CHEMICAL KINETICS IN THE GAS PHASE

    E-Print Network [OSTI]

    KINETICS, EXPERIMENTAL DATA, GASES, HYDROGEN SULFIDES, PULSED IRRADIATION, RADIATION CHEMISTRY, RADIOLYSIS is subjected to high energy radiation (e.g. a- particles, Y-radiation or fast electrons), the primary products

  19. Phase IV Simulant Testing of Monosodium Titanate Adsorption Kinetics

    SciTech Connect (OSTI)

    Hobbs, D.T.

    1999-09-29T23:59:59.000Z

    The Salt Disposition Systems Engineering Team identified the adsorption kinetics of actinides and strontium onto monosodium titanate (MST) as a technical risk in several of the processing alternatives selected for additional evaluation in Phase III of their effort.

  20. Integrating Acclimated Kinetic Envelopes into Sustainable Building Design 

    E-Print Network [OSTI]

    Wang, Jialiang

    2014-05-28T23:59:59.000Z

    affects the energy usage of a building. In an effort to simultaneously consider and satisfy all of the various indoor comfort requirements, changing climatic conditions can generate conflicting conditions. Acclimated Kinetic Envelope (AKE) is a notion...

  1. NIST Standard Reference Database 17 NIST Chemical Kinetics Database

    E-Print Network [OSTI]

    NIST Standard Reference Database 17 __________________________________________________________ NIST Chemical Kinetics Database WindowsTM Version 2Q98 Users' Guide (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data

  2. atom kinetic energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    .self-consistent Thomas Fermi TF atom discussed w Kais, Sabre 3 Towards an exact orbital-free single-particle kinetic energy density for the inhomogeneous electron liquid in the...

  3. astrophysical systems kinetic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Thermonuclear Kinetics in Astrophysics CERN Preprints Summary: Over the billions of years since...

  4. Kinetics and Solvent Effects in the Synthesis of Ionic Liquids

    E-Print Network [OSTI]

    Schleicher, Jay C.

    2007-12-12T23:59:59.000Z

    Ionic liquids (ILs) are being recognized as environmentally friendly ("green") solvents. However, their synthesis is often conducted in the very solvents that they will reportedly replace. This research has investigated the kinetics and solvent...

  5. Kinetic and Performance Studies of the Regeneration Phase of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studies of the Regeneration Phase of Model PtRhBa NOx Traps for Design and Optimization Kinetic and Performance Studies of the Regeneration Phase of Model PtRhBa NOx...

  6. Kinetic modeling and automated optimization in microreactor systems

    E-Print Network [OSTI]

    Moore, Jason Stuart

    2013-01-01T23:59:59.000Z

    The optimization, kinetic investigation, or scale-up of a reaction often requires significant time and materials. Silicon microreactor systems have been shown advantageous for studying chemical reactions due to their small ...

  7. OBJECT KINETIC MONTE CARLO SIMULATIONS OF MICROSTRUCTURE EVOLUTION

    SciTech Connect (OSTI)

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.

    2013-09-30T23:59:59.000Z

    The objective is to report the development of the flexible object kinetic Monte Carlo (OKMC) simulation code KSOME (kinetic simulation of microstructure evolution) which can be used to simulate microstructure evolution of complex systems under irradiation. In this report we briefly describe the capabilities of KSOME and present preliminary results for short term annealing of single cascades in tungsten at various primary-knock-on atom (PKA) energies and temperatures.

  8. Theory of semicollisional kinetic Alfven modes in sheared magnetic fields

    SciTech Connect (OSTI)

    Hahm, T.S.; Chen, L.

    1985-02-01T23:59:59.000Z

    The spectra of the semicollisional kinetic Alfven modes in a sheared slab geometry are investigated, including the effects of finite ion Larmor radius and diamagnetic drift frequencies. The eigenfrequencies of the damped modes are derived analytically via asymptotic analyses. In particular, as one reduces the resistivity, we find that, due to finite ion Larmor radius effects, the damped mode frequencies asymptotically approach finite real values corresponding to the end points of the kinetic Alfven continuum.

  9. Single event kinetic modeling of the hydrocracking of paraffins

    E-Print Network [OSTI]

    Kumar, Hans

    2004-11-15T23:59:59.000Z

    of MASTER OF SCIENCE August 2004 Major Subject: Chemical Engineering SINGLE EVENT KINETIC MODELING OF THE HYDROCRACKING OF PARAFFINS A Thesis by HANS KUMAR Submitted to Texas A&M University...) Kenneth R. Hall (Head of Department) August 2004 Major Subject: Chemical Engineering iii ABSTRACT Single Event Kinetic Modeling of the Hydrocracking of Paraffins. (August 2004) Hans Kumar, B.E., University of Roorkee, India Chair...

  10. A unified theory on electro-kinetic extraction of contaminants

    E-Print Network [OSTI]

    Datla, Subbaraju

    1994-01-01T23:59:59.000Z

    of contaminants from fine-grained soils. Here, the experimental and the theoretical studies conducted to date are reviewed briefly 2. 3. 1. Experimental Studies The technique of electro-kinetic extraction of salts from alkaline soils was investigated by Puri...A VNIFIED THEORY ON ELECTRO-KINETIC EXTRACTION OF CONTAMINANTS A Thesis by SUBBARAJU DATLA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE...

  11. Kinetics of Mercury(II) Adsorption and Desorption on Soil

    E-Print Network [OSTI]

    Sparks, Donald L.

    Kinetics of Mercury(II) Adsorption and Desorption on Soil Y U J U N Y I N , H E R B E R T E . A L L of Delaware, Newark, Delaware 19716 D O N A L D L . S P A R K S Department of Plant and Soil Sciences kinetics of Hg(II) on four soils at pH 6 were investigated to discern the mechanisms controlling

  12. HCCI in a CFR engine: experiments and detailed kinetic modeling

    SciTech Connect (OSTI)

    Flowers, D; Aceves, S; Smith, R; Torres, J; Girard, J; Dibble, R

    1999-11-05T23:59:59.000Z

    Single cylinder engine experiments and chemical kinetic modeling have been performed to study the effect of variations in fuel, equivalence ratio, and intake charge temperature on the start of combustion and the heat release rate. Neat propane and a fuel blend of 15% dimethyl-ether in methane have been studied. The results demonstrate the role of these parameters on the start of combustion, efficiency, imep, and emissions. Single zone kinetic modeling results show the trends consistent with the experimental results.

  13. Consistent description of kinetics and hydrodynamics of dusty plasma

    SciTech Connect (OSTI)

    Markiv, B. [Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii St., 79011 Lviv (Ukraine)] [Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii St., 79011 Lviv (Ukraine); Tokarchuk, M. [Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii St., 79011 Lviv (Ukraine) [Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii St., 79011 Lviv (Ukraine); National University “Lviv Polytechnic,” 12 Bandera St., 79013 Lviv (Ukraine)

    2014-02-15T23:59:59.000Z

    A consistent statistical description of kinetics and hydrodynamics of dusty plasma is proposed based on the Zubarev nonequilibrium statistical operator method. For the case of partial dynamics, the nonequilibrium statistical operator and the generalized transport equations for a consistent description of kinetics of dust particles and hydrodynamics of electrons, ions, and neutral atoms are obtained. In the approximation of weakly nonequilibrium process, a spectrum of collective excitations of dusty plasma is investigated in the hydrodynamic limit.

  14. Precipitation kinetics in ultra-high lime softening 

    E-Print Network [OSTI]

    Peacock, Edward Dale

    1986-01-01T23:59:59.000Z

    PRECIPITATION KINETICS IN ULTRA-HIGH LIME SOFTENING A Thesis EDWARD DALE PEACOCK Submitted to the Graduate College of Texas ABM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August l986 Major... Subject: Civil Engineering PRECIPITATION KINETICS IN ULTRA-HIGH LIME SOFTENING A Thesis by EDWARD DALE PEACOCK Approved as to style and content by: Bill Batchelor (Chair of Commi e) T D. eynol s (Member) Michael T. Lo necker (Member) Donald Mc...

  15. People Tracking with Human Motion Predictions from Social Forces

    E-Print Network [OSTI]

    Arras, Kai O.

    People Tracking with Human Motion Predictions from Social Forces Matthias Luber Johannes A. Stork Gian Diego Tipaldi Kai O. Arras Abstract-- For many tasks in populated environ- ments, robots need to keep track of current and future motion states of people. Most approaches to people tracking make weak

  16. Roadmap-based Motion Planning in Dynamic Environments

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Roadmap-based Motion Planning in Dynamic Environments Jur P. van den Berg Mark H. Overmars.cs.uu.nl #12;Roadmap-based Motion Planning in Dynamic Environments Jur P. van den Berg Mark H. Overmars April obstacles. We propose a practical algorithm based on a roadmap that is created for the static part

  17. Robot Hand-Eye Calibration using Structure-from-Motion

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Robot Hand-Eye Calibration using Structure-from-Motion Nicolas Andre Radu Horaud Bernard Espiau procedure for hand- eye calibration. Indeed, no more calibration jig is needed and small calibration motions. This spatial relationship is a rigid transformation, a rotation and a translation, known as the hand-eye

  18. Kinodynamic Motion Planning by Interior-Exterior Cell Exploration

    E-Print Network [OSTI]

    Kavraki, Lydia E.

    Kinodynamic Motion Planning by Interior-Exterior Cell Exploration Ioan A. S¸ucan1 and Lydia E presents a kinodynamic motion planner, Kinodynamic Mo- tion Planning by Interior-Exterior Cell Exploration is necessary. A multiple-level grid-based discretization is used to estimate the coverage of the state space

  19. Learning Motion Primitives of Object Manipulation Using Mimesis Model

    E-Print Network [OSTI]

    Bryson, Joanna J.

    Learning Motion Primitives of Object Manipulation Using Mimesis Model Bidan Huang1, Joanna Bryson1 manipulation function. After modeling each primitive, the whole task then can be achieved by coordinating them- tion primitives are modeled as a set of differential equations or control rules. New motions

  20. MOTION OF ELECTRON-HOLE DROPS IN Ge

    E-Print Network [OSTI]

    Westervelt, R.M.

    2011-01-01T23:59:59.000Z

    MOTION OF ELECTRON-HOLE DROPS IN Ge R. M. Westervelt, J. C.MOTION OF ELECTRON-HOLE DROPS IN Ge R. M. Westervelt, J. C.OF ELECTRON-HOLE DROPS IN Ge R M Westervelt, J C Culbertson

  1. Creating Robust Roadmaps for Motion Planning in Changing Environments

    E-Print Network [OSTI]

    van den Berg, Jur

    Creating Robust Roadmaps for Motion Planning in Changing Environments Jur P. van den Berg1 Dennis-- In this paper we introduce a method based on the Probabilistic Roadmap (PRM) Planner to construct robust roadmaps for motion planning in changing environments. PRM's are usually aimed at static environments

  2. Creating Highquality Roadmaps for Motion Planning in Virtual Environments

    E-Print Network [OSTI]

    Geraerts, R.J.

    Creating High­quality Roadmaps for Motion Planning in Virtual Environments Roland Geraerts and Mark, the Netherlands Email: {roland,markov}@cs.uu.nl Abstract--- Our goal is to create roadmaps that are particularly suited for motion planning in virtual environments. We use our Reachability Roadmap Method to compute

  3. Motion Planning Using Dynamic Roadmaps Marcelo Kallmann and Maja Mataric

    E-Print Network [OSTI]

    Mataric, Maja J.

    Motion Planning Using Dynamic Roadmaps Marcelo Kallmann and Maja Mataric Interaction Lab, Computer, mataric}@usc.edu Abstract - We evaluate the use of dynamic roadmaps for on- line motion planning and nodes of a precomputed roadmap are updated accordingly. We concentrate in this paper on analyzing

  4. Risk based motion planning and navigation in uncertain dynamic environment

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Risk based motion planning and navigation in uncertain dynamic environment Chiara Fulgenzi, Anne of the dynamic environments. Moving obstacles are supposed to move along typical motion patterns represented the performance for a robotic wheelchair in a simulated environment among multiple dynamic obstacles. Index Terms

  5. Ideal Observers for Detecting Human Motion: Correspondence Noise.

    E-Print Network [OSTI]

    Yuille, Alan L.

    purpose, models of motion. We perform more psychophysical experiments which are consistent with humansIdeal Observers for Detecting Human Motion: Correspondence Noise. HongJing Lo Department obtain Barlow and Tripathy's classic model as an approximation. Our psychophysical experiments show

  6. Motion Sensor Driven Gestrure Recognition for Future Internet Application Development

    E-Print Network [OSTI]

    Petrakis, Euripides G.M.

    for motion sensor driven gesture recognition systems utilizing cloud technology and the FI- WARE core for training, monitoring movements, rehabilitation actions as well as educating purposes. In this work we focus and a motion sensor API for transforming specific hand language and gestures into system commands. The system

  7. Presentation entitled Fluid motion in a cylindrical container subject to

    E-Print Network [OSTI]

    Shihadeh, Alan

    developing a 3D motion out of the 2D . 2D von Karman Vortex street clouds Experimental investigations urged Karman Vortex street clouds To investigate experimentally the 2D vs. quasi-2D aspects, a table top: In the atmosphere and even the oceans the vortex motion is 2D as long as the thickness layer of the fluid is small

  8. en asociacin Asociaciones

    E-Print Network [OSTI]

    . Coloquio sobre contaminaciones por metales y su impacto en el medio ambiente, la salud y la sociedad, en

  9. Fracture toughness and process zone kinetics in amorphous polymers

    SciTech Connect (OSTI)

    Kim, A.

    1992-01-01T23:59:59.000Z

    Usually, a process (deformation) zone is formed ahead of a crack as a response to the stress concentration in ductile materials. Then the crack initiation and propagation are inseparable from the evolution of the process zone accompanying the crack. Thus the kinetics of process zone evolution is closely coupled with the time dependency of fracture. In this study, we report the effects of weathering, scale and loading rate on fracture toughness parameters, and the kinetics of process zone evolution. We also propose a kinetic equation for process zone as a basis for modeling of the time dependency of polycarbonate fracture. Since the well-known Griffith's criterion is usually implemented for characterization of brittle fracture, we have reviewed the applicability of the conventional toughness parameter to characterization of brittle polymers. After that we applied the developed experimental and analytical technique to polycarbonate which possesses ductility and thus does not obey the conventional fracture toughness characterization requirements. The fracture toughness analysis leads to recognition of the important role of process zone evolution in fracture phenomena. As result, one of the main topics of the present work is the experimental and theoretical studies of the process zone kinetics. The kinetic equation is derived following the first principle of thermodynamics of irreversible processes. It provides a master curve for the process zone evolution for various initial conditions. The kinetic equation for the evolution of the process zone in polycarbonate is the main achievement of the thesis. The results provide the basis for mathematical modeling of time dependency of fracture.

  10. POLARIZATION AND COMPRESSIBILITY OF OBLIQUE KINETIC ALFVEN WAVES

    SciTech Connect (OSTI)

    Hunana, P.; Goldstein, M. L. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)] [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Passot, T.; Sulem, P. L.; Laveder, D. [Laboratoire J. L. Lagrange, Universite de Nice Sophia Antipolis, CNRS, Observatoire de la Cote d'Azur, BP 4229, F-06304 Nice Cedex 4 (France)] [Laboratoire J. L. Lagrange, Universite de Nice Sophia Antipolis, CNRS, Observatoire de la Cote d'Azur, BP 4229, F-06304 Nice Cedex 4 (France); Zank, G. P. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States)] [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States)

    2013-04-01T23:59:59.000Z

    It is well known that a complete description of the solar wind requires a kinetic description and that, particularly at sub-proton scales, kinetic effects cannot be ignored. It is nevertheless usually assumed that at scales significantly larger than the proton gyroscale r{sub L} , magnetohydrodynamics or its extensions, such as Hall-MHD and two-fluid models with isotropic pressures, provide a satisfactory description of the solar wind. Here we calculate the polarization and magnetic compressibility of oblique kinetic Alfven waves and show that, compared with linear kinetic theory, the isotropic two-fluid description is very compressible, with the largest discrepancy occurring at scales larger than the proton gyroscale. In contrast, introducing anisotropic pressure fluctuations with the usual double-adiabatic (or CGL) equations of state yields compressibility values which are unrealistically low. We also show that both of these classes of fluid models incorrectly describe the electric field polarization. To incorporate linear kinetic effects, we use two versions of the Landau fluid model that include linear Landau damping and finite Larmor radius (FLR) corrections. We show that Landau damping is crucial for correct modeling of magnetic compressibility, and that the anisotropy of pressure fluctuations should not be introduced without taking into account the Landau damping through appropriate heat flux equations. We also show that FLR corrections to all the retained fluid moments appear to be necessary to yield the correct polarization. We conclude that kinetic effects cannot be ignored even for kr{sub L} << 1.

