National Library of Energy BETA

Sample records for morgantown wv 26507-0880

  1. DOE - Office of Legacy Management -- Morgantown Ordnance Works - WV 03

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont,Manufacturing - OHSelling CorpMorgantown Ordnance

  2. Scoping Study for Demand Respose DFT II Project in Morgantown, WV

    SciTech Connect (OSTI)

    Lu, Shuai; Kintner-Meyer, Michael CW

    2008-06-06

    This scoping study describes the underlying data resources and an analysis tool for a demand response assessment specifically tailored toward the needs of the Modern Grid Initiatives Demonstration Field Test in Phase II in Morgantown, WV. To develop demand response strategies as part of more general distribution automation, automated islanding and feeder reconfiguration schemes, an assessment of the demand response resource potential is required. This report provides the data for the resource assessment for residential customers and describes a tool that allows the analyst to estimate demand response in kW for each hour of the day, by end-use, season, day type (weekday versus weekend) with specific saturation rates of residential appliances valid for the Morgantown, WV area.

  3. Microsoft PowerPoint - Morgantown Muncipal Airport to NETL Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stop turn RIGHT onto COLLINS FERRY RD. 6. Proceed 0.5 miles through traffic light. On RIGHT- Arrive US DEPARTMENT OF ENERGY. 3610 Collins Ferry RD. Morgantown, WV 26505....

  4. Proceedings of the joint contractors meeting: FE/EE Advanced Turbine Systems conference FE fuel cells and coal-fired heat engines conference

    SciTech Connect (OSTI)

    Geiling, D.W.

    1993-08-01

    The joint contractors meeting: FE/EE Advanced Turbine Systems conference FEE fuel cells and coal-fired heat engines conference; was sponsored by the US Department of Energy Office of Fossil Energy and held at the Morgantown Energy Technology Center, P.O. Box 880, Morgantown, West Virginia 26507-0880, August 3--5, 1993. Individual papers have been entered separately.

  5. EA-1885: Boston Architectural College's Urban Sustainability Initiative Renovation of Green Alley #444, Boston, Massachusetts

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to provide a grant to Boston Architectural College (BAC) to design, construct and implement the renovation of Public Alley #444 in Boston's Historic Back Bay District. The project would include the installation of 7 to 10 open loop geothermal wells to provide heating and cooling energy to BAC's facilities; the installation of a green screen trellis system, planting soils, concrete pavement, pavers, and landscaping; and mechanical upgrades (plumbing and electrical) to accommodate the geothermal solution into the benefiting facilities. Comment Period Ends: 01/13/2012 Comments should be marked "BAC Public Alley #444 Draft EA Comments" and sent to: Mr. Fred Pozzuto U.S. Department of Energy National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880, MS B07 Morgantown, WV 26507-0880 Email: fred.pozzuto@netl.doe.gov Facsimile: 1-304-285-4403

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    expanding the DOE's focus on Carbon Capture Utilization and Storage (CCUS) for advanced coal power systems and other applications, including the use of petroleum coke as a...

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    these complex engineered systems, including properties of geologic formations and reservoir fluids, wellbore characteristics, coupled fracture propagation dynamics and fluid...

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    properties of reservoirs and seals-Assessing the impact of chemical reactions and geomechanics on injectivity and storage permanence. * Fundamental processes and...

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of efficient and economical approaches to carbon capture. A typical coal gasification process produces H 2 , CO 2 , and steam at about 260 C and 25 bar after...

  10. Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    require the production of clean hydrogen to fuel innovative combustion turbines and fuel cells. This research will focus on development and assessment of membranes tailored...

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resulting from injected CO2, and monitoring with geochemical fluid sampling gave good insight into the movement of CO2 within the reservoir. The final phase of the project...

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Future Energy Technologies Background Development of efficient future technologies for energy production with zero carbon emissions based on the use of fossil fuels or novel...

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in High Pressure, High Temperature (HPHT) Ultra-Deep Drilling Environments Background Oil and natural gas fuel America's economy-accounting for more than 60 percent of the...

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and minimal soot formation. The syngas reformate will be used as fuel for solid oxide fuel cells developed in the Solid State Energy Conversion Alliance (SECA) program....

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In either case, these technologies are intended to enable fossil fuel utilization with ultra-low emissions. Transition from air-fired, fossil-fuel combustion to oxy-combustion...

  16. P O Box 6004 Morgantown, WV 26506-6004

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    -5242 Fax: (304) 293-4890 Email: finaid@mail.wvu.edu We're on the Web! www.finaid.wvu.edu 2010-2011 STUDENT

  17. P O Box 6004 Morgantown, WV 26506-6004

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    % of students complete online at www.fafsa.gov Please consider using FAFSA on the Web. There is a FAFSA worksheet that can be downloaded from the FAFSA web site. The Financial Aid Office will also have a supply

  18. P O Box 6004 Morgantown, WV 26506-6004

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    -5242 Fax: (304) 293-4890 Email: finaid@mail.wvu.edu We're on the Web! www.finaid.wvu.edu 2011-2012 STUDENT

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or moved into other parts of the capture portfolio for further development. Among the materials currently being examined are advanced polymers based on inorganic phosphazines and...

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are an important target for studies seeking to positively affect both the efficiency and environmental impact of U.S. energy production. The diversity of available sources for...

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of recoverable petroleum within a reservoir, as well as the modeling of the flow of these fluids within the porous media and in wellbore. These properties are also used to design...

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the FutureGen Industrial Alliance (Alliance) to build FutureGen 2.0-a clean coal repowering program and CO 2 pipeline and storage network. The FutureGen 2.0 Program is...

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Scale Field Test Demonstrating CO2 Sequestration in Arbuckle Saline Aquifer and by CO2-EOR at Wellington Field, Sumner County, Kansas Background The goal of the Department of...

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fossil Energy Plants estimated that the use of MEA to capture 90% of CO 2 in a pulverized coal power plant would impose a 30% energy penalty and ultimately result in an 85%...

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quantifiable and relevant para- meters, while leaving the sample available for further testing. Facilities Medical CT Scanner Core-scale Characterization and Fluid Flow The...

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mkarmis@vt.edu PARTNERS Marshall Miller & Associates Virginia Department of Mines, Minerals, and Energy Southern States Energy Board CONSOL Energy Geological Survey of Alabama...

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Analytical Simulation Tool for CO2 Storage Capacity Estimation and Uncertainty Quantification Background The goal of the Department of Energy's (DOE) Carbon Storage...

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimal Model Complexity in Geological Carbon Sequestration: A Response Surface Uncertainty Analysis Background The goal of the Department of Energy's (DOE) Carbon Storage Program...

  9. Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Houston, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrence LivermoreStorage CONTACTS

  10. Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugarland, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrence LivermoreStorage

  11. Oblique Shock Waves and Shock Reflection Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

    E-Print Network [OSTI]

    Li, Dening

    are generated as solid projectile flies supersonically, or as a planar shock wave is reflected along a ramp. We of a regular shock reflection to Mach reflection. 1 Introduction Oblique shock waves are produced as airplane flies supersonically, or as shock waves are reflected at a planar solid surface. With other conditions

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlan J.U.S.Alaska

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlan J.U.S.AlaskaInfrastructure The

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlan J.U.S.AlaskaInfrastructure

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlan

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombining Space Geodesy,

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombining Space Geodesy,GEOSEQ:

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombining Space Geodesy,GEOSEQ:O

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombining Space

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombining SpaceNear-Surface

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombining SpaceNear-SurfaceCarbon

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombining

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombiningJoshua Hull Project

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombiningJoshua Hull

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombiningJoshua HullWilliam W.

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombiningJoshua HullWilliam

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombiningJoshua

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombiningJoshuaTraining Center

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombiningJoshuaTraining

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombiningJoshuaTrainingTraining

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrence Livermore National Laboratory

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrence Livermore National

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrence Livermore NationalTechnology

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrence Livermore

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrence LivermoreStorage CONTACTS Mary

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrence LivermoreStorageFutureGen 2.0

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrence LivermoreStorageFutureGen

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrence LivermoreStorageFutureGenand

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrence

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTS J. Alexandra Hakala

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTS J. Alexandra

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTS J. Alexandra

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTS J. AlexandraHybrid

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTS J.

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTS J.Fractured Reservoir

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTS J.Fractured

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTS J.FracturedScience

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTS

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSR &D FAC T S Office

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSR &D FAC T S

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSR &D FAC T S and

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSR &D FAC T S

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSR &D FAC T

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSR &D FAC

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSR &D FACOFFICE OF

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSR &D FACOFFICE

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSR &D

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSR &DCarbon Capture

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSR &DCarbon

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSR &DCarbonNational

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSR

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSREvaluation of Foamed

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSREvaluation of

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSREvaluation

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSREvaluationStrategic

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSREvaluationStrategic

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents for Carbon Capture Background

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents for Carbon Capture

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents for Carbon CaptureSensors and

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents for Carbon CaptureSensors

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents for Carbon

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents for CarbonPerformance in

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents for CarbonPerformance in

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents for CarbonPerformance inNETL-ORD

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents for CarbonPerformance

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents for CarbonPerformanceOffshore

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents for

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2 Geological Storage:

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2 Geological

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2 GeologicalCONTACTS Traci

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2 GeologicalCONTACTS Traci

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2 GeologicalCONTACTS

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2P R O G R A M FAC T S

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2P R O G R A M FAC T

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2P R O G R A M FAC T

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2P R O G R A M FAC

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2P R O G R A M FACRegional

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2P R O G R A M FACRegional

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2P R O G R A M

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2P R O G R A MProgram

  14. Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2P R O G R A

  15. Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2P R O G R AR &D FAC T

  16. Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2P R O G R AR &D FAC

  17. 3610 Collins Ferry Road, P.O. Box 880, Morgantown, WV 26507

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPONeApril351 Substation Demolition -- B Roll

  18. 3610 Collins Ferry Road, P.O. Box 880, Morgantown, WV 26507

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s iof1 of 8 2 of 8of|under23-25, 20130 Collins

  19. Microsoft PowerPoint - Morgantown Muncipal Airport to NETL Morgantown Site Directions.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganismsnow widelySmall Ice CrystalsHighMorgantown Site

  20. Morgantown Energy Technology Center, technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

  1. Albany, OR Anchorage, AK Morgantown, WV Pittsburgh, PA Sugar Land, TX Website: www.netl.doe.gov

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    --SEM-COM Company Background the challenge in developing a high-temperature seal material for solid oxide fuel cells efficiency, near-zero emissions and water usage, and carbon dioxide (co2 ) capture. Project Description se with dissimilar (non-matching) cte properties; (2) a glass-ceramic material with a cte as high as 18 ppm

  2. West Virginia Smart Grid Implementation Plan (WV SGIP) Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the most important sources for data on the consumer perspective of the current electric power grid in West Virginia would be the WV Public Service Commission (WV PSC). Thus, an...

  3. Category:Elkins, WV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia: Energy014771°,NorthCLEANElkins, WV Jump to:

  4. Morgantown, West Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformation MontanaOhio:Hill, California: Energy ResourcesMorgantown,

  5. Energy Department Announces Five Research Projects to Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University, Morgantown, W.V. Partners in this project are: Luscar Ltd., Edmonton, Alberta, Canada; Mineral Technologies International Inc., Morgantown, W.V.; McLanahan...

  6. _____________________ Diana Knott Martinelli, Ph.D. ___________________ P.I. Reed School of Journalism, 206 Martin Hall, Morgantown, WV 26506-6010

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    previous year's work): best student-run PR firm; best Web site; student Adrienne Gavula awarded President

  7. _____________________ Diana Knott Martinelli, Ph.D. ___________________ P.I. Reed School of Journalism, 206 Martin Hall, Morgantown, WV 26506-6010

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    student-run PR firm; best Web site; student Adrienne Gavula awarded President's Citation Awarded in 2003

  8. If you reside in WASHINGTON, DC - MD -VA - WV your salary will...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    If you are employed in the WASHINGTON, DC Metropolitan Area (D.C., Baltimore, Northern VA, Eastern WV, and Southern PA) your salary will range from: Pay Band Pay Plan(s) Minimum...

  9. Volume 6, Number 2 June 2009 Cost Of Living: How Does Morgantown Compare In The First Quarter

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    of Business and Economic Research percent above national average. The price of electricity, natural gas was balanced by high housing and transportation costs and low utility and miscellaneous good and services ranking it 64th highest of the 309 urban areas. Transportation costs were also above average in Morgantown

  10. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0602 Kirk Gerdes Morgantown, WV Will be located on the Morgantown, WV NETL facility. The project will be located in B-4 in the East High Bay and Room 112. FEORDThermal Sciences...

  11. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Universi Morgantown, WV FESCCAESD Briggs White Scalable Nano-Scaffold SOFC Anode Architecture Enabling Direct Hydrocarbon Util. Bench-scale lab experiments on solid oxide fuel...

  12. Interdisciplinary: Research General Engineer/Physical Scientist

    Broader source: Energy.gov [DOE]

    *1 Position exists that may be filled at Albany, Oregon or Morgantown, WV. The position is located in the Science & Technology Strategic Plans & Programs (STSPP), Research and Innovation...

  13. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Canoga Park, CA (United States) Environmental Measurements Laboratory (EML), New York, NY (United States) Federal Energy Technology Center (FETC), Morgantown, WV, and...

  14. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Center (FETC), Morgantown, WV, and Pittsburgh, PA (United States) Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States) Fernald Area Office (United States)...

  15. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Morgantown, WV (United States) Mound Area Office, Miamisburg, OH (United States) Mound Plant, Miamisburg, OH (United States) NE-75, USDOE Office of Space and Defense Power Systems...

  16. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Pittsburgh, PA, and Morgantown, WV (United States) National Institute for Petroleum and Energy Research, Bartlesville, OK (United States) National Nuclear Security Administration...

  17. Hotel Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GASIFICATION SYSTEMS AND COAL & COAL-BIOMASS TO LIQUIDS (C&CBTL) WORKSHOP ACCOMMODATIONS Lakeview Golf Resort & Spa 1 Lakeview Drive Morgantown, WV 26508 Nestled in the rolling...

  18. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    PA, and Morgantown, WV (United States) National Institute for Petroleum and Energy Research, Bartlesville, OK (United States) National Nuclear Security Administration...

  19. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Kansas City Site Office (United States) National Energy Technology Laboratory - In-house Research National Energy Technology Laboratory, Pittsburgh, PA, and Morgantown, WV (United...

  20. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Laboratory, Pittsburgh, PA, and Morgantown, WV (United States) National Institute for Petroleum and Energy Research, Bartlesville, OK (United States) National Nuclear Security...

  1. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    (ETEC), Canoga Park, CA (United States) Environmental Measurements Laboratory (EML), New York, NY (United States) Federal Energy Technology Center (FETC), Morgantown, WV, and...

  2. SciTech Connect:

    Office of Scientific and Technical Information (OSTI)

    Laboratory, Pittsburgh, PA, and Morgantown, WV (United States) National Institute for Petroleum and Energy Research, Bartlesville, OK (United States) National Nuclear Security...

  3. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Environmental Measurements Laboratory (EML), New York, NY (United States) Federal Energy Technology Center (FETC), Morgantown, WV, and Pittsburgh, PA (United States) Fermi...

  4. Search for: All records | SciTech Connect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NNSA Kansas City Site Office (United States) National Energy Technology Laboratory - In-house Research National Energy Technology Laboratory, Pittsburgh, PA, and Morgantown, WV...

  5. Computational fluid dynamics assessment: Volume 1, Computer simulations of the METC (Morgantown Energy Technology Center) entrained-flow gasifier: Final report

    SciTech Connect (OSTI)

    Celik, I.; Chattree, M.

    1988-07-01

    An assessment of the theoretical and numerical aspects of the computer code, PCGC-2, is made; and the results of the application of this code to the Morgantown Energy Technology Center (METC) advanced gasification facility entrained-flow reactor, ''the gasifier,'' are presented. PCGC-2 is a code suitable for simulating pulverized coal combustion or gasification under axisymmetric (two-dimensional) flow conditions. The governing equations for the gas and particulate phase have been reviewed. The numerical procedure and the related programming difficulties have been elucidated. A single-particle model similar to the one used in PCGC-2 has been developed, programmed, and applied to some simple situations in order to gain insight to the physics of coal particle heat-up, devolatilization, and char oxidation processes. PCGC-2 was applied to the METC entrained-flow gasifier to study numerically the flash pyrolysis of coal, and gasification of coal with steam or carbon dioxide. The results from the simulations are compared with measurements. The gas and particle residence times, particle temperature, and mass component history were also calculated and the results were analyzed. The results provide useful information for understanding the fundamentals of coal gasification and for assessment of experimental results performed using the reactor considered. 69 refs., 35 figs., 23 tabs.

  6. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    projects and then conduct static and dynamic simulations using data from existing CO 2 floods. The simulations will be used to obtain a better understanding of CO 2 migration in...

  7. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to a regional scale model to predict CO2 fate 10,000 years after injection into the reservoir. A rigorous geochemical reaction kinetics framework is being implemented, and a...

  8. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heterogeneity related signatures embedded within the data. A wavelet- based signal analysis technique was applied to several synthetic cases in order to confirm the...

  9. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prototyping and Testing a New Volumetric Curvature Tool for Modeling Reservoir Compartments and Leakage Pathways in the Arbuckle Saline Aquifer: Reducing Uncertainty in CO2 Storage...

  10. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the geology of these reservoirs, as well as geologic and mechanical laboratory analysis of confining layers (the rock formations that prevent the migration of CO 2 ) to...

  11. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Completed the coupling of two-phase incompressible displacements with geomechanics in a model. * Continued development of the simulator that incorporates the...

  12. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gained from RCSP large-scale field projects- particularly from the Southeast Regional Carbon Sequestration Partnership (SECARB) to address knowledge gaps in the design and...

  13. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and...

  14. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool to Improve CO2 Sequestration Background The overall goal of the Department of Energy's (DOE) Carbon Storage...

  15. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Design Applications for Modeling and Assessing Carbon Dioxide Sequestration in Saline Aquifers Background The overall goal of the Department of Energy's (DOE) Carbon...

  16. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Test of a 1,000-Level 3C Fiber Optic Borehole Seismic Array Applied to Carbon Sequestration Background The overall goal of the Department of Energy's (DOE) Carbon Storage...

  17. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sequestration of Carbon Dioxide Gas in Coal Seams Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that...

  18. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental and Modeling Studies of Mineral Carbonation as a Mechanism for Permanent Carbon Sequestration in MaficUltramafic Rocks Background The overall goal of the...

  19. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between formations through a pathway along the cementearth interface or within the well cement (Figure 1). This three-year project will explore the development of a low-cost...

  20. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    routes responsible for the observed catalytic effects. Such efforts will allow for the optimization of plasma systems so that they may be incorporated into a broad range of...

  1. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In either case, these technologies are intended to enable fossil fuel utilization with ultra-low emissions. Transition from air-fired, fossil-fuel combustion to oxy-combustion...

  2. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complexity and Choice of Model Approaches for Practical Simulations of CO2 Injection, Migration, Leakage, and Long-term Fate Introduction The overall goal of the Department of...

  3. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are an important target for studies seeking to positively affect both the efficiency and environmental impact of U.S. energy production. The diversity of available sources for...

  4. Albany, OR * Fairbanks, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    run at the Eastman Chemical Company's Kingsport, TN, site; at Tampa Electric Company's Polk Power Station in Lakeland, FL; and at the Wabash River Power Station in Terre Haute,...

  5. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prototype Development and Testing Advanced CO2 Leakage Mitigation Using Engineered Biomineralization Sealing Technologies Background The overall goal of the Department of Energy's...

  6. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation of Models Simulating Capillary and Dissolution Trapping During Injection and Post-Injection of CO2 in Heterogeneous Geological Formations Using Data from Intermediate...

  7. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of CO2 through heterogeneous storage formations. The distribution of transport properties may vary according to the geologic characteristics of each formation. Certain...

  8. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    researchers are performing field studies at the CarbFix CO2 geologic storage site in Iceland (Figure 1). This site is home to a pilot study where CO2 is being injected into a...

  9. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Simulation Tools to Improve Predictions and Performance of Geologic Storage: Coupled Modeling of Fault Poromechanics, and High-Resolution Simulation of CO2 Migration and...

  10. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessing Reservoir Depositional Environments to Develop and Quantify Improvements in CO2 Storage Efficiency: A Reservoir Simulation Approach Background The overall goal of the...

  11. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Advanced Joint Inversion System for CO2 Storage Modeling with Large Date Sets for Characterization and Real- Time Monitoring - Enhancing Storage Performance and Reducing Failure...

  12. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactive Transport Models with Geomechanics to Mitigate Risks of CO2 Utilization and Storage Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program...

  13. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Verification, Accounting (MVA) and Assessment, (3) CO 2 Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Area for Sequestration Science....

  14. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Verification, Accounting (MVA) and Assessment, (3) CO2 Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Area for Sequestration Science....

  15. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simplified Predictive Models for CO2 Sequestration Performance Assessment Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and...

  16. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to...

  17. QER- Comment of Richard Bajura

    Broader source: Energy.gov [DOE]

    Is there a registration process for the meeting? I plan to attend. RAB Richard A. Bajura Director, National Research Center for Coal and Energy 385 Evansdale Drive, West Virginia University Morgantown, WV 26506-6064 Office: 304-293-6034

  18. Interdisciplinary: Research General Engineer/Physical Scientist

    Broader source: Energy.gov [DOE]

    *1 Position exists that may be filled at Morgantown, WV or Pittsburgh, PA. This position is located in the Energy Process Innovation Division of the Office of Research and Development (ORD). The...

  19. On the Advantages of Approximate vs. Complete Verification: Bigger Models, Faster, Less Memory, Usually Accurate

    E-Print Network [OSTI]

    Menzies, Tim

    Virginia University Morgantown, WV 26506 drobo75@hotmail.com, tim@menzies.us Mats Heimdahl, Jimin Gao Dept. of Computer Science & Engineering University of Minnesota Minneapolis, MN 55455 heimdahl@cs.umn.edu, jgao

  20. On the Advantages of Approximate vs. Complete Verification: Bigger Models, Faster, Less Memory, Usually Accurate

    E-Print Network [OSTI]

    Menzies, Tim

    Minneapolis, MN 55455 heimdahl@cs.umn.edu jgao@ece.umn.edu David Owen,Tim Menzies Lane Dept. of Computer Science and Electrical Engineering West Virginia University Morgantown, WV 26506 drobo75@hotmail.com tim

  1. Finding Faults Quickly in Formal Models using Random Search David Owen, Tim Menzies

    E-Print Network [OSTI]

    Menzies, Tim

    . of Computer Science and Electrical Engineering West Virginia University Morgantown, WV 26506 drobo75@hotmail of Minnesota Minneapolis, MN 55455 heimdahl@cs.umn.edu, jgao@ece.umn.edu Abstract As software grows more

  2. Interdisciplinary: Research General Engineer/Physical Scientist

    Broader source: Energy.gov [DOE]

    *1 Position exists that may be filled at Morgantown, WV or Albany, OR. This position is located in the Thermal Sciences Division (TSD). The TSD develops experimental techniques and data for the...

  3. West Virginia Graduate Catalog

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    , Morgantown, WV 26506-6568. #12;2 WVU Graduate Catalog Table of Contents Part 1 Governance and Organization ......................................................................... 12 Part 2 Graduate Education at WVU ...................................... 14 Organization Fee Charts

  4. wvBLACK DIAMONDS table of contents

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    'RE ON THE WEB! www.mine.cemr.wvu.edu Statler College of Engineering and Mineral Resources DEPARTMENT OF MINING

  5. wvBLACK DIAMONDS table of contents

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    with mining! WE'RE ON THE WEB! www.mine.cemr.wvu.edu College of Engineering and Mineral Resources DEPARTMENT

  6. THE MARS ENVIRONMENTAL COMPATIBILITY ASSESSMENT (MECA) WET CHEMISTRY EXPERIMENT ON THE MARS '01 LANDER

    E-Print Network [OSTI]

    Kounaves, Samuel P.

    THE MARS ENVIRONMENTAL COMPATIBILITY ASSESSMENT (MECA) WET CHEMISTRY EXPERIMENT ON THE MARS '01 of Chemistry, TuftsUniversity, Medford, MA, 02155 4 Mineral Processing Department, West Virginia University, Morgantown, WV, 26507 Introduction. The Mars Environmental Compatibility Assessment (MECA) is an instrument

  7. 1 | P a g e 2012 International Pittsburgh Coal Conference

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    1 | P a g e 2012 International Pittsburgh Coal Conference Pittsburgh, PA, USA October 15 - 18, 2012-mineable Coal Seam Qin He, Shahab D. Mohaghegh, Vida Gholami Department of Petroleum and Natural Gas Engineering, West Virginia University, Morgantown, WV26505, U.S.A. Abstract Studies have shown that, coal seam

  8. Myers et al. Page 1 Use of High Temperature Hydrogen Annealing to

    E-Print Network [OSTI]

    Myers, Tom

    , Department of Chemical Engineering West Virginia University, Morgantown, WV 26506 J. Alam, Electrical Eng growth of GaN and AlN as well as with thick, "free-standing" layers grown by hydride vapor phase epitaxy in this study were Ga-polar GaN layers grown on (0001) sapphire grown at TDI, Inc. using hydride vapor phase

  9. Architectural-Level Risk Analysis FOR UML Dynamic Specifications1 Alaa Ibrahim, Sherif M. Yacoub, Hany H. Ammar1

    E-Print Network [OSTI]

    Ammar, Hany H.

    Architectural-Level Risk Analysis FOR UML Dynamic Specifications1 Alaa Ibrahim, Sherif M. Yacoub and Effect Analysis. Heuristic risk factor for each architectural component is obtained. A component Morgantown, WV26506-6109 Ibrahim@csee.wvu.edu, yacoub@csee.wvu.edu, hammar@wvu.edu ABSTRACT Risk assessment

  10. Department of Psychology Phone: 304-293-2001

    E-Print Network [OSTI]

    Berenhaut, Kenneth S.

    Department of Psychology Phone: 304-293-2001 Fax: 304-293-6606 http://psychology.wvu.edu/ Department of Psychology 1124 Life Sciences Building 53 Campus Drive PO Box 6040 Morgantown, WV 26506 of Psychology (www. psychology.wvu.edu) invites applications for tenure-track Assistant Professor positions

  11. Channel-aware Distributed Classification in Wireless Sensor Networks

    E-Print Network [OSTI]

    Valenti, Matthew C.

    University, Morgantown, WV, USA 2011 SPIE Defense, Security, and Sensing Signal Processing, Sensor Fusion, and Problem Statement 2 System Model of Our Distributed Classification WSN 3 Fusion Rule Derivation 4 Distributed Classification WSN 3 Fusion Rule Derivation 4 Numerical Analysis 5 Conclusions M. Fanaei et al

  12. FINDYOUR FOCUS. YOUR FUTURE.

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    FINDYOUR FOCUS. #12;YOUR FUTURE. DRIVE West Virginia University (ISSN 0362-3009) is published, Morgantown, WV 26506-6009. You're about to start the race of your life. Travis is racing toward his future has great options for his future. You have great options, too. Ready to get started? Tell us

  13. SPECIAL ISSUE Changes in the chemistry of shallow groundwater related

    E-Print Network [OSTI]

    ­240 mg/l), Mg (25­70 mg/l), Fe (5­1,200 ppb), and Mn (5­1,400 ppb) following CO2 injection. These chemi Virginia, Morgantown, WV 26506, USA K. S. Gullickson Department of Chemistry and Biochemistry, Montana

  14. Available online at www.sciencedirect.com Sensors and Actuators B 129 (2008) 200210

    E-Print Network [OSTI]

    Ghosh, Ruby N.

