Powered by Deep Web Technologies
Note: This page contains sample records for the topic "monthly electric utility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data |  

Open Energy Info (EERE)

26 Database Monthly Electric Utility Sales and Revenue Data 26 Database Monthly Electric Utility Sales and Revenue Data Dataset Summary Description EIA previously collected sales and revenue data in a category called "Other." This category was defined as including activities such as public street highway lighting, other sales to public authorities, sales to railroads and railways, and interdepartmental sales. EIA has revised its survey to separate the transportation sales and reassign the other activities to the commercial and industrial sectors as appropriate. This is an electric utility data file that includes utility level retail sales of electricity and associated revenue by end-use sector, State, and reporting month. The data source is the survey: Form EIA-826, "Monthly Electric Utility Sales and Revenue Report

2

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

3

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

4

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

5

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

6

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

7

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

8

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

9

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

10

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

11

Electricity Monthly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

See all Electricity Reports Electricity Monthly Update With Data for September 2014 | Release Date: Nov. 25, 2014 | Next Release Date: Dec. 23, 2014 Previous Issues Issue:...

12

Electricity Monthly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

See all Electricity Reports Electricity Monthly Update With Data for October 2014 | Release Date: Dec. 23, 2014 | Next Release Date: Jan. 26, 2015 Previous Issues Issue:...

13

Electricity Monthly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

See all Electricity Reports Electricity Monthly Update With Data for August 2014 | Release Date: Oct. 24, 2014 | Next Release Date: Nov. 24, 2014 Previous Issues Issue: October...

14

Electric Power Monthly  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Monthly > Electric Power Monthly Back Issues Electric Power Monthly > Electric Power Monthly Back Issues Electric Power Monthly Back Issues Monthly Excel files zipped 2010 January February March April May June July August September October November December 2009 January February March April May June July August September October November December 2008 January February March March Supplement April May June July August September October November December 2007 January February March April May June July August September October November December 2006 January February March April May June July August September October November December 2005 January February March April May June July August September October November December

15

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Coal Stocks: August 2011 Coal Stocks: August 2011 Stocks Coal stocks continued the usual summer decline as utilities burned into their summer stockpile in August. Sigificant declines from August 2010 were seen in total coal stockpiles, driven by a 14 percent drop in bituminous coal stockpiles as well as a 10 percent drop in subbituminous coal stockpiles. Lignite stockpiles declined by 6 percent over the same time period. Days of burn The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current stockpile and past consumption patterns. The average number of days of burn held on hand at electric power plants increased slightly in August 2011 compared to previous months. This was largely driven by increases in

16

Electricity Monthly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Wholesale Markets: October 2014 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale...

17

Electricity Monthly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Wholesale Markets: September 2014 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale...

18

Electricity Monthly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Wholesale Markets: August 2014 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale...

19

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Wholesale Markets: February 2014 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale...

20

Electric power monthly, June 1994  

SciTech Connect

The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

Not Available

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "monthly electric utility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: November 2011 Electric Power Sector Coal Stocks: November 2011 Stocks As discussed in this month's feature story, electric power sector coal stocks continued to replenish after the summer burn in November, though stockpile levels remain below 2010 and 2009 levels. All coal stockpile levels declined from November 2010, with bituminous coal stockpile levels 9 percent lower than the same month of 2010. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plantâ€(tm)s current stockpile and past consumption patterns. The average number of days of burn held on hand at electric power plants dropped slightly from last month and remained below levels seen in November of 2010 or 2009. While

22

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: March 2012 Electric Power Sector Coal Stocks: March 2012 Stocks The seasonal winter drawdown of coal stocks was totally negated during the winter months this year due to low natural gas prices and unseasonably warm temperatures throughout the continental United States. In fact, March 2012 was the seventh straight month that coal stockpiles at power plants increased from the previous month. The largest driver of increasing stockpiles has been declining consumption of coal due to unseasonably warm weather and declining natural gas prices. Because much of the coal supplied to electric generators is purchased through long-term contracts, increasing coal stockpiles have proven difficult for electric power plant operators to handle. Some operators have inventories so high that they are refusing