  11. Peptide concentration alters intermediate species in amyloid ? fibrillation kinetics

    SciTech Connect (OSTI)

    Garvey, M., E-mail: megan.garvey@molbiotech.rwth-aachen.de [Max-Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle (Saale) (Germany); Morgado, I., E-mail: immorgado@ualg.pt [Max-Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle (Saale) (Germany)

    2013-04-12T23:59:59.000Z

    Highlights: ? A?(1–40) aggregation in vitro has been monitored at different concentrations. ? A?(1–40) fibrillation does not always follow conventional kinetic mechanisms. ? We demonstrate non-linear features in the kinetics of A?(1–40) fibril formation. ? At high A?(1–40) concentrations secondary processes dictate fibrillation speed. ? Intermediate species may play significant roles on final amyloid fibril development. -- Abstract: The kinetic mechanism of amyloid aggregation remains to be fully understood. Investigations into the species present in the different kinetic phases can assist our comprehension of amyloid diseases and further our understanding of the mechanism behind amyloid ? (A?) (1–40) peptide aggregation. Thioflavin T (ThT) fluorescence and transmission electron microscopy (TEM) have been used in combination to monitor A?(1–40) aggregation in vitro at both normal and higher than standard concentrations. The observed fibrillation behaviour deviates, in several respects, from standard concepts of the nucleation–polymerisation models and shows such features as concentration-dependent non-linear effects in the assembly mechanism. A?(1–40) fibrillation kinetics do not always follow conventional kinetic mechanisms and, specifically at high concentrations, intermediate structures become populated and secondary processes may further modify the fibrillation mechanism.

  12. Mineral dissolution kinetics at the pore scale

    SciTech Connect (OSTI)

    Li, L.; Steefel, C.I.; Yang, L.

    2007-05-24T23:59:59.000Z

    Mineral dissolution rates in the field have been reported to be orders of magnitude slower than those measured in the laboratory, an unresolved discrepancy that severely limits our ability to develop scientifically defensible predictive or even interpretive models for many geochemical processes in the earth and environmental sciences. One suggestion links this discrepancy to the role of physical and chemical heterogeneities typically found in subsurface soils and aquifers in producing scale-dependent rates where concentration gradients develop. In this paper, we examine the possibility that scale-dependent mineral dissolution rates can develop even at the single pore and fracture scale, the smallest and most fundamental building block of porous media. To do so, we develop two models to analyze mineral dissolution kinetics at the single pore scale: (1) a Poiseuille Flow model that applies laboratory-measured dissolution kinetics at the pore or fracture wall and couples this to a rigorous treatment of both advective and diffusive transport, and (2) a Well-Mixed Reactor model that assumes complete mixing within the pore, while maintaining the same reactive surface area, average flow rate, and geometry as the Poiseuille Flow model. For a fracture, a 1D Plug Flow Reactor model is considered in addition to quantify the effects of longitudinal versus transverse mixing. The comparison of averaged dissolution rates under various conditions of flow, pore size, and fracture length from the three models is used as a means to quantify the extent to which concentration gradients at the single pore and fracture scale can develop and render rates scale-dependent. Three important minerals that dissolve at widely different rates, calcite, plagioclase, and iron hydroxide, are considered. The modeling indicates that rate discrepancies arise primarily where concentration gradients develop due to comparable rates of reaction and advective transport, and incomplete mixing via molecular diffusion. The magnitude of the reaction rate is important, since it is found that scaling effects (and thus rate discrepancies) are negligible at the single pore and fracture scale for plagioclase and iron hydroxide because of the slow rate at which they dissolve. In the case of calcite, where dissolution rates are rapid, scaling effects can develop at high flow rates from 0.1 cm/s to 1000 cm/s and for fracture lengths less than 1 cm. At more normal flow rates, however, mixing via molecular diffusion is effective in homogenizing the concentration field, thus eliminating any discrepancies between the Poiseuille Flow and the Well-Mixed Reactor model. This suggests that a scale dependence to mineral dissolution rates is unlikely at the single pore or fracture scale under normal geological/hydrologic conditions, implying that the discrepancy between laboratory and field rates must be attributed to other factors.

  13. Sideband Cooling Micromechanical Motion to the Quantum Ground State

    E-Print Network [OSTI]

    Teufel, J D; Li, Dale; Harlow, J H; Allman, M S; Cicak, K; Sirois, A J; Whittaker, J D; Lehnert, K W; Simmonds, R W

    2011-01-01T23:59:59.000Z

    The advent of laser cooling techniques revolutionized the study of many atomic-scale systems. This has fueled progress towards quantum computers by preparing trapped ions in their motional ground state, and generating new states of matter by achieving Bose-Einstein condensation of atomic vapors. Analogous cooling techniques provide a general and flexible method for preparing macroscopic objects in their motional ground state, bringing the powerful technology of micromechanics into the quantum regime. Cavity opto- or electro-mechanical systems achieve sideband cooling through the strong interaction between light and motion. However, entering the quantum regime, less than a single quantum of motion, has been elusive because sideband cooling has not sufficiently overwhelmed the coupling of mechanical systems to their hot environments. Here, we demonstrate sideband cooling of the motion of a micromechanical oscillator to the quantum ground state. Entering the quantum regime requires a large electromechanical inte...

  14. Ground-based transmission line conductor motion sensor

    SciTech Connect (OSTI)

    Jacobs, M.L.; Milano, U.

    1988-08-22T23:59:59.000Z

    A ground-based-conductor motion-sensing apparatus is provided for remotely sensing movement of electric-power transmission lines, particularly as would occur during the wind-induced condition known as galloping. The apparatus is comprised of a motion sensor and signal-generating means which are placed underneath a transmission line and will sense changes in the electric field around the line due to excessive line motion. The detector then signals a remote station when a conditioning of galloping is sensed. The apparatus of the present invention is advantageous over the line-mounted sensors of the prior art in that it is easier and less hazardous to install. The system can also be modified so that a signal will only be given when particular conditions, such as specific temperature range, large-amplitude line motion, or excessive duration of the line motion, are occurring.

  15. Zero kinetic energy photoelectron spectroscopy of triphenylene

    SciTech Connect (OSTI)

    Harthcock, Colin; Zhang, Jie; Kong, Wei, E-mail: wei.kong@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, Oregon 97331 (United States)

    2014-06-28T23:59:59.000Z

    We report vibrational information of both the first electronically excited state and the ground cationic state of jet-cooled triphenylene via the techniques of resonantly enhanced multiphoton ionization (REMPI) and zero kinetic energy (ZEKE) photoelectron spectroscopy. The first excited electronic state S{sub 1} of the neutral molecule is of A{sub 1}? symmetry and is therefore electric dipole forbidden in the D{sub 3h} group. Consequently, there are no observable Franck-Condon allowed totally symmetric a{sub 1}? vibrational bands in the REMPI spectrum. All observed vibrational transitions are due to Herzberg-Teller vibronic coupling to the E? third electronically excited state S{sub 3}. The assignment of all vibrational bands as e? symmetry is based on comparisons with calculations using the time dependent density functional theory and spectroscopic simulations. When an electron is eliminated, the molecular frame undergoes Jahn-Teller distortion, lowering the point group to C{sub 2v} and resulting in two nearly degenerate electronic states of A{sub 2} and B{sub 1} symmetry. Here we follow a crude treatment by assuming that all e? vibrational modes resolve into b{sub 2} and a{sub 1} modes in the C{sub 2v} molecular frame. Some observed ZEKE transitions are tentatively assigned, and the adiabatic ionization threshold is determined to be 63?365 ± 7 cm{sup ?1}. The observed ZEKE spectra contain a consistent pattern, with a cluster of transitions centered near the same vibrational level of the cation as that of the intermediate state, roughly consistent with the propensity rule. However, complete assignment of the detailed vibrational structure due to Jahn-Teller coupling requires much more extensive calculations, which will be performed in the future.

  16. Neptunium_Oxide_Precipitation_Kinetics_AJohnsen

    SciTech Connect (OSTI)

    Johnsen, A M; Roberts, K E; Prussin, S G

    2012-06-08T23:59:59.000Z

    We evaluate the proposed NpO{sub 2}{sup +}(aq)-NpO{sub 2}(cr) reduction-precipitation system at elevated temperatures to obtain primary information on the effects of temperature, ionic strength, O{sub 2} and CO{sub 2}. Experiments conducted on unfiltered solutions at 10{sup -4} M NpO{sub 2}{sup +}(aq), neutral pH, and 200 C indicated that solution colloids strongly affect precipitation kinetics. Subsequent experiments on filtered solutions at 200, 212, and 225 C showed consistent and distinctive temperature-dependent behavior at reaction times {le} 800 hours. At longer times, the 200 C experiments showed unexpected dissolution of neptunium solids, but experiments at 212 C and 225 C demonstrated quasi steady-state neptunium concentrations of 3 x 10{sup -6} M and 6 x 10{sup -6} M, respectively. Solids from a representative experiment analyzed by X-ray diffraction were consistent with NpO{sub 2}(cr). A 200 C experiment with a NaCl concentration of 0.05 M showed a dramatic increase in the rate of neptunium loss. A 200 C experiment in an argon atmosphere resulted in nearly complete loss of aqueous neptunium. Previously proposed NpO{sub 2}{sup +}(aq)-NpO{sub 2}(cr) reduction-precipitation mechanisms in the literature specified a 1:1 ratio of neptunium loss and H{sup +} production in solution over time. However, all experiments demonstrated ratios of approximately 0.4 to 0.5. Carbonate equilibria can account for only about 40% of this discrepancy, leaving an unexpected deficit in H+ production that suggests that additional chemical processes are occurring.

  17. Automatically Generating Eye Motion in Virtual Agents Eye Motion has a fundamental role in verbal and non-verbal

    E-Print Network [OSTI]

    Animation's applications, such as virtual humans in general and game/movies characters. This paper presents tagging 1. INTRODUCTION Virtual humans have been widely used in many applica- tions. One is concernedAutomatically Generating Eye Motion in Virtual Agents ABSTRACT Eye Motion has a fundamental role

  18. M. Flierl: Motion-Compensated Orthogonal Transforms for Multiview Video Coding, EURASIP EUSIPCO, Poznan, Poland, Sep. 2007. 1 MOTION-COMPENSATED ORTHOGONAL TRANSFORMS

    E-Print Network [OSTI]

    Flierl, Markus

    of motion information. This is in contrast to the well known motion-compensated lifted wavelets where in time and view direction are cascaded. Motion-compensated lifted wavelets suffer from their motion. Well known examples are free viewpoint video [1] and free viewpoint television (FTV) [2]. For all

  19. M. Flierl: Adaptive Spatial Wavelets for Motion-Compensated Orthogonal Video Transforms, IEEE ICIP, Cairo, Egypt, Nov. 2009. 1 ADAPTIVE SPATIAL WAVELETS FOR MOTION-COMPENSATED

    E-Print Network [OSTI]

    Flierl, Markus

    , Cairo, Egypt, Nov. 2009. 1 ADAPTIVE SPATIAL WAVELETS FOR MOTION-COMPENSATED ORTHOGONAL VIDEO TRANSFORMS

  20. Planck intermediate results. CV. Evidence of unbound gas from the kinetic Sunyaev-Zeldovich effect

    E-Print Network [OSTI]

    Ade, P A R; Arnaud, M; Ashdown, M; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartolo, N; Battaner, E; Benabed, K; Benoit-Lévy, A; Bersanelli, M; Bielewicz, P; Bock, J J; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Burigana, C; Calabrese, E; Cardoso, J -F; Catalano, A; Chamballu, A; Chiang, H C; Christensen, P R; Clements, D L; Colombo, L P L; Combet, C; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Zotti, G; Delabrouille, J; Dickinson, C; Diego, J M; Dolag, K; Donzelli, S; Doré, O; Douspis, M; Ducout, A; Dupac, X; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Galeotta, S; Galli, S; Ganga, K; Génova-Santos, R T; Giard, M; Gjerløw, E; González-Nuevo, J; Górski, K M; Gregorio, A; Gruppuso, A; Hansen, F K; Harrison, D L; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Hornstrup, A; Huffenberger, K M; Hurier, G; Jaffe, A H; Jaffe, T R; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kitaura, F; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leonardi, R; León-Tavares, J; Levrier, F; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Ma, Y -Z; Macías-Pérez, J F; Maffei, B; Maino, D; Mak, D S Y; Mandolesi, N; Mangilli, A; Maris, M; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; McGehee, P; Melchiorri, A; Mennella, A; Migliaccio, M; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Noviello, F; Novikov, D; Novikov, I; Oxborrow, C A; Pagano, L; Pajot, F; Paoletti, D; Perdereau, O; Perotto, L; Pettorino, V; Piacentini, F; Piat, M; Pierpaoli, E; Pointecouteau, E; Polenta, G; Ponthieu, N; Puget, J -L; Puisieux, S; Rachen, J P; Racine, B; Reach, W T; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Ristorcelli, I; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Savini, G; Scott, D; Spencer, L D; Stolyarov, V; Sudiwala, R; Sunyaev, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tucci, M; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Wang, W; Wehus, I K; Yvon, D; Zacchei, A; Zonca, A

    2015-01-01T23:59:59.000Z

    By looking at the kinetic Sunyaev-Zeldovich effect (kSZ) in Planck nominal mission data, we present a significant detection of baryons participating in large-scale bulk flows around central galaxies (CGs) at redshift $z\\approx 0.1$. We estimate the pairwise momentum of the kSZ temperature fluctuations at the positions of the CGC (Central Galaxy Catalogue) samples extracted from Sloan Digital Sky Survey (DR7) data. For the foreground-cleaned maps, we find $1.8$-$2.5\\sigma$ detections of the kSZ signal, which are consistent with the kSZ evidence found in individual Planck raw frequency maps, although lower than found in the WMAP-9yr W band ($3.3\\sigma$). We further reconstruct the peculiar velocity field from the CG density field, and compute for the first time the cross-correlation function between kSZ temperature fluctuations and estimates of CG radial peculiar velocities. This correlation function yields a $3.0$-$3.7$$\\sigma$ detection of the peculiar motion of extended gas on Mpc scales, in flows correlated...

  1. Monitoring internal organ motion with continuous wave radar in CT

    SciTech Connect (OSTI)

    Pfanner, Florian [Institute of Medical Physics, University of Erlangen–Nürnberg, 91052 Erlangen, Germany and Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany)] [Institute of Medical Physics, University of Erlangen–Nürnberg, 91052 Erlangen, Germany and Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany); Maier, Joscha [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)] [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Allmendinger, Thomas; Flohr, Thomas [Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany)] [Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany); Kachelrieß, Marc [Institute of Medical Physics, University of Erlangen–Nürnberg, 91052 Erlangen, Germany and Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)] [Institute of Medical Physics, University of Erlangen–Nürnberg, 91052 Erlangen, Germany and Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2013-09-15T23:59:59.000Z

    Purpose: To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT.Methods: The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radar system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements.Results: Concerning the measurements of the test persons, there is a very good correlation (?= 0.917) between the respiratory motion phases received by the radar system and the external motion monitor. Our concept of using an array of transmitting antennas turned out to be widely insensitive to the positioning of the test persons. A time shift between the respiratory motion curves recorded with the radar system and the motion curves from the external respiratory monitor was observed which indicates a slight difference between internal organ motion and motion detected by the external respiratory monitor. The simulations were in good accordance with the measurements.Conclusions: A continuous wave radar operating in the near field of the antennas can be used to determine the respiratory motion of humans accurately. In contrast to trigger systems used today, the radar system is able to measure motion inside the body. If such a monitor was routinely available in clinical CT, it would be possible optimizing the scan start with respect to the respiratory state of the patient. Breathing commands would potentially widely be avoided, and as far as uncooperative patients or children are concerned, less sedation might be necessary. Further applications of the radar system could be in radiation therapy or interventional imaging for instance.

  2. Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems

    SciTech Connect (OSTI)

    Westbrook, C.K.

