National Library of Energy BETA

Sample records for morgantown wv 26507-0880

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.O. Box 880 Morgantown, WV 26507-0880 304-285-2024 andrea.mcnemar@netl.doe.gov Darrell Paul Program Manager Battelle Memorial Institute 505 King Avenue Columbus, OH 43201...

  2. DOE - Office of Legacy Management -- Morgantown Ordnance Works - WV 03

    Office of Legacy Management (LM)

    Morgantown Ordnance Works - WV 03 FUSRAP Considered Sites Site: Morgantown Ordnance Works (WV.03 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The former Pittsburgh Energy and Technology Center in Bruceton, Pennsylvania has merged with the Morgantown Energy Technology Center, and in December 1999 became the National Energy Technology

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Joshua Hull Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-0906 joshua.hull@netl.doe.gov Dr. Brenda Bowen Principal Investigator Associate Director, Global Change and Sustainability Center Associate Research Professor, Geology and Geophysics

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea McNemar Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-2024 andrea.mcnemar@netl.doe.gov Ruben Juanes Principal Investigator Massachusetts Institute of Technology 77 Massachusetts Avenue Room 48-319 Cambridge, MA 02139

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Darin Damiani Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4398 darin.damiani@netl.doe.gov Vivak Malhotra Principal Investigator Southern Illinois University Neckers 483A Mailcode: 4401 Carbondale, IL 62901 618-453-2643 Fax:

  6. Scoping Study for Demand Respose DFT II Project in Morgantown, WV

    SciTech Connect (OSTI)

    Lu, Shuai; Kintner-Meyer, Michael CW

    2008-06-06

    This scoping study describes the underlying data resources and an analysis tool for a demand response assessment specifically tailored toward the needs of the Modern Grid Initiatives Demonstration Field Test in Phase II in Morgantown, WV. To develop demand response strategies as part of more general distribution automation, automated islanding and feeder reconfiguration schemes, an assessment of the demand response resource potential is required. This report provides the data for the resource assessment for residential customers and describes a tool that allows the analyst to estimate demand response in kW for each hour of the day, by end-use, season, day type (weekday versus weekend) with specific saturation rates of residential appliances valid for the Morgantown, WV area.

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Center CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Hilary Olson Project Director/Principal Investigator University of Texas at Austin 1 University Station, C0300 Austin, TX

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Bruce Brown Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-5534 bruce.brown@netl.doe.gov Ken Nemeth Executive Director Southern States Energy Board 6325 Amherst Court Norcross, GA 30092 770-242-7712 nemeth@sseb.org PARTNERS Advanced Resources International AGL Resources

  9. 3610 Collins Ferry Road, P.O. Box 880, Morgantown, WV 26507

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    610 Collins Ferry Road, P.O. Box 880, Morgantown, WV 26507 cliff.whyte@netl.doe.gov  Voice (304) 285-2098  Fax (304) 285-4403  www.netl.doe.gov A l b a ny, O R * M o rg a n tow n , W V * Pi t t s b u rg h , PA February 24, 2015 Dear Reader: The U.S. Department of Energy (DOE) has prepared a supplement analysis (SA) to the Texas Clean Energy Project (TCEP) Final Environmental Impact Statement (EIS). This document was prepared in accordance with the National Environmental Policy Act of

  10. Process Equipment Cost Estimation, Final Report

    Office of Scientific and Technical Information (OSTI)

    Process Equipment Cost Estimation Final Report January 2002 H.P. Loh U.S. Department of Energy National Energy Technology Laboratory P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 and P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and Jennifer Lyons and Charles W. White, III EG&G Technical Services, Inc. 3604 Collins Ferry Road, Suite 200 Morgantown, WV 26505 DOE/NETL-2002/1169 ii Disclaimer This report was prepared as an account of work sponsored by an

  11. Microsoft Word - DE-SOL-0006851 FINAL Amended 9-5-14.rtf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RATING PAGE OF PAGES 1 | 166 2. CONTRACT NUMBER 3. SOLICITATION NUMBER DE-SOL-0006851 000002 4. TYPE OF SOLICITATION SEALED BID (IFB) NEGOTIATED (RFP) 5. DATE ISSUED 09/05/2014 6. REQUISITION/PURCHASE NO. 14FE002462 7. ISSUED BY CODE 02605 8. ADDRESS OFFER TO (If other than Item 7) U.S. DOE/NETL Morgantown Campus 3610 Collins Ferry Road Morgantown WV 26507-0880 Same as Block #7 NOTE: In sealed bid solicitations "offer" and "offeror" mean "bid" and

  12. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dawn Deel Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4133 dawn.deel@netl.doe.gov...

  13. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov...

  14. Microsoft PowerPoint - Pittsburgh International Airport to Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pittsburgh International Airport to Morgantown Site, Morgantown, WV 1. Exit airport on US-60S toward PittsburghI-79S (follow signs to Pittsburgh, proceed 7 miles). 2. Merge onto...

  15. New Title

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3610 Collins Ferry Road, P.O. Box 880, Morgantown, WV 26507-0880 { 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940 REPLY TO: Pittsburgh Office * surdoval@netl.doe.gov * Voice (412) 386-6002 * Fax (412) 386-4775 * www.netl.doe.gov August 2000 Dear SECA Workshop Participant: The National Energy Technology Laboratory (NETL) and the Pacific Northwest National Laboratory (PNNL) are pleased to provide the proceedings of the Solid State Energy Conversion Alliance (SECA) Workshop held

  16. AIR SEPARATION BY PRESSURE SWING ADSORPTION USING SUPERIOR ADSORBENTS

    Office of Scientific and Technical Information (OSTI)

    AIR SEPARATION BY PRESSURE SWING ADSORPTION USING SUPERIOR ADSORBENTS DE-FG26-98FT40115 FINAL TECHNICAL REPORT September 1, 1998 - August 31, 2001 Submitted to Dr. Kamalendu Das U.S. Department of Energy Federal Energy Technology Center 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 And FETC AAD Document Center Federal Energy Technology Center U.S. Department of Energy P. O. Box 10940 Pittsburgh, PA 15236-0940 By Ralph T. Yang Authors: Nick D. Hutson, Stefan C. Zajic, Salil U.

  17. Laboratory Equipment Donation Program - OPMO Address List

    Office of Scientific and Technical Information (OSTI)

    OPMO Listing OPMO contact information is listed below. Please refer to your "LEDP Grantee Application Result" e-mail for the name of the OPMO who approved your application. Ernest J. Baier Western Area Power Administration OPMO-DOE/WAPA 1800 S. Rio Grande Ave. Montrose, Colorado 81401 970-240-6248 Baier@wapa.gov Bickler@wapa.gov John Bargo (Authorized) National Energy Technology Laboratory U.S. Department of Energy P.O. Box 880, 3610 Collins Ferry Rd. Morgantown, WV 26507-0880

  18. Microsoft Word - Lab call doc TEMPLATE ver 11.3 _may 3rd due date_.docx

    Office of Environmental Management (EM)

    RESEARCH CALL TO DOE/FEDERAL LABORATORIES Technical Support for Interconnection-Level Electric Infrastructure Planning RC-BM-2010 CONTACT: Brian Mollohan, Project Manager TELEPHONE NUMBER: (304) 285-1367 FAX NUMBER: (304) 285-4403 E-MAIL: brian.mollohan@netl.doe.gov ISSUING OFFICE: U.S. DEPARTMENT OF ENERGY National Energy Technology Laboratory 3610 Collins Ferry Road, P. O. Box 880 Morgantown, WV 26507-0880 ISSUE DATE: April 1, 2010 DUE DATE: May 3, 2010 This Research Call uses funding from

  19. EIS-0444: Record of Decision | Department of Energy

    Office of Environmental Management (EM)

    Record of Decision EIS-0444: Record of Decision Texas Clean Energy Project, Ector County, Texas (September 2011) For more information, contact: Mr. Mark L. McKoy, Environmental Manager U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880 Morgantown, WV 26507-0880 Telephone: 304-285-4426 Toll-free number: 1-800-432-8330 (ext. 4426) DOE announces its decision to continue to provide financial support to the Texas Clean Energy Project (TCEP). DOE prepared an Environmental

  20. Oil-shale utilization at Morgantown, WV

    SciTech Connect (OSTI)

    Shang, J.Y.; Notestein, J.E.; Mei, J.S.; Romanosky, R.R.; King, J.A.; Zeng, L.W.

    1982-01-01

    Fully aware of the nation's need to develop high-risk and long-term research in eastern oil-shale and low-grade oil-shale utilization in general, the US DOE/METC initiated an eastern oil-shale characterization program. In less than 3 months, METC produced shale oil from a selected eastern-US oil shale with a Fischer assay of 8.0 gallons/ton. In view of the relatively low oil yield from this particular oil shale, efforts were directed to determine the process conditions which give the highest oil yield. A 2-inch-diameter electrically heated fluidized-bed retort was constructed, and Celina oil shale from Tennessee was selected to be used as a representative eastern oil shale. After more than 50 runs, the retorting data were analyzed and reviewed and the best oil-yield operating condition was determined. In addition, while conducting the oil-shale retorting experiments, a number of technical problems were identified, addressed, and overcome. Owing to the inherent high rates of heat and mass transfers inside the fluidized bed, the fluidized-bed combustor and retorting appear to be a desirable process technology for an effective and efficient means for oil-shale utilization. The fluidized-bed operation is a time-tested, process-proven, high-throughput, solid-processing operation which may contribute to the efficient utilization of oil-shale energy.

  1. Proceedings of the joint contractors meeting: FE/EE Advanced Turbine Systems conference FE fuel cells and coal-fired heat engines conference

    SciTech Connect (OSTI)

    Geiling, D.W.

    1993-08-01

    The joint contractors meeting: FE/EE Advanced Turbine Systems conference FEE fuel cells and coal-fired heat engines conference; was sponsored by the US Department of Energy Office of Fossil Energy and held at the Morgantown Energy Technology Center, P.O. Box 880, Morgantown, West Virginia 26507-0880, August 3--5, 1993. Individual papers have been entered separately.

  2. Microsoft PowerPoint - Morgantown Muncipal Airport to NETL Morgantown Site Directions.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Morgantown Site from Morgantown Municipal Airport 1. Exit the airport by TURNING RIGHT onto HARTMAN RUN RD. and proceed to first light (US-119). 2. Turn LEFT onto US-119 SOUTH and proceed to next traffic light (WV-705). 3. At light turn RIGHT onto WV-705, proceed in the right lane to 5th traffic light (VAN VOORHIS RD.) 4. Proceed forward through intersection onto BURROUGHS ST. 5 At 3 way stop turn RIGHT onto COLLINS FERRY RD 5. At 3-way stop turn RIGHT onto COLLINS FERRY RD. 6. Proceed 0.5 miles

  3. EA-1885: Boston Architectural College's Urban Sustainability Initiative Renovation of Green Alley #444, Boston, Massachusetts

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to provide a grant to Boston Architectural College (BAC) to design, construct and implement the renovation of Public Alley #444 in Boston's Historic Back Bay District. The project would include the installation of 7 to 10 open loop geothermal wells to provide heating and cooling energy to BAC's facilities; the installation of a green screen trellis system, planting soils, concrete pavement, pavers, and landscaping; and mechanical upgrades (plumbing and electrical) to accommodate the geothermal solution into the benefiting facilities. Comment Period Ends: 01/13/2012 Comments should be marked "BAC Public Alley #444 Draft EA Comments" and sent to: Mr. Fred Pozzuto U.S. Department of Energy National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880, MS B07 Morgantown, WV 26507-0880 Email: fred.pozzuto@netl.doe.gov Facsimile: 1-304-285-4403

  4. Microsoft PowerPoint - Pittsburgh International Airport to Morgantown Site Directions.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pittsburgh International Airport to Morgantown Site, Morgantown, WV 1. Exit airport on US-60S toward Pittsburgh/I-79S (follow signs to Pittsburgh, proceed ~7 miles). 2. Merge onto US-22E/US-30E toward Pittsburgh (proceed ~3 miles). 3. Merge onto I-79S toward WASHINGTON, PA (proceed ~25 miles). I-70 East merges with I-79, continue on I-70E/I-79S. 4. Merge RIGHT at Exit 21 onto I-79S toward MORGANTOWN, WV (proceed ~39 miles). 5 T k EXIT 155 STAR CITY EXIT t WV 7 WEST VIRGINIA UNIVERSITY 5. Take

  5. Microsoft PowerPoint - Morgantown Muncipal Airport to NETL Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Morgantown Site from Morgantown Municipal Airport 1. Exit the airport by TURNING RIGHT onto HARTMAN RUN RD. and proceed to first light (US-119). 2. Turn LEFT onto US-119 SOUTH and...

  6. azg7193.tmp

    Office of Scientific and Technical Information (OSTI)

    DoEilvlC/30247 --5326 (DE97002074) Distribution Cate,goly UC-109 System Definition and Analysis: Power Plant Design and Layout Topical Report May 1996 Work Performed Under Contract No.: DE-AC21 -93 MC30247 For U.S. Department of Energy Office of Fossil Energy Morgantown Energy Technology Center P.(). Box 880 Morgantown, West Virginia 26507-0880 By Westinghouse Electric Corporation Power Generation Technology Division Engineering Technologies Department 4400 Alafaya Trail, MC 381 Orlando, Florida

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... materials and fuels in rocket propulsion systems. NETL Supercomputer DoD Supercomputing Resource Centers Visualization & Molecular Design Computational Chemistry Beowulf Clusters

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Each technology has its own advantages and disadvantages. Integrated technology development takes materials from molecular design through fabrication to commercialization. R&D173, ...

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of efficient and economical approaches to carbon capture. A typical coal gasification process produces H 2 , CO 2 , and steam at about 260 C and 25 bar after...

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's economic and energy security....

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to focus on only the most promising materials. Substances designed using fundamental approaches are synthesized and characterized in NETL-ORD's fully equipped synthetic...

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods, limited variability is available in the final cathode structures. New approaches focus on generation of advanced microstructures that are more conducive to...

  13. Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    begins by completing the online submission form where users can describe attributes, characteristics, and keywords of the submission. This information serves as the building...

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and minimal soot formation. The syngas reformate will be used as fuel for solid oxide fuel cells developed in the Solid State Energy Conversion Alliance (SECA) program....

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and ultimately CO 2 capture cost. The NETL-ORD is also conducting system and economic studies to R& D FAC T S Carbon Capture OFFICE OF RESEARCH AND DEVELOPMENT David Alman...

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lower heat capacity, and reduced heat of reaction. The result is a lower overall cost for CO 2 capture and separation. Many different types of solid materials have been...

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's...

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in prior-year appro- priations) to the FutureGen Industrial Alliance (Alliance) to build FutureGen 2.0-a clean coal repowering program and CO 2 pipeline and storage network. ...

  19. Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    require the production of clean hydrogen to fuel innovative combustion turbines and fuel cells. This research will focus on development and assessment of membranes tailored...

  20. Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Houston, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL R&D Tackles Technological Challenges of the Williston Basin's Bakken Formation Recent development of the Bakken Formation in the Williston Basin of western North Dakota and eastern Montana is a good example of persistent analysis of geologic data and adaptation of new completion technologies overcoming the challenges posed by unconventional reservoirs. However, as with most unconventional plays, as Bakken development continues, questions regarding exactly how to refine newly applied

  1. Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugarland, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sugarland, TX Website: www.netl.doe.gov Customer Service: 1-800-553-7681 Enhanced Oil Recovery Program The mission of the Enhanced Oil Recovery Program is to provide information and technologies that will assure sustainable, reliable, affordable, and environmentally sound supplies of domestic oil resources. The Strategic Center for Natural Gas and Oil (SCNGO) seeks to accomplish this critical mission by advancing environmentally responsible technological solutions that enhance recovery of oil

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wells to Predict Long Term Leakage through the Development of an Integrated Neural-Genetic Algorithm Background The overall goal of the Department of Energy's (DOE) Carbon...

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oil and gas exploration and production. These R&D portfolios include research conducted by NETL-ORD as well as extra-mural projects awarded through competitive solicitations. ...

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer at NETL Carbon capture, quantum mechanical simulations, integrated gasification, and clean power-words like these mean the future of energy to NETL's in-house...

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Fire Protection-Sacramento, CA California Department of Water Resources California Division of Oil, Gas and Geothermal Resources California Energy Commission California ...

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of recoverable petroleum within a reservoir, as well as the modeling of the flow of these fluids within the porous media and in wellbore. These properties are also used to design...

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science and Engineering 304-285-4685 madhava.syamlal@netl.doe.gov David Miller Technical Director Carbon Capture Simulation Initiative 412-386-6555...

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    safety and minimizing the environmental impacts of activities related to unconventional natural gas and other petroleum resource exploration and production technology (EPAct...

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in High Pressure, High Temperature (HPHT) Ultra-Deep Drilling Environments Background Oil and natural gas fuel America's economy-accounting for more than 60 percent of the...

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Policy Act (NEPA) process is complete. * Approximately 32 sq. mi. of 3-D, 9- component surface seismic has been shot in the injection region and the data has been...

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or moved into other parts of the capture portfolio for further development. Among the materials currently being examined are advanced polymers based on inorganic phosphazines and...

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Combustion Project addresses fundamental issues of fire-side and steam-side corrosion in oxy-fuel combustion environments. NETL's advanced ultra-supercritical (A-USC)...

  13. Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rapidly evolving technology, capabilities, and approaches to information sharing, big data, and computational resources, both public and private, for the benefit of NETL...

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as well as those associated with long-term liabilities. Operational issues include the management of reservoir pressure and stress to avoid conditions that might induce seismic...

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activities to test and evaluate technologies; validate and couple geomechanical and flow reservoir models to provide accurate and reliable simulations in fractured reservoirs...

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1: Project locations for the two PCOR Partnership Development Phase Projects and risk management programs of appropriate size for a commercial-scale injection of CO2. The...

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are an important target for studies seeking to positively affect both the efficiency and environmental impact of U.S. energy production. The diversity of available sources for...

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    consistent with gas clean-up technology. Sensors and Controls - Designing advanced sensory materials, optical sensors, and platforms for high temperature sensors, as well as...

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of State Model Development for Extreme Temperatures and Pressures Background The density and viscosity of natural gas and crude oil at reservoir conditions are critical...

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fossil Energy Plants estimated that the use of MEA to capture 90% of CO 2 in a pulverized coal power plant would impose a 30% energy penalty and ultimately result in an 85%...

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sources of drinking water. Induced seismicity is when earthquakes occur due to human activity changing the stress field in the subsurface. Most induced seismic events are small...

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of naturally occurring major, minor, and trace elements as indicators of sub-surface activity provides an understanding at the mineral and chemical levels of the larger processes...

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    detailed program reviews, systems analyses, review of emerging technologies, R&D activity, and discussions with stakeholders at all levels. This diverse research plan includes...

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The facility was originally used to study the fate of CO 2 in the deep ocean, released ... Goals and Objectives The goal of the current research is to obtain fundamental, ...

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and a burner) is coupled to heat exchangers and a turbine in order to evaluate the dynamics of a fully integrated system. R& D FAC T S Energy Systems Dynamics OFFICE OF...

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and model data on high performance computers with pre-loaded software, such as ArcGIS, Petra, EarthVision, GoldSim, MATLAB, and other advanced analytical, statistical and...

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    their datasets using top-of-the-line research computers with key software, such as ArcGIS, Petra, GoldSim, and Earthvision, among other advanced geostatistical and analytical...

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Conversion Model allows for the transfer of elements from the JetPlume and Transport models, taking care to best amalgamate the two contrasting approaches in each, while...

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quantifiable and relevant para- meters, while leaving the sample available for further testing. Facilities Medical CT Scanner Core-scale Characterization and Fluid Flow The...

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shrink, depending on the specific adsorbedabsorbed gas. In turn, this can affect permeability and porosity (flow properties), depending on the amount of sorptiondesorption. If...

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Most existing reservoir simulators are designed for flow through inter-granular permeability within intact rock, perhaps with the addition of regular grids of fractures. These...

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are cheap and easy to process but are limited by an inherent tradeoff between permeability and selectivity - polymeric membranes can have high permeability or high...

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scanner allows evaluation of microscopic structure and pore surfaces. Porosity, permeability, fracture roughness and aperture, overall structure, and composition can all be...

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    John Baltrus Acting Division Director Molecular Science Division 412-386-4570 john.baltrus@netl.doe.gov Paul Turner Division Director Materials Characterization Division...

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... via thermal desorption) to measure volatile organic compounds (VOCs); * Air Pollution Instruments gaseous monitors for NO x and O 3 ; * R.M. Young and Davis Instruments ...

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... (a GC-FID with sample introduction via thermal desorption) to measure VOC's; * Air Pollution Instruments gaseous monitors for NO x and O 3 ; * A Davis Instruments ...

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to industry for commercial implementation. The instrument provides state-of-the- art improvements of reduced size and increased sensitivity and sample rate to facilitate...

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which can be then used in an inexpensive "breathalyzer" to test for and monitor diabetes. The NETLSC has also greatly accelerated progress on the development of...

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimal Model Complexity in Geological Carbon Sequestration: A Response Surface Uncertainty Analysis Background The goal of the Department of Energy's (DOE) Carbon Storage Program...

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modeling consistent with Biot's poroelastic theory was developed and imple- mented in FLAC and TOUGH2. * H-M models for fractured porous rocks were developed and implemented in a...

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the exploration and production of deepwater and ultra-deepwater resources. Adequate definition of materials performance and properties is critical to this effort. The outcome...

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from each SECARB-Ed participating organization was created to provide direction for the business model and to guide the development of high quality training materials and an...

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Analytical Simulation Tool for CO2 Storage Capacity Estimation and Uncertainty Quantification Background The goal of the Department of Energy's (DOE) Carbon Storage...

  4. Fuel Cell Handbook (Seventh Edition)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Handbook (Seventh Edition) By EG&G Technical Services, Inc. Under Contract No. DE-AM26-99FT40575 U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory P.O. Box 880 Morgantown, West Virginia 26507-0880 November 2004 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or

  5. 3610 Collins Ferry Road, P.O. Box 880, Morgantown, WV 26507

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MEMORANDUM FOR NEPA FILE FROM: MARK LUSK NEPA DOCUMENT MANAGER SUBJECT: Supplement Analysis for the Exide Technologies' Proposed Project under the Electric Drive Vehicle Battery and Component Manufacturing Initiative (DOE/EA-1712) New Information: Proposed Minor Change to Exide Technologies' Proposed Project Location: Exide Technologies' Plant in Bristol, Tennessee Proposed by: Exide Technologies 1. Introduction This proposed project was one of 30 projects DOE selected for financial assistance

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Oil Systems Analysis Program Background In support of its mission, to advance the efficient recovery of our nation's oil and natural gas resources in an environmentally safe manner, the Strategic Center for National Gas and Oil (SCNGO) carries out a variety of analyses. These generally fall into four categories: 1. Technology Analysis - Evaluation of the state of current technology, the potential benefits of technology advancements, and the research needed to overcome barriers to those

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Near-Surface Leakage Monitoring for the Verification and Accounting of Geologic Carbon Sequestration Using a Field- Ready 14 C Isotopic Analyzer Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Capture and Storage Training Background Carbon capture, utilization, and storage (CCUS) technologies offer great potential for mitigating carbon dioxide (CO2) emissions emitted into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications will require a drastically expanded workforce trained in CCUS related disciplines, including geologists, engineers, scientists, and technicians. Training to

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    William W. Aljoe Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-6569 william.aljoe@netl.doe.gov Teresa L. Nealon Principal Investigator University of Wyoming 1000 E. University Avenue P.O. Box 3011 Laramie, Wyoming 82071-3006 307-766-3029 tnealon@uwyo.edu PARTNERS None P R OJ E C T FAC T S Carbon Storage - Training Center Wyoming Carbon Capture and Sequestration Technology Institute; Workforce Training, Technology

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Center Development and Implementation of the Midwest Geological Sequestration Consortium Sequestration Training and Education Program (STEP) Background Carbon capture utilization and storage (CCUS) technologies offer great potential for mitigating carbon dioxide (CO2) emissions emitted into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications will require a drastically expanded workforce

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory - Management of Water from Carbon Capture and Storage Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop technologies to capture, separate, and store carbon dioxide (CO 2 ) to aid in reducing green-house gas (GHG) emissions without adversely influencing energy use or hindering economic growth. Carbon capture and sequestra- tion (CCS) - the capture of CO 2 from large point sources and subsequent injection

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FutureGen 2.0 Background The combustion of fossil fuels for electricity generation is one of the largest contributors to carbon dioxide (CO 2 ) emissions in the United States and the world. Future federal legislation and/or regulation may further limit CO 2 emissions from U.S. power generation. Efforts to control CO 2 emissions from this sector are under- way through the development of carbon capture and storage (CCS) technologies. CCS could virtually eliminate CO 2 emissions from power plants

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Performance Project Research programs initiated by the U.S. Department of Energy (DOE) to achieve increased efficiency and reduced emissions are expected to result in the development of highly integrated power generation technologies that are clean and use far less fuel to produce the same power as technologies used today. This highly efficient technology would extend our natural resources and reduce the dependence of the United States on foreign sources of oil and other energy

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science & Engineering OFFICE OF RESEARCH AND DEVELOPMENT Madhava Syamlal Focus Area Lead Computational Science and Engineering 304-285-4685 madhava.syamlal@netl.doe.gov David Miller Technical Portfolio Lead Carbon Capture Simulation Initiative 412-386-6555 david.miller@netl.doe.gov Computational Science and Engineering Onsite Research As the lead field center for the DOE Office of Fossil Energy's research and development program, the National Energy Technology Laboratory (NETL)

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Process Development Division OFFICE OF RESEARCH AND DEVELOPMENT David Alman Acting Focus Area Lead Materials Science and Engineering 541-967-5885 david.alman@netl.doe.gov An Integrated Approach To Materials Development Traditional trial-and-error method in materials development is time consuming and costly. In order to speed up materials discovery for a variety of energy applications, an integrated approach for multi-scale materials simulations and materials design has been adopted at NETL. The

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Research Portfolio Assessing Risk and Mitigating Deleterious Events Associated with Drilling and Production Background Increasingly, offshore domestic oil and natural gas activities are associated with challenging offshore regions, such as the ultra-deepwater (> 5,000 feet) Gulf of Mexico (GOM) and the offshore Arctic. Development in these areas poses unique technical and operational challenges, as well as distinct environmental and societal concerns. At present, of fshore domestic

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OFFICE OF RESEARCH AND DEVELOPMENT Cynthia Powell Director 541-967-5803 cynthia.powell@netl.doe.gov Alexandra Hakala Technical Coordinator Unconventional Resources 412-386-5487 alexandra.hakala@netl.doe.gov Natalie Pekney Technical Coordinator Unconventional Resources 412-386-5953 natalie.pekney@netl.doe.gov PARTNERS Carnegie Mellon University Penn State University University of Pittsburgh URS Virginia Tech West Virginia University Analytical chemist working with the inductively coupled plasma

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Engineering Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's economic and energy security. Technical advancement for any type of gas turbine generally implies better performance, greater efficiency, and extended component life. From the standpoint of cycle efficiency and durability, this suggests that a continual goal for higher gas turbine- inlet

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science & Engineering CONTACTS David Miller Technical Director Carbon Capture Simulation Initiative 412-386-6555 david.miller@netl.doe.gov Madhava Syamlal Senior Fellow Computational Engineering 304-285-4685 madhava.syamlal@netl.doe.gov RESEARCH PARTNERS AECOM Boston University Carnegie Mellon University Lawrence Berkeley National Laboratory Lawrence Livermore National Laboratory Los Alamos National Laboratory Pacific Northwest National Laboratory Princeton University

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cells The Solid Oxide Fuel Cell (SOFC) Program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust SOFC system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $225 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per 1,000 hours over a 40,000 hour lifetime. The Fuel Cell Team performs fundamental SOFC technology evaluation, enhances

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pre-combustion Solvents for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical compo- nent of realistic strategies for arresting the rise in atmospheric CO 2 concentrations, but capturing substantial amounts of CO 2 using current technology would result in a pro- hibitive rise in the cost of producing energy. In high-pressure CO 2 -containing streams, such as those found in coal gasification processes, one well-established approach to removing

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Post-combustion Membranes for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical component of realistic strategies for arresting the rise in atmospheric CO 2 concentrations, but capturing substantial amounts of CO 2 using current technology would result in a prohibitive rise in the cost of producing energy. The National Energy Technology Laboratory (NETL) is pursuing a multi-faceted approach, which leverages cutting-edge research facilities,

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry and Surface Science CONTACTS OFFICE OF RESEARCH AND DEVELOPMENT Madhava Syamlal Focus Area Lead Computational Science and Engineering 304-285-4685 madhava.syamlal@netl.doe.gov Computational Chemistry Research in Support of Future Energy Technologies Background Development of efficient future technologies for energy production with zero carbon emissions based on the use of fossil fuels or novel renewable resources is highly dependent on solving a large number of individual break-through

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance in High-Pressure, High-Temperature and Ultra-Deep Drilling Environments Background Oil and natural gas fuel America's economy-accounting for more than 60 percent of the energy consumed in the United States. Most forecasts indicate that these resources will continue to play a vital role in the U.S. energy portfolio for the next several decades. Increasingly, however, the domestic oil and gas industry must search for hydrocarbons in geologically challenging and operationally complex

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subsurface Experimental Laboratories Autoclave and Core Flow Test Facilities Description Researchers at the National Energy Technology Laboratory (NETL) study subsurface systems to better characterize and understand gas-fluid-rock and material inter- actions that impact environmental and resource issues related to oil, gas, and CO2 storage development. However, studying the wide variety of subsurface environments related to hydrocarbon and CO2 systems requires costly and technically challenging

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL-ORD Geomaterials Research Facilities The National Energy Technology Laboratory (NETL) Office of Research and Development (ORD) Geomaterials group uses unique facilities to analyze natural and manmade material samples and characterize the geologic frame- work of natural systems using the following tools: * Petrography * Scanning electron microscopy * X-ray microanalysis * X-ray- and micro-x-ray diffraction * Permeability measurements * Thermogravimetric analysis * Differential scanning

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The NETL SuperComputer Introduction The National Energy Technology Laboratory (NETL) is home to Joule-one of the world's largest high-performance computers-along with advanced visualization centers serving the organization's research and development needs. Supercomputing provides the foundation of NETL's research efforts on behalf of the Department of Energy, and NETL maintains supercomputing capabilities to effectively support its research to meet DOE's Fossil Energy goals. Supercomputing

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Southwestern United States Carbon Sequestration Training Center Background The focus of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2025 and 2035. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO 2 ) to reduce

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO 2 Geological Storage: Coupled Hydro- Chemo-Thermo-Mechanical Phenomena- From Pore-Scale Processes to Macroscale Implications Background The focus of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2025 and 2035. Research conducted to develop these technologies will ensure safe

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Southwest Regional Partnership Farnsworth Unit EOR Field Project - Development Phase Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The purpose of these partnerships is to determine the best regional approaches for permanently storing carbon dioxide (CO 2 ) in geologic formations. Each RCSP includes stakeholders comprised of state and local agencies, private companies, electric utilities, universities, and

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P R O G R A M FAC T S Strategic Center for Natural Gas & Oil CONTACTS Roy Long Offshore Technology Manager Strategic Center for Natural Gas & Oil 281-494-2520 roy.long@netl.doe.gov Kelly Rose Offshore Technical Portfolio Lead Office of Research and Development 541-967-5883 kelly.rose@netl.doe.gov William Fincham Project Manager Natural Gas & Oil Project Management Division 304-285-4268 william.fincham@netl.doe.govv Jared Ciferno Director Strategic Center for Natural Gas & Oil

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geological Sequestration Consortium-Development Phase Illinois Basin - Decatur Project Site Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The purpose of these partnerships is to determine the best regional approaches for permanently storing carbon dioxide (CO 2 ) in geologic formations. Each RCSP includes stakeholders comprised of state and local agencies, private companies, electric utilities, universities,

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gov Bruce Brown Project Manager National EnergyTechnology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-5534 bruce.brown@netl.doe.gov Kenneth Nemeth Executive Director Southern States Energy Board 6325 Amherst Court Norcross, GA 30092 770-242-7712 nemeth@sseb.org PARTNERS Advanced Resources International AGL Resources Alabama Oil & Gas Board Alawest Alpha Natural Resources American Coalition for Clean Coal Energy American Electric Power Amvest Gas

  14. Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTACTS OFFICE OF RESEARCH AND DEVELOPMENT Kelly Rose Principal Investigator Research Physical Scientist 541-967-5883 kelly.rose@netl.doe.gov Jennifer Bauer Geospatial Researcher 541-918-4507 jennifer.bauer@contr.netl.doe.gov Cynthia Powell Acting Focus Area Lead 541-967-5803 cynthia.powell@netl.doe.gov RESEARCH PARTNERS AECOM ORISE Oregon State University Pacific Northwest National Laboratory Spatio-Temporal Tools & Geostatistical Approaches for Engineered-Natural Systems Risk Reduction

  15. Visiting NETL Albany, Morgantown or Pittsburgh | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Albany GPS Coordinates: 44.623157,-123.120658 Hotel Locations Restaurant Locations Eugene Airport to NETL Albany Site Portland International Airport to NETL Albany Site Morgantown...

