Sample records for monticello utah permeable

  1. Field Projects: Monticello, Utah

    Broader source: Energy.gov [DOE]

    A permeable reactive barrier (PRB) of zero-valent iron is helping to clean up groundwater at a former uranium and vanadium ore processing mill at Monticello, Utah. LM managed remediation of...

  2. Completion of the Five-Year Reviews for the Monticello, Utah...

    Energy Savers [EERE]

    Contaminated Properties Site (Monticello Vicinity Properties) and the Monticello Mill Tailings Site Completion of the Five-Year Reviews for the Monticello, Utah, Radioactively...

  3. Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil EnergyFullGO 2009 AnnualDepartment ofDepartment

  4. Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site

    SciTech Connect (OSTI)

    Waugh, W.J.; Kastens, M.K.; Sheader, L.R.L. [Environmental Sciences Laboratory, Grand Junction, CO (United States); Benson, C.H. [University of Wisconsin, Madison, WI (United States); Albright, W.H. [Desert Research Institute, Reno, NV (United States); Mushovic, P.S. [U.S. Environmental Protection Agency, Denver, CO (United States)

    2008-07-01T23:59:59.000Z

    The U.S. Department of Energy Office of Legacy Management (DOE) and the U.S. Environmental Protection Agency (EPA) collaborated on the design and monitoring of an alternative cover for the Monticello uranium mill tailings disposal cell, a Superfund site in southeastern Utah. Ground-water recharge is naturally limited at sites like Monticello where thick, fine-textured soils store precipitation until evaporation and plant transpiration seasonally return it to the atmosphere. The cover at Monticello uses local soils and a native plant community to mimic the natural soil water balance. The cover is fundamentally an evapotranspiration (ET) design with a capillary barrier. A 3-hectare drainage lysimeter was embedded in the cover during construction of the disposal cell in 2000. The lysimeter consists of a geo-membrane liner below the capillary barrier that directs percolation water to a monitoring system. Soil water storage is determined by integration of point water content measurements. Meteorological parameters are measured nearby. Plant cover, shrub density, and leaf area index (LAI) are monitored annually. The cover performed well over the 7-year monitoring period (2000-2007). The cumulative percolation was 4.2 mm (0.6 mm yr{sup -1}), satisfying an EPA goal of an average percolation of <3.0 mm yr{sup -1}. Almost all percolation can be attributed to the exceptionally wet winter and spring of 2004-2005 when soil water content slightly exceeded the water storage capacity of the cover. The diversity, percent cover, and LAI of vegetation increased over the monitoring period, although the density of native shrubs that extract water from deeper in the cover has remained less than revegetation targets. DOE and EPA are applying the monitoring results to plan for long-term surveillance and maintenance and to evaluate alternative cover designs for other waste disposal sites. (authors)

  5. Comparison of risk for pre- and post-remediation of uranium mill tailings from vicinity properties in Monticello, Utah

    SciTech Connect (OSTI)

    Espegren, M.L.; Pierce, G.A.; Halford, D.K. [Oak Ridge National Laboratory, TN (United States)

    1996-04-01T23:59:59.000Z

    Pre- and post-remedial action dose rates were calculated on 101 Monticello, Utah, properties included in the Monticello Vicinity Property Remedial Action Project. Dose rates were calculated using the RESRAD computer code, which indicated that 98% of the effective dose equivalent was contributed by external gamma radiation and radon emanation. Radium concentrations in pCig{sup {minus}1} were averaged for pre- and post-remedial action measurements: point sources were not included in the averages. The volume of the deposit was also used in the dose calculation. In all cases the dose was reduced, and at 77 properties the dose was reduced to 0.30 mSv y{sup {minus}1} (Department of Energy ALARA recommendation). A paired t-test showed a significant reduction (p < 0.05) between the pre- and post-remedial action dose rates. The average cost of remedial action, number of persons per household, number of properties remediated, and the reduction of cancer mortalities through remediation resulted in an approximate cost of $11,000,000 per life saved by remediation of mill tailings. 13 refs., 2 tabs.

  6. Superfund record of decision (EPA Region 8): Monticello Mill Tailings (USDOE), Operable Unit 3, Monticello, UT, September 29, 1998

    SciTech Connect (OSTI)

    NONE

    1998-11-01T23:59:59.000Z

    This decision document presents the selected interim remedial action for Operable Unit (OU) 3 surface water and ground water at the Monticello Mill Tailings Site (MMTS) in San Juan County, Utah. The selected alternative for the interim remedial action for OU 3 surface water runoff, continuation of ongoing monitoring efforts, and evaluation of a permeable reactive treatment (PeRT) wall through the use of a pilot-scale treatability study. If monitoring results indicate that the interim remedial action is not achieving the objectives of preventing exposure to and reducing contaminants in contaminated ground water, other alternatives will be evaluated from the OU 3 feasibility study.

  7. Monticello, Utah, Disposal and Processing Sites

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 August 2008 Office7-TAC U.S.4 Through4 Fact

  8. Monticello Mill Tailings Site environmental report for calendar year 1992

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    This report contains information pertaining to environmental activities conducted during calendar year 1992 at and near the inactive uranium millsite in Monticello, Utah. Environmental activities conducted at the Monticello Mill Tailings Site (MMTS) during 1992 included those associated with remedial action and compliance monitoring. Compliance monitoring consisted of both radiological and nonradiological monitoring of air, surface water, and ground water. Radiological and nonradiological air monitoring at the MMTS included measurements of atmospheric radon, particulate matter, and gamma radiation. Air particulate monitoring for radiological and nonradiological constituents was conducted at one location on and two locations off the millsite with high-volume particulate samplers. The maximum airborne concentrations of radium-226, thorium-230, and total uranium at all locations were several orders of magnitude below the regulatory limits specified by DOE Order 5400.5. Surface water monitoring included water quality measurements within Montezuma Creek. During 1992, maximum levels of selenium; gross alpha, gross beta, total dissolved solids, and iron exceeded their respective state standards in one or more samples collected from upstream, on-site, and downstream locations. Ground-water monitoring was conducted for two aquifers underlying the millsite. The shallow aquifer is contaminated by leached products of uranium mill tailings. During 1992, Uranium Mill Tailings Radiation Control Act and state of Utah ground-water standards for arsenic, barium, nitrate, chromium, lead, selenium, molybdenum, uranium-234 and -238, gross alpha particle activity, and radium-226 and -228 were exceeded in one or more alluvial wells. This well will continue to be sampled to determine if the presence of these constituents was anomalous or if the measurements represented contamination in the aquifer.

  9. Nonassociated gas resources in low-permeability sandstone reservoirs, lower tertiary Wasatch Formation, and upper Cretaceous Mesaverde Group, Uinta Basin, Utah

    SciTech Connect (OSTI)

    Fouch, T.D.; Schmoker, J.W.; Boone, L.E.; Wandrey, C.J.; Crovelli, R.A.; Butler, W.C.

    1994-08-01T23:59:59.000Z

    The US Geological Survey recognizes six major plays for nonassociated gas in Tertiary and Upper Cretaceous low-permeability strata of the Uinta Basin, Utah. For purposes of this study, plays without gas/water contacts are separated from those with such contacts. Continuous-saturation accumulations are essentially single fields, so large in areal extent and so heterogeneous that their development cannot be properly modeled as field growth. Fields developed in gas-saturated plays are not restricted to structural or stratigraphic traps and they are developed in any structural position where permeability conduits occur such as that provided by natural open fractures. Other fields in the basin have gas/water contacts and the rocks are water-bearing away from structural culmination`s. The plays can be assigned to two groups. Group 1 plays are those in which gas/water contacts are rare to absent and the strata are gas saturated. Group 2 plays contain reservoirs in which both gas-saturated strata and rocks with gas/water contacts seem to coexist. Most units in the basin that have received a Federal Energy Regulatory Commission (FERC) designation as tight are in the main producing areas and are within Group 1 plays. Some rocks in Group 2 plays may not meet FERC requirements as tight reservoirs. However, we suggest that in the Uinta Basin that the extent of low-permeability rocks, and therefore resources, extends well beyond the limits of current FERC designated boundaries for tight reservoirs. Potential additions to gas reserves from gas-saturated tight reservoirs in the Tertiary Wasatch Formation and Cretaceous Mesaverde Group in the Uinta Basin, Utah is 10 TCF. If the potential additions to reserves in strata in which both gas-saturated and free water-bearing rocks exist are added to those of Group 1 plays, the volume is 13 TCF.

  10. Changes in Vegetation at the Monticello, Utah, Disposal Site | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding RemovalCSSDepartment of Energy Challenges andof Energy

  11. Study of Factors Affecting Shrub Establishment on the Monticello, Utah,

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Site EnvironmentalEnergySafelyVirtualStephanieDepartment ofImprove System Reliability

  12. Variation in Hydraulic Conductivity Over Time at the Monticello Permeable

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment of Energy Photo of a vaporDepartment

  13. Hydraulic Conductivity of the Monticello Permeable Reactive Barrier

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOral Testimony of

  14. Monticello Steam Electric Station, Mount Pleasant, Texas

    SciTech Connect (OSTI)

    Javetski, J. [TXU Power (United States)

    2006-07-15T23:59:59.000Z

    Why does Monticello, a 30 year old plant, deserve recognition as one of Power's Top Plants of 2006? Because TXU has been blending Powder River Basin (PRB) coal with local lignite at the plant for the past decade, and steady reductions in air-pollutant emission rates have been the result. That positive experience has made the company confident enough to propose building nearly 9,100 MW of new coal or lignite-fired capacity in Texas by 2010 at a cost of $10 billion. The article records some of the lessons that TXU has learned about handling PRB coal safely. 4 figs., 3 tabs.

  15. Monticello, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County,Monticello, Indiana: Energy Resources Jump to:

  16. Monticello, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County,Monticello, Indiana: Energy Resources Jump

  17. Superfund Record of Decision (EPA Region 8): Monticello Mill Tailings site, San Juan County, UT. (First remedial action), August 1990

    SciTech Connect (OSTI)

    Not Available

    1990-08-22T23:59:59.000Z

    The 300-acre Monticello Mill Tailings site is comprised of a 78-acre inactive uranium and vanadium milling operation and affected peripheral properties in Monticello, San Juan County, Utah. Surrounding land use is rural residential and agricultural. Milling of ore began in 1942, and a vanadium/uranium sludge product was produced onsite from 1943 to 1944. The mill was permanently closed in 1960, and the tailings piles were covered and vegetated. In 1972, 15,000 cubic yards of contaminated soil were excavated and disposed of on the onsite tailings piles. Site investigations from 1989 to 1990 identified the presence of onsite and offsite radioactively-contaminated soil and ground water, and elevated concentrations of metals within the tailings piles. The Record of Decision (ROD)addresses remediation of two Operable Units (OUs): the 78-acre Millsite area (OU1), and the 240-acres of peripheral properties (OU2). The primary contaminants of concern affecting the soil and debris are metals including arsenic, chromium, and lead; and radioactive materials including radium-226 and radon.

  18. DOE - Office of Legacy Management -- Monticello

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNew MexicoUtah Mexican Hat, Utah,LMUtah

  19. Morgan County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County,Monticello,Oklahoma:In3661344°,04285°,Utah:

  20. Automated Impedance Tomography for Monitoring Permeable Reactive Barrier Health

    SciTech Connect (OSTI)

    LaBrecque, D J; Adkins, P L

    2009-07-02T23:59:59.000Z

    The objective of this research was the development of an autonomous, automated electrical geophysical monitoring system which allows for near real-time assessment of Permeable Reactive Barrier (PRB) health and aging and which provides this assessment through a web-based interface to site operators, owners and regulatory agencies. Field studies were performed at four existing PRB sites; (1) a uranium tailing site near Monticello, Utah, (2) the DOE complex at Kansas City, Missouri, (3) the Denver Federal Center in Denver, Colorado and (4) the Asarco Smelter site in East Helena, Montana. Preliminary surface data over the PRB sites were collected (in December, 2005). After the initial round of data collection, the plan was modified to include studies inside the barriers in order to better understand barrier aging processes. In September 2006 an autonomous data collection system was designed and installed at the EPA PRB and the electrode setups in the barrier were revised and three new vertical electrode arrays were placed in dedicated boreholes which were in direct contact with the PRB material. Final data were collected at the Kansas City, Denver and Monticello, Utah PRB sites in the fall of 2007. At the Asarco Smelter site in East Helena, Montana, nearly continuous data was collected by the autonomous monitoring system from June 2006 to November 2007. This data provided us with a picture of the evolution of the barrier, enabling us to examine barrier changes more precisely and determine whether these changes are due to installation issues or are normal barrier aging. Two rounds of laboratory experiments were carried out during the project. We conducted column experiments to investigate the effect of mineralogy on the electrical signatures resulting from iron corrosion and mineral precipitation in zero valent iron (ZVI) columns. In the second round of laboratory experiments we observed the electrical response from simulation of actual field PRBs at two sites: the Kansas City barrier and the East Helena barrier. As these sites are also used for our field monitoring efforts, this allowed for a comparison between field and laboratory. In column studies with high concentrations of calcium and carbonate/bicarbonate, we observed that the increase of electrical resistivity and decrease of polarization magnitude is significant and is mainly controlled by the precipitation of calcium carbonates. In general, the electrical properties of all of the barriers studied follow a pattern. New barriers are fairly resistive with in-situ conductivity only a few times background (outside the barrier) values. Older barriers get increasingly conductive, with failed barriers showing values of over 100 S/m. The induced polarization response is more complicated. Chargeability values increase over time for young barriers, are largest for healthy barriers in the middle of their lifespan, and decrease as the barrier ages These results suggest that normalized IP appears promising as a measure of barrier age.

  1. Implementation of a cut flower and seed production garden at Monticello

    E-Print Network [OSTI]

    Felderhoff, Craig Anton

    2001-01-01T23:59:59.000Z

    The restored gardens of Monticello fulfill multiple roles, including the enhancement of the architectural and historical aspects of Thomas Jefferson's estate, a botanical garden, a site for historic plant preservation and a study in historic garden...

  2. Completion of the Five-Year Reviews for the Monticello, Utah, Radioactively

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville EnergyDepartment.Attachment FY2011-40 Chapter

  3. Completion of the Five-Year Reviews for the Monticello, Utah, Radioactively

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. DepartmentEnergy This partAs theFebruary 24,of theIssueAY-12

  4. Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T ADRAFT ENVIRONMENTAL

  5. This fact sheet describes wetlands in and around Monticello, Utah, and what the

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O'1repository design activities

  6. U.S. Department of Energy at Grand Junction 2003 Annual Inspection⎯Monticello, Utah

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O'1repositoryShiprock,at Grand

  7. University of Utah Tutoring Services

    E-Print Network [OSTI]

    Tipple, Brett

    Advisor in the ESS department. classes are arranged with the ESS department. Rm 200 (HPER North Bldg) rachel.bonnett@hsc.utah.edu Instructor through our peer www.health.utah.edu/ess/ 801-587-3374 tutoring class ESS 4921 if needed. Wendy McKenney, Academic Advisor wendy.mckenney@hsc.utah.edu 801-581-7586 #12

  8. VEGETATION COVER ANALYSIS OF HAZARDOUS WASTE SITES IN UTAH AND ARIZONA USING HYPERSPECTRAL REMOTE SENSING

    SciTech Connect (OSTI)

    Serrato, M.; Jungho, I.; Jensen, J.; Jensen, R.; Gladden, J.; Waugh, J.

    2012-01-17T23:59:59.000Z

    Remote sensing technology can provide a cost-effective tool for monitoring hazardous waste sites. This study investigated the usability of HyMap airborne hyperspectral remote sensing data (126 bands at 2.3 x 2.3 m spatial resolution) to characterize the vegetation at U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. The specific objectives of this study were to: (1) estimate leaf-area-index (LAI) of the vegetation using three different methods (i.e., vegetation indices, red-edge positioning (REP), and machine learning regression trees), and (2) map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF)-derived metrics and vegetation indices. Regression trees resulted in the best calibration performance of LAI estimation (R{sup 2} > 0.80). The use of REPs failed to accurately predict LAI (R{sup 2} < 0.2). The use of the MTMF-derived metrics (matched filter scores and infeasibility) and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI) and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of 1 higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches (< 1m) found on the sites.

  9. Type B Accident Investigation Board Report on the November 1...

    Office of Environmental Management (EM)

    B Accident Investigation Board Report on the November 1, 1999, Construction Injury at the Monticello Mill Tailings Remedial Action Site, Monticello, Utah Type B Accident...

  10. THE UNIVERSITY OF UTAH OFFICE OF SUSTAINABILITY

    E-Print Network [OSTI]

    Feschotte, Cedric

    THE UNIVERSITY OF UTAH OFFICE OF SUSTAINABILITY THE UNIVERSITY OF UTAH OFFICE OF SUSTAINABILITY THE UNIVERSITY OF UTAH OFFICE OF SUSTAINABILITY GREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERFall 2010 - Spring 2011 GREENERGREENERGREENERGREENERGREENERGREENER Working for a Sustainable Campus

  11. Utah Solar Outlook March 2010

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of Utah's solar market, policy initiatives, and progress to date on the Solar America Cities Project: Solar Salt Lake.

  12. MONTICELLO PROJECTS

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^ IApril 1 - June 30, .. FFA

  13. MONTICELLO PROJECTS

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^ IApril 1 - June 30, ..

  14. MONTICELLO PROJECTS

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^ IApril 1 - June 30, ..1

  15. MONTICELLO PROJECTS

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^ IApril 1 - June 30, ..131,

  16. MONTICELLO PROJECTS

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^ IApril 1 - June 30,

  17. MONTICELLO PROJECTS

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^ IApril 1 - June 30,31,

  18. MONTICELLO PROJECTS

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^ IApril 1 - June

  19. MONTICELLO PROJECTS

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^ IApril 1 - JuneJuly

  20. MONTICELLO PROJECTS

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^ IApril 1 - JuneJulyOctober

  1. MONTICELLO PROJECTS

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^ IApril 1 -

  2. COMMERCIALIZATIONOFFICE THE UNIVERSITY OF UTAH

    E-Print Network [OSTI]

    Funding Programs TECHNOLOGY COMMERCIALIZATIONOFFICE THE UNIVERSITY OF UTAH #12;Funding Programs Fueling research and moving ideas forward The University of Utah can help you recieve funding to take your idea to the next level. Funding for small prototypes, supplemental research and new business

  3. Utah_j_keeler

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict SolarJohn Keeler, Manti Site - Utah

  4. Utah Heavy Oil Program

    SciTech Connect (OSTI)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20T23:59:59.000Z

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  5. Annotated geothermal bibliography of Utah

    SciTech Connect (OSTI)

    Budding, K.E.; Bugden, M.H. (comps.)

    1986-01-01T23:59:59.000Z

    The bibliography includes all the Utah geothermal references through 1984. Some 1985 citations are listed. Geological, geophysical, and tectonic maps and reports are included if they cover a high-temperature thermal area. The references are indexed geographically either under (1) United States (national studies), (2) regional - western United States or physiographic province, (3) Utah - statewide and regional, or (4) county. Reports concerning a particular hot spring or thermal area are listed under both the thermal area and the county names.

  6. LOCAL IMPACTS OF MERCURY EMISSIONS FROM THE MONTICELLO COAL FIRED POWER PLANT.

    SciTech Connect (OSTI)

    SULLIVAN, T.M.; ADAMS, J.; MILIAN, L.; SUBRAMANIAN, S.; FEAGIN, L.; WILLIAMS, J.; BOYD, A.

    2006-10-31T23:59:59.000Z

    The Clean Air Interstate Rule (CAIR) and the Clean Air Mercury Rule (CAMR) as currently proposed by the U.S. Environmental Protection Agency (EPA) when fully implemented will lead to reduction in mercury emissions from coal-fired power plants by 70 percent to fifteen tons per year by 2018. The EPA estimates that mercury deposition would be reduced 8 percent on average in the Eastern United States. The CAMR permits cap-and-trade approach that requires the nationwide emissions to meet the prescribed level, but do not require controls on each individual power plant. This has led to concerns that there may be hot-spots of mercury contamination near power plants. Partially because of this concern, many states including Pennsylvania have implemented, or are considering, state regulations that are stricter on mercury emissions than those in the CAMR. This study examined the possibility that coal-fired power plants act as local sources leading to mercury ''hot spots'', using two types of evidence. First, the world-wide literature was searched for reports of deposition around mercury sources, including coal-fired power plants. Second, soil samples from around two mid-sized U.S. coal-fired power plants were collected and analyzed for evidence of ''hot spots'' and for correlation with model predictions of deposition. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (A) local soil concentration Hg increments of 30%-60%, (B) sediment increments of 18-30%, (C) wet deposition increments of 11-12%, and (D) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg(0) in power plant plumes and the role of water chemistry in the relationship between Hg deposition and fish content. Soil and vegetation sampling programs were performed around the Monticello coal fired power plant. The objectives were to determine if local mercury hot spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with model predictions. The study found the following: (1) There was no correlation between modeled mercury deposition and either soil concentrations or vegetation concentrations. At the Monticello plant, excess soil Hg was associated with soil characteristics with higher values near the lake. Vegetation concentration showed some correlation with soil concentrations having higher mercury in vegetation when the soil mercury. (2) Based on computer modeling, Hg deposition was primarily RGM with much lower deposition from elemental mercury. The total deposition within 50 Km of the plant was predicted to be 4.2% of the total emitted. In the deposition, RGM is responsible for 98.7% of the total deposition, elemental mercury accounts for 1.1% and particulate mercury accounts for 0.2%. Less than 1% of the elemental mercury emitted was predicted to deposit within 50 km.

  7. Utah School Children Help Utah Out, Turn off the Spout!

    Office of Energy Efficiency and Renewable Energy (EERE)

    Utah is working to ensure the resiliency of its future water and energy systems with funding from the Energy Departments State Energy Program. In fact, the state developed its own Water Energy in Action educational program in conjunction with the National Energy Foundation to educate K-12 students and teachers about the many uses of water.

  8. Utah Economic and Business Review

    E-Print Network [OSTI]

    unknown authors

    The jump in oil prices over the past several years and concurrent rise in the price of gasoline have refocused attention on oil shale resources in Colorado, Utah, and Wyoming. Past exploration has indicated that oil shale deposits in these three states contain 1.5 trillion barrels of oil

  9. Major Oil Plays In Utah And Vicinity

    SciTech Connect (OSTI)

    Thomas Chidsey

    2007-12-31T23:59:59.000Z

    Utah oil fields have produced over 1.33 billion barrels (211 million m{sup 3}) of oil and hold 256 million barrels (40.7 million m{sup 3}) of proved reserves. The 13.7 million barrels (2.2 million m3) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. However, in late 2005 oil production increased, due, in part, to the discovery of Covenant field in the central Utah Navajo Sandstone thrust belt ('Hingeline') play, and to increased development drilling in the central Uinta Basin, reversing the decline that began in the mid-1980s. The Utah Geological Survey believes providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming can continue this new upward production trend. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios include descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary recovery techniques for each play. The most prolific oil reservoir in the Utah/Wyoming thrust belt province is the eolian, Jurassic Nugget Sandstone, having produced over 288 million barrels (46 million m{sup 3}) of oil and 5.1 trillion cubic feet (145 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the depositionally heterogeneous Nugget is also extensively fractured. Hydrocarbons in Nugget reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and gypsiferous beds in the Jurassic Twin Creek Limestone, or a low-permeability zone at the top of the Nugget. The Nugget Sandstone thrust belt play is divided into three subplays: (1) Absaroka thrust - Mesozoic-cored shallow structures, (2) Absaroka thrust - Mesozoic-cored deep structures, and (3) Absaroka thrust - Paleozoic-cored shallow structures. Both of the Mesozoic-cored structures subplays represent a linear, hanging wall, ramp anticline parallel to the leading edge of the Absaroka thrust. Fields in the shallow Mesozoic subplay produce crude oil and associated gas; fields in the deep subplay produce retrograde condensate. The Paleozoic-cored structures subplay is located immediately west of the Mesozoic-cored structures subplays. It represents a very continuous and linear, hanging wall, ramp anticline where the Nugget is truncated against a thrust splay. Fields in this subplay produce nonassociated gas and condensate. Traps in these subplays consist of long, narrow, doubly plunging anticlines. Prospective drilling targets are delineated using high-quality, two-dimensional and three-dimensional seismic data, forward modeling/visualization tools, and other state-of-the-art techniques. Future Nugget Sandstone exploration could focus on more structurally complex and subtle, thrust-related traps. Nugget structures may be present beneath the leading edge of the Hogsback thrust and North Flank fault of the Uinta uplift. The Jurassic Twin Creek Limestone play in the Utah/Wyoming thrust belt province has produced over 15 million barrels (2.4 million m{sup 3}) of oil and 93 billion cubic feet (2.6 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the low-porosity Twin Creek is extensively fractured. Hydrocarbons in Twin Creek reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and clastic beds, and non-fractured units within the Twin Creek. The Twin Creek Limestone thrust belt play is divided into two subplays: (1) Absaroka thrust-Mesozoic-cored structures and (2) A

  10. Local Option- Industrial Facilities and Development Bonds (Utah)

    Broader source: Energy.gov [DOE]

    Under the Utah Industrial Facilities and Development Act, counties, municipalities, and state universities in Utah may issue Industrial Revenue Bonds (IRBs) or Industrial Development Bonds (IDBs)...

  11. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    tiarravt043erickson2010p.pdf More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation...

  12. The University of Utah Police Department Internship

    E-Print Network [OSTI]

    Simons, Jack

    The University of Utah Police Department Internship The University we would like to meet with you. Internship description and Qualifications: Excellent communication

  13. Utah Science, Technology, and Research (USTAR)

    E-Print Network [OSTI]

    Tipple, Brett

    companies in billion-dollar emerging industries and secure Utah's economic future. More than 180 Utah's Economy New Economy Strategies Endorsement Letter Summary Proposal Planning Process Summary Contributors to the USTAR Study USTAR Economic Development Initiative Planning Proposal Figure I. USTAR Economic Development

  14. Utah Natural Gas Processed in Utah (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan FebFeet)ReservesYearUtah (Million Cubic

  15. Alternative Fuels Data Center: Utah Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    production facilities in Utah, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  16. Utah Commission on Aging June 6, 2007

    E-Print Network [OSTI]

    Tipple, Brett

    Institutions Norma Matheson Chair Anne Peterson University of Utah Mayor JoAnn Seghini Midvale City Sara to the Commission for consideration. Aging SMART: Denise Brooks distributed Aging SMART Sourcebook. Website is up

  17. Utah

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalThe

  18. An Examination of Avoided Costs in Utah

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2005-01-07T23:59:59.000Z

    The Utah Wind Working Group (UWWG) believes there are currently opportunities to encourage wind power development in the state by seeking changes to the avoided cost tariff paid to qualifying facilities (QFs). These opportunities have arisen as a result of a recent renegotiation of Pacificorp's Schedule 37 tariff for wind QFs under 3 MW, as well as an ongoing examination of Pacificorp's Schedule 38 tariff for wind QFs larger than 3 MW. It is expected that decisions made regarding Schedule 38 will also impact Schedule 37. Through the Laboratory Technical Assistance Program (Lab TAP), the UWWG has requested (through the Utah Energy Office) that LBNL provide technical assistance in determining whether an alternative method of calculating avoided costs that has been officially adopted in Idaho would lead to higher QF payments in Utah, and to discuss the pros and cons of this method relative to the methodology recently adopted under Schedule 37 in Utah. To accomplish this scope of work, I begin by summarizing the current method of calculating avoided costs in Utah (per Schedule 37) and Idaho (the ''surrogate avoided resource'' or SAR method). I then compare the two methods both qualitatively and quantitatively. Next I present Pacificorp's four main objections to the use of the SAR method, and discuss the reasonableness of each objection. Finally, I conclude with a few other potential considerations that might add value to wind QFs in Utah.

  19. >3healthsciences.utah.edu/innovation University of Utah Health Sciences @utahinnovationinnovation 2012

    E-Print Network [OSTI]

    Feschotte, Cedric

    block, a profound physician shortage is looming, and the political discussion around health care reform.utah.edu/innovationUniversity of Utah Health Sciences innovation 2012 Clearly, times are tough for health care in the U.S. every year, we spend trillions of dollars on health care, exponentially more than what other countries spend

  20. Estimating the Economic Contributions Utah Science Technology and Research

    E-Print Network [OSTI]

    Tipple, Brett

    Estimating the Economic Contributions of the Utah Science Technology and Research Initiative (USTAR Stambro Senior Research Economist Bureau of Economic and Business Research David Eccles School of Business University of Utah February 2012 © 2012 Bureau of Economic and Business Research, University of Utah #12

  1. Fiscal Policy and Utah's Oil and Gas Industry

    E-Print Network [OSTI]

    Fiscal Policy and Utah's Oil and Gas Industry Michael T. Hogue, Research Analyst Introduction for oil and gas extraction firms. A recent review by the Government Accountability Office indicates features of Utah's oil and gas industry. The Oil and Gas Industry in Utah Reserves and Production Oil

  2. Permeable Pavements, Green Roofs, and Cisterns

    E-Print Network [OSTI]

    Hunt, William F.

    Permeable Pavements, Green Roofs, and Cisterns Stormwater Treatment Practices for Low site planning and engineer- pavements, green roofs, and cisterns, are ing to reduce or prevent cooperating. #12;Permeable Pavements What are they? Permeable pavements provide alternatives to standard

  3. Measurement and Modeling of Sorption-Induced Strain and Permeability Changes in Coal

    SciTech Connect (OSTI)

    Eric P. Robertson

    2005-10-01T23:59:59.000Z

    Strain caused by the adsorption of gases was measured in samples of subbituminous coal from the Powder River basin of Wyoming, U.S.A., and high-volatile bituminous coal from the Uinta-Piceance basin of Utah, U.S.A. using a newly developed strain measurement apparatus. The apparatus can be used to measure strain on multiple small coal samples based on the optical detection of the longitudinal strain. The swelling and shrinkage (strain) in the coal samples resulting from the adsorption of carbon dioxide, nitrogen, methane, helium, and a mixture of gases was measured. Sorption-induced strain processes were shown to be reversible and easily modeled with a Langmuir-type equation. Extended Langmuir theory was applied to satisfactorily model strain caused by the adsorption of gas mixtures using the pure gas Langmuir strain constants. The amount of time required to obtain accurate strain data was greatly reduced compared to other strain measurement methods. Sorption-induced changes in permeability were also measured as a function of pres-sure. Cleat compressibility was found to be variable, not constant. Calculated variable cleat-compressibility constants were found to correlate well with previously published data for other coals. During permeability tests, sorption-induced matrix shrinkage was clearly demonstrated by higher permeability values at lower pore pressures while holding overburden pressure constant. Measured permeability data were modeled using three dif-ferent permeability models from the open literature that take into account sorption-induced matrix strain. All three models poorly matched the measured permeability data because they overestimated the impact of measured sorption-induced strain on permeabil-ity. However, by applying an experimentally derived expression to the measured strain data that accounts for the confining overburden pressure, pore pressure, coal type, and gas type, the permeability models were significantly improved.

  4. Utahs 2012 Legislature Holds Its Course with What Foresight?

    E-Print Network [OSTI]

    Huefner, Robert Paul

    2013-01-01T23:59:59.000Z

    Finance, Summer 32(2):124. Montero, David (2012a) It wasLake Tribune, February 9. Montero, David (2012b) Utah Seeksfor Legislature (Montero 2012a). But legislators denied

  5. Gas permeability of carbon aerogels

    SciTech Connect (OSTI)

    Kong, F.; LeMay, J.D.; Hulsey, S.S.; Alviso, C.T.; Pekala, R.W. (Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States))

    1993-12-01T23:59:59.000Z

    Carbon aerogels are synthesized via the aqueous polycondensation of resorcinol with formaldehyde, followed by supercritical drying and subsequent pyrolysis at 1050 [degree]C. As a result of their interconnected porosity, ultrafine cell/pore size, and high surface area, carbon aerogels have many potential applications such as supercapacitors, battery electrodes, catalyst supports, and gas filters. The performance of carbon aerogels in the latter two applications depends on the permeability or gas flow conductance in these materials. By measuring the pressure differential across a thin specimen and the nitrogen gas flow rate in the viscous regime, the permeability of carbon aerogels was calculated from equations based upon Darcy's law. Our measurements show that carbon aerogels have permeabilities on the order of 10[sup [minus]12] to 10[sup [minus]10] cm[sup 2] over the density range from 0.05--0.44 g/cm[sup 3]. Like many other aerogel properties, the permeability of carbon aerogels follows a power law relationship with density, reflecting differences in the average mesopore size. Comparing the results from this study with the permeability of silica aerogels reported by other workers, we found that the permeability of aerogels is governed by a simple universal flow equation. This paper discusses the relationship between permeability, pore size, and density in carbon aerogels.

  6. Relative Permeability of Fractured Rock

    SciTech Connect (OSTI)

    Mark D. Habana

    2002-06-30T23:59:59.000Z

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  7. Bibliography of Utah radioactive occurrences. Volume II

    SciTech Connect (OSTI)

    Doelling, H.H. (comp.)