    2008-01-01

    of cost- effective, clean electricity production from coal. Gasification, or the production of synthesis produces syngas from coal, cleans the syngas and supplies it as fuel to a gas turbine operated, USA b US DOE-National Energy Technology Laboratory, Morgantown, WV 26505, USA Received 11 July 2006

  15. NETL Researcher Honored with 2013 Federal Laboratory Award Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reduce shutdowns and downtime, and reduce the risk and cost of equipment damage. The 3D virtual energy plant simulator is available to third parties for internal training...

  16. Morgantown Slightly Exceeds National Average for Cost of Living

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    (an index value of 100 reflects the national average). The index expresses the cost of living, health care, and miscellaneous goods and services. The index is designed to reflect the cost of living Relative to National Average by Category In Figure 2, we illustrate how the cost of living index has

  17. EA-0575: Fundamental Fluidization Research Project, Morgantown, West Virginia

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to design, construct, and operate a 2-foot diameter, 50-foot high pressurized fluidization with particular emphasis on operation in the...

  18. Visiting NETL Albany, Morgantown or Pittsburgh | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0 -UsingHeat & Cool History

  19. Native American Studies at West Virginia University: Continuing the Interactions of Native and Appalachian People

    E-Print Network [OSTI]

    High, Ellesa Clay; McNeil, Daniel W.

    2001-03-01

    citizens and a con cerned landowner to build a protective structure over a petroglyph located about an hour's drive from campus. In this way, ONAI embodies its four-point credo of education, preservation, spirituality, and service. Program Support... (ed.), Behavioral healthcare in rural and frontier areas: An interdisciplinary handbook. Washington, DC: American Psychological Association. McMichael, E. V. (1968). Introduction to West Virginia Archeology. Morgantown, WV: West Virginia Geological...

  20. Microsoft PowerPoint - WV SGIP 101810 rev1.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virginia Smart Grid Implementation Plan - Roadmap Framework GridWeek 2010 Steve Pullins October 18, 2010, Washington, DC This material is based upon work supported by the...

  1. EIS-0361: Western Greenbrier Co-Production Demonstration Project, WV

    Broader source: Energy.gov [DOE]

    This EIS is about the potential environmental impacts of the U.S. Department of Energy’s (DOE’s) proposal to provide federal financial assistance for the construction and demonstration of a 98 megawatt (MWe) net power plant and cement manufacturing facility to be located in the municipality of Rainelle, Greenbrier County, West Virginia.

  2. West Virginia Smart Grid Implementation Plan (WV SGIP) Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    level visualization system deployed and integrated with AMI, GIS, OMS (Order management System) , DA (Distribution Automation), DR, DER, work management, etc. 5. *High level...

  3. DOE - Office of Legacy Management -- Reduction Pilot Plant - WV 01

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont,Manufacturing0-19Rulison -Reduction Pilot

  4. Microsoft PowerPoint - WV SGIP 101810 rev1.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganismsnowReport ARM28Greg BallVirginia Smart Grid

  5. ARM - Campaign Instrument - mfrsr-wv1barn

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday,air Comments?govInstrumentsmaeri Comments? We

  6. ARM - Campaign Instrument - mfrsr-wv1mich

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday,air Comments?govInstrumentsmaeri Comments? Wemich Comments? We would

  7. West Virginia Smart Grid Implementation Plan (WV SGIP) Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubic Feet) Underground Storage Net(Dollars

  8. West Virginia Smart Grid Implementation Plan (WV SGIP) Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubic Feet) Underground Storage Net(DollarsWest

  9. Decontamination systems information and research program. Quarterly report, April--June 1995

    SciTech Connect (OSTI)

    1995-07-01

    West Virginia University (WVU) and the US Department of Energy Morgantown Energy Technology Center (DOE/METC) entered into a Cooperative Agreement on August 29, 1992 titled `Decontamination Systems Information and Research Programs`. Requirements stipulated by the Agreement require WVU to submit Technical Progress reports on a quarterly basis. This report contains the efforts of the fourteen research projects comprising the Agreement for the period April 1 to June 30, 1995. During this period three new projects have been funded by the Agreement. These projects are: (1) WERC National Design Contest, (2) Graduate Interns to the Interagency Environmental Technology Office under the National Science and Technology Council, and (3) WV High Tech Consortium.

  10. _Dear Reader_Cover Sheet_Master Table of Contents

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-Sessions |discussed howCommercial Local Government StateMorgantown, WV G

  11. advanced vehicle technologies awards table | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-Sessions |discussed howCommercial Local Government StateMorgantown, WV

  12. _

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE.EnergyWooden Rooftops | DepartmentMayMorgantown, WV

  13. Microsoft PowerPoint - Pittsburgh International Airport to Morgantown Site Directions.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganismsnow widelySmall IceatIttoPittsburgh

  14. DOE - Office of Legacy Management -- Food Machinery and Chemical Co - WV 04

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont, SouthLaboratoryDiv - NYCorp- 016FerroFood

  15. DOE - Office of Legacy Management -- The Carborundum Co Inc - WV 02

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers Co - OHStar CutterTennessee ValleyTexas-

  16. U.S. Department of Energy 2012 Annual Inspection - Parkersburg, WV

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700, 1. .&. ' , c 1afr a . - 3 U.

  17. File:EIA-Appalach5-eastWV-BOE.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New Pages Recent Changes AllApschem.pdf Jump to:Colorado WaterGas.pdfGAS.pdfGAS.pdf

  18. File:EIA-Appalach5-eastWV-GAS.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New Pages Recent Changes AllApschem.pdf Jump to:Colorado WaterGas.pdfGAS.pdfGAS.pdfGAS.pdf

  19. File:EIA-Appalach5-eastWV-LIQ.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New Pages Recent Changes AllApschem.pdf Jump to:Colorado

  20. File:EIA-Appalach6-WV-VA-BOE.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New Pages Recent Changes AllApschem.pdf Jump to:ColoradoBOE.pdf Jump to: navigation, search

  1. File:EIA-Appalach6-WV-VA-GAS.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New Pages Recent Changes AllApschem.pdf Jump to:ColoradoBOE.pdf Jump to: navigation,

  2. File:EIA-Appalach6-WV-VA-LIQ.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New Pages Recent Changes AllApschem.pdf Jump to:ColoradoBOE.pdf Jump to:

  3. SBOT WEST VIRGINIA NATIONAL ENERGY TECHNOLOGY LAB -WV POC Larry Sullivan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -Rob Roberts About Us

  4. If you reside in WASHINGTON, DC - MD -VA - WV your salary will range from:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHighHussein KhalilResearch88 SignPriceresponseIdeumIf you can

  5. Reservoir Characterization Using Intelligent Seismic Inversion

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    , WVU Jaime Toro, WVU Tom Wilson, WVU Alejandro Sanchez, Anadarko September 15, 2005 ERM 2005 Morgantown

  6. VA VT CT RI MT WY CO ID UT OR NV CA AZ NM WA TN WV NC AR OK

    Broader source: Energy.gov (indexed) [DOE]

    2 1 Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects NH 32 Awards Support Projects in 24 States 6 11 MA...

  7. Feasibility study of wood-fired cogeneration at a Wood Products Industrial Park, Belington, WV. Phase II

    SciTech Connect (OSTI)

    Vasenda, S.K.; Hassler, C.C.

    1992-06-01

    Customarily, electricity is generated in a utility power plant while thermal energy is generated in a heating/cooling plant; the electricity produced at the power plant is transmitted to the heating/cooling plant to power equipments. These two separate systems waste vast amounts of heat and result in individual efficiencies of about 35%. Cogeneration is the sequential production of power (electrical or mechanical) and thermal energy (process steam, hot/chilled water) from a single power source; the reject heat of one process issued as input into the subsequent process. Cogeneration increases the efficiency of these stand-alone systems by producing these two products sequentially at one location using a small additional amount of fuel, rendering the system efficiency greater than 70%. This report discusses cogeneration technologies as applied to wood fuel fired system.

  8. Microsoft PowerPoint - How To Do Business with DOE Charleston WV Nov 14 2011 BOS.pptx

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPAEnergy May 28MarEnergy Microsoft 2 3Office of Small and

  9. VA VT CT RI MT WY CO ID UT OR NV CA AZ NM WA TN WV NC AR OK

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeedofDepartment ofDeploymentDepartmentService2 1

  10. VA VT CT RI MT WY CO ID UT OR NV CA AZ NM WA TN WV NC AR OK

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeedofDepartment ofDeploymentDepartmentService2 1 2 1

  11. VA VT CT RI MT WY CO ID UT OR NV CA AZ NM WA TN WV NC AR OK

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeedofDepartment ofDeploymentDepartmentService2 1 2 1 7

  12. NETL Researcher Honored with 2013 Federal Laboratory Award Morgantown, W.Va. - Dr. Stephen E. Zitney of the National Energy Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact: Janet Lambert Reviewed:Quantification ofAward

  13. USAJobs Search | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Morgantown, West Virginia (1) Apply Morgantown, West Virginia filter Filter by salary: 70,192.00 - 108,507.00 Remove 70,192.00 - 108,507.00 filter Filter by work...

  14. USAJobs Search | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    locations: Morgantown, West Virginia Remove Morgantown, West Virginia filter Filter by salary: 70,192.00 - 108,507.00 (1) Apply 70,192.00 - 108,507.00 filter 83,468.00 -...

  15. J

    Office of Scientific and Technical Information (OSTI)

    Under Contract No. FG21-88MC25142 For U.S. Department of Energy Morgantown Energy TechnOlogy Center Morgantown, West Virginia By Portland State University Portland, Oregon i...

  16. Journal of Nuclear Materials 329-333 (2004) 238-242 Design of new Fe-9CrWV reduced-activation martensitic steels for

    E-Print Network [OSTI]

    Cambridge, University of

    2004-01-01

    -activation martensitic steels for creep properties at 650°C Y. de Carlan*a , M. Murugananthb , T. Sourmailc and H. K. D, Pembroke Street, Cambridge CB2 3QZ, U.K. Abstract New low-activation martensitic steels for creep.decarlan at cea.fr (Y. de Carlan). Keywords S0800 Steels, Ferritic/Martensitic K0100 Kinetics L0400 Low Activation

  17. Low NOx Advanced Vortex Combustor

    SciTech Connect (OSTI)

    Edmonds, R.G. (Ramgen Power Systems, Inc., Bellevue, WA); Williams, J.T. (Ramgen Power Systems, Inc., Bellevue, WA); Steele, R.C. (EPRI); Straub, D.L.; Casleton, K.H.; Bining, Avtar (California Energy Commission, Sacramento, CA)

    2008-05-01

    A lean-premixed advanced vortex combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy’s National Energy Technology Laboratory in Morgantown, WV. All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx /CO/unburned hydrocarbon (UHC) emissions of 4/4/0 ppmv (all emissions corrected to 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated marked acoustic dynamic stability over a wide range of operating conditions, which potentially makes this approach significantly more attractive than other lean-premixed combustion approaches. In addition, the measured 1.75% pressure drop is significantly lower than conventional gas turbine combustors, which could translate into an overall gas turbine cycle efficiency improvement. The relatively high velocities and low pressure drop achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

  18. NETL LINES OF DEMARCATION 09282012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    d. Hydrogen (High Pressure Hydrogen system at Morgantown site) e. Argon f. Process cooling water supply and return (except where such a system is a dedicated stand alone...

  19. Audit Report: OAS-RA-11-08 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the total cost will be dedicated to acquiring and installing a Performance Optimized Data Center (POD) at NETL's Morgantown, West Virginia, site. And, the remaining funds will...

  20. This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    . Artun Ã,1 , S. Mohaghegh West Virginia University, Morgantown, W V, 26505, USA a r t i c l e i n f o

  1. Task Cover

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of other medical examinations (including baseline, voluntary, return-to-work, fitness for duty, and termination) per year 2 (NETL Albany), 86 (NETL Morgantown), and 70 (NETL...

  2. RETRIEVING DENTAL RADIOGRAPHS FOR POST-MORTEM IDENTIFICATION Ayman Abaza, Arun Ross, Hany Ammar

    E-Print Network [OSTI]

    Ross, Arun Abraham

    West Virginia University Lane Department of Computer Science and Electrical Engineering Morgantown, USA Conference on Image Processing (ICIP), (Cairo, Egypt), Novembe

  3. CX-004470: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Relocation of Laboratory on Morgantown Site from B25/102 to B4/112CX(s) Applied: B3.6Date: 11/18/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  4. CX-001327: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Design/Construction/Installation of Appliance Technology Evaluation Center II Laboratories at the National Energy Technology Laboratory Morgantown SiteCX(s) Applied: B1.15, B3.6Date: 03/17/2010Location(s): Morgantown, West VirginiaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  5. CX-005663: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Vortex Tube Project Decommissioning ProjectCX(s) Applied: B3.6Date: 04/29/2011Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  6. CX-005904: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    100/700 Pound Per Square Inch Compressor Facility Air Improvements ProjectCX(s) Applied: B1.3Date: 05/18/2011Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  7. Ames Laboratory Argonne National Laboratory

    E-Print Network [OSTI]

    that advance knowl- edge and provide the foundation for American innovation. From unlocking atomic energy's electric vehicles, solar panels, and wind turbines, the National Labs have pushed the boundaries Energy Technology Laboratory Morgantown, West Virginia Pittsburgh, Pennsylvania Albany, Oregon National

  8. CX-005335: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    National Energy Technology Laboratory Reciprocating Laboratory DecommissioningCX(s) Applied: B3.6Date: 03/01/2011Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  9. CX-003921: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mobile Sediment Analysis LaboratoryCX(s) Applied: B3.6Date: 09/23/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  10. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    (MW)" 1,"Chalk Point LLC","Petroleum","NRG Chalk Point LLC",2248 2,"Calvert Cliffs Nuclear Power Plant","Nuclear","Calvert Cliffs Nuclear PP LLC",1716 3,"Morgantown Generating...

  11. UNIVERSITY AVE UNIVERSITY AVE

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    COLORADOAVE W PARK AVE NORTH ST GANS AVE HOLLAND AVE KOONTZ AVE RAWLEYLN TAKOMAST BALDWIN STKREPPS AVE WARREN Accessible Entrance Motorcycle Parking Locations Emergency Phones N MORGANTOWN Animal Sciences Farm Animal

  12. West Virginia Business & Economic Review, Winter 2012 1 West Virginia

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Morgantown's prices. Utilities, which include electric, natural gas, and land-line telephone services, were 2 Metropolitan Area Composite Index (100%) Grocery Items (13%) Housing (29%) Utilities (10%) Transportation (9

  13. CX-002644: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Photoactive, Organic-Inorganic Hybrid Porous Structures for Photocatalytic Carbon Dioxide ReductionCX(s) Applied: B3.6Date: 06/04/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  14. CX-002392: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Separation of Mineral Matter from Coal in a Riser SystemCX(s) Applied: B3.6Date: 05/24/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  15. CX-004171: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Prediction of Fault Reactivation in Hydraulic Fracturing of Horizontal Wells in Shale Gas ReservoirsCX(s) Applied: A9Date: 09/28/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  16. CX-002645: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fine Coal Flotation and Removal of Toxic Trace ElementsCX(s) Applied: B3.6Date: 06/04/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  17. Towards Understanding the Symmetry of Human Ears: A Biometric Perspective

    E-Print Network [OSTI]

    Ross, Arun Abraham

    @wvhtf.org. Abaza is also affiliated with Cairo University, Egypt. A. Ross is with the Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, USA. arun.ross@mail.wvu.edu (1

  18. CX-005336: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Materials Synthesis Laboratory Modifications/AdditionsCX(s) Applied: B3.6Date: 03/01/2011Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  19. CX-006137: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    B39 Cellular Repeater InstallationCX(s) Applied: B1.7Date: 06/15/2011Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  20. CX-002309: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Zeta-Potential Approach to Fine Coal BeneficiationCX(s) Applied: B3.6Date: 05/17/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  1. CX-002646: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Polymer Nanocomposites for Carbon Dioxide CaptureCX(s) Applied: B3.6Date: 06/04/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  2. Development of a Light Actuated Drug Delivery-on-Demand System

    E-Print Network [OSTI]

    Linsley, Chase Schilling

    2015-01-01

    C.M. Ofner, Crosslinked gelatin matrices: release of aof model drugs from 10% (w/v) gelatin reservoirs over 7 daysfrom 10% and 20 % (w/v) gelatin reservoirs over 7 days

  3. DEVELOPMENT OF DISPOSABLE SORBENTS FOR CHLORIDE REMOVAL FROM HIGH TEMPERATURE COAL-DERIVED GASES

    SciTech Connect (OSTI)

    Gopala Krishnan; Raghubir Gupta

    1999-09-01

    Advanced integrated-gasification combined-cycle (IGCC) and integrated-gasification fuel cell (IGFC) systems require the development of high temperature sorbents for the removal of hydrogen chloride (HCl) vapor to less than 1 parts-per-million (ppm) levels. HCl is a highly reactive, corrosive, and toxic gas which must be removed to meet environmental regulations, to protect power generation equipment, and to minimize deterioration of hot gas desulfurization sorbents. The objective of this program was to develop disposable, alkali-based sorbents capable of reducing HCl vapor levels to less than 1 ppm in the temperature range from 400 to 750 C and pressures in the range from 1 to 20 atm. The primary areas of focus of this program were to investigate different methods of sorbent fabrication, testing their suitability for different reactor configurations, obtaining reaction kinetics data, and conducting a preliminary economic feasibility assessment. This program was a joint effort between SRI International (SRI), Research Triangle Institute (RTI), and General Electric Corporate Research and Development (GE-CRD). SRI, the prime contractor and RTI, a major subcontractor, performed most of the work in this program. Thermochemical calculations indicated that sodium-based sorbents were capable of reducing HCl vapor levels to less than 1 ppm at temperatures up to 650 C, but the regeneration of spent sorbents would require complex process steps. Nahcolite (NaHCO{sub 3}), a naturally-occurring mineral, could be used as an inexpensive sorbent to remove HCl vapor in hot coal gas streams. In the current program, nahcolite powder was used to fabricate pellets suitable for fixed-bed reactors and granules suitable for fluidized-bed reactors. Pilot-scale equipment were used to prepare sorbents in large batches: pellets by disk pelletization and extrusion techniques, and granules by granulation and spray-drying techniques. Bench-scale fixed- and fluidized-bed reactors were assembled at SRI and RTI to conduct tests at high-temperature, high-pressure conditions (HTHP). The HTHP tests confirmed the ability of nahcolite pellets and granules to reduce the HCl vapor levels to less than 1 ppm levels with a very high sorbent utilization for chloride capture. The effect of several operating variables such as temperature, pressure, presence of hydrogen sulfide, and sorbent preparation methods was studied on the efficacy of HCl removal by the sorbent. Pilot-scale tests were performed in the fluidized-bed mode at the gasifier facility at the GE-CRD. Sorbent exposure tests were also conducted using a hot coal gas stream from the DOE/FETC's fluidized-bed gasifier at Morgantown, WV. These tests confirmed the results obtained at SRI and RTI. A preliminary economic assessment showed that the cost of HCl removal in a commercial IGCC system will be about $0.001/kWh (1 mills/kWh).

  4. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    163 Praxair, Inc. Tonawanda, WV Georgia Institute of Technology, 505 10th Street, NW, Atlanta, GA 30332 FESCCAESD Kenneth David Lyons Improving Energy Efficiency of Air...

  5. Newcomers' Orientation

    Office of Environmental Management (EM)

    of WIPP Increase in shipments due to clean up activities SNF to a repository UF6 accident in Beckley, WV Enhancement of: DOE transportation organization ...

  6. United States Government

    Office of Legacy Management (LM)

    (*) R. Brew Coaopany, Concord; NH Cincinnati Milling Machine, Cihc Fenwal, Ashland, HA Food Machining Corp., Nitro, WV General Electric Plant, Shelbyvi Gleason Works, Rochester,...

  7. OVERALL POWER CORE CONFIGURATION AND SYSTEM

    E-Print Network [OSTI]

    and ODS steel cartridge Vacuum vessel Water-cooled FS structure and WC He-cooled Bainitic FS (3Cr-3WV) LT

  8. PowerPoint Presentation

    Office of Environmental Management (EM)

    1613 NTSF National Transportation Stakeholder Forum West Valley Demonstration Project A Short History and Status May 7, 2013 www.wv.doe.gov Bryan C. Bower, Director...

  9. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WV FESCCAESD Steven Markovich Development Of A Thermal Spray, Redox Stable, Ceramic Anode For Metal Supported The Recipient will perform powder engineering and thermal...

  10. Water Research Institute Annual Technical Report

    E-Print Network [OSTI]

    District: WV 1 Research Category: Water Quality Focus Category: Waste Water, Treatment, Recreation Descriptors: post mining land use, waste water,water quality, site selection, waste reduction, parameter

  11. CX-004701: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Actualistic and Geomechanical Modeling of Reservoir Rock, Carbon Dioxide, and Formation Flue InteractionCX(s) Applied: A9, B3.1, B3.6Date: 12/14/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  12. Proceedings of the 2nd symposium on valves for coal conversion and utilization

    SciTech Connect (OSTI)

    Maxfield, D.A. (ed.)

    1981-01-01

    The 2nd symposium on valves for coal conversion and utilization was held October 15 to 17, 1980. It was sponsored by the US Department of Energy, Morgantown Energy Technology Center, in cooperation with the Valve Manufacturers Association. Seventeen papers have been entered individually into EDB and ERA. (LTN)

  13. Lane Department of Computer Science and Electrical Engineering Outage Probability of a Multi-User

    E-Print Network [OSTI]

    Valenti, Matthew C.

    Reynolds, and Matthew C. Valenti Lane Dept. of Comp. Sci and Elec. Eng. West Virginia University Morgantown Virginia University Page 1 #12;Lane Department of Computer Science and Electrical Engineering · Conclusions March 14, 2007 West Virginia University Page 2 #12;Lane Department of Computer Science

  14. Workshop on sulfur chemistry in flue gas desulfurization

    SciTech Connect (OSTI)

    Wallace, W.E. Jr.

    1980-05-01

    The Flue Gas Desulfurization Workshop was held at Morgantown, West Virginia, June 7-8, 1979. The presentations dealt with the chemistry of sulfur and calcium compounds in scrubbers. DOE and EPRI programs in this area are described. Ten papers have been entered individually into EDB and ERA. (LTN)

  15. CX-002647: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Development of Biochemical Techniques for the Extraction of Mercury from Waste Streams Containing CoalCX(s) Applied: B3.6Date: 06/04/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  16. CX-005153: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    United States-China Advanced Coal Technologies Consortium - West Virginia University Research CorporationCX(s) Applied: A9, A11, B3.6Date: 02/04/2011Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  17. Biophysical Journal, Volume 97 Supporting Material

    E-Print Network [OSTI]

    Rieger, Bernd

    was continued for one to two minutes, then the grids were rinsed with a few drops of 2% (w/v) aqueous uranyl.5-2 minutes. The grid was rinsed with a few drops of 2% (w/v) aqueous uranyl acetate, blotted with filter

  18. The Targeted Delivery of Doxorubicin with Transferrin-Conjugated Block Copolypeptide Vesicles.

    E-Print Network [OSTI]

    Lee, BS; Yip, AT; Thach, AV; Rodriguez, AR; Deming, TJ; Kamei, DT

    2015-01-01

    µL of 2.5% (w/v) aqueous uranyl acetate (UA). After 2 s, themicroscope (TEM) image of a uranyl acetate negativelyµL of 2.5% (w/v) aqueous uranyl acetate (UA). After 2 s, the

  19. Econometrics Model Selection: Theory and Applications 

    E-Print Network [OSTI]

    Long, Wei

    2015-06-10

    : Actual Path and Projected Path Based on the Trun- cated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.6 Murder, Rape and Robbery Rates in Virginia: Actual Path and Syn- thetic Path....7 Robustness Test: Weights for Control Group (excluding WV, MD) . . 54 3.8 Robustness Test: Treatment effect between 1995-2010 (excluding WV, MD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.9 Murder: Weights for Control Group...

  20. Virtual-‘Light-Sheet’ Single-Molecule Localisation Microscopy Enables Quantitative Optical Sectioning for Super-Resolution Imaging

    E-Print Network [OSTI]

    Palayret, Matthieu; Armes, Helen; Basu, Srinjan; Watson, Adam T.; Herbert, Alex; Lando, David; Etheridge, Thomas J.; Endesfelder, Ulrike; Heilemann, Mike; Laue, Ernest; Carr, Antony M.; Klenerman, David; Lee, Steven F.

    2015-04-14

    . Cells were grown from frozen stocks on YEA (yeast extract 0.5% w/v, glucose 3.0% w/v, adenine, leucine and uracil all 225 mg/L and 2% Agar) plates then cultured in Edinburgh Minimal Media (EMM2) (filter sterilised) in a shaking incubator at 30°C. Fresh...

  1. Tantalum Solid Electrolytic Capacitors/TE TESeries: Type : T

    E-Print Network [OSTI]

    Berns, Hans-Gerd

    Tantalum Solid Electrolytic Capacitors/TE TESeries: Type : T -55 to +125°C 4 to 35 V .DC 0.1 to 330.3 1.3 EIA code 3216 3528 6032 5846 7343 W.V. code W.V. (V) code #12;Tantalum Solid Electrolytic

  2. JBS Crystallization Freshman Kit Junior Cat.-No.: CSK-101 Get a head start crystallizing your protein

    E-Print Network [OSTI]

    Lebendiker, Mario

    Acetate 4.5 200 mM Lithium Sulfate 41 70% v/v MPD None 100 mM HEPES Sodium Salt 7.5 None 42 20% w/v PEG Number Precipitant 1 Precipitant 2 Buffer pH Salt pH 1 50% v/v PEG 400 None 100 mM Sodium Acetate 4.5 200 mM Lithium Sulfate 2 20% w/v PEG 3000 None 100 mM Sodium Citrate 5.5 None 3 20% w/v PEG 3350 None

  3. Formulation Sheet JBScreen HTS I

    E-Print Network [OSTI]

    Hill, Chris

    .5 200 mM Lithium Sulfate A 5 30 % w/v PEG 400 None 100 mM Sodium Acetate 4.6 100 mM Calcium Chloride A 6 2 Buffer pH Additive A 1 15 % w/v PEG 400 None 100 mM Sodium Acetate 4.6 100 mM Calcium Chloride A 2 None 100 mM Sodium Acetate 4.6 100 mM Magnesium Chloride A 4 25 % w/v PEG 400 None 100 mM Tris-HCl 8

  4. JBS Crystallization Freshman Kit Scholar Cat.-No: CSK-102 Get a head start crystallizing your protein

    E-Print Network [OSTI]

    Lebendiker, Mario

    mM Lithium Sulfate D 4 30 % w/v PEG 4000 None 100 mM Tris-HCl 8.5 200 mM Sodium Acetate D 5 30 % w Number Precipitant 1 Precipitant 2 Buffer pH Additive A 1 15 % w/v PEG 400 None 100 mM Sodium Acetate 4.5 200 mM Sodium Citrate A 5 25 % w/v PEG 400 None 100 mM Sodium Acetate 4.6 100 mM Magnesium Chloride

  5. Integrated gasification combined-cycle research development and demonstration activities

    SciTech Connect (OSTI)

    Ness, H.M.; Reuther, R.B.

    1995-12-01

    The United States Department of Energy (DOE) has selected six integrated gasification combined-cycle (IGCC) advanced power systems for demonstration in the Clean Coal Technology (CCT) Program. DOE`s Office of Fossil Energy, Morgantown Energy Technology Center, is managing a research development and demonstration (RD&D) program that supports the CCT program, and addresses long-term improvements in support of IGCC technology. This overview briefly describes the CCT projects and the supporting RD&D activities.

  6. Integrated gasification combined-cycle research development and demonstration activities in the US

    SciTech Connect (OSTI)

    Ness, H.M.; Brdar, R.D.