23

Electric Power Monthly, June 1988  

SciTech Connect

The data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The Energy Information Administration (EIA) collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The Electric Power Monthly contains information from three data sources: the Form EIA-759, 'Monthly Power Plant Report'; the Federal Energy Regulatory Commission (FERC) Form 423, 'Monthly Report of Cost and Quality of Fuels for Electric Plants{sup ;} and the Form EIA-826, {sup M}onthly Electric Sales and Revenue Report with State Distributions'. The Form EIA-759 collects data from all operators of electric utility generating plants (except those having plants solely on standby), approximately 800 of the more than 3,200 electric utilities in the United States. To reduce the reporting burden for utilities, the FERC Form 423 and Form EIA-826 data are based on samples, which cover less than 100 percent of all central station generating utilities. The FERC Form 423 collects data from steam-electric power generating plants with a combined installed nameplate capacity of 50 megawatts or larger (approximately 230 electric utilities). The 50-megawatt threshold was established by FERC. The Form EIA-826 collects sales and revenue data in the residential, commercial, industrial, and other sectors of the economy. Other sales data collected include public street and highway lighting, other sales to public authorities, sales to railroads and railways, and interdepartmental sales. Respondents to the Form EIA-826 were statistically chosen and include approximately 225 privately and publicly owned electric utilities from a universe of more than 3,200 utilities. The sample selection for the Form EIA-826 is evaluated annually. Currently, the Form EIA-826 data account for approximately 83 percent of the electricity sales in the United States. Sources of data are described in more detail in the Technical Notes of the Electric Power Annual (DOE/EIA-0348).

NONE

1988-06-15T23:59:59.000Z

24

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: October 2013 Electric Power Sector Coal Stocks: October 2013 Stocks In October 2013, total coal stocks increased 0.8 percent from the previous month. This follows the normal seasonal pattern for this time of year as the country begins to build up coal stocks to be consumed during the winter months. Compared to last October, coal stocks decreased 17.7 percent. This occurred because coal stocks in October 2012 were at an extremely high level. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current stockpile and past consumption patterns. The total bituminous supply decreased from 85 days the previous month to 78 days in October 2013, while the total subbituminous supply decreased from 63 days in September 2013 to

25

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Regional Wholesale Markets: November 2011 Regional Wholesale Markets: November 2011 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale prices at selected pricing locations and daily peak demand for selected electricity systems in the U.S. The range of daily prices and demand data is shown for the report month and for the year ending with the report month. Prices and demand are shown for six Regional Transmission Operator (RTO) markets: ISO New England (ISO-NE), New York ISO (NYISO), PJM Interconnection (PJM), Midwest ISO (MISO), Electric Reliability Council of Texas (ERCOT), and two locations in the California ISO (CAISO). Also shown are wholesale prices at trading hubs in Louisiana (into Entergy), Southwest

26

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Regional Wholesale Markets: December 2011 Regional Wholesale Markets: December 2011 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale prices at selected pricing locations and daily peak demand for selected electricity systems in the nation. The range of daily prices and demand data is shown for the report month and for the year ending with the report month. Prices and demand are shown for six Regional Transmission Operator (RTO) markets: ISO New England (ISO-NE), New York ISO (NYISO), PJM Interconnection (PJM), Midwest ISO (MISO), Electric Reliability Council of Texas (ERCOT), and two locations in the California ISO (CAISO). Also shown are wholesale prices at trading hubs in Louisiana (into Entergy), Southwest

27

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Regional Wholesale Markets: January 2012 Regional Wholesale Markets: January 2012 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale prices at selected pricing locations and daily peak demand for selected electricity systems in the nation. The range of daily prices and demand data is shown for the report month and for the year ending with the report month. Prices and demand are shown for six Regional Transmission Operator (RTO) markets: ISO New England (ISO-NE), New York ISO (NYISO), PJM Interconnection (PJM), Midwest ISO (MISO), Electric Reliability Council of Texas (ERCOT), and two locations in the California ISO (CAISO). Also shown are wholesale prices at trading hubs in Louisiana (into Entergy), Southwest

28

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Regional Wholesale Markets: October 2011 Regional Wholesale Markets: October 2011 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale prices at selected pricing locations and daily peak demand for selected electricity systems in the U.S. The range of daily prices and demand data is shown for the report month and for the year ending with the report month. Prices and demand are shown for six Regional Transmission Operator (RTO) markets: ISO New England (ISO-NE), New York ISO (NYISO), PJM Interconnection (PJM), Midwest ISO (MISO), Electric Reliability Council of Texas (ERCOT), and two locations in the California ISO (CAISO). Also shown are wholesale prices at trading hubs in Louisiana (into Entergy), Southwest

29

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Regional Wholesale Markets: March 2012 Regional Wholesale Markets: March 2012 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale prices at selected pricing locations and daily peak demand for selected electricity systems in the Nation. The range of daily prices and demand data is shown for the report month and for the year ending with the report month. Prices and demand are shown for six Regional Transmission Operator (RTO) markets: ISO New England (ISO-NE), New York ISO (NYISO), PJM Interconnection (PJM), Midwest ISO (MISO), Electric Reliability Council of Texas (ERCOT), and two locations in the California ISO (CAISO). Also shown are wholesale prices at trading hubs in Louisiana (into Entergy), Southwest