    1983-07-01T23:59:59.000Z

    The references in this bibliography were assembled by reviewing published bibliographies of Utah geology, unpublished reports of the US Geological Survey and the Department of Energy, and various university theses. Each of the listings is cross-referenced by location and subject matter. This report is published in two volumes.

  8. University of Utah PETTY CASH FUND

    E-Print Network [OSTI]

    University of Utah PETTY CASH FUND REQUEST/CHANGE FORM INSTRUCTIONS: To request a creation of a NEW-21 of the University Policy and Procedures Manual, and hereby approve issuance of a petty cash fund to the above named PETTY CASH FUND, complete sections 1, 2, & 4 below. To MAKE CHANGES to an existing petty cash fund

  9. Utah Commission on Aging April 1, 2008

    E-Print Network [OSTI]

    Tipple, Brett

    Cherie Brunker Health Care Gary Kelso for Sara Sinclair Long Term Care Representative Steven Mascaro Utah helped to develop this survey that looks at the awareness level of officers regarding laws on elder abuse, and their general perceptions of the elderly. Education and intervention could increase attention to elder abuse

  10. Bibliography of Utah radioactive occurrences. Volume I

    SciTech Connect (OSTI)

    Doelling, H.H. (comp.) comp.

    1983-07-01T23:59:59.000Z

    The references in this bibliography were assembled by reviewing published bibliographies of Utah geology, unpublished reports of the US Geological Survey and the Department of Energy, and various university theses. Each of the listings is cross-referenced by location and subject matter. This report is published in two volumes.

  11. Examples of Department of Energy Successes for Remediation of Contaminated Groundwater: Permeable Reactive Barrier and Dynamic Underground Stripping ASTD Projects

    SciTech Connect (OSTI)

    Purdy, C.; Gerdes, K.; Aljayoushi, J.; Kaback, D.; Ivory, T.

    2002-02-27T23:59:59.000Z

    Since 1998, the Department of Energy's (DOE) Office of Environmental Management has funded the Accelerated Site Technology Deployment (ASTD) Program to expedite deployment of alternative technologies that can save time and money for the environmental cleanup at DOE sites across the nation. The ASTD program has accelerated more than one hundred deployments of new technologies under 76 projects that focus on a broad spectrum of EM problems. More than 25 environmental restoration projects have been initiated to solve the following types of problems: characterization of the subsurface using chemical, radiological, geophysical, and statistical methods; treatment of groundwater contaminated with DNAPLs, metals, or radionuclides; and other projects such as landfill covers, purge water management systems, and treatment of explosives-contaminated soils. One of the major goals of the ASTD Program is to deploy a new technology or process at multiple DOE sites. ASTD projects are encouraged to identify subsequent deployments at other sites. Some of the projects that have successfully deployed technologies at multiple sites focusing on cleanup of contaminated groundwater include: Permeable Reactive Barriers (Monticello, Rocky Flats, and Kansas City), treating uranium and organics in groundwater; and Dynamic Underground Stripping (Portsmouth, and Savannah River), thermally treating DNAPL source zones. Each year more and more new technologies and approaches are being used at DOE sites due to the ASTD program. DOE sites are sharing their successes and communicating lessons learned so that the new technologies can replace the baseline or standard approaches at DOE sites, thus expediting cleanup and saving money.

  12. Geothermal Permeability Enhancement - Final Report

    SciTech Connect (OSTI)

    Joe Beall; Mark Walters

    2009-06-30T23:59:59.000Z

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  13. Permeability extraction: A sonic log inversion

    SciTech Connect (OSTI)

    Akbar, N.; Kim, J.J. [Saudi Aramco, Dhahran (Saudi Arabia)

    1994-12-31T23:59:59.000Z

    In this paper the authors provide the missing important link between permeability and acoustic velocities by generating a permeability-dependent synthetic sonic log in a carbonate reservoir. The computations are based on Akbar`s theory that relates wave velocity to frequency, rock properties (e.g., lithology, permeability, and porosity), and fluid saturation and properties (viscosity, density, and compressibility). An inverted analytical expression of the theory is used to extract permeability from sonic velocity. The synthetic sonic and the computed permeability are compared with the observed sonic log and with plug permeability, respectively. The results demonstrate, as predicted by theory, that permeability can be related directly to acoustic velocities.

  14. Microsoft Word - S07803_Comments

    Office of Legacy Management (LM)

    Agency (EPA), the Utah Department of Environmental Quality (UDEQ), and the U.S. Fish and Wildlife Service (FWS) on the Monticello Mill Tailings Site (MMTS) Operable Unit...

  15. Minnesota Nuclear Profile - Monticello

    U.S. Energy Information Administration (EIA) Indexed Site

    date","License expiration date" 1,554,"4,695",96.7,"BWR","applicationvnd.ms-excel","applicationvnd.ms-excel" ,554,"4,695",96.7 "Data for 2010" "BWR Boiling Water Reactor."...

  16. monticello.cdr

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3uj:'I,\ W CTheuseLocation of the

  17. monticello_esd.cdr

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3uj:'I,\ W CTheuseLocation of

  18. MONTICELLO NPL SITES

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^ I

  19. MONTICELLO NPL SITES

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^ IApril 1 - June 30, 2008

  20. MONTICELLO NPL SITES

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^ IApril 1 - June 30,

  1. MONTICELLO NPL SITES

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^ IApril 1 - June 30, .. ' \

  2. Minnesota Nuclear Profile - Monticello

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals (MillionperYearThousandFeet)

  3. monticello_esd.cdr

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V4100 DOE/EA-1452DiOverview ThelasThe

  4. monticello_superfund.cdr

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V4100 DOE/EA-1452DiOverview ThelasTheAC

  5. Major Oil Plays in Utah and Vicinity

    SciTech Connect (OSTI)

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Douglas A. Sprinkel; Roger L. Bon; Hellmut H. Doelling

    2003-12-31T23:59:59.000Z

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play. This report covers research activities for the sixth quarter of the project (October 1 through December 31, 2003). This work included describing outcrop analogs for the Jurassic Twin Creek Limestone and Mississippian Leadville Limestone, major oil producers in the thrust belt and Paradox Basin, respectively, and analyzing best practices used in the southern Green River Formation play of the Uinta Basin. Production-scale outcrop analogs provide an excellent view of reservoir petrophysics, facies characteristics, and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. In the Utah/Wyoming thrust belt province, the Jurassic Twin Creek Limestone produces from subsidiary closures along major ramp anticlines where the low-porosity limestone beds are extensively fractured and sealed by overlying argillaceous and non-fractured units. The best outcrop analogs for Twin Creek reservoirs are found at Devils Slide and near the town of Peoa, Utah, where fractures in dense, homogeneous non-porous limestone beds are in contact with the basal siltstone units (containing sealed fractures) of the overlying units. The shallow marine, Mississippian Leadville Limestone is a major oil and gas reservoir in the Paradox Basin of Utah and Colorado. Hydrocarbons are produced from basement-involved, northwest-trending structural traps with closure on both anticlines and faults. Excellent outcrops of Leadville-equivalent rocks are found along the south flank of the Uinta Mountains, Utah. For example, like the Leadville, the Mississippian Madison Limestone contains zones of solution breccia, fractures, and facies variations. When combined with subsurface geological and production data, these outcrop analogs can improve (1) development drilling and production strategies such as horizontal drilling, (2) reservoir-simulation models, (3) reserve calculations, and (4) design and implementation of secondary/tertiary oil recovery programs and other best practices used in the oil fields of Utah and vicinity. In the southern Green River Formation play of the Uinta Basin, optimal drilling, development, and production practices consist of: (1) owning drilling rigs and frac holding tanks; (2) perforating sandstone beds with more than 8 percent neutron porosity and stimulate with separate fracture treatments; (3) placing completed wells on primary production using artificial lift; (4) converting wells relatively soon to secondary waterflooding maintaining reservoir pressure above the bubble point to maximize oil recovery; (5) developing waterflood units using an alternating injector--producer pattern on 40-acre (16-ha) spacing; and (6) recompleting producing wells by perforating all beds that are productive in the waterflood unit. As part of technology transfer activities during this quarter, an abstract describing outcrop reservoir analogs was accepted by the American Assoc

  6. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect (OSTI)

    Thomas C. Chidsey, Jr.

    2003-01-01T23:59:59.000Z

    Utah oil fields have produced a total of 1.2 billion barrels (191 million m{sup 3}). However, the 15 million barrels (2.4 million m{sup 3}) of production in 2000 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the first quarter of the first project year (July 1 through September 30, 2002). This work included producing general descriptions of Utah's major petroleum provinces, gathering field data, and analyzing best practices in the Utah Wyoming thrust belt. Major Utah oil reservoirs and/or source rocks are found in Devonian through Permian, Jurassic, Cretaceous, and Tertiary rocks. Stratigraphic traps include carbonate buildups and fluvial-deltaic pinchouts, and structural traps include basement-involved and detached faulted anticlines. Best practices used in Utah's oil fields consist of waterflood, carbon-dioxide flood, gas-injection, and horizontal drilling programs. Nitrogen injection and horizontal drilling programs have been successfully employed to enhance oil production from the Jurassic Nugget Sandstone (the major thrust belt oil-producing reservoir) in Wyoming's Painter Reservoir and Ryckman Creek fields. At Painter Reservoir field a tertiary, miscible nitrogen-injection program is being conducted to raise the reservoir pressure to miscible conditions. Supplemented with water injection, the ultimate recovery will be 113 million bbls (18 million m{sup 3}) of oil (a 68 percent recovery factor over a 60-year period). The Nugget reservoir has significant heterogeneity due to both depositional facies and structural effects. These characteristics create ideal targets for horizontal wells and horizontal laterals drilled from existing vertical wells. Horizontal drilling programs were conducted in both Painter Reservoir and Ryckman Creek fields to encounter potential undrained compartments and increase the overall field recovery by 0.5 to 1.5 percent per horizontal wellbore. Technology transfer activities consisted of exhibiting a booth display of project materials at the Rocky Mountain Section meeting of the American Association of Petroleum Geologists, a technical presentation to the Wyoming State Geological Survey, and two publications. A project home page was set up on the Utah Geological Survey Internet web site.

  7. Utah Division of Environmental Response and Remediation Underground...

    Open Energy Info (EERE)

    Environmental Response and Remediation Underground Storage Tank Branch Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Division of...

  8. Utah Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act State Memo Utah has substantial natural resources, including oil, coal, natural gas, wind, geothermal, and solar power. The American Recovery & Reinvestment Act (ARRA) is...

  9. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect (OSTI)

    Thomas C. Chidsey Jr; Craig D. Morgan; Roger L. Bon

    2003-07-01T23:59:59.000Z

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the third quarter of the first project year (January 1 through March 31, 2003). This work included gathering field data and analyzing best practices in the eastern Uinta Basin, Utah, and the Colorado portion of the Paradox Basin. Best practices used in oil fields of the eastern Uinta Basin consist of conversion of all geophysical well logs into digital form, running small fracture treatments, fingerprinting oil samples from each producing zone, running spinner surveys biannually, mapping each producing zone, and drilling on 80-acre (32 ha) spacing. These practices ensure that induced fractures do not extend vertically out of the intended zone, determine the percentage each zone contributes to the overall production of the well, identify areas that may be by-passed by a waterflood, and prevent rapid water breakthrough. In the eastern Paradox Basin, Colorado, optimal drilling, development, and production practices consist of increasing the mud weight during drilling operations before penetrating the overpressured Desert Creek zone; centralizing treatment facilities; and mixing produced water from pumping oil wells with non-reservoir water and injecting the mixture into the reservoir downdip to reduce salt precipitation, dispose of produced water, and maintain reservoir pressure to create a low-cost waterflood. During this quarter, technology transfer activities consisted of technical presentations to members of the Technical Advisory Board in Colorado and the Colorado Geological Survey. The project home page was updated on the Utah Geological Survey Internet web site.

  10. In situ recovery of oil from Utah tar sand: a summary of tar sand research at the Laramie Energy Technology Center

    SciTech Connect (OSTI)

    Marchant, L.C.; Westhoff, J.D.

    1985-10-01T23:59:59.000Z

    This report describes work done by the United States Department of Energy's Laramie Energy Technology Center from 1971 through 1982 to develop technology for future recovery of oil from US tar sands. Work was concentrated on major US tar sand deposits that are found in Utah. Major objectives of the program were as follows: determine the feasibility of in situ recovery methods applied to tar sand deposits; and establish a system for classifying tar sand deposits relative to those characteristics that would affect the design and operation of various in situ recovery processes. Contents of this report include: (1) characterization of Utah tar sand; (2) laboratory extraction studies relative to Utah tar sand in situ methods; (3) geological site evaluation; (4) environmental assessments and water availability; (5) reverse combustion field experiment, TS-1C; (6) a reverse combustion followed by forward combustion field experiment, TS-2C; (7) tar sand permeability enhancement studies; (8) two-well steam injection experiment; (9) in situ steam-flood experiment, TS-1S; (10) design of a tar sand field experiment for air-stream co-injection, TS-4; (11) wastewater treatment and oil analyses; (12) economic evaluation of an in situ tar sand recovery process; and (13) appendix I (extraction studies involving Utah tar sands, surface methods). 70 figs., 68 tabs.

  11. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect (OSTI)

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Grant C. Willis

    2003-09-01T23:59:59.000Z

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the fourth quarter of the first project year (April 1 through June 30, 2003). This work included describing outcrop analogs to the Jurassic Nugget Sandstone and Pennsylvanian Paradox Formation, the major oil producers in the thrust belt and Paradox Basin, respectively. Production-scale outcrop analogs provide an excellent view, often in three dimensions, of reservoir-facies characteristics and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. The Nugget Sandstone was deposited in an extensive dune field that extended from Wyoming to Arizona. Outcrop analogs are found in the stratigraphically equivalent Navajo Sandstone of southern Utah which displays large-scale dunal cross-strata with excellent reservoir properties and interdunal features such as oases, wadi, and playa lithofacies with poor reservoir properties. Hydrocarbons in the Paradox Formation are stratigraphically trapped in carbonate buildups (or phylloid-algal mounds). Similar carbonate buildups are exposed in the Paradox along the San Juan River of southeastern Utah. Reservoir-quality porosity may develop in the types of facies associated with buildups such as troughs, detrital wedges, and fans, identified from these outcrops. When combined with subsurface geological and production data, these outcrop analogs can improve (1) development drilling and production strategies such as horizontal drilling, (2) reservoir-simulation models, (3) reserve calculations, and (4) design and implementation of secondary/tertiary oil recovery programs and other best practices used in the oil fields of Utah and vicinity. During this quarter, technology transfer activities consisted of exhibiting the project plans, objectives, and products at a booth at the 2003 annual convention of the American Association of Petroleum Geologists. The project home page was updated on the Utah Geological Survey Internet web site.

  12. Math Circle, an outreach program at the University of Utah

    E-Print Network [OSTI]

    Cavalieri, Renzo

    Department of Mathematics 155 South 1400 East University of Utah Salt Lake City, Utah 841120090 October 12 of faculty, postdocs and graduate students with high school students exhibits the vertical integration. Several other American institutions have Math Circles, notably Berkeley and Harvard. The experience

  13. Computational Engineering and Science Program at the University of Utah

    E-Print Network [OSTI]

    Utah, University of

    Computational Engineering and Science Program at the University of Utah Carleton DeTar , Aaron L Lake City, Utah 84112. Computational Engineering and Science Program The grand computational challenges use of modern computers in scientific and engineering research and development over the last three

  14. GEOTHERMAL GRADIENT DATA FOR UTAH Robert E. Blackett

    E-Print Network [OSTI]

    Laughlin, Robert B.

    GEOTHERMAL GRADIENT DATA FOR UTAH by Robert E. Blackett February 2004 UTAH GEOLOGICAL SURVEY 1:750,000 scale map, showing geology; thermal wells, springs, and geothermal areas; and locations available sources including the Southern Methodist University Geothermal Laboratory, U.S. Geological Survey

  15. EA-1870: Utah Coal and Biomass Fueled Pilot Plant, Kanab, Kane County, Utah

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared an Environmental Assessment to evaluate the potential impacts of providing financial assistance to Viresco Energy, LLC, for its construction and operation of a Coal and Biomass Fueled Pilot Plant, which would be located in Kanab, Utah.

  16. Colloidosomes: Selectively Permeable Capsules Composed

    E-Print Network [OSTI]

    Weeks, Eric R.

    structures, which we call "col- loidosomes," are hollow, elastic shells whose permeability and elasticity can at the surface of water drops can be used to fabricate nano- or microporous capsules (1­5, 9); other fluid a flexible approach to the prep- aration of hollow, elastic capsules, with sizes ranging from micrometers

  17. Categorical Exclusion Determinations: Utah | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas Categorical Exclusion Determinations: Texas LocationUtah

  18. Energy Incentive Programs, Utah | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas Energy Incentive Programs, Texas Updated June 2015 WhatUtah

  19. Utah Geothermal Area | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment of Energy OfficeFactEnergy Bob UnderYourUtah

  20. Fairfield, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolis EnergyRanch,Electric Coop, IncUtah: Energy

  1. Utah Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion Cubic Feet) Utah Dry2009 2010

  2. Utah Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion Cubic Feet) Utah Dry2009

  3. Utah Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion Cubic Feet) Utah

  4. Kamas, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: Energy ResourcesKACOKahaluu,KaizenKalkaskaKamas, Utah:

  5. Highland, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation, searchCounty, Virginia: EnergyUtah: Energy

  6. Woodland, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources JumpWood,WoodfordLandfill GasUtah: Energy

  7. PacifiCorp (Utah) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, New York:Ozark, Alabama:ASES 2003,PUDPacifiCorp (Utah)

  8. Payson, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian,Parle Biscuits PvtPaw Paw,Paxton,Facility | OpenUtah:

  9. PacifiCorp (Utah) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis) Jump to:PUD No 1PacifiCorp (Utah) Jump

  10. Springville, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast ColoradoOhio:Maine: EnergyUtah: Energy Resources Jump

  11. Elberta, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:Edinburgh UniversityMirage,Reno,Elaine,Elberta, Utah:

  12. Oakley, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,and FeesOaklawn-Sunview,Utah: Energy

  13. Orem, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:Energy InformationOregon: Energy Resources Jump to:Utah: Energy

  14. Midway, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| OpenMickeyDelaware: EnergyMidnight PointMidway, Utah:

  15. Milford, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| OpenMickeyDelaware:Midwest,Center,Utah: Energy

  16. DOE - Office of Legacy Management -- Utah

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizona Arizona az_mapNevadaMississippiWashingtonUtah

  17. Daniel, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database Data and Resources11-DNADaly City,Danbury,DaneDaniel, Utah:

  18. Alpine, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place: Wayne,Energy Information JumpCore ComplexUtah: Energy

  19. Utah Antidegradation Review Form | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and tools |UC 54-2 - PublicUtah

  20. Utah Antidegradation Review Implementation Guidance | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and tools |UC 54-2 - PublicUtahInformation

  1. Utah Municipal Power Agency | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and tools |UC 54-2Full Proof ofUtah Municipal

  2. Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and toolsoperation plans for facilityUtah:

  3. Vineyard, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeterUtah: Energy Resources Jump to: navigation, search

  4. Draper, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open EnergyProjectDraper, Utah: Energy Resources

  5. Review of hydrogen isotope permeability through materials

    SciTech Connect (OSTI)

    Steward, S.A.

    1983-08-15T23:59:59.000Z

    This report is the first part of a comprehensive summary of the literature on hydrogen isotope permeability through materials that do not readily form hydrides. While we mainly focus on pure metals with low permeabilities because of their importance to tritium containment, we also give data on higher-permeability materials such as iron, nickel, steels, and glasses.

  6. STEAM-WATER RELATIVE PERMEABILITY A DISSERTATION

    E-Print Network [OSTI]

    Stanford University

    STEAM-WATER RELATIVE PERMEABILITY A DISSERTATION SUBMITTED TO THE DEPARTMENT OF PETROLEUM Laboratory. iv #12;ABSTRACT Steam-water relative permeability curves are required for mathematical models of two-phase geothermal reservoirs. In this study, drainage steam- water relative permeabilities were

  7. Permeability enhancement using explosive techniques

    SciTech Connect (OSTI)

    Adams, T.F.; Schmidt, S.C.; Carter, W.J.

    1980-01-01T23:59:59.000Z

    In situ recovery methods for many of our hydrocarbon and mineral resources depend on the ability to create or enhance permeability in the resource bed to allow uniform and predictable flow. To meet this need, a new branch of geomechanics devoted to computer prediction of explosive rock breakage and permeability enhancement has developed. The computer is used to solve the nonlinear equations of compressible flow, with the explosive behavior and constitutive properties of the medium providing the initial/boundary conditions and material response. Once the resulting computational tool has been verified and calibrated with appropriate large-scale field tests, it can be used to develop and optimize commercially useful explosive techniques for in situ resource recovery.

  8. Utah - UDOT - Accommodation of Utilities and the Control and...

    Open Energy Info (EERE)

    UDOT - Accommodation of Utilities and the Control and Protection of State Highway Rights of Way Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Utah -...

  9. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Broader source: Energy.gov (indexed) [DOE]

    economic growth and reduce petroleum use in Utah by increasing the number of CNG, LNG, Hybrid, and biodiesel vehicles on the road, creating an I-15 corridor for alternative...

  10. Microsoft Word - utah_wind_speed_summary.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    02 - 110502) 10.6 mph Overall Average (120101 - 110502) 7.8 mph Dean Davis Site Spanish Fork, Utah Average Wind Speeds Site 0009 (66 ft. (20m) tower, data started on 1101...

  11. US hydropower resource assessment for Utah

    SciTech Connect (OSTI)

    Francfort, J.E.

    1993-12-01T23:59:59.000Z

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Utah.

  12. Respiratory disease in Utah coal miners

    SciTech Connect (OSTI)

    Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

    1981-04-01T23:59:59.000Z

    Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's penumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

  13. Respiratory disease in Utah coal miners

    SciTech Connect (OSTI)

    Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

    1981-04-01T23:59:59.000Z

    Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's pneumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

  14. MAJOR PLAYS IN UTAH AND VICINITY

    SciTech Connect (OSTI)

    Craig D. Morgan; Thomas C. Chidsey

    2003-11-01T23:59:59.000Z

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land-use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the first quarter of the second project year (July 1 through September 30, 2003). This work included (1) describing the Conventional Southern Uinta Basin Play, subplays, and outcrop reservoir analogs of the Uinta Green River Conventional Oil and Gas Assessment Unit (Eocene Green River Formation), and (2) technology transfer activities. The Conventional Oil and Gas Assessment Unit can be divided into plays having a dominantly southern sediment source (Conventional Southern Uinta Basin Play) and plays having a dominantly northern sediment source (Conventional Northern Uinta Basin Play). The Conventional Southern Uinta Basin Play is divided into six subplays: (1) conventional Uteland Butte interval, (2) conventional Castle Peak interval, (3) conventional Travis interval, (4) conventional Monument Butte interval, (5) conventional Beluga interval, and (6) conventional Duchesne interval fractured shale/marlstone. We are currently conducting basin-wide correlations to define the limits of the six subplays. Production-scale outcrop analogs provide an excellent view, often in three dimensions, of reservoir-facies characteristics and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. Outcrop analogs for each subplay except the Travis interval are found in Indian and Nine Mile Canyons. During this quarter, the project team members submitted an abstract to the American Association of Petroleum Geologists for presentation at the 2004 annual national convention in Dallas, Texas. The project home page was updated on the Utah Geological Survey Internet web site.

  15. Energy Efficient Buildings, Salt Lake County, Utah

    SciTech Connect (OSTI)

    Barnett, Kimberly

    2012-04-30T23:59:59.000Z

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

  16. Rejuvenating Permeable Reactive Barriers by Chemical Flushing

    Broader source: Energy.gov [DOE]

    Final Report:Rejuvenating Permeable Reactive Barriers by Chemical Flushing,U.S. Environmental Protection Agency, Region 8 Support.August 2004

  17. Magma energy and geothermal permeability enhancement programs

    SciTech Connect (OSTI)

    Dunn, J.C.

    1985-01-01T23:59:59.000Z

    Accomplishments during FY85 and project plans for FY86 are described for the Magma Energy Extraction and Permeability Enhancement programs. (ACR)

  18. Fracture permeability and seismic wave scattering Poroelastic ...

    E-Print Network [OSTI]

    Seiji Nakagawa

    2010-02-03T23:59:59.000Z

    Jun 18, 2010 ... The new model contains fracture permeability in the plan-parallel direction. ... Division of Chemical Sciences of the U.S. Department of Energy...

  19. Stimulation results in the low-permeability Wasatch formation - An evolution to foam fracturing

    SciTech Connect (OSTI)

    Harris, P.C.; Bailey, D.E.; Evertz, G.L.

    1984-05-01T23:59:59.000Z

    The Wasatch Formation of the Uinta Basin in eastern Utah is typical of many formations in the Rocky Mountains, having low permeability and high sensitivity to water. Stimulation treatments with several types of fracturing fluids, including oilwater emulsion fluids, complex gel fluids and foam fluids, have been generally successful. Production decline curves from twenty four wells in the field were used for comparison of the different stimulation methods. Although foam fracturing has been used for the shortest period of time, comparison of the production histories show the relatively higher efficiency of the foam fracturing treatments compared to other stimulation methods in the Wasatch formation. Foam fluids gave higher production rates and higher flowing pressures than offset wells fractured with complex gel fluids. A stimulation model for oil and gas production was used to match the production history from this reservoir. The model allowed a projection of gas production based on early production from the wells and knowledge of the reservoir.

  20. Utah Natural Gas Plant Liquids Production Extracted in Utah (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic Feet) Utah Natural Gas

  1. National Uranium Resource Evaluation: Salina Quadrangle, Utah

    SciTech Connect (OSTI)

    Lupe, R.D.; Campbell, J.A.; Franczyk, K.J.; Luft, S.J.; Peterson, F.; Robinson, K.

    1982-09-01T23:59:59.000Z

    Two stratigraphic units, the Late Jurassic Salt Wash Member of the Morrison Formation and the Triassic Chinle Formation, were determined to be favorable for the occurrence of uranium deposits that meet the minimum size and grade requirements of the US Department of Energy in the Salina 1 x 2/sup 0/ Quadrangle, Utah. Three areas judged favorable for the Salt Wash Member are the Tidwell and Notom districts, and the Henry Mountains mineral belt. The criteria used to establish favorability were the presence of: (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Four favorable areas have been outlined for the Chinle Formation. These are the San Rafael Swell, Inter River, and the Orange Cliffs subareas and the Capitol Reef area. The criteria used to establish these areas are: the sandstone-to-mudstone ratios and the geographic distribution of the Petrified Forest Member of the Chinle Formation which is considered as the probable source for the uranium.

  2. Utah Department of Health Bureau of Health Facility Licensing, Certification and Resident Assessment

    E-Print Network [OSTI]

    Tipple, Brett

    Utah Department of Health Bureau of Health Facility Licensing, Certification and Resident of Utah Rule R432-31 (http://health.utah.gov/hflcra/forms.php) This is a physician order sheet based be effectively managed at current setting. ___ Limited additional interventions: Includes care above. May also

  3. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Permeability and Integrity of Hydrogen Delivery Pipelines Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Project Objectives: To gain basic understanding of...

  4. Hydrogen permeability and Integrity of hydrogen transfer pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    permeability and Integrity of hydrogen transfer pipelines Hydrogen permeability and Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline...

  5. Sustainability of Shear-Induced Permeability for EGS Reservoirs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability of Shear-Induced Permeability for EGS Reservoirs A Laboratory Study Sustainability of Shear-Induced Permeability for EGS Reservoirs A Laboratory Study...

  6. Field Demonstration Of Permeable Reactive Barriers To Remove

    E-Print Network [OSTI]

    Field Demonstration Of Permeable Reactive Barriers To Remove Dissolved Uranium From Groundwater-001 November 2000 FIELD DEMONSTRATION OF PERMEABLE REACTIVE BARRIERS TO REMOVE DISSOLVED URANIUM FROM

  7. Uranium(VI) Diffusion in Low-Permeability Subsurface Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uranium(VI) Diffusion in Low-Permeability Subsurface Materials. Uranium(VI) Diffusion in Low-Permeability Subsurface Materials. Abstract: Uranium(VI) diffusion was investigated in...

  8. aqp1 water permeability: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RELATIVE PERMEABILITY A DISSERTATION Renewable Energy Websites Summary: STEAM-WATER RELATIVE PERMEABILITY A DISSERTATION SUBMITTED TO THE DEPARTMENT OF PETROLEUM...

  9. Utah Division of State History | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLCEnergy)Peteforsyth JumpWzeng Jump to:QualityUtahUtah

  10. Utah Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts RegionsPaulShades of(SC)ScienceOffice ofUtahUtah

  11. Utah Public Lands Policy Coordination Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and tools |UC 54-2Full Proof ofUtahOfficeUtah

  12. Utah State Parks and Recreation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and tools |UC 54-2FullInformationUtahUtah

  13. HP-41 Calculates Dykstra-Parsons permeability

    SciTech Connect (OSTI)

    Bixler, B.

    1983-07-01T23:59:59.000Z

    A new program for the HP-41 programmable calculator has been written which will calculate the often used Dykstra-Parsons permeability variation factor, V. No longer must numerous individual permeability values be plotted on log probability paper as a first step in determining V. Input is simply these same permeability values selected at equal spacing along the interval in question. For most core analysis this spacing will be 1 ft. This program is labeled ''KVAR'' (for permeability variation) and is listed here, along with its bar code for those with optical wands. It requires only nine registers for program storage (since it uses HP built-in statistical functions) and eight registers for data storage. Also, it can be stored on one track of the standard two-track magnetic card. Data entry is terminated by entering ''O''. Lastly, it will run with or without a printer.

  14. Reservoir permeability from seismic attribute analysis

    E-Print Network [OSTI]

    Goloshubin, G.

    2008-01-01T23:59:59.000Z

    of the reservoir permeability based on seismic and log data.seismic reservoir response based on well and 3D seismic datadata analysis we suggest seismic imaging of the reservoir

  15. Geothermal studies at the University of Utah Research Institute

    SciTech Connect (OSTI)

    None

    1988-07-01T23:59:59.000Z

    The University of Utah Research Institute (WRI) is a self-supporting corporation organized in December 1972 under the Utah Non-Profit Corporation Association Act. Under its charter, the Institute is separate in its operations and receives no direct financial support from either the University of Utah or the State of Utah. The charter includes provisions for WRI to conduct both public and proprietary scientific work for governmental agencies, academic institutions, private industry, and individuals. WRI is composed of five divisions, shown in Figure 1: the Earth Science Laboratory (ESL), the Environmental Studies Laboratory (EVSL), the Center for Remote Sensing and Cartography (CRSC), the Engineering Technology Laboratory (ETL) and the Atmospheric Physics Laboratory (APL). The Earth Science Laboratory has a staff of geologists, geochemists and geophysicists who have a broad range of experience in geothermal research and field projects as well as in mineral and petroleum exploration. The Environmental Studies Laboratory offers a variety of technical services and research capabilities in the areas of air quality and visibility, acid precipitation, surface and groundwater contamination, and environmentally caused stress in vegetation. The Center for Remote Sensing and Cartography offers applied research and services with a full range of remote sensing and mapping capability, including satellite and airborne imagery processing and interpretation. The Engineering Technology Laboratory is currently studying the interaction of the human body with electromagnetic radiation. The Atmospheric Physics Laboratory is developing hygroscopic droplet growth theory and orographic seeding models for dispersal of fog.

  16. healthcare.utah.edu/radiology What is Nuclear Medicine?

    E-Print Network [OSTI]

    Feschotte, Cedric

    expensive diagnostic tests or surgery. Tissues such as intestines, muscles, and blood vessels are difficulthealthcare.utah.edu/radiology Radiology What is Nuclear Medicine? Nuclear Medicine is a specialized to visualize on a standard X-ray. In Nuclear Medicine, a radioactive tracer is used so the tissue is seen more

  17. University of Utah Payroll Department Stop Payment -Replacement Form

    E-Print Network [OSTI]

    Provancher, William

    University of Utah Payroll Department Stop Payment - Replacement Form Affidavit to request replacement of a lost, stolen, or damaged, payroll check. Please note that it takes 5 to 7 days to process is given to induce a replacement check for one originally issued. 3. I agree to indemnify and hold

  18. Office of Global Public Health www.globalhealth.utah.edu

    E-Print Network [OSTI]

    Tipple, Brett

    and Global Clinical Care" Catherine deVries, M.D. Professor, Surgery and Public Health Director, CenterOffice of Global Public Health www.globalhealth.utah.edu Global Public Health Grand Rounds, PhD Chief and Associate Professor Division of Public Health "Integrating Global Public Health

  19. Energy Department Recognizes University of Utah in Better Buildings Challenge

    Office of Energy Efficiency and Renewable Energy (EERE)

    As part of President Obamas Better Buildings Challenge, the Energy Department recognized the University of Utah today for its leadership in energy efficiency and for reducing energy use by 40 percent in a historic campus building, saving the University $57,000 a year.