    2000-07-07T23:59:59.000Z

    Chemical kinetic factors of hydrocarbon oxidation are examined in a variety of ignition problems. Ignition is related to the presence of a dominant chain branching reaction mechanism that can drive a chemical system to completion in a very short period of time. Ignition in laboratory environments is studied for problems including shock tubes and rapid compression machines. Modeling of the laboratory systems are used to develop kinetic models that can be used to analyze ignition in practical systems. Two major chain branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide. Kinetic models are then used to describe ignition in practical combustion environments, including detonations and pulse combustors for high temperature ignition, and engine knock and diesel ignition for intermediate temperature ignition. The final example of ignition in a practical environment is homogeneous charge, compression ignition (HCCI) which is shown to be a problem dominated by the kinetics intermediate temperature hydrocarbon ignition. Model results show why high hydrocarbon and CO emissions are inevitable in HCCI combustion. The conclusion of this study is that the kinetics of hydrocarbon ignition are actually quite simple, since only one or two elementary reactions are dominant. However, there are many combustion factors that can influence these two major reactions, and these are the features that vary from one practical system to another.

  3. Kinetics of growth of spinel crystals in a borosilicate glass

    SciTech Connect (OSTI)

    Alton, Jesse; Plaisted, Trevor J.; Hrma, Pavel R.

    2002-07-01T23:59:59.000Z

    Three aspects of the kinetics of spinel crystallization in a high-level waste (HLW) glass were studied: (1) the effect of nucleation agents on the number density (ns) of spinel crystals, (2) crystallization kinetics in a crushed glass, and (3) crystallization kinetics in a glass preheated at T > TL (liquidus temperature). In glass lacking in nucleation agents, ns was a strong function of temperature. In glasses with noble metals (Rh, Ru, Pd, and Pt), ns increased by up to four orders of magnitude and was nearly independent of temperature. The kinetics of spinel crystallization in crushed glass lacking nucleation agents was dominated by surface crystallization and was described by the Kolmogorov-Johnson-Mehl-Avrami (KJMA) equation with the Avrami exponent n {at} 0.5. For application to HLW glass melter processing, it was necessary to preheat glass at T > TL to eliminate the impact of temperature history and surface crystallization on crystal nucleation and growth. In the temperature range of glass processing, crystals descend under gravity when they reach a critical size. Below this critical size, crystallization kinetics is described by the KJMA equation and above the critical size by the Hixson-Crowell equation. At low temperatures, at which glass viscosity is high and diffusion is slow, the KJMA equation represents crystal growth from nucleation to equilibrium. As ns increases, the temperature interval of the transition from the KJMA to Hixson-Crowell regime shifts to a higher temperature.

  4. Kinetics of growth of spinel crystals in a borosilicate glass

    SciTech Connect (OSTI)

    Alton, Jesse; Plaisted, Trevor J.; Hrma, Pavel R.

    2002-08-08T23:59:59.000Z

    Three aspects of the kinetics of spinel crystallization in a high-level waste (HLW) glass were studied: (1) the effect of nucleation agents on the number density (ns) of spinel crystals, (2) crystallization kinetics in a crushed glass, and (3) crystallization kinetics in a glass preheated at T>TL (liquidus temperature). In glass lacking in nucleation agens, ns was a strong function of temperature. In glasses with noble metals (Rh, Ru, Pd, and Pt), ns increased by up to four orders of magnitude and was nearly independent of temperature. The kinetics of spinel crystallization in crushed glass lacking nucleation agents was dominated by surface crystallization and was described by the Kolmogorov-Johnson-Mehl-Avrami (KJMA) equation with the Avrami exponent n~0.5. For application to HLW glass melter processing, it was necessary to preheat glass at T>TL to eliminate the impact of temperature history and surface crystallization on crystal nucleation and growth. In the temperature range of glass processing, crystals descend under gravity when they reach a critical size. Below this critical size, crystallization kinetics is described by the KJMA equation and above the critical size by the Hixson-Crowell equation. At low temperatures, at which glass viscosity is high and diffusion is slow, the KJMA equation represents crystal growth from nucleation to equilibrium. As ns increases, the temperature interval of the transition from the KJMA to Hisxon-Crowell regime shifts to a higher temperature.

  5. Spontaneous motion in hierarchically assembled active matter

    E-Print Network [OSTI]

    Tim Sanchez; Daniel T. N. Chen; Stephen J. DeCamp; Michael Heymann; Zvonimir Dogic

    2013-01-07T23:59:59.000Z

    With exquisite precision and reproducibility, cells orchestrate the cooperative action of thousands of nanometer-sized molecular motors to carry out mechanical tasks at much larger length scales, such as cell motility, division and replication. Besides their biological importance, such inherently non-equilibrium processes are an inspiration for developing biomimetic active materials from microscopic components that consume energy to generate continuous motion. Being actively driven, these materials are not constrained by the laws of equilibrium statistical mechanics and can thus exhibit highly sought-after properties such as autonomous motility, internally generated flows and self-organized beating. Starting from extensile microtubule bundles, we hierarchically assemble active analogs of conventional polymer gels, liquid crystals and emulsions. At high enough concentration, microtubules form a percolating active network characterized by internally driven chaotic flows, hydrodynamic instabilities, enhanced transport and fluid mixing. When confined to emulsion droplets, 3D networks spontaneously adsorb onto the droplet surfaces to produce highly active 2D nematic liquid crystals whose streaming flows are controlled by internally generated fractures and self-healing, as well as unbinding and annihilation of oppositely charged disclination defects. The resulting active emulsions exhibit unexpected properties, such as autonomous motility, which are not observed in their passive analogues. Taken together, these observations exemplify how assemblages of animate microscopic objects exhibit collective biomimetic properties that are starkly different from those found in materials assembled from inanimate building blocks, challenging us to develop a theoretical framework that would allow for a systematic engineering of their far-from-equilibrium material properties.

  6. Theory of hair bundle motion: new insights from the simplest model of hair bundle

    E-Print Network [OSTI]

    Ji, Seung Keun

    2013-01-01T23:59:59.000Z

    2 Single Hair bundle motion and a simpleas a model of a single hair bundle motion . . . . . . . . .of mechan- otransduction in hair cells. ” Annu Rev Neurosci,

  7. Passive electromagnetic damping device for motion control of building structures

    E-Print Network [OSTI]

    Palomera-Arias, Rogelio, 1972-

    2005-01-01T23:59:59.000Z

    The research presented in this thesis develops a new device for the passive control of motion in building structures: an electromagnetic damper. The electromagnetic damper is a self-excited device that provides a reaction ...

  8. Bulgarian Verbs of Motion: Slavic Verbs in a Balkan Context

    E-Print Network [OSTI]

    Lindsey, Traci Speed

    2011-01-01T23:59:59.000Z

    motion events in Serbo-Croatian. In Victoria Hasko & ReneeRussian and Bosnian-Croatian-Serbian (BCS). The theoreticalRussian and Bosnian-Croatian-Serbian (BCS). Theoretical

  9. Motion to intervene and comments of the energy services group...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    intervene and comments of the energy services group of Hydro-Quebec and H.Q. Energy Services (U.S.) Inc, on FE 99-1 Motion to intervene and comments of the energy services group of...

  10. The Motional Stark Effect diagnostic on Alcator C-Mod

    E-Print Network [OSTI]

    Yuh, Howard Yung-Hao

    2005-01-01T23:59:59.000Z

    A ten channel Motional Stark Effect diagnostic has been installed on Alcator C-Mod to measure the plasma internal magnetic pitch angle profile. The C-Mod MSE measures the local electric field direction by measuring the ...

  11. Reducing Actuator Switchings for Motion Control of Autonomous Underwater Vehicles

    E-Print Network [OSTI]

    Smith, Ryan N.

    Reducing Actuator Switchings for Motion Control of Autonomous Underwater Vehicles Monique Chyba, such as time, energy, payload or some combination of these. Indeed, the major issue is that due to the vehicles

  12. for Computer Animation and Robotics Visual Analysis of Biomimetic Motion

    E-Print Network [OSTI]

    Hale, Joshua G.

    Joshua G. Hale & Frank E. Pollick Motion production algorithms are based on human motor production numerically integrated cost functions and solved using the Simplex method. A computationally efficient optimal

  13. The early American motion picture industry: promoting American cultural hegemony 

    E-Print Network [OSTI]

    Wier, Theresa Joanne

    1994-01-01T23:59:59.000Z

    of the United States. Analysis of the impact of the motion picture in the United States and Europe during this period provides insight into the role of film industry....

  14. Sound-induced micromechanical motions in an isolated cochlea preparation

    E-Print Network [OSTI]

    Page, Scott Lawrence

    2006-01-01T23:59:59.000Z

    The mechanical processes at work within the organ of Corti can be greatly elucidated by measuring both radial motions and traveling-wave behavior of structures within this organ in response to sound stimuli. To enable such ...

  15. ahumada motion detector: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We show data from a new type of detector that can be used to determine the neutron flux, the energy distribution, and the direction of motion neutron for both fast and thermal...

  16. Sandia National Laboratories: governing WEC equations of motion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    governing WEC equations of motion in six degrees of freedom Sandia, NREL Release Wave Energy Converter Modeling and Simulation Code: WEC-Sim On July 29, 2014, in Computational...

  17. John Papanikolas: Visualizing Charge Carrier Motion in Nanowires...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    John Papanikolas: Visualizing Charge Carrier Motion in Nanowires Using Femtosecond Pump-Probe Microscopy Apr 17, 2014 | 4:00 PM - 5:00 PM John Papanikolas Professor of Chemistry &...

  18. Wavelet Packets of fractional Brownian motion: Asymptotic Analysis and Spectrum

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Wavelet Packets of fractional Brownian motion: Asymptotic Analysis and Spectrum Estimation properties of the autocorrelation functions of the wavelet packet coefficients of a fractional Brownian process. The analysis concerns some families of wavelet paraunitary filters that converge almost

  19. Perceptual motion standstill in rapidly moving chromatic displays

    E-Print Network [OSTI]

    Sperling, George

    a narrow range of luminance contrasts and green red saturation ratios, moving stimuli were perceived, e.g., as in the slow movement of the moon across the sky, no motion or a stationary object

  20. Wave-induced motion of ramp-interconnected craft

    E-Print Network [OSTI]

    Oonk, Stephen Holt

    2008-01-01T23:59:59.000Z

    OF CALIFORNIA, SAN DIEGO Wave-Induced Motion of Ramp-5 2.1 Mathematical Description of the Wave49 4.2 Case 1: Waves are Parallel to Ship-Ramp-Ship Axis (

  1. Cataclysmic variables in the SUPERBLINK proper motion survey

    SciTech Connect (OSTI)

    Skinner, Julie N.; Thorstensen, John R. [Department of Physics and Astronomy, 6127 Wilder Laboratory, Dartmouth College, Hanover, NH 03755-3528 (United States); Lépine, Sébastien, E-mail: jns@dartmouth.edu [Department of Physics and Astronomy, Georgia State University, 25 Park Place NE, Atlanta, GA 30303 (United States)

    2014-12-01T23:59:59.000Z

    We have discovered a new high proper motion cataclysmic variable (CV) in the SUPERBLINK proper motion survey, which is sensitive to stars with proper motions greater than 40 mas yr{sup ?1}. This CV was selected for follow-up observations as part of a larger search for CVs selected based on proper motions and their near-UV?V and V?K{sub s} colors. We present spectroscopic observations from the 2.4 m Hiltner Telescope at MDM Observatory. The new CV's orbital period is near 96 minutes, its spectrum shows the double-peaked Balmer emission lines characteristic of quiescent dwarf novae, and its V magnitude is near 18.2. Additionally, we present a full list of known CVs in the SUPERBLINK catalog.

  2. Hierarchical Task and Motion Planning in the Now

    E-Print Network [OSTI]

    Kaelbling, Leslie Pack

    2010-05-07T23:59:59.000Z

    In this paper we outline an approach to the integration of task planning and motion planning that has the following key properties: It is aggressively hierarchical. It makes choices and commits to them in a top-down fashion ...

  3. Integrated Robot Task and Motion Planning in the Now

    E-Print Network [OSTI]

    Kaelbling, Leslie Pack

    2012-06-29T23:59:59.000Z

    This paper provides an approach to integrating geometric motion planning with logical task planning for long-horizon tasks in domains with many objects. We propose a tight integration between the logical and geometric ...

  4. Information-Theoretic Motion Planning for Constrained Sensor Networks

    E-Print Network [OSTI]

    Levine, Daniel

    2012-07-20T23:59:59.000Z

    This paper considers the problem of online informative motion planning for a network of heterogeneous sensing agents, each subject to dynamic constraints, environmental constraints, and sensor limitations. Prior work has ...

  5. Motion to Intervene and Comments of Public Utility District No...

    Broader source: Energy.gov (indexed) [DOE]

    A motion to intervene and comments from Public Utility District No. 1 (Pend Oreille County, Washington) on PP 99-1 Notice of Intent to Amend Presidential Permit, where DOE proposes...

  6. Vibration suppression, stabilization, motion planning and tracking for flexible beams

    E-Print Network [OSTI]

    Siranosian, Antranik Antonio

    2009-01-01T23:59:59.000Z

    Target System . . . . 3.2.3 Flexible Beams . . . 3.3 MotionPlanning and Tracking for Flexible Beams A Dissertationand De?ection Angle for Flexible Beams,” ASME Journal of

  7. A Comparative Study of Estimation Models for Satellite Relative Motion 

    E-Print Network [OSTI]

    Desai, Uri

    2013-01-31T23:59:59.000Z

    The problem of relative spacecraft motion estimation is considered with application to various reference and relative orbits. Mean circular and elliptic orbits are analyzed, with relative orbits ranging in size from 1 km ...

  8. Widening the Axion Window via Kinetic and Stückelberg Mixings

    E-Print Network [OSTI]

    Gary Shiu; Wieland Staessens; Fang Ye

    2015-03-03T23:59:59.000Z

    We point out that kinetic and St\\"uckelberg mixings that are generically present in the low energy effective action of axions can significantly widen the window of axion decay constants. We show that an effective super-Planckian decay constant can be obtained even when the axion kinetic matrix has only sub-Planckian entries. Our minimal model involves only two axions, a St\\"uckelberg U(1) and a modest rank instanton generating non-Abelian group. Below the mass of the St\\"uckelberg U(1), there is only a single axion with a non-perturbatively generated potential. In contrast to previous approaches, the enhancement of the axion decay constant is not tied to the number of degrees of freedom introduced. We also discuss how kinetic mixings can lower the decay constant to the desired axion dark matter window. String theory embeddings of this scenario and their phenomenological features are briefly discussed.

  9. Temporal Variations in the Sun's Rotational Kinetic Energy

    E-Print Network [OSTI]

    H. M. Antia; S. M. Chitre; D. O. Gough

    2007-11-06T23:59:59.000Z

    AIM: To study the variation of the angular momentum and the rotational kinetic energy of the Sun, and associated variations in the gravitational multipole moments, on a timescale of the solar cycle. METHOD: Inverting helioseismic rotational splitting data obtained by the Global Oscillation Network Group and by the Michelson Doppler Imager on the Solar and Heliospheric Observatory. RESULTS: The temporal variation in angular momentum and kinetic energy at high latitudes (>\\pi/4) through the convection zone is positively correlated with solar activity, whereas at low latitudes it is anticorrelated, except for the top 10% by radius where both are correlated positively. CONCLUSION: The helioseismic data imply significant temporal variation in the angular momentum and the rotational kinetic energy, and in the gravitational multipole moments. The properties of that variation will help constrain dynamical theories of the solar cycle.

  10. On bias of kinetic temperature measurements in complex plasmas

    SciTech Connect (OSTI)

    Kantor, M. [Association Euratom-Max-Planck-Institut für Plasmaphysik, D-85748 Garching bei München (Germany) [Association Euratom-Max-Planck-Institut für Plasmaphysik, D-85748 Garching bei München (Germany); Association Euratom-FOM Institute DIFFER, 3430 BE Nieuwegein (Netherlands); Ioffe Institute, RAS, St. Petersburg 194021 (Russian Federation); Moseev, D., E-mail: dmitry.moseev@ipp.mpg.de [Association Euratom-Max-Planck-Institut für Plasmaphysik, D-85748 Garching bei München (Germany); Association Euratom-FOM Institute DIFFER, 3430 BE Nieuwegein (Netherlands); Salewski, M. [Association Euratom-DTU, Department of Physics, Technical University of Denmark, DTU Ris o Campus, DK-4000 Roskilde (Denmark)] [Association Euratom-DTU, Department of Physics, Technical University of Denmark, DTU Ris o Campus, DK-4000 Roskilde (Denmark)

    2014-02-15T23:59:59.000Z

    The kinetic temperature in complex plasmas is often measured using particle tracking velocimetry. Here, we introduce a criterion which minimizes the probability of faulty tracking of particles with normally distributed random displacements in consecutive frames. Faulty particle tracking results in a measurement bias of the deduced velocity distribution function and hence the deduced kinetic temperature. For particles with a normal velocity distribution function, mistracking biases the obtained velocity distribution function towards small velocities at the expense of large velocities, i.e., the inferred velocity distribution is more peaked and its tail is less pronounced. The kinetic temperature is therefore systematically underestimated in measurements. We give a prescription to mitigate this type of error.