  16. Morgantown, West Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Morgantown, West Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.629526, -79.9558968 Show Map Loading map... "minzoom":false,"mapp...

  17. NETL Researcher Honored with 2013 Federal Laboratory Award Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Award Morgantown, W.Va. - Dr. Stephen E. Zitney of the National Energy Technology Laboratory (NETL) has been awarded a Mid-Atlantic region Federal Laboratory Consortium (FLC) award...

  18. Category:Elkins, WV | Open Energy Information

    Open Energy Info (EERE)

    16 files are in this category, out of 16 total. SVFullServiceRestaurant Elkins WV Harrison Rural Elec Assn Inc.png SVFullServiceRestauran... 59 KB SVQuickServiceRestaurant...

  19. DOE - Office of Legacy Management -- Reduction Pilot Plant - WV 01

    Office of Legacy Management (LM)

    Reduction Pilot Plant - WV 01 FUSRAP Considered Sites Site: REDUCTION PILOT PLANT (WV.01 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: International Nickel Company WV.01-1 Location: Cole Street at Alterizer Ave. , Huntington , West Virginia WV.01-2 Evaluation Year: 1987 WV.01-1 Site Operations: Manufactured powdered Nickel for use at Paducah and Portsmouth gaseous diffusion plants and Nickel plated a small quantity of Uranium slugs. WV.01-2

  20. West Virginia Smart Grid Implementation Plan (WV SGIP) Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WV DoE-NRCCE-APERC DRAFT February 16, 2009 1 West Virginia Smart Grid Implementation Plan (WV SGIP) Project APERC Report on Customer Complaints to WV PSC about Electric Power Service Ali Feliachi, Muhammad Choudhry, John Saymansky and Ed Sneckenberger February 16, 2009 Introduction APERC has appreciated that one of the most important sources for data on the consumer perspective of the current electric power grid in West Virginia would be the WV Public Service Commission (WV PSC). Thus, an email

  1. ARM - Campaign Instrument - mfrsr-wv1mich

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mich Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : MFRSR-WV-Michalsky1 (MFRSR-WV1MICH) Instrument...

  2. DOE - Office of Legacy Management -- Food Machinery and Chemical Co - WV 04

    Office of Legacy Management (LM)

    Food Machinery and Chemical Co - WV 04 FUSRAP Considered Sites Site: Food Machinery and Chemical Co. (WV.04 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Food Machining Corp WV.04-1 Location: Nitro , West Virginia WV.04-1 Evaluation Year: 1994 WV.04-1 Site Operations: Proposed research and development on treatment of calcium and aluminum phosphate materials to extract uranium. WV.04-2 WV.04-3 Site Disposition: Eliminated - Operations were

  3. ARM - Campaign Instrument - mfrsr-wv1barn

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    barn Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : MFRSR Water-Vapor Barnard Algorithm (MFRSR-WV1BARN)...

  4. West Virginia Smart Grid Implementation Plan (WV SGIP) Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    before and after Smart Grid Projected Total Complaints after Smart Grid A 'Business Case' model has been developed as part of the WV SGIP Project. This electric power grid model...

  5. DOE - Office of Legacy Management -- The Carborundum Co Inc - WV 02

    Office of Legacy Management (LM)

    - WV 02 FUSRAP Considered Sites Site: THE CARBORUNDUM CO., INC (WV.02 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: AMAX Inc WV.02-1 Location: Wood County , West Virginia WV.02-1 Evaluation Year: 1982 WV.02-1 Site Operations: Produced high-grade Zirconium metal for use in construction of nuclear reactors for the Navy circa late-1950s and 1960s; Conducted small scale Zirconium and Uranium testing in the mid-1970s. WV.02-2 Site Disposition:

  6. West Virginia Smart Grid Implementation Plan (WV SGIP) Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    West Virginia Smart Grid Implementation Plan (WV SGIP) Project APERC Report on Assessment of As-Is Grid by Non-Utility Stakeholders Introduction One goal of this grid modernization project is to assess the current status of the electric power grid in West Virginia in order to define the potential to implement smart grid technologies. Thus, an initial task of this project was to define the current state or "As-Is" grid in West Virginia. Financial and time constraints prohibited the

  7. Other Participants 1994 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    School , Alhambra , CA Mayfield High School , Las Cruces , NM Mississippi School for Math & Science, Columbus , MS Morgantown High School , Morgantown , WV Newton North High ...

  8. SBOT WEST VIRGINIA NATIONAL ENERGY TECHNOLOGY LAB -WV POC Larry Sullivan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WEST VIRGINIA NATIONAL ENERGY TECHNOLOGY LAB -WV POC Larry Sullivan Telephone (412) 386-6115 Email larry.sullivan@netl.doe.gov ADMINISTATIVE / WASTE / REMEDIATION Facilities Support Services 561210 Employment Placement Agencies 561311 Temporary Help Services 561320 Professional Employer Organizations 561330 Document Preparation Services 561410 Security Guards and Patrol Services 561612 Security Systems Services (except Locksmiths) 561621 Janitorial Services 561720 Landscaping Services 561730

  9. U.S. Department of Energy 2012 Annual Inspection - Parkersburg, WV

    Office of Legacy Management (LM)

    Parkersburg, WV November 2012 Page 1 2012 Annual Inspection Report for the Parkersburg, West Virginia, Disposal Site 1.0 Compliance Summary The Parkersburg, West Virginia, Nuclear Waste Policy Act Section 151(c) Disposal Site was inspected on October 16, 2012. The disposal cell was in excellent condition. No evidence of erosion or slope instability on the disposal cell was noted during the inspection. A follow-up or contingency inspection is not required. During the 2011 inspection it was

  10. If you reside in WASHINGTON, DC - MD -VA- WV your salary will range from:

    National Nuclear Security Administration (NNSA)

    If you are employed in the WASHINGTON, DC Metropolitan Area (D.C., Baltimore, Northern VA, Eastern WV, and Southern PA) your salary will range from: Pay Band Pay Plan(s) Minimum Maximum Developmental EN $49,246 $74,872 01 EK/EJ $34,075 $58,511 02 EK/EJ $51,630 $84,855 03 EK/EJ/EN $74,872 $119,238 04 EK/EJ/EN $105,211 $165,300 05 EK/EJ/EN $148,510 $165,300 If you are employed in OAKLAND/LIVERMORE, CA your salary will range from: Pay Band Pay Plan(s) Minimum Maximum Developmental EN $53,579

  11. NETL Researcher Honored with 2013 Federal Laboratory Award Morgantown, W.Va. - Dr. Stephen E. Zitney of the National Energy Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Award Morgantown, W.Va. - Dr. Stephen E. Zitney of the National Energy Technology Laboratory (NETL) has been awarded a Mid-Atlantic region Federal Laboratory Consortium (FLC) award for Excellence in Technology Transfer for his work on the 3D Virtual Energy Plant Simulator and Immersive Training System. The 3D Virtual Energy Plant Simulator and Immersive Training System (ITS) deployed at NETL's Advanced Virtual Energy Simulation Training and Research (AVESTAR ® ) Center delivers the first

  12. Interdisciplinary: Research General Engineer/Physical Scientist

    Broader source: Energy.gov [DOE]

    *1 Position exists that may be filled at Albany, Oregon or Morgantown, WV. The position is located in the Science & Technology Strategic Plans & Programs (STSPP), Research and Innovation...

  13. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Universi Morgantown, WV FESCCAESD Briggs White Scalable Nano-Scaffold SOFC Anode Architecture Enabling Direct Hydrocarbon Util. Bench-scale lab experiments on solid oxide fuel...

  14. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Pittsburgh, PA, and Morgantown, WV (United States) National Institute for Petroleum and Energy Research, Bartlesville, OK (United States) National Nuclear Security Administration...

  15. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    (ETEC), Canoga Park, CA (United States) Environmental Measurements Laboratory (EML), New York, NY (United States) Federal Energy Technology Center (FETC), Morgantown, WV, and...

  16. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    PA, and Morgantown, WV (United States) National Institute for Petroleum and Energy Research, Bartlesville, OK (United States) National Nuclear Security Administration...

  17. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Kansas City Site Office (United States) National Energy Technology Laboratory - In-house Research National Energy Technology Laboratory, Pittsburgh, PA, and Morgantown, WV (United...

  18. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    NNSA Kansas City Site Office (United States) National Energy Technology Laboratory - In-house Research National Energy Technology Laboratory, Pittsburgh, PA, and Morgantown, WV...

  19. SciTech Connect:

    Office of Scientific and Technical Information (OSTI)

    Laboratory, Pittsburgh, PA, and Morgantown, WV (United States) National Institute for Petroleum and Energy Research, Bartlesville, OK (United States) National Nuclear Security...

  20. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Environmental Measurements Laboratory (EML), New York, NY (United States) Federal Energy Technology Center (FETC), Morgantown, WV, and Pittsburgh, PA (United States) Fermi...

  1. Computational fluid dynamics assessment: Volume 1, Computer simulations of the METC (Morgantown Energy Technology Center) entrained-flow gasifier: Final report

    SciTech Connect (OSTI)

    Celik, I.; Chattree, M.

    1988-07-01

    An assessment of the theoretical and numerical aspects of the computer code, PCGC-2, is made; and the results of the application of this code to the Morgantown Energy Technology Center (METC) advanced gasification facility entrained-flow reactor, ''the gasifier,'' are presented. PCGC-2 is a code suitable for simulating pulverized coal combustion or gasification under axisymmetric (two-dimensional) flow conditions. The governing equations for the gas and particulate phase have been reviewed. The numerical procedure and the related programming difficulties have been elucidated. A single-particle model similar to the one used in PCGC-2 has been developed, programmed, and applied to some simple situations in order to gain insight to the physics of coal particle heat-up, devolatilization, and char oxidation processes. PCGC-2 was applied to the METC entrained-flow gasifier to study numerically the flash pyrolysis of coal, and gasification of coal with steam or carbon dioxide. The results from the simulations are compared with measurements. The gas and particle residence times, particle temperature, and mass component history were also calculated and the results were analyzed. The results provide useful information for understanding the fundamentals of coal gasification and for assessment of experimental results performed using the reactor considered. 69 refs., 35 figs., 23 tabs.

  2. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complexity and Choice of Model Approaches for Practical Simulations of CO2 Injection, Migration, Leakage, and Long-term Fate Introduction The overall goal of the Department of...

  3. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    routes responsible for the observed catalytic effects. Such efforts will allow for the optimization of plasma systems so that they may be incorporated into a broad range of...

  4. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between formations through a pathway along the cementearth interface or within the well cement (Figure 1). This three-year project will explore the development of a low-cost...

  5. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... the methane hydrate projects (which are described ... form and Trans Alaska Pipeline System (TAPS) Oil production from known ... depend on world oil prices and operating costs, ...

  6. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... concerns: (1) Pipeline Inspection and Repair Technologies, (2) Novel Sensors and Controls, and (3) Advanced Pipeline Materials. There are no on-going projects is this element. ...

  7. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Project objectives are: * Reduce the risk of large scale demonstration projects * Improve scientific exploration and strengthen a working relationship in CCS between China and the ...

  8. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... in the injection zone(s); (3) improving efficiency of storage operations; and (4) ... construct cross sections and structure contour and isopach maps in order to characterize ...

  9. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Laboratory (NETL) and Oak Ridge National Laboratory (ORNL) will expand the lessons learned at the Frio Brine Pilot (as part of the GEO-SEQ project) to prepare a...

  10. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Act (ARRA) of 2009, to conduct geologic sequestration training and support funda- mental research projects for graduate and undergraduate students throughout the United...

  11. Albany, OR * Fairbanks, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    run at the Eastman Chemical Company's Kingsport, TN, site; at Tampa Electric Company's Polk Power Station in Lakeland, FL; and at the Wabash River Power Station in Terre Haute,...

  12. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are an important target for studies seeking to positively affect both the efficiency and environmental impact of U.S. energy production. The diversity of available sources for...

  13. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gained from RCSP large-scale field projects- particularly from the Southeast Regional Carbon Sequestration Partnership (SECARB) to address knowledge gaps in the design and...

  14. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fractures have been alleged in some situations to induce seismic activity that may cause a public nuisance or property damage. While the recent NAS report on...

  15. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    l , optical, magnetic, and or catalytic properties. Efforts will also focus on assessing graphene for high temperature sensor applications. The novel control system research...

  16. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Simulation Tools to Improve Predictions and Performance of Geologic Storage: Coupled Modeling of Fault Poromechanics, and High-Resolution Simulation of CO2 Migration and...

  17. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shrink, depending on the specific adsorbedabsorbed gas. In turn, this can affect permeability and porosity (flow properties), depending on the amount of sorptiondesorption. If...

  18. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    results in decreased ultrasonic P- and S-wave velocities and increased porosity and permeability. Initial measurements on carbonate samples reveal as much as 30% decrease in...

  19. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    content; proportion of soft, deformable mineral grains to rigid grains; cementation; organic matter content; carbonate content; PROJECT DURATION Start Date 12012009 End Date...

  20. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to measure subtle surface displacements), seismology, and geochemistry in a straightforward series of procedures and algorithms, and assess the cost and efficacy of these...

  1. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Verification, Accounting (MVA) and Assessment, (3) CO 2 Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Area for Sequestration Science....

  2. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Verification, Accounting (MVA) and Assessment, (3) CO2 Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Area for Sequestration Science....

  3. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simplified Predictive Models for CO2 Sequestration Performance Assessment Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and...

  4. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Recent courses provided by the PTTC included a two-hour mini short course on the business model behind carbon capture and CO2 flooding, an overview of understanding...

  5. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessing Reservoir Depositional Environments to Develop and Quantify Improvements in CO2 Storage Efficiency: A Reservoir Simulation Approach Background The overall goal of the...

  6. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Advanced Joint Inversion System for CO2 Storage Modeling with Large Date Sets for Characterization and Real- Time Monitoring - Enhancing Storage Performance and Reducing Failure...

  7. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactive Transport Models with Geomechanics to Mitigate Risks of CO2 Utilization and Storage Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program...

  8. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    field located in Mobile County, Alabama, to determine the diagenetic (physical, chemical, and biological) alteration of reservoir rock and formation fluid properties due...

  9. Interdisciplinary: Research General Engineer/Physical Scientist

    Broader source: Energy.gov [DOE]

    *1 Position exists that may be filled at Morgantown, WV or Pittsburgh, PA. This position is located in the Energy Process Innovation Division of the Office of Research and Development (ORD). The...

  10. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Not Yet Assigned NETLSOD FE SOD 2012 Oct. 2012 - June 2013 Ben Smith (COR) Morgantown, WV B-22A Renovation Renovation will provide new HVAC, roofing, insulation, level concrete...

  11. QER- Comment of Richard Bajura

    Broader source: Energy.gov [DOE]

    Is there a registration process for the meeting? I plan to attend. RAB Richard A. Bajura Director, National Research Center for Coal and Energy 385 Evansdale Drive, West Virginia University Morgantown, WV 26506-6064 Office: 304-293-6034

  12. Interdisciplinary: Research General Engineer/Physical Scientist

    Broader source: Energy.gov [DOE]

    *1 Position exists that may be filled at Morgantown, WV or Albany, OR. This position is located in the Thermal Sciences Division (TSD). The TSD develops experimental techniques and data for the...

  13. Energy Secretary Bodman Heads to West Virginia to Promote Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In Belle, WV, Secretary Bodman joined U.S. Congresswoman Shelley Moore Capito for a tour of the Kanawha River Terminal, before going on to West Virginia University in Morgantown. ...

  14. Interdisciplinary: Chemical Engineer/ Mechanical Engineer/Materials Engineer (Pathways Recent Graduate Program)

    Broader source: Energy.gov [DOE]

    There are two vacancies that may be filled at either Albany, OR; Pittsburgh, PA or Morgantown, WV. This is a Recent Graduate position in the Pathways Program. The program duration is one year and...

  15. Carbon Capture and Storage Forum Round-Up | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rockefeller. CCS http:twitpic.com2mhn23 Secretary Chu taking the stage now, fresh from his trip to NETL in Morgantown, WV. CCS Univ. of Charleston President Welch is in the ...

  16. PES-v10

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Embedded Communication Network Simulator for Power Systems Simulations in PSCAD Neda Nasiriani, Roopa Ramachandran,Kaveh Rahimi Yaser P. Fallah, Parviz Famouri Lane Dept. of Computer Science & Electrical Engineering West Virginia University Morgantown, WV, USA Steve Bossart, Keith Dodrill US Department of Energy, National Energy Technology Laboratory (NETL) Morgantown, WV, USA Abstract-The emergence of distributed communication based control schemes in power systems emphasizes the need

  17. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27 WVU Morgantown, WV CONSOL Energy, Inc. (Marshall Co., WV and Washington Co., PA), Rosebud Mining Company (Cambria and Armstrong Co., PA), WV Dept of Env. Protection (Preston Co., WV), and Mepco, LLC (Greene Co., PA) FE/SCC/Crosscutting Research Div Jessica Mullen Recovery of Rare Earth Elements (REEs) from Coal Mine Drainage The overall obj. of Phase I is to develop a cost-effective and environmentally benign process to treat and recover REEs from sludges generated during treatment of acidic

  18. Property | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Property NETL 16-02 MIXED SCRAP METAL U.S. DOE/NETL/Albany, OR BID OPENING: February 16, 2016 10:00 A.M. ET Local Prevailing Time. U.S. Department of Energy / National Energy Technology Laboratory/Morgantown 3610 Collins Ferry Road, Morgantown WV 26507 Francis Burke (304) 285-4535 See attached flyer for more details NETL 16-02

  19. Mr. Carl Schafer Director of Environmental Policy

    Office of Legacy Management (LM)

    .., ;: i' ., . '" ._~ .> DEPARTMENT OF THE Installation/Facility 1. Alabama Ordnance Works Sylacauga, AL ;' 2. Morgantown Ordnance Works Morgantown, WV 3. Naval Office - University of New Mexico Albuquerque, NM ,A 4. Naval Ordnance Laboratory White Oak Silver Spring, MD 5. Navy Yard Mare Island, CA DEFENSE INSTALLATIONS/FACILITIES MED/AEC Activity A heavy water (P9) plantwas constructed and operated on this installation from January j 1944 to June 1945. No residual radioactive L+*

  20. Mr. Carl Schafer Director of Environmental Policy

    Office of Legacy Management (LM)

    .., ;: i' ., . '" ._~ .> DEPARTMENT OF THE Installation/Facility 1. Alabama Ordnance Works Sylacauga, AL ;' 2. Morgantown Ordnance Works Morgantown, WV 3. Naval Office - University of New Mexico Albuquerque, NM ,A 4. Naval Ordnance Laboratory White Oak Silver Spring, MD 5. Navy Yard Mare Island, CA DEFENSE INSTALLATIONS/FACILITIES MED/AEC Activity A heavy water (P9) plantwas constructed and operated on this installation from January j 1944 to June 1945. No residual radioactive L+*

  1. NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Allen Lichvar FE GPP Projects M5,M12,M13, and M21 Site Operations Division 2011 - 2012 Allen Lichvar 1 Jul 2011 - 31 Sep 2012 US DOE NETL Morgantown, Morgantown, WV Evaluation, Design, and Replacement of Fluid Services at NETL Morgantown Evaluate, design and replace as needed: Process cooling water tower and piping, air and nitrogen distribution piping, steam and condensate distribution system, and B-33 steam heat/return system. 05 20 2011 Allen Lichvar Digitally signed by Allen Lichvar DN:

  2. Evaluation of Wall Boundary Condition Parameters for Gas-Solids

    Office of Scientific and Technical Information (OSTI)

    Evaluation of Wall Boundary Condition Parameters for Gas-Solids Fluidized-Bed Simulations Tingwen Li 1,2 , Sofiane Benyahia 1 1. National Energy Technology Laboratory, U.S. Department of Energy, Morgantown, WV 26507, U.S.A. 2. URS Corporation, Morgantown, WV 26505, U.S.A. Abstract Wall boundary conditions for the solids phase have significant effects on numerical predictions of various gas-solids fluidized beds. Several models for the granular flow wall boundary condition are available in the

  3. Midwest Regional Carbon Sequestration Partnership-Validation Phase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Dawn Deel Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4133 dawn.deel@netl.doe.gov Darrell Paul Project Manager Midwest Regional Carbon Sequestration Project Battelle 505 King Avenue Columbus, OH 43201 614-424-5890 paul@battelle.org PARTNERS AJW Inc. American

  4. EA-0575: Fundamental Fluidization Research Project, Morgantown, West Virginia

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to design, construct, and operate a 2-foot diameter, 50-foot high pressurized fluidization with particular emphasis on operation in the...

  5. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    035 University of Kentucky Lexington, KY Virginia Tech: Blacksburg,VA; West Virginia University: Morgantown,WV; Eriez Manufacturing: Erie,PA; Blackhawk Mining: Leatherwood,KY; Arch Coal: St.Charles,WV; Arch Coal: Grafton,WV FE/TDIC/Coal/ETP Charles Miller Pilot-Scale Testing of an Integrated Circuit for the Extraction of Rare Earth... This Phase 1 project will include sampling and characterization of REE-bearing feedstocks, bench-scale testing, feasibility study, a system design, and a Renewal

  6. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0507 NETL Morgantown, WV Project is located at NETL Morgantown, Building 4. FE/RIC/ECE/TS Team Donald H. Ferguson Low-Pressure Development Combustor Facility to study lean, pre-mixed combustion (LPC) at near-atmospheric pressure to support gas turbine engines developed by the Advanced Turbine Systems (ATS) program. Includes Polymer, 3D print facility. DONALD FERGUSON Digitally signed by DONALD FERGUSON DN: c=US, o=U.S. Government, ou=Department of Energy, cn=DONALD FERGUSON,

  7. Microsoft PowerPoint - WV SGIP 101810 rev1.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virginia Smart Grid Implementation Plan - Roadmap Framework ... by the Department of Energy under Award Number DE AC26 ... Business 5 Consumer Conservation 20 Operational Savings ...

  8. Argus Energy WV, LLC wins 2007 Wetlands West Virginia Award

    SciTech Connect (OSTI)

    2007-07-15

    Argus Energy's Kiah Creek Operation has received the 2007 Wetlands West Virginia Award presented by the West Virginian Coal Association. The operation was originally a 1267 acre underground mine in the Coalburg seam. Underground mining commenced in 2000 until the end of 2003 with more than two million tons of coal being produced. The creation of the wetlands was achieved during the operations. 8 photos.

  9. Microsoft PowerPoint - WV SGIP 101810 rev1.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virginia Smart Grid Implementation Plan - Roadmap Framework GridWeek 2010 Steve Pullins October 18, 2010, Washington, DC This material is based upon work supported by the Department of Energy under Award Number DE AC26 04NT41817 Number DE-AC26-04NT41817 This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States g y Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or

  10. West Virginia Smart Grid Implementation Plan (WV SGIP) Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... discussed, considering AMI (Advanced Metering Infrastructure), little or no DR (Demand Response) in place (none using smart meters), consumers questioning value of Smart Grid ...

  11. WVU Hydrogen Fuel Dispensing Station

    SciTech Connect (OSTI)

    Davis, William

    2015-09-01

    The scope of this project was changed during the course of the project. Phase I of the project was to construct a site similar to the site at Central West Virginia Regional Airport in Charleston, WV to show that duplication of the site was a feasible method of conducting hydrogen stations. Phase II of the project was necessitated due to a lack of funding that was planned for the development of the station in Morgantown. The US Department of Energy determined that the station in Charleston would be dismantled and moved to Morgantown and reassembled at the Morgantown site. This necessitated storage of the components of the station for almost a year at the NAFTC Headquarters which caused a number of issues with the equipment that will be discussed in later portions of this report. This report will consist of PHASE I and PHASE II with discussions on each of the tasks scheduled for each phase of the project.