  20. UNIVERSITY OF UTAH GRADUATE SCHOOL GRADUATE STUDENT TRAVEL ASSISTANCE APPLICATION

    E-Print Network [OSTI]

    Simons, Jack

    and must be supported with a dollar-for-dollar match from university funds. Matching support must be from university funding sources, e.g., development, operation, service, research, etc. One award only will be made37 ` UNIVERSITY OF UTAH ­ GRADUATE SCHOOL GRADUATE STUDENT TRAVEL ASSISTANCE APPLICATION

  1. Transport in Cement:Transport in Cement: Relating Permeability and PoreRelating Permeability and Pore

    E-Print Network [OSTI]

    Petta, Jason

    Transport in Cement:Transport in Cement: Relating Permeability and PoreRelating Permeability, 2004 #12;OutlineOutline Cement Manufacturing and StructureCement Manufacturing and Structure ofofCalcinated in rotaryin rotary kiln at 1500 C for 30kiln at 1500 C for 30-- 40 minutes40 minutes Produces Cement

  2. Name Title E-mail Address Phone Jane Scott Purchasing Card Manager jscott@purchasing.utah.edu (801) 581-6622

    E-Print Network [OSTI]

    Tipple, Brett

    @purchasing.utah.edu (801) 587-7859 Heidi Slack Purchasing Card Auditor hslack@purchasing.utah.edu (801) 581-7945 Ashley://fbs.admin.utah.edu/pcard/ Resources Other Resources #12;3 Contents Resources

  3. Technical analysis of prospective photovoltaic systems in Utah.

    SciTech Connect (OSTI)

    Quiroz, Jimmy Edward; Cameron, Christopher P.

    2012-02-01T23:59:59.000Z

    This report explores the technical feasibility of prospective utility-scale photovoltaic system (PV) deployments in Utah. Sandia National Laboratories worked with Rocky Mountain Power (RMP), a division of PacifiCorp operating in Utah, to evaluate prospective 2-megawatt (MW) PV plants in different locations with respect to energy production and possible impact on the RMP system and customers. The study focused on 2-MW{sub AC} nameplate PV systems of different PV technologies and different tracking configurations. Technical feasibility was evaluated at three different potential locations in the RMP distribution system. An advanced distribution simulation tool was used to conduct detailed time-series analysis on each feeder and provide results on the impacts on voltage, demand, voltage regulation equipment operations, and flicker. Annual energy performance was estimated.

  4. Small Wind Electric Systems: A Utah Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01T23:59:59.000Z

    Small Wind Electric Systems: A Utah Consumer's Guide provides Utah consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  5. Student Competition: Siting Potential Dams at Camp Del Webb, Utah

    E-Print Network [OSTI]

    Wamser, William Kyle

    2007-11-14T23:59:59.000Z

    Siting Potential Dams at Camp Del Webb, Utah Presented By: Kyle Wamser Problem ? Camp Del Webb is Lacking an Onsite Lake ? High Adventure Bases generally need aquatics ? Large lake nearby, but transportation is required ? Possible Solution... hillshade ? Finding Possible Lake Locations ? Added three potential dam sites ? Calculated watersheds ? Extended dams through terrain to prevent runoff on the sides ? Calculated watershed dam elevation, which identified lakes Results...

  6. Arsenic distribution in soils surrounding the Utah copper smelter

    SciTech Connect (OSTI)

    Ball, A.L. (Univ. of Utah Coll. of Engineering, Salt Lake City); Rom, W.N.; Glenne, B.

    1983-05-01T23:59:59.000Z

    We investigated the extent of arsenic contamination from a Utah copper smelter as reflected by arsenic residue accumulated in the surface soil. The highest arsenic concentrations occurred within 3 km of the smelter. Arsenic soil contamination was evident up to 10 km from the smelter, with the major transport direction being ESE. Data from the subsurface soil samples indicated that arsenic has also leached through the soil.

  7. INTRODUCTION Permeability is a critical geologic parameter,

    E-Print Network [OSTI]

    Manning, Craig

    a fundamental role in mass and heat transfer and crustal rheology (e.g., Ingebritsen and Sanford, 1998 result. In contrast, the primary data from studies of meta- morphic systems consist of time-integrated fluid- flux (Q, or qt) estimates, which must be trans- lated to time-averaged permeabilities through (2

  8. WINTER PERFORMANCE ASSESSMENT OF PERMEABLE PAVEMENTS

    E-Print Network [OSTI]

    WINTER PERFORMANCE ASSESSMENT OF PERMEABLE PAVEMENTS A COMPARATIVE STUDY OF POROUS ASPHALT, PERVIOUS CONCRETE, AND CONVENTIONAL ASPHALT IN A NORTHERN CLIMATE BY KRISTOPHER M. HOULE BS, Worcester the University of New Hampshire, the Northern New England Concrete Promotion Association (NNECPA), the Northeast

  9. Drunkard`s wash project: Coalbed methane production from Ferron coals in east-central Utah

    SciTech Connect (OSTI)

    Lemarre, R.A. [Texaco Exploration and Production, Inc., Denver, CO (United States); Burns, T.D. [River Gas Corporation, Northport, AL (United States)

    1996-12-31T23:59:59.000Z

    The Drunkard`s Wash Project produces dry, coalbed methane gas from coals within the Ferron Sandstone Member of the Mancos Shale. The project covers 120,000 acres on the western flank of the San Rafael Uplift in east-central Utah. Gas was first produced into the sales line in January 1993. The field is being developed on 160 acre spacing with 73 wells currently producing 32.2 MMCFD for an average of 437 MCFD/well. Thirty three of those wells have been producing for 32 months and now average 637 MCFD/well. Most of the wells show a classic coalbed methane negative decline curve with increasing gas rates as the reservoir pressure declines due to production of water. Daily water production is 14,500 BPD, for an average of 199 BWPD/well. Total coal thickness ranges from 7 ft. to 48 ft., with an average of 24 ft. The coals occur in 3 to 6 seams at depths of 1350 to 2450 ft. The coal rank is high volatile A&B bituminous. We can not yet see a correlation between total coal thickness and current production. All wells are cased and hydraulically stimulated and most require pumping units to handle the large volumes of water. However, 22 wells do not require pumps and flow unassisted to the surface. The structure consists of monoclinal westward dip. A thin tonstein layer in the bottom coal seam serves as an excellent datum for mapping. Enhanced production is encountered along a southwest-plunging nose that probably formed additional fracture permeability within the coals. Northeast-trending reverse faults with small displacement appear to compartmentalize the reservoir. The Ferron coals were deposited in a river-dominated deltaic system that prograded to the east and southeast during Turonian-Coniacian (Upper Cretaceous) time. The Ferron Sandstone Member represents an eastward-thinning elastic wedge that was deposited during regression of the Western Interior Cretaceous seaway.

  10. Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01T23:59:59.000Z

    In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

  11. Permeability anisotropy and resistivity anisotropy of mechanically compressed mudrocks

    E-Print Network [OSTI]

    Adams, Amy Lynn

    2014-01-01T23:59:59.000Z

    Permeability anisotropy (the ratio of the horizontal to vertical permeability) is an important parameter used in sedimentary basin models and geotechnical design to model fluid flow, locate hydrocarbon reserves and estimate ...

  12. Semi-analytical estimates of permeability obtained from capillary pressure

    E-Print Network [OSTI]

    Huet, Caroline Cecile

    2006-04-12T23:59:59.000Z

    The objective of this research is to develop and test a new concept for predicting permeability from routine rock properties. First, we develop a model predicting permeability as a function of capillary pressure. Our model, ...

  13. EXPERIMENTAL DETERMINATION OF STEAM WATER RELATIVE PERMEABILITY RELATIONS

    E-Print Network [OSTI]

    Stanford University

    EXPERIMENTAL DETERMINATION OF STEAM WATER RELATIVE PERMEABILITY RELATIONS A REPORT SUBMITTED;Abstract A set of relative permeability relations for simultaneous ow of steam and water in porous media with saturation and pressure measurements. These relations show that the relative permeability for steam phase

  14. Determination of formation permeability using back-pressure test data from hydraulically-fractured, low-permeability gas wells

    E-Print Network [OSTI]

    Krawtz, John Paul

    1984-01-01T23:59:59.000Z

    DETERMINATION OF FORMATION PERMEABILITY USING BACX-PRESSURE TEST DATA FROM HYDRAULICALLY-FRACTURED, LOW-PERMEABILITY GAS WELLS A Thesis JOHN PAUL KRAWTZ Submitted to the Graduate College of Texas AsJ4 University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 1984 Major subject: petroleum Engineering DETERMINATION OF FORMATION PERMEABILITY USING BACK-PRESSURE TEST DATA FROM HYDRAULICALLY-FRACTURED, LOW-PERMEABILITY GAS WELLS A Thesis JOHN PAUL KRAWTZ...

  15. University of Utah Strategic Vision: Seven Core Commitments of the New U

    E-Print Network [OSTI]

    Tipple, Brett

    1 University of Utah Strategic Vision: Seven Core Commitments of the New U The University of Utah States in 2010 by the Creative Class Group, based on U.S. Census and Labor Statistics data. Along) engaging communities locally as well as globally. To achieve these goals, the New U maintains seven core

  16. Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Utah

    SciTech Connect (OSTI)

    Cole, Pamala C.; Lucas, Robert G.

    2009-05-01T23:59:59.000Z

    The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current Utah code, the 2006 IECC. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in estimated savings of $168 to $188 for an average new house in Utah at recent fuel prices.

  17. Continuous Commissioning of the Matheson Courthouse in Salt Lake City, Utah

    E-Print Network [OSTI]

    Turner, W. D.; Deng, S.; Hood, J.; Butler, M.; Healy, R. K.

    2003-01-01T23:59:59.000Z

    Commissioning 1 of the Matheson Courthouse in Salt Lake City, Utah. The Matheson Courthouse is a relatively new building, well-run, with a modern controls system. It is one of the most efficient buildings in Utah, averaging only $1.08 per square foot per year...

  18. MEDIA RELEASE --John Herbert, Head of Digital Technologies, J. Willard Marriott Library, University of Utah,

    E-Print Network [OSTI]

    Capecchi, Mario R.

    MEDIA RELEASE Contacts: --John Herbert, Head of Digital Technologies, J. Willard Marriott Library Maps at the University of Utah's J. Willard Marriott Library. The library has completed digitization Marriott Library, 801-585-9391, walter.jones@utah.edu --Dale Snyder, External Relations Director, J

  19. Endothelial cell permeability to water and antipyrine

    SciTech Connect (OSTI)

    Garrick, R.A.

    1986-03-05T23:59:59.000Z

    The endothelium provides a structural barrier between plasma constituents and the tissues. The permeability characteristics of the the endothelial cells regulate the transcellular movement of materials across this barrier while other movement is paracellular. In this study the permeability of the endothelial cells to tritiated water (/sup 3/HHO) and /sup 14/C-labeled antipyrine (AP) was investigated. The cells were isolated non-enzymatically from calf pulmonary artery and were maintained in culture and used between the seventh and fifteenth passage. The cells were removed from the T-flasks with a rubber policeman, titurated with a 22g needle and centrifuged. The cells were mixed with an extracellular marker, drawn into polyethylene tubing and packed by centrifugation for use in the linear diffusion technique. All measurements were made at 37 C. The diffusion coefficients for /sup 3/HHO through the packed cells (D), the intracellular material (D/sub 2/), and the extracellular material (D/sub 1/) were 0.682, 0.932 and 2.45 x 10/sup -5/ cm/sup 2/ s/sup -1/ and for AP were 0.273, 0.355 and 1.13 x 10/sup -5/ cm/sup 2/ s/sup -1/ respectively. The permeability coefficient calculated by the series-parallel pathway model for /sup 3/HHO was higher than that for AP and for both /sup 3/HHO and AP were lower than those calculated for isolated lung cells and erythrocytes.

  20. Atrial natriuretic factor increases vascular permeability

    SciTech Connect (OSTI)

    Lockette, W.; Brennaman, B. (Wayne State Univ. School of Medicine, Detroit, MI (USA))

    1990-12-01T23:59:59.000Z

    An increase in central blood volume in microgravity may result in increased plasma levels of atrial natriuretic factor (ANF). Since elevations in plasma ANF are found in clinical syndromes associated with edema, and since space motion sickness induced by microgravity is associated with an increase in central blood volume and facial edema, we determined whether ANF increases capillary permeability to plasma protein. Conscious, bilaterally nephrectomized male rats were infused with either saline, ANF + saline, or hexamethonium + saline over 2 h following bolus injections of 125I-albumin and 14C-dextran of similar molecular size. Blood pressure was monitored and serial determinations of hematocrits were made. Animals infused with 1.0 micrograms.kg-1.min-1 ANF had significantly higher hematocrits than animals infused with saline vehicle. Infusion of ANF increased the extravasation of 125I-albumin, but not 14C-dextran from the intravascular compartment. ANF also induced a depressor response in rats, but the change in blood pressure did not account for changes in capillary permeability to albumin; similar depressor responses induced by hexamethonium were not accompanied by increased extravasation of albumin from the intravascular compartment. ANF may decrease plasma volume by increasing permeability to albumin, and this effect of ANF may account for some of the signs and symptoms of space motion sickness.

  1. INCREASED OIL PRODUCTION AND RESERVES UTILIZING SECONDARY/TERTIARY RECOVERY TECHNIQUES ON SMALL RESERVOIRS IN THE PARADOX BASIN, UTAH

    SciTech Connect (OSTI)

    Thomas C. Chidsey, Jr.

    2002-11-01T23:59:59.000Z

    The Paradox Basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from shallow-shelf carbonate buildups or mounds within the Desert Creek zone of the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. Five fields in southeastern Utah were evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. The Desert Creek zone includes three generalized facies belts: (1) open-marine, (2) shallow-shelf and shelf-margin, and (3) intra-shelf, salinity-restricted facies. These deposits have modern analogs near the coasts of the Bahamas, Florida, and Australia, respectively, and outcrop analogs along the San Juan River of southeastern Utah. The analogs display reservoir heterogeneity, flow barriers and baffles, and lithofacies geometry observed in the fields; thus, these properties were incorporated in the reservoir simulation models. Productive carbonate buildups consist of three types: (1) phylloid algal, (2) coralline algal, and (3) bryozoan. Phylloid-algal buildups have a mound-core interval and a supra-mound interval. Hydrocarbons are stratigraphically trapped in porous and permeable lithotypes within the mound-core intervals of the lower part of the buildups and the more heterogeneous supramound intervals. To adequately represent the observed spatial heterogeneities in reservoir properties, the phylloid-algal bafflestones of the mound-core interval and the dolomites of the overlying supra-mound interval were subdivided into ten architecturally distinct lithotypes, each of which exhibits a characteristic set of reservoir properties obtained from outcrop analogs, cores, and geophysical logs. The Anasazi and Runway fields were selected for geostatistical modeling and reservoir compositional simulations. Models and simulations incorporated variations in carbonate lithotypes, porosity, and permeability to accurately predict reservoir responses. History matches tied previous production and reservoir pressure histories so that future reservoir performances could be confidently predicted. The simulation studies showed that despite most of the production being from the mound-core intervals, there were no corresponding decreases in the oil in place in these intervals. This behavior indicates gravity drainage of oil from the supra-mound intervals into the lower mound-core intervals from which the producing wells' major share of production arises. The key to increasing ultimate recovery from these fields (and similar fields in the basin) is to design either waterflood or CO{sub 2}-miscible flood projects capable of forcing oil from high-storage-capacity but low-recovery supra-mound units into the high-recovery mound-core units. Simulation of Anasazi field shows that a CO{sub 2} flood is technically superior to a waterflood and economically feasible. For Anasazi field, an optimized CO{sub 2} flood is predicted to recover a total 4.21 million barrels (0.67 million m3) of oil representing in excess of 89 percent of the original oil in place. For Runway field, the best CO{sub 2} flood is predicted to recover a total of 2.4 million barrels (0.38 million m3) of oil representing 71 percent of the original oil in place. If the CO{sub 2} flood performed as predicted, it is a financially robust process for increasing the reserves in the many small fields in the Paradox Basin. The results can be applied to other fields in the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent.

  2. A new Cambrian arthropod, Emeraldella brutoni, from Utah

    E-Print Network [OSTI]

    Stein, Martin; Church, Stephen B.; Robison, Richard A.

    2011-09-29T23:59:59.000Z

    and comput- ers. Palaeontologia Electronica 3:114. Brett, C. E., P. A. Allison, M. K. DeSantis, W. D. Liddell, & A. Kramer. 2009. Sequence stratigraphy, cyclic facies, and lagersttten in the Middle Cambrian Wheeler and Marjum Formations, Great Basin... of southern Germany and Lebanon. Palaeontologia Electronica 12:12 p. Hintze, L. F., & R. A. Robison. 1975. Middle Cambrian stratigraphy of the House, Wah Wah, and adjacent ranges in western Utah. Geological Society of America Bulletin 86:881891. Hou X., & J...

  3. Colorado Natural Gas Processed in Utah (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecadeDecadeYear(MillionKansasUtah

  4. Washington County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide PermitInformationIsland: Energy Resources Jump to:956°,Utah:

  5. West Mountain, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills, New York: EnergyMountain, Utah: Energy Resources

  6. Carbon County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermits ManualCanisteo,Verde:ConnectionsUtah: Energy

  7. Salt Lake County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBY SolutionsChangeOklahoma:OpenSalley,County, Utah:

  8. San Juan County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSalton SeaBasin EC Jump to: navigation, searchJuanUtah:

  9. Sanpete County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSalton SeaBasinSandusky,Sanpete County, Utah: Energy

  10. Sevier County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma: EnergySeoulSettlersSevern,SevierUtah:

  11. Utah Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic Feet) Utah Natural GasCubic Feet)

  12. Utah Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion Cubic Feet) Utah Dry Natural

  13. Utah Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion Cubic Feet) Utah Dry

  14. Utah Lease Condensate Proved Reserves, Reserve Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion Cubic Feet) Utah Dry200962 90

  15. Utah Natural Gas % of Total Residential - Sales (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion Cubic Feet) Utah Dry200962

  16. Utah Natural Gas % of Total Residential - Sales (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion Cubic Feet) Utah Dry200962Year

  17. Utah Natural Gas Delivered for the Account of Others

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion Cubic Feet) UtahCommercial

  18. Utah Division of Public Utilities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLCEnergy)Peteforsyth JumpWzeng Jump to:QualityUtah

  19. Utah/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLCEnergy)PeteforsythUtah/Wind Resources/Full Version

  20. Wasatch County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtilityInformation WaiverShoals,Wasatch County, Utah:

  1. Iron County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy JumpIrem Geothermal Power PlantUtah: Energy

  2. Kane County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: EnergyKanabec County, Minnesota: Energy ResourcesUtah:

  3. Piute County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini Energia S A JumpPiute County, Utah: Energy Resources

  4. City of Manti, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCityCityLongmont,City ofManning,Manti, Utah

  5. Moon Lake Electric Assn Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoon Lake Electric Assn Inc (Utah) Jump to:

  6. Summit Park, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation, searchNewOpen Energy(Colorado) |Park, Utah:

  7. Utah State Historic Preservation Programmatic Agreement | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUE 08:59 FAXFactEnergy Utah State Historic

  8. Elk Ridge, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:EdinburghEldoradoElectronVaultStationGroveRidge, Utah:

  9. Summit County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By Fault PropagationSummerside Wind Farm JumpSummitUtah:

  10. Utah Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts RegionsPaulShades of(SC)ScienceOffice ofUtah

  11. South Utah Valley Electric Service District | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolarSolkarTopicsSouthNew Jersey:South Utah

  12. Spanish Fork, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL Elec Coop, IncSouthwestern ElectricSpain:Fork, Utah:

  13. Workplace Charging Challenge Partner: Utah Paperbox | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | DepartmentDepartment of Energy LewisDepartment ofofBarbara |Pembroke |Utah

  14. DOE - Office of Legacy Management -- University of Utah Medical Research

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -K LeDowntownUnitedCenter - UT 02 Utah

  15. Beaver County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,South Carolina:Utah: Energy Resources Jump to:

  16. Utah Natural Gas Processed in Wyoming (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan FebFeet)ReservesYearUtah (Million

  17. Town of Paragonah, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station JumpOpenEITownTown ofTown of Paragonah, Utah

  18. Utah Associated Mun Power Sys | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AGUser page EditUsina SantaUsinaUsinas+Utah

  19. RAPID/BulkTransmission/Environment/Utah | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia: EnergyOnlineMontana <Utah < RAPID‎ |

  20. RAPID/BulkTransmission/Utah | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia: EnergyOnlineMontanaMontanaUtah < RAPID‎ |

  1. RAPID/Geothermal/Environment/Utah | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎ |HawaiiUtah <

  2. RAPID/Geothermal/Land Access/Utah | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevadaTexas < RAPID‎ |Utah <

  3. RAPID/Geothermal/Well Field/Utah | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <Field <New Mexico <TexasUtah

  4. RAPID/Overview/Geothermal/Exploration/Utah | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas) Redirect page Jump to:Utah)

  5. Garfield County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: Energy ResourcesGangNebraska: Energy ResourcesUtah:

  6. Utah Division of Water Quality | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and tools |UC 54-2 -permitCommerceUtahQuality

  7. Utah Nonpoint Source Pollution Management Plan | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and tools |UC 54-2Full Proof ofUtah

  8. Utah Office of Energy Development | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and tools |UC 54-2Full Proof ofUtahOffice of

  9. Utah State Historic Preservation Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and tools |UC 54-2FullInformationUtah

  10. Bridger Valley Elec Assn, Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in CarbonofBiotinsBostonBridger Valley Elec Assn, Inc (Utah) Jump

  11. EPA/ITRC-RTDF permeable reactive barrier short course. Permeable reactive barriers: Application and deployment

    SciTech Connect (OSTI)

    Not Available

    1999-01-01T23:59:59.000Z

    This report focuses on the following: Permeable Reactive Barriers: Application and Deployment; Introduction to Permeable Reactive Barriers (PRBs) for Remediating and Managing Contaminated Groundwater in Situ; Collection and Interpretation of Design Data 1: Site Characterization for PRBs; Reactive Materials: Zero-Valent Iron; Collection and Interpretation of Design Data 2: Laboratory and Pilot Scale Tests; Design Calculations; Compliance Monitoring, Performance Monitoring and Long-Term Maintenance for PRBs; PRB Emplacement Techniques; PRB Permitting and Implementation; Treatment of Metals; Non-Metallic Reactive Materials; Economic Considerations for PRB Deployment; and Bibliography.

  12. EPA/ITRC-RTDF permeable reactive barrier short course. Permeable reactive barriers: Application and deployment

    SciTech Connect (OSTI)

    NONE

    1999-11-01T23:59:59.000Z

    This report focuses on the following: Permeable Reactive Barriers: Application and Deployment; Introduction to Permeable Reactive Barriers (PRBs) for Remediating and Managing Contaminated Groundwater in Situ; Collection and Interpretation of Design Data 1: Site Characterization for PRBs; Reactive Materials: Zero-Valent Iron; Collection and Interpretation of Design Data 2: Laboratory and Pilot Scale Tests; Design Calculations; Compliance Monitoring, Performance Monitoring and Long-Term Maintenance for PRBs; PRB Emplacement Techniques; PRB Permitting and Implementation; Treatment of Metals; Non-Metallic Reactive Materials; Economic Considerations for PRB Deployment; and Bibliography.

  13. The Mississippian Leadville Limestone Exploration Play, Utah and Colorado-Exploration Techniques and Studies for Independents

    SciTech Connect (OSTI)

    Thomas Chidsey

    2008-09-30T23:59:59.000Z

    The Mississippian (late Kinderhookian to early Meramecian) Leadville Limestone is a shallow, open-marine, carbonate-shelf deposit. The Leadville has produced over 53 million barrels (8.4 million m{sup 3}) of oil/condensate from seven fields in the Paradox fold and fault belt of the Paradox Basin, Utah and Colorado. The environmentally sensitive, 7500-square-mile (19,400 km{sup 2}) area that makes up the fold and fault belt is relatively unexplored. Only independent producers operate and continue to hunt for Leadville oil targets in the region. The overall goal of this study is to assist these independents by (1) developing and demonstrating techniques and exploration methods never tried on the Leadville Limestone, (2) targeting areas for exploration, (3) increasing deliverability from new and old Leadville fields through detailed reservoir characterization, (4) reducing exploration costs and risk especially in environmentally sensitive areas, and (5) adding new oil discoveries and reserves. The final results will hopefully reduce exploration costs and risks, especially in environmentally sensitive areas, and add new oil discoveries and reserves. The study consists of three sections: (1) description of lithofacies and diagenetic history of the Leadville at Lisbon field, San Juan County, Utah, (2) methodology and results of a surface geochemical survey conducted over the Lisbon and Lightning Draw Southeast fields (and areas in between) and identification of oil-prone areas using epifluorescence in well cuttings from regional wells, and (3) determination of regional lithofacies, description of modern and outcrop depositional analogs, and estimation of potential oil migration directions (evaluating the middle Paleozoic hydrodynamic pressure regime and water chemistry). Leadville lithofacies at Libon field include open marine (crinoidal banks or shoals and Waulsortian-type buildups), oolitic and peloid shoals, and middle shelf. Rock units with open-marine and restricted-marine facies constitute a significant reservoir potential, having both effective porosity and permeability when dissolution of skeletal grains, followed by dolomitization, has occurred. Two major types of diagenetic dolomite are observed in the Leadville Limestone at Lisbon field: (1) tight 'early' dolomite consisting of very fine grained (<5 {micro}m), interlocking crystals that faithfully preserve depositional fabrics; and (2) porous, coarser (>100-250 {micro}m), rhombic and saddle crystals that discordantly replace limestone and earlier very fine grained dolomite. Predating or concomitant with late dolomite formation are pervasive leaching episodes that produced vugs and extensive microporosity. Most reservoir rocks within Lisbon field appear to be associated with the second, late type of dolomitization and associated leaching events. Other diagenetic products include pyrobitumen, syntaxial cement, sulfide minerals, anhydrite cement and replacement, and late macrocalcite. Fracturing (solution enlarged) and brecciation (autobrecciation) caused by hydrofracturing are widespread within Lisbon field. Sediment-filled cavities, related to karstification of the exposed Leadville, are present in the upper third of the formation. Pyrobitumen and sulfide minerals appear to coat most crystal faces of the rhombic and saddle dolomites. The fluid inclusion and mineral relationships suggest the following sequence of events: (1) dolomite precipitation, (2) anhydrite deposition, (3) anhydrite dissolution and quartz precipitation, (4) dolomite dissolution and late calcite precipitation, (5) trapping of a mobile oil phase, and (6) formation of bitumen. Fluid inclusions in calcite and dolomite display variable liquid to vapor ratios suggesting reequilibration at elevated temperatures (50 C). Fluid salinities exceed 10 weight percent NaCl equivalent. Low ice melting temperatures of quartz- and calcite-hosted inclusions suggest chemically complex Ca-Mg-bearing brines associated with evaporite deposits were responsible for mineral deposition. The overall conclusion from th

  14. Towards a characteristic equation for permeability

    E-Print Network [OSTI]

    Siddiqui, Adil Ahmed

    2008-10-10T23:59:59.000Z

    on a fractal-based derivation of permeability from porosity. The Pape et al. result is presented as an additive power law relation, typically of the form: k = a? + b? 2 + c? 10 . We do not believe that the Pape et al. model will find significant... utility in the petroleum industry, apart from unconsolidated materials and rocks of very uniform grain sizes. We do not wish to diminish the work of Pape et al. rather we just do not see the same behavior in our rock sample data (i.e., extremely well...

  15. Gas permeable electrode for electrochemical system

    DOE Patents [OSTI]

    Ludwig, Frank A. (Rancho Palos Verdes, CA); Townsend, Carl W. (Los Angeles, CA)

    1989-01-01T23:59:59.000Z

    An electrode apparatus adapted for use in electrochemical systems having an anode compartment and a cathode compartment in which gas and ions are produced and consumed in the compartments during generation of electrical current. The electrode apparatus includes a membrane for separating the anode compartment from the cathode compartment wherein the membrane is permeable to both ions and gas. The cathode and anode for the assembly are provided on opposite sides of the membrane. During use of the membrane-electrode apparatus in electrochemical cells, the gas and ions generated at the cathode or anode migrate through the membrane to provide efficient transfer of gas and ions between the anode and cathode compartments.

  16. Gas permeability measurements for film envelope materials

    DOE Patents [OSTI]

    Ludtka, G.M.; Kollie, T.G.; Watkin, D.C.; Walton, D.G.

    1998-05-12T23:59:59.000Z

    Method and apparatus for measuring the permeability of polymer film materials such as used in super-insulation powder-filled evacuated panels (PEPs) reduce the time required for testing from several years to weeks or months. The method involves substitution of a solid non-outgassing body having a free volume of between 0% and 25% of its total volume for the usual powder in the PEP to control the free volume of the ``body-filled panel.`` Pressure versus time data for the test piece permit extrapolation to obtain long term performance of the candidate materials. 4 figs.

  17. Gas permeability measurements for film envelope materials

    DOE Patents [OSTI]

    Ludtka, Gerard M. (Oak Ridge, TN); Kollie, Thomas G. (Oak Ridge, TN); Watkin, David C. (Clinton, TN); Walton, David G. (Knoxville, TN)

    1998-01-01T23:59:59.000Z

    Method and apparatus for measuring the permeability of polymer film materials such as used in super-insulation powder-filled evacuated panels (PEPs) reduce the time required for testing from several years to weeks or months. The method involves substitution of a solid non-outgassing body having a free volume of between 0% and 25% of its total volume for the usual powder in the PEP to control the free volume of the "body-filled panel". Pressure versus time data for the test piece permit extrapolation to obtain long term performance of the candidate materials.

  18. Osmotic water permeability of human red cells

    SciTech Connect (OSTI)

    Terwilliger, T.C.; Solomon, A.K.

    1981-05-01T23:59:59.000Z

    The osmotic water permeability of human red cells has been reexamined with a stopped-flow device and a new perturbation technique. Small osmotic gradients are used to minimize the systematic error caused by nonlinearities in the relationship between cell volume and light scattering. Corrections are then made for residual systematic error. Our results show that the hydraulic conductivity, Lp, is essentially independent of the direction of water flow and of osmolality in the range 184-365 mosM. the mean value of Lp obtained obtained was 1.8 +/- 0.1 (SEM) X 10-11 cm3 dyne -1 s-1.

  19. Modelling effective permeability of fracture networks in permeable rock formation by

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    such as underground nuclear waste disposal in claystone, geological CO2 storage or hydrocabure reservoir in a fractured porous rock are used to investigate its effective permeability. If the far field inflow is uniform, the theoretical solution shows that the pressure field in the matrix is a function of the discharge

  20. astrocyte water permeability: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    19 Predicting relative permeability from water retention: A direct approach based on fractal geometry Environmental Management and Restoration Websites Summary: curves (e.g.,...

  1. arterioso permeable por: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mol% yttria-stabilized (more) Sweeney, Sean 2005-01-01 13 Permeability prediction from well log data using multiple regression analysis. Open Access Theses and Dissertations...

  2. "EFICIENCIA DE FUNCIONAMIENTO DE LA PRB (Barrera Permeable Reactiva)

    E-Print Network [OSTI]

    Politcnica de Catalunya, Universitat

    "EFICIENCIA DE FUNCIONAMIENTO DE LA PRB (Barrera Permeable Reactiva) EN AZNALCOLLAR (ESPAA)" Autor Barrera Geoqumica Experimental (PRB)? Un emplazamiento subsuperficial de materiales reactivos Diseado

  3. Mineral Precipitation Upgradient from a Zero-Valent Iron Permeable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abstract: Core samples taken from a zero-valent iron permeable reactive barrier (ZVI PRB) at Cornhusker Army Ammunition Plant, Nebraska, were analyzed for physical and chemical...

  4. IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES IN...

    Open Energy Info (EERE)

    USING MICROEARTHQUAKE DATA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES...

  5. Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...

    Open Energy Info (EERE)

    Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Reservoir-Scale Fracture Permeability in the Dixie Valley,...

  6. A Film Depositional Model of Permeability for Mineral Reactions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to solid-aqueous phase reactions. Citation: Freedman VL, P Saripalli, DH Bacon, and PD Meyer.2004."A Film Depositional Model of Permeability for Mineral Reactions in Unsaturated...

  7. New additives for minimizing cement body permeability

    SciTech Connect (OSTI)

    Talabani, S. [Western Atlas International, Abu Dhabi (United Arab Emirates); Hareland, G. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Dept. of Petroleum Engineering; Islam, M.R. [Univ. of Regina, Saskatchewan (Canada). Faculty of Engineering

    1999-01-01T23:59:59.000Z

    An experimental investigation was carried out with a new array of cement additives, replacing some of the currently used ones. In this study, the cement slurry pressure was monitored during the setting of the element. To obtain the optimum tightness of the cement, final contraction in the cycle is crucial for blockage of gas migration. Concentrations of the additives were obtained experimentally in this study for which the cyclic pressure behavior of the cement was optimized and the permeability reduced for the best final cement results. The parameters investigated in this study were as follows: pressure applied on the slurry with time, compressive strength, and permeability of the set cement. The major causes of the early microfractures are the incomplete cement-water reaction, low compressive strength of the set cement, and the sudden change in the hydrostatic pressure as the cement changes its phase from a liquid to a solid state. This paper reports the appropriate amounts of X-C polymer, Anchorage clay, Ironite Sponge, and synthetic rubber needed to optimize the compressive strength and eliminate both microfracture and microannulus. There are certain limits to the amount and type of synthetic rubber powder for which microfractures are eliminated. The article reports an experimental approach that can be used to eliminate gas migration through a cement design that is environmentally safe and inexpensive, using recyclable materials.