  11. Kinetic Alfvén wave turbulence and formation of localized structures

    SciTech Connect (OSTI)

    Sharma, R. P. [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016 (India)] [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016 (India); Modi, K. V. [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016 (India) [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016 (India); Mechanical Engineering Department, Government Engineering College Valsad, Gujarat 396001 (India)

    2013-08-15T23:59:59.000Z

    This work presents non-linear interaction of magnetosonic wave with kinetic Alfvén wave for intermediate ?-plasma (m{sub e}/m{sub i}???1). A set of dimensionless equations have been developed for analysis by considering ponderomotive force due to pump kinetic Alfvén wave in the dynamics of magnetosonic wave. Stability analysis has been done to study modulational instability or linear growth rate. Further, numerical simulation has been carried out to study the nonlinear stage of instability and resulting power spectrum applicable to solar wind around 1 AU. Due to the nonlinearity, background density of magnetosonic wave gets modified which results in localization of kinetic Alfvén wave. From the obtained results, we observed that spectral index follows k{sup ?3.0}, consistent with observation received by Cluster spacecraft for the solar wind around 1 AU. The result shows the steepening of power spectrum which may be responsible for heating and acceleration of plasma particles in solar wind.

  12. Chemical Kinetic Models for HCCI and Diesel Combustion

    SciTech Connect (OSTI)

    Pitz, W J; Westbrook, C K; Mehl, M; Sarathy, S M

    2010-11-15T23:59:59.000Z

    Predictive engine simulation models are needed to make rapid progress towards DOE's goals of increasing combustion engine efficiency and reducing pollutant emissions. These engine simulation models require chemical kinetic submodels to allow the prediction of the effect of fuel composition on engine performance and emissions. Chemical kinetic models for conventional and next-generation transportation fuels need to be developed so that engine simulation tools can predict fuel effects. The objectives are to: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

  13. Kinetics of high-conversion hydrocracking of bitumen

    SciTech Connect (OSTI)

    Nagaishi, H.; Gray, M.R. [Univ. of Alberta, Edmonton (Canada); Chan, E.W.; Sanford, E.C. [Syncrude Canada, Edmonton, Alberta (Canada)

    1995-12-31T23:59:59.000Z

    Residues are complex mixtures of thousands of components. This mixture will change during hydrocracking, so that high conversion may result in a residue material with different characteristics from the starting material. Our objective is to determine the kinetics of residue conversion and yields of distillates at high conversions, and to relate these observations to the underlying chemical reactions. Athabasca bitumen was reacted in a 1-L CSTR in a multipass operation. Product from the first pass was collected, then run through the reactor again and so on, giving kinetic data under conditions that simulated a multi-reactor or packed-bed operation. Experiments were run both with hydrocracking catalyst and without added catalyst. Products were analyzed by distillation, elemental analysis, NMR, and GPC. These data will be used to derive a kinetic model for hydrocracking of bitumen residue covering a wide range of conversion (from 30% to 95%+), based on the underlying chemistry.

  14. Kinetic Theory for Binary Granular Mixtures at Low-Density

    E-Print Network [OSTI]

    Vicente Garzo

    2007-04-10T23:59:59.000Z

    Many features of granular media can be modelled as a fluid of hard spheres with {\\em inelastic} collisions. Under rapid flow conditions, the macroscopic behavior of grains can be described through hydrodynamic equations. At low-density, a fundamental basis for the derivation of the hydrodynamic equations and explicit expressions for the transport coefficients appearing in them is provided by the Boltzmann kinetic theory conveniently modified to account for inelastic binary collisions. The goal of this chapter is to give an overview of the recent advances made for binary granular gases by using kinetic theory tools. Some of the results presented here cover aspects such as transport properties, energy nonequipartition, instabilities, segregation or mixing, non-Newtonian behavior, .... In addition, comparison of the analytical results with those obtained from Monte Carlo and molecular dynamics simulations is also carried out, showing the reliability of kinetic theory to describe granular flows even for strong dissipation.

  15. Scour around a circular pile due to oscillatory wave motion

    E-Print Network [OSTI]

    Wells, Donald Raymond

    1970-01-01T23:59:59.000Z

    ( COLEMAN ) 10 authors. In general the committee on sedimentation has found many inconsistencies in critical velocities necessary for incipient motion and have concluded that when studying incipient motion critical shear stresses should be the governing...- city of the paddle arm on the flywheel. The period is varied through a variable rheostat that controls the speed of the flywheel. The rocker arms can be varied so as to vary the wave from a deep water wave to a shallow water wave. Wave heights...

  16. Small mass asymptotic for the motion with vanishing friction

    E-Print Network [OSTI]

    Mark Freidlin; Wenqing Hu; Alexander Wentzell

    2012-08-30T23:59:59.000Z

    We consider the small mass asymptotic (Smoluchowski-Kramers approximation) for the Langevin equation with a variable friction coefficient. The friction coefficient is assumed to be vanishing within certain region. We introduce a regularization for this problem and study the limiting motion for the 1-dimensional case and a multidimensional model problem. The limiting motion is a Markov process on a projected space. We specify the generator and boundary condition of this limiting Markov process and prove the convergence.

  17. Roles of Dry Friction in Fluctuating Motion of Adiabatic Piston

    E-Print Network [OSTI]

    Tomohiko G. Sano; Hisao Hayakawa

    2014-03-08T23:59:59.000Z

    The motion of an adiabatic piston under dry friction is investigated to clarify the roles of dry friction in non-equilibrium steady states. We clarify that dry friction can reverse the direction of the piston motion and causes a discontinuity or a cusp-like singularity for velocity distribution functions of the piston. We also show that the heat fluctuation relation is modified under dry friction.

  18. Nonlinear behavior of reinforced concrete structures subjected to ground motion

    E-Print Network [OSTI]

    Abraham, Moises Alberto

    1991-01-01T23:59:59.000Z

    NONLINEAR BEHAVIOR OF REINFORCED CONCRETE STRUCTURES SUBJECTED TO GROUND MOTION A Thesis by MOISES ALBERTO ABRAHAM Submitted to the Office of Graduate Studies of Texas A 5 M U ni vers i ty in partial fulfillment of the requirement I...' or the degree of MASTER OF SCIENCE May 1991 Major Subject: Civil Engineering NONLINEAR BEHAVIOR OF REINFORCED CONCRETE STRUCTURES SUBJECTED TO GROUND MOTION A Thesis by MOISES ALBERTO ABRAHAM Approved as to style and content by: James . organ (Chair...

  19. Motion of the planets: the calculation and visualization in Mathcad

    E-Print Network [OSTI]

    Ochkov, Valery

    2015-01-01T23:59:59.000Z

    This article describes use of Mathcad mathematical package to solve problem of the motion of two, three and four material points under the influence of gravitational forces on the planar motion and in three-dimensional space. The limits of accuracy of numerical methods for solving ordinary differential equations are discussed. Usual concept of Kepler hours with uneven movement arrows illustrates Kepler's second law. Mathcad animation tools are used to illustrate solutions and links with animations are provided.

  20. Benchmarking kinetic calculations of resistive wall mode stability

    SciTech Connect (OSTI)

    Berkery, J. W.; Sabbagh, S. A. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)] [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Liu, Y. Q. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)] [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Wang, Z. R.; Logan, N. C.; Park, J.-K.; Manickam, J. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Betti, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-05-15T23:59:59.000Z

    Validating the calculations of kinetic resistive wall mode (RWM) stability is important for confidently predicting RWM stable operating regions in ITER and other high performance tokamaks for disruption avoidance. Benchmarking the calculations of the Magnetohydrodynamic Resistive Spectrum—Kinetic (MARS-K) [Y. Liu et al., Phys. Plasmas 15, 112503 (2008)], Modification to Ideal Stability by Kinetic effects (MISK) [B. Hu et al., Phys. Plasmas 12, 057301 (2005)], and Perturbed Equilibrium Nonambipolar Transport (PENT) [N. Logan et al., Phys. Plasmas 20, 122507 (2013)] codes for two Solov'ev analytical equilibria and a projected ITER equilibrium has demonstrated good agreement between the codes. The important particle frequencies, the frequency resonance energy integral in which they are used, the marginally stable eigenfunctions, perturbed Lagrangians, and fluid growth rates are all generally consistent between the codes. The most important kinetic effect at low rotation is the resonance between the mode rotation and the trapped thermal particle's precession drift, and MARS-K, MISK, and PENT show good agreement in this term. The different ways the rational surface contribution was treated historically in the codes is identified as a source of disagreement in the bounce and transit resonance terms at higher plasma rotation. Calculations from all of the codes support the present understanding that RWM stability can be increased by kinetic effects at low rotation through precession drift resonance and at high rotation by bounce and transit resonances, while intermediate rotation can remain susceptible to instability. The applicability of benchmarked kinetic stability calculations to experimental results is demonstrated by the prediction of MISK calculations of near marginal growth rates for experimental marginal stability points from the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)].

  1. Spectroscopy and kinetics of combustion gases at high temperatures

    SciTech Connect (OSTI)

    Hanson, R.K.; Bowman, C.T. [Stanford Univ., CA (United States)

    1993-12-01T23:59:59.000Z

    This program involves two complementary activities: (1) development and application of cw ring dye laser absorption methods for sensitive detection of radical species and measurement of fundamental spectroscopic parameters at high temperatures; and (2) shock tube studies of reaction kinetics relevant to combustion. Species currently under investigation in the spectroscopic portion of the research include NO and CH{sub 3}; this has necessitated the continued operated at wavelengths in the range 210-230 nm. Shock tube studies of reaction kinetics currently are focussed on reactions involving CH{sub 3} radicals.

  2. A coke oven model including thermal decomposition kinetics of tar

    SciTech Connect (OSTI)

    Munekane, Fuminori; Yamaguchi, Yukio [Mitsubishi Chemical Corp., Yokohama (Japan); Tanioka, Seiichi [Mitsubishi Chemical Corp., Sakaide (Japan)

    1997-12-31T23:59:59.000Z

    A new one-dimensional coke oven model has been developed for simulating the amount and the characteristics of by-products such as tar and gas as well as coke. This model consists of both heat transfer and chemical kinetics including thermal decomposition of coal and tar. The chemical kinetics constants are obtained by estimation based on the results of experiments conducted to investigate the thermal decomposition of both coal and tar. The calculation results using the new model are in good agreement with experimental ones.

  3. Nonisothermal kinetics of spinel crystallization in a HLW glass

    SciTech Connect (OSTI)

    Casler, D.G.; Hrma, P.

    1999-07-01T23:59:59.000Z

    Nonisothermal kinetics of spinel crystallization in a high-level waste (HLW) glass was predicted using Mehl-Avrami-Johnson-Kolmogorov equation coefficients from isothermal data. The volume fraction of spinel was determined as a function of time, temperature, and cooling rate. The results were verified experimentally. Also predicted was the spatial distribution of spinel in a HLW glass canister. Finally, a parameter study was performed, and an empirical equation was proposed relating the final spinel volume fraction in glass to dimensionless numbers for cooling rate, phase equilibrium, and crystallization kinetics.

  4. Infrared absorption spectroscopy and chemical kinetics of free radicals

    SciTech Connect (OSTI)

    Curl, R.F.; Glass, G.P. [Rice Univ., Houston, TX (United States)

    1993-12-01T23:59:59.000Z

    This research is directed at the detection, monitoring, and study of chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. During the last year, infrared kinetic spectroscopy using excimer laser flash photolysis and color-center laser probing has been employed to study the high resolution spectrum of HCCN, the rate constant of the reaction between ethynyl (C{sub 2}H) radical and H{sub 2} in the temperature region between 295 and 875 K, and the recombination rate of propargyl (CH{sub 2}CCH) at room temperature.

  5. Utilization of Recently Enhanced Simulation Tools and Empirical Ground Motion Databases to Improve Ground Motion Prediction Capabilities

    E-Print Network [OSTI]

    Khodavirdi, Khatereh

    2013-01-01T23:59:59.000Z

    K. Irikura, H.K. Thio, P.G. Somerville, Y. Fukushima, and Y.Fukushima. “Attenuation relations of strong ground motion incatastrophic damage at the Fukushima nuclear power plant,

  6. AER1301: KINETIC THEORY OF GASES Assignment #1

    E-Print Network [OSTI]

    Groth, Clinton P. T.

    AER1301: KINETIC THEORY OF GASES Assignment #1 1. A hypersonic wind tunnel is contructed so such that the mean free path, , is given by the expression = 16µ 5 1 2RT , where R is the ideal gas constant and p space and the length of each side of the cube is 4v. (a) Obtain an expression for the normalized

  7. AER1301: KINETIC THEORY OF GASES Assignment #1

    E-Print Network [OSTI]

    Groth, Clinton P. T.

    AER1301: KINETIC THEORY OF GASES Assignment #1 1. A hypersonic wind tunnel is contructed so spheres during collisions such that the mean free path, #21;, is given by the expression #21; = 16#22; 5 of the cube is 4v Æ . (a) Obtain an expression for the normalized velocity distribution function, f(v). (b

  8. Kinetic and electromagnetic transport processes in toroidal devices

    SciTech Connect (OSTI)

    Moses, R.W.; Schoenberg, K.F.

    1990-01-01T23:59:59.000Z

    A brief review of transport processes in toroidal devices is presented. Particular attention is given to radial transport of power by the Poynting's vector and kinetic electron flow. This work is primarily focused on the Reversed Field Pinch (RFP) which holds the added complexity of a dynamo process that sustains poloidal current in the edge region, where the toroidal field is reversed. The experimental observation of superthermal unidirectional electrons in the plasma edge of ZT-40M and HBTX1C is noted, and the rapid, nonclassical ion heating in RFPs is taken account of. Radial transport parallel to fluctuating magnetic field lines is deemed a likely candidate for both electromagnetic and kinetic energy transport. Two models are discussed and compared. It is concluded that electromagnetic transport using a local Ohm's law best describes nonclassical ion heating, and the transport of kinetic energy by long mean free path electrons best represents the half-Maxwellian of electrons observed in the edge of several RFPs. A nonlocal Ohm's law is essential for the kinetic electron model. 18 refs.

  9. Plasmadynamics and ionization kinetics of thermionic energy conversion

    SciTech Connect (OSTI)

    Lawless, J.L. Jr.; Lam, S.H.

    1982-02-01T23:59:59.000Z

    To reduce the plasma arc-drop, thermionic energy conversion is studied with both analytical and numerical tools. Simplifications are made in both the plasmadynamic and ionization-recombination theories. These are applied to a scheme proposed presently using laser irradiation to enhance the ionization kinetics of the thermionic plasma and thereby reduce the arc-drop. It is also predicted that it is possible to generate the required laser light from a thermionic-type cesium plasma. The analysis takes advantage of theoretical simplifications derived for the ionization-recombination kinetics. It is shown that large laser ionization enhancements can occur and that collisional cesium recombination lasing is expected. To complement the kinetic theory, a numerical method is developed to solve the thermionic plasma dynamics. To combine the analysis of ionization-recombination kinetics with the plasma dynamics of thermionic conversion, a finite difference computer program is constructed. It is capable of solving for both unsteady and steady thermionic converter behavior including possible laser ionization enhancement or atomic recombination lasing. A proposal to improve thermionic converter performance using laser radiation is considered. In this proposed scheme, laser radiation impinging on a thermionic plasma enhances the ionization process thereby raising the plasma density and reducing the plasma arc-drop. A source for such radiation may possibly be a cesium recombination laser operating in a different thermionic converter. The possibility of this being an energy efficient process is discussed. (WHK)

  10. Kinetics of the clay roofing tile convection drying

    SciTech Connect (OSTI)

    Thomas, S. (Univ. of Osijek (Croatia). Faculty of Food Technology); Skansi, D. (Univ. of Zagreb (Croatia). Faculty of Chemical Engineering and Technology); Sokele, M. (Croatian Post and Telecommunications, Zagreb (Croatia). Telecommunications Center)

    1993-01-01T23:59:59.000Z

    Kinetics of the convection drying process of flat tile has been investigated experimentally in an industrial tunnel dryer. Several velocities of wet tile movement through the dryer were tested to obtain maximum allowable drying rate curve. As there are various models to describe the kinetics of convection drying, finding a model that would fairly well approximate the kinetics of the whole drying process was part of the research. Especially the polynomial and exponential models were tested. It was found that exponential model of the type: B(t) = (a[minus]B[sub e])[center dot]EXP([minus]bt[sup 2])+B[sub e], ([minus]dB(t)/dt) = 2bt(B(t)[minus]B[sub e]) significantly correlates the kinetics of the whole tile drying process. Applying the maximum allowable drying rate curve obtained for flat tile in the first period of drying, a grapho-analytic model for the optimal conducting of the process has been developed.