  12. Slide 1

    Office of Scientific and Technical Information (OSTI)

    Rapid Field Measurement of Dissolved Inorganic Carbon Based on CO 2 Analysis VESPER, DJ 1 , EDENBORN, HM 2 (1) Dept. of Geology and Geography, West Virginia University, Morgantown, WV 26506, (2) Geosciences Division, National Energy Technology Lab; U.S. Department of Energy, P.O. Box 10940, Pittsburgh, PA 15236. Paper #210840 Dissolved inorganic carbon (DIC) is commonly measured in water and is an important parameter for understanding carbonate equilibrium, carbon cycling, and water-rock

  13. TITLE PAGE

    Office of Scientific and Technical Information (OSTI)

    October 1, 2004 Reporting Period End Date: March 31, 2005 Principal Authors: Douglas G. Patchen, Katharine Lee Avary, John M. Bocan, Michael Hohn, John B. Hickman, Paul D. Lake, James A. Drahovzal, Christopher D. Laughrey, Jaime Kostelnik, Taury Smith, Ron Riley and Mark Baranoski April 2005 DOE Award Number: DE-FC26-03NT41856 West Virginia University Research Corporation P.O. Box 6845, Morgantown, WV 26506-6845 University of Kentucky Research Foundation 109 Kinkead Hall, Lexington, KY

  14. DOE Announces Winners of Annual University Coal Research Grants |

    Energy Savers [EERE]

    Department of Energy Annual University Coal Research Grants DOE Announces Winners of Annual University Coal Research Grants July 7, 2005 - 2:06pm Addthis Funding to Support Continued Research in Clean Coal Technology MORGANTOWN, WV -- Secretary of Energy Samuel Bodman today announced $3 million in funding under the University Coal Research Program (UCR), the department's longest-running student-teacher research grant initiative. Secretary Bodman made the announcement while visiting West

  15. mfs | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mfs NETL 2009 Workshop on Multiphase Flow Science Euro-Suites Hotel, Morgantown, WV April 22-23, 2009 Table of Contents Disclaimer Presentations PRESENTATIONS Kinetic Theory of Polydisperse Granular Flows and Validation Data Christine Hrenya, Colorado University Quadrature-Based Moment Methods for Polydisperse Gas-Solid Flows Rodney Fox, Iowa State University Fluid-Particle Drag Force in Bidisperse Suspensions Sankaran Sundaresan, Princeton University Modeling Particle-Fluid Momentum Transfer in

  16. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DE-FE0027069 University of Wyoming Laramie, WY West Virginia Research Corp., Morgantown, WV and Rochester Institute of Technology, Rochester, NY FE/TDIC/Coal/ETAP Vito Cedro III A Pollution Prevention and Economically Viable Technology for Separation of Rare Develop a new pollution-avoiding and cost-effective technology with enhanced performance and easy scalability for recovering high-value Rare Earth Elements (REEs) from Powder River Basin (PRB) coal as PHASE ONE Vito Cedro III Digitally

  17. Jie Feng | Center for Gas SeparationsRelevant to Clean Energy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Blandine Jerome Jie Feng Previous Next List Feng ORISE Research Associate National Energy Technology Laboratory, Morgantown, WV Email: jie.feng[@]netl.doe.gov Phone: 716-361-9078 PhD in Chemical and Biological Engineering, State University of New York at Buffalo BS in Chemical Engineering, Nanchang Institute of Aeronautical Technology, China EFRC Research Membrane gas separation has been under development for 30 years and has achieved significant progress. It is extremely important to

  18. DOE-Sponsored Project to Study Shale Gas Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Study Shale Gas Production DOE-Sponsored Project to Study Shale Gas Production June 26, 2015 - 8:55am Addthis The Department of Energy's National Energy Technology Laboratory (NETL) and its partners, West Virginia University (WVU), Northeast Natural Energy (NNE), and The Ohio State University, are moving forward on a project to monitor the process and progress of unconventional gas production at a Marcellus Shale well near Morgantown, WV. The Marcellus Shale Energy and Environmental

  19. [SITE NAME] Fact Sheet

    Broader source: Energy.gov (indexed) [DOE]

    Morgantown, WV Grand Junction, CO Fernald, OH Westminster, CO Washington, DC This fact sheet provides information about the U.S. Department of Energy Office of Legacy Management public outreach principles and approaches. What Is the Office of Legacy Management? The U.S. Department of Energy (DOE) established the Offce of Legacy Management (LM) in December 2003 to manage DOE's post-closure responsibilities and to ensure the future protection of human health and the environment at more than 100

  20. NETL AFGE 1104 | Department of Energy

    Office of Environmental Management (EM)

    104 NETL AFGE 1104 NETL AFGE 1104 The National Energy Technology Laboratory (NETL) is a U.S. Department of Energy national laboratory that produces technological solutions to America's energy challenges. For more than 100 years, the laboratory has developed tools and processes to provide clean, reliable, and affordable energy to the American people. NETL has three primary site locations: Albany, OR; Pittsburgh, PA; and Morgantown, WV. Of the 15 locally recognized units within the Department,

  1. NETL AFGE 1995 | Department of Energy

    Office of Environmental Management (EM)

    995 NETL AFGE 1995 NETL AFGE 1995 The National Energy Technology Laboratory (NETL) is a U.S. Department of Energy national laboratory that produces technological solutions to America's energy challenges. For more than 100 years, the laboratory has developed tools and processes to provide clean, reliable, and affordable energy to the American people. NETL has three primary site locations: Albany, OR; Pittsburgh, PA; and Morgantown, WV. Of the 15 locally recognized units within the Department,

  2. Microsoft Word - S12552_2014_Annual_LUC_Report_elh.docx

    Office of Legacy Management (LM)

    Land-Use Covenant Inspection Report for DOE Areas at the Laboratory for Energy-Related Health Research/Old Campus Landfill Superfund Site University of California, Davis January 2015 LMS/LEH/S12552 This page intentionally left blank REPORT DISTRIBUTION John Bystra State of California Department of Toxic Substances Control 8800 Cal Center Drive Sacramento, CA 95826 Cliff Carpenter U. S. Department of Energy Office of Legacy Management 99 Research Park Road Morgantown, WV 26505 Sue Fields

  3. Production of Butyric Acid and Butanol from Biomass

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Production of Butyric Acid and Butanol from Biomass Final Report Work Performed Under: Contract No.: DE-F-G02-00ER86106 For: U.S. Department of Energy Morgantown, WV By David Ramey Environmental Energy Inc. 1253 N. Waggoner Road P.O. Box 15 Blacklick, Ohio 43004 And Shang-Tian Yang Department of Chemical and Biomolecular Engineering The Ohio State University 140 West 19 th Avenue Columbus, Ohio 43210 - 2004 - Table of Contents Page Proposal Face Page

  4. Topical report to Morgantown Energy Technology Center for the interfacial coatings for ceramic-matrix composites

    SciTech Connect (OSTI)

    1997-01-09

    This report summarizes the task conducted to examine various activities on interface development for ceramic-matrix composites (CMCs) intended for high-temperature applications. While several articles have been published on the subject of CMC interfaces, the purpose of this report is to describe the various ongoing efforts on interface concepts, material selection, and issues related to processing methods employed for developing interface coatings. The most exciting and new development in the field is the discovery of monazite as a potential interface material for mullite- and alumina-based composites. Monazite offers two critical properties to the CMC system; a weakly bonded layer due to its non-wetting behavior and chemical compatibility with both alumina and mullite up to very high temperatures (> 1,600 C). A description of the Department of Energy-related activities and some thoughts on processing issues, interface testing, and effects of processing on fiber strength are given.

  5. Big Sky Regional Carbon Sequestration Partnership--Validation Phase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov William Aljoe Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6569 william.aljoe@netl.doe.gov Leslie L. Schmidt Business Contact Montana State University-Bozeman 309 Montana Hall Bozeman, MT 59717-2470 406-994-2381 lschmidt@montana.edu Lee Spangler Technical

  6. Decontamination systems information and research program. Quarterly report, April--June 1995

    SciTech Connect (OSTI)

    1995-07-01

    West Virginia University (WVU) and the US Department of Energy Morgantown Energy Technology Center (DOE/METC) entered into a Cooperative Agreement on August 29, 1992 titled `Decontamination Systems Information and Research Programs`. Requirements stipulated by the Agreement require WVU to submit Technical Progress reports on a quarterly basis. This report contains the efforts of the fourteen research projects comprising the Agreement for the period April 1 to June 30, 1995. During this period three new projects have been funded by the Agreement. These projects are: (1) WERC National Design Contest, (2) Graduate Interns to the Interagency Environmental Technology Office under the National Science and Technology Council, and (3) WV High Tech Consortium.

  7. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts Contact the members of the REE team. Pictured are a group of members from the NETL Pittsburgh Analytical Laboratory (PAL) and NETL Office of Research and Development (ORD). Mary Anne Alvin Portfolio Manager National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236 Phone: 412-386-5498 E-mail: Maryanne.Alvin@netl.doe.gov John Wimer Chief of Staff, NETL National Energy Technology Laboratory 3610 Collins Ferry Road Morgantown, WV 26507 Phone: 304-285-4124 E-mail:

  8. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Taiwan Power Briefing on the Smart Grid 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Steve Pullins, Modern Grid Strategy Team Morgantown, WV March 20, 2009 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 This material is based upon work supported by the Department of Energy under Award Number DE-AC26- 04NT41817 This presentation was prepared as an account

  9. A Hybrid Gas Cleaning Process for Production of Ultraclean Syngas

    Office of Scientific and Technical Information (OSTI)

    Timothy C. Merkel (Primary Contact) RTI P.O. Box 12194 Research Triangle Park, NC 27709 merkel@rti.org Tel (919) 485-2742 Fax (919) 541-8000 Raghubir P. Gupta RTI P.O. Box 12194 Research Triangle Park, NC 27709 gupta@rti.org Tel (919) 541-8023 Fax (919) 541-8000 Suresh C. Jain U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880 Morgantown, WV 26507 suresh.jain@netl.doe.gov Tel (304) 285-5431 Fax (304) 285-4403 Brian S. Turk RTI P.O. Box 12194 Research Triangle Park, NC

  10. Paleogeographic Setting

    Office of Scientific and Technical Information (OSTI)

    April 1, 2005 Reporting Period End Date: September 30, 2005 Principal Authors: Douglas G. Patchen, Taury Smith, Ron Riley, Mark Baranoski, David Harris, John Hickman, John Bocan and Michael Hohn October 2005 DOE Award Number: DE-FC26-03NT41856 West Virginia University Research Corporation P.O. Box 6845, Morgantown, WV 26506-6845 University of Kentucky Research Foundation 109 Kinkead Hall, Lexington, KY 40506-0057 New York State Museum Institute Room 3140 CEC, Albany, NY 12230 Ohio Division of

  11. Durable Zinc Oxide-Based Regenerable Sorbents for Desulfurization

    Office of Scientific and Technical Information (OSTI)

    Durable Zinc Oxide-Based Regenerable Sorbents for Desulfurization of Syngas in a Fixed-Bed Reactor Ranjani V. Siriwardane 1 *, Daniel C. Cicero 1 , Suresh Jain 1 , Raghubir P. Gupta 2 , and Brian S. Turk 2 1 U.S. Department of Energy, National Energy Technology Laboratory, P.O. Box 880, Morgantown, WV 26507. 2 Research Triangle Institute, P.O. Box 12194, Research Triangle Park, NC 27709-2194 This paper was authored by United States Government employees and under United States law, a transfer of

  12. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TBD TBD NETL: Morgantown, WV N/A FE/Facility Operations/Eng. & Fac. Dean Stobbe MERC-1 Natural Gas Well Closure The existing gas well behind B-19 will be closed following all federal and local standards by a turn key gas well company. B5.2 Modifications to Pumps and Piping B5.12 Workover of Existing Wells B1.34 - Lead-based Paint Containment, Removal, and Disposal dean stobbe Digitally signed by dean stobbe DN: cn=dean stobbe, o, ou, email=dean.stobbe@netl.doe.gov, c=US Date: 2015.10.28

  13. Microsoft Word - S04902_LetterReport Cover Letter.doc

    Office of Legacy Management (LM)

    Task Order LM00-502 Control Number 09-0301 December 15, 2008 U.S. Department of Energy Office of Legacy Management ATTN: Jack Craig Site Manager 3600 Collins Ferry Road Morgantown, WV 26505 SUBJECT: Rulison Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2008 Dear Mr. Craig: The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rulison, Colorado site, for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 12, and 13,

  14. Microsoft Word - S05988_2009RioLTHMPResults.doc

    Office of Legacy Management (LM)

    RBL/S05988 Task Order LM00-502 Control Number 10-0237 December 21, 2009 U.S. Department of Energy Office of Legacy Management ATTN: Jack Craig Site Manager 99 Research Park Road Morgantown, WV 26505 SUBJECT: Rio Blanco, Colorado, Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2009 Dear Mr. Craig: The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rio Blanco, Colorado, Site, for the Long-Term Hydrologic Monitoring Program

  15. Microsoft Word - S06010_Ltr.doc

    Office of Legacy Management (LM)

    6010 Task Order LM00-502 Control Number 10-0184 January 21, 2010 U.S. Department of Energy Office of Legacy Management ATTN: Jack Craig Site Manager 3600 Collins Ferry Road Morgantown, WV 26505 SUBJECT: Rulison Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2009 Dear Mr. Craig: The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rulison, Colorado, Site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 11 and 12,

  16. File:EIA-Appalach6-WV-VA-GAS.pdf | Open Energy Information

    Open Energy Info (EERE)

    Southern West Virginia and Southwestern Virginia By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F....

  17. File:EIA-Appalach5-eastWV-GAS.pdf | Open Energy Information

    Open Energy Info (EERE)

    Basin, Eastern West Virginia and Western Maryland By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F....

  18. File:EIA-Appalach6-WV-VA-BOE.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  19. File:EIA-Appalach5-eastWV-LIQ.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  20. File:EIA-Appalach6-WV-VA-LIQ.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  1. File:EIA-Appalach5-eastWV-BOE.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  2. If you reside in WASHINGTON, DC - MD -VA - WV your salary will...

    National Nuclear Security Administration (NNSA)

    Minimum Maximum Developmental EN 53,579 81,460 01 EKEJ 37,073 63,660 02 EKEJ 56,172 92,321 03 EKEJEN 81,460 129,729 04 EKEJEN 114,468 165,300 05 EKEJEN...

  3. Obama Administration Announces Additional $14,003,800 for Local...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... WV Wheeling City 137,800 WV Berkeley County 329,600 WV Cabell County 206,900 WV Harrison County 219,100 WV Jefferson County 207,900 WV Kanawha County 583,400 WV Mercer ...

  4. Feasibility study of wood-fired cogeneration at a Wood Products Industrial Park, Belington, WV. Phase II

    SciTech Connect (OSTI)

    Vasenda, S.K.; Hassler, C.C.

    1992-06-01

    Customarily, electricity is generated in a utility power plant while thermal energy is generated in a heating/cooling plant; the electricity produced at the power plant is transmitted to the heating/cooling plant to power equipments. These two separate systems waste vast amounts of heat and result in individual efficiencies of about 35%. Cogeneration is the sequential production of power (electrical or mechanical) and thermal energy (process steam, hot/chilled water) from a single power source; the reject heat of one process issued as input into the subsequent process. Cogeneration increases the efficiency of these stand-alone systems by producing these two products sequentially at one location using a small additional amount of fuel, rendering the system efficiency greater than 70%. This report discusses cogeneration technologies as applied to wood fuel fired system.

  5. VA VT CT RI MT WY CO ID UT OR NV CA AZ NM WA TN WV NC AR OK

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 1 Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects NH 32 Awards Support Projects in 24 States 6 11 MA...

  6. VA VT CT RI MT WY CO ID UT OR NV CA AZ NM WA TN WV NC AR OK

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 1 Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects NH 32 Awards Support Projects in 24 States 6 11 MA

  7. VA VT CT RI MT WY CO ID UT OR NV CA AZ NM WA TN WV NC AR OK

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 1 Smart Grid Demonstration Project Locations NH MA 16 Awards Support Projects in 21 States

  8. VA VT CT RI MT WY CO ID UT OR NV CA AZ NM WA TN WV NC AR OK

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 2 1 Energy Storage Demonstration Project Locations NH 16 Awards Support Projects in 9 States MA

  9. Microsoft PowerPoint - How To Do Business with DOE Charleston WV Nov 14 2011 BOS.pptx

    Office of Environmental Management (EM)

    Office of Small and Disadvantaged Business Utilization (OSDBU) Presenter: Nickolas A. Demer Senior Procurement Analyst Business Opportunities Session Charleston, West Virginia November 14, 2011 EVOLUTION OF DOE EVOLUTION OF DOE EVOLUTION OF DOE EVOLUTION OF DOE Manhattan Project - August 1941 - Development of nuclear energy warheads Atomic Energy Act of 1946 - Established the Atomic Energy Commission (AEC) - Established the Atomic Energy Commission (AEC) - Civilian control of atomic energy

  10. Preliminary effects of Marcellus shale drilling on Louisiana waterthrush in West Virginia

    SciTech Connect (OSTI)

    Becker, D.; Sheehan, J.; Wood, P.B.; Edenborn, H.M.

    2011-01-01

    Preliminary effects of Marcellus shale drilling on Louisiana Waterthrush in West Virginia Page 1 of 1 Doug Becker and James Sheehan, WV Cooperative Fish and Wildlife Research Unit, West Virginia Univ., Morgantown, WV 26506, USA; Petra Bohall Wood, U.S. Geological Survey, WV Cooperative Fish and Wildlife Research Unit, West Virginia Univ., Morgantown, WV 26506, USA; Harry Edenborn, National Energy Technology Laboratory, U.S. Department of Energy, Pittsburgh, PA 15236, USA. Spurred by technological advances and high energy prices, extraction of natural gas from Marcellus shale is increasing in the Appalachian Region. Because little is known about effects on wildlife populations, we studied immediate impacts of oil and gas CO&G) extraction on demographics and relative abundance of Louisiana Waterthrush'CLOWA), a riparian obligate species, to establish a baseline for potential future changes. Annually in 2008-2010, we conducted point counts, monitored Mayfield nesting success, spotted-mapped territories, and measured habitat quality using the EPA Rapid Bioassessment protocol for high gradient streams and a LOWA Habitat Suitability Index CHSI) on a 4,100 ha study area in northern West Virginia. On 11 streams, the stream length affected by O&G activities was 0-58%. Relative abundance, territory denSity, and nest success varied annually but were not significantly different across years. Success did not differ between impacted and unimpacted nests, but territory density had minimal correlation with percent of stream impacted by O&G activities. Impacted nests had lower HSI values in 2010 and lower EPA indices in 2009. High site fidelity could mask the immediate impacts of habitat disturbance from drilling as we measured return rates of 57%. All returning individuals were on the same stream they were banded and 88% were within 250 m of their territory from the previous year. We also observed a spatial shift in LOWA territories, perhaps in response to drilling activities. Preliminary results identified few differences at low habitat disturbance levels but highlight the need for continued monitoring with increasing disturbance. file:

  11. CX-001796: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Morgantown Radio Frequency UpgradeCX(s) Applied: B1.7Date: 04/20/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  12. USAJobs Search | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Morgantown, West Virginia (1) Apply Morgantown, West Virginia filter Filter by salary: 70,192.00 - 108,507.00 Remove 70,192.00 - 108,507.00 filter Filter by work...

  13. USAJobs Search | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    locations: Morgantown, West Virginia Remove Morgantown, West Virginia filter Filter by salary: 70,192.00 - 108,507.00 (1) Apply 70,192.00 - 108,507.00 filter 83,468.00 -...

  14. Excerpts of Energy Secretary Ernest Moniz's Remarks at National Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Laboratory in Morgantown | Department of Energy Excerpts of Energy Secretary Ernest Moniz's Remarks at National Energy Technology Laboratory in Morgantown Excerpts of Energy Secretary Ernest Moniz's Remarks at National Energy Technology Laboratory in Morgantown July 29, 2013 - 8:00am Addthis News Media Contact (202) 586-4940 WASHINGTON - On Monday, July 29, 2013, Secretary Moniz will visit the National Energy Technology Laboratory (NETL) in Morgantown, W. Va. Moniz will tour the

  15. Slide 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Support Facility, Morgantown Alliant Enterprises JV, LLC Small Business Information Technology Operations & Maintenance Support Services (ITOMS) Leonardo Technologies, Inc. ...

  16. HIGH PRESSURE COAL COMBUSTION KINETICS PROJECT

    SciTech Connect (OSTI)

    Chris Guenther; Bill Rogers

    2001-09-15

    The HPCCK project was initiated with a kickoff meeting held on June 12, 2001 in Morgantown, WV, which was attended by all project participants. SRI's existing g-RCFR reactor was reconfigured to a SRT-RCFR geometry (Task 1.1). This new design is suitable for performing the NBFZ experiments of Task 1.2. It was decided that the SRT-RCFR apparatus could be modified and used for the HPBO experiments. The purchase, assembly, and testing of required instrumentation and hardware is nearly complete (Task 1.1 and 1.2). Initial samples of PBR coal have been shipped from FWC to SRI (Task 1.1). The ECT device for coal flow measurements used at FWC will not be used in the SRI apparatus and a screw type feeder has been suggested instead (Task 5.1). NEA has completed a upgrade of an existing Fluent simulator for SRI's RCFR to a version that is suitable for interpreting results from tests in the NBFZ configuration (Task 1.3) this upgrade includes finite-rate submodels for devolatilization, secondary volatiles pyrolysis, volatiles combustion, and char oxidation. Plans for an enhanced version of CBK have been discussed and development of this enhanced version has begun (Task 2.5). A developmental framework for implementing pressure and oxygen effects on ash formation in an ash formation model (Task 3.3) has begun.

  17. Characterization of Phase and Emulsion Behavior, Surfactant Retention, and Oil Recovery for Novel Alcohol Ethoxycarboxylate Surfactants

    SciTech Connect (OSTI)

    Lebone T. Moeti; Ramanathan Sampath

    1998-05-01

    This semi-annual technical progress report describes work performed at Clark Atlanta University under DOE Grant No. DE-FG26-97FT97278 during the period October 01, 1997 to April 01, 1998 which covers the first six months of the project. During this reporting period, laboratory space to set up the surfactant characterization measurement system in the Research Science Center was made available. A Ph.D. student in Chemistry was identified and is supported as a Graduate Research Assistant in this project. Her contribution towards this project will form her Ph.D. thesis. The test matrix to perform salinity and temperature scans was established. Supply requests to obtain refined hydrocarbon, surfactant, and crude were processed and supplies obtained. A temperature bath with a control unit to perform temperature scans was obtained on loan from Federal Energy Technology Center, Morgantown, WV. The setting up of the temperature control unit, and associated chiller with water circulation lines is in progress. Tests were conducted on several hybrid surfactants to identify the best surfactants for future experimental work that yield almost equal volumes of top, middle, and bottom phases when mixed with oil and water. The student reviewed the current literature in the subject area, and modeling efforts that were established in previous studies to predict electrical conductivities and inversion phenomena. These activities resulted in one published conference paper, and one student poster paper during this reporting period.

  18. The NETL Community | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cities in the United States, with world-class health care, education, recreation, and art facilities and a strong business community. Morgantown is home to West Virginia...

  19. Energy Department Announces Student Teams, New Location for Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Southern California (Los Angeles, Calif.) * Vienna University of Technology (Vienna, Austria) * West Virginia University (Morgantown, W. Va.) Follow the progress of Solar ...

  20. Other Participants 2002 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    , Houston , TX Mission San Jose High School , Freemont , CA Mississippi School for Math & Science, Columbus , MS Monta Vista High School , Cupertino , CA Morgantown High ...

  1. Task Cover

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... (Natural Gas) 3,550 FEET NETL Morgantown CNG Fueling Station Other Site Facilities 4321 ... The Contractor shall provide a seamless transfer of responsibility for ongoing and new ...

  2. EA-1837: Finding of No Significant Impact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Finding of No Significant Impact Performance Verification Laboratory, Morgantown, West Virginia Based on the analyses in the environmental assessment, DOE determined that its...

  3. Monongalia County, West Virginia: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Virginia Brookhaven, West Virginia Cassville, West Virginia Cheat Lake, West Virginia Granville, West Virginia Morgantown, West Virginia Star City, West Virginia Westover, West...

  4. 2011-2020 Strategic Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Legacy Management Business Center (LMBC) in Morgantown, West Virginia, received two Leadership in Energy and Environmental Design Gold certifications and is a National Archives ...

  5. DOE Funded Research Projects Win 30 R&D 100 Awards for 2008 ...

    Office of Science (SC) Website

    ... dots, organic fluorophores, single green fluorescent proteins, as they move through ... National Energy Technology Laboratory (Morgantown, W. Va. and Pittsburgh, Pa.) - Two ...

  6. CX-002635: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Conservation Measure (ECM) #2: MERC Well Upgrade, National Energy Technology Laboratory Morgantown, West VirginiaCX(s) Applied: B5.12Date: 06/09/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  7. CX-001327: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Design/Construction/Installation of Appliance Technology Evaluation Center II Laboratories at the National Energy Technology Laboratory Morgantown SiteCX(s) Applied: B1.15, B3.6Date: 03/17/2010Location(s): Morgantown, West VirginiaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  8. CX-001428: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Design/Construction of Performance Verification Laboratory (PVL) at the National Energy Technology Laboratory (NETL) Morgantown SiteCX(s) Applied: A9, A11Date: 04/08/2010Location(s): Morgantown, West VirginiaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  9. CX-001599: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Measure ECM Number 6 Renewable Projects NETL Morgantown, West VirginiaCX(s) Applied: B1.3, B5.1Date: 04/14/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  10. West Virginia Residential Energy Code Field Study

    Broader source: Energy.gov [DOE]

    Lead Performer: Appalachian Residential Consortium for Energy Efficiency (ARCEE), WV Partner: Marshall University’s Center for Business and Energy Research—Huntington, WV

  11. CX-007119: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Zero Discharge Water Management for Horizontal Shale Gas DevelopmentCX(s) Applied: B3.6Date: 10/04/2011Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  12. CX-003427: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Research Ridge 4 and 6 Data and Communication CablingCX(s) Applied: B1.7Date: 08/17/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  13. CX-005335: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    National Energy Technology Laboratory Reciprocating Laboratory DecommissioningCX(s) Applied: B3.6Date: 03/01/2011Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  14. CX-008288: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Decommissioning of the Appliance Testing and Evaluation Center in Morgantown CX(s) Applied: B3.6 Date: 05/01/2012 Location(s): West Virginia Offices(s): National Energy Technology Laboratory

  15. CX-003817: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Appliance Technology Evaluation Center (ATEC)- ModificationCX(s) Applied: B3.6Date: 09/14/2010Location(s): Morgantown, West VirginiaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  16. CX-004167: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Appliance Technology Evaluation Center-ModificationCX(s) Applied: A9, B3.6Date: 09/29/2010Location(s): Morgantown, West VirginiaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  17. CX-003921: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mobile Sediment Analysis LaboratoryCX(s) Applied: B3.6Date: 09/23/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  18. West Virginia University | Open Energy Information

    Open Energy Info (EERE)

    WVU Place: Morgantown, West Virginia Zip: 26506 Region: Eastern US Year Founded: 1867 References: WVU official website1 This article is a stub. You can help OpenEI by...

  19. CX-006117: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Flooring ImprovementsCX(s) Applied: B2.1, B2.5Date: 06/28/2011Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  20. CX-002309: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Zeta-Potential Approach to Fine Coal BeneficiationCX(s) Applied: B3.6Date: 05/17/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  1. CX-001435: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Building 33 Chemical Resistant Flooring ProjectCX(s) Applied: B1.3Date: 04/07/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  2. CX-005614: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Building 33 Chemical Resistant Flooring ProjectCX(s) Applied: B1.3Date: 04/13/2011Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  3. CX-002644: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Photoactive, Organic-Inorganic Hybrid Porous Structures for Photocatalytic Carbon Dioxide ReductionCX(s) Applied: B3.6Date: 06/04/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  4. CX-005663: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Vortex Tube Project Decommissioning ProjectCX(s) Applied: B3.6Date: 04/29/2011Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  5. CX-006132: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replacement of Sidewalk Along Collins Ferry RoadCX(s) Applied: B1.3Date: 06/21/2011Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  6. CX-006480: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Materials Research Laboratory (MRL)CX(s) Applied: B3.6Date: 08/12/2011Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  7. CX-006137: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    B39 Cellular Repeater InstallationCX(s) Applied: B1.7Date: 06/15/2011Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  8. CX-002740: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Coal Use By-Product Characterization Lab DecommissioningCX(s) Applied: B3.6Date: 06/17/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  9. CX-002645: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fine Coal Flotation and Removal of Toxic Trace ElementsCX(s) Applied: B3.6Date: 06/04/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  10. CX-001304: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    B3 Hot and Chilled Water Pump UpgradesCX(s) Applied: B1.5Date: 03/19/2010Location(s): Morgantown, West VirginiaOffice(s): National Energy Technology Laboratory

  11. CX-004477: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Extreme Drilling Laboratory (XDL)CX(s) Applied: B3.6Date: 11/18/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  12. CX-004171: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Prediction of Fault Reactivation in Hydraulic Fracturing of Horizontal Wells in Shale Gas ReservoirsCX(s) Applied: A9Date: 09/28/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  13. Spotlights Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Business Center (LMBC) in Morgantown, West Virginia, is now guarded by a state-of-the-art FM-200 Fire Suppression System. Installation of the new system began on June 11,...

  14. CX-005482: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Portable Raman Gas Composition MonitorCX(s) Applied: B3.6Date: 03/31/2011Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  15. CX-012153: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Arc Flash Hazard Mitigations - Morgantown CX(s) Applied: B1.15, B2.5 Date: 05/12/2014 Location(s): West Virginia Offices(s): National Energy Technology Laboratory

  16. CX-003462: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Visitor's Center Conference RoomCX(s) Applied: B1.7, B1.15Date: 08/23/2010Location(s): Morgantown,West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  17. CX-002646: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Polymer Nanocomposites for Carbon Dioxide CaptureCX(s) Applied: B3.6Date: 06/04/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  18. CX-005320: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    700/100 Pounds Per Square Inch Compressor Additional Filtration ProjectCX(s) Applied: B2.5Date: 02/24/2011Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  19. CX-005336: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Materials Synthesis Laboratory Modifications/AdditionsCX(s) Applied: B3.6Date: 03/01/2011Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  20. Data Safer than Ever with FM-200 Installation | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Business Center (LMBC) in Morgantown, West Virginia, is now guarded by a state-of-the-art FM-200 Fire Suppression System. Installation of the new system began on June 11,...

  1. CX-005593: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building 39 - Replace Waterless UrinalsCX(s) Applied: B1.15Date: 04/11/2011Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  2. CX-004207: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Underground Electrical Feeder CablesCX(s) Applied: B4.6Date: 09/27/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  3. CX-006452: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building 4 Mezzanine RenovationCX(s) Applied: B1.3, B2.3Date: 08/03/2011Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  4. Fuel Cell/Gas Turbine System Performance Studies

    Office of Scientific and Technical Information (OSTI)

    METC/C-97/7278 Title: Fuel Cell/Gas Turbine System Performance STudies Authors: George T. Lee (METC) Frederick A. Sudhoff (METC) Conference: Fuel Cells '96 Review Meeting Conference Location: Morgantown, West Virginia Conference Dates: August 20-21, 1996 Conference Sponsor: U.S. DOE, Morgantown Energy Technology Center Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor

  5. Microsoft Word - Norwich Final EA.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    36 FINAL ENVIRONMENTAL ASSESSMENT FOR THE NORWICH COGENERATION INITIATIVE, NORWICH, CONNECTICUT U.S. Department of Energy National Energy Technology Laboratory Morgantown, West Virginia March 2011 DOE/EA-1836 FINAL ENVIRONMENTAL ASSESSMENT FOR THE NORWICH COGENERATION INITIATIVE, NORWICH, CONNECTICUT U.S. Department of Energy National Energy Technology Laboratory Morgantown, West Virginia March 2011 DOE/EA-1836 iii March 2011 COVER SHEET Responsible Agency: U.S. Department of Energy (DOE or the

  6. Annual Energy Outlook 2013 Early Release Reference Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (CO, WY) Haynesville Utica (OH, PA & WV) Marcellus (PA,WV,OH & NY) Woodford (OK) Granite Wash (OK & TX) Austin Chalk (LA & TX) Monterey (CA) U.S. tight oil production...