    1996-09-01

    The United States Department of Energy (DOE)`s Office of Fossil Energy, Morgantown Energy Technology Center, is managing a research development and demonstration (RD&D) program that supports the commercialization of integrated gasification combined-cycle (IGCC) advanced power systems. This overview briefly describes the supporting RD&D activities and the IGCC projects selected for demonstration in the Clean Coal Technology (CCT) Program.

  7. wvblack DiamonDs Engineering and

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    the United States, Canada, and Australia. Notably, he was president and CEO of the Pittston Coal Group of contents Spindler Presents Poundstone Lecture ..........................................1 WV Coal Hall of Fame..............2 Outstanding Academic Achievement...............................3 NWV Coal Prep

  8. Where Appalachia Went Right: White Masculinities, Nature, and Pro-Coal Politics in an Era of Climate Change

    E-Print Network [OSTI]

    Schwartzman, Gabe

    2013-01-01

    strip mall, including a Walmart Super-Center and a cinema,of the post 1970s, such as Walmart, employees were “members”in Logan, WV, with a Walmart Supercenter, quite visibly a

  9. To appear: SEKE '99, June 17-19, Kaiserslautern, Germany. Available from research.ivv.nasa.gov/docs/techreports/1999/NASA-IVV-99-007.pdf. WP:b/99/seke/words(May 11, 1999).

    E-Print Network [OSTI]

    Menzies, Tim

    Drive, Fairmont WV 26554 yRST Corporation, Suite#250, 21515 Ridgetop Circle, Sterling a few probes. HT0 is a software test engine that assumes rapid saturation. Instead of exploring all

  10. Energy Efficiency Programs in West Virginia: A Partnership Approach 

    E-Print Network [OSTI]

    Cullen, K. A.; Crowe, E.; Gopalakrishnan, B.; Chaudhari, S.

    2011-01-01

    laboratories. This range of services creates a synergistic relationship that allows the WV team to obtain competitive awards that benefit the stakeholders. This paper will focus on how West Virginia has a successful industrial energy efficiency program...

  11. Microsoft Word - figure_03.doc

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Oil and Gas Reserves"; PointLogic Energy; Ventyx; and the Bureau of Safety and Environmental Enforcement, and predecessor agencies. IN OH TN WV VA KY MD PA NY VT NH MA CT ME...

  12. Miowol Recipe (Antifade reagent) 1. Put 6 g glycerol in a 50 ml plastic centrifuge tube and add a small stir bar. (note--Grams

    E-Print Network [OSTI]

    Goldman, Robert D.

    Miowol Recipe (Antifade reagent) 1. Put 6 g glycerol in a 50 ml plastic centrifuge tube and add.5% (w/v) and vortex until dissolved. 8. Centrifuge at 5000 g for 15 minutes to remove any undissolved

  13. B.D. Wirth1,2,*, T. Faney3, K. Hammond1, X. Hu3, N. Juslin1, F. Sefta3, Donghua Xu1, and H.-J. Lee3,7

    E-Print Network [OSTI]

    of bainitic and ferritic/martensitic steels Fe-3Cr-3WV Fe-9Cr-1MoVNb Fe-9Cr-1MoVNb-2Ni Fe-9Cr-2WV Fe-9Cr-2WVTa! · Structural Materials (Fe-based steels, Vanadium and Ni-based alloys, Refractory metals & alloys, Si, Garner, Hamilton, Allen and Porter, 2001 304 Stainless steel irradiated in EBR-II, 380°C, ~22 dpa, 1

  14. Supporting Online Material On-Chip Dielectrophoretic Co-Assembly of Live Cells and

    E-Print Network [OSTI]

    Velev, Orlin D.

    V mm-1 and 100 Hz between two parallel coplanar electrodes applied across a suspension of 0.01 % w electrodes applied across a mixture of 0.1 % w/v yeast cells and 0.1 % w/v 1 m sulfate stabilized latex with a small magnet (not seen) in real-time. #12;5 (B) Coupling Protocols for Protein Conjugation to Colloidal

  15. Fall 2014 1,067 473 Fall 2014 354 285 Fall 2013 1,144 516 Fall 2013 339 229

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Term WV Resident Non- Resident Term WV Resident Non- Resident Fall 2014 1,067 473 Fall 2014 354 285 Fall 2013 1,144 516 Fall 2013 339 229 Fall 2012 1,279 502 Fall 2012 433 296 Fall 2011 1,333 467 Fall 2011 435 285 Fall 2010 1,385 451 Fall 2010 462 248 Fall 2009 1,379 431 Fall 2009 460 263 Fall 2008 1

  16. Applied research and development private sector accomplishments. Final summary report

    SciTech Connect (OSTI)

    Beskid, N.J.; Devgun, J.S.; Zielke, M.M.; Erickson, M.D.

    1993-12-01

    Because of the nature of most US Department of Energy (DOE) operations, contamination at DOE sites presents complex problems. DOE sites may have radioactive, hazardous, or mixed contamination. The major contaminants include radionuclides, volatile organic compounds (VOCs), and heavy metals. The contamination exists in soils, groundwater, and buildings and materials. DOE`s special problems in site remediation have created a need for better and less costly technologies. Thus, DOE has implemented several initiatives for developing new technologies. This report describes the results of the first set of procurement contracts in this area. Similar research and development (R&D) activities are currently managed for DOE by the Morgantown Energy Technology Center.

  17. Fossil Energy Program semiannual progress report for October 1992 through March 1993

    SciTech Connect (OSTI)

    Judkins, R.R. [Oak Ridge National Lab., TN (United States)

    1993-07-01

    This report covers progress made during the period October 1, 1992, through March 31, 1993, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by the DOE Office of Fossil Energy, the DOE Morgantown Energy Technology Center, the DOE Pittsburgh Energy Technology Center, the DOE Fossil Energy Clean Coal Technology Program, the DOE Fossil Energy Office of Petroleum Reserves, and the US Agency for International Development. In particular, projects related to materials and coal combustion, environmental analysis, and bioconversion are described.

  18. 250 MW single train CFB cogeneration facility. Annual report, October 1993--September 1994

    SciTech Connect (OSTI)

    1995-02-01

    This Technical Progress Report (Draft) is submitted pursuant to the Terms and Conditions of Cooperative Agreement No. DE-FC21-90MC27403 between the Department of Energy (Morgantown Energy Technology Center) and York County Energy Partners, L.P. a wholly owned project company of Air Products and Chemicals, Inc. covering the period from January 1994 to the present for the York County Energy Partners CFB Cogeneration Project. The Technical Progress Report summarizes the work performed during the most recent year of the Cooperative Agreement including technical and scientific results.

  19. DOE - Office of Legacy Management -- Morse Chemical Co - IL 0-05

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont,Manufacturing - OHSelling CorpMorgantown

  20. DOE - Office of Legacy Management -- Motch and Merryweather - OH 46

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont,Manufacturing - OHSelling CorpMorgantownMotch and

  1. DOE - Office of Legacy Management -- Mound Laboratory - OH 19

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont,Manufacturing - OHSelling CorpMorgantownMotch

  2. DOE - Office of Legacy Management -- Mound Site

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont,Manufacturing - OHSelling CorpMorgantownMotchOhio

  3. Microsoft PowerPoint - NA-RP_Public_Workshop_April-2013.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganismsnow widelySmall Ice CrystalsHighMorgantown

  4. Microsoft PowerPoint - NERC Reliability Standards and Mandatory Compliance Presentation to Hydro-Power Conference - June 2007.p

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganismsnow widelySmall Ice CrystalsHighMorgantownNERC

  5. advanced vehicle technologies awards table

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE.EnergyWooden Rooftops | DepartmentMayMorgantown,

  6. Muscle fiber and performance adaptations to resistance exercise with MyoVive, colostrum or casein and whey supplementationa

    E-Print Network [OSTI]

    Fry, Andrew C.; Schilling, Brian K.; Chiu, Loren Z. F.; Weiss, Lawrence W.; Kreider, Richard B.; Rasmussen, Christopher J.

    2003-01-01

    training site. Individual ex- ercises were modified for some subjects due to equipment limitations at some training sites. Body Composition Body composition was determined using a calibrated Hologic 4500W dual energy X-ray absorptiometer (DEXA). A three...) from each biopsy were placed in 0.5?1.0 mL of a lysing buffer containing 10% (w/v) glycerol, 5% (v/v) b-mercaptoethanol, and 2.3% (w/v) sodium dodecylsulfate (SDS) in 62.5 mM Tris/HCl buffer (pH 6.8) and heated for 10 min at 60 o C. Small amounts...

  7. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 2

    SciTech Connect (OSTI)

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K.

    1994-06-01

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume II contains papers presented at the following sessions: filter technology issues; hazardous air pollutants; sorbents and solid wastes; and membranes. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  8. Proceedings of the fuels technology contractors review meeting

    SciTech Connect (OSTI)

    Malone, R.D.

    1993-11-01

    The Fuels Technology Contractors Review Meeting was held November 16-18, 1993, at the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. This meeting was sponsored and hosted by METC, the Office of Fossil Energy, U.S. Department of Energy (DOE). METC periodically provides an opportunity to bring together all of the R&D participants in a DOE-sponsored contractors review meeting to present key results of their research and to provide technology transfer to the active research community and to the interested public. This meeting was previously called the Natural Gas Technology Contractors Review Meeting. This year it was expanded to include DOE-sponsored research on oil shale and tar sands and so was retitled the Fuels Technology Contractors Review Meeting. Current research activities include efforts in both natural gas and liquid fuels. The natural gas portion of the meeting included discussions of results summarizing work being conducted in fracture systems, both natural and induced; drilling, completion, and stimulation research; resource characterization; delivery and storage; gas to liquids research; and environmental issues. The meeting also included project and technology summaries on research in oil shale, tar sands, and mild coal gasification, and summaries of work in natural-gas fuel cells and natural-gas turbines. The format included oral and poster session presentations. Individual papers have been processed separately for inclusion in the Energy Science and Technology database.

  9. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 1

    SciTech Connect (OSTI)

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K. [eds.

    1994-06-01

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume I contains papers presented at the following sessions: opening commentaries; changes in the market and technology drivers; advanced IGCC systems; advanced PFBC systems; advanced filter systems; desulfurization system; turbine systems; and poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  10. Record of the facility deactivation, decommissioning, and material disposition (D and D) workshop: A new focus for technology development, opportunities for industry/government collaboration

    SciTech Connect (OSTI)

    Bedick, R.C.; Bossart, S.J.; Hart, P.W.

    1995-07-01

    This workshop was held at the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia, on July 11--12, 1995. The workshop sought to establish a foundation for continued dialogue between industry and the DOE to ensure that industry`s experiences, lessons learned, and recommendations are incorporated into D and D program policy, strategy, and plans. The mission of the D and D Focus Area is to develop improved technologies, processes and products, to characterize, deactivate, survey, maintain, decontaminate, dismantle, and dispose of DOE surplus structures, buildings, and contents. The target is a five-to-one return on investment through cost avoidance. The cornerstone of the D and D focus area activities is large-scale demonstration projects that actually decontaminate, decommission, and dispose of a building. The aim is to demonstrate innovative D and D technologies as part of an ongoing DOE D and D project. OTD would pay the incremental cost of demonstrating the innovative technologies. The goal is to have the first demonstration project completed within the next 2 years. The intent is to select projects, or a project, with visible impact so all of the stakeholders know that a building was removed, and demonstrate at a scale that is convincing to the customers in the EM program so they feel comfortable using it in subsequent D and D projects. The plan is to use a D and D integrating contractor who can then use the expertise in this project to use in jobs at other DOE sites.

  11. The boy crossed the road Markov chain

    E-Print Network [OSTI]

    Wang, Shaojun

    s de r q p is r p w w w w w w w w w w w h h h h h h hh hhh d s s h wv w w y w w w w w w w h h h h h h hh hhh d s s h w f ¢ i y y e ) © y y y f

  12. Diffusion of isobutane in silicalite studied by transition path sampling Thijs J. H. Vlugta)

    E-Print Network [OSTI]

    Dellago, Christoph

    WV Amsterdam, The Netherlands Received 9 May 2000; accepted 23 August 2000 The diffusion process is important in the design of petrochemical applications.1 As both adsorption and dif- fusion experiments can- ventional molecular dynamics MD techniques cannot be used to study this process. A naive way of computing

  13. Bolding, M.C., and B.L. Lanford. 2001. Forest fuel reduction through energy wood production using a CTL / small chipper harvesting system. In: Proc. 24th

    E-Print Network [OSTI]

    Bolding, M. Chad

    Reference: Bolding, M.C., and B.L. Lanford. 2001. Forest fuel reduction through energy wood Meeting; Snowshoe, WV. Forest Fuel Reduction Through Energy Wood Production Using a Small Chipper investigates the feasibility of harvesting to reduce forest fuel buildup and produce energy wood. Cut

  14. West Virginia Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    .S. Department of Energy - National Energy Technology Laboratory $ U.S. Army Corps of Engineers - Huntington, WV District $ West Virginia University The Advisory Committee develops the Institute's research priority list and our planning technology to implement the newly reauthorized abandoned mine land program's set aside

  15. West Virginia Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    - National Energy Technology Laboratory $ U.S. Army Corps of Engineers - Huntington, WV District $ West of Investigation $ U.S. Geological Survey $ U.S. Environmental Protection Agency $ U.S. Department of Energy Virginia University The Advisory Committee develops the Institute's research priority list, reviews its

  16. Design Challenges and Activation Concerns for ARIES Vacuum Vessel

    E-Print Network [OSTI]

    composition specifically tailored for LLW) ­ 3Cr-3WV bainitic steels ­ 8-9%Cr reduced activation ferritic-martensitic is unacceptable for VV due to complex heat treatment requirement · Selection of austenitic stainless steel (such-based steel). #12;7 Seven Steels Selected for Further Analysis The seven steels: ­ F82H ferritic steel (having

  17. Houston, We Have a Success Story: Technology Transfer at the NASA IV&V Facility

    E-Print Network [OSTI]

    Hayes, Jane E.

    Houston, We Have a Success Story: Technology Transfer at the NASA IV&V Facility Ken McGill, Wes Deadrick NASA IV&V Facility 100 University Drive, Fairmont, WV 26554 +1 (304) 367-8300/8329 {Kenneth.G.McGill,Wesley.W.Deadrick}@nasa of and technology transfer from NASA's research program in Independent Verification and Validation (IV

  18. Understanding IV&V in a Safety Critical and Complex Evolutionary Environment: The NASA Space Shuttle Program1

    E-Print Network [OSTI]

    Zelkowitz, Marvin V.

    Understanding IV&V in a Safety Critical and Complex Evolutionary Environment: The NASA Space, Maryland 20740, USA +1-301-403-8971 irus@fc-md.umd.edu 1 This work has been performed as NASA Subcontract No. 93-393B-FUSA from the NASA/IVV facility in Fairmont, WV to the Fraunhofer Center, Maryland

  19. 1 2014 Society of Chemical Industry and John Wiley & Sons, Ltd | Greenhouse Gas Sci Technol. 4:127 (2014); DOI: 10.1002/ghg Received August 14, 2013; revised January 9, 2014; accepted January 10, 2014

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    2014-01-01

    Virginia University, Morganstown, WV, USA Abstract: Capturing carbon dioxide (CO2) from large point sources on Climate Change (IPCC) defines carbon capture and storage (CCS) as `a process consisting of the separation Modeling pressure and saturation distribution in a CO2 storage project using a Surrogate Reservoir Model

  20. Supporting Information for: Ammonium Bicarbonate Transport in Anion Exchange Membranes

    E-Print Network [OSTI]

    films were cast in PTFE molds from 5% (w/v) solutions of polymer in 1-methyl-2-pyrrolidinone (NMP a given film) was achieved by placing the PTFE molds on a level casting plate in a gravity oven (VWR removed from the PTFE molds and soaked in de-ionized (DI) water (18.2 M cm) to extract any residual

  1. WPP, No. 76: Phonetic and Phonological Rules of Nasalization

    E-Print Network [OSTI]

    Cohn, Abigail C.

    1990-01-01

    n two to deny simple good debt good head good lettre n#d NGVNGV F-Donly nd nt nl Leon He is a hero. 1W WV NC nd0 nje njecan be seen in (33) where NGV is compared with NV and NLV. (

  2. Beziehungen zwischen Objekten werden sehr oft durch binre Relationen modelliert. Wir beschftigen uns in diesem Kapitel mit speziellen binren

    E-Print Network [OSTI]

    Brandes, Ulrik

    Inzidenzmatrix des Graphen. Die Menge NG(v) = {w V : {v, w} E} der zu v V adjazenten Knoten heiÿt Nachbarschaft von v und wir nennen deren Kardinalität dG(v) = |NG(v)| = wV av,w = eE iv,e , d.h. die Zeilensumme

  3. From the Director 2 Student Corner 2

    E-Print Network [OSTI]

    McGlothlin, Joel W.

    split into groups and went on one of three field trips: The Beckley, WV Exhibition Coal Mine and Museum; the Pocahontas, VA Exhibition Coal Mine and Museum; or a five-hour hike exploring various ecosystems of Salt Pond was pleased to open its doors to both of these schools, and plans to continue developing this type

  4. Need more help? Ask your Personal Librarian for assistance. Every major has its very own research expert ready to assist you. If you need help finding your librarian, email libraries.reference@ttu.edu.

    E-Print Network [OSTI]

    Griffis-Kyle, Kerry

    , Huntington, WV 25703, USA CRISTINA BRADATAN, Department of Sociology, Anthropology, and Social Work, Texas concentrations may be high enough to impact terrestrial organisms of economic and conservation importance pool, tinaja, United States­Mexico border, wildlife waters. Anthropogenic wildlife waters, including

  5. A DualDisk File System: ext4 Mihai Budiu

    E-Print Network [OSTI]

    Budiu, Mihai

    Characteristic Vocabulary ¥B©E5¡$§§£¦¥FGrt0¡j6¥£4F¡¥1§£8&WV¢ iFf$hgfUf6gi E0vgU5¡$§ )&§¡$¨§5¤&W©B! e9f$gIhi £¦¥b

  6. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Foam Used in Actual Outbreak · Water #12;Disposal: Science and Theory Water Based Foam Culling Demo · First large scale comparison · Two:46 (m:s) #12;Disposal: Science and Theory WV H5N2 AIV 2007 · AIV positive turkeys ­ 25,000 turkey farm

  7. Final Report 512 STC Synthesis of Best Practices for

    E-Print Network [OSTI]

    Stephens, Jacqueline

    Morvant Michael B. Boudreaux Louisiana,LA Jose Gomez Virginia, VA Dale Peabody Maine,ME Donald Williams West Virginia,WV Allison R. Hardt Maryland,MD David Kuehn Federal Highway Administration Linda Taylor Benjamin Worel Nicole Peterson Minnesota,MN Christopher W. Jenks National Academy of Science William Stone

  8. Engineering and Mineral Resources

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    News ????????????????? ® College of Engineering and Mineral Resources Winter 2008 table of contents. . . . . . . . . . . . . . . . . . . . 7 wvCROSSROADS DepartmentofCivilandEnvironmentalEngineering Civil engineering exchange program and environmental engineering with a focus in transportation will have the opportunity to study abroad as part

  9. 2015-06-12 EM Current Project Performance.xls

    Office of Environmental Management (EM)

    Unit CD-3 78,600,000 9302012 0 Knolls Atomic Power Laboratory VL-SPRU-0040.C2 Building G2 & H2 D&D CD-3 37,000,000 9302012 0 Knolls Atomic Power Laboratory OH-WV-0040.C2...

  10. Bridging the Causeway: A Center for Healthcare Policy and Research Symposium

    E-Print Network [OSTI]

    Carmichael, Owen

    TN MS AL GA FL SC VA WV OH MI NY PA MD DE NJ CT RI MA ME VT NH AK HI FY06 CTSA Grantees (12) FY07 CTSA Grantees (12) #12;NIH and Institutions: Working together as a National Consortium Informatics

  11. GOVERNMENT FUNDING FOR ADVANCED TECHNOLOGY, A GUIDE TO APPLYING FOR GOVERNMENT GRANTS

    E-Print Network [OSTI]

    Thompson, Anne

    GOVERNMENT FUNDING FOR ADVANCED TECHNOLOGY, A GUIDE TO APPLYING FOR GOVERNMENT GRANTS Edith Allison, WV Sponsored by Petroleum Technology Transfer Council COURSE DESCRIPTION Initiating new technology in an oil or gas field can yield significant benefits in improved recovery and reduced operating costs

  12. Biomedical Application of Hyaluronic Acid Nanoparticles

    E-Print Network [OSTI]

    Fakhari, Amir

    2012-05-31

    nanoparticles composed of 17 kDa HA in deionized water at different concentrations (15%, 30%, and 45% w/v) formed a stable 3-D colloidal gel as a result of physical entanglement of free polymer chains on the surfaces of nanoparticles. Mechanical and rheological...

  13. Fossil Energy Program semiannual progress report for April 1991 through September 1991

    SciTech Connect (OSTI)

    Judkins, R.R.

    1992-10-01

    This report covers progress made during the period April 1, 1991, through September 30, 1991, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by the DOE Office of Fossil Energy, the DOE Morgantown Energy Technology Center, the DOE Pittsburgh Energy Technology Center, the DOE Fossil Energy Clean Coal Technology Program, the DOE Fossil Energy Office of Petroleum Reserves, and the US Agency for International Development (USAID). The Fossil Energy Program organization chart is shown in the appendix. Project discussed are: materials research and development; environmental analysis support; coal conversion development; coal combustion research; fossil fuel supplies modeling and research; evaluations and assessments; and coal structure and chemistry.

  14. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2002

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2003-10-30

    This Site Environmental Report was prepared by the Environmental, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at NETL sites in Morgantown (MGN), West Virginia, Pittsburgh (PGH), Pennsylvania, Tulsa, Oklahoma, and Fairbanks, Alaska. This report contains the most accurate information that could be collected during the period between January 1, 2002, and December 31, 2002. As stated in DOE Orders 450.1 and 231.1, the purpose of the report is to: (1) Characterize site environmental management performance. (2) Confirm compliance with environmental standards and requirements. (3) Highlight significant facility programs and efforts.

  15. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2000

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2001-11-27

    This Site Environmental Report was prepared by the Environment, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at the NETL sites in Morgantown, West Virginia, and Pittsburgh, Pennsylvania. This report contains the most accurate information that could be collected during the period between January 1, 2000, through December 31, 2000. As stated in DOE Orders 5400.1 and 231.1, the purpose of the report is to: Characterize site environmental management performance; Confirm compliance with environmental standards and requirements and Highlight significant facility programs and efforts.

  16. Annual site environmental report, period: January 1994 to June 1995

    SciTech Connect (OSTI)

    NONE

    1996-01-01

    The environmental management program at the US Department of Energy (DOE), Morgantown Energy Technology Center (METC), addresses all areas of environmental concern, including surface water and groundwater quality, air quality, and solid and hazardous waste disposal. The program focuses primarily on the treatment and disposal of industrial, contaminated, and sanitary wastewaters; the disposal of solid and hazardous wastes; minimizing air pollutant emissions; the monitoring of surface water, groundwater, and air quality on the METC site and in the surrounding area; the decommissioning, decontamination, and disposal of on-site research facilities no longer in use; and the identification, characterization, and cleanup of off-site property where METC sponsored research and development activities. The environmental management program is conducted to meet the requirements of all applicable Federal, state, and local laws and regulations.

  17. Environmental Management Technology Leveraging Initiative. Topical report, October 1, 1995--September 30, 1996

    SciTech Connect (OSTI)

    NONE

    1996-12-31

    The ``Environmental Management Technology Leveraging Initiative,`` a cooperative agreement between the Global Environment and Technology Foundation and the Department of Energy-Morgantown Energy Technology Center, has completed its second year. This program, referred to as the Global Environmental Technology Enterprise (GETE) is an experiment to bring together the public and private sectors to identify, formulate, promote and refine methods to develop more cost-effective clean-up treatments. Working closely with Department of Energy officials, National Laboratory representatives, business people, academia, community groups, and other stakeholders, this program attempts to commercialize innovative, DOE-developed technologies. The methodology to do so incorporates three elements: business assistance, information, and outreach. A key advance this year was the development of a commercialization guidance document which can be used to diagnose the commercialization level and needs for innovative technologies.

  18. Clean coal reference plants: Pulverized encoal PDF fired boiler. Topical report

    SciTech Connect (OSTI)

    NONE

    1995-12-01

    The Clean Coal Technology Demonstration Program (CCT) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of full-scale facilities. The goal of the program is to provide the U.S. energy marketplace with a number of advanced, more efficient, and environmentally responsive coal-using technologies. To achieve this goal, a multiphased effort consisting of five separate solicitations has been completed. The Morgantown Energy Technology Center (METC) has the responsibility for monitoring the CCT Projects within certain technology categories, which, in general, correspond to the center`s areas of technology development. Primarily the categories of METC CCT projects are: atmospheric fluid bed combustion, pressurized fluidized bed combustion, integrated gasification combined cycle, mild gasification, and industrial applications. This report describes the plant design.

  19. Management of dry flue gas desulfurization by-products in underground mines. Annual report, October 1994--September 1995

    SciTech Connect (OSTI)

    Chugh, Y.P.; Dutta, D.; Esling, S.

    1995-10-01

    On September 30, 1993, the U.S. Department of Energy-Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues (CCBs) in abandoned coal mines, and will assess the environmental impact of such underground CCB placement. This report describes progress in the following areas: environmental characterization, mix development and geotechnical characterization, material handling and system economics, underground placement, and field demonstration.

  20. Fossil energy waste management. Technology status report

    SciTech Connect (OSTI)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  1. Proceedings of the advanced research and technology development direct utilization, instrumentation and diagnostics contractors' review meeting

    SciTech Connect (OSTI)

    Geiling, D.W. (USDOE Morgantown Energy Technology Center, WV (USA)); Goldberg, P.M. (eds.) (USDOE Pittsburgh Energy Technology Center, PA (USA))

    1990-01-01

    The 1990 Advanced Research and Technology Development (AR TD) Direct Utilization, and Instrumentation and Diagnostics Contractors Review Meeting was held September 16--18, 1990, at the Hyatt at Chatham Center in Pittsburgh, PA. The meeting was sponsored by the US Department of Energy (DOE), Office of Fossil Energy, and the Pittsburgh and Morgantown Energy Technology Centers. Each year the meeting provides a forum for the exchange of information among the DOE AR TD contractors and interested parties. This year's meeting was hosted by the Pittsburgh Energy Technology Center and was attended by 120 individuals from industry, academia, national laboratories, and other governmental agencies. Papers were presented on research addressing coal surface, science, devolatilization and combustion, ash behavior, emission controls for gases particulates, fluid bed combustion and utilization in diesels and turbines. Individual reports are processed separately for the data bases.

  2. Methane drainage with horizontal boreholes in advance of longwall mining: an analysis. Final report

    SciTech Connect (OSTI)

    Gabello, D.P.; Felts, L.L.; Hayoz, F.P.

    1981-05-01

    The US Department of Energy (DOE) Morgantown Energy Technology Center has implemented a comprehensive program to demonstrate the technical and economic viability of coalbed methane as an energy resource. The program is directed toward solution of technical and institutional problems impeding the recovery and use of large quantities of methane contained in the nation's minable and unminable coalbeds. Conducted in direct support of the DOE Methane Recovery from Coalbeds Project, this study analyzes the economic aspects of a horizontal borehole methane recovery system integrated as part of a longwall mine operation. It establishes relationships between methane selling price and annual mine production, methane production rate, and the methane drainage system capital investment. Results are encouraging, indicating that an annual coal production increase of approximately eight percent would offset all associated drainage costs over the range of methane production rates and capital investments considered.