  8. Highly porous aerogels of very low permeability *

    E-Print Network [OSTI]

    J. Phalippou; T. Woignier; R. Sempr; P. Dieudonn

    In this paper, we firstly investigate the way the pores are created in silica gel during gelation. Then we show that the solid particle arrangement acts on the geometrical pore characteristics (pore volume and pore size distribution). According to the pore size value, the permeability of gels is quite low even if the value of the gel porosity exceeds 95%. Analogous properties can be extended to silica aerogels for which now the solvent is replaced by air. Consequently, and according to their low permeability, light weight aerogels exhibit very striking response to mechanical stresses. Here we report unusual experiments allowing us to estimate the mechanical properties of aerogels thanks to their low value of the average pore size. Moreover, one demonstrates that aerogels may be densified at room temperature using an external isostatic pressure. In that case, the pore size may be tailored with respect to the nature and the characteristics of the starting aerogel. The evolution of the textural properties such as the mean pore size and the specific surface area of these tailored aerogels is investigated as a function of isostatic pressure. 1.

  9. Calculation of large scale relative permeabilities from stochastic properties of the permeability field and fluid properties

    SciTech Connect (OSTI)

    Lenormand, R.; Thiele, M.R. [Institut Francais du Petrole, Rueil Malmaison (France)

    1997-08-01T23:59:59.000Z

    The paper describes the method and presents preliminary results for the calculation of homogenized relative permeabilities using stochastic properties of the permeability field. In heterogeneous media, the spreading of an injected fluid is mainly sue to the permeability heterogeneity and viscosity fingering. At large scale, when the heterogeneous medium is replaced by a homogeneous one, we need to introduce a homogenized (or pseudo) relative permeability to obtain the same spreading. Generally, is derived by using fine-grid numerical simulations (Kyte and Berry). However, this operation is time consuming and cannot be performed for all the meshes of the reservoir. We propose an alternate method which uses the information given by the stochastic properties of the field without any numerical simulation. The method is based on recent developments on homogenized transport equations (the {open_quotes}MHD{close_quotes} equation, Lenormand SPE 30797). The MHD equation accounts for the three basic mechanisms of spreading of the injected fluid: (1) Dispersive spreading due to small scale randomness, characterized by a macrodispersion coefficient D. (2) Convective spreading due to large scale heterogeneities (layers) characterized by a heterogeneity factor H. (3) Viscous fingering characterized by an apparent viscosity ration M. In the paper, we first derive the parameters D and H as functions of variance and correlation length of the permeability field. The results are shown to be in good agreement with fine-grid simulations. The are then derived a function of D, H and M. The main result is that this approach lead to a time dependent . Finally, the calculated are compared to the values derived by history matching using fine-grid numerical simulations.

  10. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Utah

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Utah.

  11. AUGUST 31 (VS. UTAH STATE) Nailing Andrew Jackson: The President and

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    AUGUST 31 (VS. UTAH STATE) Nailing Andrew Jackson: The President and His Papers Daniel M. Feller, Professor Department of History SEPTEMBER 6 (VS. ARKANSAS STATE) Marvels of Matter All Around Us Norman

  12. The Madeleine Choir School (Salt Lake City, Utah): A Contemporary American Choral Foundation

    E-Print Network [OSTI]

    Tappan, Lucas Matthew

    2014-05-31T23:59:59.000Z

    This document chronicles the work of the Madeleine Choir School, founded in 1996 by Gregory Glenn as a ministry of the Cathedral of the Madeleine in Salt Lake City, Utah. The school teaches children in pre-kindergarten ...

  13. Thermal and Structural Constraints on the Tectonic Evolution of the Idaho-Wyoming-Utah Thrust Belt

    E-Print Network [OSTI]

    Chapman, Shay Michael

    2013-08-09T23:59:59.000Z

    The timing of motion on thrust faults in the Idaho-Wyoming-Utah (IWU) thrust belt comes from synorogenic sediments, apatite thermochronology and direct dating of fault rocks coupled with good geometrical constraints of the subsurface structure...

  14. E-Print Network 3.0 - area utah characterization Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Awards to Members of the University Community 1. University of Utah Health... Care is the No. 1 health care system in the Salt Lake City metro area, according to ......

  15. INTERNSHIP OPPORTUNITY Agency Utah Department of Health, Office of Health Disparities

    E-Print Network [OSTI]

    Tipple, Brett

    INTERNSHIP OPPORTUNITY Agency Utah Department of Health, Office of Health Disparities Duration will be accepted. Description Office of Health Disparities interns will comprise the Outreach Team responsible for conducting the "Bridging Communities & Clinics" program, which provides free health screenings, clinic

  16. Miocene unroofing of the Canyon Range during extension along the Sevier Desert Detachment, west central Utah

    E-Print Network [OSTI]

    Stockli, Daniel F.; Linn, Jonathan K.; Walker, J. Douglas; Dumitru, Trevor A.

    2001-06-01T23:59:59.000Z

    Apatite fission track results from Neoproterozoic and Lower Cambrian quartzites collected from the Canyon Range in west central Utah reveal a significant early to middle Miocene cooling event (?1915 Ma). Preextensional temperatures estimated from...

  17. Digital outcrop mapping of a reservoir-scale incised valley fill, Sego Sandstone, Book Cliffs, Utah

    E-Print Network [OSTI]

    Fey, Matthew F.

    2009-06-02T23:59:59.000Z

    methodologies are demonstrated by mapping rock variations and stratal geometries within several kilometers-long, sub-parallel exposures of the Lower Sego Sandstone in San Arroyo Canyon, Book Cliffs, Utah. The digital outcrop model of the Lower Sego Sandstone...

  18. Utah State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-10-01T23:59:59.000Z

    The Utah State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Utah. The profile is the result of a survey of NRC licensees in Utah. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Utah.

  19. Low-Temperature Geothermal Water in Utah: A compilation of Data...

    Open Energy Info (EERE)

    Low-Temperature Geothermal Water in Utah: A compilation of Data for Thermal Wells and Springs Through 1993 Jump to: navigation, search OpenEI Reference LibraryAdd to library Web...

  20. Utah. Code. Ann. 19-5-115: Spills or discharges of oil or...

    Open Energy Info (EERE)

    Utah. Code. Ann. 19-5-115: Spills or discharges of oil or other substance Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute:...

  1. Small Wind Electric Systems: A Utah Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2005-03-01T23:59:59.000Z

    Small Wind Electric Systems: A Utah Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  2. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report, February 9, 1996--February 8, 1997

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1997-08-01T23:59:59.000Z

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The Anasazi field was selected for the initial geostatistical modeling and reservoir simulation. A compositional simulation approach is being used to model primary depletion, waterflood, and CO{sub 2}-flood processes. During this second year of the project, team members performed the following reservoir-engineering analysis of Anasazi field: (1) relative permeability measurements of the supra-mound and mound-core intervals, (2) completion of geologic model development of the Anasazi reservoir units for use in reservoir simulation studies including completion of a series of one-dimensional, carbon dioxide-displacement simulations to analyze the carbon dioxide-displacement mechanism that could operate in the Paradox basin system of reservoirs, and (3) completion of the first phase of the full-field, three-dimensional Anasazi reservoir simulation model, and the start of the history matching and reservoir performance prediction phase of the simulation study.

  3. Fluid permeability measurement system and method

    DOE Patents [OSTI]

    Hallman, Jr., Russell Louis (Knoxville, TN); Renner, Michael John (Oak Ridge, TN)

    2008-02-05T23:59:59.000Z

    A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  4. Ground rubber: Reactive permeable barrier sorption media

    SciTech Connect (OSTI)

    Kershaw, D.S.; Pamukcu, S. [Lehigh Univ., Bethlehem, PA (United States)

    1997-12-31T23:59:59.000Z

    The objective of this research was to examine the feasibility of using ground tire rubber as a sorbent media in reactive permeable barrier systems. Previous research by the current authors has demonstrated that tire rubber can sorb significant quantities of benzene, toluene, ethylbenzene and O-xylene from aqueous solutions. The current research was run to examine the usage rate of ground rubber in a packed bed reactor under specific contact times. In addition, desorption and repetitive sorption tests were run to determine the reversibility of the sorption process for ground tire rubber. These tests were run to determine the regeneration capacity of ground tire rubber. Results of the study show that the usage rates are greater than 50% with an empty bed contact times of 37 minutes, and minimal amounts of energy are needed to regenerate the tire rubber after use.

  5. Gas permeable electrode for electrochemical system

    DOE Patents [OSTI]

    Ludwig, F.A.; Townsend, C.W.

    1989-09-12T23:59:59.000Z

    An electrode apparatus is described which is adapted for use in electrochemical systems having an anode compartment and a cathode compartment in which gas and ions are produced and consumed in the compartments during generation of electrical current. The electrode apparatus includes a membrane for separating the anode compartment from the cathode compartment wherein the membrane is permeable to both ions and gas. The cathode and anode for the assembly are provided on opposite sides of the membrane. During use of the membrane-electrode apparatus in electrochemical cells, the gas and ions generated at the cathode or anode migrate through the membrane to provide efficient transfer of gas and ions between the anode and cathode compartments. 3 figs.

  6. Hydrogen-permeable composite metal membrane and uses thereof

    DOE Patents [OSTI]

    Edlund, David J. (Bend, OR); Friesen, Dwayne T. (Bend, OR)

    1993-06-08T23:59:59.000Z

    Various hydrogen production and hydrogen sulfide decomposition processes are disclosed that utilize composite metal membranes that contain an intermetallic diffusion barrier separating a hydrogen-permeable base metal and a hydrogen-permeable coating metal. The barrier is a thermally stable inorganic proton conductor.

  7. EXPERIMENTAL MEASUREMENT OF STEAM-WATER RELATIVE PERMEABILITY

    E-Print Network [OSTI]

    Stanford University

    EXPERIMENTAL MEASUREMENT OF STEAM-WATER RELATIVE PERMEABILITY A REPORT SUBMITTED TO THE DEPARTMENT calculations. X-ray computer tomography (CT) aided by measuring in-situ steam saturation more directly. The measured steam-water relative permeability curves assume a shape similar to those obtained by Corey (1954

  8. Modeling of Damage, Permeability Changes and Pressure Responses during Excavation of the TSX Tunnel in Granitic Rock at URL, Canada

    E-Print Network [OSTI]

    Rutqvist, Jonny

    2009-01-01T23:59:59.000Z

    Modeling of Damage, Permeability Changes and Pressureof excavation-induced damage, permeability changes, andrange of approaches to model damage and permeability changes

  9. Characterization and estimation of permeability correlation structure from performance data

    SciTech Connect (OSTI)

    Ershaghi, I.; Al-Qahtani, M. [Univ. of Southern California, Los Angeles, CA (United States)

    1997-08-01T23:59:59.000Z

    In this study, the influence of permeability structure and correlation length on the system effective permeability and recovery factors of 2-D cross-sectional reservoir models, under waterflood, is investigated. Reservoirs with identical statistical representation of permeability attributes are shown to exhibit different system effective permeability and production characteristics which can be expressed by a mean and variance. The mean and variance are shown to be significantly influenced by the correlation length. Detailed quantification of the influence of horizontal and vertical correlation lengths for different permeability distributions is presented. The effect of capillary pressure, P{sub c1} on the production characteristics and saturation profiles at different correlation lengths is also investigated. It is observed that neglecting P{sub c} causes considerable error at large horizontal and short vertical correlation lengths. The effect of using constant as opposed to variable relative permeability attributes is also investigated at different correlation lengths. Next we studied the influence of correlation anisotropy in 2-D reservoir models. For a reservoir under five-spot waterflood pattern, it is shown that the ratios of breakthrough times and recovery factors of the wells in each direction of correlation are greatly influenced by the degree of anisotropy. In fully developed fields, performance data can aid in the recognition of reservoir anisotropy. Finally, a procedure for estimating the spatial correlation length from performance data is presented. Both the production performance data and the system`s effective permeability are required in estimating the correlation length.

  10. IMPACT OF CAPILLARY AND BOND NUMBERS ON RELATIVE PERMEABILITY

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2002-09-30T23:59:59.000Z

    Recovery and recovery rate of oil, gas and condensates depend crucially on their relative permeability. Relative permeability in turn depends on the pore structure, wettability and flooding conditions, which can be represented by a set of dimensionless groups including capillary and bond numbers. The effect of flooding conditions on drainage relative permeabilities is not well understood and is the overall goal of this project. This project has three specific objectives: to improve the centrifuge relative permeability method, to measure capillary and bond number effects experimentally, and to develop a pore network model for multiphase flows. A centrifuge has been built that can accommodate high pressure core holders and x-ray saturation monitoring. The centrifuge core holders can operate at a pore pressure of 6.9 MPa (1000 psi) and an overburden pressure of 17 MPa (2500 psi). The effect of capillary number on residual saturation and relative permeability in drainage flow has been measured. A pore network model has been developed to study the effect of capillary numbers and viscosity ratio on drainage relative permeability. Capillary and Reynolds number dependence of gas-condensate flow has been studied during well testing. A method has been developed to estimate relative permeability parameters from gas-condensate well test data.

  11. Permeability of WIPP Salt During Damage Evolution and Healing

    SciTech Connect (OSTI)

    BODNER,SOL R.; CHAN,KWAI S.; MUNSON,DARRELL E.

    1999-12-03T23:59:59.000Z

    The presence of damage in the form of microcracks can increase the permeability of salt. In this paper, an analytical formulation of the permeability of damaged rock salt is presented for both initially intact and porous conditions. The analysis shows that permeability is related to the connected (i.e., gas accessible) volumetric strain and porosity according to two different power-laws, which may be summed to give the overall behavior of a porous salt with damage. This relationship was incorporated into a constitutive model, known as the Multimechanism Deformation Coupled Fracture (MDCF) model, which has been formulated to describe the inelastic flow behavior of rock salt due to coupled creep, damage, and healing. The extended model was used to calculate the permeability of rock salt from the Waste Isolation Pilot Plant (WIPP) site under conditions where damage evolved with stress over a time period. Permeability changes resulting from both damage development under deviatoric stresses and damage healing under hydrostatic pressures were considered. The calculated results were compared against experimental data from the literature, which indicated that permeability in damaged intact WIPP salt depends on the magnitude of the gas accessible volumetric strain and not on the total volumetric strain. Consequently, the permeability of WIPP salt is significantly affected by the kinetics of crack closure, but shows little dependence on the kinetics of crack removal by sintering.

  12. www.vacet.org E. WES BETHEL (LBNL), CHRIS JOHNSON (UTAH), KEN JOY (UC DAVIS), SEAN AHERN (ORNL), VALERIO PASCUCCI (LLNL),

    E-Print Network [OSTI]

    Utah, University of

    www.vacet.org E. WES BETHEL (LBNL), CHRIS JOHNSON (UTAH), KEN JOY (UC DAVIS), SEAN AHERN (ORNL (LLNL) E. WES BETHEL (LBNL), CHRIS JOHNSON (UTAH), KEN JOY (UC DAVIS), SEAN AHERN (ORNL), VALERIO

  13. The determination of permeability using a pulse decay technique

    E-Print Network [OSTI]

    Rowe, William Charlton

    1985-01-01T23:59:59.000Z

    pressures from 0 to 15, 000 psi and a maximum pore pressure of 16 psi. The core samples studied had permeabilities rang1ng from 40 to 319 md. They concluded that permeability of sandstone decreases with increase in overburden pressure. The major reduct1...on occurred over the range of 0 to 3000 psi overburden pressure. At 3000 psi overburden pressure, permeabilities ranged from 59 to 89 per cent of their orig1nal unstressed cond1tions, as illustrated in F1g. l. In 1969, Ritch and Kozik4 reported...

  14. Characterization and potential utilization of Whiterocks (Utah) tar sand bitumen

    SciTech Connect (OSTI)

    Tsai, C.H.; Deo, M.D.; Hanson, F.V.; Oblad, A.G. (Lab. of Coal Science, Synthetic Fuels and Catalysis, Dept. of Fuels Engineering, Univ. of Utah, Salt Lake City, UT (US))

    1991-01-01T23:59:59.000Z

    This paper reports on the native Whiterocks (Utah) tar sand bitumen that was separated into several boiling range fractions for detailed analysis and characterization. The lighter fraction (477-617 K) was evaluated for use as a transportation fuel and the residues ({gt}617 K and {gt}728 K) were evaluated for use as road asphalts. The 617 K plus residue from the Whiterocks bitumen can be classified as a viscosity grade AC-10 asphalt whereas the 728 K plus residue failed to meet asphalt specifications. Apart from the asphalt specification tests, several sophisticated techniques were used to characterize these fractions. The detailed structure of the low molecular weight portions of Whiterocks bitumen (477-617 K and 617-728 K) was determined by combined GC-MS. Several physical properties were also measured to evaluate the potential of the 477-617 K fraction as a high density/energy aviation turbine fuel. This lower molecular weight fraction of the bitumen contained predominantly naphthenic hydrocarbons and lesser concentrations of aromatic hydrocarbons. This was confirmed by the FTIR spectra and by the GC-MS analyses. As a result, the 477-617 K fraction appeared to be an excellent candidate as a feedstock for the production of high density, aviation turbine fuels following mild hydrotreating.

  15. Paleogeographic and paleotectonic development of Laramide basins of SW Utah

    SciTech Connect (OSTI)

    Goldstrand, P.M. (Oak Ridge National Lab., TN (United States))

    1993-04-01T23:59:59.000Z

    Initial Laramide-style deformation in SW Utah began in latest Cretaceous (late Campanian or Maastrichtian) time during deposition of the conglomeratic Canaan Peak Formation (TKcp) which thins onto a broad arch located on the northern Paunsaugunt Plateau (Paunsaugunt upwarp). This NNE-SSW trending upward affected sediment dispersal patterns during the early Paleocene and was the southern basin margin for braided fluvial sediments of the Grand Castle Formation (Tgc). These sediments were shed SE, from the inactive Sevier highlands, as far east as the Table Cliff Plateau. Laramide deformation increased during the late( ) Paleocene, after deposition of the Tgc, with the formation of at least two closed basins. During the late( ) Paleocene, the Johns Valley and Upper Valley anticlines, and Circle Cliff Uplift developed with sediment being shed to the SE, E, and SW into the Pine Hollow basin. During initial development of the Pine Hollow basin, the underlying TKcp and Tgc were reworked into the basal Pine Hollow Formation. Small alluvial fans bounded the basin, grading laterally into low-energy fluvial, playa mudflat, and ephemeral lacustrine environments. The basal Claron Formation represents a broad, closed basin that initially developed during the later Paleocene to the SW of the Pine Hollow basin. The Claron basin was bordered by low relief uplands, fluvial floodplains, and calcrete paleosols to the north and moderate relief uplands to the west and east. Shallow lacustrine deposition occurred to the south. Lacustrine onlap of Laramide structures by middle Eocene suggests cessation of Laramide deformation by this time.

  16. Hydrogen permeable protective coating for a catalytic surface

    DOE Patents [OSTI]

    Liu, Ping (Irvine, CA); Tracy, C. Edwin (Golen, CO); Pitts, J. Roland (Lakewood, CO); Lee, Se-Hee (Lakewood, CO)

    2007-06-19T23:59:59.000Z

    A protective coating for a surface comprising a layer permeable to hydrogen, said coating being deposited on a catalyst layer; wherein the catalytic activity of the catalyst layer is preserved.

  17. altered permeability states: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    compounds: The effect of structure and pH on Caco-2 cell permeability University of Kansas - KU ScholarWorks Summary: A tetrazole ring is often used in drug discovery as a...

  18. Extended correlations of porosity, permeability, and formation resistivity factor

    E-Print Network [OSTI]

    Ellis, Keith Wade

    1987-01-01T23:59:59.000Z

    obtained through a literature search, and the remainder were obtained through donations by Shell and Tenneco. The complete data set consists of permeability, porosity and formation factor measurements for twenty formations. Of the twenty data sets, seven...

  19. Experimental Study on Rock Deformation and Permeability Variation

    E-Print Network [OSTI]

    Ding, Jihui

    2013-08-01T23:59:59.000Z

    The development of a petroleum reservoir would inevitably induce a rearrangement of the in-situ stress field. The rearrangement of the stress field would then bring about a deformation of the reservoir rock and a change of the permeability...

  20. Combined permeable pavement and ground source heat pump systems

    E-Print Network [OSTI]

    Grabowiecki, Piotr

    2010-01-01T23:59:59.000Z

    The PhD thesis focuses on the performance assessment of permeable pavement systems incorporating ground source heat pumps (GSHP). The relatively high variability of temperature in these systems allows for the survival of pathogenic organisms within...

  1. Preliminary relative permeability estimates of methanehydrate-bearing sand

    SciTech Connect (OSTI)

    Seol, Yongkoo; Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis,George J.

    2006-05-08T23:59:59.000Z

    The relative permeability to fluids in hydrate-bearing sediments is an important parameter for predicting natural gas production from gas hydrate reservoirs. We estimated the relative permeability parameters (van Genuchten alpha and m) in a hydrate-bearing sand by means of inverse modeling, which involved matching water saturation predictions with observations from a controlled waterflood experiment. We used x-ray computed tomography (CT) scanning to determine both the porosity and the hydrate and aqueous phase saturation distributions in the samples. X-ray CT images showed that hydrate and aqueous phase saturations are non-uniform, and that water flow focuses in regions of lower hydrate saturation. The relative permeability parameters were estimated at two locations in each sample. Differences between the estimated parameter sets at the two locations were attributed to heterogeneity in the hydrate saturation. Better estimates of the relative permeability parameters require further refinement of the experimental design, and better description of heterogeneity in the numerical inversions.

  2. Permeability, Resistivity and Strength of Fouled Railroad Ballast

    E-Print Network [OSTI]

    Rahman, A. J.

    2013-08-31T23:59:59.000Z

    particles between the ballast particles; therefore, permeability and resistivity were also correlated. The strength properties of clean and fouled ballast were also evaluated using large direct shear box and modified direct shear box (extension in height...

  3. Stress-dependent permeability on tight gas reservoirs

    E-Print Network [OSTI]

    Rodriguez, Cesar Alexander

    2005-02-17T23:59:59.000Z

    People in the oil and gas industry sometimes do not consider pressure-dependent permeability in reservoir performance calculations. It basically happens due to lack of lab data to determine level of dependency. This thesis ...

  4. USING THE UTAH ENERGY BALANCE SNOW MELT MODEL TO QUANTIFY SNOW AND GLACIER MELT IN THE HIMALAYAN REGION

    E-Print Network [OSTI]

    Tarboton, David

    USING THE UTAH ENERGY BALANCE SNOW MELT MODEL TO QUANTIFY SNOW AND GLACIER MELT IN THE HIMALAYAN on a distributed version of the Utah Energy Balance (UEB) snowmelt model, referred to as UEBGrid, which was adapted: glacier and snow melt, Energy balance, model, remote sensing) INTRODUCTION Countries in Hindu Kush

  5. Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Students (2014-15 academic year)

    E-Print Network [OSTI]

    Johnson, Cari

    Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Students (2014-15 academic year): General Academic Advising for Geology & Geophysics Majors Ms. Judy for Geology Emphasis, Geoscience Major Prof. Brenda Bowen (email: brenda.bowen@ utah.edu, office: 341 FASB

  6. MEDIA RELEASE --Myron Willson, Sustainability Director, office 801-585-3173, Myron.willson@sustainability.utah.edu

    E-Print Network [OSTI]

    MEDIA RELEASE Contacts: -- Myron Willson, Sustainability Director, office 801-585-3173, Myron.willson@sustainability.purser@utah.edu U Home to First LEED-Certified Residence Hall in Utah New building sets the standard for sustainable using Leadership in Energy and Environmental Design standards, making it the first LEED

  7. Validity and limitations of gas-drive relative permeability measurement

    E-Print Network [OSTI]

    Gupta, Anand Kumar

    1971-01-01T23:59:59.000Z

    VALIDITY AND LIMITATIONS OF GAS-DRIVE RELA TI VE PERMEABILITY MEASUREMEN T A Thesis by ANAND KUMAR GUPTA Submitted to the Graduate College of Texas ARM University in partial fulfillxnent of the requirement for the degree of MASTER Ok SCIENCE... August, 1971 Major Subject: Petroleum Engineering VALIDITY AND LIMITATIONS OF GAS-DRIVE RELATIVE PERMEABILITY MEASUREMENT A Thesis by ANAND KUMAR GUPTA Approved as to style and content by: ( airman of Committee) ber) Head of Department) (Member...

  8. Water permeability and microstructure of three old concretes

    SciTech Connect (OSTI)

    Hearn, N.; Detwiler, R.J.; Sframeli, C. (Univ. of Toronto, Ontario (Canada). Dept. of Civil Engineering)

    1994-01-01T23:59:59.000Z

    Measurement of the permeability of concrete to water is complicated by the self-sealing phenomenon, the progressive reduction of flow during the test. Many researchers have attributed self sealing to the hydration of previously unreacted cement on exposure to water. This paper describes permeability tests on concretes continuously hydrated for 26 years. Backscattered electron images show that virtually no unhydrated cement remains in these specimens, yet they exhibit self-sealing behavior.

  9. Permeability and Dispersion Coefficients in Rocks with Fracture Network - 12140

    SciTech Connect (OSTI)

    Lee, C.K.; Htway, M.Z. [Handong Global University, 3 Namsong-ri, Heunghae-eub, Buk-gu, Pohang, Kyungbuk, 791-708 (Korea, Republic of); Yim, S.P. [Korea Atomic Energy Research Institute, P.O.Box 150, Yusong, Daejon, 305-600 (Korea, Republic of)

    2012-07-01T23:59:59.000Z

    Fluid flow and solute transport are considered for a rock medium with a fracture network with regard to the effective permeability and the dispersion coefficients. To investigate the effects of individual fractures a three-fracture system is chosen in which two are parallel and the third one connects the two at different angles. Specifically the micro-cell boundary-value problems(defined through multiple scale analysis) are solved numerically by using finite elements to calculate the permeability and dispersion coefficients. It is shown that the permeability depends significantly on the pattern of the fracture distribution and the dispersion coefficient is influenced by both the externally imposed pressure gradient (which also reflects the flow field) and the direction of the gradient of solute concentration on the macro-scale. From the calculations of the permeability and dispersion coefficients for solute in a rock medium with a fracture network the following conclusions are drawn. 1. The permeability of fractured medium depends on the primary orientation of the fracture network and is influenced by the connecting fractures in the medium. 2. The cross permeability, e.g., permeability in the direction normal to the direction of the external pressure gradient is rather insensitive to the orientation of the fracture network. 3. Calculation of permeability is most efficiently achieved with optimal discretization across individual fractures and is rather insensitive to the discretization along the fracture.. 4. The longitudinal dispersion coefficient Dxx of a fractured medium depends on both the macro-scale concentration gradient and the direction of the flow (pressure gradient). Hence both features must be considered when investigating solute transport in a fractured medium. (authors)

  10. Investigation of the rate sensitivity of pseudo relative permeabilities

    E-Print Network [OSTI]

    Brittain, Charles Finney

    1986-01-01T23:59:59.000Z

    of hypothetical reservoir stratifications were considered. Cross-sectional simulation runs were made using each stratification case for a range of waterflood injection rates and endpoint mobility ratios. Dynamic pseudo relative permeabilities were calculated... , These dynamic pseudo relative permeabilities were developed for those reservoirs that do not satisfy the assumptions of the vertical equilibrium or viscous-dominated pKr models. For waterflooding a stratified oil reservoir, fluid flow rate (velocity...

  11. The effect of various states of stress on the permeability of Berea sandstone

    E-Print Network [OSTI]

    Gatto, Henrietta G

    1984-01-01T23:59:59.000Z

    . . EXPERIMENTAL PROCEDURES. Rock Samples. Specimen Preparation. Triaxial Apparatus. Permeability Measurements. Data Reduction. Performance of the Tests. TEST RESULTS. Hydrostatic Stress Conditions. Triaxial Test Results; Stress vs. Permeability.... . Uniaxial Strain Data Triaxial Test Results; Stress-Strain Data. . . . . . . Observational Results. . . . . . . . . . . . . . . . . , . . . . . . . . . DISCUSSION. Whole Rock Permeability. Fracture (Pre-cut Specimen) Permeability. . . Significance...

  12. National Uranium Resource Evaluation: Cortez quadrangle, Colorado and Utah

    SciTech Connect (OSTI)

    Campbell, J A

    1982-09-01T23:59:59.000Z

    Six stratigraphic units are recognized as favorable for the occurrence of uranium deposits that meet the minimum size and grade requirements of the U.S. Department of Energy in the Cortez 1/sup 0/ x 2/sup 0/ Quadrangle, Utah and Colorado. These units include the Jurassic Salt Wash, Recapture, and Brushy Basin Members of the Morrison Formation and the Entrada Sandstone, the Late Triassic Chinle Formation, and the Permian Cutler Formation. Four areas are judged favorable for the Morrison members which include the Slick Rock, Montezuma Canyon, Cottonwood Wash and Hatch districts. The criteria used to determine favorability include the presence of the following (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox Basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Two areas of favorability are recognized for the Chinle Formation. These areas include the Abajo Mountain and Aneth-Ute Mountain areas. The criteria used to determine favorability include the sandstone-to-mudstone ratio for the Chinle Formation and the geographic distribution of the Petrified Forest Member of the Chinle Formation. Two favorable areas are recognized for the Cutler Formation. Both of these areas are along the northern border of the quadrangle between the Abajo Mountains and the Dolores River Canyon area. Two areas are judged favorable for the Entrada Sandstone. One area is in the northeast corner of the quadrangle in the Placerville district and the second is along the eastern border of the quadrangle on the southeast flank of the La Plata Mountains.

  13. LANDS WITH WILDERNESS CHARACTERISTICS, RESOURCE MANAGEMENT PLAN CONSTRAINTS, AND LAND EXCHANGES: CROSS-JURISDICTIONAL MANAGEMENT AND IMPACTS ON UNCONVENTIONAL FUEL DEVELOPMENT IN UTAHS UINTA BASIN

    SciTech Connect (OSTI)

    Keiter, Robert; Ruple, John; Holt, Rebecca; Tanana, Heather; McNeally, Phoebe; Tribby, Clavin

    2012-10-01T23:59:59.000Z

    Utah is rich in oil shale and oil sands resources. Chief among the challenges facing prospective unconventional fuel developers is the ability to access these resources. Access is heavily dependent upon land ownership and applicable management requirements. Understanding constraints on resource access and the prospect of consolidating resource holdings across a fragmented management landscape is critical to understanding the role Utahs unconventional fuel resources may play in our nations energy policy. This Topical Report explains the historic roots of the crazy quilt of western land ownership, how current controversies over management of federal public land with wilderness character could impact access to unconventional fuels resources, and how land exchanges could improve management efficiency. Upon admission to the Union, the State of Utah received the right to title to more than one-ninth of all land within the newly formed state. This land is held in trust to support public schools and institutions, and is managed to generate revenue for trust beneficiaries. State trust lands are scattered across the state in mostly discontinuous 640-acre parcels, many of which are surrounded by federal land and too small to develop on their own. Where state trust lands are developable but surrounded by federal land, federal land management objectives can complicate state trust land development. The difficulty generating revenue from state trust lands can frustrate state and local government officials as well as citizens advocating for economic development. Likewise, the prospect of industrial development of inholdings within prized conservation landscapes creates management challenges for federal agencies. One major tension involves whether certain federal public lands possess wilderness character, and if so, whether management of those lands should emphasize wilderness values over other uses. On December 22, 2010, Secretary of the Interior Ken Salazar issued Secretarial Order 3310, Protecting Wilderness Characteristics on Lands Managed by the Bureau of Land Management. Supporters argue that the Order merely provides guidance regarding implementation of existing legal obligations without creating new rights or duties. Opponents describe Order 3310 as subverting congressional authority to designate Wilderness Areas and as closing millions of acres of public lands to energy development and commodity production. While opponents succeeded in temporarily defunding the Orders implementation and forcing the Bureau of Land Management (BLM) to adopt a more collaborative approach, the fundamental questions remain: Which federal public lands possess wilderness characteristics and how should those lands be managed? The closely related question is: How might management of such resources impact unconventional fuel development within Utah? These questions remain pressing independent of the Order because the BLM, which manages the majority of federal land in Utah, is statutorily obligated to maintain an up-to-date inventory of federal public lands and the resources they contain, including lands with wilderness characteristics. The BLM is also legally obligated to develop and periodically update land use plans, relying on information obtained in its public lands inventory. The BLM cannot sidestep these hard choices, and failure to consider wilderness characteristics during the planning process will derail the planning effort. Based on an analysis of the most recent inventory data, lands with wilderness characteristics whether already subject to mandatory protection under the Wilderness Act, subject to discretionary protections as part of BLM Resource Management Plan revisions, or potentially subject to new protections under Order 3310 are unlikely to profoundly impact oil shale development within Utahs Uinta Basin. Lands with wilderness characteristics are likely to v have a greater impact on oil sands resources, particularly those resources found in the southern part of the state. Management requirements independent of l

  14. University of Utah, College of Education Master of Education in Special Education with

    E-Print Network [OSTI]

    Simons, Jack

    to change without notice--Updated 08/2014 The Masters of Education in Special Education with Elementary1 University of Utah, College of Education Master of Education in Special Education with Elementary Licensure through the Urban Institute for Teacher Education 2014-2015 Program information is subject

  15. University of Utah, College of Education Master of Education in Special Education with

    E-Print Network [OSTI]

    to change without notice--Updated 07/2012 The Master's of Education in Special Education with Elementary1 University of Utah, College of Education Master of Education in Special Education with Elementary Licensure through the Urban Institute for Teacher Education 2013-2014 Program information is subject

  16. University of Utah, College of Education Master of Education in Special Education with

    E-Print Network [OSTI]

    Tipple, Brett

    to change without notice--Updated 06/2014 The Masters of Education in Special Education with Elementary1 University of Utah, College of Education Master of Education in Special Education with Elementary Licensure through the Urban Institute for Teacher Education 2014-2015 Program information is subject

  17. Chemistry Major, Geology Emphasis See www.chem.utah.edu for details or contact

    E-Print Network [OSTI]

    Simons, Jack

    Chemistry Major, Geology Emphasis See www.chem.utah.edu for details or contact Professor Richard Laboratory for Scientists and Engineers I, II (1, 1) E. Chemistry, Geology Emphasis Core courses, plus: CHEM to Earth Systems (3) GEO 1115 Laboratory for Introduction to Earth Systems (1) GEO 3060 Structural Geology

  18. Department of Geology and Geophysics, University of Utah Spring 2002 down to earth

    E-Print Network [OSTI]

    Johnson, Cari

    1 Department of Geology and Geophysics, University of Utah Spring 2002 down to earth Message From of Bill Parry and Duke Picard resulted in openings in both Geological Engineer- ing and Sedimentary Geology. Our search for their replacements has been successful and we are once again at full strength

  19. University Health Care Plus University of Utah Employee Health Plan Healthy U -Medicaid

    E-Print Network [OSTI]

    Tipple, Brett

    University Health Care Plus University of Utah Employee Health Plan Healthy U - Medicaid NOTICE for Treatment, Payment and Health Care Operations The following categories describe the ways that the UUHP for the treatment activities of a health care provider. #12;Payment: We may use or disclose your personal

  20. Production of bitumen-derived hydrocarbon liquids from Utah's tar sands: Final report

    SciTech Connect (OSTI)

    Oblad, A.G.; Hanson, F.V.