  7. J

    Office of Scientific and Technical Information (OSTI)

    J ' " i DOE/MC/25142-3013 .(DE911)02093) IMmROVEDELECTROLYTES FOR FUEL CELLS Final Report By G. L. Gard D. K. Roe June 1991 Work Performed Under Contract No. FG21-88MC25142 For U.S. Department of Energy Morgantown Energy TechnOlogy Center Morgantown, West Virginia By Portland State University Portland, Oregon i DISCLAIMER This report was prepared as an accountof work sponsored by an agencyof the United States Government.Neitherthe United StatesGovernmentnor any agencythereof,nor any of

  8. DEVELOPMENT OF DISPOSABLE SORBENTS FOR CHLORIDE REMOVAL FROM HIGH TEMPERATURE COAL-DERIVED GASES

    SciTech Connect (OSTI)

    Gopala Krishnan; Raghubir Gupta

    1999-09-01

    Advanced integrated-gasification combined-cycle (IGCC) and integrated-gasification fuel cell (IGFC) systems require the development of high temperature sorbents for the removal of hydrogen chloride (HCl) vapor to less than 1 parts-per-million (ppm) levels. HCl is a highly reactive, corrosive, and toxic gas which must be removed to meet environmental regulations, to protect power generation equipment, and to minimize deterioration of hot gas desulfurization sorbents. The objective of this program was to develop disposable, alkali-based sorbents capable of reducing HCl vapor levels to less than 1 ppm in the temperature range from 400 to 750 C and pressures in the range from 1 to 20 atm. The primary areas of focus of this program were to investigate different methods of sorbent fabrication, testing their suitability for different reactor configurations, obtaining reaction kinetics data, and conducting a preliminary economic feasibility assessment. This program was a joint effort between SRI International (SRI), Research Triangle Institute (RTI), and General Electric Corporate Research and Development (GE-CRD). SRI, the prime contractor and RTI, a major subcontractor, performed most of the work in this program. Thermochemical calculations indicated that sodium-based sorbents were capable of reducing HCl vapor levels to less than 1 ppm at temperatures up to 650 C, but the regeneration of spent sorbents would require complex process steps. Nahcolite (NaHCO{sub 3}), a naturally-occurring mineral, could be used as an inexpensive sorbent to remove HCl vapor in hot coal gas streams. In the current program, nahcolite powder was used to fabricate pellets suitable for fixed-bed reactors and granules suitable for fluidized-bed reactors. Pilot-scale equipment were used to prepare sorbents in large batches: pellets by disk pelletization and extrusion techniques, and granules by granulation and spray-drying techniques. Bench-scale fixed- and fluidized-bed reactors were assembled at SRI and RTI to conduct tests at high-temperature, high-pressure conditions (HTHP). The HTHP tests confirmed the ability of nahcolite pellets and granules to reduce the HCl vapor levels to less than 1 ppm levels with a very high sorbent utilization for chloride capture. The effect of several operating variables such as temperature, pressure, presence of hydrogen sulfide, and sorbent preparation methods was studied on the efficacy of HCl removal by the sorbent. Pilot-scale tests were performed in the fluidized-bed mode at the gasifier facility at the GE-CRD. Sorbent exposure tests were also conducted using a hot coal gas stream from the DOE/FETC's fluidized-bed gasifier at Morgantown, WV. These tests confirmed the results obtained at SRI and RTI. A preliminary economic assessment showed that the cost of HCl removal in a commercial IGCC system will be about $0.001/kWh (1 mills/kWh).

  9. CX-008273: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Install New Parking Lot Area Over Old Concrete Slab by Daycare at Morgantown National Energy Technology Laboratory Site CX(s) Applied: B1.15, B1.24 Date: 05/11/2012 Location(s): West Virginia Offices(s): National Energy Technology Laboratory

  10. CX-003309: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    B-15 Heating, Ventilating, and Air Conditioning (HVAC) ReplacementCX(s) Applied: B2.1, B5.1Date: 08/04/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  11. Proceedings of the 2nd symposium on valves for coal conversion and utilization

    SciTech Connect (OSTI)

    Maxfield, D.A.

    1981-01-01

    The 2nd symposium on valves for coal conversion and utilization was held October 15 to 17, 1980. It was sponsored by the US Department of Energy, Morgantown Energy Technology Center, in cooperation with the Valve Manufacturers Association. Seventeen papers have been entered individually into EDB and ERA. (LTN)

  12. CX-003308: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    B2, B3, B17 and B36 Utility Meter InstallCX(s) Applied: B1.15, B2.2Date: 08/05/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  13. CX-006156: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Utility Metering Installation: B3, B14, B36CX(s) Applied: B1.15, B2.2Date: 07/13/2011Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  14. Workshop on sulfur chemistry in flue gas desulfurization

    SciTech Connect (OSTI)

    Wallace, W.E. Jr.

    1980-05-01

    The Flue Gas Desulfurization Workshop was held at Morgantown, West Virginia, June 7-8, 1979. The presentations dealt with the chemistry of sulfur and calcium compounds in scrubbers. DOE and EPRI programs in this area are described. Ten papers have been entered individually into EDB and ERA. (LTN)

  15. CX-002647: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development of Biochemical Techniques for the Extraction of Mercury from Waste Streams Containing CoalCX(s) Applied: B3.6Date: 06/04/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  16. CX-005153: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    United States-China Advanced Coal Technologies Consortium - West Virginia University Research CorporationCX(s) Applied: A9, A11, B3.6Date: 02/04/2011Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  17. CX-003070: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Gas Process Development Unit (GPDU)/Syngas (Synthetic Gas) Generator DecommissioningCX(s) Applied: B1.23, B1.27, B1.31, B3.6Date: 07/15/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  18. Touchstone Research Laboratory | Open Energy Information

    Open Energy Info (EERE)

    Centre 1142 Middle Creek Road Place: Triadelphia, WV Zip: 26059-1139 Sector: Bioenergy Technology: Algae Year Founded: 1980 Website: www.trl.com Coordinates: 40.04368,...

  19. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    163 Praxair, Inc. Tonawanda, WV Georgia Institute of Technology, 505 10th Street, NW, Atlanta, GA 30332 FESCCAESD Kenneth David Lyons Improving Energy Efficiency of Air...

  20. DE-AT26-99FT40267 | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development Center, Cold Regions Research and Engineering Laboratory (CRREL) - project management and research products Location Huntington, WV 25701 Project Impact The results...

  1. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of WV, and no anomalous changes in absorption have been observed. The minimum detectable signal for our experimental system was determined to estimate the sensitivity of the...

  2. Triadelphia, West Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Triadelphia, West Virginia: Energy Resources (Redirected from Triadelphia, WV) Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.0525734, -80.6284097 Show Map...

  3. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WV FESCCAESD Steven Markovich Development Of A Thermal Spray, Redox Stable, Ceramic Anode For Metal Supported The Recipient will perform powder engineering and thermal...

  4. 2014 WIND POWER PROGRAM PEER REVIEW-ACCELERATE TECHNOLOGY TRANSFER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... life and portable Simple design, minimal moving parts, 110 V Total automatic ... gearboxes at AES Wind farm, Belington, WV. Both units running 247 with minimal attention. ...

  5. Hanford Waste Services Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hanford Waste Services Ltd Jump to: navigation, search Name: Hanford Waste Services Ltd. Place: Wolverhampton, United Kingdom Zip: Wv2 1HR Product: Waste to Energy facility with...

  6. fe0024357-osu | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources - Field Labs Utica Shale Energy and Environment Laboratory (USEEL) Last Reviewed 9/9/2015 DE-FE0024357 Goal The goal of this project is to develop and maintain a field research facility in the heart of the Utica Shale play that will provide a platform for environmental and geotechnical studies before, during, and after unconventional oil and gas (UOG) development. Performers The Ohio State University, Columbus, Ohio West Virginia University, Morgantown, West Virginia The Wilds,

  7. 06-2014 | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Release NETL's Supercomputer, one of the fastest, largest and most energy-efficient in the world, helps scientists achieve important outcomes for the Nation's economic and energy future that would otherwise take longer and cost more to develop, build, study and demonstrate. Powerful NETL Supercomputer Tackles Fossil Energy Challenge An unremarkable looking collection of modular buildings at NETL's Morgantown research site houses one of the world's largest, fastest, and most energy-efficient

  8. ORISE: Postdoc Research Experiences - Dr. Joseph Ranalli

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joseph Ranalli A teacher's enthusiasm and a bit of curiosity draws student to science Joseph Ranalli, Ph.D. Joseph Ranalli, Ph.D., a postdoctoral researcher with the National Energy Technology Laboratory research fellowship program in Morgantown, W. Va., is looking for ways to reduce the environmental impact of combustion-based power generation systems. Ranalli hopes to become a university professor in the future. As a kid, Joseph Ranalli, Ph.D., was fascinated with the NASA space program and

  9. Secretary Moniz Dedicates New Supercomputer at the National Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Laboratory | Department of Energy New Supercomputer at the National Energy Technology Laboratory Secretary Moniz Dedicates New Supercomputer at the National Energy Technology Laboratory July 29, 2013 - 12:55pm Addthis NEWS MEDIA CONTACT (202) 586-4940 MORGANTOWN, W. Va. - Today, Secretary Moniz dedicated a new supercomputer-one of the world's fastest and most energy efficient-at the National Energy Technology Laboratory (NETL). The high-performance computer for energy and the

  10. United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    States Department of Agriculture Forest Service Southern Research Station General Technical Report SRS-68 Bats of the Savannah River Site and Vicinity Michael A. Menzel, Jennifer M. Menzel, John C. Kilgo, W. Mark Ford, Timothy C. Carter, and John W. Edwards Authors: Michael A. Menzel, 1 Jennifer M. Menzel, 2 John C. Kilgo, 3 W. Mark Ford, 2 Timothy C. Carter, 4 and John W. Edwards 5 1 Graduate Research Assistant, Division of Forestry, Wildlife and Fisheries, West Virginia University, Morgantown,

  11. NETL Researcher Honored with 2014 FLC Mid-Atlantic Regional STEM Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 FLC Mid-Atlantic Regional STEM Award Morgantown, W.Va. - Dr. Kirk Gerdes of the National Energy Technology Laboratory (NETL) has been awarded a 2014 FLC Mid-Atlantic Regional STEM Award for his work furthering NETL's STEM education efforts in West Virginia. Dr. Gerdes has coordinated West Virginia Regional Science Bowl (WVSB) since 2012, participating in the event since 2007 and serving as assistant regional coordinator from 2008 through 2011. The competition hosts more than 50 schools and

  12. VWA-0005 - In the Matter of Daniel L. Holsinger | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In the Matter of Daniel L. Holsinger VWA-0005 - In the Matter of Daniel L. Holsinger This Decision involves a complaint filed by Daniel L. Holsinger (Holsinger) under the Department of Energy (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708. In his complaint, Holsinger contends that certain reprisals were taken against him after he raised concerns relating to the possible theft of government property from the DOE's Morgantown Energy Technology Center (METC). These reprisals

  13. jp303844t 1..10

    Office of Scientific and Technical Information (OSTI)

    Ab Initio Thermodynamic Study of the CO 2 Capture Properties of Potassium Carbonate Sesquihydrate, K 2 CO 3 *1.5H 2 O Yuhua Duan,* ,† David R. Luebke, † Henry W. Pennline, † Bingyun Li, †,‡ Michael J. Janik, § and J. Woods Halley ∥ † National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, Pennsylvania 15236, United States ‡ School of Medicine, West Virginia University, Morgantown, West Virginia 26506, United States § Department of Chemical

  14. About Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Us About Us Chris Smith Visits NETL Principal Deputy Assistant Secretary Christopher Smith Visiting FE Scientists and Engineers at FE's National Energy Technology Laboratory The Energy Department's Fossil Energy organization is made up of about 1,000 scientists, engineers, technicians and administrative staff. Its headquarters offices are in downtown Washington, DC, and in Germantown, Maryland. The organization also includes the National Energy Technology Laboratory with offices in Morgantown,

  15. Records Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Records Management Records Management 80 Seconds Around the LMBC In 2009, Legacy Management constructed a state-of-the-art facility known as the LM Business Center in Morgantown, West Virginia. The facility houses historical records from the nation's former nuclear production sites and serves as an information technology data center. Learn about how LM is meeting its goal to "Preserve, Protect, and Share Information." 80 Seconds Around the LMBC The LMBC The U.S. Department of Energy

  16. Independent Oversight Review, National Energy Technology Laboratory - May

    Office of Environmental Management (EM)

    2014 | Department of Energy Energy Technology Laboratory - May 2014 Independent Oversight Review, National Energy Technology Laboratory - May 2014 May 2014 Review of the Emergency Management Program Technical Basis and Emergency Preparedness at the National Energy Technology Laboratory This report documents the results of an independent oversight review of the emergency management program technical basis and emergency preparedness at the National Energy Technology Laboratory Morgantown and

  17. Laboratories and Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratories and Facilities Laboratories and Facilities Laboratories and Facilities National Energy Technology Laboratory - The National Energy Technology Laboratory (NETL) is the lead field center for the Office of Fossil Energy's research and development program. Scientists at its Pittsburgh, Pa., and Morgantown, W. Va., campuses conduct onsite research while contract administrators oversee nearly 700 federally-sponsored projects conducted by private sector research partners. The Houston,

  18. DOE - Office of Legacy Management -- Pittsburgh Energy Technology Center -

    Office of Legacy Management (LM)

    029 Pittsburgh Energy Technology Center - 029 FUSRAP Considered Sites Site: Pittsburgh Energy Technology Center (029 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The former Pittsburgh Energy and Technology Center in Bruceton, Pennsylvania has merged with the Morgantown Energy Technology Center, and in December 1999 became the National

  19. NETL's New Supercomputer Ranks Among the World's Top 100 | Department of

    Office of Environmental Management (EM)

    Energy New Supercomputer Ranks Among the World's Top 100 NETL's New Supercomputer Ranks Among the World's Top 100 January 15, 2013 - 12:00pm Addthis Washington, DC - One of the world's fastest, most energy-efficient supercomputers - expected to help energy researchers discover new materials, optimize designs and better predict operational characteristics - is up and running at the Office of Fossil Energy's National Energy Technology Laboratory (NETL) in Morgantown, W.Va. NETL's new

  20. NETL's Supercomputer Addresses Energy Issues on Two Fronts | Department of

    Office of Environmental Management (EM)

    Energy Supercomputer Addresses Energy Issues on Two Fronts NETL's Supercomputer Addresses Energy Issues on Two Fronts September 26, 2013 - 10:42am Addthis The visualization center for the SBEUC (Simulation Based Engineering User Center). Located at the Department’s National Energy Technology Laboratory in Morgantown, W. Va., the SBEUC will be powered by a high performance computer that will allow researchers to simulate phenomena that are difficult or impossible to probe experimentally.

  1. Microsoft Word - 11319 Final.doc

    Office of Environmental Management (EM)

    Phoenix, AZ Pre-MARSSIM Surveys in a MARSSIM World: Demonstrating How Pre-MARSSIM Radiological Data Demonstrate Protectiveness at Formerly Utilized Sites Remedial Action Program Sites - 11319 Christopher Clayton*, Vijendra Kothari**, Michael Widdop***, Susan Kamp***, Laura Cummins***, and Joey Gillespie*** *U.S. Department of Energy Office of Legacy Management, Washington, DC 20585 **U.S. Department of Energy Office of Legacy Management, Morgantown, West Virginia 26505 ***S.M. Stoller

  2. Microsoft Word - 12184b.doc

    Office of Environmental Management (EM)

    WM2012 Conference, February 26 - March 1, 2012, Phoenix, Arizona, USA 1 Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program -12184 Christopher Clayton*, Vijendra Kothari**, Ken Starr***, Michael Widdop ****, and Joey Gillespie**** *U.S Department of Energy Office of Legacy Management, Washington, DC; ** U.S Department of Energy Office of Legacy Management, Morgantown, West Virginia; *** U.S

  3. Microsoft Word - 12189a.doc

    Office of Environmental Management (EM)

    2 Conference, February 26 - March 1, 2012, Phoenix, Arizona, USA 1 Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial Action Program - 12189 Christopher Clayton*, Vijendra Kothari**, Ken Starr***, Joey Gillespie****, and Michael Widdop**** * U.S. Department of Energy Office of Legacy Management, Washington, DC ** U.S. Department of Energy Office of Legacy Management, Morgantown, West Virginia *** U.S. Department of Energy Office of Legacy Management, Westminster, Colorado

  4. Microsoft Word - 13014b.docx

    Office of Environmental Management (EM)

    3 Conference, February 24 - 28, 2013, Phoenix, Arizona, USA 1 Recent Developments in DOE FUSRAP - 13014 Christopher Clayton*, Vijendra Kothari**, Gwen Hooten***, Ken Starr***, Cheri Bahrke****, Joey Gillespie****, Michael Widdop****, and Bob Darr***** * U.S. Department of Energy Office of Legacy Management, Washington, DC Christopher.Clayton@lm.doe.gov ** U.S. Department of Energy Office of Legacy Management, Morgantown, West Virginia Vijendra.Kothari@lm.doe.gov *** U.S. Department of Energy

  5. Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses: October 15, 2002-September 30, 2004

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses October 15, 2002 - September 30, 2004 A. Del Toro SunLine Services Group Thousand Palms, California M. Frailey National Renewable Energy Laboratory Golden, Colorado F. Lynch Hydrogen Components Inc. Littleton, Colorado S. Munshi Westport Innovations Inc. Vancouver, British Columbia, Canada S. Wayne West Virginia University Morgantown, West Virginia Technical Report NREL/TP-540-38707 November 2005

  6. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WVT11P combined to form the AMPHM can achieve a relative high accuracy of phase discrimination compared to the surface-based retrievals. Since it only uses MODIS WV and IR...

  7. Microsoft Word - figure_03.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil and Gas Reserves"; PointLogic Energy; Ventyx; and the Bureau of Safety and Environmental Enforcement, and predecessor agencies. IN OH TN WV VA KY MD PA NY VT NH MA CT ME...

  8. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    ... LOCATION Waynesboro, PA McKeesport, PA Philadelphia, 'PA f Williamsport, PA Philadelphia, PA Cranston, RI Fort Worth, TX Dallas, TX Nitro, WV REMARKS NLO Contract NLO Contract DOD ...

  9. Microsoft PowerPoint - 02.11.2010_Smart Grid Conference.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WV D-20 Ethernet Switch D-20 D-60 Ethernet Switch Control Bldg Control Bldg D-60 Media Media Amperion Electronics B Converter Amperion Electronics Yard Yard Converter Box...

  10. STATEMENT OF GUY CARUSO DEPARTMENT OF ENERGY ENERGY INFORMATION...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operating American Refining Bradford PA 10,000 1% Operating Ergon-West Virginia NewellCongo WV 20,000 1% Operating Hess Corp. Port Reading NJ 0* 0% Operating Sunoco Inc....

  11. CX-007884: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Geological Survey Contributions to the National Geothermal Data System - New Data WV CX(s) Applied: B3.6 Date: 02/10/2012 Location(s): Arizona Offices(s): Golden Field Office

  12. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Water Heating in U.S. Homes in South Region, Divisions, and States, 2009" " Million ... MD, WV",,,,"AL, KY, MS",,,"AR, LA, OK" "Water Heating",,,,"VA","GA","FL",,"NC, ...

  13. ,"West Virginia Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"01042016 7:36:44 AM" "Back to Contents","Data 1: West Virginia Natural Gas Marketed Production (MMcf)" "Sourcekey","N9050WV2" "Date","West...

  14. ,"West Virginia Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"01042016 7:36:01 AM" "Back to Contents","Data 1: West Virginia Natural Gas Gross Withdrawals (MMcf)" "Sourcekey","N9010WV2" "Date","West...

  15. GIHPH5Q RSUT0VWSUX`Y!SUacbedDfgbihehep

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    huS ru V iwy vifYv Y SUa weit hiw SsaWS VBa VS i &22; &23; eSsa Wv0j&20; &22; &23; hiwe TiTS a ii Sif...

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","112015" ,"Release Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","n3020wv3m.xls" ,"Available from Web Page:","http:tonto.eia.govdnavng...

  17. Fossil Energy Program semiannual progress report for October 1992 through March 1993

    SciTech Connect (OSTI)

    Judkins, R.R.

    1993-07-01

    This report covers progress made during the period October 1, 1992, through March 31, 1993, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by the DOE Office of Fossil Energy, the DOE Morgantown Energy Technology Center, the DOE Pittsburgh Energy Technology Center, the DOE Fossil Energy Clean Coal Technology Program, the DOE Fossil Energy Office of Petroleum Reserves, and the US Agency for International Development. In particular, projects related to materials and coal combustion, environmental analysis, and bioconversion are described.

  18. Appalachian Rivers II Conference: Technology for Monitoring, Assessing, and Restoring Streams, Rivers, and Watersheds

    SciTech Connect (OSTI)

    None available

    1999-07-29

    On July 28-29, 1999, the Federal Energy Technology Center (FETC) and the WMAC Foundation co-sponsored the Appalachian Rivers II Conference in Morgantown, West Virginia. This meeting brought together over 100 manufacturers, researchers, academicians, government agency representatives, watershed stewards, and administrators to examine technologies related to watershed assessment, monitoring, and restoration. Sessions included presentations and panel discussions concerning watershed analysis and modeling, decision-making considerations, and emerging technologies. The final session examined remediation and mitigation technologies to expedite the preservation of watershed ecosystems.

  19. 250 MW single train CFB cogeneration facility. Annual report, October 1993--September 1994

    SciTech Connect (OSTI)

    1995-02-01

    This Technical Progress Report (Draft) is submitted pursuant to the Terms and Conditions of Cooperative Agreement No. DE-FC21-90MC27403 between the Department of Energy (Morgantown Energy Technology Center) and York County Energy Partners, L.P. a wholly owned project company of Air Products and Chemicals, Inc. covering the period from January 1994 to the present for the York County Energy Partners CFB Cogeneration Project. The Technical Progress Report summarizes the work performed during the most recent year of the Cooperative Agreement including technical and scientific results.

  20. Microsoft Word - AspenMEAReport.doc

    Office of Scientific and Technical Information (OSTI)

    NETL-2002/1182 ASPEN Plus Simulation of CO 2 Recovery Process Final Report Prepared for: National Energy Technology Laboratory P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 Prepared by: Charles W. White, III EG&G Technical Services, Inc. 3604 Collins Ferry Road Suite 200 Morgantown, West Virginia 26505 September, 2002 ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor

  1. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Chalk Point LLC","Petroleum","NRG Chalk Point LLC",2248 2,"Calvert Cliffs Nuclear Power Plant","Nuclear","Calvert Cliffs Nuclear PP LLC",1716 3,"Morgantown Generating Plant","Coal","GenOn Mid-Atlantic LLC",1423 4,"Brandon Shores","Coal","Raven

  2. Proceedings of the fuels technology contractors review meeting

    SciTech Connect (OSTI)

    Malone, R.D.

    1993-11-01

    The Fuels Technology Contractors Review Meeting was held November 16-18, 1993, at the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. This meeting was sponsored and hosted by METC, the Office of Fossil Energy, U.S. Department of Energy (DOE). METC periodically provides an opportunity to bring together all of the R&D participants in a DOE-sponsored contractors review meeting to present key results of their research and to provide technology transfer to the active research community and to the interested public. This meeting was previously called the Natural Gas Technology Contractors Review Meeting. This year it was expanded to include DOE-sponsored research on oil shale and tar sands and so was retitled the Fuels Technology Contractors Review Meeting. Current research activities include efforts in both natural gas and liquid fuels. The natural gas portion of the meeting included discussions of results summarizing work being conducted in fracture systems, both natural and induced; drilling, completion, and stimulation research; resource characterization; delivery and storage; gas to liquids research; and environmental issues. The meeting also included project and technology summaries on research in oil shale, tar sands, and mild coal gasification, and summaries of work in natural-gas fuel cells and natural-gas turbines. The format included oral and poster session presentations. Individual papers have been processed separately for inclusion in the Energy Science and Technology database.

  3. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 2

    SciTech Connect (OSTI)

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K.

    1994-06-01

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume II contains papers presented at the following sessions: filter technology issues; hazardous air pollutants; sorbents and solid wastes; and membranes. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  4. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 1

    SciTech Connect (OSTI)

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K.

    1994-06-01

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume I contains papers presented at the following sessions: opening commentaries; changes in the market and technology drivers; advanced IGCC systems; advanced PFBC systems; advanced filter systems; desulfurization system; turbine systems; and poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  5. Record of the facility deactivation, decommissioning, and material disposition (D and D) workshop: A new focus for technology development, opportunities for industry/government collaboration

    SciTech Connect (OSTI)

    Bedick, R.C.; Bossart, S.J.; Hart, P.W.

    1995-07-01

    This workshop was held at the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia, on July 11--12, 1995. The workshop sought to establish a foundation for continued dialogue between industry and the DOE to ensure that industry`s experiences, lessons learned, and recommendations are incorporated into D and D program policy, strategy, and plans. The mission of the D and D Focus Area is to develop improved technologies, processes and products, to characterize, deactivate, survey, maintain, decontaminate, dismantle, and dispose of DOE surplus structures, buildings, and contents. The target is a five-to-one return on investment through cost avoidance. The cornerstone of the D and D focus area activities is large-scale demonstration projects that actually decontaminate, decommission, and dispose of a building. The aim is to demonstrate innovative D and D technologies as part of an ongoing DOE D and D project. OTD would pay the incremental cost of demonstrating the innovative technologies. The goal is to have the first demonstration project completed within the next 2 years. The intent is to select projects, or a project, with visible impact so all of the stakeholders know that a building was removed, and demonstrate at a scale that is convincing to the customers in the EM program so they feel comfortable using it in subsequent D and D projects. The plan is to use a D and D integrating contractor who can then use the expertise in this project to use in jobs at other DOE sites.

  6. PowerPoint Presentation

    Office of Environmental Management (EM)

    1613 NTSF National Transportation Stakeholder Forum West Valley Demonstration Project A Short History and Status May 7, 2013 www.wv.doe.gov Bryan C. Bower, Director bryan.bower@wv.doe.gov 1 051613 NTSF West Valley Demonstration Project (WVDP) Mission 2 The WVDP mission was defined by an act of Congress in 1980 - Public Law 98-368 1. Solidify the high-level radioactive waste at the Center * 99.7% of the curies in the tanks were vitrified and the glass is contained in 275 stainless steel canisters

  7. This list does not imply DOE endorsement of the individuals or companies identif

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Heating Assessment and Survey Tool (PHAST) Qualified Specialists July 2015 Name E-mail Address Phone Number Location A Alaras, Art art_alaras@hillspet.com 785-231-2872 KS Atreya, Arvind aatreya@umich.edu 734-647-4790 MI Avagyan, Ruben ravagyan@mix.wvu.edu 304-906-1401 WV B Baesel, Bryan bbaesel@cec-consultants.com 216-749-2992 OH Baker, Mike mike.baker@hollyfrontier.com 801-643-3770 UT Balster, Nick nbalster@wyman.com 508-839-8103 MA Banta, Larry Larry.Banta@mail.wvu.edu 304-293-3375 WV

  8. MEMORANDUfl J: FILE DATE

    Office of Legacy Management (LM)

    J: FILE DATE // //r /so -----------w------m FROM: 9. 34oyc -w--------v----- SUBJECT: D3 Bo;s CL&;C J mL-;+J; - Rcc cap 049 /'A :j$: &336;s L-.fh~ w-f L-1 ALE"nirTE __ ------------- --- ---_------------------ CITY: &u+M- - &. -w---v------ ---B-------w STATE: 0 h' -a---- OWNER(S) --pi::;- l>cl, b af.5 CA.-*>J CD Current: Gr;W i- ~U~&;P~ -------------,,' ,-,,,,-, Owner contacted 0 yes jg no; -------------------------- if yes, date contacted ------m------ TYPE OF

  9. ACBEDGF1DIH P Q2RSTDVU@DVW RYX1`bacSedVagf ShFiSpaqSTr1Hs...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & WvD HkwdD r1H Spaqr1acUSpHa UWvrBEr1H rW HbDrwBvWvrH @jh B k l &22; m n dr1p UDo dr1wbUTDr pqq rWbDW D...

  10. U.S. Energy Information Administration | Annual Energy Outlook...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP...

  11. F-1 U.S. Energy Information Administration | Annual Energy Outlook...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH...

  12. F-5 U.S. Energy Information Administration | Annual Energy Outlook...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Figure F4. Oil and Gas Supply Model Regions Atlantic WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT ME RI MA NH VA WI MI OH NE...

  13. Lawrence Co. Scioto Co. Greenup Co. Jack

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BOE Reserve Class No 2001 reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100 .1- 1,000 MBOE 1,000.1 - 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE Appalachian Basin Boundary Appalachian Basin, WV-VA (Panel 6 of 7) Oil and Gas Fields By 2001 BOE

  14. Lawrence Co. Scioto Co. Greenup Co. Jack

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas Reserve Class No 2001 gas reserves 0.1 - 10 MMCF 10.1 - 100 MMCF 100 .1- 1,000 MMCF 1,000.1 - 10,000 MMCF 10,000.1 - 100,000 MMCF > 100,000 MMCF Appalachian Basin Boundary Appalachian Basin, WV-VA (Panel 6 of 7) Oil and Gas Fields By 2001 Gas

  15. BPA-2010-02021-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . 1 Ir:; WV0 6PA' I O O2o2 * s * o . o Du Schlo g t a f n eldt 900 Washington Street Albert F. 5chlotfeldt * Suite 1020 * PO BoK 570 Direct 360-737-1460 &WelchPLLC Vancouver, WA...