  11. Kinetic Controls on Cu and Pb Sorption by Ferrihydrite

    E-Print Network [OSTI]

    Sparks, Donald L.

    time. To determine key factors controlling the kinetics, we measured Cu and Pb uptake as a function that the surfaces of primary particles with diameters of only a few nanometers are accessible even after aggregation ferrihydrite aggregates or the branched structure of primary ferrihydrite particles. Consequently, they fitted

  12. Improve Claus simulation by integrating kinetic limitations into equilibrium calculations

    SciTech Connect (OSTI)

    Wen, T.C.

    1986-01-01T23:59:59.000Z

    Since all existing Claus simulators are based on equilibrium calculations, it is not surprising that the simulation results, including the overall sulfur yield, air to acid gas ratio, and stream compositions are somewhat different from the plant data. One method for improving the simulation is to consider the kinetic limitations in the Claus reactions. This has been accomplished in this work by integrating kinetic considerations into equilibrium calculations. Kinetic limitations have been introduced in both the Claus reaction furnace and the catalytic converters. An interactive computer program SULPLT Version 3 was written to implement the proposed modifications. The computer program was used to simulate the Claus furnace, catalytic converters, and the effect of air to acid gas ratio on sulfur recovery to check against literature data. Three Claus plants for which data exist have also been simulated. The results show that the proposed model predicts sulfur recovery, sulfur emission, optimal air to acid gas ratio, and various stream compositions more accurately than the equilibrium model. The proposed model appears to be valid, reliable, and applicable over a wide range of operating conditions (acid gas feeds ranging from 13% to 95% H/sub 2/S with different levels of impurities). The methodology developed in this study should be applicable to any reaction systems where kinetic limitations are important but where equilibrium still prevails.

  13. Kinetics of inactivation of indicator pathogens during thermophilic anaerobic digestion

    E-Print Network [OSTI]

    Kinetics of inactivation of indicator pathogens during thermophilic anaerobic digestion Sudeep C Thermophilic anaerobic digestion Pathogen inactivation Ascaris suum Helminth eggs Poliovirus Enteric viruses a b s t r a c t Thermophilic anaerobic sludge digestion is a promising process to divert waste

  14. Hydrogen pickup measurements in zirconium alloys: Relation to oxidation kinetics

    E-Print Network [OSTI]

    Motta, Arthur T.

    Hydrogen pickup measurements in zirconium alloys: Relation to oxidation kinetics Adrien Couet a to reduce hydrogen pickup during operation, and the associated cladding degradation. The present study focuses on precisely and accurately measuring hydrogen pickup fraction for a set of alloys to specifically

  15. Kinetic model for nitric oxide formation during pulverized coal combustion

    SciTech Connect (OSTI)

    Mitchell, J.W.; Tarbell, J.M.

    1982-03-01T23:59:59.000Z

    A mathematical model of NO formation during pulverised coal combustion was developed from a proposed kinetic mechanism involving 12 overall chemical reactions. Most significantly, the model describes the complex conversion of coal bound nitrogen compounds to NO during combustion. The predictions of the model compare favourably with literature data and are in qualitative agreement with trends observed in practical coal combustion.

  16. Kinetics of hyperpolarized 13 C1-pyruvate transport

    E-Print Network [OSTI]

    Frydman, Lucio

    and their metabolic products, whereas gradient-based techniques can localize the spatial source of these spectralKinetics of hyperpolarized 13 C1-pyruvate transport and metabolism in living human breast cancer) Metabolic fluxes can serve as specific biomarkers for detecting malignant transformations, tumor progression

  17. Kinetics of gene derepression by ERK signaling , Nria Samperb

    E-Print Network [OSTI]

    Shvartsman, Stanislav "Stas"

    Kinetics of gene derepression by ERK signaling Bomyi Lima , Núria Samperb , Hang Luc , Christine February 25, 2013) ERK controls gene expression in development, but mechanisms that link ERK activation to study transcriptional interpretation of ERK signaling during Dro- sophila embryogenesis, at a stage when

  18. DNA Computing Complexity Analysis Using DNA/DNA Hybridization Kinetics

    E-Print Network [OSTI]

    DNA Computing Complexity Analysis Using DNA/DNA Hybridization Kinetics Soo­Yong Shin 1 , Eun Jeong the complexity of DNA computing. The complexity of any computational algorithm is typically measured in terms of time and space. In DNA computing, the time complexity can be measured by the total reaction time

  19. DNA Computing Complexity Analysis Using DNA/DNA Hybridization Kinetics

    E-Print Network [OSTI]

    DNA Computing Complexity Analysis Using DNA/DNA Hybridization Kinetics Soo-Yong Shin1 , Eun Jeong of DNA computing. The complexity of any computational algorithm is typically measured in terms of time and space. In DNA computing, the time complexity can be measured by the total reaction time

  20. Desorption Kinetics of Methanol, Ethanol, and Water from Graphene

    SciTech Connect (OSTI)

    Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

    2014-09-18T23:59:59.000Z

    The desorption kinetics of methanol, ethanol, and water from graphene covered Pt(111) are investigated. The temperature programmed desorption (TPD) spectra for both methanol and ethanol have well-resolved first, second, third, and multilayer layer desorption peaks. The alignment of the leading edges is consistent with zero-order desorption kinetics from all layers. In contrast, for water the first and second layers are not resolved. At low water coverages (< 1 ML) the initial desorption leading edges are aligned but then fall out of alignment at higher temperatures. For thicker water layers (10 to 100 ML), the desorption leading edges are in alignment throughout the desorption of the film. The coverage dependence of the desorption behavoir suggests that at low water coverages the non-alignment of the desorption leading edges is due to water dewetting from the graphene substrate. Kinetic simulations reveal that the experimental results are consistent with zero-order desorption. The simulations also show that fractional order desorption kinetics would be readily apparent in the experimental TPD spectra.

  1. SUPPORTING INFORMATION Dissecting the Kinetic Process of Amyloid Fiber Formation

    E-Print Network [OSTI]

    Zhang, Yang

    eight Type-I amyloid proteins (the yeast prion Sup35 NW region, Csg Btrunc, Ure2 protein, 2SUPPORTING INFORMATION Dissecting the Kinetic Process of Amyloid Fiber Formation through Asymptotic 2 1 , where A represents proteins with specific conformations before fibrillation, B is proteins

  2. Femtomole Mixer for Microsecond Kinetic Studies of Protein Folding

    E-Print Network [OSTI]

    Michalet, Xavier

    Femtomole Mixer for Microsecond Kinetic Studies of Protein Folding David E. Hertzog,, Xavier a microfluidic mixer for studying protein folding and other reactions with a mixing time of 8 µs and sample) measurements of single-stranded DNA. We also demon- strate the feasibility of measuring fast protein folding

  3. Statistical Analysis of Protein Folding Kinetics Aaron R. Dinner

    E-Print Network [OSTI]

    Dinner, Aaron

    Statistical Analysis of Protein Folding Kinetics Aaron R. Dinner , Sung-Sau So ¡ , and Martin and theoretical studies over several years have led to the emergence of a unified general mechanism for protein folding that serves as a framework for the design and interpretation of research in this area [1

  4. Optimization of a Microfluidic Mixer for Studying Protein Folding Kinetics

    E-Print Network [OSTI]

    Santiago, Juan G.

    Optimization of a Microfluidic Mixer for Studying Protein Folding Kinetics David E. Hertzog with numerical simulations to minimize the mixing time of a microfluidic mixer developed for protein folding reported continuous flow mixer for protein folding. Fast events in protein folding often occur

  5. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate

    SciTech Connect (OSTI)

    Herbinet, O; Pitz, W J; Westbrook, C K

    2007-09-20T23:59:59.000Z

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran et al. for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO{sub 2} production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

  6. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate

    SciTech Connect (OSTI)

    Herbinet, O; Pitz, W J; Westbrook, C K

    2007-09-17T23:59:59.000Z

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran et al. for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO2 production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

  7. Computational Modeling of Pancreatic Cancer Reveals Kinetics of Metastasis

    E-Print Network [OSTI]

    Theory Computational Modeling of Pancreatic Cancer Reveals Kinetics of Metastasis Suggesting and size distribution of metas- tases as well as patient survival. These findings were validated death and one of the most aggressive malignancies in humans, with a five-year relative survival rate

  8. PROCESS SYSTEMS ENGINEERING Design of Flexible Reduced Kinetic Mechanisms

    E-Print Network [OSTI]

    Androulakis, Ioannis (Yannis)

    PROCESS SYSTEMS ENGINEERING Design of Flexible Reduced Kinetic Mechanisms Avinash R. Sirdeshpande and Marianthi G. Ierapetritou Dept. of Chemical and Biochemical Engineering, Rutgers, The State UniversityMobil Research and Engineering, Annandale, NJ 08801 Reduced mechanisms are often used in place of detailed

  9. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate

    SciTech Connect (OSTI)

    Herbinet, Olivier; Pitz, William J.; Westbrook, Charles K. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2008-08-15T23:59:59.000Z

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran and co-workers for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet-stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO{sub 2} production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels. (author)

  10. Kinetics of Silicothermic Reduction of Calcined Dolomite in Flowing Argon

    E-Print Network [OSTI]

    Liley, David

    of Experimental Rig De oxi dat ion Fu rn ac e TC TC Copper Turning Reduction Furnace Argon Gas Condenser Gas wash. Disadvantages: high impurity, high condenser area #12;© Swinburne University of Technology Aim of the project the fundamental physical chemistry Thermodynamic modelling Kinetic analysis High temperature experiments

  11. Electromagnetic Radiation and Equation of Motion for Really Shaped Particle -- New Covariant Formulation

    E-Print Network [OSTI]

    Jozef Klacka

    2002-01-07T23:59:59.000Z

    Relativistically covariant form of equation of motion for real particle (body) under the action of electromagnetic radiation is derived. Equation of motion in the proper frame of the particle uses the radiation pressure cross section 3 $\\times$ 3 matrix. Obtained covariant equation of motion is compared with another covariant equation of motion which was presented more than one year ago.

  12. 1 Introduction The perception of motion transparency can arise from physically transparent objects,

    E-Print Network [OSTI]

    Vaina, Lucia M.

    of efficiencyöthe ratio of human to model performanceöreflects changes in how motion stimuli are being processed

  13. An Ultra-Low-Power Human Body Motion Sensor Using Static Electric Field Sensing

    E-Print Network [OSTI]

    Hunt, Galen

    An Ultra-Low-Power Human Body Motion Sensor Using Static Electric Field Sensing Gabe Cohn1 an ultra-low-power method for pas- sively sensing body motion using static electric fields by measuring to infer the amount and type of body motion anywhere on the body and demonstrate an ultra-low-power motion

  14. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYNTHESIS

    SciTech Connect (OSTI)

    Dragomir B. Bukur; Gilbert F. Froment; Tomasz Olewski

    2006-09-29T23:59:59.000Z

    This report covers the fourth year of a research project conducted under the University Coal Research Program. The overall objective of this project is to develop a comprehensive kinetic model for slurry-phase Fischer-Tropsch synthesis (FTS) employing iron-based catalysts. This model will be validated with experimental data obtained in a stirred-tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict molar flow rates and concentrations of all reactants and major product species (water, carbon dioxide, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the fourth year of the project, an analysis of experimental data collected during the second year of this project was performed. Kinetic parameters were estimated utilizing product distributions from 27 mass balances. During the reporting period two kinetic models were employed: a comprehensive kinetic model of Dr. Li and co-workers (Yang et al., 2003) and a hydrocarbon selectivity model of Van der Laan and Beenackers (1998, 1999) The kinetic model of Yang et al. (2003) has 24 parameters (20 parameters for hydrocarbon formation, and 4 parameters for the water-gas-shift (WGS) reaction). Kinetic parameters for the WGS reaction and FTS synthesis were estimated first separately, and then simultaneously. The estimation of these kinetic parameters employed the Levenberg-Marquardt (LM) method and the trust-region reflective Newton large-scale (LS) method. A genetic algorithm (GA) was incorporated into estimation of parameters for FTS reaction to provide initial estimates of model parameters. All reaction rate constants and activation energies were found to be positive, but at the 95% confidence level the intervals were large. Agreement between predicted and experimental reaction rates has been fair to good. Light hydrocarbons are predicted fairly accurately, whereas the model underpredicts values of higher molecular weight hydrocarbons. Van der Laan and Beenackers hydrocarbon selectivity model provides a very good fit of the experimental data for hydrocarbons up to about C{sub 20}. However, the experimental data shows higher paraffin formation rates in C{sub 12}-C{sub 25} region which is likely due to hydrocracking or other secondary reactions. The model accurately captures the observed experimental trends of decreasing olefin to paraffin ratio and increasing {alpha} (chain growth length) with increase in chain length.

  15. Progress in an oxygen-carrier reaction kinetics experiment for rotary-bed chemical looping combustion

    E-Print Network [OSTI]

    Jester-Weinstein, Jack (Jack L.)

    2013-01-01T23:59:59.000Z

    The design process for an experimental platform measuring reaction kinetics in a chemical looping combustion (CLC) process is documented and justified. To enable an experiment designed to characterize the reaction kinetics ...

  16. Kinetic isotope and trace element partitioning during calcite precipitation from aqueous solution

    E-Print Network [OSTI]

    Nielsen, Laura Christina

    2012-01-01T23:59:59.000Z

    new overall reaction kinetic expression. Geochim. Cosmochim.a more typical expression for ? st , where the step kineticexpression reduces to the DePaolo (2011) macroscopic model of kinetic

  17. Thesis for the Degree of Licentiate of Engineering A Compartmental Model for Kinetics of

    E-Print Network [OSTI]

    Patriksson, Michael

    Thesis for the Degree of Licentiate of Engineering A Compartmental Model for Kinetics The thesis This licentiate thesis is the mathematical result in an ongoing project in kinetics of lipopro

  18. Application of Genetic Algorithms and Thermogravimetry to Determine the Kinetics of Polyurethane Foam in Smoldering Combustion 

    E-Print Network [OSTI]

    Rein, Guillermo; Lautenberger, Chris; Fernandez-Pello, Carlos; Torero, Jose L; Urban, David

    In this work, the kinetic parameters governing the thermal and oxidative degradation of flexible polyurethane foam are determined using thermogravimetric data and a genetic algorithm. These kinetic parameters are needed ...

  19. Charge transport in micas: The kinetics of FeII/III electron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transport in micas: The kinetics of FeIIIII electron transfer in the octahedral sheet. Charge transport in micas: The kinetics of FeIIIII electron transfer in the octahedral...

  20. A comparison of the point kinetics equations with the QUANDRY analytic nodal diffusion method

    E-Print Network [OSTI]

    Velasquez, Arthur

    1993-01-01T23:59:59.000Z

    The point kinetics equations were incorporated into QUANDRY, a nuclear reactor analysis computer program which uses the analytic nodal method to solve the neutron diffusion equation. Both the point kinetics equations, solved using the IMSL MATH...

  1. Theory of Chemical Kinetics and Charge Transfer based on Nonequilibrium Thermodynamics

    E-Print Network [OSTI]

    Bazant, Martin Z.

    Advances in the fields of catalysis and electrochemical energy conversion often involve nanoparticles, which can have kinetics surprisingly different from the bulk material. Classical theories of chemical kinetics assume ...

  2. Zeolitic Imidazolate Frameworks for Kinetic Separation of Propane and David H. Olson,

    E-Print Network [OSTI]

    Li, Jing

    Zeolitic Imidazolate Frameworks for Kinetic Separation of Propane and Propene Kunhao Li, David H the first examples of MMOFs that are capable of kinetic separation of propane and propene (propylene), which

  3. Crystallization Kinetics and Excess Free Energy of H2O and D2O...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crystallization Kinetics and Excess Free Energy of H2O and D2O Nanoscale Films of Amorphous Solid Water. Crystallization Kinetics and Excess Free Energy of H2O and D2O Nanoscale...