  3. Tampa Electric Company, Polk Power Station Unit No. 1, preliminary public design report

    SciTech Connect (OSTI)

    1994-06-01

    This preliminary Public Design Report (PDR) provides design information about Tampa Electric Company`s Polk Power Station Unit No. 1, which will demonstrate in a commercial 250 MW unit the benefits of the integration of oxygen-blown, entrained-flow coal gasification with advanced combined cycle technology. This project is partially funded by the US Department of Energy (DOE) under Round III of its Clean Coal Technology (CCT) Program under the provisions of Cooperative Agreement between DOE and Tampa Electric Company, novated on March 5,1992. The project is highlighted by the inclusion of a new hot gas cleanup system. DOE`s project management is based at its Morgantown Energy Technology Center (METC) in West Virginia. This report is preliminary, and the information contained herein is subject to revision. Definitive information will be available in the final PDR, which will be published at the completion of detailed engineering.

  4. Coolside Waste Management Research. Final report, April 23, 1991--June 30, 1996

    SciTech Connect (OSTI)

    NONE

    1998-12-31

    This study was initiated during a successful test of the Coolside flue gas desulfurization technology at Ohio Edison`s Edgewater generating station in 1991. Coolside is a lime duct technology which is installed on the downstream side of the last heat exchanger. As tested by Ohio Edison, it also employs an alkali reagent, in this case NaOH, to enhance sulfur capture. The overall goal of this study was to develop sufficient chemical and physical data to insure the environmentally safe disposal of the material. This final report summarizes the important aspects of the project, but it does not present all of the data that was produced. Further details may be found in the monthly and quarterly reports that were filed with the Morgantown Energy Technology Center. This report is organized into six chapters which present the important conclusions of the principal areas of investigation.

  5. Decontamination & decommissioning focus area

    SciTech Connect (OSTI)

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  6. Neural Network Based Montioring and Control of Fluidized Bed.

    SciTech Connect (OSTI)

    Bodruzzaman, M.; Essawy, M.A.

    1996-04-01

    The goal of this project was to develop chaos analysis and neural network-based modeling techniques and apply them to the pressure-drop data obtained from the Fluid Bed Combustion (FBC) system (a small scale prototype model) located at the Federal Energy Technology Center (FETC)-Morgantown. The second goal was to develop neural network-based chaos control techniques and provide a suggestive prototype for possible real-time application to the FBC system. The experimental pressure data were collected from a cold FBC experimental set-up at the Morgantown Center. We have performed several analysis on these data in order to unveil their dynamical and chaotic characteristics. The phase-space attractors were constructed from the one dimensional time series data, using the time-delay embedding method, for both normal and abnormal conditions. Several identifying parameters were also computed from these attractors such as the correlation dimension, the Kolmogorov entropy, and the Lyapunov exponents. These chaotic attractor parameters can be used to discriminate between the normal and abnormal operating conditions of the FBC system. It was found that, the abnormal data has higher correlation dimension, larger Kolmogorov entropy and larger positive Lyapunov exponents as compared to the normal data. Chaotic system control using neural network based techniques were also investigated and compared to conventional chaotic system control techniques. Both types of chaotic system control techniques were applied to some typical chaotic systems such as the logistic, the Henon, and the Lorenz systems. A prototype model for real-time implementation of these techniques has been suggested to control the FBC system. These models can be implemented for real-time control in a next phase of the project after obtaining further measurements from the experimental model. After testing the control algorithms developed for the FBC model, the next step is to implement them on hardware and link them to the experimental system. In this report, the hardware implementation issues of the control algorithms are also discussed.

  7. Measurements of WW and WZ Production in W+jets Final States in pp? Collisions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; et al

    2012-05-01

    We study WW and WZ production with l?qq (l=e,?) final states using data collected by the D0 detector at the Fermilab Tevatron Collider corresponding to 4.3 fb?¹ of integrated luminosity from pp? collisions at ?s=1.96 TeV. Assuming the ratio between the production cross sections ?(WW) and ?(WZ) as predicted by the standard model, we measure the total WV (V=W,Z) cross section to be ?(WV)=19.6+3.2-3.0 pb and reject the background-only hypothesis at a level of 7.9 standard deviations. We also use b-jet discrimination to separate the WZ component from the dominant WW component. Simultaneously fitting WW and WZ contributions, we measuremore »?(WW)=15.9+3.7-3.2 pb and ?(WZ)=3.3+4.1-3.3 pb, which is consistent with the standard model predictions.« less

  8. NICS report links VOCs to respiratory problems

    SciTech Connect (OSTI)

    Kirschner, E.

    1992-04-22

    Children who live near the chemical plants of Kanawha Valley, WV, suffer more acute and chronic respiratory aliments than those farther away, says a Harvard University School of Public Health report. In the $1-million, five-year study commissioned by the National Institute for Chemical Studies (NICS:Charleston, WV) and funded by the Environmental Protection Agency, proximity to chemical plants that emit volatile organic compounds (VOCs) was linked to higher incidence of asthma, acute eye irritation, shortness of breath, and chronic cough. The researchers say they adjusted for most other factors, such as parental smoking and petroleum. {open_quotes}The research hypothesis was whether children in the valley had more symptoms,{close_quotes} says NICS president Paul Hill. {open_quotes}Yes, there is a difference.{close_quotes} The study showed that some ailments were up to 28% more prevalent in children in the valley than in other Kanawha County children.

  9. Equivalence between new and old forms for h W = ZP / |ZP| = (-q, p, 0) / (pp+qq) = (-sin, cos, 0)

    E-Print Network [OSTI]

    Equivalence between new and old forms for h W = Z×P / |Z×P| = (-q, p, 0) / (pp+qq) = (- sin, cos, 0) N = P×W = (-pr, -qr, pp+qq) / (pp+qq) = (- cos sin, - sin sin, cos) / = W·P×U / cos = - sin / cos cos / = W·P×V / cos = cos / cos cos / = N·P×U = W·U = - cos sin / cos / = N·P×V = W·V = - sin sin

  10. Diverse Applications of Pinch Technology Within the Process Industries 

    E-Print Network [OSTI]

    Spriggs, H. D.; Ashton, G.

    1986-01-01

    OF PINCH TECHNOLOGY WITHIN THE PROCESS INDUSTRIES H. P. Spriggs and Greg Ashton Linnhoff March Charleston, WV ABSTRACT PINCH ANALYSIS Within the past few years, pinch technology has revolutionised the way engineers design and retrofit... processes. The technology offers a new approach to process integration based on the applic?tion of the pinch principle. Early applications were mostly in the petrochemical and bulk chemical industries. In this paper we report the use of pinch technology...

  11. Trading places - an innovative SO{sub 2} trading program to mitigate potential adverse impacts on Class I areas: part I. impacts

    SciTech Connect (OSTI)

    Louis Militana; Cindy Huber; Christopher Colbert; Chris Arrington; Don Shepherd

    2005-07-01

    Published in two parts, this article describes a new emissions cap-and-trade program to reduce acid deposition and visibility impacts in four Class I areas (e.g. wildernesses and national parks) from the proposed Longview Power coal-fired power plant to be located in Maidsville, WV. Part I discusses the air quality impacts of the proposed project. 5 refs., 2 figs., 5 tabs.

  12. Measurement and modeling of transfer functions for lightning coupling into the Sago mine.

    SciTech Connect (OSTI)

    Morris, Marvin E.; Higgins, Matthew B.

    2007-04-01

    This report documents measurements and analytical modeling of electromagnetic transfer functions to quantify the ability of cloud-to-ground lightning strokes (including horizontal arc-channel components) to couple electromagnetic energy into the Sago mine located near Buckhannon, WV. Two coupling mechanisms were measured: direct and indirect drive. These transfer functions are then used to predict electric fields within the mine and induced voltages on conductors that were left abandoned in the sealed area of the Sago mine.

  13. Supplement 2, Authors: A To C 

    E-Print Network [OSTI]

    Doss, Mildred A.; Humphrey, Judith M.

    1954-01-01

    ., Am. Soc. Parasitol., Ithaca, N. York. Sept. 8-10] WV] ALLEN, NATHANIEL NEWTON; and DICKE, ROBERT JEROME. 1952 a.?Cattle lice control by clipping

  14. Demonstrating a Market-Based Approach to the Reclamation of Mined Lands in West Virginia

    SciTech Connect (OSTI)

    John W. Goodrich-Mahoney; Paul Ziemkiewicz

    2006-07-19

    This is the third quarter progress report of Phase II of a three-phase project to develop and evaluate the efficacy of developing multiple environmental market trading credits on a partially reclaimed surface mined site near Valley Point, Preston County, WV. Construction of the passive acid mine drainage (AMD) treatment system was completed but several modifications from the original design had to be made following the land survey and during construction to compensate for unforeseen circumstances. We continued to collect baseline quality data from the Conner Run AMD seeps to confirm the conceptual and final design for the passive AMD treatment system.

  15. Photosynthetic entrainment of the Arabidopsis thaliana circadian clock

    E-Print Network [OSTI]

    Haydon, Michael J.; Mielczarek, Olga; Robertson, Fiona C.; Hubbard, Katherine E.; Webb, Alex A. R.

    2013-10-23

    that contributes to circadian entrainment in plants. Methods Summary Growth conditions and media. Surface-sterilised seeds were sown on half-strength Murashige & Skoog agar media (1/2 MS) without sucrose and after 2 d at 4°C in darkness, were grown... mutants and Col-0. Surface-sterilised seeds were sown on half-strength Murashige & Skoog media (1/2 MS), pH 5.7 without sucrose and solidified with 0.8% (w/v) Bacto agar. After sowing, seeds were kept at 4ºC in darkness for 2 d, then grown in 12 h light...

  16. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    DOE Patents [OSTI]

    Ljungdahl, Lars G. (Athens, GA); Carriera, Laura H. (Athens, GA)

    1983-01-01

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  17. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    DOE Patents [OSTI]

    Ljungdahl, L.G.; Carriera, L.H.

    1983-05-24

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  18. Hr. Richard Ziehm. President : Precision Extrusion Company 720 E. Green Avenue

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and MyersHr. Anthony V. Andolina Director,-- Hr.WV23

  19. Category:Events | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia: Energy014771°,NorthCLEANElkins, WV Jump to:Events

  20. Category:Experimental Templates | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia: Energy014771°,NorthCLEANElkins, WV Jump

  1. Category:Exploration Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia: Energy014771°,NorthCLEANElkins, WV JumpExploration

  2. Category:Exploration Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia: Energy014771°,NorthCLEANElkins, WV

  3. Automated baseline change detection phase I. Final report

    SciTech Connect (OSTI)

    NONE

    1995-12-01

    The Automated Baseline Change Detection (ABCD) project is supported by the DOE Morgantown Energy Technology Center (METC) as part of its ER&WM cross-cutting technology program in robotics. Phase 1 of the Automated Baseline Change Detection project is summarized in this topical report. The primary objective of this project is to apply robotic and optical sensor technology to the operational inspection of mixed toxic and radioactive waste stored in barrels, using Automated Baseline Change Detection (ABCD), based on image subtraction. Absolute change detection is based on detecting any visible physical changes, regardless of cause, between a current inspection image of a barrel and an archived baseline image of the same barrel. Thus, in addition to rust, the ABCD system can also detect corrosion, leaks, dents, and bulges. The ABCD approach and method rely on precise camera positioning and repositioning relative to the barrel and on feature recognition in images. In support of this primary objective, there are secondary objectives to determine DOE operational inspection requirements and DOE system fielding requirements.

  4. Two-stage regeneration of zinc ferrite desulfurization sorbent

    SciTech Connect (OSTI)

    Jha, M.C.; Berggren, M.H.

    1988-06-28

    The Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE) is interested in the potential of using a two-step process for regenerating the zinc ferrite desulfurization sorbent. In the first regeneration step, a gas mixture consisting of 12 percent SO{sub 2}, 2 percent O{sub 2}, and 86 percent N{sub 2} is used to convert zinc and iron sulfides to their sulfate forms using a sorbent bed inlet temperature of about 850{degrees}F (454{degrees}C). For the second step, the temperature is raised to about 1400{degrees}F (760{degrees}C), and the sulfates are decomposed to oxides with the concurrent release of sulfur dioxide. The same gas composition used for first step is also used for the second step. The proposed technique would require no steam and also has the advantage of producing a regeneration gas rich in sulfur dioxide. In a commercial operation, recirculating regeneration gas would be supplemented with air as required to supply the necessary oxygen. A bleed stream from regeneration (concentrated SO{sub 2} gas in nitrogen) would constitute feed to sulfur recovery.

  5. Blast Furnace Granulated Coal Injection System Demonstration Project public design report. Topical report

    SciTech Connect (OSTI)

    NONE

    1995-03-01

    The public design report describes the Blast Furnace Granulated Coal Injection (BFGCI) project under construction at Bethlehem Steel Corporation`s (BSC) Burns Harbor, Indiana, plant. The project is receiving cost-sharing from the U.S. Department of Energy (DOE), and is being administrated by the Morgantown Energy Technology Center in accordance with the DOE Cooperative Agreement No. DE-FC21-91MC27362. The project is the first installation in the United States for the British Steel technology using granular coal in blast furnaces. The objective is to demonstrate that granular coal is an economic and reliable fuel which can successfully be applied to large North American blast furnaces. These include: coal grind size, coal injection rate, coal source (type) and blast furnace conversion method. To achieve the program objectives, the demonstration project is divided into the following three Phases: Phase I-Design; Phase II-Procurement & Construction; and Phase III-Operation. Preliminary design (Phase I) began in 1991 with detailed design commencing in April 1993. Construction at Burns Harbor (Phase II) began August 1993. Construction is expected to be complete in the first quarter of 1995 which will be followed by a demonstration test program (Phase III).

  6. Decontamination Systems Information and Research Program. Quarterly technical progress report, January 1--March 31, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Reports on a quarterly basis. This report comprises the first Quarterly Technical Progress Report for Year 2 of the Agreement. This report reflects the progress and/or efforts performed on the sixteen (16) technical projects encompassed by the Year 2 Agreement for the period of January 1 through March 31, 1994. In situ bioremediation of chlorinated organic solvents; Microbial enrichment for enhancing in-situ biodegradation of hazardous organic wastes; Treatment of volatile organic compounds (VOCs) using biofilters; Drain-enhanced soil flushing (DESF) for organic contaminants removal; Chemical destruction of chlorinated organic compounds; Remediation of hazardous sites with steam reforming; Soil decontamination with a packed flotation column; Use of granular activated carbon columns for the simultaneous removal of organics, heavy metals, and radionuclides; Monolayer and multilayer self-assembled polyion films for gas-phase chemical sensors; Compact mercuric iodide detector technology development; Evaluation of IR and mass spectrometric techniques for on-site monitoring of volatile organic compounds; A systematic database of the state of hazardous waste clean-up technologies; Dust control methods for insitu nuclear and hazardous waste handling; Winfield Lock and Dam remediation; and Socio-economic assessment of alternative environmental restoration technologies.

  7. A systematic assessment of the state of hazardous waste clean-up technologies. Quarterly technical progress report, April 1--June 30, 1993

    SciTech Connect (OSTI)

    Berg, M.T.; Reed, B.E.; Gabr, M.

    1993-07-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Report for Year 1 of the Agreement. This report reflects the progress and/or efforts performed on the following nine technical projects encompassed by the Year 1 Agreement for the period of April 1 through June 30, 1993: Systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies -- drain-enhanced soil flushing (DESF) for organic contaminants removal; site remediation technologies -- in situ bioremediation of organic contaminants; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors -- monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessments of Technologies for hazardous waste site remediation -- non-treatment technologies and pilot scale test facility implementation; and remediation of hazardous sites with stream reforming.

  8. Management of dry flue gas desulfurization by-products in underground mines. Topical report, April 1, 1996--April 30, 1997

    SciTech Connect (OSTI)

    Chugh, Y.P.; Brackebusch, F.; Carpenter, J.

    1998-12-31

    This report represents the Final Technical Progress Report for Phase II of the overall program for a cooperative research agreement between the U.S. Department of Energy - MORGANTOWN Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC). Under the agreement, SIUC will develop and demonstrate technologies for the handling, transport, and placement in abandoned underground coal mines of dry flue gas desulfurization by-products, such as fly ash, scrubber sludge, fluidized bed combustion by-products, and will assess the environmental impact of such underground placement. The overall program is divided into three (3) phases. Phase II of the program is primarily concerned with developing and testing the hardware for the actual underground placement demonstrations. Two technologies have been identified and hardware procured for full-scale demonstrations: (1) hydraulic placement, where coal combustion by-products (CCBs) will be placed underground as a past-like mixture containing about 70 to 75 percent solids; and (2) pneumatic placement, where CCBs will be placed underground as a relatively dry material using compressed air. 42 refs., 36 figs., 36 tabs.

  9. Economic assessment of advanced flue gas desulfurization processes. Final report

    SciTech Connect (OSTI)

    Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

    1981-09-01

    This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final reprot, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluations, was completed in October 1980. A slightly modified and condensed version of that report appears as appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

  10. Advanced turbine systems sensors and controls needs assessment study. Final report

    SciTech Connect (OSTI)

    Anderson, R.L.; Fry, D.N.; McEvers, J.A.

    1997-02-01

    The Instrumentation and Controls Division of the Oak Ridge National Laboratory performed an assessment of the sensors and controls needs for land-based advanced gas turbines being designed as a part of the Department of Energy`s (DOE`s) Advanced Turbine Systems (ATS) Program for both utility and industrial applications. The assessment included visits to five turbine manufacturers. During these visits, in-depth discussions were held with design and manufacturing staff to obtain their views regarding the need for new sensors and controls for their advanced turbine designs. The Unsteady Combustion Facilities at the Morgantown Energy Technology Center was visited to assess the need for new sensors for gas turbine combustion research. Finally, a workshop was conducted at the South Carolina Energy Research and Development Center which provided a forum for industry, laboratory, and university engineers to discuss and prioritize sensor and control needs. The assessment identified more than 50 different measurement, control, and monitoring needs for advanced turbines that cannot currently be met from commercial sources. While all the identified needs are important, some are absolutely critical to the success of the ATS Program.

  11. Fluidized-bed combustion of scrap tires: Technical note

    SciTech Connect (OSTI)

    Shang, J.Y.; Mei, J.S.; Notestein, J.E.

    1981-10-01

    An introduction to fluidized-bed combustion (FBC) is presented in Section 2.0. Based on this discussion of its technical development, FBC is then presented as a means of scrap tire disposal. In Section 3.0, scrap tire disposal is reviewed in the categories of (1) physical applications, (2) chemical applications, (3) pyrolysis, and (4) incineration for thermal energy recovery. Scrap tire disposal is reviewed on the basis of (1) environmental acceptability, (2) conservation of resources, (3) impact on existing industries, (4) operational feasibility, and (5) special features. The focus of this report is the fluidized-bed incineration of scrap tires for thermal energy recovery. The factors that affect scrap tire combustion are discussed in Section 4.0. These factors are (1) agitation, (2) temperature, (3) excess air, (4) residence time, (5) feed uniformity, (6) solid waste handling, and (7) pollutants emission control. In reviewing these incineration processes, (1) fuel flexibility, (2) environmental acceptability, (3) combustion efficiency, and (4) operational reliability are discussed. The results from a tire incineration experiment conducted at the Morgantown Energy Technology Center are presented in Section 5.0, and a conceptual fluidized-bed combustor is discussed in Section 6.0. Future considerations in the FBC of scrap tires are discussed in Section 7.0. 8 refs., 6 figs., 6 tabs.

  12. Task 1.13 - Data Collection and Database Development for Clean Coal Technology By-Product Characteristics and Management Practices

    SciTech Connect (OSTI)

    Debra F. Pflughoeft-Hassett

    1998-02-01

    U.S. Department of Energy Federal Energy Technology Center-Morgantown (DOE FETC) efforts in the areas of fossil fuels and clean coal technology (CCT) have included involvement with both conventional and advanced process coal conversion by-products. In 1993, DOE submitted a Report to Congress on "Barriers to the Increased Utilization of Coal Combustion Desulfurization Byproducts by Governmental and Commercial Sectors" that provided an outline of activities to remove the barriers identified in the report. DOE charged itself with participation in this process, and the work proposed in this document facilitates DOE's response to its own recommendations for action. The work reflects DOE's commitment to the coal combustion by-product (CCB) industry, to the advancement of clean coal technology, and to cooperation with other government agencies. Information from DOE projects and commercial endeavors in fluidized-bed combustion (FBC) and coal gasification is the focus of this task. The primary goal is to provide an easily accessible compilation of characterization information on the by-products from these processes to government agencies and industry to facilitate sound regulatory and management decisions. Additional written documentation will facilitate the preparation of an updated final version of background information collected for DOE in preparation of the Report to Congress on barriers to CCB utilization.

  13. Preparation for upgrading western subbituminous coal

    SciTech Connect (OSTI)

    Grimes, R.W.; Cha, C.Y.; Sheesley, D.C.

    1990-11-01

    The objective of this project was to establish the physical and chemical characteristics of western coal and determine the best preparation technologies for upgrading this resource. Western coal was characterized as an abundant, easily mineable, clean, low-sulfur coal with low heating value, high moisture, susceptibility to spontaneous ignition, and considerable transit distances from major markets. Project support was provided by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The research was conducted by the Western Research Institute, (WRI) in Laramie, Wyoming. The project scope of work required the completion of four tasks: (1) project planning, (2) literature searches and verbal contacts with consumers and producers of western coal, (3) selection of the best technologies to upgrade western coal, and (4) identification of research needed to develop the best technologies for upgrading western coals. The results of this research suggest that thermal drying is the best technology for upgrading western coals. There is a significant need for further research in areas involving physical and chemical stabilization of the dried coal product. Excessive particle-size degradation and resulting dustiness, moisture reabsorption, and high susceptibility to spontaneous combustion are key areas requiring further research. Improved testing methods for the determination of equilibrium moisture and susceptibility to spontaneous ignition under various ambient conditions are recommended.

  14. Pressure-gain combustion

    SciTech Connect (OSTI)

    Richards, G.A.; Yip, J.; Gemmen, R.S.; Janus, M.C.; Norton, T. [USDOE Morgantown Energy Technology Center, WV (United States); Rogers, W.A. [EG and G Washington Analytical Services Center, Inc., Morgantown, WV (United States)

    1993-11-01

    Pulse combustion has been proposed for gas turbine applications in many early articles and more recently has been demonstrated to produce so-called ``pressure-gain`` in a small gas turbine. The basic concept is that the oscillatory combustion occurs as a constant-volume process, producing a gain in the stagnation pressure of air flowing through the combustor, rather than the pressure loss associated with conventional, steady combustion. If properly utilized, this pressure-gain could enhance simple-cycle gas turbine efficiency several percent, depending on the operating conditions. In addition, pulse combustors have demonstrated relatively low NO{sub x} pollutant levels in some applications. The combined potential for higher cycle efficiency and lower pollutant levels is the basis for the present investigation. Tests in progress at the Morgantown Energy Technology Center (METC) have considered a baseline pulse combustor configuration that has shown good oscillating performance, low NO{sub x} emissions, but disappointing results in terms of pressure-gain. However, a combination of numeric simulations and test data suggest that pressure-gain can be produced by a select combination of operating conditions and combustor geometry, but is especially sensitive to the combustor inlet geometry. Tests in progress will evaluate the effect of inlet geometry and operating pressure on both pollutant emissions and pressure-gain.

  15. Combustion oscillation: Chemical control showing mechanistic link to recirculation zone purge time

    SciTech Connect (OSTI)

    Gemmen, R.S.; Richards, G.A.; Yip, M.J.; Norton, T.S.

    1995-12-01

    Active control mechanisms are being examined for lean premix combustion applications, such as gas turbine generators. Lean premix combustors are susceptible to large combustion oscillations, particularly when driven very lean to achieve low NOx. While past design work has been focussed on understanding the source of the oscillation and modifying the combustor to avoid such oscillations, commercial combustion designers have more recently considered applying new control elements. As part of the U.S. Department of Energy`s Advanced Gas Turbine Systems Program, the Morgantown Energy Technology Center is investigating various active control techniques. This paper presents results from experiments studying the effect of pilot fuel modulation on combustor oscillation and pollutant emissions for a pilot stabilized dump swirl combustor, typical of gas turbine combustors. The results show that a significant level of attenuation can be achieved in the combustor pressure oscillation (50 to 90 percent) while only moderately affecting pollutant emissions. The control mechanism producing the attenuation is shown to be purely chemical in nature, rather than fluid mechanic. In addition, the frequency region over which control is obtained is shown to be related to the recirculation zone purge time. For this reason, control can be achieved at control frequencies much lower than the frequency of oscillation.

  16. NO{sub x} and CO emissions from an aerovalve pulse combustor

    SciTech Connect (OSTI)

    Norton, T.S.; Richards, G.A.; Casleton, K.H.; Jenkins, L.C.

    1993-12-31

    The Morgantown Energy Technology Center (METC) has an ongoing research program to investigate the benefits of pulse combustion in advanced energy systems. The overall goals are to study and improve the pressure-gain performance of pulse combustors, to investigate the effects of pressure on operating characteristics, and ultimately to determine the feasibility of using pulse combustors in gas turbine applications [Gemmen et al., 1992, 1993]. An additional goal is to ensure that the combustor designs under consideration produce low levels of NO{sub x} and CO pollutant emissions. The gas sampling and analysis system is currently under development. Preliminary data on NO{sub x} and CO emissions concentrations have been obtained and appear encouraging. After further leak checking, system debugging, and calibrating are completed, new experimental data should be available to be reported at the conference. In addition, a modeling effort is being initiated to aid in the interpretation of the experimental results. Some details of the experimental and modeling approaches are given below.

  17. Subpilot-scale testing of acoustically enhanced cyclone collectors. Final report, September 1988--September 1994

    SciTech Connect (OSTI)

    Galica, M.A.; Campbell, A.H.; Rawlins, D.C.

    1994-08-01

    Gas turbines are used to recover energy from high temperature exhaust gases in coal-fired pressurized-fluidized bed, combined-cycle power generation systems. However, prior to entering the turbine hot-section, the majority of the fly ash must be removed in order to protect the turbine components from erosion, corrosion, and deposition of the ash. The U.S. Department of Energy under the direction of the Morgantown Energy Technology Center (METC) sponsored the development of an acoustically enhanced cyclone collector which offers the potential of achieving environmental control standards under Pressurized Fluid Bed Combustors (PFBC) conditions without the need for post-turbine particulate control. Pulse combustors developed by Manufacturing and Technology Conversation International, Inc. (MTCI) produced the acoustic power necessary to agglomerate ash particles into sizes large enough to be collected in a conventional cyclone system. A hot gas cleanup system that meets both turbine protection and emissions requirements without post-turbine particulate controls would also have improved overall system economics.

  18. Technical Report on NETL's Non Newtonian Multiphase Slurry Workshop: A path forward to understanding non-Newtonian multiphase slurry flows

    SciTech Connect (OSTI)

    Edited by Guenther, Chris; Garg, Rahul

    2013-08-19

    The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP project and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.

  19. Decontamination Systems Information and Research Program. Quarterly report, October--December 1993

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This report is a summary of the work conducted for the period of October--December 1993 by the West Virginia University for the US DOE Morgantown Energy Technology Center. Research under the program focuses on pertinent technology for hazardous waste clean-up. This report reflects the progress performed on sixteen technical projects encompassed by this program: Systematic assessment of the state of hazardous waste clean-up technologies; Site remediation technologies: (a) Drain-enhanced soil flushing and (b) In situ bio-remediation of organic contaminants; Excavation systems for hazardous waste sites: Dust control methods for in-situ nuclear waste handling; Chemical destruction of polychlorinated biphenyls; Development of organic sensors: Monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale test facility implementation; Remediation of hazardous sites with steam reforming; Microbial enrichment for enhancing biodegradation of hazardous organic wastes in soil; Soil decontamination with a packed flotation column; Treatment of volatile organic compounds using biofilters; Use of granular activated carbon columns for the simultaneous removal of organic, heavy metals, and radionuclides; Compact mercuric iodide detector technology development; Evaluation of IR and mass spectrometric techniques for on-site monitoring of volatile organic compounds; and Improved socio-economic assessment of alternative environmental restoration techniques.