  16. Environmental Management Technology Leveraging Initiative. Topical report, October 1, 1995--September 30, 1996

    SciTech Connect (OSTI)

    1996-12-31

    The ``Environmental Management Technology Leveraging Initiative,`` a cooperative agreement between the Global Environment and Technology Foundation and the Department of Energy-Morgantown Energy Technology Center, has completed its second year. This program, referred to as the Global Environmental Technology Enterprise (GETE) is an experiment to bring together the public and private sectors to identify, formulate, promote and refine methods to develop more cost-effective clean-up treatments. Working closely with Department of Energy officials, National Laboratory representatives, business people, academia, community groups, and other stakeholders, this program attempts to commercialize innovative, DOE-developed technologies. The methodology to do so incorporates three elements: business assistance, information, and outreach. A key advance this year was the development of a commercialization guidance document which can be used to diagnose the commercialization level and needs for innovative technologies.

  17. Clean coal reference plants: Pulverized coal boiler with flue gas desulfurization. Topical report

    SciTech Connect (OSTI)

    1995-09-01

    The Clean Coal Technology Demonstration Program (CCT) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of full-scale facilities. The goal of the program is to provide the U.S. energy marketplace with a number of advanced, more efficient, and environmentally responsive coal-using technologies. To achieve this goal, a multiphased effort consisting of five separate solicitations has been completed. The Morgantown Energy Technology Center (METC) has the responsibility for monitoring the CCT Projects within certain technology categories, which, in general, correspond to the center`s areas of technology development. Primarily the categories of METC CCT projects are: atmospheric fluid bed combustion, pressurized fluidized bed combustion, integrated gasification combined cycle, mild gasification, and industrial applications.

  18. Proceedings of the advanced research and technology development direct utilization, instrumentation and diagnostics contractors' review meeting

    SciTech Connect (OSTI)

    Geiling, D.W. ); Goldberg, P.M. )

    1990-01-01

    The 1990 Advanced Research and Technology Development (AR TD) Direct Utilization, and Instrumentation and Diagnostics Contractors Review Meeting was held September 16--18, 1990, at the Hyatt at Chatham Center in Pittsburgh, PA. The meeting was sponsored by the US Department of Energy (DOE), Office of Fossil Energy, and the Pittsburgh and Morgantown Energy Technology Centers. Each year the meeting provides a forum for the exchange of information among the DOE AR TD contractors and interested parties. This year's meeting was hosted by the Pittsburgh Energy Technology Center and was attended by 120 individuals from industry, academia, national laboratories, and other governmental agencies. Papers were presented on research addressing coal surface, science, devolatilization and combustion, ash behavior, emission controls for gases particulates, fluid bed combustion and utilization in diesels and turbines. Individual reports are processed separately for the data bases.

  19. Management of dry flue gas desulfurization by-products in underground mines. Annual report, October 1994--September 1995

    SciTech Connect (OSTI)

    Chugh, Y.P.; Dutta, D.; Esling, S.

    1995-10-01

    On September 30, 1993, the U.S. Department of Energy-Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues (CCBs) in abandoned coal mines, and will assess the environmental impact of such underground CCB placement. This report describes progress in the following areas: environmental characterization, mix development and geotechnical characterization, material handling and system economics, underground placement, and field demonstration.

  20. Fossil energy waste management. Technology status report

    SciTech Connect (OSTI)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  1. Methane drainage with horizontal boreholes in advance of longwall mining: an analysis. Final report

    SciTech Connect (OSTI)

    Gabello, D.P.; Felts, L.L.; Hayoz, F.P.

    1981-05-01

    The US Department of Energy (DOE) Morgantown Energy Technology Center has implemented a comprehensive program to demonstrate the technical and economic viability of coalbed methane as an energy resource. The program is directed toward solution of technical and institutional problems impeding the recovery and use of large quantities of methane contained in the nation's minable and unminable coalbeds. Conducted in direct support of the DOE Methane Recovery from Coalbeds Project, this study analyzes the economic aspects of a horizontal borehole methane recovery system integrated as part of a longwall mine operation. It establishes relationships between methane selling price and annual mine production, methane production rate, and the methane drainage system capital investment. Results are encouraging, indicating that an annual coal production increase of approximately eight percent would offset all associated drainage costs over the range of methane production rates and capital investments considered.

  2. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2002

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2003-10-30

    This Site Environmental Report was prepared by the Environmental, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at NETL sites in Morgantown (MGN), West Virginia, Pittsburgh (PGH), Pennsylvania, Tulsa, Oklahoma, and Fairbanks, Alaska. This report contains the most accurate information that could be collected during the period between January 1, 2002, and December 31, 2002. As stated in DOE Orders 450.1 and 231.1, the purpose of the report is to: (1) Characterize site environmental management performance. (2) Confirm compliance with environmental standards and requirements. (3) Highlight significant facility programs and efforts.

  3. Fossil Energy Program semiannual progress report for April 1991 through September 1991

    SciTech Connect (OSTI)

    Judkins, R.R.

    1992-10-01

    This report covers progress made during the period April 1, 1991, through September 30, 1991, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by the DOE Office of Fossil Energy, the DOE Morgantown Energy Technology Center, the DOE Pittsburgh Energy Technology Center, the DOE Fossil Energy Clean Coal Technology Program, the DOE Fossil Energy Office of Petroleum Reserves, and the US Agency for International Development (USAID). The Fossil Energy Program organization chart is shown in the appendix. Project discussed are: materials research and development; environmental analysis support; coal conversion development; coal combustion research; fossil fuel supplies modeling and research; evaluations and assessments; and coal structure and chemistry.

  4. Tampa Electric Company, Polk Power Station Unit No. 1, preliminary public design report

    SciTech Connect (OSTI)

    1994-06-01

    This preliminary Public Design Report (PDR) provides design information about Tampa Electric Company`s Polk Power Station Unit No. 1, which will demonstrate in a commercial 250 MW unit the benefits of the integration of oxygen-blown, entrained-flow coal gasification with advanced combined cycle technology. This project is partially funded by the US Department of Energy (DOE) under Round III of its Clean Coal Technology (CCT) Program under the provisions of Cooperative Agreement between DOE and Tampa Electric Company, novated on March 5,1992. The project is highlighted by the inclusion of a new hot gas cleanup system. DOE`s project management is based at its Morgantown Energy Technology Center (METC) in West Virginia. This report is preliminary, and the information contained herein is subject to revision. Definitive information will be available in the final PDR, which will be published at the completion of detailed engineering.

  5. Clean coal reference plants: Pulverized encoal PDF fired boiler. Topical report

    SciTech Connect (OSTI)

    1995-12-01

    The Clean Coal Technology Demonstration Program (CCT) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of full-scale facilities. The goal of the program is to provide the U.S. energy marketplace with a number of advanced, more efficient, and environmentally responsive coal-using technologies. To achieve this goal, a multiphased effort consisting of five separate solicitations has been completed. The Morgantown Energy Technology Center (METC) has the responsibility for monitoring the CCT Projects within certain technology categories, which, in general, correspond to the center`s areas of technology development. Primarily the categories of METC CCT projects are: atmospheric fluid bed combustion, pressurized fluidized bed combustion, integrated gasification combined cycle, mild gasification, and industrial applications. This report describes the plant design.

  6. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2000

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2001-11-27

    This Site Environmental Report was prepared by the Environment, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at the NETL sites in Morgantown, West Virginia, and Pittsburgh, Pennsylvania. This report contains the most accurate information that could be collected during the period between January 1, 2000, through December 31, 2000. As stated in DOE Orders 5400.1 and 231.1, the purpose of the report is to: Characterize site environmental management performance; Confirm compliance with environmental standards and requirements and Highlight significant facility programs and efforts.

  7. Decontamination & decommissioning focus area

    SciTech Connect (OSTI)

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  8. Environmental management technology demonstration and commercialization

    SciTech Connect (OSTI)

    Daly, D.J.; Erickson, T.A.; Groenewold, G.H.

    1995-12-31

    The Energy & Environmental Research Center (EERC), a contract-supported organization focused on technology research, development, demonstration, and commercialization (RDD&C), is entering its second year of a Cooperative Agreement with the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC) to facilitate the development, demonstration, and commercialization of innovative environmental management (EM) technologies in support of the activities of DOE`s Office of Environmental Science and Technology (EM-50) under DOE`s EM Program. This paper reviews the concept and approach of the program under the METC-EERC EM Cooperative Agreement and profiles the role the program is playing in the commercialization of five EM technologies.

  9. ,"West Virginia Natural Gas Deliveries to Electric Power Consumers (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3045wv2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045wv2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:25:55 PM" "Back to

  10. ,"West Virginia Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n9010wv2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9010wv2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:29:15 PM" "Back to

  11. ,"West Virginia Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3035wv2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035wv2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:24:58 PM" "Back to

  12. ,"West Virginia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3035wv3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035wv3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:24:58 PM" "Back to

  13. ,"West Virginia Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n9050wv2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9050wv2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:30:48 PM" "Back to

  14. ,"West Virginia Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3045wv3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045wv3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:25:56 PM" "Back to

  15. ,"West Virginia Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3010wv2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wv2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:22:04 PM" "Back to

  16. ,"West Virginia Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5070wv2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5070wv2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:28:38 PM" "Back to

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3010wv3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wv3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:22:05 PM" "Back to

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3020wv2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020wv2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:23:32 PM" "Back to

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3020wv4m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020wv4m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:23:33 PM" "Back to

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3050wv3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3050wv3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:26:26 PM" "Back to

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3060wv2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3060wv2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:26:52 PM" "Back to

  2. NICS report links VOCs to respiratory problems

    SciTech Connect (OSTI)

    Kirschner, E.

    1992-04-22

    Children who live near the chemical plants of Kanawha Valley, WV, suffer more acute and chronic respiratory aliments than those farther away, says a Harvard University School of Public Health report. In the $1-million, five-year study commissioned by the National Institute for Chemical Studies (NICS:Charleston, WV) and funded by the Environmental Protection Agency, proximity to chemical plants that emit volatile organic compounds (VOCs) was linked to higher incidence of asthma, acute eye irritation, shortness of breath, and chronic cough. The researchers say they adjusted for most other factors, such as parental smoking and petroleum. {open_quotes}The research hypothesis was whether children in the valley had more symptoms,{close_quotes} says NICS president Paul Hill. {open_quotes}Yes, there is a difference.{close_quotes} The study showed that some ailments were up to 28% more prevalent in children in the valley than in other Kanawha County children.

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3010wv3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wv3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:22:05 PM" "Back to

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3020wv2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020wv2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:23:32 PM" "Back to

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3020wv3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020wv3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:23:33 PM" "Back to

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3020wv4a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020wv4a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:23:33 PM" "Back to

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3050wv3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3050wv3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:26:26 PM" "Back to

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3060wv2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3060wv2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:26:52 PM" "Back to

  9. Microsoft PowerPoint - Camper, ORNL-TN CAB-04-2010-final, via Cate 4-19-10.ppt [Compatibility Mode]

    Office of Environmental Management (EM)

    Chairs of the Environmental Management Site- Specific Advisory Board Specific Advisory Board Larry W. Camper, Director Division of Waste Management and Environmental Protection Off f S Office of Federal and State Materials and Environmental Management Programs April 28 2010 April 28, 2010 West Valley Demonstration Project * WVDP 1981 * WV Decommissioning Criteria * Interagency/Core Team Meetings * Review/Comment on Decommissioning Plan Review/Comment on Decommissioning Plan * Cooperating Agency

  10. Measurement and modeling of transfer functions for lightning coupling into the Sago mine.

    SciTech Connect (OSTI)

    Morris, Marvin E.; Higgins, Matthew B.

    2007-04-01

    This report documents measurements and analytical modeling of electromagnetic transfer functions to quantify the ability of cloud-to-ground lightning strokes (including horizontal arc-channel components) to couple electromagnetic energy into the Sago mine located near Buckhannon, WV. Two coupling mechanisms were measured: direct and indirect drive. These transfer functions are then used to predict electric fields within the mine and induced voltages on conductors that were left abandoned in the sealed area of the Sago mine.

  11. Trading places - an innovative SO{sub 2} trading program to mitigate potential adverse impacts on Class I areas: part I. impacts

    SciTech Connect (OSTI)

    Louis Militana; Cindy Huber; Christopher Colbert; Chris Arrington; Don Shepherd

    2005-07-01

    Published in two parts, this article describes a new emissions cap-and-trade program to reduce acid deposition and visibility impacts in four Class I areas (e.g. wildernesses and national parks) from the proposed Longview Power coal-fired power plant to be located in Maidsville, WV. Part I discusses the air quality impacts of the proposed project. 5 refs., 2 figs., 5 tabs.

  12. Energy Storage Systems 2006 Peer Review - Day 1 morning presentations |

    Office of Environmental Management (EM)

    Department of Energy morning presentations Energy Storage Systems 2006 Peer Review - Day 1 morning presentations The 2006 Peer Review Meeting for the DOE Energy Storage Systems (ESS) Program was held in Washington DC on November 2-3, 2006. Current and completed program projects were presented and reviewed by a group of industry professionals. Presentations from the Day 1 morning session are below. PDF icon ESS 2006 Peer Review - NAS Battery Performance at Charleston, WV - Ali Nourai, AEP.pdf

  13. Fletcher E. Honemond | Department of Energy

    Office of Environmental Management (EM)

    Fletcher E. Honemond About Us Fletcher E. Honemond - Director, Office of Learning and Workforce Development - (Fletcher is on detail effective June 2, 2014 serving as an Adjunct Faculty with the OPM's Center for Leadership Development at the Eastern Management Development Center in Shepherdstown, WV.) Fletcher E. Honemond Mr. Honemond joined the Department of Energy on July 18, 2010. Previously he served as the Director of Planning and Training at Peace Corps, where he led the development and

  14. MINING PENNSYLVANIA NATIONAL ENERGY TECHNOLOGY LAB - PA POC

    Office of Environmental Management (EM)

    MINING PENNSYLVANIA NATIONAL ENERGY TECHNOLOGY LAB - PA POC Larry Sullivan Telephone (412) 386-6115 Email larry.sullivan@netl.doe.gov Support Activities for Oil and Gas Operations 213112 WEST VIRGINIA NATIONAL ENERGY TECHNOLOGY LAB -WV POC Larry Sullivan Telephone (412) 386-6115 Email larry.sullivan@netl.doe.gov Support Activities for Oil and Gas Operations 213112 WYOMING ROCKY MOUNTAIN OILFIELD CENTER POC Jenny Krom Telephone (307) 233-4818 Email jenny.krom@rmotc.doe.gov Support Activities for

  15. Microsoft Word - TR11-07.doc

    Office of Legacy Management (LM)

    Parkersburg, WV November 2011 Page 1 2011 Annual Inspection for the Parkersburg, West Virginia, Nuclear Waste Policy Act Section 151(c) Disposal Site Summary The Parkersburg, West Virginia, Site was inspected on October 5, 2011, to confirm the integrity of visible features and to determine the need, if any, for maintenance, additional inspections, or monitoring. The disposal cell was in excellent condition. No evidence of erosion or slope instability on the disposal cell was noted during the

  16. Microsoft Word - TR11-18.doc

    Office of Legacy Management (LM)

    4 Annual Inspection - Parkersburg, WV October 2004 Page 1 2004 Annual Inspection for the Parkersburg, West Virginia, Nuclear Waste Policy Act Section 151(c) Disposal Site Summary The Parkersburg, West Virginia, Disposal Site, inspected on September 23, 2004, is in good condition. The U.S. Department of Energy's (DOE's) weed control efforts during spring and summer 2004 significantly reduced the population of invasive weeds on the disposal cell cover, although significant infestations continue to

  17. Microsoft Word - TR11-18.doc

    Office of Legacy Management (LM)

    Parkersburg, WV November 2009 Page 1 2009 Annual Inspection for the Parkersburg, West Virginia, Nuclear Waste Policy Act Section 151(c) Disposal Site Summary The Parkersburg, West Virginia, Site was inspected on October 22, 2009, to confirm the integrity of visible features and to determine the need, if any, for maintenance, additional inspections, or monitoring. Results of the inspection conclude that the site is in excellent condition. The grass covered disposal cell is in excellent condition.

  18. Microsoft Word - TR11-29.doc

    Office of Legacy Management (LM)

    Parkersburg, WV November 2010 Page 1 2010 Annual Inspection for the Parkersburg, West Virginia, Nuclear Waste Policy Act Section 151(c) Disposal Site Summary The Parkersburg, West Virginia, Site was inspected on October 21, 2010 to confirm the integrity of visible features and to determine the need, if any, for maintenance, additional inspections, or monitoring. Results of the inspection conclude that the disposal cell is in excellent condition. No evidence of erosion or slope instability on the

  19. MEMORANDUM TO: FILE, OH. 0 DATE

    Office of Legacy Management (LM)

    FILE, OH. 0 DATE d4, ------------------- FROM: b. x&,.& ---------S-----W SUBJECT: 1-3/;4*~ i&-h /LCL)&l&OAiOH h fi Q-cc& )2~see~ SITE NAME: ----fl eAd4 RQJ-cL ALTERNATE __-_-_---------------------------- NAME: ---------------------- CITY: -------------------------- STATE: B---m- OWNER(S) -------- Past: JAwd* ------------------------ Current: _------------------------- Owwr contacted 0 yes rno; if yes, date contacted B-m -----w-v TYPE OF OPERATION ----------------- pg

  20. SUBJECT: OWNER(S)

    Office of Legacy Management (LM)

    HEHORANDUH ;;&; DC&b ------w--v SUBJECT: OWNER(S) -------- P1st a Owner contrctmd TYPE OF OPERATION ----------------- 0 Research I Development 0 Facility Type 0 Production scale testing 0 Pilot Scrlr 0 Bench Seal0 Procemm 0 Theoretical Studier 0 Sample & Anrlyri l 0 Production x Dimpomrl/Storrgr 0 Hmufrcturing 0 University 0 Rmsmarch Organization 0 Government Sponmored Facility 0 Other -II---------------- TYPE OF CONTRACT ----u---------- 0 d ime Subcontract& 0 Purchrre Order 0

  1. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect (OSTI)

    J. Hnat; L.M. Bartone; M. Pineda

    2001-07-13

    This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.

  2. Computer-aided industrial process design. The ASPEN project. Fourth annual report for the period, June 1, 1979 to May 31, 1980

    SciTech Connect (OSTI)

    Not Available

    1980-06-15

    The ASPEN system has been implemented and tested quite extensively during the past year. Although ASPEN runs well now for many types of problems, users continue to uncover errors and to find problems that need to be corrected. This is expected in any large software system such as ASPEN. Benchmark testing of ASPEN has been completed. Process and economic simulations were completed of the coal liquefaction/solvent hydrogenation sections of the Exxon Donor Solvent Process. Also, a process simulation of a petroleum hydrodesulfurization process was completed. A preliminary User's Manual of about 1000 pages has been prepared and has been revised three times. Training materials have been developed for an introductory four-day user course. Four courses have been held and 104 users have attended. A number of enhancements, determined to be of high priority for ASPEN users, have been developed and implemented. Discussions and plans have been started to transfer ASPEN technology and deliver the ASPEN computer code to a number of DOE sites. Two sites most interested are Morgantown (METC) and Oak Ridge (ORNL). Others include Laramie (LETC) and Grand Forks (GFETC).

  3. Advanced fossil fuel combustor

    SciTech Connect (OSTI)

    Rogers, B.

    1995-05-01

    Charged with enhancing the use of US fossil energy resources, the Morgantown Energy Technology Center (METC) is a federal Department of Energy research center that performs its own research and also manages the work of contractors. One interesting recent METC project is the effort to develop a ``multiannular swirl burner`` (MSB) for use in an advanced fossil fuel combustion system. The design is being developed by an outside contractor with funding and technical assistance from METC. Recently, EG and G Technical Services of West Virginia was asked to provide analytical support to the contractor developing the MSB. Design projects like this usually require building and testing a series of very expensive prototypes. Recent success with computational fluid dynamic (CFD) design techniques, however, have generated a great deal of excitement because of its ability to reduce research and development costs. Using FLUENT, a CFD package from Fluent Inc., EG and G was able to predict, with a high degree of accuracy, the performance of one of the MSB combustor prototypes. Furthermore, the model provided researchers with a more detailed understanding of the proposed design`s performance characteristics.

  4. A review of METC`S continuous process monitoring devices for application to high temperature and pressure fossil fuel process streams

    SciTech Connect (OSTI)

    Chisholm, W.P.

    1994-12-31

    The Morgantown Energy Technology Center of the United States Department of Energy, in support of advanced fossil fuel technologies, is developing and applying a number of innovative continuous process monitors. These include an inductively coupled plasma spectrometer, an alkali monitor, a particle counter and sizer, and a water vapor monitor. The alkali monitor is a flame emission spectrometer currently undergoing field trials. Alkali emission from gasifiers and combustors is of interest because it causes corrosion and deposition on downstream components, such as particle filters, sulfur compound sorbents, turbine blades, etc. This device can measure alkali concentrations at the part-per-billion level. The particle monitoring devices use laser light scattering to count and size particles. By measuring particle concentration around a particulate removal device, capture efficiency can be measured in real time with a resolution of one minute. Particles between .45 and 80 microns can be counted at rates as high as one million per second in 5 bar, 350 degree celsius environments. The optical water vapor monitor uses near-infrared light absorption to monitor and control steam injection in an advanced heat exchanger. It is targeted for a 300 degrees celsius and 5 bar environment. The inductively coupled plasma system uses a helium and argon plasma discharge within a torch assembly capable of accepting a high temperature and pressure sample stream. An artificial neural network is being developed to interpret its data. Real-time data from a bench-scale coal gasifier will be presented and discussed.

  5. A systematic assessment of the state of hazardous waste clean-up technologies. Quarterly technical progress report, April 1--June 30, 1993

    SciTech Connect (OSTI)

    Berg, M.T.; Reed, B.E.; Gabr, M.

    1993-07-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Report for Year 1 of the Agreement. This report reflects the progress and/or efforts performed on the following nine technical projects encompassed by the Year 1 Agreement for the period of April 1 through June 30, 1993: Systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies -- drain-enhanced soil flushing (DESF) for organic contaminants removal; site remediation technologies -- in situ bioremediation of organic contaminants; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors -- monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessments of Technologies for hazardous waste site remediation -- non-treatment technologies and pilot scale test facility implementation; and remediation of hazardous sites with stream reforming.

  6. Technical Report on NETL's Non Newtonian Multiphase Slurry Workshop: A path forward to understanding non-Newtonian multiphase slurry flows

    SciTech Connect (OSTI)

    Edited by Guenther, Chris; Garg, Rahul

    2013-08-19

    The Department of Energys (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETLs Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP project and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EMs tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.

  7. Preparation for upgrading western subbituminous coal

    SciTech Connect (OSTI)

    Grimes, R.W.; Cha, C.Y.; Sheesley, D.C.

    1990-11-01

    The objective of this project was to establish the physical and chemical characteristics of western coal and determine the best preparation technologies for upgrading this resource. Western coal was characterized as an abundant, easily mineable, clean, low-sulfur coal with low heating value, high moisture, susceptibility to spontaneous ignition, and considerable transit distances from major markets. Project support was provided by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The research was conducted by the Western Research Institute, (WRI) in Laramie, Wyoming. The project scope of work required the completion of four tasks: (1) project planning, (2) literature searches and verbal contacts with consumers and producers of western coal, (3) selection of the best technologies to upgrade western coal, and (4) identification of research needed to develop the best technologies for upgrading western coals. The results of this research suggest that thermal drying is the best technology for upgrading western coals. There is a significant need for further research in areas involving physical and chemical stabilization of the dried coal product. Excessive particle-size degradation and resulting dustiness, moisture reabsorption, and high susceptibility to spontaneous combustion are key areas requiring further research. Improved testing methods for the determination of equilibrium moisture and susceptibility to spontaneous ignition under various ambient conditions are recommended.

  8. Coal-fueled diesels for modular power generation

    SciTech Connect (OSTI)

    Wilson, R.P.; Rao, A.K.; Smith, W.C.

    1993-11-01

    Interest in coal-fueled heat engines revived after the sharp increase in the prices of natural gas and petroleum in the 1970`s. Based on the success of micronized coal water slurry combustion tests in an engine in the 1980`s, Morgantown Energy Technology Center (METC) of the US Department of Energy. initiated several programs for the development of advanced coal-fueled diesel and gas turbine engines for use in cogeneration, small utilities, industrial applications and transportation. Cooper-Bessemer and Arthur D. Little have been developing technology since 1985, under the sponsor of METC, to enable coal water slurry (CWS) to be utilized in large bore, medium-speed diesel engines. Modular power generation applications in the 10--100 MW size (each plant typically using from two to eight engines) are the target applications for the late 1990`s and beyond when, according to the US DOE and other projections, oil and natural gas prices are expected to escalate much more rapidly compared to the price of coal. As part of this program over 7.50 hours of prototype engine operation has been achieved on coal water slurry (CWS), including over 100 hours operation of a six-cylinder full scale engine with Integrated Emissions Control System in 1993. In this paper, the authors described the project cost of the CWS fuel used, the heat rate of the engine operating on CWS, the projected maintenance cost for various engine components, and the demonstrated low emissions characteristics of the coal diesel system.

  9. Management of dry flue gas desulfurization by-products in underground mines. Topical report, April 1, 1996--April 30, 1997

    SciTech Connect (OSTI)

    Chugh, Y.P.; Brackebusch, F.; Carpenter, J.

    1998-12-31

    This report represents the Final Technical Progress Report for Phase II of the overall program for a cooperative research agreement between the U.S. Department of Energy - MORGANTOWN Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC). Under the agreement, SIUC will develop and demonstrate technologies for the handling, transport, and placement in abandoned underground coal mines of dry flue gas desulfurization by-products, such as fly ash, scrubber sludge, fluidized bed combustion by-products, and will assess the environmental impact of such underground placement. The overall program is divided into three (3) phases. Phase II of the program is primarily concerned with developing and testing the hardware for the actual underground placement demonstrations. Two technologies have been identified and hardware procured for full-scale demonstrations: (1) hydraulic placement, where coal combustion by-products (CCBs) will be placed underground as a past-like mixture containing about 70 to 75 percent solids; and (2) pneumatic placement, where CCBs will be placed underground as a relatively dry material using compressed air. 42 refs., 36 figs., 36 tabs.

  10. Economic assessment of advanced flue gas desulfurization processes. Final report

    SciTech Connect (OSTI)

    Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

    1981-09-01

    This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final reprot, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluations, was completed in October 1980. A slightly modified and condensed version of that report appears as appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

  11. Fluidized-bed combustion of scrap tires: Technical note

    SciTech Connect (OSTI)

    Shang, J.Y.; Mei, J.S.; Notestein, J.E.

    1981-10-01

    An introduction to fluidized-bed combustion (FBC) is presented in Section 2.0. Based on this discussion of its technical development, FBC is then presented as a means of scrap tire disposal. In Section 3.0, scrap tire disposal is reviewed in the categories of (1) physical applications, (2) chemical applications, (3) pyrolysis, and (4) incineration for thermal energy recovery. Scrap tire disposal is reviewed on the basis of (1) environmental acceptability, (2) conservation of resources, (3) impact on existing industries, (4) operational feasibility, and (5) special features. The focus of this report is the fluidized-bed incineration of scrap tires for thermal energy recovery. The factors that affect scrap tire combustion are discussed in Section 4.0. These factors are (1) agitation, (2) temperature, (3) excess air, (4) residence time, (5) feed uniformity, (6) solid waste handling, and (7) pollutants emission control. In reviewing these incineration processes, (1) fuel flexibility, (2) environmental acceptability, (3) combustion efficiency, and (4) operational reliability are discussed. The results from a tire incineration experiment conducted at the Morgantown Energy Technology Center are presented in Section 5.0, and a conceptual fluidized-bed combustor is discussed in Section 6.0. Future considerations in the FBC of scrap tires are discussed in Section 7.0. 8 refs., 6 figs., 6 tabs.

  12. TECHNICAL INTEGRATION ENVIRONMENTAL MANAGEMENT FOCUS AREAS

    SciTech Connect (OSTI)

    Carey R. Butler

    2001-10-01

    This contract involved a team of companies led by WPI (formerly the Waste Policy Institute). In addition to WPI, the team included four subcontractors--TRW (formerly BDM Federal), SAIC, Energetics, and the University of North Dakota Energy and Environmental Research Center (EERC). The team of companies functioned as a ''seamless team'' assembled to support the Environmental Management Program Focus Areas. Staff resources were applied in the following offices: Richland, Washington, Idaho Falls, Idaho, Morgantown, West Virginia, Grand Forks, North Dakota, Aiken, South Carolina, Gaithersburg, Maryland, and Blacksburg, Virginia. These locations represented a mixture of site support offices at the field focus area locations and central staff to support across the focus areas. The management of this dispersed resource base relied on electronic communication links to allow the team to function as a ''virtual office'' to address tasks with the best qualified staff matched to the task assignments. A variety of tasks were assigned and successfully completed throughout the life of the contract that involved program planning and analysis, program execution, program information management and communication and data transmission.