  4. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate of biodiesel fuels in diesel and homogeneous charge compression ignition engines. Keywords: Methyl decanoate; Methyl decenoate; Surrogate; Oxidation; Biodiesel fuels; Kinetic modeling; Engine; Low

  5. Lick Northern Proper Motion Program. III. Lick NPM2 Catalog

    E-Print Network [OSTI]

    Hanson, R B; Jones, B F; Monet, D G; Hanson, Robert B.; Klemola, Arnold R.; Jones, Burton F.; Monet, David G.

    2004-01-01T23:59:59.000Z

    The Lick Northern Proper Motion (NPM) program, a two-epoch (1947-1988) photographic survey of the northern two-thirds of the sky (Dec. > -23 deg), has measured absolute proper motions, on an inertial system defined by distant galaxies, for 380,000 stars from 8 14) anonymous stars for astrometry and galactic studies, 92,000 bright (B NPM2 proper motions are on the ICRS system, via Tycho-2 stars, to an accuracy of 0.5 mas/yr in each field. RMS proper motion precision is 6 mas/yr. Positional errors average 80 mas at the mean plate epoch 1968, and 200 mas at the NPM2 catalog epoch 2000. NPM2 photographic photometry errors average 0.18 mag in B, and 0.20 mag in B-V. The NPM2 Catalog and the updated (to J2000) NPM1 Catalog are available at the CDS Strasbourg data center and on the NPM WWW site (http://www.ucolick.org/~npm). The NPM2 Catalog completes the Lick Northern Proper Motion program after a half-century of w...

  6. CHAPTER 5. PLASMA DESCRIPTIONS I: KINETIC, TWO-FLUID 1 Plasma Descriptions I

    E-Print Network [OSTI]

    Callen, James D.

    CHAPTER 5. PLASMA DESCRIPTIONS I: KINETIC, TWO-FLUID 1 Chapter 5 Plasma Descriptions I: Kinetic, Two-Fluid Descriptions of plasmas are obtained from extensions of the kinetic theory of gases of charged particles in the plasma, and because the electric and magnetic fields in the plasma must

  7. Determination of kinetic parameters in laminar flow reactors. I. Theoretical aspects

    E-Print Network [OSTI]

    is the numerical evaluation of kinetic data, obtained from controlled experiments in a flow reactorDetermination of kinetic parameters in laminar flow reactors. I. Theoretical aspects T. Carraro1- mization of chemical flow reactors. The goal is the reliable determination of unknown kinetic parameters

  8. Evidence for Kinetic Inhomogeneity in the Curing of Epoxy Using the Near-Infrared Multispectral

    E-Print Network [OSTI]

    Reid, Scott A.

    1881, Milwaukee, Wisconsin 53201 The kinetics of curing of an epoxy resin by amine was studied usingEvidence for Kinetic Inhomogeneity in the Curing of Epoxy Using the Near-Infrared Multispectral. The kinetics of curing of epoxy by amine, determined by this multispectral imaging instrument, show

  9. Using Stochastic Roadmap Simulation to Predict Experimental Quantities in Protein Folding Kinetics: Folding Rates and

    E-Print Network [OSTI]

    Pratt, Vaughan

    Using Stochastic Roadmap Simulation to Predict Experimental Quantities in Protein Folding Kinetics for studying protein folding kinetics. It uses the recently intro- duced Stochastic Roadmap Simulation (SRS validate the SRS method and indicate its potential as a general tool for studying protein folding kinetics

  10. Friction and the oscillatory motion of granular flows

    E-Print Network [OSTI]

    Lydie Staron

    2012-11-26T23:59:59.000Z

    This contribution reports on numerical simulations of 2D granular flows on erodible beds. The broad aim is to investigate whether simple flows of model granular matter exhibits spontaneous oscillatory motion in generic flow conditions, and in this case, whether the frictional properties of the contacts between grains may affect the existence or the characteristics of this oscillatory motion. The analysis of different series of simulations show that the flow develops an oscillatory motion with a well-defined frequency which increases like the inverse of the velocity's square root. We show that the oscillation is essentially a surface phenomena. The amplitude of the oscillation is higher for lower volume fractions, and can thus be related to the flow velocity and grains friction properties. The study of the influence of the periodic geometry of the simulation cell shows no significant effect. These results are discussed in relation to sonic sands.

  11. Stirling engine power control and motion conversion mechanism

    DOE Patents [OSTI]

    Marks, David T. (Birmingham, MI)

    1983-01-01T23:59:59.000Z

    A motion conversion device for converting between the reciprocating motion of the pistons in a Stirling engine and the rotating motion of its output shaft, and for changing the stroke and phase of the pistons, includes a lever pivoted at one end and having a cam follower at the other end. The piston rod engages the lever intermediate its ends and the cam follower engages a cam keyed to the output shaft. The lever pivot can be moved to change the length of the moment arm defined between the cam follower and the piston rod the change the piston stroke and force exerted on the cam, and the levers can be moved in opposite directions to change the phase between pistons.

  12. Projectile transverse motion and stability in electromagnetic induction launchers

    SciTech Connect (OSTI)

    Shokair, I.R.

    1993-12-31T23:59:59.000Z

    The transverse motion of a projectile in an electromagnetic induction launcher is considered. The equations of motion for translation and rotation are derived assuming a rigid projectile and a flyway restoring force per unit length that is proportional to the local displacement. Linearized transverse forces and torques due to energized coils are derived for displaced or tilted armature elements based on a first order perturbation method. The resulting equations of motion for a rigid projectile composed of multiple elements in a multi-coil launcher are analyzed as a coupled oscillator system of equations and a simple linear stability condition is derived. The equations of motion are incorporated into the 2-D Slingshot circuit code and numerical solutions for the transverse motion are obtained. For a launcher with a 10 cm bore radius with a 40 cm long solid armature, we find that stability is achieved with a restoring force (per unit length) constant of k {approx} 1 {times} 10{sup 8} N/m{sup 2}. For k = 1.5 {times} 10{sup 8} N/m{sup 2} and sample coil misalignment modeled as a sine wave of 1 mm amplitude at wavelengths of one or two meters, the projectile displacement grows to a maximum of 4 mm. This growth is due to resonance between the natural frequency of the projectile transverse motion and the coil displacement wavelength. This resonance does not persist because of the changing axial velocity. Random coil displacement is also found to cause roughly the same projectile displacement. For the maximum displacement a rough estimate of the transverse pressure is 50 bars. Results for a wound armature with uniform current density throughout show very similar displacements.

  13. Proper Motion of Pulsar B1800-21

    E-Print Network [OSTI]

    W. F. Brisken; M. Carrillo-Barragan; S. Kurtz; J. P. Finley

    2006-10-20T23:59:59.000Z

    We report high angular resolution, multi-epoch radio observations of the young pulsar PSR B1800-21. Using two pairs of data sets, each pair spanning approximately a ten year period, we calculate the proper motion of the pulsar. We obtain a proper motion of mu_alpha=11.6 +- 1.8 mas/yr, mu_delta=14.8 +- 2.3 mas/yr, which clearly indicates a birth position at the extreme edge of the W30 supernova remnant. Although this does not definitively rule out an association of W30 and PSR B1800-21, it does not support an association.

  14. The greatest convex minorant of Brownian motion, meander, and bridge

    E-Print Network [OSTI]

    Pitman, Jim

    2010-01-01T23:59:59.000Z

    This article contains both a point process and a sequential description of the greatest convex minorant of Brownian motion on a finite interval. We use these descriptions to provide new analysis of various features of the convex minorant such as the set of times where the Brownian motion meets its minorant. The equivalence of the these descriptions is non-trivial, which leads to many interesting identities between quantities derived from our analysis. The sequential description can be viewed as a Markov chain for which we derive some fundamental properties.

  15. Harvesting Kinetic Energy with Switched-Inductor DCDC Converters

    E-Print Network [OSTI]

    Rincon-Mora, Gabriel A.

    the highest output power density, except when supplied from indoor lighting under which conditions power energy in motion may not compete with solar power but, in contrast to indoor lighting and thermal sources, moderate and consistent output power across a vast range of applications is typical [3]­[4]. Although

  16. A Pore Scale Evaluation of the Kinetics of Mineral Dissolution and Precipitation Reactions (EMSI)

    SciTech Connect (OSTI)

    Steefel, Carl I.

    2006-06-01T23:59:59.000Z

    The chief goals for CEKA are to (1) collect and synthesize molecular-level kinetic data into a coherent framework that can be used to predict time evolution of environmental processes over a range of temporal and spatial scales; (2) train a cohort of talented and diverse students to work on kinetic problems at multiple scales; (3) develop and promote the use of new experimental techniques in environmental kinetics; (4) develop and promote the use of new modeling tools to conceptualize reaction kinetics in environmental systems; and (5) communicate our understanding of issues related to environmental kinetics and issues of scale to the broader scientific community and to the public.

  17. Proton Kinetic Effects in Vlasov and Solar Wind Turbulence

    E-Print Network [OSTI]

    Servidio, S; Valentini, F; Perrone, D; Califano, F; Chapman, S; Matthaeus, W H; Veltri, P

    2013-01-01T23:59:59.000Z

    Kinetic plasma processes have been investigated in the framework of solar wind turbulence, employing Hybrid Vlasov-Maxwell (HVM) simulations. The dependency of proton temperature anisotropy T_{\\perp}/T_{\\parallel} on the parallel plasma beta \\beta_{\\parallel}, commonly observed in spacecraft data, has been recovered using an ensemble of HVM simulations. By varying plasma parameters, such as plasma beta and fluctuation level, the simulations explore distinct regions of the parameter space given by T_{\\perp}/T_{\\parallel} and \\beta_{\\parallel}, similar to solar wind sub-datasets. Moreover, both simulation and solar wind data suggest that temperature anisotropy is not only associated with magnetic intermittent events, but also with gradient-type structures in the flow and in the density. This connection between non-Maxwellian kinetic effects and various types of intermittency may be a key point for understanding the complex nature of plasma turbulence.

  18. High-energy interactions in Kinetic Inductance Detectors arrays

    E-Print Network [OSTI]

    D'Addabbo, A; Goupy, J; Benoit, A; Bourrion, O; Catalano, A; Macias-Perez, J F; Monfardini, A

    2015-01-01T23:59:59.000Z

    The impacts of Cosmic Rays on the detectors are a key problem for space-based missions. We are studying the effects of such interactions on arrays of Kinetic Inductance Detectors (KID), in order to adapt this technology for use on board of satellites. Before proposing a new technology such as the Kinetic Inductance Detectors for a space-based mission, the problem of the Cosmic Rays that hit the detectors during in-flight operation has to be studied in detail. We present here several tests carried out with KID exposed to radioactive sources, which we use to reproduce the physical interactions induced by primary Cosmic Rays, and we report the results obtained adopting different solutions in terms of substrate materials and array geometries. We conclude by outlining the main guidelines to follow for fabricating KID for space-based applications.

  19. COMSOL-based Nuclear Reactor Kinetics Studies at the HFIR

    SciTech Connect (OSTI)

    Chandler, David [ORNL] [ORNL; Freels, James D [ORNL] [ORNL; Maldonado, G Ivan [ORNL] [ORNL; Primm, Trent [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    The computational ability to accurately predict the dynamic behavior of a nuclear reactor core in response to reactivity-induced perturbations is an important subject in reactor physics. Space-time and point kinetics methodologies were developed for the purpose of studying the transient-induced behavior of the High Flux Isotope Reactor s (HFIR) compact core. The space-time simulations employed the three-energy-group neutron diffusion equations, and transients initiated by control cylinder and hydraulic tube rabbit ejections were studied. The work presented here is the first step towards creating a comprehensive multiphysics methodology for studying the dynamic behavior of the HFIR core during reactivity perturbations. The results of these studies show that point kinetics is adequate for small perturbations in which the power distribution is assumed to be time-independent, but space-time methods must be utilized to determine localized effects.

  20. Species separation and kinetic effects in collisional plasma shocks

    SciTech Connect (OSTI)

    Bellei, C., E-mail: bellei1@llnl.gov; Wilks, S. C.; Amendt, P. A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Rinderknecht, H.; Zylstra, A.; Rosenberg, M.; Sio, H.; Li, C. K.; Petrasso, R. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-05-15T23:59:59.000Z

    The properties of collisional shock waves propagating in uniform plasmas are studied with ion-kinetic calculations, in both slab and spherical geometry and for the case of one and two ion species. Despite the presence of an electric field at the shock front—and in contrast to the case where an interface is initially present [C. Bellei et al., Phys. Plasmas 20, 044702 (2013)]—essentially no ion reflection at the shock front is observed due to collisions, with a probability of reflection ?10{sup ?4} for the cases presented. A kinetic two-ion-species spherical convergent shock is studied in detail and compared against an average-species calculation, confirming effects of species separation and differential heating of the ion species at the shock front. The effect of different ion temperatures on the DT and D{sup 3}He fusion reactivity is discussed in the fluid limit and is estimated to be moderately important.

  1. Kinetics of gasification of black liquor char by steam

    SciTech Connect (OSTI)

    Li, J.; van Heiningen, A.R.P. (Dept. of Chemical Engineering, McGill Univ., Pulp and Paper Research Inst. of Canada, Montreal, Quebec (CA))

    1991-07-01T23:59:59.000Z

    This paper reports on the steam gasification kinetics of kraft black liquor char that were studied in a thermogravimetric analysis reactor. The effect of steam and hydrogen concentration on gasification rate can be described by Langmuir-Hinshelwood type kinetics. An activation energy of 210 kJ/mol was obtained. Methane formation was negligible, and H{sub 2}S was the major gaseous sulfur-containing product obtained over the temperature range studied, 873-973 K. The CO{sub 2} concentration was higher than calculated for the water-shift reaction at equilibrium. A gasification mechanism is proposed whereby CO{sub 2} is one of the primary gasification products.

  2. Kinetic approaches to particle acceleration at cosmic ray modified shocks

    E-Print Network [OSTI]

    Elena Amato; Pasquale Blasi; Stefano Gabici

    2008-01-09T23:59:59.000Z

    Kinetic approaches provide an effective description of the process of particle acceleration at shock fronts and allow to take into account the dynamical reaction of the accelerated particles as well as the amplification of the turbulent magnetic field as due to streaming instability. The latter does in turn affect the maximum achievable momentum and thereby the acceleration process itself, in a chain of causality which is typical of non-linear systems. Here we provide a technical description of two of these kinetic approaches and show that they basically lead to the same conclusions. In particular we discuss the effects of shock modification on the spectral shape of the accelerated particles, on the maximum momentum, on the thermodynamic properties of the background fluid and on the escaping and advected fluxes of accelerated particles.

  3. Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization

    E-Print Network [OSTI]

    Peng Tan; Ning Xu; Lei Xu

    2014-12-18T23:59:59.000Z

    When a system undergoes a transition from a liquid to a solid phase, it passes through multiple intermediate structures before reaching the final state. However, our knowledge on the exact pathways of this process is limited, mainly due to the difficulty of realizing direct observations. Here, we experimentally study the evolution of symmetry and density for various colloidal systems during liquid-to-solid phase transitions, and visualize kinetic pathways with single-particle resolution. We observe the formation of relatively-ordered precursor structures with different symmetries, which then convert into metastable solids. During this conversion, two major cross-symmetry pathways always occur, regardless of the final state and the interaction potential. In addition, we find a broad decoupling of density variation and symmetry development, and discover that nucleation rarely starts from the densest regions. These findings hold for all our samples, suggesting the possibility of finding a unified picture for the complex crystallization kinetics in colloidal systems.

  4. RESOLUTION OF URANIUM ISOTOPES WITH KINETIC PHOSPHORESCENCE ANALYSIS

    SciTech Connect (OSTI)

    Miley, Sarah M.; Hylden, Anne T.; Friese, Judah I.

    2013-04-01T23:59:59.000Z

    This study was conducted to test the ability of the Chemchek™ Kinetic Phosphorescence Analyzer Model KPA-11 with an auto-sampler to resolve the difference in phosphorescent decay rates of several different uranium isotopes, and therefore identify the uranium isotope ratios present in a sample. Kinetic phosphorescence analysis (KPA) is a technique that provides rapid, accurate, and precise determination of uranium concentration in aqueous solutions. Utilizing a pulsed-laser source to excite an aqueous solution of uranium, this technique measures the phosphorescent emission intensity over time to determine the phosphorescence decay profile. The phosphorescence intensity at the onset of decay is proportional to the uranium concentration in the sample. Calibration with uranium standards results in the accurate determination of actual concentration of the sample. Different isotopes of uranium, however, have unique properties which should result in different phosphorescence decay rates seen via KPA. Results show that a KPA is capable of resolving uranium isotopes.