    1988-07-01T23:59:59.000Z

    In previous work done on Utah's tar sands, it had been shown that the fluidized-bed pyrolysis of the sands to produce a bitumen-derived hydrocarbon liquid was feasible. The research and development work conducted in the small-scale equipment utilized as feed a number of samples from the various tar sand deposits of Utah elsewhere. The results from these studies in yields and quality of products and the operating experience gained strongly suggested that larger scale operation was in order to advance this technology. Accordingly, funding was obtained from the State of Utah through Mineral Leasing Funds administered by the College of Mines and Earth Sciences of the University of Utah to design and build a 4-1/2 inch diameter fluidized-bed pilot plant reactor with the necessary feeding and recovery equipment. This report covers the calibration and testing studies carried out on this equipment. The tests conducted with the Circle Cliffs tar sand ore gave good results. The equipment was found to operate as expected with this lean tar sand (less than 5% bitumen saturation). The hydrocarbon liquid yield with the Circle Cliffs tar sand was found to be greater in the pilot plant than it was in the small unit at comparable conditions. Following this work, the program called for an extensive run to be carried out on tar sands obtained from a large representative tar sand deposit to produce barrel quantities of liquid product. 10 refs., 45 figs., 11 tabs.

  1. University of Utah Financial & Business Services UMarket Step by Step Guide

    E-Print Network [OSTI]

    University of Utah Financial & Business Services UMarket Step by Step Guide UMarket Shopping Cart this Step by Step Guide as a supplement to the online UMarket training. Contact Income Accounting..........................................................................13 Appendix A: AVS, CVN, & Response Codes................15 Appendix B: UMarket Contact Information

  2. ACCOUNT REQUEST FORM Submit the completed form to adsystems@sa.utah.edu.

    E-Print Network [OSTI]

    Tipple, Brett

    from a student's educational record only with the student's written consent, except to school officials Records Access and Management Act, Utah Code Ann. 63-2-101 et seq. I will not disclose any information: ________________________________ Department Official Verifying New User Eligibility (Please Print): First Name

  3. Features PRINT THIS PAG E NOW University of Utah: C-SAFE Uses Linux

    E-Print Network [OSTI]

    Utah, University of

    Features PRINT THIS PAG E NOW University of Utah: C-SAFE Uses Linux HPCC in Fire Research 2 for delivering computational power to CPU-hungry scientific applications. A cluster consists of several commodity Simulation and Computing Program (ASCP), formerly ASCI, to form the Center for the Simulation of Accidental

  4. Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah

    E-Print Network [OSTI]

    Hacke, Uwe

    Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah Uwe G. Hacke capability of the xylem. This is due to drought-induced cavitation. We used the centrifuge method to measure the vulnerability of root and stem xylem to cavitation in six native shrub species. The shrubs fall into three

  5. Preliminary relative permeability estimates of methanehydrate-bearing sand

    SciTech Connect (OSTI)

    Seol, Yongkoo; Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis,George J.

    2006-05-08T23:59:59.000Z

    The relative permeability to fluids in hydrate-bearingsediments is an important parameter for predicting natural gas productionfrom gas hydrate reservoirs. We estimated the relative permeabilityparameters (van Genuchten alpha and m) in a hydrate-bearing sand by meansof inverse modeling, which involved matching water saturation predictionswith observations from a controlled waterflood experiment. We used x-raycomputed tomography (CT) scanning to determine both the porosity and thehydrate and aqueous phase saturation distributions in the samples. X-rayCT images showed that hydrate and aqueous phase saturations arenon-uniform, and that water flow focuses in regions of lower hydratesaturation. The relative permeability parameters were estimated at twolocations in each sample. Differences between the estimated parametersets at the two locations were attributed to heterogeneity in the hydratesaturation. Better estimates of the relative permeability parametersrequire further refinement of the experimental design, and betterdescription of heterogeneity in the numerical inversions.

  6. MRAP MONTICELLO PROJECTS FEDERAL FACILITY AGREEMENT REPORT

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^ IApril 11 DATAMRAP

  7. MSG MONTICELLO PROJECTS FEDERAL FACILITIES AGREEMENT REPORT

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^ IApril 11

  8. MSG MONTICELLO PROJECTS FEDERAL FACILITY AGREEMENT REPORT

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^ IApril 11August 2004

  9. MSG MONTICELLO PROJECTS FEDERAL FACILITY AGREEMENT REPORT

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^ IApril 11August

  10. MSG MONTICELLO PROJECTS FEDERAL FACILITY AGREEMENT REPORT

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^ IApril

  11. MSG MONTICELLO PROJECTS FEDERAL FACILITY AGREEMENT REPORT

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^ IAprilSeptember/October

  12. MSG MONTICELLO PROJECTS FEDERAL FACILITY AGREEMENT REPORT

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^

  13. MSG MONTICELLO PROJECTS FEDERAL FACILITY AGREEMENT REPORT

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^August/September 2005

  14. Monticello, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinutemanVista CapitalMonterey,Ohio:

  15. DOE - Office of Legacy Management -- Monticello

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp - CT 0-01 FUSRAPMonsanto Chemical Company

  16. Monticello National Priorities List (NPL) Sites

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourth Five-Year38Report3 Through AprilSiteS

  17. Upscaling verticle permeability within a fluvio-aeolian reservoir

    SciTech Connect (OSTI)

    Thomas, S.D.; Corbett, P.W.M.; Jensen, J.L. [Heriot-Watt Univ., Edinburgh (United Kingdom)

    1997-08-01T23:59:59.000Z

    Vertical permeability (k{sub v}) is a crucial factor in many reservoir engineering issues. To date there has been little work undertaken to understand the wide variation of k{sub v} values measured at different scales in the reservoir. This paper presents the results of a study in which we have modelled the results of a downhole well tester using a statistical model and high resolution permeability data. The work has demonstrates and quantifies a wide variation in k{sub v} at smaller, near wellbore scales and has implications for k{sub v} modelling at larger scales.

  18. Importance of Low Permeability Natural Gas Reservoirs (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    Production from low-permeability reservoirs, including shale gas and tight gas, has become a major source of domestic natural gas supply. In 2008, low-permeability reservoirs accounted for about 40% of natural gas production and about 35% of natural gas consumption in the United States. Permeability is a measure of the rate at which liquids and gases can move through rock. Low-permeability natural gas reservoirs encompass the shale, sandstone, and carbonate formations whose natural permeability is roughly 0.1 millidarcies or below. (Permeability is measured in darcies.)

  19. A new hypothesis for organic preservation of Burgess Shale taxa in the middle Cambrian Wheeler Formation, House Range, Utah

    E-Print Network [OSTI]

    Lyubomirsky, Ilya

    Formation, House Range, Utah Robert R. Gainesa,*, Martin J. Kennedyb , Mary L. Droserb a Geology Department of nonmineralized tissues provides unparalleled anatomical and ecological information (Allison and Briggs, 1991

  20. EIS-0099: Remedial Actions at the Former Vitro Chemical Company Site, South Salt Lake, Salt Lake County, Utah

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of various scenarios associated with the cleanup of those residues remaining at the abandoned uranium mill tailings site located in South Salt Lake, Utah.

  1. Characterizing Curing-Cement Slurries by Permeability, Tensile Strength,

    E-Print Network [OSTI]

    Backe, Knut

    Characterizing Curing-Cement Slurries by Permeability, Tensile Strength, and Shrinkage K.R. Backe oilwell cements. The results show that the curing characteristics are a function of temperature and that there is a correlation between shrinkage and cement content. The paper also introduces a new mechanism for gas migration

  2. MULTILEVEL FAST MULTIPOLE METHOD FOR MODELING PERMEABLE STRUCTURES

    E-Print Network [OSTI]

    Sarabandi, Kamal

    MULTILEVEL FAST MULTIPOLE METHOD FOR MODELING PERMEABLE STRUCTURES USING CONFORMAL FINITE ELEMENTS #12;Copyright c Kubilay Sertel All Rights Reserved 2003 #12;ABSTRACT MULTILEVEL FAST MULTIPOLE METHOD fast multipole method for impen- etrable targets in the context of flat-triangular geometry

  3. Permeable Interlocking Concrete Pavement (PICP) for Stormwater Management

    E-Print Network [OSTI]

    Permeable Interlocking Concrete Pavement (PICP) for Stormwater Management Benefits and Uses Potential for Extended Pavement Life Due to Well Drained Base and Reduced Freeze-Thaw No curing time Cost Can Be Comparable for PICP with Reduced Stormwater Infrastructure VS. Standard Pavement

  4. An asymptotic model of seismic reflection from a permeable layer

    SciTech Connect (OSTI)

    Silin, D.; Goloshubin, G.

    2009-10-15T23:59:59.000Z

    Analysis of compression wave propagation in a poroelastic medium predicts a peak of reflection from a high-permeability layer in the low-frequency end of the spectrum. An explicit formula expresses the resonant frequency through the elastic moduli of the solid skeleton, the permeability of the reservoir rock, the fluid viscosity and compressibility, and the reservoir thickness. This result is obtained through a low-frequency asymptotic analysis of Biot's model of poroelasticity. A review of the derivation of the main equations from the Hooke's law, momentum and mass balance equations, and Darcy's law suggests an alternative new physical interpretation of some coefficients of the classical poroelasticity. The velocity of wave propagation, the attenuation factor, and the wave number, are expressed in the form of power series with respect to a small dimensionless parameter. The absolute value of this parameter is equal to the product of the kinematic reservoir fluid mobility and the wave frequency. Retaining only the leading terms of the series leads to explicit and relatively simple expressions for the reflection and transmission coefficients for a planar wave crossing an interface between two permeable media, as well as wave reflection from a thin highly-permeable layer (a lens). Practical applications of the obtained asymptotic formulae are seismic modeling, inversion, and at-tribute analysis.

  5. Watershed characteristics contributing to the 1983-84 debris flows in the Wasatch Range, Davis County, Utah

    E-Print Network [OSTI]

    Coleman, William Kevin

    1991-01-01T23:59:59.000Z

    WATERSHED CHARACTERISTICS CONTRIBUTING TO THE 3. 983-84 DEBRIS FLOWS IN THE WASATCH RANGE, DAVIS COUNTY ?UTAH A Thesis by WILLIAM KEVIN COLEMAN Submitted to Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1991 Major Subject: Geology WATERSHED CHARACTERISTICS CONTRIBUTING TO THE 1. 983 ? 84 DEBRIS FLOWS IN THE WASATCH RANGE, DAVIS COUNTY, UTAH A Thesis by WILLIAM KEVIN COLEMAN Approved...

  6. Property measurement and correlation for homogeneous and naturally fractured low permeability cores

    E-Print Network [OSTI]

    Fan, Jin

    1993-01-01T23:59:59.000Z

    pseudopressures for fracture permeabilities of I, 10, 100, and 1000 md are plotted versus time, with other parameters being constant. Fig, 6. 3 shows that as fracture permeability increases, the convergence time decreases because the rate of gas flow from...

  7. Evidence of Pressure Dependent Permeability in Long-Term Shale Gas Production and Pressure Transient Responses

    E-Print Network [OSTI]

    Vera Rosales, Fabian 1986-

    2012-12-11T23:59:59.000Z

    The current state of shale gas reservoir dynamics demands understanding long-term production, and existing models that address important parameters like fracture half-length, permeability, and stimulated shale volume assume constant permeability...

  8. LARGE SCALE PERMEABILITY TEST OF THE GRANITE IN THE STRIPA MINE AND THERMAL CONDUCTIVITY TEST

    E-Print Network [OSTI]

    Lundstrom, L.

    2011-01-01T23:59:59.000Z

    PERMEABILITY TEST OF THE GRANITE' IN THE STRIPA MINE AND,PERMEABILITY TEST OF THE GRANITE IN THE STRIPA MINE ANDPERMEABILITY TEST OF THE GRANITE IN THE STRIPA MINE AND

  9. Evidence of Pressure Dependent Permeability in Long-Term Shale Gas Production and Pressure Transient Responses

    E-Print Network [OSTI]

    Vera Rosales, Fabian 1986-

    2012-12-11T23:59:59.000Z

    The current state of shale gas reservoir dynamics demands understanding long-term production, and existing models that address important parameters like fracture half-length, permeability, and stimulated shale volume assume constant permeability...

  10. Evaluation of a permeability-porosity relationship in a low permeability creeping material using a single transient test

    E-Print Network [OSTI]

    Ghabezloo, Siavash; Saint-Marc, Jrmie; 10.1016/j.ijrmms.2008.10.003

    2008-01-01T23:59:59.000Z

    A method is presented for the evaluation of the permeability-porosity relationship in a low-permeability porous material using the results of a single transient test. This method accounts for both elastic and non-elastic deformations of the sample during the test and is applied to a hardened class G oil well cement paste. An initial hydrostatic undrained loading is applied to the sample. The generated excess pore pressure is then released at one end of the sample while monitoring the pore pressure at the other end and the radial strain in the middle of the sample during the dissipation of the pore pressure. These measurements are back analysed to evaluate the permeability and its evolution with porosity change. The effect of creep of the sample during the test on the measured pore pressure and volume change is taken into account in the analysis. This approach permits to calibrate a power law permeability-porosity relationship for the tested hardened cement paste. The porosity sensitivity exponent of the power...

  11. Permeability of illite-bearing shale: 2. Influence of fluid chemistry on flow and functionally

    E-Print Network [OSTI]

    Herbert, Bruce

    Permeability of illite-bearing shale: 2. Influence of fluid chemistry on flow and functionally; accepted 14 July 2004; published 14 October 2004. [1] Bedding-parallel permeability of illite-rich shale Geochemistry: Low-temperature geochemistry; KEYWORDS: permeability, shale, fluid chemistry Citation: Kwon, O

  12. Primary oil-shale resources of the Green River Formation in the eastern Uinta Basin, Utah

    SciTech Connect (OSTI)

    Trudell, L.G.; Smith, J.W.; Beard, T.N.; Mason, G.M.

    1983-04-01T23:59:59.000Z

    Resources of potential oil in place in the Green River Formation are measured and estimated for the primary oil-shale resource area east of the Green River in Utah's Uinta Basin. The area evaluated (Ts 7-14 S, Rs 19-25 E) includes most of, and certainly the best of Utah's oil-shale resource. For resource evaluation the principal oil-shale section is divided into ten stratigraphic units which are equivalent to units previously evaluated in the Piceance Creek Basin of Colorado. Detailed evaluation of individual oil-shale units sampled by cores, plus estimates by extrapolation into uncored areas indicate a total resource of 214 billion barrels of shale oil in place in the eastern Uinta Basin.

  13. EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah

    Broader source: Energy.gov [DOE]

    The Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Environmental Impact Statement and associated supplements and amendments provides information on the environmental impacts of the U.S. Department of Energys (DOEs) proposal to (1) remediate approximately 11.9 million tons of contaminated materials located on the Moab site and approximately 39,700 tons located on nearby vicinity properties and (2) develop and implement a ground water compliance strategy for the Moab site using the framework of the Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water Project (DOE/EIS-0198, October 1996). The surface remediation alternatives analyzed in the EIS include on-site disposal of the contaminated materials and off-site disposal at one of three alternative locations in Utah using one or more transportation options: truck, rail, or slurry pipeline.

  14. A probabilistic investigation of slope stability in the Wasatch Range, Davis County, Utah

    E-Print Network [OSTI]

    Eblen, James Storey

    1991-01-01T23:59:59.000Z

    . LISA (Level I Stability Analysis), a U. S. Forest Service probabilistic, slope stability model, and a deterministic model, dLISA, will be used in this study. The applicability of the two models will be established as follows: 1) Establish parametric... processes. Keaton (1988) developed a probabilistic model to evaluate hazards that are associated with alluvial fan sedimentation in Davis County, Utah. Keaton concluded that most of the canyons which yielded large volumes of sediment in 1983 and 1984 had...

  15. Bedrock structure, lithology and ground water: influences on slope failure initiation in Davis County, Utah

    E-Print Network [OSTI]

    Ala, Souren Nariman

    1990-01-01T23:59:59.000Z

    , for his input. The Salt Lake City office of Dames and Moore generously provided for me to print the results of my Viii geophysical surveys. Mr. Roger Fallon of Salt Lake City did us a great service by flying us around the Wasatch Front canyons; much... Complex between Farmington and Stone Creeks. . . . . . . . . . . . pocket INTRODUCTION Rapid population growth in the urban area along the eastern border of the Great Salt Lake, Utah, has led to residential development in the western foothills...

  16. EIS-0450: TransWest Express Transmission Project in Wyoming, Colorado, Utah, and Nevada

    Broader source: Energy.gov [DOE]

    This EIS, prepared jointly by DOE's Western Area Power Administration and the Department of the Interior's Bureau of Land Management (Wyoming State Office), evaluates the potential environmental impacts of granting a right-of-way for the TransWest Express Transmission Project and amending a land use plan. The project consists of an overhead transmission line that would extend approximately 725 miles from south-central Wyoming, through Colorado and Utah. Western proposes to be a joint owner of the project.

  17. Source Characterization of the August 6, 2007 Crandall Canyon Mine Seismic Event in Central Utah

    SciTech Connect (OSTI)

    Ford, S R; Dreger, D S; Walter, W R

    2008-07-01T23:59:59.000Z

    On August 6, 2007 a local magnitude 3.9 seismic event occurred at 08:48:40 UTC in central Utah. The epicenter is within the boundaries of the Crandall Canyon coal mine (c.f. Pechmann et al., this volume). We performed a moment tensor analysis with complete, three-component seismic recordings from stations operated by the USGS, the University of Utah, and EarthScope. The analysis method inverts the seismic records to retrieve the full seismic moment tensor, which allows for interpretation of both shearing (e.g., earthquakes) and volume-changing (e.g., explosions and collapses) seismic events. The results show that most of the recorded seismic wave energy is consistent with an underground collapse in the mine. We contrast the waveforms and moment tensor results of the Crandall Canyon Mine seismic event to a similar sized tectonic earthquake about 200 km away near Tremonton, Utah, that occurred on September 1, 2007. Our study does not address the actual cause of the mine collapse.

  18. Tubular hydrogen permeable metal foil membrane and method of fabrication

    DOE Patents [OSTI]

    Paglieri, Stephen N.; Birdsell, Stephen A.; Barbero, Robert S.; Snow, Ronny C.; Smith, Frank M.

    2006-04-04T23:59:59.000Z

    A tubular hydrogen permeable metal membrane and fabrication process comprises obtaining a metal alloy foil having two surfaces, coating the surfaces with a metal or metal alloy catalytic layer to produce a hydrogen permeable metal membrane, sizing the membrane into a sheet with two long edges, wrapping the membrane around an elongated expandable rod with the two long edges aligned and overlapping to facilitate welding of the two together, placing the foil wrapped rod into a surrounding fixture housing with the two aligned and overlapping foil edges accessible through an elongated aperture in the surrounding fixture housing, expanding the elongated expandable rod within the surrounding fixture housing to tighten the foil about the expanded rod, welding the two long overlapping foil edges to one another generating a tubular membrane, and removing the tubular membrane from within the surrounding fixture housing and the expandable rod from with the tubular membrane.

  19. An analysis of the accuracy of relative permeability

    E-Print Network [OSTI]

    Tao, Teh-Ming

    1982-01-01T23:59:59.000Z

    Properties Used in Sample Study. . . 2. Summary of Cases Run 34 3. Summary of Sample Properties. 36 4. Comparison of the Relative Error 51 5. Error in Water Infection Rate. 57 6. Influence of Different Magnitude of Measurement Error. 75 LIST QF FIGURES.... Pressure Variation. 27 8. Simulated Measurement Errors. 31 Estimation Deviation Distribution of k for Cases 1, 5, 6, 7. 41 10 Estimation Deviation Distribution of k for Cases 1, 5, 6, 7. 42 Standard Deviation Distribution of Oil Relative Permeability...

  20. Low permeability gas reservoir production using large hydraulic fractures

    E-Print Network [OSTI]

    Holditch, Stephen A

    1970-01-01T23:59:59.000Z

    extending up to three thousand feet from the producing well. Also, a model simulating a nuclear cavity was designed. This model simulated a well containing an eighty foot radius cavity with a fractured zone of one hundred times the reservoir permeability... of each system was prepared. The results of this study showed that all fractures of greater than one thousand foot radius had greater productivity and greater cumu- lative gas produced than did the nuclear cavity. It appears that large hydraulic...

  1. Semi-analytical estimates of permeability obtained from capillary pressure

    E-Print Network [OSTI]

    Huet, Caroline Cecile

    2006-04-12T23:59:59.000Z

    ..............................................................................................................................................(2.7) Where ? is the pore size distribution index. This model is commonly used for consolidated porous media. In 1980, Van Genuchten26 adopted a capillary pressure model to predict the hydraulic conductivity of unsaturated soils. Van... on permeability and its prediction ? the first part of the derivation follows the work of Wyllie and Gardner.3 Their model describes the porous media as a bundle of capillary tubes featuring a random connection of pore spaces. Some of the assumptions made are...

  2. Test device for measuring permeability of a barrier material

    DOE Patents [OSTI]

    Reese, Matthew; Dameron, Arrelaine; Kempe, Michael

    2014-03-04T23:59:59.000Z

    A test device for measuring permeability of a barrier material. An exemplary device comprises a test card having a thin-film conductor-pattern formed thereon and an edge seal which seals the test card to the barrier material. Another exemplary embodiment is an electrical calcium test device comprising: a test card an impermeable spacer, an edge seal which seals the test card to the spacer and an edge seal which seals the spacer to the barrier material.

  3. Porosity and permeability of Eastern Devonian gas shale

    SciTech Connect (OSTI)

    Soeder, D.J.

    1988-03-01T23:59:59.000Z

    High-precision core analysis has been performed on eight Devonian gas shale samples from the Appalachian basin. Seven of the core samples consist of the Upper Devonian Age Huron member of the Ohio shale, six of which came from wells in the Ohio River valley, and the seventh from a well in east-central Kentucky. The eight core sample consists of Middle Devonian Age Marcellus shale obtained from a well in Morgantown, WV. The core analysis was originally intended to supply accurate input data for Devonian shale numerical reservoir simulation. Unexpectedly, the work has identified a number of geological factors that influence gas production from organic-rich shales. The presence of petroleum as a mobile liquid phase in the pores of all seven Huron shale samples effectively limits the gas porosity of this formation to less than 0.2%, and gas permeability of the rock matrix is commonly less than 0.1 ..mu..d at reservoir stress. The Marcellus shale core, on the other hand, was free of a mobile liquid phase and had a measured gas porosity of approximately 10%, and a surprisingly high permeability of 20 ..mu..d. Gas permeability of the Marcellus was highly stress-dependent, however; doubling the net confining stress reduced the permeability by nearly 70%. The conclusion reached from this study is that the gas productivity potential of Devonian shale in the Appalachian basin is influenced by a wide range of geologic factors. Organic content, thermal maturity, natural fracture spacing, and stratigraphic relationships between gray and black shales all affect gas content and mobility. Understanding these factors can improve the exploration and development of Devonian shale gas.

  4. The averaging process in permeability estimation from well-test data

    SciTech Connect (OSTI)

    Oliver, D.S. (Saudi Aramco (SA))

    1990-09-01T23:59:59.000Z

    Permeability estimates from the pressure derivative or the slope of the semilog plot usually are considered to be averages of some large ill-defined reservoir volume. This paper presents results of a study of the averaging process, including identification of the region of the reservoir that influences permeability estimates, and a specification of the relative contribution of the permeability of various regions to the estimate of average permeability. The diffusion equation for the pressure response of a well situated in an infinite reservoir where permeability is an arbitrary function of position was solved for the case of small variations from a mean value. Permeability estimates from the slope of the plot of pressure vs. the logarithm of drawdown time are shown to be weighted averages of the permeabilities within an inner and outer radius of investigation.

  5. The effects of viscous forces on three-phase relative permeability

    SciTech Connect (OSTI)

    Maloney, D.R.; Mahmood, S.M.; Honarpour, M.M.

    1989-04-01T23:59:59.000Z

    The overall objective of Three-Phase Relative Permeability Project (BE9) is to develop guidelines for improving the accuracy of three-phase relative permeability determinations. This report summarizes previous studies and explains the progress made at NIPER on studying the effect of variations in viscous forces on three-phase relative permeabilities by changing the viscosity of both wetting and nonwetting phases. Significant changes were observed due to viscosity variations. An increase in oil viscosity reduced the relative permeability to gas; an increase in brine/(wetting-phase) viscosity reduced the relative permeability to brine. A slight increase in gas relative permeability was also observed. These observations suggest that the viscosities of both oil and water influence three-phase permeability data. During this study, data scatter was sometimes encountered which was comparable to that of published results. The causes of this scatter are outlined in this report and remedial attempts are discussed. 20 refs., 16 figs., 5 tabs.

  6. Maerz, N. H., and Palangio, 2000. Online fragmentation analysis for grinding and crushing control. Control 2000 Symposium, 2000 SME Annual Meeting, March 1, 2000, Salt Lake City, Utah, SME, pp.

    E-Print Network [OSTI]

    Maerz, Norbert H.

    . Control 2000 Symposium, 2000 SME Annual Meeting, March 1, 2000, Salt Lake City, Utah, SME, pp. 109

  7. State-Of-The-Art in Permeability Determination From Well Log Data: Part 2-Verifiable, Accurate Permeability Predictions, the Touch-Stone of All Models

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    SPE 30979 State-Of-The-Art in Permeability Determination From Well Log Data: Part 2- Verifiable prediction from well log data, is accurate and verifiable prediction of permeability for wells from which only the well log data is available. So far all the available models and techniques have been tried

  8. Department of Geology and Geophysics-Frederick A. Sutton Building 115 South 1460 East, Room 383, Salt Lake City, Utah 84112-0102

    E-Print Network [OSTI]

    Johnson, Cari

    Department of Geology and Geophysics- Frederick A. Sutton Building to The University of Utah Department of Geology and Geophysics Donor's Information, to the Department of Geology and Geophysics of the University of Utah as an unrestricted gift. Fill out and sign

  9. Analysis of Fault Permeability Using Mapping and Flow Modeling, Hickory Sandstone Aquifer, Central Texas

    SciTech Connect (OSTI)

    Nieto Camargo, Jorge E., E-mail: jorge.nietocamargo@aramco.com; Jensen, Jerry L., E-mail: jjensen@ucalgary.ca [University of Calgary, Department of Chemical and Petroleum Engineering (Canada)

    2012-09-15T23:59:59.000Z

    Reservoir compartments, typical targets for infill well locations, are commonly created by faults that may reduce permeability. A narrow fault may consist of a complex assemblage of deformation elements that result in spatially variable and anisotropic permeabilities. We report on the permeability structure of a km-scale fault sampled through drilling a faulted siliciclastic aquifer in central Texas. Probe and whole-core permeabilities, serial CAT scans, and textural and structural data from the selected core samples are used to understand permeability structure of fault zones and develop predictive models of fault zone permeability. Using numerical flow simulation, it is possible to predict permeability anisotropy associated with faults and evaluate the effect of individual deformation elements in the overall permeability tensor. We found relationships between the permeability of the host rock and those of the highly deformed (HD) fault-elements according to the fault throw. The lateral continuity and predictable permeability of the HD fault elements enhance capability for estimating the effects of subseismic faulting on fluid flow in low-shale reservoirs.

  10. Comment and response document for the ground water protection strategy for the Uranium Mill Tailings Site at Green River, Utah

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The US Department of Energy (DOE) responses to comments from both the US Nuclear Regulatory Commission (NRC) and the state of Utah are provided in this document. The Proposed Ground Water Protection Strategy for the Uranium Mill Tailings Site at Green River, Utah, presents the proposed (modified) ground water protection strategy for the disposal cell at the Green River disposal site for compliance with Subpart A of 40 CFR Part 192. Before the disposal cell was constructed, site characterization was conducted at the Green River Uranium Mill Tailings Remedial Action (UMTRA) Project site to determine an acceptable compliance strategy. Results of the investigation are reported in detail in the final remedial action plan (RAP) (DOE, 1991a). The NRC and the state of Utah have accepted the final RAP. The changes in this document relate only to a modification of the compliance strategy for ground water protection.

  11. Liquid Spills on Permeable Soil Surfaces: Experimental Confirmations

    SciTech Connect (OSTI)

    Simmons, Carver S.; Keller, Jason M.

    2005-09-29T23:59:59.000Z

    Predictive tools for assessing the quantity of a spill on a soil from the observed spreading area could contribute to improving remediation when it is necessary. On a permeable soil, the visible spill area only hints about the amount of liquid that might reside below the surface. An understanding of the physical phenomena involved with spill propagation on a soil surface is key to assessing the liquid amount possibly present beneath the surface. The objective of this study is an improved prediction capability for spill behavior.

  12. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    SciTech Connect (OSTI)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11T23:59:59.000Z

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific analyses. Additional information about the PEIS can be found at http://ostseis.anl.gov.

  13. Permeability of CoNbZr amorphous thin films over a wide frequency range

    SciTech Connect (OSTI)

    Koyama, H.; Tsujimoto, H.; Shirae, K.

    1987-09-01T23:59:59.000Z

    CoNbZr amorphous films have attracted the attention of many researchers because of their high saturation magnetization, high permeability, low coercivity, and nearly zero magnetostriction. For these films to be used, one of the important magnetic properties is the behavior of the permeability over a wide frequency range. We have measured the permeability of a square-shaped magnetic film (13 mm x 55 mm) sputtered on a glass substrate from 1 MHz to 400 MHz using a stripline. Over 400 MHz, the permeability of the magnetic film was measured using a ring-shaped sample mounted in a coaxial fixture. The wall motion permeability of CoNbZr amorphous films decreases from 1 kHz to nearly zero at 1 MHz. The rotation permeability is constant to 100 MHz and ferromagnetic resonance is observed near 1 GHz.

  14. Final audit report of remedial action construction at the UMTRA Project Mexican Hat, Utah -- Monument Valley, Arizona, sites

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The final audit report for remedial action at the Mexican Hat, Utah, Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and QA remedial action close-out inspections performed by the US Department of Energy (DOE) and the Technical Assistance Contractor (TAC); on-site construction reviews (OSCR) performed by the US Nuclear Regulatory Commission (NRC); and a surveillance performed by the Navajo Nation. This report refers to remedial action activities performed at the Mexican Hat, Utah--Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites.

  15. Kennecott Utah Copper Corporation: Facility Utilizes Energy Assessments to Identify $930,000 in Potential Annual Savings

    SciTech Connect (OSTI)

    Not Available

    2004-07-01T23:59:59.000Z

    Kennecott Utah Copper Corporation (KUCC) used targeted energy assessments in the smelter and refinery at its Bingham Canyon Mine, near Salt Lake City, Utah. The assessment focused mainly on the energy-intensive processes of copper smelting and refining. By implementing the projects identified, KUCC could realize annual cost savings of $930,000 and annual energy savings of 452,000 MMBtu. The projects would also reduce maintenance, repair costs, waste, and environmental emissions. One project would use methane gas from an adjacent municipal dump to replace natural gas currently used to heat the refinery electrolyte.