  13. Decontamination Systems Information and Research Program. Quarterly technical progress report, January 1--March 31, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Reports on a quarterly basis. This report comprises the first Quarterly Technical Progress Report for Year 2 of the Agreement. This report reflects the progress and/or efforts performed on the sixteen (16) technical projects encompassed by the Year 2 Agreement for the period of January 1 through March 31, 1994. In situ bioremediation of chlorinated organic solvents; Microbial enrichment for enhancing in-situ biodegradation of hazardous organic wastes; Treatment of volatile organic compounds (VOCs) using biofilters; Drain-enhanced soil flushing (DESF) for organic contaminants removal; Chemical destruction of chlorinated organic compounds; Remediation of hazardous sites with steam reforming; Soil decontamination with a packed flotation column; Use of granular activated carbon columns for the simultaneous removal of organics, heavy metals, and radionuclides; Monolayer and multilayer self-assembled polyion films for gas-phase chemical sensors; Compact mercuric iodide detector technology development; Evaluation of IR and mass spectrometric techniques for on-site monitoring of volatile organic compounds; A systematic database of the state of hazardous waste clean-up technologies; Dust control methods for insitu nuclear and hazardous waste handling; Winfield Lock and Dam remediation; and Socio-economic assessment of alternative environmental restoration technologies.

  14. Two-stage regeneration of zinc ferrite desulfurization sorbent

    SciTech Connect (OSTI)

    Jha, M.C.; Berggren, M.H.

    1988-06-28

    The Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE) is interested in the potential of using a two-step process for regenerating the zinc ferrite desulfurization sorbent. In the first regeneration step, a gas mixture consisting of 12 percent SO{sub 2}, 2 percent O{sub 2}, and 86 percent N{sub 2} is used to convert zinc and iron sulfides to their sulfate forms using a sorbent bed inlet temperature of about 850{degrees}F (454{degrees}C). For the second step, the temperature is raised to about 1400{degrees}F (760{degrees}C), and the sulfates are decomposed to oxides with the concurrent release of sulfur dioxide. The same gas composition used for first step is also used for the second step. The proposed technique would require no steam and also has the advantage of producing a regeneration gas rich in sulfur dioxide. In a commercial operation, recirculating regeneration gas would be supplemented with air as required to supply the necessary oxygen. A bleed stream from regeneration (concentrated SO{sub 2} gas in nitrogen) would constitute feed to sulfur recovery.

  15. Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 1

    SciTech Connect (OSTI)

    Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J.

    1987-08-01

    On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster displays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume I covers information presented at sessions 1 through 4 on systems for the production of Co-products and industrial fuel gas, environmental projects, and components and materials. Individual papers have been processed for the Energy Data Base.

  16. Selecting major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

    1992-01-01

    Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

  17. Selecting major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

    1992-06-01

    Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

  18. Task 1.13 - Data Collection and Database Development for Clean Coal Technology By-Product Characteristics and Management Practices

    SciTech Connect (OSTI)

    Debra F. Pflughoeft-Hassett

    1998-02-01

    U.S. Department of Energy Federal Energy Technology Center-Morgantown (DOE FETC) efforts in the areas of fossil fuels and clean coal technology (CCT) have included involvement with both conventional and advanced process coal conversion by-products. In 1993, DOE submitted a Report to Congress on "Barriers to the Increased Utilization of Coal Combustion Desulfurization Byproducts by Governmental and Commercial Sectors" that provided an outline of activities to remove the barriers identified in the report. DOE charged itself with participation in this process, and the work proposed in this document facilitates DOE's response to its own recommendations for action. The work reflects DOE's commitment to the coal combustion by-product (CCB) industry, to the advancement of clean coal technology, and to cooperation with other government agencies. Information from DOE projects and commercial endeavors in fluidized-bed combustion (FBC) and coal gasification is the focus of this task. The primary goal is to provide an easily accessible compilation of characterization information on the by-products from these processes to government agencies and industry to facilitate sound regulatory and management decisions. Additional written documentation will facilitate the preparation of an updated final version of background information collected for DOE in preparation of the Report to Congress on barriers to CCB utilization.

  19. Oil shale combustion/retorting

    SciTech Connect (OSTI)

    Not Available

    1983-05-01

    The Morgantown Energy Technology Center (METC) conducted a number of feasibility studies on the combustion and retorting of five oil shales: Celina (Tennessee), Colorado, Israeli, Moroccan, and Sunbury (Kentucky). These studies generated technical data primarily on (1) the effects of retorting conditions, (2) the combustion characteristics applicable to developing an optimum process design technology, and (3) establishing a data base applicable to oil shales worldwide. During the research program, METC applied the versatile fluidized-bed process to combustion and retorting of various low-grade oil shales. Based on METC's research findings and other published information, fluidized-bed processes were found to offer highly attractive methods to maximize the heat recovery and yield of quality oil from oil shale. The principal reasons are the fluidized-bed's capacity for (1) high in-bed heat transfer rates, (2) large solid throughput, and (3) selectivity in aromatic-hydrocarbon formation. The METC research program showed that shale-oil yields were affected by the process parameters of retorting temperature, residence time, shale particle size, fluidization gas velocity, and gas composition. (Preferred values of yields, of course, may differ among major oil shales.) 12 references, 15 figures, 8 tables.

  20. ISPE: A knowledge-based system for fluidization studies

    SciTech Connect (OSTI)

    Reddy, S.

    1991-01-01

    Chemical engineers use mathematical simulators to design, model, optimize and refine various engineering plants/processes. This procedure requires the following steps: (1) preparation of an input data file according to the format required by the target simulator; (2) excecuting the simulation; and (3) analyzing the results of the simulation to determine if all specified goals'' are satisfied. If the goals are not met, the input data file must be modified and the simulation repeated. This multistep process is continued until satisfactory results are obtained. This research was undertaken to develop a knowledge based system, IPSE (Intelligent Process Simulation Environment), that can enhance the productivity of chemical engineers/modelers by serving as an intelligent assistant to perform a variety tasks related to process simulation. ASPEN, a widely used simulator by the US Department of Energy (DOE) at Morgantown Energy Technology Center (METC) was selected as the target process simulator in the project. IPSE, written in the C language, was developed using a number of knowledge-based programming paradigms: object-oriented knowledge representation that uses inheritance and methods, rulebased inferencing (includes processing and propagation of probabilistic information) and data-driven programming using demons. It was implemented using the knowledge based environment LASER. The relationship of IPSE with the user, ASPEN, LASER and the C language is shown in Figure 1.

  1. ISPE: A knowledge-based system for fluidization studies. 1990 Annual report

    SciTech Connect (OSTI)

    Reddy, S.

    1991-01-01

    Chemical engineers use mathematical simulators to design, model, optimize and refine various engineering plants/processes. This procedure requires the following steps: (1) preparation of an input data file according to the format required by the target simulator; (2) excecuting the simulation; and (3) analyzing the results of the simulation to determine if all ``specified goals`` are satisfied. If the goals are not met, the input data file must be modified and the simulation repeated. This multistep process is continued until satisfactory results are obtained. This research was undertaken to develop a knowledge based system, IPSE (Intelligent Process Simulation Environment), that can enhance the productivity of chemical engineers/modelers by serving as an intelligent assistant to perform a variety tasks related to process simulation. ASPEN, a widely used simulator by the US Department of Energy (DOE) at Morgantown Energy Technology Center (METC) was selected as the target process simulator in the project. IPSE, written in the C language, was developed using a number of knowledge-based programming paradigms: object-oriented knowledge representation that uses inheritance and methods, rulebased inferencing (includes processing and propagation of probabilistic information) and data-driven programming using demons. It was implemented using the knowledge based environment LASER. The relationship of IPSE with the user, ASPEN, LASER and the C language is shown in Figure 1.

  2. Dynamic partnership: A new approach to EM technology commercialization and deployment

    SciTech Connect (OSTI)

    Daly, D.J.; Erickson, T.A.; Groenewold, G.H.

    1996-12-31

    The task of restoring nuclear defense complex sites under the U.S. Department of Energy (DOE) Environmental Management (EM) Program presents an unprecedented challenge to the environmental restoration community. Effective and efficient cleanup requires the timely development or modification of novel cleanup technologies applicable to radioactive wastes. Fostering the commercialization of these innovative technologies is the mission of EM-50, the EM Program Office of Science and Technology. However, efforts are often arrested at the {open_quotes}valley of death,{close_quotes} the general term for barriers to demonstration, commercialization, and deployment. The Energy & Environmental Research Center (EERC), a not-for-profit, contract-supported organization focused on research, development, demonstration, and commercialization (RDD&C) of energy and environmental technologies, is in the second year of a cooperative agreement with the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC) designed to deliver EM technologies into the commercial marketplace through a unique combination of technical support, real-world demonstration, and brokering. This paper profiles this novel approach, termed {open_quotes}Dynamic Partnership,{close_quotes} and reviews the application of this concept to the ongoing commercialization and deployment of four innovative cleanup technologies. 2 tabs.

  3. Aquatic Ecosystem Enhancement at Mountaintop Mining Sites Symposium

    SciTech Connect (OSTI)

    Black, D. Courtney; Lawson, Peter; Morgan, John; Maggard, Randy; Schor, Horst; Powell, Rocky; Kirk, Ed. J.

    2000-01-12

    Welcome to this symposium which is part of the ongoing effort to prepare an Environmental Impact Statement (EIS) regarding mountaintop mining and valley fills. The EIS is being prepared by the U.S. Environmental Protection Agency, U.S. Army Corps of Engineers, U.S. Office of Surface Mining, and U.S. Fish and Wildlife Service, in cooperation with the State of West Virginia. Aquatic Ecosystem Enhancement (AEE) at mountaintop mining sites is one of fourteen technical areas identified for study by the EIS Interagency Steering Committee. Three goals were identified in the AEE Work Plan: 1. Assess mining and reclamation practices to show how mining operations might be carried out in a way that minimizes adverse impacts to streams and other environmental resources and to local communities. Clarify economic and technical constraints and benefits. 2. Help citizens clarify choices by showing whether there are affordable ways to enhance existing mining, reclamation, mitigation processes and/or procedures. 3. Ide identify data needed to improve environmental evaluation and design of mining projects to protect the environment. Todays symposium was proposed in the AEE Team Work Plans but coordinated planning for the event began September 15, 1999 when representatives from coal industry, environmental groups and government regulators met in Morgantown. The meeting participants worked with a facilitator from the Canaan Valley Institute to outline plans for the symposium. Several teams were formed to carry out the plans we outlined in the meeting.

  4. Proceedings of the Fuel Cells `97 Review Meeting

    SciTech Connect (OSTI)

    1998-01-01

    The Federal Energy Technology Center (FETC) sponsored the Fuel Cells '97 Review Meeting on August 26-28, 1997, in Morgantown, West Virginia. The purpose of the meeting was to provide an annual forum for the exchange of ideas and discussion of results and plans related to the research on fuel cell power systems. The total of almost 250 conference participants included engineers and scientists representing utilities, academia, and government from the U.S. and eleven other countries: Canada, China, India, Iran, Italy, Japan, Korea, Netherlands, Russia, Taiwan, and the United Kingdom. On first day, the conference covered the perspectives of sponsors and end users, and the progress reports of fuel-cell developers. Papers covered phosphoric, carbonate, and solid oxide fuel cells for stationary power applications. On the second day, the conference covered advanced research in solid oxide and other fuel cell developments. On the third day, the conference sponsored a workshop on advanced research and technology development. A panel presentation was given on fuel cell opportunities. Breakout sessions with group discussions followed this with fuel cell developers, gas turbine vendors, and consultants.

  5. Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 2

    SciTech Connect (OSTI)

    Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J.

    1987-08-01

    On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster dsplays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume II covers papers presented at sessions 5 and 6 on system for the production of synthesis gas, and on system for the production of power. All papers have been processed for inclusion in the Energy Data Base.

  6. Fracture Toughness and Strength in a New Class of Bainitic Chromium-Tungsten Steels

    SciTech Connect (OSTI)

    Mao, S. X.; Sikka, V. K.

    2006-06-01

    This project dealt with developing an understanding of the toughening and stengthening mechanisms for a new class of Fe-3Cr-W(V) steels developed at Oak Ridge National Laboratory (ORNL) in collaboration with Nooter Corporation and other industrial partners. The new steele had 50% higher tensile strength up to 650 degrees Celsius than currently used steels and the potential for not requiring any postweld heat treatment (PWHT) and for reducing equipment weight by 25%. This project was closely related to the Nooter project described in the report Development of a New Class of Fe-3Cr-W(V) Ferritic steels for Industrial Process Applications (ORNL/TM-2005/82). The project was carried out jointly by the University of Pittsburgh and ORNL. The University of Pittsburgh carried out fracture toughness measurements and microstructural analysis on base metal and welded plates prepared at ORNL. The project focused on three areas. The first dealt with detailed microstructural analysis of base compositions of 3Cr-3WV and 3Cr-3WBV(Ta) in both normalized (N) and normalized and tempered (NT) conditions. The second aspect of the prject dealt with determining tensile properties and fracture toughness values of K{subIC} at room temperature for both 3Cr-3Wv and 3Cr-3WV(Ta) compositions. The third focus of the project was to measure the fracture toughness values of the base metal and the heat-affectged zone (HAZ) of a plate of Fe-3Cr-W(Mo)V steel plate welded by the gas tungsten are (GTA) process. The HAZ toughness was measured in both the as-welded and the PWHT condition.

  7. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    DOE Patents [OSTI]

    Ljungdahl, Lars G.; Carriera, Laura H.

    1983-01-01

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  8. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    DOE Patents [OSTI]

    Ljungdahl, L.G.; Carriera, L.H.

    1983-05-24

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  9. Print

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    < 5k 0 < 50k < 100k < 250k < 500k < 1M > 1M > 5M > 10M DE MD DC MA RI NJ AZ UT WY ID OR WA CA TX OK KS CO NE SD ND MN WI IL IA MO AR LA MS AL FL GA TN KY IN OH MI ME NH CT VT NY PA WV VA NC SC MT AK HI NV NM Princeton Plasma Physics Laboratory Procured Materials and Services 2015 (> $35M) Small business procurements in US: $14.73M

  10. Annual Energy Outlook 2015 - Appendix B

    Gasoline and Diesel Fuel Update (EIA)

    5 U.S. Energy Information Administration | Annual Energy Outlook 2015 Regional maps Figure F4. Oil and gas supply model regions F-5 U.S. Energy Information Administration | Annual Energy Outlook 2014 Regional maps Figure F4. Oil and gas supply model regions Figure F4. Oil and Gas Supply Model Regions Atlantic WA MT WY ID NV UT CO AZ NM OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT ME RI MA NH VA WI MI OH NE SD MN ND AR OR CA VT East (1) Gulf of Mexico LA Gulf Coast (2)

  11. Annual Energy Outlook 2015 - Appendix F

    Gasoline and Diesel Fuel Update (EIA)

    1 U.S. Energy Information Administration | Annual Energy Outlook 2015 Source: U.S. Energy Information Administration, Office of Energy Analysis. U.S. Energy Information Administration / Annual Energy Outlook 2010 213 Appendix F Regional Maps Figure F1. United States Census Divisions Pacific South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT

  12. Annual Energy Outlook 2015 - Appendix F

    Gasoline and Diesel Fuel Update (EIA)

    7 U.S. Energy Information Administration | Annual Energy Outlook 2015 Regional maps Figure F6. Coal supply regions WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI MT NE IA KS MI AZ NM 500 0 SCALE IN MILES APPALACHIA Northern Appalachia Central Appalachia Southern Appalachia INTERIOR NORTHERN GREAT PLAINS Eastern Interior Western Interior Gulf Lignite Dakota Lignite Western Montana Wyoming, Northern Powder River Basin

  13. CANTON LAKESHORE CANTON E BEST CON NEAUT GIDD INGS EAST N ELLSWORT

    Gasoline and Diesel Fuel Update (EIA)

    Liquids Reserve Class No 2001 liquids reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1 - 10,000 Mbbl Appalachian Basin Boundary C a n a d a U S A OH PA MI NY Lake Erie Lake St. Claire Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Basin Fields (Mbbl) (MMcf) (Mbbl) Appalachian 3354 79,141 9,550,156 1,670,834 2001 Proved Reserves for Entire Applachian Basin WV Appalachian Basin, OH-PA (Panel 2 of 7) Oil and Gas Fields By 2001 Liquids

  14. Webster Co. Kanawha Co. Cabell C

    Gasoline and Diesel Fuel Update (EIA)

    BOE Reserve Class No 2001 reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1 - 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE Appalachian Basin Boundary Appalachian Basin, Southern OH (Panel 4 of 7) Oil and Gas Fields By 2001 BOE Reserve Class Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Basin Fields (Mbbl) (MMcf) (Mbbl) Appalachian 3354 79,141 9,550,156 1,670,834 2001 Proved Reserves for Entire Applachian Basin OH WV The mapped oil and gas field

  15. Table 4. U.S. shale gas plays: natural gas production and proved reserves, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. shale gas plays: natural gas production and proved reserves, 2013-14" ,,,,,2013,,2014," ","Change","2014-2013" "Basin",,"Shale Play",,"State(s)","Production","Reserves","Production","Reserves","Production"," Reserves" "Appalachian",,"Marcellus*",,"PA,WV",3.6,62.4,4.9,84.5,1.3,22.1 "Fort

  16. padd map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FL PADD 4: Rocky Mountain PADD 5: West Coast PADD 2: Midwest PADD 1: East Coast PADD 3: Gulf Coast PADD1A: New England PADD1B: Central Atlantic PADD1C: Lower Atlantic Petroleum Administration for Defense Districts AK HI WA OR CA NV AZ MT WY CO UT ID ND SD NE KS OK MO MN WI MI IL IN OH KY TN IA NM TX AR LA AL MS WV VA NC SC GA FL ME NH VT NY PA NJ MD DE MA CT RI

  17. GVR (G-Band Vapor Radiometer) M.P. Cadeddu and J.C. Liljegren Argonne Natl. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM 90/150 GHz data at COPS M.P. Cadeddu, A. Vogelmann, D.D. Turner, S. Crewell, U. Lönhert MWRHF (90/150) data Data available at archives from 06/22 to 12/31 Challenges associated with instrument: New instrument - new technology We still need to learn about calibration Spectral region (WV continuum) still uncertain in models Data available at archives from 06/22 to 12/31 Challenges associated with instrument: New instrument - new technology We still need to learn about calibration Spectral

  18. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0589 NETL NETL MGN, WV B25-Rm203 FE/RIC/GES/GGA Team Daniel Soeder Biogasification This project will use genomic DNA sequencing techniques to characterize the microbial ecosystem present in "un-mineable" coal. DANIEL SOEDER Digitally signed by DANIEL SOEDER Date: 2016.01.08 15:17:03 -05'00' 01 08 2016 John Ganz Digitally signed by John Ganz DN: cn=John Ganz, o=NETL, ou=DOE, email=john.ganz@netl.doe.gov, c=US Date: 2016.01.12 11:07:33 -05'00' 1 12

  19. Demonstrating a Market-Based Approach to the Reclamation of Mined Lands in West Virginia

    SciTech Connect (OSTI)

    John W. Goodrich-Mahoney; Paul Ziemkiewicz

    2006-07-19

    This is the third quarter progress report of Phase II of a three-phase project to develop and evaluate the efficacy of developing multiple environmental market trading credits on a partially reclaimed surface mined site near Valley Point, Preston County, WV. Construction of the passive acid mine drainage (AMD) treatment system was completed but several modifications from the original design had to be made following the land survey and during construction to compensate for unforeseen circumstances. We continued to collect baseline quality data from the Conner Run AMD seeps to confirm the conceptual and final design for the passive AMD treatment system.

  20. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"John E Amos","Coal","Appalachian Power Co",2900 2,"FirstEnergy Harrison Power Station","Coal","Allegheny Energy Supply Co LLC",1954 3,"Mt Storm","Coal","Virginia Electric & Power Co",1640 4,"Mitchell (WV)","Coal","Kentucky Power

  1. DOE Hydrogen and Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program DOE/CESA/TTC Hydrogen and Fuel Cells Webinar December 14, 2010 2 Examples of DOE-funded Partners and Locations - Fuel Cell Technologies Program TX NM AZ NC AR CA CO HI WA IL KY MA MN MO MS AL NV TN UT WV ID FL MI ND OR OH IN MT WY IO NE KS OK AK LA GA WI SC VA PA DE MD DC NJ NY RI CT VT NH ME SD Source: US DOE 12/2010 2 3 Fuel Cells: Addressing Energy Challenges 4

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Repressuring (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n9020wv2m.xls"

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Vented and Flared (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n9040wv2m.xls"

  4. Coal to Liquids | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal to Liquids Coal to Liquids Major General Allen Tackett of the National Guard's 130th Airlift Wing dispenses the first fill-up of hydrogen fuel from the Yeager facility. Located in Charleston, WV, the Yeager facility was constructed and operated with support from the Office of Fossil Energy’s National Energy Technology Laboratory. Major General Allen Tackett of the National Guard's 130th Airlift Wing dispenses the first fill-up of hydrogen fuel from the Yeager facility. Located in

  5. FY2002 ENERGY STORAGE SYSTEMS PEER REVIEW AGENDA

    Office of Environmental Management (EM)

    ENERGY STORAGE SYSTEMS RESEARCH PROGRAM ANNUAL PEER REVIEW November 2-3, 2006 Washington Marriott Hotel, Washington, DC (USA) AGENDA Thursday, November 2, 2004 7:45 AM Continental Breakfast 8:30 Welcome and Overview - Dr. Imre Gyuk, DOE 8:40 DOE Perspective - DOE 9:00 ESS Program Overview - John Boyes, Sandia National Laboratories 9:20 NAS Battery Performance at Charleston, WV - Ali Nourai, AEP Corp. (Funded in part by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS)

  6. HEMORANDUH TO: FILE DATE

    Office of Legacy Management (LM)

    HEMORANDUH TO: FILE DATE 1123 lLjl ---WV-------------- FROM: P. s&w+ -------v-----s-- SUBJECT: lJ+ - e;& SITE NAME: LJo"zL - /L,' de Cd -J--h=- ALTERNATE l --e-e-- ------w------- ---,,,' ,m--, NAME: ---------------------- CITY: LL-pL~ ------------ ------------- STATE3 e--w-- OWNER tS) -----w-- Past I --k-!!.l~ -pa L . -v-----w------- Current: Owner contac?-ed 0 yes 0 no; if yes, I+Lff A zid;&m - -------------------------- date contacted ------B--m--- TYPE OF OPERATION

  7. Hr. Richard Ziehm. President : Precision Extrusion Company 720 E. Green Avenue

    Office of Legacy Management (LM)

    WV23 1987 .' c Hr. Richard Ziehm. President : Precision Extrusion Company 720 E. Green Avenue Bensenville,,Illinois, 60106 : '. ;' , Dear Mr. Ziehm: Wall0 11&lr/a7 NE-23 : ,~ F' .v 11 w I would like to thank you and Mr. Cramer for your assistance in the Department of Energy's investigations regarding past Atomic Energy Commission activities at your site. As I indicated, based on the records we have identified and my discussions with you, we have concluded that there is little potential for

  8. MEMORANDUM TO: FILE DATE

    Office of Legacy Management (LM)

    5/22/w ------..------------- FROM: D- f&u+ ---------------- SUBJECT: E/;-+&o.. ReC*-C.AB&;O* +L /z&J; &DC,, /Ptrr; CLonr z-r. SITE NAME: _ ALTERNATE ----------WV-- --------------------- NAME: EAT ---- ------------------ CAY: r-led 4' or k -------------------------- STATE: ti Y VW---- OWNER tS) -------- Past: ---Cl&zt.t.r-----~-~- ---- =urr=nt: ti& LPdA Owner cnntacted 0 yes mo; i+ ye8, -------------------------- date contacted ------------- TYPE OF OPERATION

  9. MEMORANDUM TO: FILE DCSTE

    Office of Legacy Management (LM)

    DCSTE 1 h /9/ -----------------_- FROM: D. SYtwc ---------------- SUBJECT: Grew d&4 <odbf-p Eli-;* & ftLl R.Qu- J&O-7 SITE ALTERNATE NAME: CITY: N cl or Jo0 -------------------------- STATE: a# -w--s- OWNER(S) ----e--- m4~Od~ -------------------------- Fno; if yes, date contacted ------m-e---- TYPE OF OPERATION ---w-------v----- EResearch & Development B Facility Typm 0 Production scale testing 0 Pilot Scale 621 Bench Scale Process 0 Theoretical Studies 0 Sample & Analysis

  10. Buildings Energy Data Book: 3.9 Educational Facilities

    Buildings Energy Data Book [EERE]

    6 2010 Regional New Construction and Renovations Expenditures for Public K-12 Schools ($Million) Region New Schools Additions Renovation Total Region 1 (CT, MA, ME, NH, RI, VT) Region 2 (NJ, NY, PA) Region 3 (DE, MD, VA, WV) Region 4 (KY, NC, SC, TN) Region 5 (AL, FL, GA, MS) Region 6 (IN, MI, OH) Region 7 (IL, MN, WI) Region 8 (IA, KS, MO, NE) Region 9 (AR, LA, OK, TX) Region 10 (CO, MT, ND, NM, SD, UT, WY) Region 11 (AZ, CA, HI, NV) Region 12 (AK, ID, OR, WA) Total Source(s): School Planning

  11. EJ and EK Pay Table | Department of Energy

    Office of Environmental Management (EM)

    EJ and EK Pay Table EJ and EK Pay Table The 2014 EJ and EK pay table excludes locality pay. Refer to the General Schedule Complete Set of Locality Pay Tables to determine the locality pay for your applicable geographic area. INCORPORATING THE 1% GENERAL SCHEDULE INCREASE AND A LOCALITY PAYMENT OF 24.22% FOR THE LOCALITY PAY AREA OF WASHINGTON-BALTIMORE-NORTHERN VIRGINIA, DC-MD-VA-WV-PA Special Grade Min. base Min. Locality Max. Base Max. Locality GS Grade/Step Equivalent 01 $27,705 $34,415

  12. Measurements of WW and WZ Production in W+jets Final States in pp̄ Collisions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; et al

    2012-05-02

    We study WW and WZ production with lνqq (l=e,μ) final states using data collected by the D0 detector at the Fermilab Tevatron Collider corresponding to 4.3 fb⁻¹ of integrated luminosity from pp̄ collisions at √s=1.96 TeV. Assuming the ratio between the production cross sections σ(WW) and σ(WZ) as predicted by the standard model, we measure the total WV (V=W,Z) cross section to be σ(WV)=19.6+3.2-3.0 pb and reject the background-only hypothesis at a level of 7.9 standard deviations. We also use b-jet discrimination to separate the WZ component from the dominant WW component. Simultaneously fitting WW and WZ contributions, we measuremore »σ(WW)=15.9+3.7-3.2 pb and σ(WZ)=3.3+4.1-3.3 pb, which is consistent with the standard model predictions.« less

  13. Measurements of WW and WZ Production in W+jets Final States in pp̄ Collisions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; et al

    2012-05-02

    We study WW and WZ production with lνqq (l=e,μ) final states using data collected by the D0 detector at the Fermilab Tevatron Collider corresponding to 4.3 fb⁻¹ of integrated luminosity from pp̄ collisions at √s=1.96 TeV. Assuming the ratio between the production cross sections σ(WW) and σ(WZ) as predicted by the standard model, we measure the total WV (V=W,Z) cross section to be σ(WV)=19.6+3.2-3.0 pb and reject the background-only hypothesis at a level of 7.9 standard deviations. We also use b-jet discrimination to separate the WZ component from the dominant WW component. Simultaneously fitting WW and WZ contributions, we measuremore » σ(WW)=15.9+3.7-3.2 pb and σ(WZ)=3.3+4.1-3.3 pb, which is consistent with the standard model predictions.« less

  14. Measurements of WW and WZ Production in W+jets Final States in pp? Collisions

    SciTech Connect (OSTI)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Aoki, M.; Askew, A.; sman, B.; Atkins, S.; Atramentov, O.; Augsten, K.; Avila, C.; BackusMayes, J.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Belanger-Champagne, C.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besanon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burnett, T. H.; Buszello, C. P.; Calpas, B.; Camacho-Prez, E.; Carrasco-Lizarraga, M. A.; Casey, B. C. K.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chevalier-Thry, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Croc, A.; Cutts, D.; Das, A.; Davies, G.; De, K.; de Jong, S. J.; De La Cruz-Burelo, E.; Dliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dorland, T.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; Garca-Guerra, G. A.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grnendahl, S.; Grnewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hagopian, S.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffr, M.; Jamin, D.; Jayasinghe, A.; Jesik, R.; Johns, K.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kulikov, S.; Kumar, A.; Kupco, A.; Kur?a, T.; Kuzmin, V. A.; Kvita, J.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lellouch, J.; Li, L.; Li, Q. Z.; Lietti, S. M.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Mackin, D.; Madar, R.; Magaa-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martnez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Muanza, G. S.; Mulhearn, M.; Nagy, E.; Naimuddin, M.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Novaes, S. F.; Nunnemann, T.; Obrant, G.; Orduna, J.; Osman, N.; Osta, J.; Otero y Garzn, G. J.; Padilla, M.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Ptroff, P.; Piegaia, R.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Polozov, P.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Rangel, M. S.; Ranjan, K.; Ratoff, P. N.; Razumov, I.; Renkel, P.; Rijssenbeek, M.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Safronov, G.; Sajot, G.; Salcido, P.; Snchez-Hernndez, A.; Sanders, M. P.; Sanghi, B.; Santos, A. S.; Savage, G.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schliephake, T.; Schlobohm, S.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shchukin, A. A.; Shivpuri, R. K.; Simak, V.; Sirotenko, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Smith, K. J.; Snow, G. R.; Snow, J.; Snyder, S.; Sldner-Rembold, S.; Sonnenschein, L.