  20. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect (OSTI)

    J. Hnat; L.M. Bartone; M. Pineda

    2001-07-13

    This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.

  1. Aquatic Ecosystem Enhancement at Mountaintop Mining Sites Symposium

    SciTech Connect (OSTI)

    Black, D. Courtney; Lawson, Peter; Morgan, John; Maggard, Randy; Schor, Horst; Powell, Rocky; Kirk, Ed. J.

    2000-01-12

    Welcome to this symposium which is part of the ongoing effort to prepare an Environmental Impact Statement (EIS) regarding mountaintop mining and valley fills. The EIS is being prepared by the U.S. Environmental Protection Agency, U.S. Army Corps of Engineers, U.S. Office of Surface Mining, and U.S. Fish and Wildlife Service, in cooperation with the State of West Virginia. Aquatic Ecosystem Enhancement (AEE) at mountaintop mining sites is one of fourteen technical areas identified for study by the EIS Interagency Steering Committee. Three goals were identified in the AEE Work Plan: 1. Assess mining and reclamation practices to show how mining operations might be carried out in a way that minimizes adverse impacts to streams and other environmental resources and to local communities. Clarify economic and technical constraints and benefits. 2. Help citizens clarify choices by showing whether there are affordable ways to enhance existing mining, reclamation, mitigation processes and/or procedures. 3. Ide identify data needed to improve environmental evaluation and design of mining projects to protect the environment. Today’s symposium was proposed in the AEE Team Work Plans but coordinated planning for the event began September 15, 1999 when representatives from coal industry, environmental groups and government regulators met in Morgantown. The meeting participants worked with a facilitator from the Canaan Valley Institute to outline plans for the symposium. Several teams were formed to carry out the plans we outlined in the meeting.

  2. Selecting major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

    1992-01-01

    Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

  3. Selecting major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

    1992-06-01

    Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

  4. Great Plains ASPEN model development: executive summary. Final topical report for Phase 1

    SciTech Connect (OSTI)

    Rinard, I.H.; Stern, S.S.; Millman, M.C.; Schwint, K.J.; Benjamin, B.W.; Kirman, J.J.; Dweck, J.S.; Mendelson, M.A.

    1986-07-25

    The Scientific Design Company contracted with the United States Department of Energy through its Morgantown Energy Technology Center to develop a steady-state simulation model of the Great Plains Coal Gasification plant. This plant produces substitute natural gas from North Dakota lignite. The model was to be developed using the ASPEN (Advanced System for Process Engineering) simulation program. The project was divided into the following tasks: (1) Development of a simplified overall model of the process to be used for a sensitivity analysis to guide the development of more rigorous section models. (2) Review and evaluation of existing rigorous moving-bed gasifier models leading to a recommendation of one to be used to model the Great Plains gasifiers. Adaption and incorporation of this model into ASPEN. (3) Review of the accuracy and completeness of the physical properties data and models provided by ASPEN that are required to characterize the Great Plains plant. Rectification of inaccurate or incomplete data. (4) Development of rigorous ASPEN models for critical unit operations and sections of the plant. (5) Evaluation of the accuracy of the ASPEN Cost Estimation and Evaluation System and upgrading where feasible. Development of a preliminary cost estimate for the Great Plains plant. (6) Validation of the simulation models developed in the course of this project. Determination of model sensitivity to variations of technical and economic parameters. (7) Documentation of all work performed in the course of this project. Essentially all of these tasks were completed successfully. 34 figs.

  5. ISPE: A knowledge-based system for fluidization studies

    SciTech Connect (OSTI)

    Reddy, S.

    1991-01-01

    Chemical engineers use mathematical simulators to design, model, optimize and refine various engineering plants/processes. This procedure requires the following steps: (1) preparation of an input data file according to the format required by the target simulator; (2) excecuting the simulation; and (3) analyzing the results of the simulation to determine if all specified goals'' are satisfied. If the goals are not met, the input data file must be modified and the simulation repeated. This multistep process is continued until satisfactory results are obtained. This research was undertaken to develop a knowledge based system, IPSE (Intelligent Process Simulation Environment), that can enhance the productivity of chemical engineers/modelers by serving as an intelligent assistant to perform a variety tasks related to process simulation. ASPEN, a widely used simulator by the US Department of Energy (DOE) at Morgantown Energy Technology Center (METC) was selected as the target process simulator in the project. IPSE, written in the C language, was developed using a number of knowledge-based programming paradigms: object-oriented knowledge representation that uses inheritance and methods, rulebased inferencing (includes processing and propagation of probabilistic information) and data-driven programming using demons. It was implemented using the knowledge based environment LASER. The relationship of IPSE with the user, ASPEN, LASER and the C language is shown in Figure 1.

  6. ISPE: A knowledge-based system for fluidization studies. 1990 Annual report

    SciTech Connect (OSTI)

    Reddy, S.

    1991-01-01

    Chemical engineers use mathematical simulators to design, model, optimize and refine various engineering plants/processes. This procedure requires the following steps: (1) preparation of an input data file according to the format required by the target simulator; (2) excecuting the simulation; and (3) analyzing the results of the simulation to determine if all ``specified goals`` are satisfied. If the goals are not met, the input data file must be modified and the simulation repeated. This multistep process is continued until satisfactory results are obtained. This research was undertaken to develop a knowledge based system, IPSE (Intelligent Process Simulation Environment), that can enhance the productivity of chemical engineers/modelers by serving as an intelligent assistant to perform a variety tasks related to process simulation. ASPEN, a widely used simulator by the US Department of Energy (DOE) at Morgantown Energy Technology Center (METC) was selected as the target process simulator in the project. IPSE, written in the C language, was developed using a number of knowledge-based programming paradigms: object-oriented knowledge representation that uses inheritance and methods, rulebased inferencing (includes processing and propagation of probabilistic information) and data-driven programming using demons. It was implemented using the knowledge based environment LASER. The relationship of IPSE with the user, ASPEN, LASER and the C language is shown in Figure 1.

  7. Economic assessment of advanced flue gas desulfurization processes. Final report. Volume 2. Appendices G, H, and I

    SciTech Connect (OSTI)

    Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

    1981-09-01

    This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final report, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluation, was completed in October 1980. A slightly modified and condensed version of that report appears as Appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

  8. Proceedings of the Fuel Cells `97 Review Meeting

    SciTech Connect (OSTI)

    1998-01-01

    The Federal Energy Technology Center (FETC) sponsored the Fuel Cells '97 Review Meeting on August 26-28, 1997, in Morgantown, West Virginia. The purpose of the meeting was to provide an annual forum for the exchange of ideas and discussion of results and plans related to the research on fuel cell power systems. The total of almost 250 conference participants included engineers and scientists representing utilities, academia, and government from the U.S. and eleven other countries: Canada, China, India, Iran, Italy, Japan, Korea, Netherlands, Russia, Taiwan, and the United Kingdom. On first day, the conference covered the perspectives of sponsors and end users, and the progress reports of fuel-cell developers. Papers covered phosphoric, carbonate, and solid oxide fuel cells for stationary power applications. On the second day, the conference covered advanced research in solid oxide and other fuel cell developments. On the third day, the conference sponsored a workshop on advanced research and technology development. A panel presentation was given on fuel cell opportunities. Breakout sessions with group discussions followed this with fuel cell developers, gas turbine vendors, and consultants.

  9. Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 2

    SciTech Connect (OSTI)

    Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J.

    1987-08-01

    On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster dsplays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume II covers papers presented at sessions 5 and 6 on system for the production of synthesis gas, and on system for the production of power. All papers have been processed for inclusion in the Energy Data Base.

  10. Increasing blast furnace productivity. Is there a universal solution for all blast furnaces?

    SciTech Connect (OSTI)

    Chaubal, P.C.; Ranade, M.G. [Inland Steel Co., East Chicago, IN (United States)

    1997-12-31

    In the past few years there has been a major effort in the integrated plants in the US to increase blast furnace productivity. Record production levels have been reported by AK Steel using direct reduced/hot briquetted iron (DRI/HBI) and high levels of natural gas (NG)-oxygen injection at their Middletown blast furnace. Similarly, US Steel-Gary No. 13 reported high productivity levels with PCI and oxygen enrichment. A productivity of 6 NTHM/day/100 ft{sup 3}WV was the norm in the past, but today levels higher than 11 NTHM/day/100ft{sup 3}WV have been reached on a sustained basis. These high productivity levels have been an important aspect of facility rationalization efforts, as companies seek to maximize their throughput while reducing costs. Hot metal demand in a particular plant depends on downstream capabilities in converting hot metal to saleable steel. Single vs. multi-furnace plants may have different production requirements for each facility. Business cycles may influence productivity requirements from different furnaces of a multiple furnace plant, more so for those considered as swing furnaces. Therefore, the production requirement for individual blast furnaces is different for different plants. In an effort to understand productivity improvement methods, calculations were made for a typical 8 m hearth diameter furnace using data and experience gathered on Inland`s operation. Here the authors present the results obtained in the study.

  11. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2001

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-10-01

    No significant environmental problems were identified at the National Energy Technology Laboratory (NETL) sites in Morgantown (MGN), Pittsburgh (PGH), Tulsa (NPTO) and Fairbanks (AEO) during 2001. No radionuclides were released from the sites during 2001. The sites maintain two major environmental programs: waste management, and environmental media and release management. These two programs encompass waste handling, storage, and disposal, waste minimization and pollution prevention, air quality emissions, surface-water discharges, groundwater impacts, industrial wastewater discharges, and spill control procedures. The Morgantown and Pittsburgh sites currently maintain complete monitoring programs for groundwater, stormwater discharge, laboratory wastewater discharge, and meteorological data. In addition, an annual air emissions inventory is prepared. A comprehensive Directives Program aimed at managing environmental, safety, health requirements, and risks was initiated in 1997, continued through subsequent years, and will be completed in 2003. The primary objective of the program is to identify and implement standards that will protect the health and safety of workers, public, and the environment. This program started with a careful and thorough analysis of risks confronting workers and the communities surrounding NETL sites. Following this analysis, requirements and best management practices were evaluated to determine how requirements could best be used to advance the mission of NETL. Teams of subject-matter experts analyzed the work assigned to determine potential hazards and identify ways to remove or control those hazards. In 2001, NETL developed or revised a series of directives in two major areas: safety analysis and review (SAR) processes, and integrated safety management (ISM) directives. SAR directives were issued for research and development (R&D) operations, support operations, and facilities. ISM directives were released on management processes, such as standards maintenance, performance measures, assessments, corrective actions, lessons-learned, and training. In conjunction with the Directives Program, the use of the voluntary environmental management system, ISO 14001, was evaluated. This includes the only international environmental management standard to which an entity can be certified. NETL is using the specifications and guidance from this standard to identify an effective environmental management system for the NETL sites. An outside consultant performed an environmental management system assessment (also referred to as an initial environmental review), as referenced in ISO 14004. The objective of the assessment was to determine the degree to which NETL's existing integrated safety management system (ISMS), safety analysis review system (SARS), and environmental management programs conformed with the ISO14001 Environmental Management System (EMS) standard and the United States Environmental Protection Agency's (EPA) Code of Environmental Management Principles. A performance measurement system continued to be maintained during 2001 to assist in evaluating how effectively activities at NETL meet mission-critical goals and how well missions and strategies are connected in the DOE strategic plan. This system also provides data to assist in gauging performance against the DOE critical success factors, that is, performance against technical objectives. Various environmental milestones can be tracked to completion, thus giving NETL measures by which to gauge the sites' goals of remaining in regulatory compliance and achieving best-in-class environmental performance.

  12. SU-E-J-76: Incorporation of Ultrasound Elastography in Target Volume Delineation for Partial Breast Radiotherapy Planning: A Comparative Study

    SciTech Connect (OSTI)

    Juneja, P; Harris, E; Bamber, J

    2014-06-01

    Purpose: There is substantial observer variability in the delineation of target volumes for post-surgical partial breast radiotherapy because the tumour bed has poor x-ray contrast. This variability may result in substantial variations in planned dose distribution. Ultrasound elastography (USE) has an ability to detect mechanical discontinuities and therefore, the potential to image the scar and distortion in breast tissue architecture. The goal of this study was to compare USE techniques: strain elastography (SE), shear wave elastography (SWE) and acoustic radiation force impulse (ARFI) imaging using phantoms that simulate features of the tumour bed, for the purpose of incorporating USE in breast radiotherapy planning. Methods: Three gelatine-based phantoms (10% w/v) containing: a stiff inclusion (gelatine 16% w/v) with adhered boundaries, a stiff inclusion (gelatine 16% w/v) with mobile boundaries and fluid cavity inclusion (to mimic seroma), were constructed and used to investigate the USE techniques. The accuracy of the elastography techniques was quantified by comparing the imaged inclusion with the modelled ground-truth using the Dice similarity coefficient (DSC). For two regions of interest (ROI), the DSC measures their spatial overlap. Ground-truth ROIs were modelled using geometrical measurements from B-mode images. Results: The phantoms simulating stiff scar tissue with adhered and mobile boundaries and seroma were successfully developed and imaged using SE and SWE. The edges of the stiff inclusions were more clearly visible in SE than in SWE. Subsequently, for all these phantoms the measured DSCs were found to be higher for SE (DSCs: 0.91–0.97) than SWE (DSCs: 0.68–0.79) with an average relative difference of 23%. In the case of seroma phantom, DSC values for SE and SWE were similar. Conclusion: This study presents a first attempt to identify the most suitable elastography technique for use in breast radiotherapy planning. Further analysis will include comparison of ARFI with SE and SWE. This work is supported by the EPSRC Platform Grant, reference number EP/H046526/1.

  13. Chemical coal cleaning process and costs refinement for coal-water slurry manufacture. Semi-annual progress report

    SciTech Connect (OSTI)

    Bhasin, A.K.; Berggren, M.H.; Smit, F.J.; Ames, L.B.; Ronzio, N.J.

    1985-03-01

    The Department of Energy, through the Morgantown Energy Technology Center (METC), has initiated a program to determine the feasibility and potential applications for direct firing of coal and coal-derived fuels in heat engines, specifically gas turbines and diesel engines. AMAX Extractive Research and Development, Inc. supplied METC with two lots of highly beneficiated coal slurry fuel for use in the Heat Engines programs. One of the lots was of ultra-clean coal-water slurry fuel (UCCSF) for which a two-stage caustic and acid leaching procedure was developed to chemically clean the coal. As a part of the contract, AMAX R and D developed a conceptual design and preliminary cost estimate for a commercial-scale process for UCCSF manufacture. The contract was extended to include the following objectives: define chemical cleaning and slurry preparation process conditions and costs more precisely; investigate methods to reduce the product cost; and determine the relationship, in dollars per million Btu, between product cost and fuel quality. Laboratory investigations have been carried out to define the chemical cleaning process conditions required to generate fuels containing from 0.17 to 1.0% ash. Capital and operating cost refinements are to be performed on the basis of the preferred process operating conditions identified during the laboratory investigations. Several such areas for cost reductions have been identified. Caustic strengths from 2 to 7% NaOH are currently anticipated while 25% NaOH was used as the basis for the preliminary cost estimate. In addition, leaching times for each of the process steps have been reduced to half or less of the times used for the preliminary cost estimate. Improvement of fuel quality has been achieved by use of a proprietary hot-water leaching step to reduce the residual alkali content to less than 250 ppM (Na/sub 2/O plus K/sub 2/O) on a dry coal basis. 2 refs., 3 figs., 24 tabs.

  14. Hot coal gas desulfurization with manganese-based sorbents. Annual report, September 1992--September 1993

    SciTech Connect (OSTI)

    Hepworth, M.T.

    1993-12-01

    The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies at the US Steel Fundamental Research Laboratories in Monroeville, PA, by E. T. Turkdogan indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This Annual Topical Report documents progress in pelletizing and testing via thermo-gravimetric analysis of individual pellet formulations of manganese ore/ alumina combinations and also manganese carbonate/alumina with two binders, dextrin and bentonite. It includes the prior Quarterly Technical Reports which indicate that the manganese carbonate material, being of higher purity than the manganese ore, has a higher degree of sulfur capacity and more rapid absorption kinetics. A 2-inch fixed-bed reactor has been fabricated and is now ready for subjecting pellets to cyclic loading and regeneration.

  15. Preliminary design for hot dirty-gas control-valve test facility. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    This report presents the results of a preliminary design and cost estimating effort for a facility for the testing of control valves in Hot Dirty Gas (HDGCV) service. This design was performed by Mittelhauser Corporation for the United States Department of Energy's Morgantown Energy Technology Center (METC). The objective of this effort was to provide METC with a feasible preliminary design for a test facility which could be used to evaluate valve designs under simulated service conditions and provide a technology data base for DOE and industry. In addition to the actual preliminary design of the test facility, final design/construction/operating schedules and a facility cost estimate were prepared to provide METC sufficient information with which to evaluate this design. The bases, assumptions, and limitations of this study effort are given. The tasks carried out were as follows: METC Facility Review, Environmental Control Study, Gas Generation Study, Metallurgy Review, Safety Review, Facility Process Design, Facility Conceptual Layout, Instrumentation Design, Cost Estimates, and Schedules. The report provides information regarding the methods of approach used in the various tasks involved in the completion of this study. Section 5.0 of this report presents the results of the study effort. The results obtained from the above-defined tasks are described briefly. The turnkey cost of the test facility is estimated to be $9,774,700 in fourth quarter 1979 dollars, and the annual operating cost is estimated to be $960,000 plus utilities costs which are not included because unit costs per utility were not available from METC.

  16. LNG SAFETY RESEARCH: FEM3A MODEL DEVELOPMENT

    SciTech Connect (OSTI)

    Jerry Havens; Iraj A. Salehi

    2005-02-21

    This quarterly report for DE-FG26-04NT42030 covers a period from October 1, 2004 to December 31, 2004. On December 9, 2004 a meeting was held in Morgantown to rescope the LNG safety modeling project such that the work would complement the DOE's efforts relative to the development of the intended LNG-Fluent model. It was noted and discussed at the December 9th meeting that the fundamental research being performed on surface to cloud heat transfer and low wind speed issues will be relevant to the development of the DOE LNG/Fluent Model. In general, it was decided that all research to be performed from December 9th through the remainder of the contract is to be focused on the development of the DOE LNG/Fluent model. In addition, all GTI activities for dissemination and transfer of FEM3A will cease and dissemination activities will focus on the new DOE LNG/Fluent model. The proposed new scope of work is presented in section 4 of this report. The work reported in the present document relates to the original scope of work which was in effect during the reporting period. The future work will be re-scoped to meet the requirements of the new scope of work. During the report period work was underway to address numerical problems present during simulation of low-wind-speed, stable, atmospheric conditions with FEM3A. Steps 1 and 2 in the plan outlined in the first Quarterly report are complete and steps 3 and 4 are in progress. During this quarter, the University of Arkansas has been investigating the effect upon numerical stability of the heat transfer model used to predict the surface-to-cloud heat transfer, which can be important for LNG vapor dispersion. Previously, no consideration has been given to ground cooling as a result of heat transfer to the colder gas cloud in FEM3A.

  17. LNG Safety Research: FEM3A Model Development

    SciTech Connect (OSTI)

    Liese Dallbauman

    2004-06-30

    During this reporting period, kickoff and planning meetings were held. Subcontracted experimental and modeling tasks were defined. Efforts to address the numerical stability problems that hamper FEM3A's applicability to low wind speed, stable atmospheric conditions were initiated. A detailed review of FEM3A code and its execution, required for development of an accessible user interface, was also begun. A one-day workshop on LNG safety models has been scheduled for September 2004. The goals of this project are to develop a national focal point for LNG safety research and technical dissemination and to develop the FEM3A dispersion model for application to general scenarios involving dispersion problems with obstacle and terrain features of realistic complexity. During this reporting period, the objectives and scope of the project and its constituent tasks were discussed at a project kickoff meeting in Morgantown. Details of the subcontracted experimental and modeling tasks were further defined at a separate meeting at the University of Arkansas. Researchers at the university have begun to modify the turbulence closure model used in FEM3A to insure numerical stability during simulation of low-wind-speed, stable atmospheric conditions. The university's wind tunnel is being prepared for upcoming experimental studies. GTI has begun a detailed review of the FEM3A code and its execution that will provide guidance during development of an accessible user interface. Plans were made for a one day workshop on LNG safety models that will be held at the end of September and will provide an introduction to currently available and pending software tools.

  18. Subtask 3.12 -- Small power systems. Semi-annual report, January 1--June 30, 1996

    SciTech Connect (OSTI)

    NONE

    1997-08-01

    The programmatic goal in advanced power systems is to develop small integrated waste treatment, water purification, and power systems in the range of 20 kW to 20 MW in cooperation with commercial vendors. These systems will be designed to incorporate the advanced technical capabilities of the Energy and Environmental Research Center (EERC) with the latest advancement in vendor-offered hardware and software. The primary objective for the work to be performed under this subtask is to develop a commercialization plan for small power systems, evaluate alternative design concepts, and select practical and economical designs for targeted development in upcoming years. A leading objective for the EERC will be to continue to form strong business partnerships with equipment manufacturers who can commercialize the selected power system and treatment design(s). FY95 activities were focused on collecting information from vendors and evaluating alternative design concepts. This year`s activities began with the process of selecting one or more designs for targeted development. Once the design(s) are selected, specific technical requirements will be defined that will be the subject of focused studies to overcome technical barriers to achieving a clean, cost-effective generating system. During this program year, the technical barriers limiting the use of the selected technology in the small power system market will be identified. A plan will be devised to overcome these barriers. Also during this program year, strong business partnerships will be developed between the EERC, Morgantown Energy Technology Center (METC), and equipment manufacturers who can commercialize the selected power system(s). A plan will be created for rapid development leading to commercialization. This may involve integration of this task with other research activities currently ongoing at the EERC and METC.

  19. Coal-fueled diesel system for stationary power applications -- Technology development. Final report, March 1988--June 1994

    SciTech Connect (OSTI)

    NONE

    1995-10-01

    Morgantown Energy Technology Center, Cooper-Bessemer and Arthur D. Little have developed the technology to enable coal-water slurry to be utilized in large-bore, medium-speed diesel engines. The target application is modular power generation in the 10 to 100 MW size, with each plant using between two and eight engines. Such systems are expected to be economically attractive in the non-utility generation market after 2000, when oil and natural gas prices are expected to escalate rapidly compared to the price of coal. During this development program, over 1,000 hours of prototype engine operation have been achieved on coal-water slurry (CWS), including over 100 hours operation of a six-cylinder, 1.8 MW engine with an integrated emissions control system. Arthur D. Little, Inc., managed the coal-fueled diesel development, with Cooper-Bessemer as the principal subcontractor responsible for the engine design and testing. Several key technical advances which enable the viability of the coal-fueled diesel engine were made under this program. Principal among them are the development and demonstration of (1) durable injection nozzles; (2) an integrated emissions control system; ad (3) low-cost clean coal slurry formulations optimized for the engine. Significant advances in all subsystem designs were made to develop the full-scale Cooper-Bessemer coal engine components in preparation for a 100-hour proof-of-concept test of an integrated system, including emissions controls. The Clean Coal Diesel power plant of the future will provide a cost-competitive, low-emissions, modular, coal-based power generation option to the non-utility generation, small utility, independent power producer, and cogeneration markets. Combined cycle efficiencies will be approximately 48% (lower heating value basis) and installed cost will be approximately $1,300/kW (1992 dollars).

  20. Coal fueled diesel system for stationary power applications-technology development

    SciTech Connect (OSTI)

    NONE

    1995-08-01

    The use of coal as a fuel for diesel engines dates back to the early days of the development of the engine. Dr. Diesel envisioned his concept as a multi-fuel engine, with coal a prime candidate due to the fact that it was Germany`s primary domestic energy resource. It is interesting that the focus on coal burning diesel engines appears to peak about every twenty years as shortages of other energy resources increase the economic attractiveness of using coal. This periodic interest in coal started in Germany with the work of Diesel in the timeframe 1898-1906. Pawlikowski carried on the work from 1916 to 1928. Two German companies commercialized the technology prior to and during World War II. The next flurry of activity occurred in the United States in the period from 1957-69, with work done at Southwest Research Institute, Virginia Polytechnical University, and Howard University. The current period of activity started in 1978 with work sponsored by the Conservation and Renewable Energy Branch of the US Department of Energy. This work was done at Southwest Research Institute and by ThermoElectron at Sulzer Engine in Switzerland. In 1982, the Fossil Energy Branch of the US Department of Energy, through the Morgantown Energy Technology Center (METC) initiated a concentrated effort to develop coal burning diesel and gas turbine engines. The diesel engine work in the METC sponsored program was performed at Arthur D. Little (Cooper-Bessemer as subcontractor), Bartlesville Energy Technology Center (now NIPER), Caterpillar, Detroit Diesel Corporation, General Motor Corporation (Electromotive Division), General Electric, Southwest Research Institute, and various universities and other research and development organizations. This DOE-METC coal engine RD & D initiative which spanned the 1982-1993 timeframe is the topic of this review document. The combustion of a coal-water fuel slurry in a diesel engine is described. The engine modifications necessary are discussed.

  1. Proceedings of the 1992 EPRI heat rate improvement conference

    SciTech Connect (OSTI)

    Henry, R.E. (Sargent and Lundy, Chicago, IL (United States))

    1993-03-01

    Diverse but compelling forces such as increasing fuel prices, greater power demands, growing competition, and ever more aggressive regulatory incentives are causing utilities to place additional focus on power plant heat rate. The 1992 heat rate improvement conference was a gathering of utility industry experts to share knowledge and concerns on such key issues as on-line measurement of stack gas mass flow rate-increasingly important because of the regulations of the Clean Air Act of 1990. These proceedings present the latest developments by EPRI and the utility industry to improve heat rate. Representatives of utilities, architect/engineering firms, research firms, and manufacturers presented 71 papers, and a panel discussion by the ASME performance test code committee on PTC 46 provided a forum on the overall plant performance test code. These proceedings report on a number of heat rate improvement programs, both in development and in place, including EPRI's Plant Monitoring Workstation (PMW), the State-of-the-Art Power Plant (SOAPP) conceptual design tool, and several developments in boiler performance monitoring, including an on-line system at PEPCO's Morgantown unit 2. Other conference papers describe advances in heat rate improvement through (1) computer software tools modeling boiler cleanliness, heat balance, duct system dynamics, heat rate root cause diagnosis, and conceptual plant design; (2) new instruments and testing systems in the areas of performance testing, heat rate monitoring, circulating water flow measurement, and low-pressure turbine efficiency measurement; and (3) auxiliary equipment improvements such as condensing heat exchangers, macrobiofouling control, condenser in-leakage and air binding control, air heater monitoring, and feedwater heater level control. Individual papers are indexed separately.