  16. Survey of literature relating to energy development in Utah's Colorado Plateau

    SciTech Connect (OSTI)

    Larsen, A.

    1980-06-01T23:59:59.000Z

    This study examines various energy resources in Utah including oil impregnated rocks (oil shale and oil sand deposits), geothermal, coal, uranium, oil and natural gas in terms of the following dimensions: resurce potential and location; resource technology, development and production status; resource development requirements; potential environmental and socio-economic impacts; and transportation tradeoffs. The advantages of minemouth power plants in comparison to combined cycle or hybrid power plants are also examined. Annotative bibliographies of the energy resources are presented in the appendices. Specific topics summarized in these annotative bibliographies include: economics, environmental impacts, water requirements, production technology, and siting requirements.

  17. Geological control of springs and seeps in the Farmington Canyon Complex, Davis County, Utah

    E-Print Network [OSTI]

    Skelton, Robyn Kaye

    1991-01-01T23:59:59.000Z

    of the Precambrian (Eardley, 1939). Hintze (1982) divided the Phanerozoic into six phases as illustrated in Figure 7. By the end of the Precambrian, the Northern Utah Highland was uplifted north and northwest of present day Salt Lake City (Figure 8). According... Ho ro tt lbrook Canyon 4 esslons e? Gt e. bbte ci o \\ Creek City SALT LAKE COUNTY Mrs Mill Creek I 5 10 KILOMETERS Figure 1. Geography of Wasatch Mountains (from Bryant, 1988). of the snowpack to remain high. Once melting started, high...

  18. Air Force program tests production of aviation turbine fuels from Utah and Kentucky bitumens

    SciTech Connect (OSTI)

    Not Available

    1986-09-01T23:59:59.000Z

    Ashland Petroleum Company and Sun Refining and Marketing participated in a US Air Force program to determine the costs, yields, physical characteristics, and chemical properties of aviation turbine fuels, Grades JP-4 and JP-8, produced from Kentucky and Utah bitumens. The processes used by both are summarized; Ashland used a different approach for each bitumen; Sun's processing was the same for both, but different from Ashland's. Chemical and physical properties are tabulated for the two raw bitumens. Properties of the eight fuels produced are compared with specification for similar type aviation turbine fuels.

  19. Long-term surveillance plan for the Mexican Hat disposal site, Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSPC documents the land ownership interests and details how the long-term care of the disposal site will be accomplished.

  20. Long-term surveillance plan for the Mexican Hat disposal site Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Mexican Hat, Utah, disposal site. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Mexican Hat disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

  1. Utah Division of Forestry, Fire and State Lands | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and tools |UC 54-2 -permitCommerceUtah

  2. Utah Proof of Beneficial Use of Water Application | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and tools |UC 54-2Full Proof ofUtahOffice

  3. A New Coal-Permeability Model: Internal Swelling Stress and FractureMatrix Interaction

    E-Print Network [OSTI]

    Liu, Hui-Hai; Rutqvist, Jonny

    2010-01-01T23:59:59.000Z

    L. : Adsorption-induced coal swelling and stress:acid gas sequestration into coal seams. J Geophys. Res. (fracturing on permeability of coal. Min. Sci. Technol. 3,

  4. anion-cation permeability correlates: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    outside cell High water Rose, Michael R. 16 Improved permeability prediction using multivariate analysis methods Texas A&M University - TxSpace Summary: . In statistics,...

  5. Effects of confining pressure, pore pressure and temperature on absolute permeability. SUPRI TR-27

    SciTech Connect (OSTI)

    Gobran, B.D.; Ramey, H.J. Jr.; Brigham, W.E.

    1981-10-01T23:59:59.000Z

    This study investigates absolute permeability of consolidated sandstone and unconsolidated sand cores to distilled water as a function of the confining pressure on the core, the pore pressure of the flowing fluid and the temperature of the system. Since permeability measurements are usually made in the laboratory under conditions very different from those in the reservoir, it is important to know the effect of various parameters on the measured value of permeability. All studies on the effect of confining pressure on absolute permeability have found that when the confining pressure is increased, the permeability is reduced. The studies on the effect of temperature have shown much less consistency. This work contradicts the past Stanford studies by finding no effect of temperature on the absolute permeability of unconsolidated sand or sandstones to distilled water. The probable causes of the past errors are discussed. It has been found that inaccurate measurement of temperature at ambient conditions and non-equilibrium of temperature in the core can lead to a fictitious permeability reduction with temperature increase. The results of this study on the effect of confining pressure and pore pressure support the theory that as confining pressure is increased or pore pressure decreased, the permeability is reduced. The effects of confining pressure and pore pressure changes on absolute permeability are given explicitly so that measurements made under one set of confining pressure/pore pressure conditions in the laboratory can be extrapolated to conditions more representative of the reservoir.

  6. Techniques to Handle Limitations in Dynamic Relative Permeability Measurements, SUPRI TR-128

    SciTech Connect (OSTI)

    Qadeer, Suhail; Brigham, William E.; Castanier, Louis M.

    2002-10-08T23:59:59.000Z

    The objective of this work was to understand the limitations of the conventional methods of calculating relative permeabilities from data obtained from displacement experiments.

  7. Liquid CO2 Displacement of Water in a Dual-Permeability Pore...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Permeability contrasts exist in multilayer geological formations under consideration for carbon sequestration. To improve our understanding of heterogeneous pore-scale...

  8. The role of geology in the behavior and choice of permeability predictors

    SciTech Connect (OSTI)

    Ball, L.D.; Corbett, P.W.M.; Jensen, J.L.; Lewis, J.J.M. [Heriot-Watt Univ., Edinburgh (United Kingdom)

    1997-03-01T23:59:59.000Z

    For effective flow-simulation models, it may be important to estimate permeability accurately over several scales of geological heterogeneity. Critical to the data analysis and permeability prediction are the volume of investigation and sampling interval of each petrophysical tool and how each relates to these geological scales. The authors examine these issues in the context of the As Sarah Field, Sirte Basin, Libya. A geological study of this braided fluvial reservoir has revealed heterogeneity at a series of scales. This geological hierarchy in turn possessed a corresponding hierarchy of permeability variation.The link between the geology and permeability was found to be very important in understanding well logs and core data and subsequent permeability upscaling. They found that the small scale (cm) permeability variability was better predicted using a flushed-zone resistivity, R{sub xo}, tool, rather than a wireline porosity measurement. The perm-resistivity correlation was strongest when the probe permeabilities were averaged to best match the window size of the wireline R{sub xo}. This behavior was explained by the geological variation present at this scale. For the larger scale geological heterogeneity, the production flowmeter highlighted discrepancies between flow data and averaged permeability. This yielded a layered sedimentological model interpretation and a change in averaging for permeability prediction at the bedset scale (ms-10 x ms).

  9. Semi-permeable vesicles composed of natural clay

    E-Print Network [OSTI]

    Anand B. Subramaniam; Jiandi Wan; Arvind Gopinath; Howard A. Stone

    2010-11-22T23:59:59.000Z

    We report a simple route to form robust, inorganic, semi-permeable compartments composed of montmorillonite, a natural plate-like clay mineral that occurs widely in the environment. Mechanical forces due to shear in a narrow gap assemble clay nanoplates from an aqueous suspension onto air bubbles. Translucent vesicles suspended in a single-phase liquid are produced when the clay-covered air bubbles are exposed to a variety of water-miscible organic liquids. These vesicles of clay are mechanically robust and are stable in water and other liquids. The formation of clay vesicles can be described by a physical mechanism that recognizes changes in the wetting characteristics of clay-covered air bubbles in organic liquids. The clay vesicles are covered with small pores and so intrinsically exhibit size-selective permeability, which allows spontaneous compartmentalization of self-assembling molecules in aqueous environments. The results we report here expand our understanding of potential paths to micro-compartmentalization in natural settings and are of relevance to theories of colloidal aggregation, mineral cycles, and the origins of life.

  10. 1 Compiled by Suzanne Darais, SJ Quinney Law Library, Univ. of Utah. If you have any suggestions for additions, please email me at suzanne.darais@law.utah.edu. Thanks.

    E-Print Network [OSTI]

    Capecchi, Mario R.

    links to free federal and state case opinions on the web. Can search Utah state cases back to 1996://www.washlaw.edu) A one-stop shop to free web sites for federal, state and foreign cases, statutes, regulations and other legal material. Cornell LII (http://www4.law.cornell.edu/uscode/) Contains links to hundreds of web

  11. Tiger Team Assessment of the Navel Petroleum and Oil Shale Reserves Colorado, Utah, and Wyoming

    SciTech Connect (OSTI)

    Not Available

    1992-07-01T23:59:59.000Z

    This report documents the Tiger Team Assessment of the Naval Petroleum Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW). NPOSR-CUW consists of Naval Petroleum Reserve Number 3 located near Casper, Wyoming; Naval Oil Shale Reserve Number I and Naval Oil Shale Reserve Number 3 located near Rifle, Colorado; and Naval Oil Shale Reserve Number 2 located near Vernal, Utah, which was not examined as part of this assessment. The assessment was comprehensive, encompassing environment, safety, and health (ES H) and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal NPOSR-CUW requirements was assessed. The NPOSR-CUW Tiger Team Assessment is part of a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.

  12. LANDFORMS GENERATED BY WIND EROSION OF NAVAJO SANDSTONE OUTCROPS AT THE WAVE (COLORADO PLATEAU, UTAH / ARIZONA BORDER)

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    LANDFORMS GENERATED BY WIND EROSION OF NAVAJO SANDSTONE OUTCROPS AT THE WAVE (COLORADO PLATEAU that are undercut by wind abrasion. In the photos above and to the left, note the microbially darkened rock surface Bedforms: Direct Evidence for Eolian Abrasion Arizona Utah wind wind wind wind wind wind The Wave "The Wave

  13. This article was downloaded by: [University of Utah], [Sarah Bush] On: 31 January 2012, At: 12:16

    E-Print Network [OSTI]

    Clayton, Dale H.

    This article was downloaded by: [University of Utah], [Sarah Bush] On: 31 January 2012, At: 12://www.tandfonline.com/loi/taca20 New host and locality records for Ixodes simplex Neumann and Ixodes vespertilionis Koch (Acari Available online: 31 Jan 2012 To cite this article: Sarah E. Bush & Richard G. Robbins (2012): New host

  14. National uranium resource evaluation program: hydrogeochemical and stream sediment reconnaissance basic data for Ely quadrangle, Nevada; Utah

    SciTech Connect (OSTI)

    Not Available

    1981-10-15T23:59:59.000Z

    Field and laboratory data are presented for 1937 sediment samples from the Ely Quadrangle, Nevada; Utah. The samples were collected by Savannah River Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee.

  15. Cash Management Pool Guidelines The Cash Management Pool was established by the University of Utah as a pooled fund for

    E-Print Network [OSTI]

    by the University of Utah as a pooled fund for the investment of State and other Public Funds. State and other Public Funds are funds that are derived from the operating revenue of the University, such as tuition with the University Investment Policies (Policy 3-050). B. Eligible Investments State and other Public Funds shall

  16. Proposed ground water protection strategy for the Uranium Mill Tailings Site at Green River, Utah. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    This document presents the US DOE water resources protection strategy for the Green River, Utah mill tailings disposal site. The modifications in the original plan are based on new information, including ground water quality data collected after remedial action was completed, and on a revised assessment of disposal cell design features, surface conditions, and site hydrogeology. All aspects are discussed in this report.

  17. How to set up WebAssign The class key for this course is utah 6162 8688

    E-Print Network [OSTI]

    Singh, Anurag

    How to set up WebAssign The class key for this course is utah 6162 8688 What to purchase: The text. Regardless of whether you do this, you must purchase Enhanced WebAssign (EWA), which will be used for homework, and additionally gives you many resources alongside the book. The textbook/WebAssign can

  18. Remedial Action Plan and final design for stabilization of the inactive uranium mill tailings at Green River, Utah. Volume 1, Text, Appendices A, B, and C: Final report

    SciTech Connect (OSTI)

    Matthews, M.L. [USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office; Alkema, K. [Utah Dept. of Health, Salt Lake City, UT (United States). Environmental Health Div.

    1991-03-01T23:59:59.000Z

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities that are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site located near Green River, Utah. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the state of Utah and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the state of Utah, and concurrence by the NRC, becomes Appendix 8 of the Cooperative Agreement.

  19. Effective Permeability Change in Wellbore Cement with Carbon Dioxide Reaction

    SciTech Connect (OSTI)

    Um, Wooyong; Jung, Hun Bok; Martin, Paul F.; McGrail, B. Peter

    2011-11-01T23:59:59.000Z

    Portland cement, a common sealing material for wellbores for geological carbon sequestration was reacted with CO{sub 2} in supercritical, gaseous, and aqueous phases at various pressure and temperature conditions to simulate cement-CO{sub 2} reaction along the wellbore from carbon injection depth to the near-surface. Hydrated Portland cement columns (14 mm diameter x 90 mm length; water-to-cement ratio = 0.33) including additives such as steel coupons and Wallula basalt fragments were reacted with CO{sub 2} in the wet supercritical (the top half) and dissolved (the bottom half) phases under carbon sequestration condition with high pressure (10 MPa) and temperature (50 C) for 5 months, while small-sized hydrated Portland cement columns (7 mm diameter x 20 mm length; water-to-cement ratio = 0.38) were reacted with CO{sub 2} in dissolved phase at high pressure (10 MPa) and temperature (50 C) for 1 month or with wet CO{sub 2} in gaseous phase at low pressure (0.2 MPa) and temperature (20 C) for 3 months. XMT images reveal that the cement reacted with CO{sub 2} saturated groundwater had degradation depth of {approx}1 mm for 1 month and {approx}3.5 mm for 5 month, whereas the degradation was minor with cement exposure to supercritical CO{sub 2}. SEM-EDS analysis showed that the carbonated cement was comprised of three distinct zones; the innermost less degraded zone with Ca atom % > C atom %, the inner degraded zone with Ca atom % {approx} C atom % due to precipitation of calcite, the outer degraded zone with C atom % > Ca atom % due to dissolution of calcite and C-S-H, as well as adsorption of carbon to cement matrix. The outer degraded zone of carbonated cement was porous and fractured because of dissolution-dominated reaction by carbonic acid exposure, which resulted in the increase in BJH pore volume and BET surface area. In contrast, cement-wet CO{sub 2}(g) reaction at low P (0.2 MPa)-T (20 C) conditions for 1 to 3 months was dominated by precipitation of micron-sized calcite on the outside surface of cement, which resulted in the decrease in BJH pore volume and BET surface area. Cement carbonation and pore structure change are significantly dependent on pressure and temperature conditions as well as the phase of CO{sub 2}, which controls the balance between precipitation and dissolution in cement matrix. Geochemical modeling result suggests that ratio of solid (cement)-to-solution (carbonated water) has a significant effect on cement carbonation, thus the cement-CO{sub 2} reaction experiment needs to be conducted under realistic conditions representing the in-situ wellbore environment of carbon sequestration field site. Total porosity and air permeability for a duplicate cement column with water-to-cement ratio of 0.38 measured after oven-drying by Core Laboratories using Boyle's Law technique and steady-state method were 31% and 0.576 mD. A novel method to measure the effective liquid permeability of a cement column using X-ray micro-tomography images after injection of pressurized KI (potassium iodide) is under development by PNNL. Preliminary results indicate the permeability of a cement column with water-to-cement ratio of 0.38 is 4-8 mD. PNNL will apply the method to understand the effective permeability change of Portland cement by CO{sub 2}(g) reaction under a variety of pressure and temperature conditions to develop a more reliable well-bore leakage risk model.

  20. System and method for measuring permeability of materials

    SciTech Connect (OSTI)

    Hallman, Jr., Russell Louis; Renner, Michael John

    2013-07-09T23:59:59.000Z

    Systems and methods are provided for measuring the permeance of a material. The permeability of the material may also be derived. Systems typically provide a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  1. Report on Hydrologic Flow in Low-Permeability Media

    SciTech Connect (OSTI)

    Liu, Hui-Hai; Birkholzer, Jens

    2013-11-13T23:59:59.000Z

    We demonstrate that under normal conditions (under which there are no intersections between tunnels/drifts and conductive geological structures, such as faults), the water flow velocity in the damage zone, as a result of non-Darcian flow behavior, is extremely small such that solute transport is dominated by diffusion, rather than advection. We show that unless non-Darcian flow behavior is considered, significant errors can occur in the measured relative-permeability values. We propose a hypothesis to consider the temperature impact based on limited test results from the petroleum literature. To consider the bedding effects, we present an empirical relationship between water flux and hydraulic gradient for non-Darcian water flow in anisotropic cases.

  2. Effect of oxide films on hydrogen permeability of candidate Stirling heater head tube alloys

    SciTech Connect (OSTI)

    Schuon, S R; Misencik, J A

    1981-01-01T23:59:59.000Z

    High pressure hydrogen has been selected as the working fluid for the developmental automotive Stirling engine. Containment of the working fluid during operation of the engine at high temperatures and at high hydrogen gas pressures is essential for the acceptance of the Stirling engine as an alternative to the internal combustion engine. Most commercial alloys are extremely permeable to pure hydrogen at high temperatures. A program was undertaken at NASA Lewis Research Center (LeRC) to reduce hydrogen permeability in the Stirling engine heater head tubes by doping the hydrogen working fluid with CO or CO/sub 2/. Small additions of these gases were shown to form an oxide on the inside tube wall and thus reduce hydrogen permeability. A study of the effects of dopant concentration, alloy composition, and effects of surface oxides on hydrogen permeability in candidate heater head tube alloys is summarized. Results showed that hydrogen permeability was similar for iron-base alloys (N-155, A286, IN800, 19-9DL, and Nitronic 40), cobalt-base alloys (HS-188) and nickel-base alloys (IN718). In general, the permeability of the alloys decreased with increasing concentration of CO or CO/sub 2/ dopant, with increasing oxide thickness, and decreasing oxide porosity. At high levels of dopants, highly permeable liquid oxides formed on those alloys with greater than 50% Fe content. Furthermore, highly reactive minor alloying elements (Ti, Al, Nb, and La) had a strong influence on reducing hydrogen permeability.

  3. Oil and Gas CDT Predicting fault permeability at depth: incorporating natural

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Predicting fault permeability at depth: incorporating natural permeability controls on fluid flow in oil and gas reservoirs. Fault zones are composed of many deformation elements will receive 20 weeks bespoke, residential training of broad relevance to the oil and gas industry: 10 weeks

  4. Liquid-Gas Relative Permeabilities in Fractures: Effects of Flow Structures, Phase Transformation and Surface

    E-Print Network [OSTI]

    Stanford University

    Transformation and Surface Roughness Chih-Ying Chen June 2005 Financial support was provided through the Stanford permeabilities, accounting for phase transformations, the inviscid bubble train models coupled with relative permeability concepts were developed. The phase transformation effects were evaluated by accounting

  5. An efficient permeability scaling-up technique applied to the discretized flow equations

    SciTech Connect (OSTI)

    Urgelli, D.; Ding, Yu [Institut Francais du Petrole, Rueil Malmaison (France)

    1997-08-01T23:59:59.000Z

    Grid-block permeability scaling-up for numerical reservoir simulations has been discussed for a long time in the literature. It is now recognized that a full permeability tensor is needed to get an accurate reservoir description at large scale. However, two major difficulties are encountered: (1) grid-block permeability cannot be properly defined because it depends on boundary conditions; (2) discretization of flow equations with a full permeability tensor is not straightforward and little work has been done on this subject. In this paper, we propose a new method, which allows us to get around both difficulties. As the two major problems are closely related, a global approach will preserve the accuracy. So, in the proposed method, the permeability up-scaling technique is integrated in the discretized numerical scheme for flow simulation. The permeability is scaled-up via the transmissibility term, in accordance with the fluid flow calculation in the numerical scheme. A finite-volume scheme is particularly studied, and the transmissibility scaling-up technique for this scheme is presented. Some numerical examples are tested for flow simulation. This new method is compared with some published numerical schemes for full permeability tensor discretization where the full permeability tensor is scaled-up through various techniques. Comparing the results with fine grid simulations shows that the new method is more accurate and more efficient.

  6. How Permeability Depends on Stress and Pore Pressure in Coalbeds: A New Model

    E-Print Network [OSTI]

    pressure falloff and matrix shrinkage because of gas desorption together in one equation. The matrixHow Permeability Depends on Stress and Pore Pressure in Coalbeds: A New Model Ian Palmer, SPE, permeability is sensitive to changes in stress or pore pressure (i.e., changes in effective stress). This paper

  7. Permeability of illite-bearing shale: 1. Anisotropy and effects of clay content and loading

    E-Print Network [OSTI]

    Herbert, Bruce

    Permeability of illite-bearing shale: 1. Anisotropy and effects of clay content and loading-rich shale recovered from the Wilcox formation and saturated with 1 M NaCl solution varies from 3 ? 10?22 transport; KEYWORDS: permeability, shale, connected pore space Citation: Kwon, O., A. K. Kronenberg, A. F

  8. STRUCTURE OF THE LOW PERMEABLE NATURALLY FRACTURED GEOTHERMAL RESERVOIR Chrystel Dezayes*, Albert Genter** & Benot Valley ***

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    1 STRUCTURE OF THE LOW PERMEABLE NATURALLY FRACTURED GEOTHERMAL RESERVOIR AT SOULTZ Chrystel cluster appears as a fractured reservoir developed within a low permeable matrix. Fracture zones represent) where reservoir development involved the reactivation of the pre- existing fractures in the granite [16

  9. A Permeability Model for Coal and Other Fractured, Sorptive-Elastic Media

    SciTech Connect (OSTI)

    Eric P. Robertson; Richard L. Christiansen

    2006-10-01T23:59:59.000Z

    This paper describes the derivation of a new equation that can be used to model the permeability behavior of a fractured, sorptive-elastic media, such as coal, under variable stress conditions commonly used during measurement of permeability data in the laboratory. The model is derived for cubic geometry under biaxial or hydrostatic confining pressures. The model is also designed to handle changes in permeability caused by adsorption and desorption of gases from the matrix blocks. The model equations can be used to calculate permeability changes caused by the production of methane from coal as well as the injection of gases, such as carbon dioxide, for sequestration in coal. Sensitivity analysis of the model found that each of the input variables can have a significant impact on the outcome of the permeability forecast as a function of changing pore pressure; thus, accurate input data are essential. The permeability model can also be used as a tool to determine input parameters for field simulations by curve-fitting laboratory-generated permeability data. The new model is compared to two other widely used coal permeability models using a hypothetical coal with average properties.

  10. CALCULATION AND USE OF STEAM/WATER RELATIVE PERMEABILITIES IN GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Stanford University

    c c c i i c I CALCULATION AND USE OF STEAM/WATER RELATIVE PERMEABILITIES IN GEOTHERMAL RESERVOIRS to calculate the steam/water relative permeabilities in geothermal reservoirs was developed and applied. . . . . . . . . . . . . . . . . . . . . . . 1 PRZVIOUS PIETHODS OF CALCLXATING STEAM/TtJATER RELATIVE PERPlEX3ILITIES IN GEOTHE?XAL XZSERVOIFG

  11. New cement additives that eliminate cement body permeability

    SciTech Connect (OSTI)

    Talabani, S.; Hareland, G. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    1995-10-01T23:59:59.000Z

    An experimental investigation was carried out replacing some currently used cement additives with three new additives. The experiments performed monitored the cement slurry pressure during the setting of the cement. During the setting period of the cement, two time cycles of cement expansion and contraction are observed. This is due to the individual contribution of each component in the cement mixture. To obtain the optimum tightness of the cement, final contraction in the cycle is crucial for blockage of gas migration. In these studies optimum concentrations of the additives were obtained experimentally, where the cyclic pressure behavior of the cement was optimized and the permeability reduced for the best final cement results. The parameters investigated in this study were; change in the applied pressure on the slurry with time, the compressive strength and permeability of the set cement. The major causes of the early microfractures are the in-complete cement-water reaction, low compressive strength of the set cement, and the sudden change in the hydrostatic pressure as the cement changes its phase from liquid to a solid state. The fluid loss and free water content were measured and controlled for each sample. The results of this study is that proper amounts of X-C polymer, Anchorage clay, Ironite Sponge, and Synthetic Rubber can be used to optimize the compressive strength and eliminate both micro-fracture and micro-annulus. There are certain limits to the amount and type of Synthetic Rubber powder which cement will set and the micro-fractures are eliminated. This experimental approach can be used to eliminate gas migration through a cement design that is environmentally safe, inexpensive, and uses recyclable materials.

  12. Porosity and permeability of eastern Devonian gas shale

    SciTech Connect (OSTI)

    Soeder, D.J.

    1986-01-01T23:59:59.000Z

    High-precision core analysis has been performed on eight samples of Devonian gas shale from the Appalachian Basin. Seven of the core samples consist of the Upper Devonian age Huron Member of the Ohio Shale, six of which came from wells in the Ohio River valley, and the seventh from a well in east-central Kentucky. The eighth core sample consists of Middle Devonian age Marcellus Shale obtained from a well in Morgantown, West Virginia. The core analysis was originally intended to supply accurate input data for Devonian shale numerical reservoir simulation. Unexpectedly, the results have also shown that there are a number of previously unknown factors which influence or control gas production from organic-rich shales of the Appalachian Basin. The presence of petroleum as a mobile liquid phase in the pores of all seven Huron Shale samples effectively limits the gas porosity of this formation to less than 0.2%, and permeability of the rock matrix to gas is less than 0.1 microdarcy at reservoir stress. The Marcellus Shale core, on the other hand, was free of a mobile liquid phase and had a measured gas porosity of approximately 10% under stress with a fairly strong ''adsorption'' component. Permeability to gas (K/sub infinity/ was highly stress-dependent, ranging from about 20 microdarcies at a net stress of 3000 psi down to about 5 microdarcies at a net stress of 6000 psi. The conclusion reached from this study is that Devonian shale in the Appalachian Basin is a considerably more complex natural gas resource than previously thought. Production potential varies widely with geographic location and stratigraphy, just as it does with other gas and oil resources. 15 refs., 8 figs., 3 tabs.

  13. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    SciTech Connect (OSTI)

    O'Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

    2007-11-01T23:59:59.000Z

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale and tar sands resource development.

  14. Seismic Characterization of Coal-Mining Seismicity in Utah for CTBT Monitoring

    SciTech Connect (OSTI)

    Arabasz, W J; Pechmann, J C

    2001-03-01T23:59:59.000Z

    Underground coal mining (down to {approx}0.75 km depth) in the contiguous Wasatch Plateau (WP) and Book Cliffs (BC) mining districts of east-central Utah induces abundant seismicity that is monitored by the University of Utah regional seismic network. This report presents the results of a systematic characterization of mining seismicity (magnitude {le} 4.2) in the WP-BC region from January 1978 to June 2000-together with an evaluation of three seismic events (magnitude {le} 4.3) associated with underground trona mining in southwestern Wyoming during January-August 2000. (Unless specified otherwise, magnitude implies Richter local magnitude, M{sub L}.) The University of Utah Seismograph Stations (UUSS) undertook this cooperative project to assist the University of California Lawrence Livermore National Laboratory (LLNL) in research and development relating to monitoring the Comprehensive Test Ban Treaty (CTBT). The project, which formally began February 28, 1998, and ended September 1, 2000, had three basic objectives: (1) Strategically install a three-component broadband digital seismic station in the WP-BC region to ensure the continuous recording of high-quality waveform data to meet the long-term needs of LLNL, UUSS, and other interested parties, including the international CTBT community. (2) Determine source mechanisms--to the extent that available source data and resources allowed--for comparative seismic characterization of stress release in mines versus earthquakes in the WP-BC study region. (3) Gather and report to LLNL local information on mine operations and associated seismicity, including ''ground truth'' for significant events. Following guidance from LLNL's Technical Representative, the focus of Objective 2 was changed slightly to place emphasis on three mining-related events that occurred in and near the study area after the original work plan had been made, thus posing new targets of opportunity. These included: a magnitude 3.8 shock that occurred close to the Willow Creek coal mine in the Book Cliffs area on February 5, 1998 (UTC date), just prior to the start of this project; a magnitude 4.2 shock on March 7,2000 (UTC date), in the same area as the February 5 event; and a magnitude 4.3 shock that occurred on January 30,2000 (UTC and local date), associated with a panel collapse at the Solvay trona mine in southwestern Wyoming. This is the same mine in which an earlier collapse event of magnitude 5.2 occurred in February 1995, attracting considerable attention from the CTBT community.

  15. Assessment of Geothermal Resource Potential at a High-Priority Area on the Utah Testing and Training RangeSouth (UTTRS)

    SciTech Connect (OSTI)

    Richard P. Smith, PhD., PG; Robert P. Breckenridge, PhD.; Thomas R. Wood, PhD.

    2012-04-01T23:59:59.000Z

    Field investigations conducted during 2011 support and expand the conclusion of the original Preliminary Report that discovery of a viable geothermal system is possible in the northwestern part of the Utah Testing and Training Range-South (UTTR-S), referred to henceforth as Focus Area 1. The investigations defined the southward extent of the Wendover graben into and near Focus Area 1, enhanced the understanding of subsurface conditions, and focused further geothermal exploration efforts towards the northwestern-most part of Focus Area 1. Specifically, the detailed gravity survey shows that the Wendover graben, first defined by Cook et al. (1964) for areas north of Interstate Highway 80, extends and deepens southwest-ward to the northwest corner of Focus Area 1. At its deepest point, the intersection with a northwest-trending graben there is favorable for enhanced permeability associated with intersecting faults. Processing and modeling of the gravity data collected during 2011 provide a good understanding of graben depth and distribution of faults bounding the graben and has focused the interest area of the study. Down-hole logging of temperatures in wells made available near the Intrepid, Inc., evaporation ponds, just north of Focus Area 1, provide a good understanding of the variability of thermal gradients in that area and corroborate the more extensive temperature data reported by Turk (1973) for the depth range of 300-500 m. Moderate temperature gradients in the northern part of the Intrepid area increase to much higher gradients and bottom-hole temperatures southeastward, towards graben-bounding faults, suggesting upwelling geothermal waters along those faults. Water sampling, analysis, and temperature measurements of Blue Lakes and Mosquito Willey's springs, on the western boundary of Focus Area 1, also show elevated temperatures along the graben-bounding fault system. In addition, water chemistry suggests origin of those waters in limestone rocks beneath the graben in areas with temperatures as high as 140 C (284 F). In conclusion, all of the field data collected during 2011 and documented in the Appendices of this report indicate that there is reasonable potential for a viable geothermal resource along faults that bound the Wendover graben. Prospects for a system capable of binary electrical generation are especially good, and the possibility of a flash steam system is also within reason. The next steps should focus on securing the necessary funding for detailed geophysical surveys and for drilling a set of temperature gradient wells to further evaluate the resource, and to focus deep exploration efforts in the most promising areas.

  16. Energy Dissipation Properties of Cementitious Materials: Applications in Mechanical Damping and Characterization of Permeability and Moisture State

    E-Print Network [OSTI]

    Leung, Chin

    2012-10-19T23:59:59.000Z

    variety of frequency ranges. Composite model prediction indicated that permeability of saturated cementitious materials studied in this research is likely dependent on the amount of free water in the pores. Permeability can be inferred from the pore...

  17. Three Dimensional Controlled-source Electromagnetic Edge-based Finite Element Modeling of Conductive and Permeable Heterogeneities

    E-Print Network [OSTI]

    Mukherjee, Souvik

    2010-10-12T23:59:59.000Z

    ordnance, is often highly conductive and magnetically permeable. Interpretation of the CSEM response in the presence of cultural noise requires an understanding of electromagnetic field diffusion and the effects of anomalous highly conductive and permeable...

  18. Probabilistic analysis of air void structure and its relationship to permeability and moisture damage of hot mix asphalt

    E-Print Network [OSTI]

    Castelblanco Torres, Adhara

    2006-04-12T23:59:59.000Z

    of the studies primarily focused on relating permeability to the average percent air voids in the mix. Such relationships cannot predict permeability accurately due to the different distributions of air void structures at a given average percent of air voids...

  19. The Effect of Acid Additives on Carbonate Rock Wettability and Spent Acid Recovery in Low Permeability Gas Carbonates

    E-Print Network [OSTI]

    Saneifar, Mehrnoosh

    2012-10-19T23:59:59.000Z

    Spent acid retention in the near-wellbore region causes reduction of relative permeability to gas and eventually curtailed gas production. In low-permeability gas carbonate reservoirs, capillary forces are the key parameters that affect the trapping...

  20. ACOUSTIC CAVITATION ASSESSMENT OF THE REVERSIBILITY AND PERMEABILITY OF THE ULTRASOUND-INDUCED BLOOD-BRAIN BARRIER OPENING

    E-Print Network [OSTI]

    Konofagou, Elisa E.