    2012-05-02

    We study WW and WZ production with l?qq (l=e,?) final states using data collected by the D0 detector at the Fermilab Tevatron Collider corresponding to 4.3 fb? of integrated luminosity from pp? collisions at ?s=1.96 TeV. Assuming the ratio between the production cross sections ?(WW) and ?(WZ) as predicted by the standard model, we measure the total WV (V=W,Z) cross section to be ?(WV)=19.6+3.2-3.0 pb and reject the background-only hypothesis at a level of 7.9 standard deviations. We also use b-jet discrimination to separate the WZ component from the dominant WW component. Simultaneously fitting WW and WZ contributions, we measure ?(WW)=15.9+3.7-3.2 pb and ?(WZ)=3.3+4.1-3.3 pb, which is consistent with the standard model predictions.

  15. Measurements of WW and WZ Production in W plus jets Final States in p(p)over-bar Collisions

    SciTech Connect (OSTI)

    Abazov V. M.; Abbott B.; Acharya B. S.; Adams M.; Adams T.; Alexeev G. D.; Alkhazov G.; Alton A.; Alverson G.; Alves G. A.; Aoki M.; Askew A.; Asman B.; Atkins S.; Atramentov O.; Augsten K.; Avila C.; BackusMayes J.; Badaud F.; Bagby L.; Baldin B.; Bandurin D. V.; Banerjee S.; Barberis E.; Baringer P.; Barreto J.; Bartlett J. F.; Bassler U.; Bazterra V.; Bean A.; Begalli M.; Belanger-Champagne C.; Bellantoni L.; Beri S. B.; Bernardi G.; Bernhard R.; Bertram I.; Besancon M.; Beuselinck R.; Bezzubov V. A.; Bhat P. C.; Bhatnagar V.; Blazey G.; Blessing S.; Bloom K.; Boehnlein A.; Boline D.; Boos E. E.; Borissov G.; Bose T.; Brandt A.; Brandt O.; Brock R.; Brooijmans G.; Bross A.; Brown D.; Brown J.; Bu X. B.; Buehler M.; Buescher V.; Bunichev V.; Burdin S.; Burnett T. H.; Buszello C. P.; Calpas B.; Camacho-Perez E.; Carrasco-Lizarraga M. A.; Casey B. C. K.; Castilla-Valdez H.; Chakrabarti S.; Chakraborty D.; Chan K. M.; Chandra A.; Chapon E.; Chen G.; Chevalier-Thery S.; Cho D. K.; Cho S. W.; Choi S.; Choudhary B.; Cihangir S.; Claes D.; Clutter J.; Cooke M.; Cooper W. E.; Corcoran M.; Couderc F.; Cousinou M. -C.; Croc A.; Cutts D.; Das A.; Davies G.; De K.; de Jong S. J.; De la Cruz-Burelo E.; Deliot F.; Demina R.; Denisov D.; Denisov S. P.; Desai S.; Deterre C.; DeVaughan K.; Diehl H. T.; Diesburg M.; Ding P. F.; Dominguez A.; Dorland T.; Dubey A.; Dudko L. V.; Duggan D.; Duperrin A.; Dutt S.; Dyshkant A.; Eads M.; Edmunds D.; Ellison J.; Elvira V. D.; Enari Y.; Evans H.; Evdokimov A.; Evdokimov V. N.; Facini G.; Ferbel T.; Fiedler F.; Filthaut F.; Fisher W.; Fisk H. E.; Fortner M.; Fox H.; Fuess S.; Garcia-Bellido A.; Garcia-Guerra G. A.; Gavrilov V.; Gay P.; Geng W.; Gerbaudo D.; Gerber C. E.; Gershtein Y.; Ginther G.; Golovanov G.; Goussiou A.; Grannis P. D.; Greder S.; Greenlee H.; Greenwood Z. D.; Gregores E. M.; Grenier G.; Gris Ph.; Grivaz J. -F.; Grohsjean A.; Gruenendahl S.; Gruenewald M. W.; Guillemin T.; Gutierrez G.; Gutierrez P.; Haas A.; Hagopian S.; Haley J.; Han L.; Harder K.; Harel A.; Hauptman J. M.; Hays J.; Head T.; Hebbeker T.; Hedin D.; Hegab H.; Heinson A. P.; Heintz U.; Hensel C.; Heredia-De la Cruz I.; Herner K.; Hesketh G.; Hildreth M. D.; Hirosky R.; Hoang T.; Hobbs J. D.; Hoeneisen B.; Hohlfeld M.; Hubacek Z.; Hynek V.; Iashvili I.; Ilchenko Y.; Illingworth R.; Ito A. S.; Jabeen S.; Jaffre M.; Jamin D.; Jayasinghe A.; Jesik R.; Johns K.; Johnson M.; Jonckheere A.; Jonsson P.; Joshi J.; Jung A. W.; Juste A.; Kaadze K.; Kajfasz E.; Karmanov D.; Kasper P. A.; Katsanos I.; Kehoe R.; Kermiche S.; Khalatyan N.; Khanov A.; Kharchilava A.; Kharzheev Y. N.; Kohli J. M.; Kozelov A. V.; Kraus J.; Kulikov S.; Kumar A.; Kupco A.; Kurca T.; Kuzmin V. A.; Kvita J.; Lammers S.; Landsberg G.; Lebrun P.; Lee H. S.; Lee S. W.; Lee W. M.; Lellouch J.; Li L.; Li Q. Z.; Lietti S. M.; Lim J. K.; Lincoln D.; Linnemann J.; Lipaev V. V.; Lipton R.; Liu Y.; Lobodenko A.; Lokajicek M.; de Sa R. Lopes; Lubatti H. J.; Luna-Garcia R.; Lyon A. L.; Maciel A. K. A.; Mackin D.; Madar R.; Magana-Villalba R.; Malik S.; Malyshev V. L.; Maravin Y.; Martinez-Ortega J.; McCarthy R.; McGivern C. L.; Meijer M. M.; Melnitchouk A.; Menezes D.; Mercadante P. G.; Merkin et al.

    2012-05-02

    We study WW and WZ production with {ell}{nu}qq ({ell} = e,{mu}) final states using data collected by the D0 detector at the Fermilab Tevatron Collider corresponding to 4.3 fb{sup -1} of integrated luminosity from p{bar p} collisions at {radical}s = 1.96 TeV. Assuming the ratio between the production cross sections {sigma}(WW) and {sigma}(WZ) as predicted by the standard model, we measure the total WV (V = W,Z) cross section to be {sigma}(WV) = 19.6{sub -3.0}{sup +3.2} pb and reject the background-only hypothesis at a level of 7.9 standard deviations. We also use b-jet discrimination to separate the WZ component from the dominant WW component. Simultaneously fitting WW and WZ contributions, we measure {sigma}(WW) = 15.9{sub -3.2}{sup +3.7} pb and {sigma}(WZ) = 3.3{sub -3.3}{sup +4.1} pb, which is consistent with the standard model predictions.

  16. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2001

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-10-01

    No significant environmental problems were identified at the National Energy Technology Laboratory (NETL) sites in Morgantown (MGN), Pittsburgh (PGH), Tulsa (NPTO) and Fairbanks (AEO) during 2001. No radionuclides were released from the sites during 2001. The sites maintain two major environmental programs: waste management, and environmental media and release management. These two programs encompass waste handling, storage, and disposal, waste minimization and pollution prevention, air quality emissions, surface-water discharges, groundwater impacts, industrial wastewater discharges, and spill control procedures. The Morgantown and Pittsburgh sites currently maintain complete monitoring programs for groundwater, stormwater discharge, laboratory wastewater discharge, and meteorological data. In addition, an annual air emissions inventory is prepared. A comprehensive Directives Program aimed at managing environmental, safety, health requirements, and risks was initiated in 1997, continued through subsequent years, and will be completed in 2003. The primary objective of the program is to identify and implement standards that will protect the health and safety of workers, public, and the environment. This program started with a careful and thorough analysis of risks confronting workers and the communities surrounding NETL sites. Following this analysis, requirements and best management practices were evaluated to determine how requirements could best be used to advance the mission of NETL. Teams of subject-matter experts analyzed the work assigned to determine potential hazards and identify ways to remove or control those hazards. In 2001, NETL developed or revised a series of directives in two major areas: safety analysis and review (SAR) processes, and integrated safety management (ISM) directives. SAR directives were issued for research and development (R&D) operations, support operations, and facilities. ISM directives were released on management processes, such as standards maintenance, performance measures, assessments, corrective actions, lessons-learned, and training. In conjunction with the Directives Program, the use of the voluntary environmental management system, ISO 14001, was evaluated. This includes the only international environmental management standard to which an entity can be certified. NETL is using the specifications and guidance from this standard to identify an effective environmental management system for the NETL sites. An outside consultant performed an environmental management system assessment (also referred to as an initial environmental review), as referenced in ISO 14004. The objective of the assessment was to determine the degree to which NETL's existing integrated safety management system (ISMS), safety analysis review system (SARS), and environmental management programs conformed with the ISO14001 Environmental Management System (EMS) standard and the United States Environmental Protection Agency's (EPA) Code of Environmental Management Principles. A performance measurement system continued to be maintained during 2001 to assist in evaluating how effectively activities at NETL meet mission-critical goals and how well missions and strategies are connected in the DOE strategic plan. This system also provides data to assist in gauging performance against the DOE critical success factors, that is, performance against technical objectives. Various environmental milestones can be tracked to completion, thus giving NETL measures by which to gauge the sites' goals of remaining in regulatory compliance and achieving best-in-class environmental performance.

  17. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, October 1--December 31, 1995

    SciTech Connect (OSTI)

    1997-05-01

    On September 30, 1993, the U.S. Department of Energy - Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SITJC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC-30252). Under the agreement SIUC will develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mine workings, and assess the environmental impact of such underground placements. This report discusses the technical progress achieved during the period October 1 - December 31, 1995. Rapid Aging Test columns were placed in operation during the second quarter of 1995, and some preliminary data were acquired during this quarter. These data indicate that the highly caustic pH is initially generated in the pneumatic mix, but that such pH is short lived. The initial pH rapidly declines to the range of 8 to 9. Leachates in this pH range will have little or no effect on environmental concerns. Dedicated sampling equipment was installed in the groundwater monitoring wells at the proposed placement site at the Peabody Number 10 mine. Also, the groundwater monitoring wells were {open_quotes}developed{close_quotes} during the quarter to remove the fines trapped in the sand pack and screen. A new procedure was used in this process, and proved successful. A series of tests concerning the geotechnical characteristics of the pneumatic mixes were conducted. Results show that both moisture content and curing time have a direct effect on the strength of the mixes. These are, of course, the expected general results. The Christmas holidays and the closing of the University during an extended period affected the progress of the program during the quarter. However, the program is essentially on schedule, both technically and fiscally, and any delays will be overcome during the first quarter of 1996.

  18. Coal fueled diesel system for stationary power applications-technology development

    SciTech Connect (OSTI)

    1995-08-01

    The use of coal as a fuel for diesel engines dates back to the early days of the development of the engine. Dr. Diesel envisioned his concept as a multi-fuel engine, with coal a prime candidate due to the fact that it was Germany`s primary domestic energy resource. It is interesting that the focus on coal burning diesel engines appears to peak about every twenty years as shortages of other energy resources increase the economic attractiveness of using coal. This periodic interest in coal started in Germany with the work of Diesel in the timeframe 1898-1906. Pawlikowski carried on the work from 1916 to 1928. Two German companies commercialized the technology prior to and during World War II. The next flurry of activity occurred in the United States in the period from 1957-69, with work done at Southwest Research Institute, Virginia Polytechnical University, and Howard University. The current period of activity started in 1978 with work sponsored by the Conservation and Renewable Energy Branch of the US Department of Energy. This work was done at Southwest Research Institute and by ThermoElectron at Sulzer Engine in Switzerland. In 1982, the Fossil Energy Branch of the US Department of Energy, through the Morgantown Energy Technology Center (METC) initiated a concentrated effort to develop coal burning diesel and gas turbine engines. The diesel engine work in the METC sponsored program was performed at Arthur D. Little (Cooper-Bessemer as subcontractor), Bartlesville Energy Technology Center (now NIPER), Caterpillar, Detroit Diesel Corporation, General Motor Corporation (Electromotive Division), General Electric, Southwest Research Institute, and various universities and other research and development organizations. This DOE-METC coal engine RD & D initiative which spanned the 1982-1993 timeframe is the topic of this review document. The combustion of a coal-water fuel slurry in a diesel engine is described. The engine modifications necessary are discussed.

  19. Clean coal reference plants: Atmospheric CFB. Topical report, Task 1

    SciTech Connect (OSTI)

    Rubow, L.N.; Harvey, L.E.; Buchanan, T.L.; Carpenter, R.G.; Hyre, M.R.; Zaharchuk, R.

    1992-06-01

    The Clean Coal Technology Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of full-scale facilities. The goal of the program is to provide the US energy marketplace with a number of advanced, more efficient and environmentally responsive coal-using technologies. The Morgantown Energy Technology Center (METC) has the responsibility for monitoring the CCT Projects within certain technology categories, which correspond to the center`s areas of technology development, including atmospheric fluidized bed combustion, pressurized fluidized bed combustion, integrated gasification combined cycle, mild gasification, and industrial applications. A measure of success in the CCT program will be the commercial acceptance of the new technologies being demonstrated. The dissemination of project information to potential users is being accomplished by producing a series of reference plant designs which will provide the users a basis for the selection of technologies applicable to their future energy requirements. As a part of DOE`s monitoring and evaluation of the CCT Projects, Gilbert/Commonwealth (G/C) has been contracted to assist in this effort by producing the design of a commercial size Reference Plant, utilizing technologies developed in the CCT Program. This report, the first in a series, describes the design of a 400 MW electric power plant, utilizing an atmospheric pressure, circulating fluidized bed combustor (ACFB) similar to the one which was demonstrated at Colorado-Ute`s Nucla station, funded in Round 1 of the CCT Program. The intent of the reference plant design effort was to portray a commercial power plant with attributes considered important to the utility industry. The logical choice for the ACFB combustor was Pyropower since they supplied the ACFB for the Nucla Project.

  20. Hot coal gas desulfurization with manganese-based sorbents. Annual report, September 1992--September 1993

    SciTech Connect (OSTI)

    Hepworth, M.T.

    1993-12-01

    The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies at the US Steel Fundamental Research Laboratories in Monroeville, PA, by E. T. Turkdogan indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This Annual Topical Report documents progress in pelletizing and testing via thermo-gravimetric analysis of individual pellet formulations of manganese ore/ alumina combinations and also manganese carbonate/alumina with two binders, dextrin and bentonite. It includes the prior Quarterly Technical Reports which indicate that the manganese carbonate material, being of higher purity than the manganese ore, has a higher degree of sulfur capacity and more rapid absorption kinetics. A 2-inch fixed-bed reactor has been fabricated and is now ready for subjecting pellets to cyclic loading and regeneration.

  1. Subtask 3.12 -- Small power systems. Semi-annual report, January 1--June 30, 1996

    SciTech Connect (OSTI)

    NONE

    1997-08-01

    The programmatic goal in advanced power systems is to develop small integrated waste treatment, water purification, and power systems in the range of 20 kW to 20 MW in cooperation with commercial vendors. These systems will be designed to incorporate the advanced technical capabilities of the Energy and Environmental Research Center (EERC) with the latest advancement in vendor-offered hardware and software. The primary objective for the work to be performed under this subtask is to develop a commercialization plan for small power systems, evaluate alternative design concepts, and select practical and economical designs for targeted development in upcoming years. A leading objective for the EERC will be to continue to form strong business partnerships with equipment manufacturers who can commercialize the selected power system and treatment design(s). FY95 activities were focused on collecting information from vendors and evaluating alternative design concepts. This year`s activities began with the process of selecting one or more designs for targeted development. Once the design(s) are selected, specific technical requirements will be defined that will be the subject of focused studies to overcome technical barriers to achieving a clean, cost-effective generating system. During this program year, the technical barriers limiting the use of the selected technology in the small power system market will be identified. A plan will be devised to overcome these barriers. Also during this program year, strong business partnerships will be developed between the EERC, Morgantown Energy Technology Center (METC), and equipment manufacturers who can commercialize the selected power system(s). A plan will be created for rapid development leading to commercialization. This may involve integration of this task with other research activities currently ongoing at the EERC and METC.

  2. Gas miscible displacement enhanced oil recovery: Technology status report

    SciTech Connect (OSTI)

    Not Available

    1986-10-01

    Gas miscible displacement enhanced oil recovery research is conducted by the US Department of Energy's Morgantown Energy Technology Center to advance the application of miscible carbon dioxide flooding. This research is an integral part of a multidisciplinary effort to improve the technology for producing additional oil from US resources. This report summarizes the problems of the technology and the 1986 results of the ongoing research that was conducted to solve those problems. Poor reservoir volumetric sweep efficiency is the major problem associated with gas flooding and all miscible displacements. This problem results from the channeling and viscous fingering that occur due to the large differences between viscosity or density of the displacing and displaced fluids (i.e., carbon dioxide and oil, respectively). Simple modeling and core flooding studies indicate that, because of differences in fluid viscosities, breakthrough can occur after only 30% of the total pore volume (PV) of the rock has been injected with gas, while field tests have shown breakthrough occurring much earlier. The differences in fluid densities lead to gravity segregation. The lower density carbon dioxide tends to override the residual fluids in the reservoir. This process would be considerably more efficient if a larger area of the reservoir could be contacted by the gas. Current research has focused on the mobility control, computer simulation, and reservoir heterogeneity studies. Three mobility control methods have been investigated: (1) the use of polymers for direct thickening of high-density carbon dioxide, (2) mobile ''foam-like dispersions'' of carbon dioxide and an aqueous surfactant, and (3) in situ deposition of chemical precipitates. 22 refs., 14 figs., 6 tabs.

  3. LNG SAFETY RESEARCH: FEM3A MODEL DEVELOPMENT

    SciTech Connect (OSTI)

    Jerry Havens; Iraj A. Salehi

    2005-02-21

    This quarterly report for DE-FG26-04NT42030 covers a period from October 1, 2004 to December 31, 2004. On December 9, 2004 a meeting was held in Morgantown to rescope the LNG safety modeling project such that the work would complement the DOE's efforts relative to the development of the intended LNG-Fluent model. It was noted and discussed at the December 9th meeting that the fundamental research being performed on surface to cloud heat transfer and low wind speed issues will be relevant to the development of the DOE LNG/Fluent Model. In general, it was decided that all research to be performed from December 9th through the remainder of the contract is to be focused on the development of the DOE LNG/Fluent model. In addition, all GTI activities for dissemination and transfer of FEM3A will cease and dissemination activities will focus on the new DOE LNG/Fluent model. The proposed new scope of work is presented in section 4 of this report. The work reported in the present document relates to the original scope of work which was in effect during the reporting period. The future work will be re-scoped to meet the requirements of the new scope of work. During the report period work was underway to address numerical problems present during simulation of low-wind-speed, stable, atmospheric conditions with FEM3A. Steps 1 and 2 in the plan outlined in the first Quarterly report are complete and steps 3 and 4 are in progress. During this quarter, the University of Arkansas has been investigating the effect upon numerical stability of the heat transfer model used to predict the surface-to-cloud heat transfer, which can be important for LNG vapor dispersion. Previously, no consideration has been given to ground cooling as a result of heat transfer to the colder gas cloud in FEM3A.

  4. LNG Safety Research: FEM3A Model Development

    SciTech Connect (OSTI)

    Liese Dallbauman

    2004-06-30

    During this reporting period, kickoff and planning meetings were held. Subcontracted experimental and modeling tasks were defined. Efforts to address the numerical stability problems that hamper FEM3A's applicability to low wind speed, stable atmospheric conditions were initiated. A detailed review of FEM3A code and its execution, required for development of an accessible user interface, was also begun. A one-day workshop on LNG safety models has been scheduled for September 2004. The goals of this project are to develop a national focal point for LNG safety research and technical dissemination and to develop the FEM3A dispersion model for application to general scenarios involving dispersion problems with obstacle and terrain features of realistic complexity. During this reporting period, the objectives and scope of the project and its constituent tasks were discussed at a project kickoff meeting in Morgantown. Details of the subcontracted experimental and modeling tasks were further defined at a separate meeting at the University of Arkansas. Researchers at the university have begun to modify the turbulence closure model used in FEM3A to insure numerical stability during simulation of low-wind-speed, stable atmospheric conditions. The university's wind tunnel is being prepared for upcoming experimental studies. GTI has begun a detailed review of the FEM3A code and its execution that will provide guidance during development of an accessible user interface. Plans were made for a one day workshop on LNG safety models that will be held at the end of September and will provide an introduction to currently available and pending software tools.

  5. The development of a porous silicon nitride crossflow filter; Final report, September 1988--September 1992

    SciTech Connect (OSTI)

    1992-09-01

    This report summarizes the work performed in developing a permeable form of silicon nitride for application to ceramic crossflow filters for use in advanced coal-fired electric power plants. The program was sponsored by the Department of Energy Morgantown Energy Technology Center and consisted of a design analysis and material development phase and a filter manufacture and demonstration phase. The crossflow filter design and operating requirements were defined. A filter design meeting the requirements was developed and thermal and stress analyses were performed. Material development efforts focused initially on reaction-bonded silicon nitride material. This approach was not successful, and the materials effort was refocused on the development of a permeable form of sintered silicon nitride (SSN). This effort was successful. The SSN material was used for the second phase of the program, filter manufacture and evaluation. Four half-scale SAN filter modules were fabricated. Three of the modules were qualified for filter performance tests. Tests were performed on two of the three qualified modules in the High-Temperature, High-Pressure facility at the Westinghouse Science and Technology Center. The first module failed on test when it expanded into the clamping device, causing dust leakage through the filter. The second module performed well for a cumulative 150-hr test. It displayed excellent filtration capability during the test. The blowback pulse cleaning was highly effective, and the module apparently withstood the stresses induced by the periodic pulse cleaning. Testing of the module resumed, and when the flow of combustion gas through the filter was doubled, cracks developed and the test was concluded.

  6. Remote-site power generation opportunities for Alaska

    SciTech Connect (OSTI)

    Jones, M.L.

    1997-03-01

    The Energy and Environmental Research Center (EERC) has been working with the Federal Energy Technology Center in Morgantown, West Virginia, to assess options for small, low-cost, environmental acceptable power generation for application in remote areas of Alaska. The goal of this activity was to reduce the use of fuel in Alaskan villages by developing small, low-cost power generation applications. Because of the abundance of high-quality coal throughout Alaska, emphasis was placed on clean coal applications, but other energy sources, including geothermal, wind, hydro, and coalbed methane, were also considered. The use of indigenous energy sources would provide cheaper cleaner power, reduce the need for PCE (Power Cost Equalization program) subsidies, increase self-sufficiency, and retain hard currency in the state while at the same time creating jobs in the region. The introduction of economical, small power generation systems into Alaska by US equipment suppliers and technology developers aided by the EERC would create the opportunities for these companies to learn how to engineer, package, transport, finance, and operate small systems in remote locations. All of this experience would put the US developers and equipment supply companies in an excellent position to export similar types of small power systems to rural areas or developing countries. Thus activities in this task that relate to determining the generic suitability of these technologies for other countries can increase US competitiveness and help US companies sell these technologies in foreign countries, increasing the number of US jobs. The bulk of this report is contained in the two appendices: Small alternative power workshop, topical report and Global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

  7. Extractors manual for Oil Shale Data Base System: Major Plants Data Base

    SciTech Connect (OSTI)

    Not Available

    1986-08-01

    To date, persons working in the development of oil shale technology have found limited amounts of reference data. If data from research and development could be made publicly available, however, several functions could be served. The duplication of work could be avoided, documented test material could serve as a basis to promote further developments, and research costs could possibly be reduced. To satisfy the engineering public's need for experimental data and to assist in the study of technical uncertainties in oil shale technology, the Department of Energy (DOE) has initiated the development of a data system to store the results of Government-sponsored research. A technology-specific data system consists of data that are stored for that technology in each of the specialized data bases that make up the Morgantown Energy Technology Center (METC) data system. The Oil Shale Data System consists of oil shale data stored in the Major Plants Data Base (MPDB), Test Data Data Base (TDDB), Resource Extraction Data Base (REDB), and Math Modeling Data Base (MMDB). To capture the results of Government-sponsored oil shale research programs, documents have been written to specify the data that contractors need to report and the procedures for reporting them. The documents identify and define the data from oil shale projects to be entered into the MPDB, TDDB, REDB, and MMDB, which will meet the needs of users of the Oil Shale Data System. This document addresses what information is needed and how it must be formatted for entry to the MPDB for oil shale. The data that are most relevant to potential Oil Shale Data System users have been divided into four categories: project tracking needs; economic/commercialization needs; critical performance needs; and modeling and research and development needs. 2 figs., 31 tabs.

  8. Chemical coal cleaning process and costs refinement for coal-water slurry manufacture. Semi-annual progress report

    SciTech Connect (OSTI)

    Bhasin, A.K.; Berggren, M.H.; Smit, F.J.; Ames, L.B.; Ronzio, N.J.

    1985-03-01

    The Department of Energy, through the Morgantown Energy Technology Center (METC), has initiated a program to determine the feasibility and potential applications for direct firing of coal and coal-derived fuels in heat engines, specifically gas turbines and diesel engines. AMAX Extractive Research and Development, Inc. supplied METC with two lots of highly beneficiated coal slurry fuel for use in the Heat Engines programs. One of the lots was of ultra-clean coal-water slurry fuel (UCCSF) for which a two-stage caustic and acid leaching procedure was developed to chemically clean the coal. As a part of the contract, AMAX R and D developed a conceptual design and preliminary cost estimate for a commercial-scale process for UCCSF manufacture. The contract was extended to include the following objectives: define chemical cleaning and slurry preparation process conditions and costs more precisely; investigate methods to reduce the product cost; and determine the relationship, in dollars per million Btu, between product cost and fuel quality. Laboratory investigations have been carried out to define the chemical cleaning process conditions required to generate fuels containing from 0.17 to 1.0% ash. Capital and operating cost refinements are to be performed on the basis of the preferred process operating conditions identified during the laboratory investigations. Several such areas for cost reductions have been identified. Caustic strengths from 2 to 7% NaOH are currently anticipated while 25% NaOH was used as the basis for the preliminary cost estimate. In addition, leaching times for each of the process steps have been reduced to half or less of the times used for the preliminary cost estimate. Improvement of fuel quality has been achieved by use of a proprietary hot-water leaching step to reduce the residual alkali content to less than 250 ppM (Na/sub 2/O plus K/sub 2/O) on a dry coal basis. 2 refs., 3 figs., 24 tabs.

  9. Preliminary design for hot dirty-gas control-valve test facility. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    This report presents the results of a preliminary design and cost estimating effort for a facility for the testing of control valves in Hot Dirty Gas (HDGCV) service. This design was performed by Mittelhauser Corporation for the United States Department of Energy's Morgantown Energy Technology Center (METC). The objective of this effort was to provide METC with a feasible preliminary design for a test facility which could be used to evaluate valve designs under simulated service conditions and provide a technology data base for DOE and industry. In addition to the actual preliminary design of the test facility, final design/construction/operating schedules and a facility cost estimate were prepared to provide METC sufficient information with which to evaluate this design. The bases, assumptions, and limitations of this study effort are given. The tasks carried out were as follows: METC Facility Review, Environmental Control Study, Gas Generation Study, Metallurgy Review, Safety Review, Facility Process Design, Facility Conceptual Layout, Instrumentation Design, Cost Estimates, and Schedules. The report provides information regarding the methods of approach used in the various tasks involved in the completion of this study. Section 5.0 of this report presents the results of the study effort. The results obtained from the above-defined tasks are described briefly. The turnkey cost of the test facility is estimated to be $9,774,700 in fourth quarter 1979 dollars, and the annual operating cost is estimated to be $960,000 plus utilities costs which are not included because unit costs per utility were not available from METC.

  10. Intelligent Control via Wireless Sensor Networks for Advanced Coal Combustion Systems

    SciTech Connect (OSTI)

    Aman Behal; Sunil Kumar; Goodarz Ahmadi

    2007-08-05

    Numerical Modeling of Solid Gas Flow, System Identification for purposes of modeling and control, and Wireless Sensor and Actor Network design were pursued as part of this project. Time series input-output data was obtained from NETL's Morgantown CFB facility courtesy of Dr. Lawrence Shadle. It was run through a nonlinear kernel estimator and nonparametric models were obtained for the system. Linear and first-order nonlinear kernels were then utilized to obtain a state-space description of the system. Neural networks were trained that performed better at capturing the plant dynamics. It is possible to use these networks to find a plant model and the inversion of this model can be used to control the system. These models allow one to compare with physics based models whose parameters can then be determined by comparing them against the available data based model. On a parallel track, Dr. Kumar designed an energy-efficient and reliable transport protocol for wireless sensor and actor networks, where the sensors could be different types of wireless sensors used in CFB based coal combustion systems and actors are more powerful wireless nodes to set up a communication network while avoiding the data congestion. Dr. Ahmadi's group studied gas solid flow in a duct. It was seen that particle concentration clearly shows a preferential distribution. The particles strongly interact with the turbulence eddies and are concentrated in narrow bands that are evolving with time. It is believed that observed preferential concentration is due to the fact that these particles are flung out of eddies by centrifugal force.