  5. Nonequilibrium sensing and its analogy to kinetic proofreading

    E-Print Network [OSTI]

    Hartich, David; Seifert, Udo

    2015-01-01T23:59:59.000Z

    For a paradigmatic model of chemotaxis, we analyze the effect how a nonzero affinity driving receptors out of equilibrium affects sensitivity. This affinity arises whenever changes in receptor activity involve ATP hydrolysis. The sensitivity integrated over a ligand concentration range is shown to be enhanced by the affinity, providing a measure of how much energy consumption improves sensing. With this integrated sensitivity we can establish an intriguing analogy between sensing with nonequilibrium receptors and kinetic proofreading: the increase in integrated sensitivity is equivalent to the decrease of the error in kinetic proofreading. The influence of the occupancy of the receptor on the phosphorylation and dephosphorylation reaction rates is shown to be crucial for the relation between integrated sensitivity and affinity. This influence can even lead to a regime where a nonzero affinity decreases the integrated sensitivity, which corresponds to anti-proofreading.

  6. Ground motion modeling of Hayward fault scenario earthquakes II:Simulation of long-period and broadband ground motions

    SciTech Connect (OSTI)

    Aagaard, B T; Graves, R W; Rodgers, A; Brocher, T M; Simpson, R W; Dreger, D; Petersson, N A; Larsen, S C; Ma, S; Jachens, R C

    2009-11-04T23:59:59.000Z

    We simulate long-period (T > 1.0-2.0 s) and broadband (T > 0.1 s) ground motions for 39 scenarios earthquakes (Mw 6.7-7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area with about 50% of the urban area experiencing MMI VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland and 2007 Mw 4.5 Alum Rock earthquakes show that the USGS Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute at least some of this difference to the relatively narrow width of the Hayward fault ruptures. The simulations suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by including a dependence on the rupture speed and increasing the areal extent of rupture directivity with period. The simulations also indicate that the NGA relations may under-predict amplification in shallow sedimentary basins.

  7. Correlation between internal fiducial tumor motion and external marker motion for liver tumors imaged with 4D-CT

    SciTech Connect (OSTI)

    Beddar, A. Sam [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)]. E-mail: abeddar@mdanderson.org; Kainz, Kristofer [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Briere, Tina Marie [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Tsunashima, Yoshikazu [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Pan Tinsu [Department of Diagnostic Imaging, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Prado, Karl [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Mohan, Radhe [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Gillin, Michael [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Krishnan, Sunil [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

    2007-02-01T23:59:59.000Z

    Purpose: We investigated the correlation between the motions of an external marker and internal fiducials implanted in the liver for 8 patients undergoing respiratory-based computed tomography (four-dimensional CT [4D-CT]) procedures. Methods and Materials: The internal fiducials were gold seeds, 3 mm in length and 1.2 mm in diameter. Four patients each had one implanted fiducial, and the other four had three implanted fiducials. The external marker was a plastic box, which is part of the Real-Time Position Management System (RPM) used to track the patient's respiration. Each patient received a standard helical CT scan followed by a time-correlated CT-image acquisition (4D-CT). The 4D-CT images were reconstructed in 10 separate phases covering the entire respiratory cycle. Results: The internal fiducial motion is predominant in the superior-inferior direction, with a range of 7.5-17.5 mm. The correlation between external respiration and internal fiducial motion is best during expiration. For 2 patients with their three fiducials separated by a maximum of 3.2 cm, the motions of the fiducials were well correlated, whereas for 2 patients with more widely spaced fiducials, there was less correlation. Conclusions: In general, there is a good correlation between internal fiducial motion imaged by 4D-CT and external marker motion. We have demonstrated that gating may be best performed at the end of the respiratory cycle. Special attention should be paid to gating for patients whose fiducials do not move in synchrony, because targeting on the correct respiratory amplitude alone would not guarantee that the entire tumor volume is within the treatment field.

  8. Plasmadynamics and ionization kinetics of thermionic energy conversion

    SciTech Connect (OSTI)

    Lawless, J.L. Jr.

    1981-01-01T23:59:59.000Z

    To reduce the plasma arc-drop, thermionic energy conversion is studied with both analytical and numerical tools. Simplifications are made in both the plasmadynamic and ionization-recombination theories. These are applied to a scheme proposed presently using laser irradiation to enhance the ionization kinetics of the thermionic plasma and thereby reduce the arc-drop. It is also predicted that it is possible to generate the required laser light from a thermionic-type Cesium plasma. The analysis takes advantage of theoretical simplifications derived for the ionization-recombination kinetics. It is shown that large laser ionization enhancements can occur and that collisional Cesium recombination lasing is expected. To complement the kinetic theory, a numerical method is developed to solve the thermionic plasma dynamics. The effects of the complete system of electron-atom inelastic collisions on the ionization-recombination problem are shown to reduce to a system nearly as simple as the well-known one-quantum approximation. To combine the above analysis of ionization-recombination kinetics with the plasma dynamics of thermionic conversion, a finite difference computer program is constructed. Using the above developments, a proposal to improve thermionic converter performance using laser radiation is considered. In this proposed scheme, laser radiation impinging on a thermionic plasma enhances the ionization process thereby raising the plasma density and reducing the plasma arc-drop. A source for such radiation may possibly be a Cesium recombination laser operating in a different thermionic converter. The possibility of this being an energy efficient process is discussed.

  9. A microrheological study of hydrogel kinetics and micro-heterogeneity

    E-Print Network [OSTI]

    Aufderhorst-Roberts, Anders; Frith, William J.; Donald, Athene M.

    2014-05-27T23:59:59.000Z

    such as peptides capped with pyrene [10] and naphthalene [11]. By far the most studied group of aromatic peptide conjugates are pep- tides capped with the fluorenylmethyloxycarbonyl moiety a Present address: School of Physics and Astronomy, E. C. Stoner building... applications include the kinetics of formation [18] and the spatial heterogeneity of the hydrogel network [19]. Un- derstanding the former is essential when designing so- called smart systems that gel under pre-specified condi- tions [20], whereas the latter...

  10. Drift kinetic Alfvén wave in temperature anisotropic plasma

    SciTech Connect (OSTI)

    Naim, Hafsa, E-mail: roohi-phy@yahoo.com; Bashir, M. F. [Salam Chair in Physics, G. C. University Lahore, Katchery Road, Lahore 54000 (Pakistan) [Salam Chair in Physics, G. C. University Lahore, Katchery Road, Lahore 54000 (Pakistan); Department of Physics, G. C. University Lahore, Katchery Road, Lahore 54000 (Pakistan); Murtaza, G. [Salam Chair in Physics, G. C. University Lahore, Katchery Road, Lahore 54000 (Pakistan)] [Salam Chair in Physics, G. C. University Lahore, Katchery Road, Lahore 54000 (Pakistan)

    2014-03-15T23:59:59.000Z

    By using the gyrokinetic theory, the kinetic Alfvén waves (KAWs) are discussed to emphasize the drift effects through the density inhomogeneity and the temperature anisotropy on their dispersion characteristics. The dependence of stabilization mechanism of the drift-Alfvén wave instability on the temperature anisotropy is highlighted. The estimate of the growth rate and the threshold condition for a wide range of parameters are also discussed.

  11. Adiabatic trapping in coupled kinetic Alfven-acoustic waves

    SciTech Connect (OSTI)

    Shah, H. A.; Ali, Z. [Department of Physics, G.C. University, 54000 Lahore (Pakistan); Masood, W. [COMSATS, Institute of Information Technology, Park Road, Chak Shahzad, Islamabad 44000 (Pakistan); National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Theoretical Plasma Physics Division, P. O. Nilore, Islamabad (Pakistan)

    2013-03-15T23:59:59.000Z

    In the present work, we have discussed the effects of adiabatic trapping of electrons on obliquely propagating Alfven waves in a low {beta} plasma. Using the two potential theory and employing the Sagdeev potential approach, we have investigated the existence of arbitrary amplitude coupled kinetic Alfven-acoustic solitary waves in both the sub and super Alfvenic cases. The results obtained have been analyzed and presented graphically and can be applied to regions of space where the low {beta} assumption holds true.

  12. Tolman's law in linear irreversible thermodynamics: a kinetic theory approach

    E-Print Network [OSTI]

    A. Sandoval-Villalbazo; A. L. Garcia-Perciante; D. Brun-Battistini

    2012-07-10T23:59:59.000Z

    In this paper it is shown that Tolman's law can be derived from relativistic kinetic theory applied to a simple fluid in a BGK-like approximation. Using this framework, it becomes clear that the contribution of the gravitational field can be viewed as a cross effect that resembles the so-called \\emph{Thomson effect} in irreversible thermodynamics. A proper generalization of Tolman's law in an inhomogeneous medium is formally established based on these grounds.

  13. Master equation approach to protein folding and kinetic traps

    E-Print Network [OSTI]

    Marek Cieplak; Malte Henkel; Jan Karbowski; Jayanth R. Banavar

    1998-04-21T23:59:59.000Z

    The master equation for 12-monomer lattice heteropolymers is solved numerically and the time evolution of the occupancy of the native state is determined. At low temperatures, the median folding time follows the Arrhenius law and is governed by the longest relaxation time. For good folders, significant kinetic traps appear in the folding funnel whereas for bad folders, the traps also occur in non-native energy valleys.

  14. Zinc Adsorption Effects on Arsenite Oxidation Kinetics at the

    E-Print Network [OSTI]

    Sparks, Donald L.

    Zinc Adsorption Effects on Arsenite Oxidation Kinetics at the Birnessite-Water Interface L A U R), directly oxidized As(III). However, these studies did not explore the role that cation adsorption has on As at the birnessite-water interface were investigated using batch adsorption experiments (0.1 g L-1; pH 4.5 and 6.0; I

  15. Oxidation kinetics of by-product calcium sulfite

    E-Print Network [OSTI]

    Othman, Hasliza

    1992-01-01T23:59:59.000Z

    of Department) May 1992 ABSTRACT Oxidation Kinetics of By-product Calcium Sulfite. (May 1992) Hasliza Othman, B. S. , Texas A&M University Chair of Advisory Committee: Dr. Ahmed M. Gadalla The by-products obtained from the flue gas desulfurization (FGD..., suggestions and encouragement. TABLE OF CONTENTS CHAPTER Page I INTRODUCTION I I LITERATURE REVIEW A. Limestone Flue Gas Desulfurization Process . . . . . . . . . . . . B. Scaling Problem in the FGD Process...

  16. Nonlinear simplified model to study localization of kinetic Alfvén wave

    SciTech Connect (OSTI)

    Sharma, R. P., E-mail: rpsharma@ces.iitd.ac.in; Gaur, Nidhi, E-mail: nidhiphysics@gmail.com [Centre for Energy Studies, Indian Institute of Technology, Delhi 110016 (India)] [Centre for Energy Studies, Indian Institute of Technology, Delhi 110016 (India)

    2014-04-15T23:59:59.000Z

    We have presented the numerical simulation of the coupled equations governing the dynamics of kinetic Alfvén wave (KAW) and ion acoustic wave in the intermediate ? plasma, where ? is the ratio of thermal pressure to the background magnetic pressure. We have also developed a simplified model for this nonlinear interaction using the results obtained from the simulation to understand the physics of nonlinear evolution of KAW. Localization of magnetic field intensity of KAW has been studied by means of the simplified model.

  17. Consistent neutron kinetics data generation for nodal transient calculations

    SciTech Connect (OSTI)

    Akdeniz, B. [Penn State Univ., Nuclear Engineering Program, Univ. Park, PA 16802 (United States); Mueller, E.; Panayotov, D. [Westinghouse Electric Sweden, SE - 721 63 Vaesteraas (Sweden); Ivanov, K. N. [Penn State Univ., Nuclear Engineering Program, Univ. Park, PA 16802 (United States)

    2006-07-01T23:59:59.000Z

    Current three-dimensional transient codes for thermal reactors are mostly based on two-group diffusion-theory nodal models. In the two-group approach no explicit distinction is made between prompt fission neutrons and delayed neutrons. Consequently, effective delayed neutron fractions have traditionally been used in an attempt to compensate for this shortcoming. A fundamentally better approach would be to solve the nodal kinetics equations in a sufficient number of energy groups to explicitly capture neutron emission spectrum effects. However, this would require the availability of a multi-group nodal transient code as well as a lattice code to generate the appropriate multi-group nodal data for the simulator. One such simulator is the PARCS nodal transient code, which is widely used and recognized as representative of the current state-of-the-art. Unfortunately, a proper nodal data preparation path between PARCS and a lattice code is not available. Even though several industrial lattice codes could be considered as candidates, most of them are tailored to producing two-group nodal data and would require modifications to produce multi-group prompt and delayed neutron emission spectra. In this paper, the particular modifications required to match the TransLAT lattice code and the PARCS nodal transient code for BWR transient applications are reported. Some modifications to PARCS were also required to make two-group and multi-group applications fully consistent. Numerical results are presented both to verify the proper functioning of these modifications and to illuminate the impact of various nodal kinetics data approximations in a selected transient calculation. In particular, the significance of blending rodded and un-rodded kinetics data in partially rodded nodes is demonstrated. It is also confirmed that the use of delayed neutron importance factors in two-group calculations notably reduces the differences between two-group and multi-group kinetics calculations. (authors)

  18. Kinetics of scrap tyre pyrolysis under vacuum conditions

    SciTech Connect (OSTI)

    Lopez, Gartzen; Aguado, Roberto [Departamento de Ingenieria Quimica, Universidad del Pais Vasco, Apartado 644, 48080 Bilbao (Spain); Olazar, Martin [Departamento de Ingenieria Quimica, Universidad del Pais Vasco, Apartado 644, 48080 Bilbao (Spain)], E-mail: martin.olazar@ehu.es; Arabiourrutia, Miriam; Bilbao, Javier [Departamento de Ingenieria Quimica, Universidad del Pais Vasco, Apartado 644, 48080 Bilbao (Spain)

    2009-10-15T23:59:59.000Z

    Scrap tyre pyrolysis under vacuum is attractive because it allows easier product condensation and control of composition (gas, liquid and solid). With the aim of determining the effect of vacuum on the pyrolysis kinetics, a study has been carried out in thermobalance. Two data analysis methods have been used in the kinetic study: (i) the treatment of experimental data of weight loss and (ii) the deconvolution of DTG (differential thermogravimetry) curve. The former allows for distinguishing the pyrolysis of the three main components (volatile components, natural rubber and styrene-butadiene rubber) according to three successive steps. The latter method identifies the kinetics for the pyrolysis of individual components by means of DTG curve deconvolution. The effect of vacuum in the process is significant. The values of activation energy for the pyrolysis of individual components of easier devolatilization (volatiles and NR) are lower for pyrolysis under vacuum with a reduction of 12 K in the reaction starting temperature. The kinetic constant at 503 K for devolatilization of volatile additives at 0.25 atm is 1.7 times higher than that at 1 atm, and that corresponding to styrene-butadiene rubber at 723 K is 2.8 times higher. Vacuum enhances the volatilization and internal diffusion of products in the pyrolysis process, which contributes to attenuating the secondary reactions of the repolymerization and carbonization of these products on the surface of the char (carbon black). The higher quality of carbon black is interesting for process viability. The large-scale implementation of this process in continuous mode requires a comparison to be made between the economic advantages of using a vacuum and the energy costs, which will be lower when the technologies used for pyrolysis require a lower ratio between reactor volume and scrap tyre flow rate.

  19. Chemical Kinetic Modeling of Combustion of Automotive Fuels

    SciTech Connect (OSTI)

    Pitz, W J; Westbrook, C K; Silke, E J

    2006-11-10T23:59:59.000Z

    The objectives of this report are to: (1) Develop detailed chemical kinetic reaction models for components of fuels, including olefins and cycloalkanes used in diesel, spark-ignition and HCCI engines; (2) Develop surrogate mixtures of hydrocarbon components to represent real fuels and lead to efficient reduced combustion models; and (3) Characterize the role of fuel composition on production of emissions from practical automotive engines.