    ACOUSTIC CAVITATION ASSESSMENT OF THE REVERSIBILITY AND PERMEABILITY cavitation can be potentially used to assess the reversibility and permeability of the induced BBB opening. Method: This study links the microbubble dynamics, represented by the cavitation dose, as monitored

  1. Final Report- Rejuvenating Permeable Reactive Barriers by Chemical Flushing, U.S. Environmental Protection Agency Region 8 Support

    Broader source: Energy.gov [DOE]

    Final Report - Rejuvenating Permeable Reactive Barriers by Chemical Flushing, U.S. Environmental Protection Agency Region 8 Support

  2. Predicting the spatial extent of injection-induced zones of enhanced permeability at the Northwest Geysers EGS Demonstration Project

    E-Print Network [OSTI]

    Rutqvist, J.

    2010-01-01T23:59:59.000Z

    are drawn into the fractured reservoir rock under vacuum.equivalent fractured rock permeability in the reservoir is

  3. Integrating Facies Analysis, Terrestrial Sequence Stratigraphy, and the First Detrital Zircon (U-Pb) Ages of the Twist Gulch Formation, Utah, USA: Constraining Paleogeography and

    E-Print Network [OSTI]

    Seamons, Kent E.

    Formation of central Utah was deposited in the active Arapien sub-basin of the Western Cordillera foreland of alluvial deposits, while in Salina Canyon (SC) the Twist Gulch Formation is comprised of a mix of alluvial

  4. Long-term surveillance plan for the Mexican Hat Disposal Site, Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSP (based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program), documents the land ownership interests and details how the long-term care of the disposal site will be accomplished.

  5. SCANNING ELECTRON MICROSCOPY AND PORE CASTING: CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH

    SciTech Connect (OSTI)

    Thomas C. Chidsey Jr; David E. Eby; Louis H. Taylor

    2003-12-01T23:59:59.000Z

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  6. Underground Coal Thermal Treatment Task 6 Topical Report, Utah Clean Coal Program

    SciTech Connect (OSTI)

    Smith, P.J.; Deo, M.; Edding, E.G.; Hradisky, M.; Kelly, K.E.; Krumm, R.; Sarofim, Adel; Wang, D.

    2014-08-15T23:59:59.000Z

    The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coals carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand the feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. CO2 storage. In order to help determine the amount of CO2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325C showed less or similar capacity to the untreated coals.

  7. Effects of thermal sulfate reduction on permeability distributions of the Norphlet Formation

    SciTech Connect (OSTI)

    Dunn, T.L.; Surdam, R.C. (Univ. of Wyoming, Laramie (United States))

    1991-03-01T23:59:59.000Z

    Framework grain coatings are common in the Norphlet. Clay coatings are present throughout the depth range (16,000 to 22,000 ft) over which significant variations of permeability occur. Pyrobitumen coatings occur within the deep, low-permeability interval (approximately 18,000-20,000 ft) and the deeper (greater than 20,000 ft), more permeable interval. Both types of coatings may be important in preserving porosity during portions of the burial history of the Norphlet sandstones; however, their occurrence does not correlate with observed variations in permeability. Diagenetic reactions associated with thermal sulfate reduction provide a mechanism for the dissolution of carbonate cements in deep zones characterized by enhanced permeabilities. Protons generated from dissociation of H{sub 2}S produced during sulfate reduction results in the dissolution of carbonate cements. To be effective, this process must remove cements that precipitated after grain coatings. Uncoated quartz grains produce quartz overgrowths. Vertical permeability distributions within the Norphlet suggest that early and intermediate diagenetic carbonate and sulfate cements, sourced from the intercalated, interdunal pond strata, were redistributed throughout the dune sands. Portions of carbonate cements were either dissolved or the extent of their precipitation was reduced as thermal decarboxylation was closely followed by the initiation of sulfate reduction. Hence, variations in Norphlet permeability distributions are in part the result of diagenetic reactions associated with thermal sulfate reduction and, therefore, can be predicted using kinetic modeling of sulfate reaction.

  8. Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt

    SciTech Connect (OSTI)

    Parra, J.; Collier, H.; Angstman, B.

    1997-08-01T23:59:59.000Z

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.

  9. Stress- and Chemistry-Mediated Permeability Enhancement/Degradation in Stimulated Critically-Stressed Fractures

    SciTech Connect (OSTI)

    Derek Elsworth; Abraham S. Grader; Chris Marone; Phillip Halleck; Peter Rose; Igor Faoro; Joshua Taron; Andr Niemeijer; Hideaki Yasuhara

    2009-03-30T23:59:59.000Z

    This work has investigated the interactions between stress and chemistry in controlling the evolution of permeability in stimulated fractured reservoirs through an integrated program of experimentation and modeling. Flow-through experiments on natural and artificial fractures in Coso diorite have examined the evolution of permeability under paths of mean and deviatoric stresses, including the role of dissolution and precipitation. Models accommodating these behaviors have examined the importance of incorporating the complex couplings between stress and chemistry in examining the evolution of permeability in EGS reservoirs. This document reports the findings of experiment [1,2] and analysis [3,4], in four sequential chapters.

  10. Effect of permeability on cooling of magmatic intrusion in a goethermal reservoir

    SciTech Connect (OSTI)

    Lau, K.H.

    1980-09-01T23:59:59.000Z

    Transient cooling of magmatic intrusion in a geothermal reservoir due to conduction and convection is studied. The effects of overlying cap rock and different horizontal and vertical permeability of the reservoir are considered. Results are compared to the data from Salton Sea Geothermal Field. It is also observed that multiple layers of convection cells exist when horizontal permeability is much larger than the vertical permeability. The sharp dropoff of surface heat flow observed at Salton Sea Geothermal Field is confirmed by numerical results. Based on these numerical results, it is possible to speculate that the age of the intrusive body is about 8000 to 12,000 years.

  11. Permeability computation on a REV with an immersed finite element method

    SciTech Connect (OSTI)

    Laure, P. [Laboratoire J.-A. Dieudonne, CNRS UMR 6621, Universite de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice, Cedex 02 (France); Puaux, G.; Silva, L.; Vincent, M. [MINES ParisTech, CEMEF-Centre de Mise en Forme des Materiaux, CNRS UMR 7635, BP 207 1 rue Claude, Daunesse 06904 Sophia Antipolis cedex (France)

    2011-05-04T23:59:59.000Z

    An efficient method to compute permeability of fibrous media is presented. An immersed domain approach is used to represent the porous material at its microscopic scale and the flow motion is computed with a stabilized mixed finite element method. Therefore the Stokes equation is solved on the whole domain (including solid part) using a penalty method. The accuracy is controlled by refining the mesh around the solid-fluid interface defined by a level set function. Using homogenisation techniques, the permeability of a representative elementary volume (REV) is computed. The computed permeabilities of regular fibre packings are compared to classical analytical relations found in the bibliography.

  12. Permeability of consolidated incinerator facility wastes stabilized with portland cement

    SciTech Connect (OSTI)

    Walker, B.W.

    2000-04-19T23:59:59.000Z

    The Consolidated Incinerator Facility (CIF) at the Savannah River Site (SRS) burns low-level radioactive wastes and mixed wastes as a method of treatment and volume reduction. The CIF generates secondary waste, which consists of ash and offgas scrubber solution. Currently the ash is stabilized/solidified in the Ashcrete process. The scrubber solution (blowdown) is sent to the SRS Effluent Treatment Facility (ETF) for treatment as wastewater. In the past, the scrubber solution was also stabilized/solidified in the Ashcrete process as blowcrete, and will continue to be treated this way for listed waste burns and scrubber solutions that do not meet the ETF Waste Acceptance Criteria (WAC). The disposal plan for Ashcrete and special case blowcrete is to bury these containerized waste forms in shallow unlined trenches in E-Area. The WAC for intimately mixed, cement-based wasteforms intended for direct disposal specifies limits on compressive strength and permeability. Simulated waste and actual CIF ash and scrubber solution were mixed in the laboratory and cast into wasteforms for testing. Test results and related waste disposal consequences are given in this report.

  13. Characterization of tungsten films and their hydrogen permeability

    SciTech Connect (OSTI)

    Nemani?, Vincenc, E-mail: vincenc.nemanic@ijs.si; Kova?, Janez [Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Lungu, Cristian; Porosnicu, Corneliu [National Institute for Laser, Plasma and Radiation Physics, NILPRP, Magurele, Bucharest 077125 (Romania); Zajec, Bojan [Slovenian National Building and Civil Engineering Institute, Dimi?eva 12, 1000 Ljubljana (Slovenia)

    2014-11-01T23:59:59.000Z

    Prediction of tritium migration and its retention within fusion reactors is uncertain due to a significant role of the structural disorder that is formed on the surface layer after plasma exposure. Tungsten films deposited by any of the suitable methods are always disordered and contain a high density of hydrogen traps. Experiments on such films with hydrogen isotopes present a suitable complementary method, which improves the picture of the hydrogen interaction with fusion relevant materials. The authors report on the morphology, composition, and structure of tungsten films deposited by the thermionic vacuum arc method on highly permeable Eurofer substrates. Subsequently, hydrogen permeation studies through these films were carried out in a wide pressure range from 20 to 1000 mbars at 400?C. The final value of the permeation coefficient for four samples after 24?h at 400?C was between P?=?3.2??10{sup ?14}?mol?H{sub 2}/(m?s?Pa{sup 0.5}) and P?=?1.1??10{sup ?15}?mol H{sub 2}/(m s Pa{sup 0.5}). From the time evolution of the permeation flux, it was shown that diffusivity was responsible for the difference in the steady fluxes, as solubility was roughly the same. This is confirmed by XRD data taken on these samples.

  14. Utah Economic P r e P a r e d b y t h e U t a h e c o n o m i c c o U n c i l

    E-Print Network [OSTI]

    Tipple, Brett

    Utah Economic Outlook P r e P a r e d b y t h e U t a h e c o n o m i c c o U n c i l 2014;#12;BUREAU OF ECONOMIC AND BUSINESS RESEARCH 2014 Utah Economic Outlook i For the past three years, the Utah Economic Outlook has served as a companion piece to the Economic Report to the Governor that has been

  15. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Jr., Chidsey, Thomas C.; Allison, M. Lee

    1999-11-02T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  16. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey Jr., Thomas C.

    2003-02-06T23:59:59.000Z

    The primary objective of this project was to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox Basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project was designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  17. ENVIROCARE OF UTAH: EXPANDING WASTE ACCEPTANCE CRITERIA TO PROVIDE LOW-LEVEL AND MIXED WASTE DISPOSAL OPTIONS

    SciTech Connect (OSTI)

    Rogers, B.; Loveland, K.

    2003-02-27T23:59:59.000Z

    Envirocare of Utah operates a low-level radioactive waste disposal facility 80 miles west of Salt Lake City in Clive, Utah. Accepted waste types includes NORM, 11e2 byproduct material, Class A low-level waste, and mixed waste. Since 1988, Envirocare has offered disposal options for environmental restoration waste for both government and commercial remediation projects. Annual waste receipts exceed 12 million cubic feet. The waste acceptance criteria (WAC) for the Envirocare facility have significantly expanded to accommodate the changing needs of restoration projects and waste generators since its inception, including acceptable physical waste forms, radiological acceptance criteria, RCRA requirements and treatment capabilities, PCB acceptance, and liquids acceptance. Additionally, there are many packaging, transportation, and waste management options for waste streams acceptable at Envirocare. Many subcontracting vehicles are also available to waste generators for both government and commercial activities.

  18. Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site.

  19. Seismic Moment Tensor Report for the 06 Aug 2007, M3.9 Seismic Event in Central Utah

    SciTech Connect (OSTI)

    Ford, S R; Dreger, D S; Walter, W R; Hellweg, M; Urhammer, R

    2007-08-15T23:59:59.000Z

    We have performed a complete moment tensor analysis (Minson and Dreger, 2007) of the seismic event, which occurred on Monday August 6, 2007 at 08:48:40 UTC, 21 km from Mount Pleasant, Utah. The purpose of this report is to present our scientific results, making them available to other researchers working on seismic source determination problems, and source type identification. In our analysis we used complete, three-component seismic records recorded by stations operated by the USGS, the University of Utah and EarthScope. The results of our analysis show that most of the seismic wave energy is consistent with an underground collapse, however the cause of the mine collapse is still unknown.

  20. Data report: Permeability measurements under confining pressure, Legs 315 and 316, Nankai Thierry REUSCHLE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Data report: Permeability measurements under confining pressure, Legs 315 and 316, Nankai Trough level two cylindrical specimens (20 mm in diameter and 15 - 20 mm in length) were drilled out

  1. Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing

    Broader source: Energy.gov [DOE]

    Final ReportPhase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical FlushingU. S. Environmental Protection Agency Region 8 SupportJanuary 2004

  2. Evaluating permeability anisotropy in the early Jurassic Tilje formation, offshore mid-Norway

    E-Print Network [OSTI]

    Aliyev, Kanan

    2005-11-01T23:59:59.000Z

    The problem of evaluating permeability anisotropy in the Tilje Formation, Heidrum field, offshore mid-Norway, has been investigated by the Statoil Research Centre by a detailed combination of the geological and petrophysical data. The large...

  3. Permeability-thickness determination from transient production response at the southeast geysers

    SciTech Connect (OSTI)

    Faulder, D.D.

    1996-08-01T23:59:59.000Z

    The Fetkovich production decline curve analysis method was extended for application to vapor-dominated geothermal reservoirs for the purpose of estimating the permeability-thickness product (kh) from the transient production response. The analytic dimensionless terms for pressure, production rate, decline rate, and decline time were derived for saturated steam using the real gas potential and customary geothermal production units of pounds-mass per hour. The derived terms were numerically validating using ``Geysers-line`` reservoir properties at initial water saturation of 0 and at permeabilities of 1, 10, and 100 mD. The production data for 48 wells in the Southeast Geysers were analyzed and the permeability-thickness products determined from the transient production response using the Fetkovich production decline type curve. The kh results were in very good agreement with the published range at the Southeast Geysers and show regions of high permeability-thickness.

  4. The evaluation of waterfrac technology in low-permeability gas sands in the East Texas basin

    E-Print Network [OSTI]

    Tschirhart, Nicholas Ray

    2005-11-01T23:59:59.000Z

    operators believe that low-viscosity, low-proppant concentration fracture stimulation treatments known as ??waterfracs?? produce comparable stimulation results in low-permeability gas sands and are preferred because they are less expensive than gelled...

  5. Well Performance Analysis for Low to Ultra-low Permeability Reservoir Systems

    E-Print Network [OSTI]

    Ilk, Dilhan

    2010-10-12T23:59:59.000Z

    to evaluate well performance in unconventional (i.e., low to ultra-low permeability) reservoir systems. The specific tasks achieved in this work include the following: ? Integrated Diagnostics and Analysis of Production Data in Unconventional Reservoirs: We...

  6. LARGE SCALE PERMEABILITY TEST OF THE GRANITE IN THE STRIPA MINE AND THERMAL CONDUCTIVITY TEST

    E-Print Network [OSTI]

    Lundstrom, L.

    2011-01-01T23:59:59.000Z

    No.2 LARGE SCALE PERMEABILITY TEST OF THE GRANITE' IN THEMINE AND, THERMAL CONDUCTIVITY TEST Lars Lundstrom and HakanSUMMARY REPORT Background TEST SITE Layout of test places

  7. Determination of the Controls on Permeability and Transport in Shale by Use of Percolation Models

    E-Print Network [OSTI]

    Chapman, Ian

    2012-10-19T23:59:59.000Z

    of pore scale connectivity simulations on lattice and in the continuum allow for understanding relationships between pore topology, system porosity and system permeability. Additionally, questions regarding the role of Total Organic Carbon as well...

  8. Transport and seismoelectric properties of porous permeable rock : numerical modeling and laboratory measurements

    E-Print Network [OSTI]

    Zhan, Xin, Ph. D. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    The objective of this thesis is to better understand the transport and seismoelectric (SE) properties of porous permeable rock. Accurate information of rock transport properties, together with pore geometry, can aid us to ...

  9. Permeability characterization and spatial modeling in complex reservoirs: use of tree classifiers and Markov Random Field

    E-Print Network [OSTI]

    Perez Vega, Hector H

    2002-01-01T23:59:59.000Z

    This research presents two approaches for working with reservoir properties. The first is the application of decision tree classifiers for predicting partitioning or classifications based on well logs for improving the permeability estimations...

  10. Lattice Boltzmann simulations of the permeability and capillary adsorption of cement model microstructures

    SciTech Connect (OSTI)

    Zalzale, M. [Laboratory of Construction Materials, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)] [Laboratory of Construction Materials, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); McDonald, P.J., E-mail: p.mcdonald@surrey.ac.uk [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2012-12-15T23:59:59.000Z

    The lattice Boltzmann method is used to investigate the permeability of microstructures of cement pastes generated using the numerical models CEMHYD3D (Bentz, 1997) and {mu}IC (Bishnoi and Scrivener, 2009). Results are reported as a function of paste water-to-cement ratio and degree of hydration. The permeability decreases with increasing hydration and decreasing water-to-cement ratio in agreement with experiment. However the permeability is larger than the experimental data recorded using beam bending methods (Vichit-Vadakan and Scherer, 2002). Notwithstanding, the lattice Boltzmann results compare favourably with alternate numerical methods of permeability calculation for cement model microstructures. In addition, we show early results for the liquid/vapour capillary adsorption and desorption isotherms in the same model {mu}IC structures. The broad features of the experimental capillary porosity isotherm are reproduced, although further work is required to adequately parameterise the model.

  11. Bioclogging and Permeability Alteration by L. mesenteroides in a Sandstone Reservoir: A Reactive Transport Modeling Study

    E-Print Network [OSTI]

    Hubbard, Susan

    -Enhanced- Hydrocarbon-Recovery (MEHR).2 During water flooding in secondary recovery, hydrocarbons in highly permeable systems to favorable performance conditions. Applications may include microbial-enhanced-hydrocarbon-recovery

  12. Low-temperature geothermal water in Utah: A compilation of data for thermal wells and springs through 1993

    SciTech Connect (OSTI)

    Blackett, R.E.

    1994-07-01T23:59:59.000Z

    The Geothermal Division of DOE initiated the Low-Temperature Geothermal Resources and Technology Transfer Program, following a special appropriation by Congress in 1991, to encourage wider use of lower-temperature geothermal resources through direct-use, geothermal heat-pump, and binary-cycle power conversion technologies. The Oregon Institute of Technology (OIT), the University of Utah Research Institute (UURI), and the Idaho Water Resources Research Institute organized the federally-funded program and enlisted the help of ten western states to carry out phase one. This first phase involves updating the inventory of thermal wells and springs with the help of the participating state agencies. The state resource teams inventory thermal wells and springs, and compile relevant information on each sources. OIT and UURI cooperatively administer the program. OIT provides overall contract management while UURI provides technical direction to the state teams. Phase one of the program focuses on replacing part of GEOTHERM by building a new database of low- and moderate-temperature geothermal systems for use on personal computers. For Utah, this involved (1) identifying sources of geothermal date, (2) designing a database structure, (3) entering the new date; (4) checking for errors, inconsistencies, and duplicate records; (5) organizing the data into reporting formats; and (6) generating a map (1:750,000 scale) of Utah showing the locations and record identification numbers of thermal wells and springs.

  13. Geothermal assessment of the lower Bear River drainage and northern East Shore ground-water areas, Box Elder County, Utah

    SciTech Connect (OSTI)

    Klauk, R.H.; Budding, K.E.

    1984-07-01T23:59:59.000Z

    The Utah Geological and Mineral Survey (UGMS) has been researching the low-temperature geothermal resource potential in Utah. This report, part of an area-wide geothermal research program along the Wasatch Front, concerns the study conducted in the lower Bear River drainage and northern East Shore ground-water areas in Box Elder County, Utah. The primary purpose of the study is to identify new areas of geothermal resource potential. There are seven known low-temperature geothermal areas in this part of Box Elder County. Geothermal reconnaissance techniques used in the study include a temperature survey, chemical analysis of well and spring waters, and temperature-depth measurements in accessible wells. The geothermal reconnaissance techniques identified three areas which need further evaluation of their low-temperature geothermal resource potential. Area 1 is located in the area surrounding Little Mountain, area 2 is west and southwest of Plymouth, and area 3 is west and south of the Cutler Dam. 5 figures, 4 tables.

  14. Investigation of the rate sensitivity of pseudo relative permeabilities for gas-oil systems

    E-Print Network [OSTI]

    Smith, Carl Kevin

    1987-01-01T23:59:59.000Z

    INVESTIGATION OF THE RATE SENSITIVITY OF PSEUDO RELATIVE PERMEABILITIES FOR GAS-OIL SYSTEMS A Thesis by CARL KEVIN SMITH Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree... of Master of Science May 1987 Major Subject: Petroleum Engineering INVESTIGATION OF THE RATE SENSITIVITY OF PSEUDO RELATIVE PERMEABILITIES FOR GAS-OIL SYSTEMS A Thesis by CARL KEVIN SMITH Approved as to style and content by: R. A, Wattenbarger...

  15. Barometric pressure transient testing applications at the Nevada Test Site: formation permeability analysis. Final report

    SciTech Connect (OSTI)

    Hanson, J.M.

    1984-12-01T23:59:59.000Z

    The report evaluates previous investigations of the gas permeability of the rock surrounding emplacement holes at the Nevada Test Site. The discussion sets the framework from which the present uncertainty in gas permeability can be overcome. The usefulness of the barometric pressure testing method has been established. Flow models were used to evaluate barometric pressure transients taken at NTS holes U2fe, U19ac and U20ai. 31 refs., 103 figs., 18 tabs. (ACR)

  16. Permeability and wet-out characterization of SRIM automotive bumper beams

    E-Print Network [OSTI]

    Morse, Christopher Todd

    1992-01-01T23:59:59.000Z

    PERMEABILITY AND WET-OUT CHARACTERIZATION OF SRIM AUTOMOTIVE BUMPER BEAMS A Thesis CHRISTOPHER TODD MORSE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1992 Major Subject: Mechanical Engineering PERMEABILITY AND WET-OUT CHARACTERIZATION OF SRIM AUTOMOTIVE BUMPER BEAMS A Thesis by CHRISTOPHER TODD MORSE Submitted to the Office of Graduate Studies of Texas A&M University...

  17. Empirical relationships between consolidation pressure, porosity and permeability for marine sediments

    E-Print Network [OSTI]

    Chen, Robert Hwei-Nan

    1976-01-01T23:59:59.000Z

    . The power law seems to 'be an excellent model for the relationship between porosity and permeability. The permea'bility decreased at least seven orders of magnitude faster than the porosity f' or the materials tested. ACKNOWLEDGMENTS The author wishes... soil samples 29 Mineralogical analysis of' three soil samples 29 Equations for consolidation pressure- porosity relationships for three soil samples by using the power law model 36 Equations for consolidation pressure- porosity relationships...

  18. Radiological survey of the inactive uranium-mill tailings at Green River, Utah

    SciTech Connect (OSTI)

    Haywood, F.F.; Christian, D.J.; Ellis, B.S.; Hubbard, H.M. Jr.; Lorenzo, D.; Shinpaugh, W.H.

    1980-03-01T23:59:59.000Z

    The uranium-mill tailings at Green River, Utah, are relatively low in /sup 226/Ra content and concentration (20 Ci and 140 pCi/g, respectively) because the mill was used to upgrade the uranium ore by separating the sand and slime fractions; most of the radium was transported along with the slimes to another mill site. Spread of tailings was observed in all directions, but near-background gamma exposure rates were reached at distances of 40 to 90 m from the edge of the pile. Water erosion of the tailings is evident and, since a significant fraction of the tailings pile lies in Brown's Wash, the potential exists for repetition of the loss of a large quantity of tailings such as occurred during a flood in 1959. In general, the level of surface contamination was low at this site, but some areas in the mill site, which were being used for nonuranium work, have gamma-ray exposure rates up to 143 ..mu..R/hr.

  19. University of Utah ASC site review. August 24-25, 2006

    SciTech Connect (OSTI)

    Hertel, Eugene S., Jr. (.,; .)

    2007-02-01T23:59:59.000Z

    This report is a review of progress made by the Center for the Simulation of Accidental Fires and Explosions (C-SAFE) at the University of Utah, during the ninth year (Fiscal 2006) of its existence as an activity funded by the Department of Energy's Advanced Simulation and Computing Program (ASC). The ten-member Review Team composed of the TST and AST spent two days (August 24-25, 2006) at the University, reviewing formal presentations and demonstrations by the C-SAFE researchers and conferring privately. The Review Team found that the C-SAFE project administrators and staff had prepared well for the review. C-SAFE management and staff openly shared extensive answers to unexpected questions and the advance materials were well prepared and very informative. We believe that the time devoted to the review was used effectively and hope that the recommendations included in this 2006 report will provide helpful guidance to C-SAFE personnel and ASC managers.

  20. Long-term surveillance plan for the South Clive Disposal Site, Clive, Utah

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the US Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project South Clive disposal site in Clive, Utah. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CRF Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the South Clive disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the South Clive site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the South Clive disposal site performs as designed. The program`s primary activity is site inspections to identify threats to disposal cell integrity.

  1. Supplement to the UMTRA Project water sampling and analysis plan, Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This water sampling and analysis plan (WSAP) supplement supports the regulatory and technical basis for water sampling at the Mexican Hat, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project site, as defined in the 1994 WSAP document for Mexican Hat (DOE, 1994). Further, the supplement serves to confirm our present understanding of the site relative to the hydrogeology and contaminant distribution as well as our intention to continue to use the sampling strategy as presented in the 1994 WSAP document for Mexican Hat. Ground water and surface water monitoring activities are derived from the US Environmental Protection Agency regulations in 40 CFR Part 192 (1991) and 60 FR 2854 (1995). Sampling procedures are guided by the UMTRA Project standard operating procedures (JEG, n.d.), the Technical Approach Document (DOE, 1989), and the most effective technical approach for the site. Additional site-specific documents relevant to the Mexican Hat site are the Mexican Hat Long-Term Surveillance Plan (currently in progress), and the Mexican Hat Site Observational Work Plan (currently in progress).

  2. Stress-dependent permeability of fractured rock masses: A numerical study

    SciTech Connect (OSTI)

    Min, Ki-Bok; Rutqvist, J.; Tsang, Chin-Fu; Jing, Lanru

    2004-04-30T23:59:59.000Z

    We investigate the stress-dependent permeability issue in fractured rock masses considering the effects of nonlinear normal deformation and shear dilation of fractures using a two-dimensional distinct element method program, UDEC, based on a realistic discrete fracture network realization. A series of ''numerical'' experiments were conducted to calculate changes in the permeability of simulated fractured rock masses under various loading conditions. Numerical experiments were conducted in two ways: (1) increasing the overall stresses with a fixed ratio of horizontal to vertical stresses components; and (2) increasing the differential stresses (i.e., the difference between the horizontal and vertical stresses) while keeping the magnitude of vertical stress constant. These numerical experiments show that the permeability of fractured rocks decreases with increased stress magnitudes when the stress ratio is not large enough to cause shear dilation of fractures, whereas permeability increases with increased stress when the stress ratio is large enough. Permeability changes at low stress levels are more sensitive than at high stress levels due to the nonlinear fracture normal stress-displacement relation. Significant stress-induced channeling is observed as the shear dilation causes the concentration of fluid flow along connected shear fractures. Anisotropy of permeability emerges with the increase of differential stresses, and this anisotropy can become more prominent with the influence of shear dilation and localized flow paths. A set of empirical equations in closed-form, accounting for both normal closure and shear dilation of the fractures, is proposed to model the stress-dependent permeability. These equations prove to be in good agreement with the results obtained from our numerical experiments.

  3. Department of Geology and Geophysics Frederick A. Sutton Building 115 South 1460 East, Room 383, Salt Lake City, Utah 84112-0102 (801) 581-7162 FAX (801) 581-7065

    E-Print Network [OSTI]

    Johnson, Cari

    Department of Geology and Geophysics Frederick A. Sutton Building 115 South 1460 East, Room 383/2012 Deed of Gift to The University of Utah Department of Geology and Geophysics Donor's Information, to the Department of Geology and Geophysics of the University of Utah as an unrestricted gift. Filled out and sign

  4. IMPACT OF CURING TEMPERATURE ON THE SATURATED LIQUID PERMEABILITY OF SALTSTONE

    SciTech Connect (OSTI)

    Williams, F.; Harbour, J.

    2011-02-14T23:59:59.000Z

    This report focuses on the impact of curing temperature on the performance properties of simulated Saltstone mixes. The key performance property of interest is saturated liquid permeability (measured as hydraulic conductivity), an input to the Performance Assessment (PA) modeling for the Saltstone Disposal Facility (SDF). Therefore, the current study was performed to measure the dependence of saturated hydraulic conductivity on curing temperature of Saltstone mixes, to correlate these results with measurements of Young's moduli on the same samples and to compare the Scanning Electron Microscopy (SEM) images of the microstructure at each curing temperature in an effort to associate this significant changes in permeability with changes in microstructure. This work demonstrated that the saturated liquid permeability of Saltstone mixes depends significantly on the curing temperature. As the curing temperature increases, the hydraulic conductivity can increase over three orders of magnitude from roughly 10{sup -9} cm/sec to 10{sup -6} cm/sec over the temperature range of 20 C to 80 C. Although an increased aluminate concentration (at 0.22 M) in the ARP/MCU waste stream improves (decreases) saturated permeability for samples cured at lower temperatures, the permeabilities for samples cured at 60 C to 80 C are the same as the permeabilities measured for an equivalent mix but with lower aluminate concentration. Furthermore, it was demonstrated that the unsaturated flow apparatus (UFA) system can be used to measure hydraulic conductivity of Saltstone samples. The permeability results obtained using the UFA centrifuge system were equivalent within experimental error to the conventional permeameter results (the falling head method) obtained at MACTEC. In particular the UFA technique is best suited for the range of hydraulic conductivities between 10{sup -10} cm/sec to 10{sup -6} cm/sec. Measurements of dynamic Young's moduli (E) for these mixes revealed a correlation between E and hydraulic conductivity. Therefore, it is possible to use E values to estimate the values of hydraulic conductivity. Measurement of Young's modulus is much easier than the measurement of permeability of Saltstone mixes and facilitates the measurement of the time dependence hydraulic conductivity. The results presented in this report show that changes in permeability as a function of curing temperature appear to be related to microstructural changes in the cured Saltstone mixes. Backscattered electron microscopy images revealed significant differences between the samples cured at different temperatures.

  5. Effect of permeable ribs on heat transfer and friction in a rectangular channel

    SciTech Connect (OSTI)

    Hwang, J.J. [Chung-Hua Polytechnic Inst., Hsinchu (Taiwan, Province of China). Dept. of Mechanical Engineering; Liou, T.M. [National Tsing Hua Univ., Hsinchu (Taiwan, Province of China). Dept. of Power Mechanical Engineering

    1995-04-01T23:59:59.000Z

    To increase specific thrust and to reduce specific fuel consumption (SFC), high turbine entry gas temperature (1,400--1,600 C) has become the trend in advanced aero-engine design. Such a high gas temperature is far above the allowable metal temperature; therefore, turbine blades must be cooled in order to operate in the high gas temperature environment. Heat transfer and friction characteristics in a rectangular channel with perforated ribs arranged in-line on two opposite walls are investigated experimentally. Five perforated rib open-area ratios (0, 10, 22, 38, and 44%) and three rib pitch-to-height ratios (10, 15, and 20) are examined. The Reynolds number ranges from 5,000 to 50,000. The rib height-to-channel hydraulic diameter ratio and the channel aspect ratio are 0.081 and 4, respectively. Laser holographic interferometry is employed not only to measure the heat transfer coefficients of the ribbed wall but also to determine the rib apparent permeability. It is found that ribs with appropriate high open-area ratio and high Reynolds number are permeable, and the critical Reynolds number for evidence of flow permeability decreases with increasing rib open-area ratio. Results of local heat transfer coefficients further show that the permeable ribs have an advantage of obviating hot spots. Moreover, the duct with permeable ribs gives a higher thermal performance than that with solid ribs.

  6. Characterizing two-phase flow relative permeabilities in chemicalflooding using a pore-scale network model

    SciTech Connect (OSTI)

    Liu, Qingjie; Shen, Pingping; Wu, Yu-Shu

    2004-03-15T23:59:59.000Z

    A dynamic pore-scale network model is presented for investigating the effects of interfacial tension and oil-water viscosity on relative permeability during chemical flooding. This model takes into account both viscous and capillary forces in analyzing the impact of chemical properties on flow behavior or displacement configuration, as opposed to the conventional or invasion percolation algorithm which incorporates capillary pressure only. The study results indicate that both water and oil relative-permeability curves are dependent strongly on interfacial tension as well as an oil-water viscosity ratio. In particular, water and oil relative-permeability curves are both found to shift upward as interfacial tension is reduced, and they both tend to become linear versus saturation once interfacial tension is at low values. In addition, the oil-water viscosity ratio appears to have only a small effect under conditions of high interfacial tension. When the interfacial tension is low, however, water relative permeability decreases more rapidly (with the increase in the aqueous-phase viscosity) than oil relative permeability. The breakthrough saturation of the aqueous phase during chemical flooding tends to decrease with the reduction of interfacial tension and may also be affected by the oil-water viscosity ratio.