  11. A study of hazardous air pollutants at the Tidd PFBC Demonstration Plant

    SciTech Connect (OSTI)

    1994-10-01

    The US Department of Energy (DOE) Clean Coal Technology (CCD Program is a joint effort between government and industry to develop a new generation of coal utilization processes. In 1986, the Ohio Power Company, a subsidiary of American Electric Power (AEP), was awarded cofunding through the CCT program for the Tidd Pressure Fluidized Bed Combustor (PFBC) Demonstration Plant located in Brilliant, Ohio. The Tidd PFBC unit began operation in 1990 and was later selected as a test site for an advanced particle filtration (APF) system designed for hot gas particulate removal. The APF system was sponsored by the DOE Morgantown Energy Technology Center (METC) through their Hot Gas Cleanup Research and Development Program. A complementary goal of the DOE CCT and METC R&D programs has always been to demonstrate the environmental acceptability of these emerging technologies. The Clean Air Act Amendments of 1990 (CAAA) have focused that commitment toward evaluating the fate of hazardous air pollutants (HAPs) associated with advanced coal-based and hot gas cleanup technologies. Radian Corporation was contacted by AEP to perform this assessment of HAPs at the Tidd PFBC demonstration plant. The objective of this study is to assess the major input, process, and emission streams at Plant Tidd for the HAPs identified in Title III of the CAAA. Four flue gas stream locations were tested: ESP inlet, ESP outlet, APF inlet, and APF outlet. Other process streams sampled were raw coal, coal paste, sorbent, bed ash, cyclone ash, individual ESP hopper ash, APF ash, and service water. Samples were analyzed for trace elements, minor and major elements, anions, volatile organic compounds, dioxin/furan compounds, ammonia, cyanide, formaldehyde, and semivolatile organic compounds. The particle size distribution in the ESP inlet and outlet gas streams and collected ash from individual ESP hoppers was also determined.

  12. Task 8 - management and reporting. Semi-annual report April 1--September 30, 1996

    SciTech Connect (OSTI)

    1997-05-01

    The task of restoring nuclear defense complex sites under the U.S. Department of Energy (DOE) Environmental Management (EM) program presents an unprecedented challenge to the environmental restoration community. Effective and efficient cleanup requires the timely development or modification of novel cleanup technologies applicable to radioactive wastes. Fostering the commercialization of these innovative technologies is the mission of EM-50, the EM Program Office of Science and Technology. DOE`s Morgantown Energy Technology Center (METC) pursues activities integral to the EM-50 mission through its Cooperative Agreement with the EM Office of Science and Technology. The advancement of innovative technologies is often arrested at the {open_quotes}valley of death,{close_quotes} the general term for barriers to demonstration and commercialization. Alternatively, commercialization and deployment are impacted by a lack of clear choices among competing technologies. The Energy & Environmental Research Center (EERC), a not-for-profit, contract-supported organization focused on research, development, demonstration, and commercialization (RDD&C) of energy and environmental technologies, is in the second year of a Cooperative Agreement with METC designed (1) to deliver EM technologies into the commercial marketplace through a unique combination of technical support, real-world demonstrations, and brokering; (2) to facilitate decisions regarding deployment and support for commercialization by providing comparative performance data through systems analysis; and (3) to support the integration and deployment of {open_quotes}winner{close_quotes} technologies at EM sites. These activities, along with program management, make up the four program areas of the METC-EERC EM Cooperative Agreement (EMCA): Technology Commercialization, Systems Engineering, Technology Integration, and Management and Reporting.

  13. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect (OSTI)

    J. Hnat; L.M. Bartone; M. Pineda

    2001-10-31

    This Final Report summarizes the progress of Phases 3,3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the MH/C System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem. Because of USEPA policies and regulations that do not require treatment of low level or low-level/PCB contaminated wastes, DOE terminated the project because there is no purported need for this technology.

  14. SU-E-J-76: Incorporation of Ultrasound Elastography in Target Volume Delineation for Partial Breast Radiotherapy Planning: A Comparative Study

    SciTech Connect (OSTI)

    Juneja, P; Harris, E; Bamber, J

    2014-06-01

    Purpose: There is substantial observer variability in the delineation of target volumes for post-surgical partial breast radiotherapy because the tumour bed has poor x-ray contrast. This variability may result in substantial variations in planned dose distribution. Ultrasound elastography (USE) has an ability to detect mechanical discontinuities and therefore, the potential to image the scar and distortion in breast tissue architecture. The goal of this study was to compare USE techniques: strain elastography (SE), shear wave elastography (SWE) and acoustic radiation force impulse (ARFI) imaging using phantoms that simulate features of the tumour bed, for the purpose of incorporating USE in breast radiotherapy planning. Methods: Three gelatine-based phantoms (10% w/v) containing: a stiff inclusion (gelatine 16% w/v) with adhered boundaries, a stiff inclusion (gelatine 16% w/v) with mobile boundaries and fluid cavity inclusion (to mimic seroma), were constructed and used to investigate the USE techniques. The accuracy of the elastography techniques was quantified by comparing the imaged inclusion with the modelled ground-truth using the Dice similarity coefficient (DSC). For two regions of interest (ROI), the DSC measures their spatial overlap. Ground-truth ROIs were modelled using geometrical measurements from B-mode images. Results: The phantoms simulating stiff scar tissue with adhered and mobile boundaries and seroma were successfully developed and imaged using SE and SWE. The edges of the stiff inclusions were more clearly visible in SE than in SWE. Subsequently, for all these phantoms the measured DSCs were found to be higher for SE (DSCs: 0.910.97) than SWE (DSCs: 0.680.79) with an average relative difference of 23%. In the case of seroma phantom, DSC values for SE and SWE were similar. Conclusion: This study presents a first attempt to identify the most suitable elastography technique for use in breast radiotherapy planning. Further analysis will include comparison of ARFI with SE and SWE. This work is supported by the EPSRC Platform Grant, reference number EP/H046526/1.

  15. Installation of the first Distributed Energy Storage System (DESS) at American Electric Power (AEP).

    SciTech Connect (OSTI)

    Nourai, Ali

    2007-06-01

    AEP studied the direct and indirect benefits, strengths, and weaknesses of distributed energy storage systems (DESS) and chose to transform its entire utility grid into a system that achieves optimal integration of both central and distributed energy assets. To that end, AEP installed the first NAS battery-based, energy storage system in North America. After one year of operation and testing, AEP has concluded that, although the initial costs of DESS are greater than conventional power solutions, the net benefits justify the AEP decision to create a grid of DESS with intelligent monitoring, communications, and control, in order to enable the utility grid of the future. This report details the site selection, construction, benefits and lessons learned of the first installation, at Chemical Station in North Charleston, WV.

  16. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Crude Oil Prices Table 18. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) Year Month U.S. Average PAD District I PAD District II U.S. Average Less AK North Slope Average NY PA WV Average IL IN KS KY MI NE 1983 ..................... 26.19 28.00 28.32 28.19 28.28 27.27 29.17 29.12 29.06 28.45 28.60 28.93 28.58 1984 ..................... 25.88 27.59 27.76 27.70 27.71 26.90 28.62 28.76 28.72 27.99 28.24 28.54 27.83 1985 ..................... 24.09 25.74 25.88 25.19 25.05 24.35 25.94

  17. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Domestic Crude Oil First Purchase Prices (Dollars per Barrel) Year Month U.S. Average PAD District I PAD District II U.S. Average Less AK North Slope Average NY PA WV Average IL IN KS KY MI NE 1983 ..................... 26.19 28.00 28.32 28.19 28.28 27.27 29.17 29.12 29.06 28.45 28.60 28.93 28.58 1984 ..................... 25.88 27.59 27.76 27.70 27.71 26.90 28.62 28.76 28.72 27.99 28.24 28.54 27.83 1985 ..................... 24.09 25.74 25.88 25.19 25.05 24.35 25.94 26.90 26.82 25.33 26.20

  18. Microsoft Word - figure_14.doc

    Gasoline and Diesel Fuel Update (EIA)

    42 Figure 14. Net interstate movements, imports, and exports of natural gas in the United States, 2014 (million cubic feet) Norway Trinidad/ Tobago Yemen Trinidad/ Tobago Interstate Movements Not Shown on Map From Volume To From Volume To CT RI Other TX IN MA RI MA MA CT VA DC MD DC VT MA NH MA WA M T I D O R W Y ND SD C A N V U T CO NE KS A Z NM OK TX MN WI MI IA I L IN OH MO AR M S AL GA T N KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI A K Mexico C a n a d a C a n a d a Canada

  19. Microsoft Word - figure_99.doc

    Gasoline and Diesel Fuel Update (EIA)

    7 U.S. Energy Information Administration | Natural Gas Annual Figure 6. Natural gas processing in the United States and the Gulf of Mexico, 2014 (million cubic feet) None 1-15,000 15,001-100,000 100,001-200,000 200,001-500,000 500,001 and over Sources: Energy Information Administration (EIA), Form EIA-64A, "Annual Report of the Origin of Natural Gas Liquids Production." IN OH TN WV VA KY MD PA NY VT NH MA CT ME RI DE DC NC SC GA FL NJ AL MS LA MO AR TX NM OK CO KS UT AZ WY NE IL IA MN

  20. Annual Energy Outlook 2015 - Appendix F

    Gasoline and Diesel Fuel Update (EIA)

    8 Regional maps Figure F7. Coal demand regions Figure F7. Coal Demand Regions CT,MA,ME,NH,RI,VT OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP Region Content Region Code NY,PA,NJ VA,NC,SC GA,FL IN,IL,MI,WI Region Content Region Code 14. CU 13. MT 16. PC 15. ZN 12. WS 11. C2 9. AM 5. GF 8. KT 4. S2 7. EN 6. OH 2. YP 1. NE 3. S1 10. C1 KY,TN 8. KT 16. PC AK,HI,WA,OR,CA 10. C1

  1. Basin Play State(s) Production Reserves Williston Bakken ND, MT, SD

    Gasoline and Diesel Fuel Update (EIA)

    tight oil plays: production and proved reserves, 2013-14 million barrels 2013 2013 Basin Play State(s) Production Reserves Williston Bakken ND, MT, SD 270 4,844 387 5,972 1,128 Western Gulf Eagle Ford TX 351 4,177 497 5,172 995 Permian Bone Spring, Wolfcamp NM, TX 21 335 53 722 387 Denver-Julesberg Niobrara CO, KS, NE, WY 2 17 42 512 495 Appalachian Marcellus* PA, WV 7 89 13 232 143 Fort Worth Barnett TX 9 58 9 47 -11 Sub-total 660 9,520 1,001 12,657 3,137 Other tight oil 41 523 56 708 185 U.S.

  2. CANTON LAKESHORE CANTON E BEST CON NEAUT GIDD INGS EAST N ELLSWORT

    Gasoline and Diesel Fuel Update (EIA)

    Gas Reserve Class No 2001 gas reserves 0.1 - 10 MMCF 10.1 - 100 MMCF 100.1 - 1,000 MMCF 1,000.1 - 10,000 MMCF 10,000.1 - 100,000 MMCF > 100,000 MMCF Appalachian Basin Boundary C a n a d a U S A OH PA MI NY Lake Erie Lake St. Claire Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Basin Fields (Mbbl) (MMcf) (Mbbl) Appalachian 3354 79,141 9,550,156 1,670,834 2001 Proved Reserves for Entire Applachian Basin WV Appalachian Basin, OH-PA (Panel 2 of 7) Oil and Gas Fields By

  3. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    State-Level Energy Consumption Estimates and Estimated Consumption per Capita, 2010 Consumption Consumption per Capita 14 U.S. Energy Information Administration / Annual Energy Review 2011 TX CA FL LA IL OH PA NY GA IN MI NC VA NJ TN WA KY AL MO MN WI SC OK CO IA MD AZ MA MS KS AR OR NE UT CT WV NM NV AK WY ID ND ME MT SD NH HI DE RI DC VT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 0 2 4 6 8 10

  4. Petroleum Marketing Monthly

    Gasoline and Diesel Fuel Update (EIA)

    Prices U.S. Energy Information Administration | Petroleum Marketing Monthly Table 18. Domes c crude oil fi rst purchase prices dollars per barrel Year month U.S. Average PAD District 1 PAD District 2 U.S. Average Less AK North Slope Average NY PA WV Average IL IN KS KY MI NE 1990 20.03 21.57 22.06 23.32 23.00 22.16 22.88 23.36 23.46 23.21 23.20 22.92 21.94 1991 16.54 18.16 19.01 19.67 19.48 W 19.58 20.19 20.20 19.84 19.84 19.88 18.78 1992 15.99 17.38 18.52 19.05 19.01 18.09 18.63 19.26 19.27

  5. Microbial desulphurization of Turkish lignites by White Rot Fungi

    SciTech Connect (OSTI)

    Pinar Aytar; Mesut Sam; Ahmet Cabuk

    2008-03-15

    Biodesulphurization experiments were carried out with Tuncbilek lignite, characterized by high sulfur content (2.59%) by using Trametes versicolor ATCC 200801 and Phanerochaete chrysosporium ME 446. At fungal biomass studies, the effects of various parameters on fungal desulphurization of coals such as pH, temperature, pulp density, incubation time, and sterilization were investigated for both microorganisms. The maximum desulphurization (40%) was observed after 6 days of incubation at 35{sup o}C for T. versicolor. The optimum pH was measured at 6, and the agitation rate was fixed at 125 rpm. The pulp density was found as 5% (w/v) for the high extent of desulphurization. Also, calorific value did not change during this experiment. However, the ash and metal contents of coal were eliminated. 30 refs., 6 figs., 2 tabs.

  6. Foundational Tools for Petascale Computing

    SciTech Connect (OSTI)

    Miller, Barton

    2014-05-19

    The Paradyn project has a history of developing algorithms, techniques, and software that push the cutting edge of tool technology for high-end computing systems. Under this funding, we are working on a three-year agenda to make substantial new advances in support of new and emerging Petascale systems. The overall goal for this work is to address the steady increase in complexity of these petascale systems. Our work covers two key areas: (1) The analysis, instrumentation and control of binary programs. Work in this area falls under the general framework of the Dyninst API tool kits. (2) Infrastructure for building tools and applications at extreme scale. Work in this area falls under the general framework of the MRNet scalability framework. Note that work done under this funding is closely related to work done under a contemporaneous grant, High-Performance Energy Applications and Systems, SC0004061/FG02-10ER25972, UW PRJ36WV.

  7. Black Bear Prep plant replaces high-frequency screens with fine wire sieves

    SciTech Connect (OSTI)

    Barbee, C.J.; Nottingham, J.

    2007-12-15

    At the Black Bear prep plant (near Wharncliffe, WV, USA) the clean coal from the spirals traditionally reported to high-frequency screens, which removed high-ash clay fines. Screens have inherent inefficiencies that allow clean coal to report to the screen underflow. The goal of this project was to capture the maximum amount of spiral clean coal while still removing the high-ash clay material found in the spiral product. The reduction of the circulating load and plant downtime for unscheduled maintenance were projected as additional benefits. After the plant upgrade, the maintenance related to the high frequency screens was eliminated and an additional 2.27 tons per hour (tph) of fine coal was recovered, which resulted in a payback period of less than one year. The article was adapted from a paper presented at Coal Prep 2007 in April 2007, Lexington, KY, USA. 1 ref., 1 fig., 1 tab.

  8. DOE Excepted Service Pay Tables | Department of Energy

    Office of Environmental Management (EM)

    DOE Excepted Service Pay Tables DOE Excepted Service Pay Tables Excepted Service EJ and EK Pay Table INCORPORATING THE 1% GENERAL SCHEDULE INCREASE AND A LOCALITY PAYMENT OF 24.22% FOR THE LOCALITY PAY AREA OF WASHINGTON-BALTIMORE-NORTHERN VIRGINIA, DC-MD-VA-WV-PA Special Grade Min. Base Min. Locality Max. Base Max. Locality GS Grade/Step Equiv. 01 $27,705 $34,415 $47,575 $59,098 5/1 to 9/5 02 $41,979 $52,146 $68,993 $85,703 9/1 to 12/5 03 $60,877 $75,621 $96,948 $120,429 12/1 to 14/5 04 $85,544

  9. S

    Office of Legacy Management (LM)

    )s . l * q 4 S Q . M E M O R A N D U M D A T E S U B J E C T t O W N E R ( S ) -w---w-- P a m t x _----------------------- Currltnt t -------------------------- O w n e r - contacted r ~ yes 0 no; if yc)~, d a tr contacted ----------w-w T Y P E O F O P E R A T IO N H --w------v--- @ search & Devel a p m e n t 0 Facility T y p m < = Production scale testing 0 P ilot S c a l e 0 B e n c h S c a l e P r o c e s s 0 T h e o r e tical S tu d i e s Cl S a m p le & Analysis Mrnuf acturi n g

  10. IEMDC -IN-LINE ELECTRIC MOTOR DRIVEN COMPRESSOR

    SciTech Connect (OSTI)

    Michael J. Crowley; Prem N. Bansal; John E. Tessaro

    2004-01-01

    Dresser-Rand completed the preliminary aerodynamic flowpath of the volute and inlet design for the compressor section. This has resulted in considerable progress being made on the development of the compressor section and ultimately towards the successful integration of the IEMDC System design. Significant effort was put forth in the design of aerodynamic components which resulted in a design that meets the limits of aerodynamically induced radial forces previously established. Substantial effort has begun on the mechanical design of the compressor pressure containing case and other internal components. These efforts show progression towards the successful integration of a centrifugal compressor and variable speed electric motor ventilated by the process gas. All efforts continue to confirm the feasibility of the IEMDC system design. During the third quarter reporting period, the focus was to further refine the motor design and to ensure that the IEMDC rotor system supported on magnetic bearing is in compliance with the critical speed and vibration requirements of the API standards 617 and 541. Consequently specification to design magnetic bearings was developed and an RFQ to three magnetic bearing suppliers was issued. Considerable work was also performed to complete preliminary reports on some of the deliverable tasks under phase 1.0. These include specification for the VFD, RFQ for the magnetic bearings, and preliminary write-up for motor instrumentation and control schematic. In order to estimate motor efficiency at various operating points, plots of calculated motor losses, and motor cooling gas flow rates were also prepared. Preliminary evaluations of motor support concepts were performed via FEA to determine modal frequencies. Presentation was made at DOE Morgantown on August 12, 2003 to provide project status update. Preparations for the IEMDC motor-compressor presentation, at the GMRC conference in Salt Lake City to be held on October 5, 2003, were also started. Detailed calculations of cooling gas flow requirements for the motor and magnetic bearings, per several new operating points designated by DR, confirmed that the required gas flow was within the compressor design guidelines. Previous thrust load calculations had confirmed that the magnetic thrust bearing design load capacity of 6,000 lb. was sufficient to handle the net thrust load produced by the motor and compressor pressure loading. Thus the design data that has been generated, for the variable speed 10 MW 12,000 rpm motor, during the last three quarters, continue to confirm the feasibility of an efficient and robust motor design.

  11. Silicon Carbide Micro-devices for Combustion Gas Sensing under Harsh Conditions

    SciTech Connect (OSTI)

    Ruby Ghosh; Reza Loloee; Roger Tobin

    2008-09-30

    A sensor based on the wide bandgap semiconductor, silicon carbide (SiC), has been developed for the detection of combustion products in power plant environments. The sensor is a catalytic gate field effect device, Pt/SiO{sub 2}/SiC that can detect hydrogen-containing species in chemically reactive, high temperature (600 C) environments. We demonstrate that the device can be used as a hydrogen monitor in syngas applications of common interferants as well as sulfur and water vapor. These measurements were made in the Catalyst Screening Unit at NETL, Morgantown under atmospheric conditions. The sensor response to hydrogen gas at 350 C is 240 mV/decade, this is significantly higher than the device response to room temperature gas or that predicted from vacuum chamber studies. The enhanced catalytic activity of the platinum sensing film under energy plant operating conditions was investigated via AFM, x-ray diffraction, TEM and x-ray photoelectron spectroscopy. Our characterization indicated that exposure to high temperature gases significantly modifies the morphology of the Pt catalytic film and the Pt/SiO{sub 2} interfacial region, which we tentatively attribute to the enhanced hydrogen sensitivity of the sensing film. A model for the hydrogen/oxygen response of the SiC device under atmospheric conditions was developed. It is based on two independent phenomena: a chemically induced shift in the metal-semiconductor work function difference and the passivation/creation of charged states at the SiO{sub 2}-SiC interface. The optimum operating set point for the SiC sensor with respect to response time and long term reliability was determined to be close to mid-gap. Ultrahigh vacuum (UHV) techniques were used to investigate the effects of sulfur contamination on the Pt gate. Exposure to hydrogen sulfide, even in the presence of hydrogen or oxygen at partial pressures of 20-600 times greater than the H2S level, rapidly coated the gate with a monolayer of sulfur. Although hydrogen exposure could not remove the adsorbed sulfur, oxygen was effective at removing sulfur with no evidence of irreversible changes in device behavior. The role of oxygen in the functioning of the SiC sensors was also investigated. All of the results are consistent with oxygen acting through its surface reactions with hydrogen, including the need for oxygen to reset the device to a fully hydrogen-depleted state and competition between hydrogen oxidation and hydrogen diffusion to metal/oxide interface sites. A strong sensor response to the unsaturated linear hydrocarbon propene (C{sub 3}H{sub 6}) was observed.

  12. Final Report - Glass Formulation Testing to Increase Sulfate Volatilization from Melter, VSL-04R4970-1, Rev. 0, dated 2/24/05

    SciTech Connect (OSTI)

    Kruger, Albert A.; Matlack, K. A.; Pegg, I. L.; Gong, W.

    2013-11-13

    The principal objectives of the DM100 and DM10 tests were to determine the impact of four different organics and one inorganic feed additive on sulfate volatilization and to determine the sulfur partitioning between the glass and the off-gas system. The tests provided information on melter processing characteristics and off-gas data including sulfur incorporation and partitioning. A series of DM10 and DM100 melter tests were conducted using a LAW Envelope A feed. The testing was divided into three parts. The first part involved a series of DM10 melter tests with four different organic feed additives: sugar, polyethylene glycol (PEG), starch, and urea. The second part involved two confirmatory 50-hour melter tests on the DM100 using the best combination of reductants and conditions based on the DM10 results. The third part was performed on the DM100 with feeds containing vanadium oxide (V{sub 2}O{sub 5}) as an inorganic additive to increase sulfur partitioning to the off-gas. Although vanadium oxide is not a reductant, previous testing has shown that vanadium shows promise for partitioning sulfur to the melter exhaust, presumably through its known catalytic effect on the SO{sub 2}/SO{sub 3} reaction. Crucible-scale tests were conducted prior to the melter tests to confirm that the glasses and feeds would be processable in the melter and that the glasses would meet the waste form (ILAW) performance requirements. Thus, the major objectives of these tests were to: ? Perform screening tests on the DM10 followed by tests on the DM100-WV system using a LAW -Envelope A feed with four organic additives to assess their impact on sulfur volatilization. ? Perform tests on the DM100-WV system using a LAW -Envelope A feed containing vanadium oxide to assess its impact on sulfur volatilization. ? Determine feed processability and product quality with the above additives. ? Collect melter emissions data to determine the effect of additives on sulfur partitioning and melter emissions. ? Collect and analyze discharged glass to determine sulfur retention in the glass. ? Prepare and characterize feeds and glasses with the additives to confirm that the feeds and the glass melts are suitable for processing in the DM100 melter. ? Prepare and characterize glasses with the additives to confirm that the glasses meet the waste form (ILAW) performance requirements.

  13. Decontamination systems information and research programs. Quarterly report, July 1--August 31, 1996

    SciTech Connect (OSTI)

    1997-07-01

    The US contains numerous hazardous waste sites. Many sites are on private land near operating units of various companies. An effort is being made to determine the conditions under which such sites can be remediated voluntarily. The objective of the project will be to first assess the interest and willingness of industry in the Kanawha River Valley, WV to participate in discussions that would lead toward voluntary cleanup activities. The second will be to implement the activities agreed upon by the interested parties. The project will first involve individual discussions with the industrial, government, and other organized groups in the area. These discussions will help determine the feasibility of organizing voluntary efforts. If the discussions indicate that conditions may be favorable for developing individual or group voluntary cleanup projects, a working group will be convened to establish the environmental goals of the project as well as the technical approach for achieving those goals. The projects for the 1996 WVU Cooperative Agreement are categorized into three task focus areas: Task 1.0 Contaminant Plume Containment and Remediation, Task 2.0 Cross Cutting Innovative Technologies, and Task 3.0 Small Business Support Program. Summaries of the accomplishments for the subtasks reporting under these categories during the third quarter, 1 July 96 through 30 September 96, are presented.

  14. Acidogenic fermentation of corn stover

    SciTech Connect (OSTI)

    Datta, R.

    1981-01-01

    Corn stover was fermentd by anaerobic acidogenic bacteria to produce volatile (C2-C6) organic acids. Mild pretreatment with dilute alkali solutions produced a two-fold increase in fermentability. A mixture of lime and sodium carbonate was found to be a better pretreatment agent than sodium hydroxide. Methane generation was inhibited by low temperature less than or equal to 25 degrees Celcius and high solids greater than or equal to 2.5% (w/v) fermentation. Volatile acid yields of 0.5-0.55 g acetic acid equivalent/g dry ash-free (DAF) stover could be obtained in batch fermentations. Several extractants and extraction solvents for organic acids were found to be nontoxic to acidogenic fermentation. The data show that acidogenic fermentation can produce useful volatile fatty acids in high yields from a complex lignocellulosic feedstock. These fermentation are nonsterile, need no stirring, and are easy to run. Moreover, cellulose, pentosans, and other carbohydrates are directly utilized by acidogenic bacteria. Hence, acidogenic fermentation could be useful in converting biomass to chemical feedstocks and fuel.

  15. Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project

    SciTech Connect (OSTI)

    Deanna Gilliland; Matthew Usher

    2011-12-31

    The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

  16. Rivesville multicell fluidized bed boiler

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    One objective of the experimental MFB at Rivesville, WV, was the evaluation of alternate feed systems for injecting coal and limestone into a fluidized bed. A continuous, uniform feed flow to the fluid bed is essential in order to maintain stable operations. The feed system originally installed on the MFB was a gravity feed system with an air assist to help overcome the back pressure created by the fluid bed. The system contained belt, vibrating, and rotary feeders which have been proven adequate in other material handling applications. This system, while usable, had several operational and feeding problems during the MFB testing. A major portion of these problems occurred because the coal and limestone feed control points - a belt feeder and rotary feeder, respectively - were pressurized in the air assist system. These control points were not designed for pressurized service. An alternate feed system which could accept feed from the two control points, split the feed into six equal parts and eliminate the problems of the pressurized system was sought. An alternate feed system designed and built by the Fuller Company was installed and tested at the Rivesville facility. Fuller feed systems were installed on the north and south side of C cell at the Rivesville facility. The systems were designed to handle 10,000 lb/hr of coal and limestone apiece. The systems were installed in late 1979 and evaluated from December 1979 to December 1980. During this time period, nearly 1000 h of operating time was accumulated on each system.

  17. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum

    SciTech Connect (OSTI)

    Lynd, Lee R; Shao, Xiongjun; Raman, Babu; Mielenz, Jonathan R; Brown, Steven D; Guss, Adam M; Zhu, Mingjun

    2011-01-01

    Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1 2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed.

  18. Basin Shale Play State(s) Production Reserves Production Reserves

    Gasoline and Diesel Fuel Update (EIA)

    shale gas plays: natural gas production and proved reserves, 2013-14 2013 2014 Change 2014-2013 Basin Shale Play State(s) Production Reserves Production Reserves Production Reserves Marcellus* PA,WV 3.6 62.4 4.9 84.5 1.3 22.1 TX 2.0 26.0 1.8 24.3 -0.2 -1.7 TX 1.4 17.4 1.9 23.7 0.5 6.3 TX,LA 1.9 16.1 1.4 16.6 -0.5 0.5 TX, OK 0.7 12.5 0.8 16.6 0.1 4.1 AR 1.0 12.2 1.0 11.7 0.0 -0.5 OH 0.1 2.3 0.4 6.4 0.3 4.1 Sub-total 10.7 148.9 12.3 183.7 1.4 34.8 Other shale gas 0.7 10.2 1.1 15.9 0.4 5.7 All

  19. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum

    SciTech Connect (OSTI)

    Shao, Xiongjun; Raman, Babu; Zhu, Mingjun; Mielenz, Jonathan R; Brown, Steven D; Guss, Adam M; Lynd, Lee R

    2011-01-01

    Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1-2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed.

  20. Complete genome sequence of Desulfomicrobium baculatum type strain (XT)

    SciTech Connect (OSTI)

    Copeland, Alex; Spring, Stefan; Goker, Markus; Schneider, Susanne; Lapidus, Alla; Glavina Del Rio, Tijana; Tice, Hope; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Nolan, Matt; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavrommatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C; Meincke, Linda; Sims, David; Brettin, Thomas; Detter, John C; Han, Cliff; Chain, Patrick; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C; Lucas, Susan

    2009-05-20

    Desulfomicrobium baculatum is the type species of the genus Desulfomicrobium, which is the type genus of the family Desulfomicrobiaceae. It is of phylogenetic interest because of the isolated location of the family Desulfomicrobiaceae within the order Desulfovibrionales. D. baculatum strain XT is a Gram-negative, motile, sulfate-reducing bacterium isolated from water-saturated manganese carbonate ore. It is strictly anaerobic and does not require NaCl for growth, although NaCl concentrations up to 6percent (w/v) are tolerated. The metabolism is respiratory or fermentative. In the presence of sulfate, pyruvate and lactate are incompletely oxidized to acetate and CO2. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the deltaproteobacterial family Desulfomicrobiaceae, and this 3,942,657 bp long single replicon genome with its 3494 protein-coding and 72 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.