  2. Gas hydrates: technology status report

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    The DOE Morgantown Energy Technology Center (METC) implemented a gas hydrates R and D program that emphasized an understanding of the resource through (1) an assessment of current technology, (2) the characterization of gas hydrate geology and reservoir engineering, and (3) the development of diagnostic tools and methods. Recovery of natural gas from gas hydrates will be made possible through (1) improved instrumentation and recovery methods, (2) developing the capability to predict production performance, and (3) field verification of recovery methods. Gas hydrates research has focused primarily on geology. As work progressed, areas where gas hydrates are likely to occur were identified, and specific high potential areas were targeted for detailed investigation. A Geologic Analysis System (GAS) was developed. GAS contains approximately 30 software packages and can manipulate and correlate several types of geologic and petroleum data into maps, graphics, and reports. The system also contains all well information currently available from the Alaskan North Slope area. Laboratory research on gas hydrates includes the characterization of the physical system, which focuses on creating synthetic methane hydrates and developing synthetic hydrate cores using tetrahydrofuran (THF), consolidated rock cores, frost base mixtures, water/ice-base mixtures, and water-base mixtures. Laboratory work produced measurements of the sonic velocity and electrical resistivity of these synthetic hydrates. During 1983, a sample from a natural hydrate core recovered from the Pacific coast of Guatemala was tested for these properties by DOE/METC. More recently, natural hydrate samples acquired from the Gulf of Mexico are being tested. Modeling and systems analysis work has focused on the development of GAS and preliminary gas hydrate production models. 23 refs., 18 figs., 6 tabs.

  3. Gas hydrates

    SciTech Connect (OSTI)

    Not Available

    1985-04-01

    There is a definite need for the US government to provide leadership for research in gas hydrates and to coordinate its activities with academia, industry, private groups, federal agencies, and their foreign counterparts. In response to this need, the DOE Morgantown Energy Technology Center implemented a gas hydrates R and D program. Understanding the resource will be achieved through: assessment of current technology; characterization of gas hydrate geology and reservoir engineering; and development of diagnostic tools and methods. Research to date has focused on geology. As work progressed, areas where gas hydrates are likely to occur were identified, and specific high potential areas were targeted for future detailed investigation. Initial research activities involved the development of the Geologic Analysis System (GAS); which will provide, through approximately 30 software packages, the capability to manipulate and correlate several types of geologic and petroleum data into maps, graphics, and reports. Preliminary mapping of hydrate prospects for the Alaskan North Slope is underway. Geological research includes physical system characterization which focuses on creating synthetic methane hydrates and developing synthetic hydrate cores using tetrahydrofuran, consolidated rock cores, frost base mixtures, water/ice base mixtures, and water base mixtures. Laboratory work produced measurements of the sonic velocity and electrical resistivity of these synthetic hydrates. During 1983, a sample from a natural hydrate core recovered from the Pacific coast of Guatemala was tested for these properties by METC. More recently, a natural hydrate sample from the Gulf of Mexico was also acquired and testing of this sample is currently underway. In addition to the development of GAS, modeling and systems analysis work focused on the development of conceptual gas hydrate production models. 16 figs., 6 tabs.

  4. Extractors manual for Oil Shale Data Base System: Major Plants Data Base

    SciTech Connect (OSTI)

    Not Available

    1986-08-01

    To date, persons working in the development of oil shale technology have found limited amounts of reference data. If data from research and development could be made publicly available, however, several functions could be served. The duplication of work could be avoided, documented test material could serve as a basis to promote further developments, and research costs could possibly be reduced. To satisfy the engineering public's need for experimental data and to assist in the study of technical uncertainties in oil shale technology, the Department of Energy (DOE) has initiated the development of a data system to store the results of Government-sponsored research. A technology-specific data system consists of data that are stored for that technology in each of the specialized data bases that make up the Morgantown Energy Technology Center (METC) data system. The Oil Shale Data System consists of oil shale data stored in the Major Plants Data Base (MPDB), Test Data Data Base (TDDB), Resource Extraction Data Base (REDB), and Math Modeling Data Base (MMDB). To capture the results of Government-sponsored oil shale research programs, documents have been written to specify the data that contractors need to report and the procedures for reporting them. The documents identify and define the data from oil shale projects to be entered into the MPDB, TDDB, REDB, and MMDB, which will meet the needs of users of the Oil Shale Data System. This document addresses what information is needed and how it must be formatted for entry to the MPDB for oil shale. The data that are most relevant to potential Oil Shale Data System users have been divided into four categories: project tracking needs; economic/commercialization needs; critical performance needs; and modeling and research and development needs. 2 figs., 31 tabs.

  5. Intelligent Control via Wireless Sensor Networks for Advanced Coal Combustion Systems

    SciTech Connect (OSTI)

    Aman Behal; Sunil Kumar; Goodarz Ahmadi

    2007-08-05

    Numerical Modeling of Solid Gas Flow, System Identification for purposes of modeling and control, and Wireless Sensor and Actor Network design were pursued as part of this project. Time series input-output data was obtained from NETL's Morgantown CFB facility courtesy of Dr. Lawrence Shadle. It was run through a nonlinear kernel estimator and nonparametric models were obtained for the system. Linear and first-order nonlinear kernels were then utilized to obtain a state-space description of the system. Neural networks were trained that performed better at capturing the plant dynamics. It is possible to use these networks to find a plant model and the inversion of this model can be used to control the system. These models allow one to compare with physics based models whose parameters can then be determined by comparing them against the available data based model. On a parallel track, Dr. Kumar designed an energy-efficient and reliable transport protocol for wireless sensor and actor networks, where the sensors could be different types of wireless sensors used in CFB based coal combustion systems and actors are more powerful wireless nodes to set up a communication network while avoiding the data congestion. Dr. Ahmadi's group studied gas solid flow in a duct. It was seen that particle concentration clearly shows a preferential distribution. The particles strongly interact with the turbulence eddies and are concentrated in narrow bands that are evolving with time. It is believed that observed preferential concentration is due to the fact that these particles are flung out of eddies by centrifugal force.

  6. Development of a natural gas systems analysis model (GSAM). Annual report, July 1994--June 1995

    SciTech Connect (OSTI)

    NONE

    1995-07-01

    North American natural gas markets have changed dramatically over the past decade. A competitive, cost-conscious production, transportation, and distribution system has emerged from the highly regulated transportation wellhead pricing structure of the 1980`s. Technology advances have played an important role in the evolution of the gas industry, a role likely to expand substantially as alternative fuel price competition and a maturing natural gas resource base force operators to maximize efficiency. Finally, significant changes continue in regional gas demand patterns, industry practices, and infrastructure needs. As the complexity of the gas system grows so does the need to evaluate and plan for alternative future resource, technology, and market scenarios. Traditional gas modeling systems focused solely on the econometric aspects of gas marketing. These systems, developed to assess a regulated industry at a high level of aggregation, rely on simple representation of complex and evolving systems, thereby precluding insight into how the industry will change over time. Credible evaluations of specific policy initiatives and research activities require a different approach. Also, the mounting pressure on energy producers from environmental compliance activities requires development of analysis that incorporates relevant geologic, engineering, and project economic details. The objective of policy, research and development (R&D), and market analysis is to integrate fundamental understanding of natural gas resources, technology, and markets to fully describe the potential of the gas resource under alternative future scenarios. This report summarizes work over the past twelve months on DOE Contract DE-AC21-92MC28138, Development of a Natural Gas Systems Analysis Model (GSAM). The products developed under this project directly support the Morgantown Energy Technology Center (METC) in carrying out its natural gas R&D mission.

  7. Remote-site power generation opportunities for Alaska

    SciTech Connect (OSTI)

    Jones, M.L.

    1997-03-01

    The Energy and Environmental Research Center (EERC) has been working with the Federal Energy Technology Center in Morgantown, West Virginia, to assess options for small, low-cost, environmental acceptable power generation for application in remote areas of Alaska. The goal of this activity was to reduce the use of fuel in Alaskan villages by developing small, low-cost power generation applications. Because of the abundance of high-quality coal throughout Alaska, emphasis was placed on clean coal applications, but other energy sources, including geothermal, wind, hydro, and coalbed methane, were also considered. The use of indigenous energy sources would provide cheaper cleaner power, reduce the need for PCE (Power Cost Equalization program) subsidies, increase self-sufficiency, and retain hard currency in the state while at the same time creating jobs in the region. The introduction of economical, small power generation systems into Alaska by US equipment suppliers and technology developers aided by the EERC would create the opportunities for these companies to learn how to engineer, package, transport, finance, and operate small systems in remote locations. All of this experience would put the US developers and equipment supply companies in an excellent position to export similar types of small power systems to rural areas or developing countries. Thus activities in this task that relate to determining the generic suitability of these technologies for other countries can increase US competitiveness and help US companies sell these technologies in foreign countries, increasing the number of US jobs. The bulk of this report is contained in the two appendices: Small alternative power workshop, topical report and Global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

  8. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect (OSTI)

    J. Hnat; L.M. Bartone; M. Pineda

    2001-10-31

    This Final Report summarizes the progress of Phases 3,3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the MH/C System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem. Because of USEPA policies and regulations that do not require treatment of low level or low-level/PCB contaminated wastes, DOE terminated the project because there is no purported need for this technology.

  9. PREPARATION AND CHARACTERIZATION OF SOLID ELECTROLYTES: FUEL CELL APPLICATIONS

    SciTech Connect (OSTI)

    Rambabu Bobba; Josef Hormes; T. Wang; Jaymes A. Baker; Donald G. Prier; Tommy Rockwood; Dinesha Hawkins; Saleem Hasan; V. Rayanki

    1997-12-31

    The intent of this project with Federal Energy Technology Center (FETC)/Morgantown Energy Technology Center (METC) is to develop research infrastructure conductive to Fuel Cell research at Southern University and A and M College, Baton Route. A state of the art research laboratory (James Hall No.123 and No.114) for energy conversion and storage devices was developed during this project duration. The Solid State Ionics laboratory is now fully equipped with materials research instruments: Arbin Battery Cycling and testing (8 channel) unit, Electrochemical Analyzer (EG and G PAR Model 273 and Solartron AC impedance analyzer), Fuel Cell test station (Globe Tech), Differential Scanning Calorimeter (DSC-10), Thermogravimetric Analyzer (TGA), Scanning Tunneling Microscope (STM), UV-VIS-NIR Absorption Spectrometer, Fluorescence Spectrometer, FT-IR Spectrometer, Extended X-ray Absorption Fine Structure (EXAFS) measurement capability at Center for Advanced Microstructure and Devices (CAMD- a multimillion dollar DOE facility), Glove Box, gas hood chamber, high temperature furnaces, hydraulic press and several high performance computers. IN particular, a high temperature furnace (Thermodyne 6000 furnace) and a high temperature oven were acquired through this project funds. The PI Dr. R Bobba has acquired additional funds from federal agencies include NSF-Academic Research Infrastructure program and other DOE sites. They have extensively used the multimillion dollar DOE facility ''Center'' for Advanced Microstructures and Devices (CAMD) for electrochemical research. The students were heavily involved in the experimental EXAFS measurements and made use of their DCM beamline for EXAFS research. The primary objective was to provide hands on experience to the selected African American undergraduate and graduate students in experimental energy research.The goal was to develop research skills and involve them in the Preparation and Characterization of Solid Electrolytes. Ionically conducting solid electrolytes are successfully used for battery, fuel cell and sensor applications.

  10. A study of hazardous air pollutants at the Tidd PFBC Demonstration Plant

    SciTech Connect (OSTI)

    1994-10-01

    The US Department of Energy (DOE) Clean Coal Technology (CCD Program is a joint effort between government and industry to develop a new generation of coal utilization processes. In 1986, the Ohio Power Company, a subsidiary of American Electric Power (AEP), was awarded cofunding through the CCT program for the Tidd Pressure Fluidized Bed Combustor (PFBC) Demonstration Plant located in Brilliant, Ohio. The Tidd PFBC unit began operation in 1990 and was later selected as a test site for an advanced particle filtration (APF) system designed for hot gas particulate removal. The APF system was sponsored by the DOE Morgantown Energy Technology Center (METC) through their Hot Gas Cleanup Research and Development Program. A complementary goal of the DOE CCT and METC R&D programs has always been to demonstrate the environmental acceptability of these emerging technologies. The Clean Air Act Amendments of 1990 (CAAA) have focused that commitment toward evaluating the fate of hazardous air pollutants (HAPs) associated with advanced coal-based and hot gas cleanup technologies. Radian Corporation was contacted by AEP to perform this assessment of HAPs at the Tidd PFBC demonstration plant. The objective of this study is to assess the major input, process, and emission streams at Plant Tidd for the HAPs identified in Title III of the CAAA. Four flue gas stream locations were tested: ESP inlet, ESP outlet, APF inlet, and APF outlet. Other process streams sampled were raw coal, coal paste, sorbent, bed ash, cyclone ash, individual ESP hopper ash, APF ash, and service water. Samples were analyzed for trace elements, minor and major elements, anions, volatile organic compounds, dioxin/furan compounds, ammonia, cyanide, formaldehyde, and semivolatile organic compounds. The particle size distribution in the ESP inlet and outlet gas streams and collected ash from individual ESP hoppers was also determined.

  11. Optimization of Deep Drilling Performance--Development and Benchmark Testing of Advanced Diamond Product Drill Bits & HP/HT Fluids to Significantly Improve Rates of Penetration

    SciTech Connect (OSTI)

    Alan Black; Arnis Judzis

    2003-10-01

    This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2002 through September 2002. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit--fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. Accomplishments to date include the following: 4Q 2002--Project started; Industry Team was assembled; Kick-off meeting was held at DOE Morgantown; 1Q 2003--Engineering meeting was held at Hughes Christensen, The Woodlands Texas to prepare preliminary plans for development and testing and review equipment needs; Operators started sending information regarding their needs for deep drilling challenges and priorities for large-scale testing experimental matrix; Aramco joined the Industry Team as DEA 148 objectives paralleled the DOE project; 2Q 2003--Engineering and planning for high pressure drilling at TerraTek commenced; 3Q 2003--Continuation of engineering and design work for high pressure drilling at TerraTek; Baker Hughes INTEQ drilling Fluids and Hughes Christensen commence planning for Phase 1 testing--recommendations for bits and fluids.

  12. ORGANIC-CONTAMINANT DESTRUCTION UNIT ECO LOGIC PROCESS GAS PHASE CHEMICAL REDUCTION

    SciTech Connect (OSTI)

    Unknown

    1998-06-17

    This report describes the Eco Logic Process and discusses the procedures and results of a pilot-scale treatability study on explosives in shell casings. The study was conducted as part of a contract which was awarded to Science Applications International Corporation (SAIC) and Eco Logic by the Department of Energy's Federal Energy Technology Center (FETC) in Morgantown, West Virginia to conduct treatability studies on complex hazardous wastes, energetic and low level mixed wastes. The U.S. Army currently decontaminates spent shell casings using a bailout or high pressure wash process that removes a large amount of the propellant from the casing but not enough to allow recycle of the entire casing intact; the U.S. Army currently projects the use of a metal parts furnace to completely decontaminate the shell casings. Use of the Eco Logic Process to decontaminate the shell casings would allow the shell casing to be reused intact. In addition to explosives commonly used by the Army such as TNT and Composition B, ARDEC personnel also were interested in the decontamination of shell casings with a residual of the propellant Yellow D which is a common energetic in artillery shell casings used by the Navy. A series of treatability tests on neat samples of explosive as well as shell casings containing each explosive were performed between June 9 and June 20, 1997 at the US Army's Edgewood Research Development, Engineering Center (ERDEC) toxic test chamber facility located at Aberdeen Proving Ground, Maryland., including a 2 gram neat sample of TNT and lO gram samples of TNT, composition B and Yellow D to determine optimal treatment conditions for each explosive followed by two tests on washed shell casings containing trace amounts of TNT and a total of six tests, two each on shell casings lined with 10 grams of TNT, composition B and Yellow D.

  13. Desulfurization of hot fuel with Z-Sorb III sorbent

    SciTech Connect (OSTI)

    Campbell, W.M.; O`Donnell, J.J.; Katta, S.; Grindley, T.; Delzer, G.; Khare, G.

    1993-12-31

    The objective of this project is to evaluate regenerable sorbents for potential use in desulfurization of integrated gasification combined cycle (IGCC) fuel gas in a fixed bed operating at temperatures of 900--1200{degree}F (482--649{degree}C) and pressures up to 300--400 psia (2068--2758 kPa). Important evaluation criteria are adequate sulfur absorption capacity, physical and chemical durability, and complete regenerability. The experimental tests were conducted at the Morgantown Energy Technology Center in their high pressure bench-scale hot gas desulfurization unit, which contains a 2 in (5.1 cm) ID reactor system. Like zinc ferrite and zinc titanate, Z-Sorb III is also a zinc oxide-based sorbent supported on a proprietary matrix designed to provide stability and prolong the sorbent life. The test program was divided into four phases. Phase I was essentially a screening or feasibility study and consisted of a relatively short series of complete sulfidation-regeneration cycles. Phase II was a longer term multi-cycle test designed to demonstrate durability and regenerability of the sorbent. Parametric tests of sulfidation variables were done in Phase III. The major variables investigated were gas velocity (0.5--2.0 fps) (0.15--0.61 mps) and absorption temperature (900--1100{degree}F) (482--593{degree}C). Work continued on regeneration techniques during this phase with the purpose of identifying the most cost-effective method for the commercial reactor. Phase IV of the test program was included to examine the effects, if any, of small quantities of HCl in the feed gas. A total of seven cycles were completed. The test program ended with a single sulfidation at the same conditions run during Phase I. This permitted a direct comparison of a relatively fresh sorbent with one that had been subjected to a wide variety of test conditions over an extended period of time.

  14. Hot/Warm Gas Cleanup

    SciTech Connect (OSTI)

    Bissett, Larry A.

    2001-11-06

    Using regenerable sorbents and transport or fluid-bed contacting, the Gas Process Development Unit (GPDU) at NETL-Morgantown will be used to demonstrate the process feasibility of removing sulfur from coal gasification or other fuel gas streams at temperatures above dew point of the gas. This technology, also known as hot or warm gas desulfurization, is expected to remove sulfur to concentrations lower than conventional systems at comparable cost. The project was constructed under the U.S. Department of Energy (DOE) Integrated Gasification Combined Cycle (IGCC) power system program and is an ''enabling technology'' in the Vision 21 program. The GPDU was designed to be the smallest scale research and development facility capable of providing viable scale-up design data for new integrated transport or fluid-bed desulfurization processes. With the capability to test at process conditions representative of anticipated commercial applications in terms of temperatures, pressures, major compositions, velocities, and sorbent cycling, the unit is expected to generate important information on process control, configuration, and sorbent suitability. In this way, the GPDU fills a strategic role between past/current small-scale testing and large-scale demonstrations. A primary objective of the project is to gain insight into which reactor combination (i.e., both transport, both fluid bed, or mixed) is more suitable for desulfurization technology and why. Assuming process feasibility is demonstrated, this guides future development or commercial ventures by answering the question of what to build, and provides performance and scale-up data (e.g., required transport reactor densities). Another important objective, which naturally derives from the process development activities, is demonstration of sorbent suitability and readiness for commercial deployment (e.g., sorbent attrition and cycle life). In this sense, the GPDU can serve as a final testing ground to reduce the risks of large-scale sorbent failure.

  15. Installation of the first Distributed Energy Storage System (DESS) at American Electric Power (AEP).

    SciTech Connect (OSTI)

    Nourai, Ali (American Electric Power Company, Columbus, OH)

    2007-06-01

    AEP studied the direct and indirect benefits, strengths, and weaknesses of distributed energy storage systems (DESS) and chose to transform its entire utility grid into a system that achieves optimal integration of both central and distributed energy assets. To that end, AEP installed the first NAS battery-based, energy storage system in North America. After one year of operation and testing, AEP has concluded that, although the initial costs of DESS are greater than conventional power solutions, the net benefits justify the AEP decision to create a grid of DESS with intelligent monitoring, communications, and control, in order to enable the utility grid of the future. This report details the site selection, construction, benefits and lessons learned of the first installation, at Chemical Station in North Charleston, WV.

  16. Foundational Tools for Petascale Computing

    SciTech Connect (OSTI)

    Miller, Barton

    2014-05-19

    The Paradyn project has a history of developing algorithms, techniques, and software that push the cutting edge of tool technology for high-end computing systems. Under this funding, we are working on a three-year agenda to make substantial new advances in support of new and emerging Petascale systems. The overall goal for this work is to address the steady increase in complexity of these petascale systems. Our work covers two key areas: (1) The analysis, instrumentation and control of binary programs. Work in this area falls under the general framework of the Dyninst API tool kits. (2) Infrastructure for building tools and applications at extreme scale. Work in this area falls under the general framework of the MRNet scalability framework. Note that work done under this funding is closely related to work done under a contemporaneous grant, “High-Performance Energy Applications and Systems”, SC0004061/FG02-10ER25972, UW PRJ36WV.

  17. SUPPORTING INFORMATION METHODS Buffers. Buffer U is 20 mM TrisHCl, 6 mM NaCl, 1.7 mM MgCl2, 5 mM 2-mercaptoethanol (2-ME),

    E-Print Network [OSTI]

    Lohman, Timothy M.

    SUPPORTING INFORMATION METHODS Buffers. Buffer U is 20 mM Tris·HCl, 6 mM NaCl, 1.7 mM MgCl2, 5 mM 2H 7.5 at 25°C. SM buffer is 50 mM Tris·HCl, 0.1 M NaCl, 8 mM MgSO4, 0.01% gelatin, pH 7.5 at 25°C. Lysis buffer is 50 mM Tris·HCl, 0.2 M NaCl, 20% (w/v) sucrose, 15% (v/v) glycerol, 1 mM EDTA, 2 mM 2-ME

  18. An Inverse Finite Element Analysis and A Parametric Study of Small Punch Tests 

    E-Print Network [OSTI]

    Xu, Zhenzhen

    2012-02-14

    800 0.00 0.10 0.20 0.30 0.40 Fo rce (N ) fem exp Displacement(mm) error=1.65% 28 Fig. 2.16 FE simulation results with ? = 1720 MPa at ? = 0.49 Fig. 2.17 True stress-strain curve of 40CrNi2Mo alloy steel from the inverse FE analysis... of the SPT 2.6 Results for Other Materials Base on the SPTs of 1.25Cr0.5Mo and 23CrNiMoWV alloy steels (Guan et al., 2011), the true stress-strain curves of these two materials have also been simulated by 0 200 400 600 800 1000 0.00 0.10 0.20 0.30 0...

  19. An investigation of the linear ion accelerator as a mass analyzer 

    E-Print Network [OSTI]

    Tatum, Freeman A.

    1951-01-01

    H rNOV IWNSI TOK WG> hVTR DYEEVOSI rGE wNPw EVIGWYSNGO? >wNWV SwV WTSSVE VRq ZWGHI EVWTSN-VWH RYDw wNPwVE hVTR DYEEVOSI >NSw ITRZWNOP rGE GOWH T IRTWW rETDSNGO Gr SGSTW SNRVC xGE DGRZWVSVOVII? T hENVr EV-NV> Gr VTDw Gr SwV rN-V EVZGESVK SHZVI NI PN... TDDVWVETSGE TI T RTII TOTWH2VE KG OGS ZEVKNDS EVIYWSI DGRZTEThWV SG SwV VWVDSEGRTPOVSND TOTWH2VEI? NO -NV> Gr SwV KNrrNDYWSH Gr T DGRZWVSV SwVGEVSNDTW NO-VISNPTSNGO? TOK hVDTYIV Gr SwV NODEVTINOP NRZGESTODV Gr VdZWGENOP TWW RVTOI Gr RTII TOTWHIVI NO Sw...

  20. Black Bear Prep plant replaces high-frequency screens with fine wire sieves

    SciTech Connect (OSTI)

    Barbee, C.J.; Nottingham, J.

    2007-12-15

    At the Black Bear prep plant (near Wharncliffe, WV, USA) the clean coal from the spirals traditionally reported to high-frequency screens, which removed high-ash clay fines. Screens have inherent inefficiencies that allow clean coal to report to the screen underflow. The goal of this project was to capture the maximum amount of spiral clean coal while still removing the high-ash clay material found in the spiral product. The reduction of the circulating load and plant downtime for unscheduled maintenance were projected as additional benefits. After the plant upgrade, the maintenance related to the high frequency screens was eliminated and an additional 2.27 tons per hour (tph) of fine coal was recovered, which resulted in a payback period of less than one year. The article was adapted from a paper presented at Coal Prep 2007 in April 2007, Lexington, KY, USA. 1 ref., 1 fig., 1 tab.

  1. Separative power of an optimised concurrent gas centrifuge

    E-Print Network [OSTI]

    Bogovalov, S V

    2015-01-01

    The problem of separation of uranium isotopes in a concurrent gas centrifuge is solved analytically. Separative power of the optimized concurrent gas centrifuges equals to $\\delta U=12.7(V/700~{\\rm m/s})^2 (300 ~{\\rm K}/T)L, ~{\\rm kg ~SWU/yr}$, where $L$ and $V$ are the length and linear velocity of the rotor of the gas centrifuge, $T$ is the temperature. This formula well agrees with an empirical separative power of counter current gas centrifuges. The optimal value of the separative power is not unique on the plane $(p_w,v_z)$, where $p_w$ is pressure at the wall of the rotor and $v_z$ is axial velocity of the gas. This value is constant on a line defined by the equation $p_wv_z=constant$. Equations defining the mass flux and the electric power necessary to support the rotation of the gas centrifuge are obtained.

  2. The development of a model system to monitor induction of an enzyme in Saccharomyces cerevisiae 

    E-Print Network [OSTI]

    Wilkerson, James Edward

    1979-01-01

    in 5 mls of 100 mM Iris-HC1 pH 8. 0 with 5 mM DTT and 10 mM KH PO and incubated at 30'C with 2 4 shaking for 15 minutes. Cells were washed once with 30 mls 10 mM KP pH 7. 5 and once with 3. 1! (w/v) KCI, 10 mM KP . at pH 7. 5 w'th 2 mg of Zymolase... of 50 KeV. Sections were stained with 0. 1/ Toludine Blue in 1X sodium borate for observation with light microscopy. Chemicals The three substrates, sodium a-napthyl phosphate, p-nitrophenol phosphate and 4-methylumbelliferyl phosphate and the DNase...

  3. Outfits - Company F - 5 

    E-Print Network [OSTI]

    Unknown

    2006-01-01

    Momentum Z CCS F Wd Wv dA t ?? ? ? = ?+ ? ? ? ?? #0;G #0;G #0;v #0;v (3) Circumferential Momentum CCS F Ud Uv dA t ? ?? ? ? = ?+ ? ? ? ?? #0;G #0;G #0;v #0;v (4) 5 Energy v CCS P Wedev t ? ? ? ??? ?= ?+ + ? ?? ? ?? ?? dA #0;G #0;G #0;#5; #0;v#0... D a m p i n g , c [N .s /m ] TEST ISOT ENERGY Figure 18 Cross-coupled damping c(f) vs. non-dimensional frequency f for hole- pattern seal (detail) 22 0.0E+00 5.0E+06 1.0E+07 1.5E+07 2.0E+07 2.5E+07 3.0E+07 3.5E+07 4.0E+07 4.5E+07 0246810...

  4. Biodesulfurization techniques: Application of selected microorganisms for organic sulfur removal from coals. Final report

    SciTech Connect (OSTI)

    Elmore, B.B.

    1993-08-01

    As an alternative to post-combustion desulfurization of coal and pre-combustion desulfurization using physicochemical techniques, the microbial desulfurization of coal may be accomplished through the use of microbial cultures that, in an application of various microbial species, may remove both the pyritic and organic fractions of sulfur found in coal. Organisms have been isolated that readily depyritize coal but often at prohibitively low rates of desulfurization. Microbes have also been isolated that may potentially remove the organic-sulfur fraction present in coal (showing promise when acting on organic sulfur model compounds such as dibenzothiophene). The isolation and study of microorganisms demonstrating a potential for removing organic sulfur from coal has been undertaken in this project. Additionally, the organisms and mechanisms by which coal is microbially depyritized has been investigated. Three cultures were isolated that grew on dibenzothiophene (DBT), a model organic-sulfur compound, as the sole sulfur source. These cultures (UMX3, UMX9, and IGTS8) also grew on coal samples as the sole sulfur source. Numerous techniques for pretreating and ``cotreating`` coal for depyritization were also evaluated for the ability to improve the rate or extent of microbial depyritization. These include prewashing the coal with various solvents and adding surfactants to the culture broth. Using a bituminous coal containing 0.61% (w/w) pyrite washed with organic solvents at low slurry concentrations (2% w/v), the extent of depyritization was increased approximately 25% in two weeks as compared to controls. At slurry concentrations of 20% w/v, a tetrachloroethylene treatment of the coal followed by depyritization with Thiobacillus ferrooxidans increased both the rate and extent of depyritization by approximately 10%.