  20. Kinetic Modeling and Assessment of Lime Pretreatment of Poplar Wood

    E-Print Network [OSTI]

    Sierra Ramirez, Rocio

    2012-02-14T23:59:59.000Z

    biomass is one of the most promising feedstocks for producing biofuels through fermentation processes. Among lignocellulose choices, poplar wood is appealing because of high energy potential, above-average carbon mitigation potential, fast growth... KINETIC MODELING AND ASSESSMENT OF LIME PRETREATMENT OF POPLAR WOOD A Dissertation by ROCIO SIERRA RAMIREZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

  1. A kinetic model for the liquefaction of Texas lignite 

    E-Print Network [OSTI]

    Haley, Sandra Kay

    1980-01-01T23:59:59.000Z

    the Wilcox formation was uti- lized. Previous dissolution studies were conducted with bituminous ard subbituminous coals mined in other states. Secondly, the methods This thesis follows the style of the AIChE Journal. of analysis employed on the reaction... conditions, coal characteristics, catalyst effects), others delved into the kinetics and attempted to model their systems. Wiser (1968) utilized a Utah high-volatile bituminous coal and conducted thermal dissolution studies at temperatures ranging from...

  2. KINETICS OF HOT-GAS DESULFURIZATION SORBENTS FOR TRANSPORT REACTORS

    SciTech Connect (OSTI)

    K.C. Kwon

    2002-01-01T23:59:59.000Z

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at elevated temperatures. Various metal oxide sorbents are formulated with metal oxides such as Fe, Co, Zn, and Ti. Initial reaction kinetics of formulated sorbents with hydrogen sulfide is studied in the presence of various amounts of moisture and hydrogen at various reaction temperatures. The objectives of this research are to study initial reaction kinetics for a sorbent-hydrogen sulfide heterogeneous reaction system, to investigate effects of concentrations of hydrogen sulfide, hydrogen, and moisture on dynamic absorption of H{sub 2}S into sorbents, and to evaluate effects of temperature and sorbent amounts on dynamic absorption of H{sub 2}S into sorbents. Experimental data on initial reaction kinetics of hydrogen sulfide with metal oxide sorbents were obtained with a 0.83-cm{sup 3} differential reactor. The reactivity of MCRH-67 was examined in this report. This sorbent was obtained from the Research Triangle Institute (RTI). The sorbent in the form of 130 mm particles are reacted with 18000-ppm hydrogen sulfide at 350-525 C. The range of space time of reaction gas mixtures is 0.069-0.088 s. The range of reaction duration is 4-180 s.

  3. Kinetic theory of nonlinear transport phenomena in complex plasmas

    SciTech Connect (OSTI)

    Mishra, S. K. [Institute for Plasma Research (IPR), Gandhinagar 382428 (India); Sodha, M. S. [Centre for Energy Studies (CES), Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)

    2013-03-15T23:59:59.000Z

    In contrast to the prevalent use of the phenomenological theory of transport phenomena, a number of transport properties of complex plasmas have been evaluated by using appropriate expressions, available from the kinetic theory, which are based on Boltzmann's transfer equation; in particular, the energy dependence of the electron collision frequency has been taken into account. Following the recent trend, the number and energy balance of all the constituents of the complex plasma and the charge balance on the particles is accounted for; the Ohmic loss has also been included in the energy balance of the electrons. The charging kinetics for the complex plasma comprising of uniformly dispersed dust particles, characterized by (i) uniform size and (ii) the Mathis, Rumpl, and Nordsieck power law of size distribution has been developed. Using appropriate expressions for the transport parameters based on the kinetic theory, the system of equations has been solved to investigate the parametric dependence of the complex plasma transport properties on the applied electric field and other plasma parameters; the results are graphically illustrated.

  4. Einstein static Universe in non-minimal kinetic coupled gravity

    E-Print Network [OSTI]

    K. Atazadeh; F. Darabi

    2015-04-18T23:59:59.000Z

    We study the stability of Einstein static Universe, with FLRW metric, by considering linear homogeneous perturbations in the kinetic coupled gravity. By taking linear homogeneous perturbations, we find that the stability of Einstein static Universe, in the kinetic coupled gravity with quadratic scalar field potential, for closed ($K=1$) isotropic and homogeneous FLRW Universe depends on the coupling parameters $\\kappa$ and $\\varepsilon$. Specifically, for $\\kappa=L_P^2$ and $\\varepsilon=1$ we find that the stability condition imposes the inequality $a_0>\\sqrt{3}L_P$ on the initial size $a_0$ of the closed Einstein static Universe before the inflation. Such inequality asserts that the initial size of the Einstein static Universe must be greater than the Planck length $L_P$, in consistency with the quantum gravity and quantum cosmology requirements. In this way, we have determined the non-minimal coupling parameter $\\kappa$ in the context of Einstein static Universe. Such a very small parameter is favored in the inflationary models constructed in the kinetic coupled gravity. We have also studied the stability against the vector and tensor perturbations and discussed on the acceptable values of the equation of state parameter.

  5. Kinetics of adsorption of uranium from seawater by humic acids

    SciTech Connect (OSTI)

    Heitkamp, D. (Institut fuer Chemie Der Kernforschungsanlage Juelich (West Germany)); Wagener, K. (Lehrstuhl fuer Biophysik der Technischen Hochschule, Aachen (West Germany))

    1990-04-01T23:59:59.000Z

    The kinetics of the adsorption of uranium from seawater by humic acids fixed onto a polymer matrix was measured in a fluidized bed as a function of the grain size of the adsorbent and the flow velocity of the seawater. The adsorption rate was found to be governed by the diffusion of the uranium ions through the hydrodynamic surface layer of the adsorbent which is always formed in laminar flows of liquids. The measured rate constants are interpreted in terms of effective diffusion coefficients of 3.6 {times} 10{sup {minus}5} cm{sup 2}/s for uranyl ions and 1.8 {times} 10{sup {minus}5} cm{sup 2}/s for tricarbonatouranate ions in the surface layer. As a consequence of this kinetic behavior, the geometry of the adsorbent as well as the velocity of the water flow are relevant parameters for the amount of adsorbent needed for a projected extraction rate. This conclusion applies to all adsorption processes where diffusion through the hydrodynamic layer is the rate-determining kinetic step.

  6. Isothermal nitridation kinetics of TiSi{sub 2} powders

    SciTech Connect (OSTI)

    Roger, J., E-mail: roger@lcts.u-bordeaux1.fr; Maillé, L.; Dourges, M.A.

    2014-04-01T23:59:59.000Z

    The aim of the present work is to determine the kinetics of reaction between TiSi{sub 2} powder and gaseous nitrogen. Isothermal nitridation of TiSi{sub 2} powders with fine (1.4 µm) and medium (4.5 µm) particle size has been studied in pure nitrogen atmosphere from 1000 to 1200 °C for duration up to 50 h. The isothermal nitridation kinetics of TiSi{sub 2} powders were investigated by thermogravimetry. The nitridation rate strongly depends on the particle size and temperature. Smaller size particle exhibits higher nitridation rate due to its larger surface area. The conversion process is complex with nucleation and growth of TiN at the surface of the grain and Si{sub 3}N{sub 4} inside the grain promoted by the Kirkendall effect with an influence of the volume increase. - Graphical abstract: Backscattered electrons image of a transverse TiSi{sub 2} grain nitrurated at 1100 °C for 50 h. - Highlights: • Influence of grain size on TiSi{sub 2} powder nitridation. • Influence of temperature on TiSi{sub 2} powder nitridation. • Experimental measurements of the nitridation kinetics. • An explanation of the nitridation mechanism.

  7. The Harrison Diffusion Kinetics Regimes in Solute Grain Boundary Diffusion

    SciTech Connect (OSTI)

    Belova, Irina [University of Newcastle, NSW, Australia; Fiedler, T [University of Newcastle, NSW, Australia; Kulkarni, Nagraj S [ORNL; Murch, Prof. Graeme [University of Newcastle, NSW, Australia

    2012-01-01T23:59:59.000Z

    Knowledge of the limits of the principal Harrison kinetics regimes (Type-A, B and C) for grain boundary diffusion is very important for the correct analysis of the depth profiles in a tracer diffusion experiment. These regimes for self-diffusion have been extensively studied in the past by making use of the phenomenological Lattice Monte Carlo (LMC) method with the result that the limits are now well established. The relationship of those self-diffusion limits to the corresponding ones for solute diffusion in the presence of solute segregation to the grain boundaries remains unclear. In the present study, the influence of solute segregation on the limits is investigated with the LMC method for the well-known parallel grain boundary slab model by showing the equivalence of two diffusion models. It is shown which diffusion parameters are useful for identifying the limits of the Harrison kinetics regimes for solute grain boundary diffusion. It is also shown how the measured segregation factor from the diffusion experiment in the Harrison Type-B kinetics regime may differ from the global segregation factor.

  8. Kinetic study of bitumen release from heated shale

    SciTech Connect (OSTI)

    Butler, E.B.; Barker, C.

    1986-10-01T23:59:59.000Z

    With rising temperature shales evolve hydrocarbons discontinuously. At low temperatures, bitumens are thermally distilled (Peak 1) while at higher temperatures kerogen is pyrolyzed to lower molecular weight products (Peak 2). Hydrocarbon release occurring between these two peaks is less well understood. They have studied the kinetics of thermal bitumen release (Peak 1) from samples of the Excello and Woodford Shales and find that they are second order with activation energies of 19,000 cals/mole and 17,048 cals/ mole, respectively. The thermal release of nC/sub 26/ adsorbed on a siliceous support also followed second order kinetics. Activation energies, along with the determined Arrhenius A factor, permits the calculation of Peak 1 shape so that its contribution can be subtracted from the total hydrocarbon release. The residual curve shows two smaller peaks between the bitumen and kerogen peaks. These are tentatively assigned to adsorption on the mineral matrix and adsorption on kerogen. An important consequence of second order kinetics is that the temperature for the Peak 1 maximum varies with the amount of bitumen in the rock.

  9. Hydrotreating process kinetics for bitumen and bitumen-derived liquids

    SciTech Connect (OSTI)

    Kwak, S.; Longstaff, D.C.; Deo, M.D.; Hanson, F.V.

    1993-03-01T23:59:59.000Z

    Hydrodenitrogenation, hydrodesulfurization and resid conversion data for the Whiterocks bitumen and bitumen-derived liquid were analyzed using a modified power rate law model. The model incorporated the space velocity and pressure since the plug flow equation may not be applicable to laboratory-scale reactors in which complete wetting of the catalyst may not be attained. The data were obtained with the reactor operating as a fixed bed reactor in the upflow mode. The space velocity (WHSV{sup {alpha}}) term was included to account for deviations from plug flow behavior. The exponents (a,p) and the kinetic parameters were obtained by combined non-linear regression and ODE solver techniques for the analysis of laboratory data. A simple nth order power rate law expression for hydrodenitrogenation and hydrodesulfurization was examined. The higher than first order kinetics for hydrodenitrogenation and hydrodesulfurization of the bitumen and bitumen-derived liquids were explained by invoking two parallel first-order reactions; one slow and the other fast. Parallel and consecutive reaction schemes were used to examine the extent of conversion of the resid fraction to middle distillate, gas oil and gasoline and the apparent kinetic parameters were determined. It was determined that the upflow operating mode was preferred to the trickle-bed mode in the laboratory reactor to insure plug flow behavior.

  10. Kinetics of Cd Release from Some Contaminated Calcareous Soils

    SciTech Connect (OSTI)

    Sajadi Tabar, S.; Jalali, M., E-mail: jalali@basu.ac.ir [Bu-Ali Sina University, Department of Soil Science, College of Agriculture (Iran, Islamic Republic of)

    2013-03-15T23:59:59.000Z

    Contamination of soils with heavy metals may pose long-term risk to groundwater quality leading to health implications. Bioavailability of heavy metals, like cadmium (Cd) is strongly affected by sorption and desorption processes. The release of heavy metals from contaminated soils is a major contamination risks to natural waters. The release of Cd from contaminated soils is strongly influenced by its mobility and bioavailability. In this study, the kinetics of Cd desorption from ten samples of contaminated calcareous soils, with widely varying physicochemical properties, were studied using 0.01 M EDTA extraction. The median percentage of Cd released was about 27.7% of the total extractable Cd in the soils. The release of Cd was characterized by an initial fast release rate (of labile fractions) followed by a slower release rate (of less labile fractions) and a model of two first-order reactions adequately describes the observed release of Cd from the studied soil samples. There was positive correlation between the amount of Cd released at first phase of release and Cd in exchangeable fraction, indicating that this fraction of Cd is the main fraction controlling the Cd in the kinetic experiments. There was strongly negative correlation between the amount of Cd released at first and second phases of release and residual fraction, suggesting that this fraction did not contribute in Cd release in the kinetic experiments. The results can be used to provide information for evaluation of Cd potential toxicity and ecological risk from contaminated calcareous soils.

  11. Finance President's Council Section Page 6 Motion: 199610.30

    E-Print Network [OSTI]

    Bolch, Tobias

    Finance President's Council Section Page 6 Motion: 199610.30 UNIVERSITY OF NORTHERN BRITISH by the Finance Department. 1. Cheque Requisition Procedure Complete the Cheque Requisition form in full as indicated (form available from the Finance department). This includes the name of the payee, address, amount

  12. Finance President's Council Section Page 31 Motion: 199204.09

    E-Print Network [OSTI]

    Bolch, Tobias

    Finance President's Council Section Page 31 Motion: 199204.09 UNIVERSITY OF NORTHERN BRITISH guarantee that a card will be issued. d) Approved application forms must be forwarded to the Finance.1.4 Reimbursement should take approximately 10 working days from the Finance Department's receipt of the Travel

  13. Optical Flow Estimation versus Motion Estimation Draft: Anita Sellent

    E-Print Network [OSTI]

    Heermann, Dieter W.

    . In the proposed challenge we aim to estimate the physical motion of objects. In industrial applications in the Camera System In industrial applications, sufficient illumination cannot always be provided. This can in the path of a robot or the trajectories of objects [7,12,13,17]. Video cameras provide information

  14. Adaptive robust motion control of linear motors for precision manufacturing

    E-Print Network [OSTI]

    Yao, Bin

    for widespread use in high-speed/high-accuracy positioning systems [1­3]. In general, the linear motor hasAdaptive robust motion control of linear motors for precision manufacturing Bin Yao *, Li Xu School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA Received 6 October 1999; accepted 11

  15. Chaos expansion of local time of fractional Brownian motions

    E-Print Network [OSTI]

    Hu, Yaozhong; Oksendal, B.

    2002-07-01T23:59:59.000Z

    We find the chaos expansion of local time l(T)((H))(x, (.)) of fractional Brownian motion with Hurst coefficient H is an element of (0, 1) at a point x is an element of R-d. As an application we show that when H(0)d < 1 then l...

  16. Stochastic calculus for fractional Brownian motion - I. Theory

    E-Print Network [OSTI]

    Duncan, Tyrone E.; Hu, Yaozhong; Pasik-Duncan, Bozenna

    2000-02-02T23:59:59.000Z

    In this paper a stochastic calculus is given for the fractional Brownian motions that have the Hurst parameter in (1/2, 1). A stochastic integral of Ito type is defined for a family of integrands so that the integral has zero mean and an explicit...

  17. Data-based Motion Prediction Julian J. Faraway

    E-Print Network [OSTI]

    Faraway, Julian

    prediction. Many vehicle interiors and workplaces are first designed using a CAD system. Physical prototypes an authentically moving virtual human within soft- ware such as Jack ([2]) helps the designer detect prob- lems of motion capture data required. Even so, the methodology pre- 1 #12;sented below is generalizable and would

  18. Learning Scene Entries and Exits using Coherent Motion Regions

    E-Print Network [OSTI]

    Davis, James W.

    Learning Scene Entries and Exits using Coherent Motion Regions Matthew Nedrich and James W. Davis,jwdavis}@cse.ohio-state.edu Abstract. We present a novel framework to reliably learn scene entry and exit locations using coherent. Resultant entity entry and exit observations of the paths are then clustered and a reliability metric

  19. Large deviations for rough paths of fractional Brownian motion

    E-Print Network [OSTI]

    Millet, Annie

    limit theorem. Stochastic modeling deals basically with rough path controls. Indeed, the ground-breaking It^o's theory on stochastic differential equations is based on Brownian motion, which has almost surely nowhere differentiable sam- ple paths but only -H¨older continuous ones, with ]0, 1 2 [. Note

  20. Stochastic Conformational Roadmaps for Computing Ensemble Properties of Molecular Motion

    E-Print Network [OSTI]

    Pratt, Vaughan

    for analyzing the motion pathways of molecules during vital biological processes, such as protein folding, or fold, into unique 3-D struc- tures called native folds. Protein folding plays a central role importance, the protein folding process remains a mystery. While it is traditionally studied through tedious