  7. A new coal-permeability model: Internal swelling stress and fracture-matrix interaction

    SciTech Connect (OSTI)

    Liu, H.H.; Rutqvist, J.

    2009-10-01T23:59:59.000Z

    We have developed a new coal-permeability model for uniaxial strain and constant confining stress conditions. The model is unique in that it explicitly considers fracture-matrix interaction during coal deformation processes and is based on a newly proposed internal-swelling stress concept. This concept is used to account for the impact of matrix swelling (or shrinkage) on fracture-aperture changes resulting from partial separation of matrix blocks by fractures that do not completely cut through the whole matrix. The proposed permeability model is evaluated with data from three Valencia Canyon coalbed wells in the San Juan Basin, where increased permeability has been observed during CH{sub 4} gas production, as well as with published data from laboratory tests. Model results are generally in good agreement with observed permeability changes. The importance of fracture-matrix interaction in determining coal permeability, demonstrated in this work using relatively simple stress conditions, underscores the need for a dual-continuum (fracture and matrix) mechanical approach to rigorously capture coal-deformation processes under complex stress conditions, as well as the coupled flow and transport processes in coal seams.

  8. Determination of the permeability of carbon aerogels by gas flow measurements

    SciTech Connect (OSTI)

    Kong, F.M.; Hulsey, S.S.; Alviso, C.T.; Pekala, R.W.

    1992-04-01T23:59:59.000Z

    Carbon aerogels are synthesized via the polycondensation of resorcinol and formaldehyde, followed by supercritical drying and pyrolysis at 1050{degree}C in nitrogen. Because of their interconnected porosity, ultrafine cell structure and high surface area, carbon aerogels have many potential applications, such as in supercapacitors, battery electrodes, catalyst supports, and gas filters. The performance of carbon aerogels in the latter two applications depends on the permeability or gas flow conductance in these materials. By measuring the pressure differential across a thin specimen and the nitrogen gas flow rate in the viscous regime, we calculated the permeability of carbon aerogels from equations based upon Darcy`s law. Our measurements show that carbon aerogels have apparent permeabilities on the order of 10{sup {minus}12}to 10{sup {minus}10} cm{sup 2} for densities ranging from 0.44 to 0.05 g/cm{sup 3}. Like their mechanical properties, the permeability of carbon aerogels follows a power law relationship with density and average pore size. Such findings help us to estimate the average pore sizes of carbon aerogels once their densities are known. This paper reveals the relationships among permeability, pore size and density in carbon aerogels.

  9. Determination of the permeability of carbon aerogels by gas flow measurements

    SciTech Connect (OSTI)

    Kong, F.M.; Hulsey, S.S.; Alviso, C.T.; Pekala, R.W.

    1992-04-01T23:59:59.000Z

    Carbon aerogels are synthesized via the polycondensation of resorcinol and formaldehyde, followed by supercritical drying and pyrolysis at 1050{degree}C in nitrogen. Because of their interconnected porosity, ultrafine cell structure and high surface area, carbon aerogels have many potential applications, such as in supercapacitors, battery electrodes, catalyst supports, and gas filters. The performance of carbon aerogels in the latter two applications depends on the permeability or gas flow conductance in these materials. By measuring the pressure differential across a thin specimen and the nitrogen gas flow rate in the viscous regime, we calculated the permeability of carbon aerogels from equations based upon Darcy's law. Our measurements show that carbon aerogels have apparent permeabilities on the order of 10{sup {minus}12}to 10{sup {minus}10} cm{sup 2} for densities ranging from 0.44 to 0.05 g/cm{sup 3}. Like their mechanical properties, the permeability of carbon aerogels follows a power law relationship with density and average pore size. Such findings help us to estimate the average pore sizes of carbon aerogels once their densities are known. This paper reveals the relationships among permeability, pore size and density in carbon aerogels.

  10. A comparative simulation study of coupled THM processes and their effect on fractured rock permeability around nuclear waste repositories

    E-Print Network [OSTI]

    Rutqvist, Jonny

    2008-01-01T23:59:59.000Z

    hydrothermomechanical design of nuclear waste repositories.Associated with Nuclear Waste Repositories, Academic Press,rock permeability around nuclear waste repositories Jonny

  11. Characterizing two-phase flow relative permeabilities in chemical flooding using a pore-scale network model

    E-Print Network [OSTI]

    Liu, Qingjie; Shen, Pingping; Wu, Yu-Shu

    2008-01-01T23:59:59.000Z

    relative permeability curves, J. Petrol. Technol . , 249-260waterflooding, J. Canada. Petrol. Technol . , Oct. , 54-62.saturations, Canad. Petrol. Technol . , 62-69. Mugan N. :

  12. Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporations Caon City, Colorado, Uranium Mill

    Broader source: Energy.gov [DOE]

    Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporations Canon City, Colorado, Uranium Mill (April 2005)

  13. In situ permeability modification using gelled polymer systems. Annual report, April 11, 1997--April 10, 1998

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; McCool, C.S.; Heppert, J.A.; Vossoughi, S.; Michnick, M.J.

    1998-09-01T23:59:59.000Z

    Results from a research program on the application of gelled polymer technology for in situ permeability modification are presented in this report. The objective of this technology when used with displacement processes such as waterflooding is to reduce the permeability in fractures and/or high permeability matrix zones to improve volumetric sweep efficiency of the displacement process. In production wells, the objective is to reduce water influx. The research program focused on five areas: Gel treatment in fractured systems; Gel treatment in carbonate rocks; In-depth placement of gels; Gel systems for application in carbon dioxide flooding; and Gel treatment in production wells. The research program is primarily an experimental program directed toward improving the understanding of gelled polymer systems and how these systems can be used to increase oil recovery from petroleum reservoirs. A summary of progress for research conducted in the second 12 month period of a 28 month program is described.

  14. In situ permeability modification using gelled polymer systems. Topical report, June 10, 1996--April 10, 1997

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; McCool, C.S.; Heppert, J.A.; Vossoughi, S.

    1997-10-01T23:59:59.000Z

    Results from a research program on the application of gelled polymer technology for in situ permeability modification are presented in this report. The objective of this technology when used with displacement processes such as waterflooding is to reduce the permeability in fractures and/or high permeability matrix zones to improve volumetric sweep efficiency of the displacement process. In production wells, the objective is to reduce water influx. The research program is focused on five areas: gel treatment in fractured systems; gel treatment in carbonate rocks; in-depth placement of gels; gel systems for application in carbon dioxide flooding; and gel treatment in production wells. The research program is primarily an experimental program directed at improving the understanding of gelled polymer systems and how these systems can be used to increase oil recovery from petroleum reservoirs. A summary of progress for research conducted in the first 10 months of a 28 month program is described in the following sections.

  15. Temperature effects on oil-water relative permeabilities for unconsolidated sands

    SciTech Connect (OSTI)

    Sufi, A.H.

    1983-03-01T23:59:59.000Z

    This study presents an experimental investigation of temperature effects on relative permeabilities of oil- water systems in unconsolidated sands. The fluids used in this study were refined mineral oil and distilled water. A rate sensitivity study was done on residual oil saturation and oil and water relative permeabilities. The temperature sensitivity study of relative permeabilities was conducted in 2 parts. The first was to investigate changes in residual oil saturation with temperature where the cores were 100% saturated with oil at the start of the waterflood. The second part continued the floods for a longer time until the water-cut was virtually 100%. Under these conditions, little change in residual oil saturation was observed with temperature. A study on viscous instabilities also was performed. This verified the existence of viscous fingers during waterflooding. It also was observed that tubing volume after the core could cause fingering, resulting in lower apparent breakthrough oil recoveries.

  16. Permeability-dependent propagation of polyacrylamides under near-wellbore flow conditions

    SciTech Connect (OSTI)

    Zitha, P.; Chauveteau, G.; Zaitoun, A. [Inst. Francais du Petrole, Rueil-Malmaison (France)

    1995-11-01T23:59:59.000Z

    A new type of polyacrylamide flow-induced retention has been observed in core experiments simulating near-wellbore flow conditions. The retention is due to the bridging of pore throats by adsorbed macromolecules previously stretched under elongational flow. It occurs in low-to-medium permeability granular packs (up to k = 1,000 mD in the test conditions) and leads to progressive but severe plugging. The present paper shows that polymer placement in the reservoir surrounding the wellbore can be very different from what is predicted from stable values of polymer mobility. In heterogeneous reservoirs, polymer penetration in low-permeability layers is expected to be strongly reduced, thus allowing a deeper penetration into higher permeability zones. The polymer can thus improve reservoir conformance around the wellbore when injected directly through the entire opened interval. Near-wellbore polymer or gel treatments may thus not require zone isolation to be efficient.

  17. Effects of stress-dependent permeability on methane production from deep coal seams

    SciTech Connect (OSTI)

    McKee, C.R.; Bell, G.J.; Bumb, A.C.

    1984-05-01T23:59:59.000Z

    Methane resources are frequently associated with deeply buried coal seams which are also saturated with water; therefore, knowledge of their hydrologic properties is essential. As the formation pressure is lowered during dewatering, permeability may decline by one to two orders of magnitude. Theoretical relationships have been developed which fit laboratory data well for porosity and permeability as a function of effective stress. It was discovered that for practical purposes permeability is a function only of effective stress and the ratio of initial fracture porosity to matrix compressibility (fracture closure pressure). An approximate analytical solution for well testing has been obtained using the model developed. A new method for pump test analysis is then proposed.

  18. Effect of Lamination Conditions on the Gas Permeability and Adhesion Strength of Green Ceramic Tapes

    SciTech Connect (OSTI)

    D. Krueger

    2007-08-31T23:59:59.000Z

    The gas permeability and adhesion strength of laminated green ceramic tapes were determined for samples comprised of barium titanate as the dielectric, and poly(vinyl butyral) and dioctyl phthalate as the main components of the binder mixture. The green tapes were laminated for times of 2-10 min, pressures of 1.8-7 MPa, and temperatures of 35-85?C. The adhesion strength, which was measured by a peel test, increased with increasing lamination time, temperature, and pressure. The permeability, which was determined from gas flux measurements, decreased with increasing lamination time, temperature, and pressure. The dependence of the permeability and adhesion strength on lamination time, temperature, and pressure is qualitatively consistent with a mechanistic description of the lamination process as one of binder flow in porous media

  19. Fracture permeability and seismic wave scattering--Poroelastic linear-slip interface model for heterogeneous fractures

    SciTech Connect (OSTI)

    Nakagawa, S.; Myer, L.R.

    2009-06-15T23:59:59.000Z

    Schoenberg's Linear-slip Interface (LSI) model for single, compliant, viscoelastic fractures has been extended to poroelastic fractures for predicting seismic wave scattering. However, this extended model results in no impact of the in-plane fracture permeability on the scattering. Recently, we proposed a variant of the LSI model considering the heterogeneity in the in-plane fracture properties. This modified model considers wave-induced, fracture-parallel fluid flow induced by passing seismic waves. The research discussed in this paper applies this new LSI model to heterogeneous fractures to examine when and how the permeability of a fracture is reflected in the scattering of seismic waves. From numerical simulations, we conclude that the heterogeneity in the fracture properties is essential for the scattering of seismic waves to be sensitive to the permeability of a fracture.

  20. EIS-0450: TransWest Express 600 kV Direct Current Transmission Project in Wyoming, Colorado, Utah, and Nevada

    Broader source: Energy.gov [DOE]

    This EIS, being prepared jointly by DOEs Western Area Power Administration and the Department of the Interiors Bureau of Land Management (Wyoming State Office), evaluates the environmental impacts of granting a right-of-way for the TransWest Express 600-kilovolt Direct Current Transmission Project and amending a land use plan. The project consists of an overhead transmission line that would extend approximately 725 miles from south-central Wyoming, through Colorado and Utah. Western proposes to be a joint owner of the project. Additional information is available at http://www.blm.gov/wy/st/en/info/NEPA/documents/hdd/transwest.html.

  1. An evaluation of the potential end uses of a Utah tar sand bitumen. [Tar sand distillate

    SciTech Connect (OSTI)

    Thomas, K.P.; Harnsberger, P.M.; Guffey, F.D.

    1986-09-01T23:59:59.000Z

    To date the commercial application of tar sand deposits in the United States has been limited to their use as paving materials for county roads, parking lots, and driveways because the material, as obtained from the quarries, does not meet federal highway specifications. The bitumen in these deposits has also been the subject of upgrading and refining studies to produce transportation fuels, but the results have not been encouraging from an economic standpoint. The conversion of tar sand bitumen to transportation fuels cannot compete with crude oil refining. The purposes of this study were two-fold. The first was to produce vacuum distillation residues and determine if their properties met ASTM asphalt specifications. The second was to determine if the distillates could serve as potential feedstocks for the production of aviation turbine fuels. The bitumen used for this study was the oil produced during an in situ steamflood project at the Northwest Asphalt Ridge (Utah) tar sand deposit. Two distillation residues were produced, one at +316/sup 0/C and one at +399/sup 0/C. However, only the lower boiling residue met ASTM specifications, in this case as an AC-30 asphalt. The original oil sample met specifications as an AC-5 asphalt. These residue samples showed some unique properties in the area of aging; however, these properties need to be investigated further to determine the implications. It was also suggested that the low aging indexes and high flow properties of the asphalts may be beneficial for pavements that require good low-temperature performance. Two distillate samples were produced, one at IBP-316/sup 0/C and one at IBP-399/sup 0/C. The chemical and physical properties of these samples were determined, and it was concluded that both samples appear to be potential feedstocks for the production of aviation turbine fuels. However, hydrogenation studies need to be conducted and the properties of the finished fuels determined to verify the prediction. 14 refs., 12 tabs.

  2. Long-term surveillance plan for the Mexican Hat disposal site Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Mexican Hat, Utah, disposal site. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Mexican Hat disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the disposal site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Mexican Hat disposal site performs as designed. The program is based on two distinct types of activities: (1) site inspections to identify potential threats to disposal cell integrity, and (2) monitoring of selected seeps to observe changes in flow rates and water quality. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03. 18 refs., 6 figs., 1 tab.

  3. Subsidence and infilling patterns during deposition of Upper Cretaceous Mancos Shale, northwest Colorado and northeast Utah

    SciTech Connect (OSTI)

    Johnson, R.C. (Geological Survey, Denver, CO (USA))

    1990-05-01T23:59:59.000Z

    The Upper Cretaceous Mancos Shale of northwest Colorado and northeast Utah was deposited during the Coniacian through the late Campanian in an offshore environment within a broad U-shaped embayment along the western margin of the Cretaceous epeiric seaway. A detailed study of the Mancos using geophysical logs and surface observations reveals several major and minor shifts in source direction. The Coniacian and Santonian part of the Mancos consists of overlapping lobate shale wedges that generally thin and grade to the east and southeast into calcareous shales equivalent to the Niobrara Formation. The shoreline during this period was about 100 to 150 mi west and northwest of the study area. A southern source was a major influence during the early Campanian, when silty and sandy shale sediments, which formed the highly gas-productive Mancos B interval prograded to the north across the study area. The Mancos B interval contains well-developed clinoforms having 400-600 ft of relief, and this unit may represent a prograding shelf edge contemporaneous with the Point Lookout regression occurring about 100 mi to the south. The Mancos B ends abruptly in the northwest part of the study area against a nonprograding, northwest-thickening shale buildup, which may represent the stationary shelf edge along the northwest margin of the embayment. The sandiest part of the Mancos B occurs adjacent to this shale buildup. The supply of southerly derived sediment decreased near the end of the early Campanian, and the younger Mancos section was apparently derived largely from the northwest. This source area shift corresponds roughly to the onset of the Iles regression along the northwest margin of the embayment and the onset of the Lewis transgression along the southwest margin.

  4. Permeability Change of Crystalline Silicate Mineral-Packed Bed Column by Highly Alkaline Plume

    SciTech Connect (OSTI)

    Hideo Usui; Yuichi Niibori; Hitoshi Mimura [Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Aramaki Aza Aoba 6-6-01-2, Aoba-ku, Sendai, 980-8579 (Japan); Osamu Tochiyama [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577 (Japan)

    2007-07-01T23:59:59.000Z

    For the construction of the geological disposal system, the use of the cementitious material may change the permeability of the natural barrier around the repository. Cementitious materials may alter the pH of ground water to highly alkaline. Also, the potential permeability change of the natural barrier is one of the notable factors for performance assessments of geological disposal systems. In the high pH region, the solubility of silica is very high compared to that in the natural pH (around 8). Therefore, highly alkaline groundwater would dissolve and alter a part of rock surface. Usui et al. (2005) reported that the change of mineral pore structure due to chemical reaction is the key factor to consider the change of the permeability [5-6]. Moreover, such a change of the pore structure was considered to be the result of the spatial heterogeneity of chemical composition. Since such spatial heterogeneity exists also in the sedimentary rocks consisting of crystalline minerals such as quartz and feldspar, we need to examine natural rock, in order to obtain more reliable understanding about the change of permeability induced by highly alkaline groundwater (plume). In this study, silica sand as crystalline mineral was packed in the column, and the effect of dissolution induced by the highly alkaline plume on the permeability-change was examined. The silica sand particles mainly consist of SiO{sub 2} and include Al{sub 2}O{sub 3}, FeO, and K{sub 2}O. The volumetric flow rate and the pressure difference between the inlet and outlet of the column were measured, and the permeability was calculated. At the same time, the concentrations of elements in the fluid were measured by ICP-AES. The experimental result showed that permeability decreased gradually, although the silica sand was continuously dissolved in the column. The behavior of the permeability is considered to be the result from the rearrangement of the particles, or precipitation of secondary mineral. In the column test using the silica sand as packed mineral, the flow-path seems to be clogged by the rearrangement of the particles rather than the increase of the pore space between the particles. (authors)

  5. Device and method for the measurement of gas permeability through membranes

    DOE Patents [OSTI]

    Agarwal, Pradeep K.; Ackerman, John; Borgialli, Ron; Hamann, Jerry; Muknahalliptna, Suresh

    2006-08-08T23:59:59.000Z

    A device for the measuring membrane permeability in electrical/electrochemical/photo-electrochemical fields is provided. The device is a permeation cell and a tube mounted within the cell. An electrode is mounted at one end of the tube. A membrane is mounted within the cell wherein a corona is discharged from the electrode in a general direction toward the membrane thereby generating heated hydrogen atoms adjacent the membrane. A method for measuring the effects of temperature and pressure on membrane permeability and selectivity is also provided.

  6. INTERPRETATION OF A HYDRAULIC FRACTURING EXPERIMENT, MONTICELLO, SOUTH CAROLINA

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2014-01-01T23:59:59.000Z

    Letters INTERPRETATION OF A HYDRAULIC FRACTURING EXPERIMENT,12091 INTERPRETATION OF A HYDRAULIC FRACTURING EXPERIMENT,transient data from a hydraulic fracturing experiment have

  7. MONTICELLO NPL SITES FFA QUARTERLY REPORT: October 1

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^ IApril 1 - June 30, .. '

  8. MONTICELLO PROJECTS FEDERAL FACILITIES AGREEMENT REPORT Report Period: January 1-

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^ IApril 1 -PROJECTS FEDERAL

  9. MSGOUID MONTICELLO PROJECTS ·FEDERAL FACILITIES AGREEMENT REPORT

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^August/SeptemberMSGOUID

  10. Microsoft Word - Final monticello 10 7 04 JRW.DOC

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheneyNovember S.Fluor-B&W (08-93) United States5-SA-05 DR.Audit

  11. DOE - Office of Legacy Management -- Monticello Mill Site - UT 03

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp - CT 0-01 FUSRAPMonsanto ChemicalMill Site

  12. Monticello Mill site Federal Facility Agreement, December 22, 1988

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating35.doc Microsoft2006 |VehicleofMonitoringWinners:

  13. Monticello Mill site Federal Facility Agreement, December 22, 1988 Summary

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating35.doc Microsoft2006

  14. Monticello Mill Tailings Site Operable Unit III Annual Groundwater Report

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourth Five-Year38Report3 Through April 2014

  15. Monticello Mill Tailings Site Operable Unit III Ecological Risk

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourth Five-Year38Report3 Through April

  16. Monticello Mill Tailings Site Operable Unit Ill Interim Remedial Action

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourth Five-Year38Report3 Through AprilSite

  17. City of Monticello, Georgia (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCityJonesville,Livingston,CityCityCity of Montezuma,City

  18. Wood decomposition after five years in anaerobic nitrate rich groundwaters: Implications for lifetime of NitrexTM Permeable Reactive Barriers

    E-Print Network [OSTI]

    Vallino, Joseph J.

    decomposition at the WB barrier. Sulfate reduction: SO4 2- + 2CH2O + 2H+ 2CO2 + H2S + 2H2O 1.2. Questions 2 Abstract Permeable reactive barriers can benefit aquatic ecosystems by using wood chips to remove carbon was more important in the wood from the barriers. Keywords Nitrate removal, Permeable Reactive

  19. RESPONSE TO EPA COMMENT DATED JUNE 7, 2012: Review of Alternate Data Sets for Defining Permeability of Crushed Salt

    E-Print Network [OSTI]

    Permeability of Crushed Salt EPA Comment Dated June 7, 2012: Please provide an explanation why DOE believes) on the salt permeability and density relationship. EPA-Provided Background DOE has elected to use the Brodsky and T3 times for the ROM salt panel closure. In addition to the Brodsky 1994 data, our review identified

  20. Geothermal heating retrofit at the Utah State Prison Minimum Security Facility. Final report, March 1979-January 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    This report is a summary of progress and results of the Utah State Prison Geothermal Space Heating Project. Initiated in 1978 by the Utah State Energy Office and developed with assistance from DOE's Division of Geothermal and Hydropower Technologies PON program, final construction was completed in 1984. The completed system provides space and water heating for the State Prison's Minimum Security Facility. It consists of an artesian flowing geothermal well, plate heat exchangers, and underground distribution pipeline that connects to the existing hydronic heating system in the State Prison's Minimum Security Facility. Geothermal water disposal consists of a gravity drain line carrying spent geothermal water to a cooling pond which discharges into the Jordan River, approximately one mile from the well site. The system has been in operation for two years with mixed results. Continuing operation and maintenance problems have reduced the expected seasonal operation from 9 months per year to 3 months. Problems with the Minimum Security heating system have reduced the expected energy contribution by approximately 60%. To date the system has saved the prison approximately $18,060. The total expenditure including resource assessment and development, design, construction, performance verification, and reporting is approximately $827,558.

  1. 2D and 3D imaging resolution trade-offs in quantifying pore throats for prediction of permeability

    SciTech Connect (OSTI)

    Beckingham, Lauren E.; Peters, Catherine A.; Um, Wooyong; Jones, Keith W.; Lindquist, W.Brent

    2013-09-03T23:59:59.000Z

    Although the impact of subsurface geochemical reactions on porosity is relatively well understood, changes in permeability remain difficult to estimate. In this work, pore-network modeling was used to predict permeability based on pore- and pore-throat size distributions determined from analysis of 2D scanning electron microscopy (SEM) images of thin sections and 3D X-ray computed microtomography (CMT) data. The analyzed specimens were a Viking sandstone sample from the Alberta sedimentary basin and an experimental column of reacted Hanford sediments. For the column, a decrease in permeability due to mineral precipitation was estimated, but the permeability estimates were dependent on imaging technique and resolution. X-ray CT imaging has the advantage of reconstructing a 3D pore network while 2D SEM imaging can easily analyze sub-grain and intragranular variations in mineralogy. Pore network models informed by analyses of 2D and 3D images at comparable resolutions produced permeability esti- mates with relatively good agreement. Large discrepancies in predicted permeabilities resulted from small variations in image resolution. Images with resolutions 0.4 to 4 lm predicted permeabilities differ- ing by orders of magnitude. While lower-resolution scans can analyze larger specimens, small pore throats may be missed due to resolution limitations, which in turn overestimates permeability in a pore-network model in which pore-to-pore conductances are statistically assigned. Conversely, high-res- olution scans are capable of capturing small pore throats, but if they are not actually flow-conducting predicted permeabilities will be below expected values. In addition, permeability is underestimated due to misinterpreting surface-roughness features as small pore throats. Comparison of permeability pre- dictions with expected and measured permeability values showed that the largest discrepancies resulted from the highest resolution images and the best predictions of permeability will result from images between 2 and 4 lm resolution. To reduce permeability underestimation from analyses of high-resolu- tion images, a resolution threshold between 3 and 15 lm was found to be effective, but it is not known whether this range is applicable beyond the samples studied here.

  2. Cell-Permeable Near-Infrared Fluorogenic Substrates for Imaging -Lactamase Activity

    E-Print Network [OSTI]

    Xing, Bengang

    proteins and nucleic acids, but their poor membrane permeability due to high molecular weights and multiple grafted copolymers and nanoparticles have been developed to assist their cellular delivery.14,15 Here, we site for adding any potential new functionality. The substrate should have little or no fluorescence

  3. A PERMEABLE ACTIVE AMENDMENT CONCRETE (PAAC) FOR CONTAMINANT REMEDIATION AND EROSION CONTROL

    SciTech Connect (OSTI)

    Knox, A.; Paller, M.; Dixon, K.

    2012-06-29T23:59:59.000Z

    The final project report for SEED SERDP ER - 2134 describes the development of permeable active amendment concrete (PAAC), which was evaluated through four tasks: 1) development of PAAC; 2) assessment of PAAC for contaminant removal; 3) evaluation of promising PAAC formulations for potential environmental impacts; and 4) assessment of the hydraulic, physical, and structural properties of PAAC. Conventional permeable concrete (often referred to as pervious concrete) is concrete with high porosity as a result of an extensive and interconnected void content. It is made from carefully controlled amounts of water and cementitious materials used to create a paste that forms a coating around aggregate particles. The mixture has a substantial void content (e.g., 15% - 25%) that results in a highly permeable structure that drains quickly. In PAAC, the aggregate material is partly replaced by chemically-active amendments that precipitate or adsorb contaminants in water that flows through the concrete interstices. PAAC combines the relatively high structural strength, ample void space, and water permeability of pervious concrete with the contaminant sequestration ability of chemically-active amendments to produce a new material with superior durability and ability to control contaminant mobility. The high surface area provided by the concrete interstices in PAAC provides significant opportunity for contaminants to react with the amendments incorporated into the concrete matrix. PAAC has the potential to immobilize a large variety of organic and inorganic contaminants by incorporating different active sequestering agents including phosphate materials (rock phosphate), organoclays, zeolite, and lime individually or in combinations.

  4. Heteromeric, but Not Homomeric, Connexin Channels Are Selectively Permeable to Inositol Phosphates*

    E-Print Network [OSTI]

    Harris, Andrew L.

    , New Jersey 07103 Previous work has shown that channels formed by both connexin (Cx)26 and Cx32 (heteromeric Cx26/Cx32 hemichannels) are selec- tively permeable to cAMP and cGMP. To further investigate- phate groups through homomeric Cx26, homomeric Cx32, and het- eromeric Cx26/Cx32 channels was examined

  5. Effect of permeability anisotropy on buoyancy-driven flow for CO2 sequestration in saline aquifers

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    ) in deep saline aquifers is considered one of the most effective methods for carbon sequestration., 48, W09539, doi:10.1029/2012WR011939.* 1. Introduction [2] Carbon sequestration in deep salineEffect of permeability anisotropy on buoyancy-driven flow for CO2 sequestration in saline aquifers

  6. Multi-scale Modeling of 1-D Permeability Fields Marco A. R. Ferreira1,2

    E-Print Network [OSTI]

    West, Mike

    of contaminant plumes in aquifers and the production of petroleum from oil fields. In the particular case of production of petroleum from mature fields, part of the available information for the estimation of permeability fields is the production data. To incorporate such information in formal statistical analysis

  7. Dexou low pH plume baseline permeable reactive barrier options

    SciTech Connect (OSTI)

    Phifer, M.A.

    2000-06-20T23:59:59.000Z

    The current Environmental Restoration Department (ERD) Permeable Reactive Barrier (PRB) baseline configuration consists of a limestone trench and a granular cast iron trench in series. This report provides information relative to the use of PRB technology for the remediation of the D-Area low pH groundwater plumes.

  8. X-ray microtomography characterization of porosity, permeability and reactive surface changes during dissolution

    E-Print Network [OSTI]

    Luquot, Linda

    tools for predicting reservoir properties changes triggered by CO2 underground injection. At reservoirprecipitation problem and of the feedback effects of these processes on the flow field is still challenging. The problem.V. All rights reserved. Keywords: Reactive transport Carbon storage Permeability X-ray microtomography 1

  9. Upscaling permeability for fractured concrete: meso-macro numerical approach coupled to strong discontinuities

    E-Print Network [OSTI]

    Mtiers ParisTech, France Abstract A two scales numerical analysis is set up in order to upscale, in the spirit of sequential multi-scale methods [7]. The latter tend to build macroscopic models from a sequence discon- tinuities) representing fine scale cracks to the fine scale permeability tensor. The latter may

  10. Technique for Real-Time Measurements of Endothelial Permeability in a Microfluidic

    E-Print Network [OSTI]

    Simmons, Craig A.

    Technique for Real-Time Measurements of Endothelial Permeability in a Microfluidic Membrane Chip microfluidic platform to measure real-time perme- ability of endothelial cell monolayers on porous mem- branes of cell-free and cell-bound mem- brane layers. This technique is a highly sensitive, novel microfluidic

  11. Design and Development of an Artificial Neural Network for Estimation of Formation Permeability

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    SPE 28237 Design and Development of an Artificial Neural Network for Estimation of Formation and measuring their oldest practices for estimating the formation permeability. Coring every well in a large, especially in fields with hundreds of wells, requires a large amount of capital. In a heterogeneous field

  12. Improved materials characterization by pressure-dependent ultrasonic attenuation in air-filled permeable solids

    E-Print Network [OSTI]

    Nagy, Peter B.

    -resolution slow wave imaging system was developed to study the inhomogeneous pore structure in permeable transmitted through thin plates of a few millimeter thickness can be used to assess the tortuosity and dynamic, electrical conductivity, and other measurements is that it can be used to study the heterogeneity of the pore

  13. Semi-Permeable Microcapsules for Use in Fluorescence-Based Glucose Sensing

    E-Print Network [OSTI]

    Joachim, Elizabeth G.

    2011-08-08T23:59:59.000Z

    ; and 2) evaluating the effects of different core formation methods on encapsulation. Results indicate that adding salt to the LbL solutions can decrease the permeability of the films to dextran and [PAH-GPTS/PSS]10 films made with salt had the lowest...

  14. Mapping permeability over the surface of the Earth Tom Gleeson,1

    E-Print Network [OSTI]

    Jellinek, Mark

    picture of near surface permeability and will be of particular value for evaluating global water resources and Manga, 2010], the formation of metallic mineral deposits and oil resources [Garven, 1995; Person et al globally and over North America. The distribu- tion of each hydrolithology is generally scale independent

  15. 3.3 NUMERICAL MODELING OF SOLID DEFORMATION AND STRESS-DEPENDENT PERMEABILITY IN NATURALLY FRACTURED

    E-Print Network [OSTI]

    Schechter, David S.

    permeability. When the pore pressure depletes due to oil/gas production rates in highly stress FRACTURED RESERVOIRS During the first year of this project, we analyzed the productivity behavior was demonstrated. 3.3.1 Introduction Fractures are the main fluid flow paths in naturally fractured reservoirs

  16. Property measurement and correlation for homogeneous and naturally fractured low permeability cores

    E-Print Network [OSTI]

    Fan, Jin

    1993-01-01T23:59:59.000Z

    pulse method. The principles of pressure pulse test are reviewed and the new laboratory equipment is described in this thesis. The new laboratory technique can be used to determine (1) the porosity of the matrix, (2) the permeability of the matrix, (3...

  17. Airflow induced by pumping tests in unconfined aquifer with a low-permeability cap

    E-Print Network [OSTI]

    Jiao, Jiu Jimmy

    Airflow induced by pumping tests in unconfined aquifer with a low-permeability cap Jiu Jimmy Jiao1 October 2009. [1] Most analytical and numerical models developed to analyze pumping test data focus on saturated flow below the water table. Traditionally the soil above the initial water table prior to pumping

  18. Predicting the Permeability of Pervious Concretes from Planar Images M.S. Sumanasooriya1

    E-Print Network [OSTI]

    Bentz, Dale P.

    -dimensional material structures. Introduction Pervious concrete (also called Enhanced Porosity Concrete, or porous1 Predicting the Permeability of Pervious Concretes from Planar Images M.S. Sumanasooriya1 , D-dimensional material structures of pervious concretes using two-dimensional digital images obtained from actual

  19. Three-Phase Displacement Theory: An Improved Description of Relative Permeabilities

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    bubble point and with movable water; in waterfloods, man-made and natural; immiscible CO2 floods; steam floods; in some gas condensate reservoirs; in gravity drainage of gas caps with oil and water; WAG permeabilities to water, oil and gas are perhaps the most important rock-fluid descriptors in reservoir en

  20. Jump conditions and dynamic surface tension at permeable interfaces such as the inner core boundary

    E-Print Network [OSTI]

    Jump conditions and dynamic surface tension at permeable interfaces such as the inner core boundary as the density and viscosity changes. Independently of any intrinsic surface tension, a dynamic surface tension, a possibly anisotropic surface tension and terms including an interface mass density. In pratice