  5. WRI 50: Strategies for Cooling Electric Generating Facilities Utilizing Mine Water

    SciTech Connect (OSTI)

    Joseph J. Donovan; Brenden Duffy; Bruce R. Leavitt; James Stiles; Tamara Vandivort; Paul Ziemkiewicz

    2004-11-01

    Power generation and water consumption are inextricably linked. Because of this relationship DOE/NETL has funded a competitive research and development initiative to address this relationship. This report is part of that initiative and is in response to DOE/NETL solicitation DE-PS26-03NT41719-0. Thermal electric power generation requires large volumes of water to cool spent steam at the end of the turbine cycle. The required volumes are such that new plant siting is increasingly dependent on the availability of cooling circuit water. Even in the eastern U.S., large rivers such as the Monongahela may no longer be able to support additional, large power stations due to subscription of flow to existing plants, industrial, municipal and navigational requirements. Earlier studies conducted by West Virginia University (WV 132, WV 173 phase I, WV 173 Phase II, WV 173 Phase III, and WV 173 Phase IV in review) have identified that a large potential water resource resides in flooded, abandoned coal mines in the Pittsburgh Coal Basin, and likely elsewhere in the region and nation. This study evaluates the technical and economic potential of the Pittsburgh Coal Basin water source to supply new power plants with cooling water. Two approaches for supplying new power plants were evaluated. Type A employs mine water in conventional, evaporative cooling towers. Type B utilizes earth-coupled cooling with flooded underground mines as the principal heat sink for the power plant reject heat load. Existing mine discharges in the Pittsburgh Coal Basin were evaluated for flow and water quality. Based on this analysis, eight sites were identified where mine water could supply cooling water to a power plant. Three of these sites were employed for pre-engineering design and cost analysis of a Type A water supply system, including mine water collection, treatment, and delivery. This method was also applied to a ''base case'' river-source power plant, for comparison. Mine-water system cost estimates were then compared to the base-case river source estimate. We found that the use of net-alkaline mine water would under current economic conditions be competitive with a river-source in a comparable-size water cooling system. On the other hand, utilization of net acidic water would be higher in operating cost than the river system by 12 percent. This does not account for any environmental benefits that would accrue due to the treatment of acid mine drainage, in many locations an existing public liability. We also found it likely that widespread adoption of mine-water utilization for power plant cooling will require resolution of potential liability and mine-water ownership issues. In summary, Type A mine-water utilization for power plant cooling is considered a strong option for meeting water needs of new plant in selected areas. Analysis of the thermal and water handling requirements for a 600 megawatt power plant indicated that Type B earth coupled cooling would not be feasible for a power plant of this size. It was determined that Type B cooling would be possible, under the right conditions, for power plants of 200 megawatts or less. Based on this finding the feasibility of a 200 megawatt facility was evaluated. A series of mines were identified where a Type B earth-coupled 200 megawatt power plant cooling system might be feasible. Two water handling scenarios were designed to distribute heated power-plant water throughout the mines. Costs were developed for two different pumping scenarios employing a once-through power-plant cooling circuit. Thermal and groundwater flow simulation models were used to simulate the effect of hot water injection into the mine under both pumping strategies and to calculate the return-water temperature over the design life of a plant. Based on these models, staged increases in required mine-water pumping rates are projected to be part of the design, due to gradual heating and loss of heat-sink efficiency of the rock sequence above the mines. Utilizing pumping strategy No.1 (two mines) capital costs were 25 percent lower a

  6. IEMDC -IN-LINE ELECTRIC MOTOR DRIVEN COMPRESSOR

    SciTech Connect (OSTI)

    Michael J. Crowley; Prem N. Bansal; John E. Tessaro

    2004-01-01

    Dresser-Rand completed the preliminary aerodynamic flowpath of the volute and inlet design for the compressor section. This has resulted in considerable progress being made on the development of the compressor section and ultimately towards the successful integration of the IEMDC System design. Significant effort was put forth in the design of aerodynamic components which resulted in a design that meets the limits of aerodynamically induced radial forces previously established. Substantial effort has begun on the mechanical design of the compressor pressure containing case and other internal components. These efforts show progression towards the successful integration of a centrifugal compressor and variable speed electric motor ventilated by the process gas. All efforts continue to confirm the feasibility of the IEMDC system design. During the third quarter reporting period, the focus was to further refine the motor design and to ensure that the IEMDC rotor system supported on magnetic bearing is in compliance with the critical speed and vibration requirements of the API standards 617 and 541. Consequently specification to design magnetic bearings was developed and an RFQ to three magnetic bearing suppliers was issued. Considerable work was also performed to complete preliminary reports on some of the deliverable tasks under phase 1.0. These include specification for the VFD, RFQ for the magnetic bearings, and preliminary write-up for motor instrumentation and control schematic. In order to estimate motor efficiency at various operating points, plots of calculated motor losses, and motor cooling gas flow rates were also prepared. Preliminary evaluations of motor support concepts were performed via FEA to determine modal frequencies. Presentation was made at DOE Morgantown on August 12, 2003 to provide project status update. Preparations for the IEMDC motor-compressor presentation, at the GMRC conference in Salt Lake City to be held on October 5, 2003, were also started. Detailed calculations of cooling gas flow requirements for the motor and magnetic bearings, per several new operating points designated by DR, confirmed that the required gas flow was within the compressor design guidelines. Previous thrust load calculations had confirmed that the magnetic thrust bearing design load capacity of 6,000 lb. was sufficient to handle the net thrust load produced by the motor and compressor pressure loading. Thus the design data that has been generated, for the variable speed 10 MW 12,000 rpm motor, during the last three quarters, continue to confirm the feasibility of an efficient and robust motor design.

  7. Development and Implementation of 3-D, High Speed Capacitance Tomography for Imaging Large-Scale, Cold-Flow Circulating Fluidized Bed

    SciTech Connect (OSTI)

    Qussai Marashdeh

    2012-09-30

    A detailed understanding of multiphase flow behavior inside a Circulating Fluidized Bed (CFB) requires a 3-D technique capable of visualizing the flow field in real-time. Electrical Capacitance Volume Tomography (ECVT) is a newly developed technique that can provide such measurements. The attractiveness of the technique is in its low profile sensors, fast imaging speed and scalability to different section sizes, low operating cost, and safety. Moreover, the flexibility of ECVT sensors enable them to be designed around virtually any geometry, rendering them suitable to be used for measurement of solid flows in exit regions of the CFB. Tech4Imaging LLC has worked under contract with the U.S. Department of Energyâ??s National Energy Technology Laboratory (DOE NETL) to develop an ECVT system for cold flow visualization and install it on a 12 inch ID circulating fluidized bed. The objective of this project was to help advance multi-phase flow science through implementation of an ECVT system on a cold flow model at DOE NETL. This project has responded to multi-phase community and industry needs of developing a tool that can be used to develop flow models, validate computational fluid dynamics simulations, provide detailed real-time feedback of process variables, and provide a comprehensive understating of multi-phase flow behavior. In this project, a complete ECVT system was successfully developed after considering different potential electronics and sensor designs. The system was tested at various flow conditions and with different materials, yielding real-time images of flow interaction in a gas-solid flow system. The system was installed on a 12 inch ID CFB of the US Department of Energy, Morgantown Labs. Technical and economic assessment of Scale-up and Commercialization of ECVT was also conducted. Experiments conducted with larger sensors in conditions similar to industrial settings are very promising. ECVT has also the potential to be developed for imaging multi-phase flow systems in high temperature and high pressure conditions, typical in many industrial applications.

  8. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect (OSTI)

    Robinson P. Khosah; John P. Shimshock

    2004-03-02

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), with a goal of characterizing the ambient fine particulate in this region, including examination of urban/rural variations, correlations between PM{sub 2.5} and gaseous pollutants, and influences of artifacts on PM{sub 2.5} measurements in this region. Two urban and two rural monitoring sites were included in the UORVP. The four sites selected were all part of existing local and/or state air quality programs. One urban site was located in the Lawrenceville section of Pittsburgh, Pennsylvania at an air quality monitoring station operated by the Allegheny County Health Department. A second urban site was collocated at a West Virginia Division of Environmental Protection (WVDEP) monitoring station at the airport in Morgantown, West Virginia. One rural site was collocated with the Pennsylvania Department of Environmental Protection (PADEP) at a former NARSTO-Northeast site near Holbrook, Greene County, Pennsylvania. The other rural site was collocated at a site operated by the Ohio Environmental Protection Agency (OHEPA) and managed by the Ohio State Forestry Division in Gifford State Forest near Athens, Ohio. Previous Semi-Annual Technical Progress Reports presented the following: (1) the median mass and composition of PM{sub 2.5} are similar for both Lawrenceville and Holbrook, suggesting that the sites are impacted more by the regional than by local effects; (2) there was no significant differences in the particulate trending and levels observed at both sites within seasons; (3) sulfate levels predominate at both sites and (4) PM{sub 2.5} and PM{sub 10} mass concentration levels are consistently higher in summer than in winter, with intermediate levels being observed in the fall and spring. Analyses of data conducted during the period from April 1, 2003 through September 30, 2003 are presented in this Semi-Annual Technical Progress Report. Report Revision No. 1 includes the additions or removals of text presented in the previous version of this report.

  9. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5)DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect (OSTI)

    Robinson P. Khosah; John P. Shimshock

    2003-04-30

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), with a goal of characterizing the ambient fine particulate in this region, including examination of urban/rural variations, correlations between PM{sub 2.5} and gaseous pollutants, and influences of artifacts on PM{sub 2.5} measurements in this region. Two urban and two rural monitoring sites were included in the UORVP. The four sites selected were all part of existing local and/or state air quality programs. One urban site was located in the Lawrenceville section of Pittsburgh, Pennsylvania at an air quality monitoring station operated by the Allegheny County Health Department. A second urban site was collocated at a West Virginia Division of Environmental Protection (WVDEP) monitoring station at the airport in Morgantown, West Virginia. One rural site was collocated with the Pennsylvania Department of Environmental Protection (PADEP) at a former NARSTO-Northeast site near Holbrook, Greene County, Pennsylvania. The other rural site was collocated at a site operated by the Ohio Environmental Protection Agency (OHEPA) and managed by the Ohio State Forestry Division in Gifford State Forest near Athens, Ohio. Analysis of data collected to date show that: (1) the median mass and composition of PM{sub 2.5} are similar for both Lawrenceville and Holbrook, suggesting that the sites are impacted more by the regional than by local effects; (2) there was no significant differences in the particulate trending and levels observed at both sites within seasons; (3) sulfate levels predominate at both sites, and (4) PM{sub 2.5} and PM{sub 10} mass concentration levels are consistently higher in summer than in winter, with intermediate levels being observed in the fall and spring. Data analysis focusing on relating the aerometric measurements to local and regional scale emissions of sources of primary and secondary fine particles using receptor-based air quality models will follow.

  10. Final Report - Glass Formulation Testing to Increase Sulfate Volatilization from Melter, VSL-04R4970-1, Rev. 0, dated 2/24/05

    SciTech Connect (OSTI)

    Kruger, Albert A.; Matlack, K. A.; Pegg, I. L.; Gong, W.

    2013-11-13

    The principal objectives of the DM100 and DM10 tests were to determine the impact of four different organics and one inorganic feed additive on sulfate volatilization and to determine the sulfur partitioning between the glass and the off-gas system. The tests provided information on melter processing characteristics and off-gas data including sulfur incorporation and partitioning. A series of DM10 and DM100 melter tests were conducted using a LAW Envelope A feed. The testing was divided into three parts. The first part involved a series of DM10 melter tests with four different organic feed additives: sugar, polyethylene glycol (PEG), starch, and urea. The second part involved two confirmatory 50-hour melter tests on the DM100 using the best combination of reductants and conditions based on the DM10 results. The third part was performed on the DM100 with feeds containing vanadium oxide (V{sub 2}O{sub 5}) as an inorganic additive to increase sulfur partitioning to the off-gas. Although vanadium oxide is not a reductant, previous testing has shown that vanadium shows promise for partitioning sulfur to the melter exhaust, presumably through its known catalytic effect on the SO{sub 2}/SO{sub 3} reaction. Crucible-scale tests were conducted prior to the melter tests to confirm that the glasses and feeds would be processable in the melter and that the glasses would meet the waste form (ILAW) performance requirements. Thus, the major objectives of these tests were to: ? Perform screening tests on the DM10 followed by tests on the DM100-WV system using a LAW -Envelope A feed with four organic additives to assess their impact on sulfur volatilization. ? Perform tests on the DM100-WV system using a LAW -Envelope A feed containing vanadium oxide to assess its impact on sulfur volatilization. ? Determine feed processability and product quality with the above additives. ? Collect melter emissions data to determine the effect of additives on sulfur partitioning and melter emissions. ? Collect and analyze discharged glass to determine sulfur retention in the glass. ? Prepare and characterize feeds and glasses with the additives to confirm that the feeds and the glass melts are suitable for processing in the DM100 melter. ? Prepare and characterize glasses with the additives to confirm that the glasses meet the waste form (ILAW) performance requirements.

  11. Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project

    SciTech Connect (OSTI)

    Deanna Gilliland; Matthew Usher

    2011-12-31

    The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

  12. The Precision Array for Probing the Epoch of Reionization: 8 Station Results

    E-Print Network [OSTI]

    Parsons, Aaron R; Bradley, Richard F; Aguirre, James E; Benoit, Erin E; Carilli, Chris L; Foster, Griffin S; Gugliucci, Nicole E; Herne, David; Jacobs, Daniel C; Lynch, Mervyn J; Manley, Jason R; Parashare, Chaitali R; Werthimer, Daniel J; Wright, Melvyn C H

    2009-01-01

    We are developing the Precision Array for Probing the Epoch of Reionization (PAPER) to detect 21cm emission from the early Universe, when the first stars and galaxies were forming. We describe the overall experiment strategy and architecture and summarize two PAPER deployments: a 4-antenna array in the low-RFI environment of Western Australia and an 8-antenna array at our prototyping site in Green Bank, WV. From these activities we report on system performance, including primary beam model verification, dependence of system gain on ambient temperature, measurements of receiver and overall system temperatures, and characterization of the RFI environment at each deployment site. We present an all-sky map synthesized between 139 MHz and 174 MHz using data from both arrays that reaches down to 80 mJy (4.9 K, for a beam size of 2.15e-5 steradians at 154 MHz), with a 10 mJy (620 mK) thermal noise level that indicates what would be achievable with better foreground subtraction. We calculate angular power spectra ($C...

  13. Rivesville multicell fluidized bed boiler

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    One objective of the experimental MFB at Rivesville, WV, was the evaluation of alternate feed systems for injecting coal and limestone into a fluidized bed. A continuous, uniform feed flow to the fluid bed is essential in order to maintain stable operations. The feed system originally installed on the MFB was a gravity feed system with an air assist to help overcome the back pressure created by the fluid bed. The system contained belt, vibrating, and rotary feeders which have been proven adequate in other material handling applications. This system, while usable, had several operational and feeding problems during the MFB testing. A major portion of these problems occurred because the coal and limestone feed control points - a belt feeder and rotary feeder, respectively - were pressurized in the air assist system. These control points were not designed for pressurized service. An alternate feed system which could accept feed from the two control points, split the feed into six equal parts and eliminate the problems of the pressurized system was sought. An alternate feed system designed and built by the Fuller Company was installed and tested at the Rivesville facility. Fuller feed systems were installed on the north and south side of C cell at the Rivesville facility. The systems were designed to handle 10,000 lb/hr of coal and limestone apiece. The systems were installed in late 1979 and evaluated from December 1979 to December 1980. During this time period, nearly 1000 h of operating time was accumulated on each system.

  14. Decontamination systems information and research programs. Quarterly report, July 1--August 31, 1996

    SciTech Connect (OSTI)

    1997-07-01

    The US contains numerous hazardous waste sites. Many sites are on private land near operating units of various companies. An effort is being made to determine the conditions under which such sites can be remediated voluntarily. The objective of the project will be to first assess the interest and willingness of industry in the Kanawha River Valley, WV to participate in discussions that would lead toward voluntary cleanup activities. The second will be to implement the activities agreed upon by the interested parties. The project will first involve individual discussions with the industrial, government, and other organized groups in the area. These discussions will help determine the feasibility of organizing voluntary efforts. If the discussions indicate that conditions may be favorable for developing individual or group voluntary cleanup projects, a working group will be convened to establish the environmental goals of the project as well as the technical approach for achieving those goals. The projects for the 1996 WVU Cooperative Agreement are categorized into three task focus areas: Task 1.0 Contaminant Plume Containment and Remediation, Task 2.0 Cross Cutting Innovative Technologies, and Task 3.0 Small Business Support Program. Summaries of the accomplishments for the subtasks reporting under these categories during the third quarter, 1 July 96 through 30 September 96, are presented.

  15. Evaluation of the transport and resuspension of a simulated nuclear waste slurry: Nuclear Waste Treatment Program

    SciTech Connect (OSTI)

    Carleson, T.E.; Drown, D.C.; Hart, R.E.; Peterson, M.E.

    1987-09-01

    The Department of Chemical Engineering at the University of Idaho conducted research on the transport and resuspension of a simulated high-level nuclear waste slurry. In the United States, the reference process for treating both defense and civilian HLLW is vitrification using the liquid-fed ceramic melter process. The non-Newtonian behavior of the slurry complicates the evaluation of the transport and resuspension characteristics of the slurry. The resuspension of a simulated (nonradioactive) melter feed slurry was evaluated using a slurry designated as WV-205. The simulated slurry was developed for the West Valley Demonstration Project and was used during a pilot-scale ceramic melter (PSCM) experiment conducted at PNL in July 1985 (PSCM-21). This study involved determining the transport characteristics of a fully suspended slurry and the resuspension characteristics of settled solids in a pilot-scale pipe loop. The goal was to predict the transport and resuspension of a full-scale system based on rheological data for a specific slurry. The rheological behavior of the slurry was evaluated using a concentric cylinder rotational viscometer, a capillary tube viscometer, and the pilot-scale pipe loop. The results obtained from the three approaches were compared. 40 refs., 74 figs., 15 tabs.

  16. Migration of chemotactic bacteria in soft agar: role of gel concentration

    E-Print Network [OSTI]

    O. A. Croze; G. P. Ferguson; M. E. Cates; W. C. K. Poon

    2011-08-06

    We study the migration of chemotactic wild-type Escherichia coli populations in semisolid (soft) agar in the concentration range C = 0.15-0.5% (w/v). For C migrate as broad circular bands rather than sharp rings. These are growth/diffusion waves arising because of suppression of chemotaxis by the agar and have not been previously reported experimentally to our knowledge. For C = 0.4-0.5%, expanding colonies do not span the depth of the agar and develop pronounced front instabilities. The migration front speed is weakly dependent on agar concentration at C < 0.25%, but decreases sharply above this value. We discuss these observations in terms of an extended Keller-Segel model for which we derived novel transport parameter expressions accounting for perturbations of the chemotactic response by collisions with the agar. The model makes it possible to fit the observed front speed decay in the range C = 0.15-0.35%, and its solutions qualitatively reproduce the observed transition from chemotactic to growth/diffusion bands. We discuss the implications of our results for the study of bacteria in porous media and for the design of improved bacteriological chemotaxis assays.

  17. The influence of certain management practices upon market quality and profit made in broiler production 

    E-Print Network [OSTI]

    Moore, William J

    1951-01-01

    ~f' ~~~~ mt'~ ~49~ 9ZCV, " (~. i: @FAN XSXL=Xgg?RhGQ ~ 4GT g pgiKpgUp ~ ~~V ~~~ Q WjQ ~~~ U~XZiC~ ~ O~ ~7: f~9 ply BVQQ~~XI8 SQ~ za? ~E~~w~svs~ ~~a& ~ zemmgozp ~~m ~~ 'g ~csgpgog, ", ~ f~~ zat~o yX ~~:, X K Gd'""~ 'g" u +~ ' G. ~ LIp...G%ttq, Gj~ M, 'g hiT'p'i~ ?k7 C gg ~oc. aux saba ~ 4xgwqgq( ~~ go zoese~y +~eel~ p ", tagz~m ~~ egg mg ~~ @o~ q~y '~p, W ~%%WAf1% WV R~ PA ~~ ~~~ sapp~sae yam etege83te epp~ ~~ ~~+ K4~kl~~ @TH 4 ~Ik~D C~W~ Q@& %~~~V Xtpea~ ~~ ga ~ssqaseog ac~ ~ pasg...

  18. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum

    SciTech Connect (OSTI)

    Shao, Xiongjun; Raman, Babu; Zhu, Mingjun; Mielenz, Jonathan R; Brown, Steven D; Guss, Adam M; Lynd, Lee R

    2011-01-01

    Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1-2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed.

  19. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum

    SciTech Connect (OSTI)

    Lynd, Lee R; Shao, Xiongjun; Raman, Babu; Mielenz, Jonathan R; Brown, Steven D; Guss, Adam M; Zhu, Mingjun

    2011-01-01

    Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1 2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed.

  20. Complete genome sequence of Desulfomicrobium baculatum type strain (XT)

    SciTech Connect (OSTI)

    Copeland, Alex; Spring, Stefan; Goker, Markus; Schneider, Susanne; Lapidus, Alla; Glavina Del Rio, Tijana; Tice, Hope; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Nolan, Matt; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavrommatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C; Meincke, Linda; Sims, David; Brettin, Thomas; Detter, John C; Han, Cliff; Chain, Patrick; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C; Lucas, Susan

    2009-05-20

    Desulfomicrobium baculatum is the type species of the genus Desulfomicrobium, which is the type genus of the family Desulfomicrobiaceae. It is of phylogenetic interest because of the isolated location of the family Desulfomicrobiaceae within the order Desulfovibrionales. D. baculatum strain XT is a Gram-negative, motile, sulfate-reducing bacterium isolated from water-saturated manganese carbonate ore. It is strictly anaerobic and does not require NaCl for growth, although NaCl concentrations up to 6percent (w/v) are tolerated. The metabolism is respiratory or fermentative. In the presence of sulfate, pyruvate and lactate are incompletely oxidized to acetate and CO2. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the deltaproteobacterial family Desulfomicrobiaceae, and this 3,942,657 bp long single replicon genome with its 3494 protein-coding and 72 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  1. Measurements of Multi-boson production, Trilinear and Quartic Gauge Couplings with the ATLAS detector

    E-Print Network [OSTI]

    Becker, Maurice; The ATLAS collaboration

    2015-01-01

    The ATLAS collaboration has carried a set of measurements that provide stringent tests of the electroweak sector of Standard Model, specifically on di- and multi-boson production cross sections and on triple and quartic gauge-boson couplings. Such measurements include cross sections for WV (V=W or Z) production in the leptonic or semileptonic channels, the production of a W or Z boson in association with photons, a Z boson in the vector-boson fusion channel and two same-charge W bosons in the vector-boson scattering channel. These measurements are compared to (N)NLO predictions of the Standard Model and provide model-independent constraints on new physics, by setting limits on anomalous gauge-boson couplings. First LHC Run-2 results will be included if available. An analysis of the inclusive four-lepton lineshape has been carried out in the mass range from 80 to 1000 GeV, where several distinct physics processes give rise to the production of 4-lepton final state, namely the single Z resonant processes, the H...

  2. Transportation Electrification Education Partnership for Green Jobs and Sustainable Mobility

    SciTech Connect (OSTI)

    Peng, Huei; Mi, Chris; Gover, James

    2013-04-30

    This collaborative educational project between the University of Michigan—Ann Arbor, University of Michigan—Dearborn and the Kettering University successfully executed almost all the elements we proposed to do. In the original proposal, we proposed to develop four graduate courses, six undergraduate courses, four professional short courses, a K?12 electric vehicle education kit, a Saturday morning seminar series, and a set of consumer education material to support the advancement of transportation electrification. The first four deliverables were all successfully developed and offered. When we held the kick?off meeting in NETL in Morgantown back in early 2010 with all the ten ARRA education teams, however, it quickly became clear that among the ten ARRA education grantee teams, our proposed “consume education” activities are not better or with the potential to create bigger impact than some of activities proposed in other teams. For example, the Odyssey 2010 event held by the West Virginia University team had planned and successfully reached to more than 230,000 attendees, which is way more than what our proposed 100k event could ever reach. It was under the suggestion of Joseph Quaranta, the ARRA education Program Director at that time, that we should coordinate and eliminate redundancy. The resources should then be focused on activities that have less overlap. Therefore, the originally proposed activities: Saturday morning seminar series, and a set of consumer education material were dropped from our scope. We expanded the scope of our “education kit” activity to include some educational materials, mainly in the form of videos. The target audience also changed from general public to K?12 students. The majority of the project cost (~70%) goes toward the establishment of three undergraduate laboratories, which provides critically needed hands?on learning experience for next?generation green mobility engineers. We are very proud that the ARRA money, which was distributed as part of the economy stimulus package back in 2009, was used to invest in laboratories which are already impacting the learning experience of our undergraduate and graduate students, and will continue to do so in the coming decades. The offering and enrollments of the ten undergraduate and graduate courses developed under the support of this educational grant is summarized in the table below. The grant was finalized in September 2009, and four new courses were developed and offered soon after in Winter 2010. The other six courses were developed thereafter. The total number of students who took these new courses over the duration of this grant is just over 1,000. In the first 2 years, under the DOE funding, the courses are offered more regularly. After that, the courses were considered together with other existing courses in the planning of teaching schedule and may not be offered each year. Almost all of the 10 courses have healthy enrollments and we do expect them to be offered continuously in the future. The graduate courses perhaps will be offered every 2?3 years, and the undergraduate courses most likely on a yearly basis.

  3. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Albert Tsang

    2003-03-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. During the reporting period, effort continues on identifying potential technologies for removing contaminants from synthesis gas to the level required by methanol synthesis. A liquid phase Claus process and a direct sulfur oxidation process were evaluated. Preliminary discussion was held with interested parties on cooperating on RD&T in Phase II of the project. Also, significant progress was made during the period in the submission of project deliverables. A meeting was held at DOE's National Energy Technology Laboratory in Morgantown between GEC and the DOE IMPPCCT Project Manager on the status of the project, and reached an agreement on the best way to wrap up Phase I and transition into the Phase II RD&T. Potential projects for the Phase II, cost, and fund availability were also discussed.

  4. 2003 Long-Term Surveillance and Maintenance Program Report

    SciTech Connect (OSTI)

    2004-07-01

    Radioactive waste was created by the Federal Government and private industry at locations around the country in support of national defense, research, and civilian power-generation programs. If not controlled, much of this legacy waste would remain hazardous to human health and the environment indefinitely. Current technology does not allow us to render this waste harmless, so the available methods to control risk rely on consolidation, isolation, and long-term management of the waste. The U.S. Department of Energy (DOE) has an obligation to safely control the radioactive waste and to inform and train future generations to maintain and, perhaps, improve established protections. DOE is custodian for much of the radioactive and other hazardous waste under control of the Federal Government. DOE established the Formerly Utilized Sites Remedial Action Program (FUSRAP) in 1974 and the Defense Decontamination and Decommissioning (D&D) Program and the Surplus Facilities Management Program in the 1980s. Congress passed the Uranium Mill Tailings Radiation Control Act (UMTRCA) in 1978. These federal programs and legislation were established to identify, remediate, and manage legacy waste. Remedial action is considered complete at a radioactive waste site when the identified hazardous material is isolated and the selected remedial action remedy is in place and functioning. Radioactive or other hazardous materials remain in place as part of the remedy at many DOE sites. Long-term management of radioactive waste sites incorporates a set of actions necessary to maintain protection of human health and the environment. These actions include maintaining physical impoundment structures in good repair to ensure that they perform as designed, preventing exposure to the wastes by maintaining access restrictions and warnings, and recording site conditions and activities for future custodians. Any actions, therefore, that will prevent exposure to the radioactive waste now or in the future are part of long-term site management. In response to post-closure care requirements set forth in UMTRCA, DOE Headquarters established the Long-Term Surveillance and Maintenance (LTS&M) Program in 1988 at the DOE office in Grand Junction, Colorado. The program assumed long-term management responsibility for sites remediated under UMTRCA and other programs. Since its inception, the LTS&M Program has evolved in response to changing stakeholder needs, improvements in technology, and the addition of more DOE sites as remediation is completed. The mission of the LTS&M Program was to fulfill DOE’s responsibility to implement all activities necessary to ensure regulatory compliance and to protect the public and the environment from long-lived wastes associated with the nation’s nuclear energy, weapons, and research activities. Key components of the LTS&M Program included stakeholder participation, site monitoring and maintenance, records and information management, and research and technology transfer. This report presents summaries of activities conducted in 2003 in fulfillment of the LTS&M Program mission. On December 15, 2003, DOE established the Office of Legacy Management (LM) to allow for optimum management of DOE’s legacy responsibilities. Offices are located in Washington, DC, Grand Junction, Colorado, Morgantown, West Virginia, and Pittsburgh, Pennsylvania, to perform long-term site management, land management, site transition support, records management, and other related tasks. All activities formerly conducted under the LTS&M Program have been incorporated into the Office of Land and Site Management (LM–50), as well as management of remedies involving ground water and surface water contaminated by former processing activities.

  5. Effects of extracellular plaque components on the chlorhexidine sensitivity of strains of Streptococcus mutans and human dental plaque

    SciTech Connect (OSTI)

    Wolinsky, L.E.; Hume, W.R.

    1985-08-01

    An in vitro study was undertaken to determine the effects of sucrose-derived extracellular plaque components on the sensitivity of selected oral bacteria to chlorhexidine (CX). Cultures of Streptococcus mutans HS-6, OMZ-176, Ingbritt C, 6715-wt13, and pooled human plaque were grown in trypticase soy media with or without 1% sucrose. The sensitivity to CX of bacteria grown in each medium was determined by fixed-time exposure to CX and subsequent measurement of /sup 3/H-thymidine uptake. One-hour exposure to CX at concentrations of 10(-4) M (0.01% w/v) or greater substantially inhibited subsequent cellular division among all the S. mutans strains and human plaque samples tested. An IC50 (the CX concentration which depressed /sup 3/H-thymidine incorporation to 50% of control level) of close to 10(-4) M was noted for S. mutans strains HS-6, OMZ-176, and 6715-wt13 when grown in the presence of sucrose. The same strains grown in cultures without added sucrose showed about a ten-fold greater sensitivity to CX (IC50 close to 10(-5) M). A three-fold difference was noted for S. mutans Ingbritt C. Only a slight increase in the IC50 was noted for the plaque samples cultured in sucrose-containing media, but their threshold for depression of /sup 3/H-thymidine uptake by CX was lower than that for the sucrose-free plaque samples. The study showed that extracellular products confer some protection against CX to the bacteria examined, and provided an explanation for the disparity between clinically-recommended concentrations for plaque suppression and data on in vitro susceptibility.

  6. Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement. Final report

    SciTech Connect (OSTI)

    Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

    1994-02-01

    The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ``Pneumatic Excavator`` which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions.

  7. Crystallization and Identification of the Glycosylated Moieties of Two Isoforms of the Main Allergen Hev b 2 and Preliminary X-ray Analysis of Two Polymorphs of Isoform ll

    SciTech Connect (OSTI)

    Fuentes-Silva,D.; Mendoza-Hernandez, G.; Stojanoff, V.; Palomares, L.; Zenteno, E.; Torres-Larios, A.; Rodriguez-Romero, A.

    2007-01-01

    Latex from Hevea brasiliensis contains several allergenic proteins that are involved in type I allergy. One of them is Hev b 2, which is a {beta}-1,3-glucanase enzyme that exists in different isoforms with variable glycosylation content. Two glucanase isoforms were isolated from trees of the GV-42 clone by gel filtration, affinity and ion-exchange chromatography. Isoform I had a carbohydrate content of about 20%, with N-linked N-acetyl-glucosamine, N-acetyl-galactosamine, fucose and galactose residues as the main sugars, while isoform II showed 6% carbohydrate content consisting of N-acetyl-glucosamine, fucose, mannose and xylose. Both isoforms were crystallized by the hanging-drop vapor-diffusion method. Isoform I crystals were grown using 0.2 M trisodium citrate dihydrate, 0.1 M Na HEPES pH 7.5 and 20%(v/v) 2-propanol, but these crystals were not appropriate for data collection. Isoform II crystals were obtained under two conditions and X-ray diffraction data were collected from both. In the first condition (0.2 M trisodium citrate, 0.1 M sodium cacodylate pH 6.5, 30% 2-propanol), crystals belonging to the tetragonal space group P4{sub 1} with unit-cell parameters a = b = 150.17, c = 77.41 {angstrom} were obtained. In the second condition [0.2 M ammonium acetate, 0.1 M trisodium citrate dihydrate pH 5.6, 30%(w/v) polyethylene glycol 4000] the isoform II crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 85.08, b = 89.67, c = 101.80 {angstrom}, {beta}= 113.6{sup o}. Preliminary analysis suggests that there are four molecules of isoform II in both asymmetric units.

  8. Crystallization and identification of the glycosylated moieties of two isoforms of the main allergen Hev b 2 and preliminary X-ray analysis of two polymorphs of isoform II

    SciTech Connect (OSTI)

    Fuentes-Silva, D. [Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Mendoza-Hernández, G. [Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Stojanoff, V. [Brookhaven National Laboratory, National Synchrotron Light Source, Upton, NY (United States); Palomares, L. A. [Instituto de Biotecnología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Zenteno, E. [Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Torres-Larios, A. [Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Rodríguez-Romero, A., E-mail: adela@servidor.unam.mx [Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico)

    2007-09-01

    Crystallization of important glycoenzymes involved in IgE-mediated latex allergy. Latex from Hevea brasiliensis contains several allergenic proteins that are involved in type I allergy. One of them is Hev b 2, which is a ?-1,3-glucanase enzyme that exists in different isoforms with variable glycosylation content. Two glucanase isoforms were isolated from trees of the GV-42 clone by gel filtration, affinity and ion-exchange chromatography. Isoform I had a carbohydrate content of about 20%, with N-linked N-acetyl-glucosamine, N-acetyl-galactosamine, fucose and galactose residues as the main sugars, while isoform II showed 6% carbohydrate content constisting of N-acetyl-glucosamine, fucose, mannose and xylose. Both isoforms were crystallized by the hanging-drop vapour-diffusion method. Isoform I crystals were grown using 0.2 M trisodium citrate dihydrate, 0.1 M Na HEPES pH 7.5 and 20%(v/v) 2-propanol, but these crystals were not appropriate for data collection. Isoform II crystals were obtained under two conditions and X-ray diffraction data were collected from both. In the first condition (0.2 M trisodium citrate, 0.1 M sodium cacodylate pH 6.5, 30% 2-propanol), crystals belonging to the tetragonal space group P4{sub 1} with unit-cell parameters a = b = 150.17, c = 77.41 Å were obtained. In the second condition [0.2 M ammonium acetate, 0.1 M trisodium citrate dihydrate pH 5.6, 30%(w/v) polyethylene glycol 4000] the isoform II crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 85.08, b = 89.67, c = 101.80 Å, ? = 113.6°. Preliminary analysis suggests that there are four molecules of isoform II in both asymmetric units.

  9. Recovery of yttrium from fluorescent powder of cathode ray tube, CRT: Zn removal by sulphide precipitation

    SciTech Connect (OSTI)

    Innocenzi, Valentina, E-mail: valentina.innocenzi1@univaq.it [Department of Industrial Engineering and Information and Economy, University of L’Aquila, Via Giovanni Gronchi n.18, Nucleo Ind.le di Pile, 67100 L’Aquila (Italy); De Michelis, Ida; Ferella, Francesco [Department of Industrial Engineering and Information and Economy, University of L’Aquila, Via Giovanni Gronchi n.18, Nucleo Ind.le di Pile, 67100 L’Aquila (Italy); Beolchini, Francesca [Department of Marine Sciences, Polytechnic Institute of Marche, Via Brecce Bianche, 60131 Ancona (Italy); Kopacek, Bernd [SAT, Austrian Society for Systems Engineering and Automation, Gurkasse 43/2, A-1140 Vienna (Austria); Vegliò, Francesco [Department of Industrial Engineering and Information and Economy, University of L’Aquila, Via Giovanni Gronchi n.18, Nucleo Ind.le di Pile, 67100 L’Aquila (Italy)

    2013-11-15

    Highlights: • Treatment of fluorescent powder of CRT waste. • Factorial experimental designs to study acid leaching of fluorescent powder and the purification of leach liquors. • Recover of yttrium by precipitation using oxalic acid. • Suitable flowsheet to recover yttrium from fluorescent powder. - Abstract: This work is focused on the recovery of yttrium and zinc from fluorescent powder of cathode ray tube (CRT). Metals are extracted by sulphuric acid in the presence of hydrogen peroxide. Leaching tests are carried out according to a 2{sup 2} full factorial plan and the highest extraction yields for yttrium and zinc equal to 100% are observed under the following conditions: 3 M of sulphuric acid, 10% v/v of H{sub 2}O{sub 2} concentrated solution at 30% v/v, 10% w/w pulp density, 70 °C and 3 h of reaction. Two series of precipitation tests for zinc are carried out: a 2{sup 2} full factorial design and a completely randomized factorial design. In these series the factors investigated are pH of solution during the precipitation and the amount of sodium sulphide added to precipitate zinc sulphide. The data of these tests are used to describe two empirical mathematical models for zinc and yttrium precipitation yields by regression analysis. The highest precipitation yields for zinc are obtained under the following conditions: pH equal to 2–2.5% and 10–12% v/v of Na{sub 2}S concentrated solution at 10% w/v. In these conditions the coprecipitation of yttrium is of 15–20%. Finally further yttrium precipitation experiments by oxalic acid on the residual solutions, after removing of zinc, show that yttrium could be recovered and calcined to obtain the final product as yttrium oxide. The achieved results allow to propose a CRT recycling process based on leaching of fluorescent powder from cathode ray tube and recovery of yttrium oxide after removing of zinc by precipitation. The final recovery of yttrium is 75–80%.

  10. Towards MQGP

    E-Print Network [OSTI]

    Mansi Dhuria; Aalok Misra

    2015-03-19

    For the Ouyang embedding we calculate the chemical potential mu_C due to a U(1) gauge field on the w.v. of N_f D7-branes wrapped around a 4-cycle in a resolved warped deformed conifold with (M)N (fractional)D3-branes of [1], and show the possible thermodynamical stability up to linear order in the embedding parameter. In the spirit of [2] we obtain the local type IIA mirror using SYZ mirror symmetry near (theta_{1,2},psi)=(,{0,2pi,,4pi}) and then oxidize the same to M theory. We take two limits of this uplift:(i)g_s,g_sN_f,g_sM^2/N,g_s^2M N_f>1 similar to [1] effected by M eps^{-3d/2}, N eps^{-19d},g_s epsn^d,d>0 and eps>1 for finite g_s,M, effected by: g_s eps, M eps^{-3d/2},N eps^{-39d},d>0, epsuplift gives a black M3-brane solution whose near-horizon geometry near theta_{1,2}=0,pi-branches, preserves 1/8 SUSY. We obtain eta/s=1/4pi for the uplift and the diffusion constant for types IIB/IIA backgrounds comes out to be ~1/T, for both limits. The D=11 SUGRA action up to O(R^4,|G_4|^2) is expected to receive dominant contributions near =0,pi due to poles. Introducing a small-angle cut-off c and using the =c,(pi-c)-local uplift the specific heat from the IR-finite part of the action (c-independent) turns out to be positive indicative of the thermodynamical stability of the uplift. An ALD-gravity-type interpretation can be given to the counter-terms for(i). Its verified that the black M3-brane entropy S r_h^3 from M-theoretic thermodynamical methods and the horizon areas of types IIB/IIA/M3-brane solutions.

  11. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 1, Executive summary

    SciTech Connect (OSTI)

    Smith, Kevin; Beeghly, Joel H.

    2000-11-30

    About 30 electric utility units with a combined total of 15,000 MW utilize magnesium enhanced lime flue gas desulfurization (FGD) systems. A disadvantage of this and other inhibited or natural oxidation wet FGD systems is the capital and operating cost associated with landfill disposal of the calcium sulfite based solids. Fixation to stabilize the solids for compaction in a landfill also consumes fly ash that otherwise may be marketable. This Executive Summary describes efforts to dewater the magnesium hydroxide and gypsum slurries and then process the solids into a more user friendly and higher value form. To eliminate the cost of solids disposal in its first generation Thiosorbic® system, the Dravo Lime Company developed the ThioClear® process that utilizes a magnesium based absorber liquor to remove S02 with minimal suspended solids. Magnesium enhanced lime is added to an oxidized bleed stream of thickener overflow (TOF) to produce magnesium hydroxide [Mg(OH)2] and gypsum (CaS04 • 2H20), as by-products. This process was demonstrated at the 3 to 5 MW closed loop FGD system pilot plant at the Miami Fort Station of Cinergy, near Cincinnati, Ohio with the help of OCDO Grant Agreement CDO/D-91-6. A similar process strictly for'recovery and reuse of Mg(OH)2 began operation at the Zimmer Station of Cinergy in late 1994 that can produce 900 pounds of Mg(OH)2 per hour and 2,600 pounds of gypsum per hour. This by-product plant, called the Zimmer Slipstream Magnesium Hydroxide Recovery Project Demonstration, was conducted with the help of OCDO Grant Agreement CDO/D-921-004. Full scale ThioClear® plants began operating in 1997 at the 130 MW Applied Energy Services plant, in Monaca, PA, and in year 2000 at the 1,330 MW Allegheny Energy Pleasants Station at St. Marys, WV.

  12. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2005-06-08

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in VA, WV, KY, OH, and PA mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. During the reporting period we compiled and evaluated all soil properties measured on the study sites. Statistical analysis of the properties was conducted, and first year survival and growth of white pine, hybrid poplars, and native hardwoods was assessed. Hardwood species survived better at all sites than white pine or hybrid poplar. Hardwood survival across treatments was 80%, 85%, and 50% for sites in Virginia, West Virginia, and Ohio, respectively, while white pine survival was 27%, 41%, and 58%, and hybrid poplar survival was 37%, 41%, and 72% for the same sites, respectively. Hybrid poplar height and diameter growth were superior to those of the other species tested, with the height growth of this species reaching 126.6cm after one year in the most intensive treatment at the site in Virginia. To determine carbon in soils on these sites, we developed a cost-effective method for partitioning total soil carbon to pedogenic carbon and geogenic carbon in mine soils. We are in the process of evaluating the accuracy and precision of the proposed carbon partitioning technique for which we are designing an experiment with carefully constructed mine soil samples. In a second effort, as part of a mined land reforestation project for carbon sequestration in southwestern Virginia we implemented the first phase of the carbon monitoring protocol that was recently delivered to DOE.

  13. GLASS FORMULATION TESTING TO INCREASE SULFATE INCORPORATION - Final Report VSL-04R4960-1, Rev 0, 2/28/05, Vitreous State Laboratory, The Catholic University of American, Washington, D.C.

    SciTech Connect (OSTI)

    KRUGER AA; MATLACK KS

    2012-02-07

    About 50 million gallons of high-level mixed waste is currently in storage in underground tanks at The United States Department of Energy's (DOE's) Hanford site in the State of Washington. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will provide DOE's Office of River Protection (ORP) with a means of treating this waste by vitrification for subsequent disposal. The tank waste will be separated into low- and high-activity fractions, which will then be vitrified respectively into Immobilized Low Activity Waste (ILAW) and Immobilized High Level Waste (IHLW) products. The ILAW product will be disposed of in an engineered facility on the Hanford site while the IHLW product will be directed to the national deep geological disposal facility for high-level nuclear waste. The ILAW and IHLW products must meet a variety of requirements with respect to protection of the environment before they can be accepted for disposal. The Office of River Protection is currently examining options to optimize the Low Activity Waste (LAW) facility and the LAW glass waste form. One option under evaluation is to enhance the waste processing rate of the vitrification plant currently under construction. It is likely that the capacity of the LAW vitrification plant can be increased incrementally by implementation of a variety of low-risk, high-probability changes, either separately or in combination. These changes include: (1) Operating at the higher processing rates demonstrated at the LAW Pilot Melter; (2) Increasing the glass pool surface area within the existing external melter envelope; (3) Increasing plant availability; (4) Increasing the glass waste loading; (5) Removing sulfate from the LAW stream; (6) Operating the melter at slightly higher temperature; (7) Installing the third LAW melter into the WTP plant; and (8) Other smaller impact changes. The melter tests described in this report utilized blended feed (glass formers plus waste simulant) prepared by Optima Chemicals according to VSL specifications. Sufficient feed was prepared to produce over nineteen hundred kilograms of glass during melter tests. The nominal reductant concentration (stoichiometric ratio of 0.5 {approx} 1 mole sucrose per 16 mole NOx or 3 mole carbon per 4 mole NOx) was maintained in all the tests by the addition of sugar at VSL. The DM 10 was used to screen the optimized glass formulation with two alternative aluminum sources (kyanite and zeolite) over a wide range of target sulfur concentrations. Subsequently, based on the DM10 results, nine 12- to 34-hour DM100 tests were conducted; six with kyanite as the aluminum additive at glass sulfur concentrations ranging from 0.75 to 1.5 wt.% SO{sub 3}, and the other three with zeolite as the aluminum additive at glass sulfur concentrations ranging from 0.75 to 1.5 wt. % SO{sub 3}. The DM 100-WV melter was used in order to provide a direct comparison with the LAW tests previously conducted on the same melter. Key operating parameters such as glass temperature and production rate were held constant to investigate the sulfur incorporation into the glass and the effects of varying the aluminum additive source. The bubbling rate was adjusted to achieve a production rate of 2000 kg/m{sup 2}/day with a near-complete cold cap (90-100% of melt surface covered with feed). Quantitative measurements of glass production rates, melter operating conditions (temperatures, pressures, power, flows, etc.), and off-gas characteristics (NOx, SO{sub 2}, CO, particulate load and composition, and acid gases) were made for each test. Glass samples taken from the glass pool and the discharge chamber were inspected throughout testing to determine the limit of salt-free operation in the melter.

  14. SMALL-SCALE MELTER TESTING WITH LAW SIMULANTS TO ASSESS THE IMPACT OF HIGHER TEMPERATURE MELTER OPERATIONS - Final Report, VSL-04R49801-1, Rev. 0, 2/13/03, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

    SciTech Connect (OSTI)

    KRUGER AA; MATLACK KS

    2012-02-07

    About 50 million gallons of high-level mixed waste is currently in storage in underground tanks at The United States Department of Energy's (DOE's) Hanford site in the State of Washington. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will provide DOE's Office of River Protection (ORP) with a means of treating this waste by vitrification for subsequent disposal. The tank waste will be separated into low- and high-activity fractions, which will then be vitrified respectively into Immobilized Low Activity Waste (ILAW) and Immobilized High Level Waste (IHLW) products. The ILAW product will be disposed of in an engineered facility on the Hanford site while the IHL W product will be directed to the national deep geological disposal facility for high-level nuclear waste. The ILAW and IHLW products must meet a variety of requirements with respect to protection of the environment before they can be accepted for disposal. The Office of River Protection is currently examining options to optimize the Low Activity Waste (LAW) facility and the LAW glass waste form. One option under evaluation is to enhance the waste processing rate of the vitrification plant currently under construction. It is likely that the capacity of the LAW vitrification plant can be increased incrementally by implementation of a variety of low-risk, high-probability changes, either separately or in combination. These changes include: (1) Operating at the higher processing rates demonstrated at the LAW Pilot Melter; (2) Increasing the glass pool surface area within the existing external melter envelope; (3) Increasing plant availability; (4) Increasing the glass waste loading; (5) Removing sulfate from the LAW stream; (6) Operating the melter at slightly higher temperature; (7) Installing the third LAW melter into the WTP plant; and (8) Other smaller impact changes. The tests describes in this report utilized blended feed (glass formers plus waste simulant) prepared by Optima Chemicals according to VSL specifications. Sufficient feed was prepared to produce nearly two metric tons of glass. Sugar was added (at VSL) to the feed at a ratio of 0.5 (1 mole sucrose per 16 mole NOx). The DM100-WV melter was used in order to provide a direct comparison with the LAW tests previously conducted on the same melter. Two 75-hour melter tests were conducted at two elevated temperatures, 1175 and 1225 C. These tests were preceded by the production of sufficient glass to turn over the melt pool to the target composition. Key operating parameters were held constant to investigate the effects of the operating temperature on processing characteristics, particularly melting rate. At each operating temperature, the feed rate was adjusted to provide a near-complete cold cap 99-100% of melt surface covered with feed. Quantitative measurements of glass production rates, melter operating conditions (temperatures, pressures, power, flows, etc.), and off-gas characteristics (NOx, SO{sub 2}, CO, particulate load and composition, and acid gases) were made for each test.

  15. THE OHIO RIVER VALLEY CO2 STORAGE PROJECT - PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS

    SciTech Connect (OSTI)

    Michael J. Mudd; Howard Johnson; Charles Christopher; T.S. Ramakrishnan, Ph.D.

    2003-08-01

    This report describes the geologic setting for the Deep Saline Reservoirs and Coal Seams in the Ohio River Valley CO{sub 2} Storage Project area. The object of the current project is to site and design a CO{sub 2} injection facility. A location near New Haven, WV, has been selected for the project. To assess geologic storage reservoirs at the site, regional and site-specific geology were reviewed. Geologic reports, deep well logs, hydraulic tests, and geologic maps were reviewed for the area. Only one well within 25 miles of the site penetrates the deeper sedimentary rocks, so there is a large amount of uncertainty regarding the deep geology at the site. New Haven is located along the Ohio River on the border of West Virginia and Ohio. Topography in the area is flat in the river valley but rugged away from the Ohio River floodplain. The Ohio River Valley incises 50-100 ft into bedrock in the area. The area of interest lies within the Appalachian Plateau, on the western edge of the Appalachian Mountain chain. Within the Appalachian Basin, sedimentary rocks are 3,000 to 20,000 ft deep and slope toward the southeast. The rock formations consist of alternating layers of shale, limestone, dolomite, and sandstone overlying dense metamorphic continental shield rocks. The Rome Trough is the major structural feature in the area, and there may be some faults associated with the trough in the Ohio-West Virginia Hinge Zone. The area has a low earthquake hazard with few historical earthquakes. Target injection reservoirs include the basal sandstone/Lower Maryville and the Rose Run Sandstone. The basal sandstone is an informal name for sandstones that overlie metamorphic shield rock. Regional geology indicates that the unit is at a depth of approximately 9,100 ft below the surface at the project site and associated with the Maryville Formation. Overall thickness appears to be 50-100 ft. The Rose Run Sandstone is another potential reservoir. The unit is located approximately 1,100 ft above the basal sandstone and is 100-200 ft thick. The storage capacity estimates for a 20-mile radius from the injection well ranged from 39-78 million tons (Mt) for each formation. Several other oil and gas plays have hydraulic properties conducive for injection, but the formations are generally only 5-50 ft thick in the study area. Overlying the injection reservoirs are thick sequences of dense, impermeable dolomite, limestone, and shale. These layers provide containment above the potential injection reservoirs. In general, it appears that the containment layers are much thicker and extensive than the injection intervals. Other physical parameters for the study area appear to be typical for the region. Anticipated pressures at maximum depths are approximately 4,100 psi based on a 0.45 psi/ft pressure gradient. Temperatures are likely to be 150 F. Groundwater flow is slow and complex in deep formations. Regional flow directions appear to be toward the west-northwest at less than 1 ft per year within the basal sandstone. Vertical gradients are downward in the study area. A review of brine geochemistry indicates that formation fluids have high salinity and dissolved solids. Total dissolved solids ranges from 200,000-325,000 mg/L in the deep reservoirs. Brine chemistry is similar throughout the different formations, suggesting extensive mixing in a mature basin. Unconsolidated sediments in the Ohio River Valley are the primary source of drinking water in the study area.

  16. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Product, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    SciTech Connect (OSTI)

    Burger, James A

    2006-09-30

    Concentrations of CO{sub 2} in the Earth’s atmosphere have increased dramatically in the past 100 years due to deforestation, land use change, and fossil fuel combustion. These humancaused, higher levels of CO{sub 2} may enhance the atmospheric greenhouse effect and may contribute to climate change. Many reclaimed coal-surface mine areas in the eastern U.S. are not in productive use. Reforestation of these lands could provide societal benefits, including sequestration of atmospheric carbon. The goal of this project was to determine the biological and economic feasibility of restoring high-quality forests on the tens of thousands of hectares of mined land and to measure carbon sequestration and wood production benefits that would be achieved from large-scale application of forest restoration procedures. We developed a mine soil quality model that can be used to estimate the suitability of selected mined sites for carbon sequestration projects. Across the mine soil quality gradient, we tested survival and growth performance of three species assemblages under three levels of silvicultural. Hardwood species survived well in WV and VA, and survived better than the other species used in OH, while white pine had the poorest survival of all species at all sites. Survival was particularly good for the site-specific hardwoods planted at each site. Weed control plus tillage may be the optimum treatment for hardwoods and white pine, as any increased growth resulting from fertilization may not offset the decreased survival that accompanied fertilization. Grassland to forest conversion costs may be a major contributor to the lack of reforestation of previously reclaimed mine lands in the Appalachian coal-mining region. Otherwise profitable forestry opportunities may be precluded by these conversion costs, which for many combinations of factors (site class, forest type, timber prices, regeneration intensity, and interest rate) result in negative land expectation values. Improved technology and/or knowledge of reforestation practices in these situations may provide opportunities to reduce the costs of converting many of these sites as research continues into these practices. It also appears that in many cases substantial payments, non-revenue values, or carbon values are required to reach “profitability” under the present circumstances. It is unclear when, or in what form, markets will develop to support any of these add-on values to supplement commercial forestry revenues. However, as these markets do develop, they will only enhance the viability of forestry on reclaimed mined lands, although as we demonstrate in our analysis of carbon payments, the form of the revenue source may itself influence management, potentially mitigating some of the benefits of reforestation. For a representative mined-land resource base, reforestation of mined lands with mixed pine-hardwood species would result in an average estimated C accumulation in forms that can be harvested for use as wood products or are likely to remain in the soil C pool at ~250 Mg C ha{sup -1} over a 60 year period following reforestation. The “additionality” of this potential C sequestration was estimated considering data in scientific literature that defines C accumulation in mined-land grasslands over the long term. Given assumptions detailed in the text, these lands have the potential to sequester ~180 Mg C ha{sup -1}, a total of 53.5 x 10{sup 6} Mg C, over 60 years, an average of ~900,000 Mg C / yr, an amount equivalent to about 0.04% of projected US C emissions at the midpoint of a 60-year period (circa 2040) following assumed reforestation. Although potential sequestration quantities are not great relative to potential national needs should an energy-related C emissions offset requirement be developed at some future date, these lands are available and unused for other economically valued purposes and many possess soil and site properties that are well-suited to reforestation. Should such reforestation occur, it would also produce ancillary benefits by providing env