30

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Regional Wholesale Markets: February 2012 Regional Wholesale Markets: February 2012 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale prices at selected pricing locations and daily peak demand for selected electricity systems in the Nation. The range of daily prices and demand data is shown for the report month and for the year ending with the report month. Prices and demand are shown for six Regional Transmission Operator (RTO) markets: ISO New England (ISO-NE), New York ISO (NYISO), PJM Interconnection (PJM), Midwest ISO (MISO), Electric Reliability Council of Texas (ERCOT), and two locations in the California ISO (CAISO). Also shown are wholesale prices at trading hubs in Louisiana (into Entergy), Southwest

31

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

32

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

33

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

34

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

35

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: February 2012 Electric Power Sector Coal Stocks: February 2012 Stocks The unseasonably warm temperatures that the continental United States experienced throughout the winter, coupled with low natural gas prices, caused coal stocks at power plants to increase throughout the winter of 2011 - 2012. During this period, coal stocks usually see a seasonal decline due to the added need for electricity generation from coal plants for spacing heating load. However, it was the sixth straight month that coal stocks increased from the previous month, with this trend likely to continue as the country enters into spring. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current

36

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

37

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

38

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

39

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

40

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

Note: This page contains sample records for the topic "monthly electric utility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: January 2012 Electric Power Sector Coal Stocks: January 2012 Stocks Above normal temperatures in January have allowed electric utilities to significantly replinish stockpiles of coal. The upswing in coal stockpiles corresponds to decreasing consumption of coal at electric generators seen in the resource use section across all regions of the country. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current stockpile and past consumption patterns. Along with coal stockpiles at electric power plants, the supply of coal significantly increased in January of 2012. Total bituminous coal days of burn increased 10 percent from January 2011 to 87, while subbituminous supply increased nearly 10

42

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: December 2011 Electric Power Sector Coal Stocks: December 2011 Stocks Temperate weather throughout the fall has allowed electric power sector coal stocks to replenish from the summer burn. All coal stockpile levels were essentially flat when compared to December 2010 and were a mostly up year-to-date. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plantâ€(tm)s current stockpile and past consumption patterns. The average number of days of burn held on hand at electric power plants was essentially flat compared to last month and remained below levels seen in December of 2010 or 2009. While stockpile levels have recovered from summer lows, the increasing

43

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: September 2011 Electric Power Sector Coal Stocks: September 2011 Stocks Electric power sector coal stocks continued to replenish after the summer burn in October, though stockpile levels remain well below 2010 levels. All coal stockpile levels declined from October 2010, with bituminous coal stockpile levels 12 percent lower than the same month of 2010. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current stockpile and past consumption patterns. The average number of days of burn held on hand at electric power plants was generally flat in October 2011 compared to September of this year. The summer of 2011 saw significant declines in total U.S. stockpile levels, which were replenished in the

44

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Reports Electricity Reports Electricity Monthly Update With Data for October 2013 | Release Date: Dec. 20, 2013 | Next Release Date: Jan. 22, 2014 Previous Issues Issue: November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 Previous issues Format: html xls Go Highlights: October 2013 Thirty-one states saw the average cost of electricity increase by more than two percent, with fourteen states experiencing increases of at least five percent compared to a year ago. Texas (ERCOT) and the Midwest (MISO) experienced above average wholesale electricity prices for October due to unseasonable temperatures. The New York City (Transco Zone 6 NY) natural gas price was

45

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Regional Wholesale Markets: September 2011 Regional Wholesale Markets: September 2011 The United States. has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale prices at selected pricing locations and daily peak demand for selected electricity systems in the U.S. The range of daily price and demand data is shown for the month of September 2011 and for the year ending on September 30, 2011. Prices and demand are shown for six Regional Transmission Operator (RTO) markets: ISO New England (ISO-NE), New York ISO (NYISO), PJM Interconnection (PJM), Midwest ISO (MISO), Electric Reliability Council of Texas (ERCOT), and California ISO (CAISO). Also shown are wholesale prices at trading hubs in Louisiana (into Entergy), Southwest (Palo Verde) and

46

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: September 2011 Resource Use: September 2011 Supply and Fuel Consumption In this section, we look at what resources are used to produce electricity. Electricity supplied from the grid is consumed the moment it is produced. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below electricity generation output by generator type and fuel type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation Output by Region By generator type By fuel type Region map map showing electricity regions Fossil steam generation, primarily coal-fired, is most pronounced in the Central region and supplies close to half of the electricity in the

47

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: August 2011 Resource Use: August 2011 Supply and Fuel Consumption In this section, we look at what resources are used to produce electricity. Electricity supplied from the grid is consumed the moment it is produced. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below electricity generation output by generator type and fuel type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation output by region By generator type By fuel type Region map map showing electricity regions Fossil steam generation, primarily coal-fired, predominants in the Central region and supplies close to half of the electricity in the Southeast and

48

Electric power monthly, July 1994  

SciTech Connect

The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels. Data on quantity, quality, and cost of fossil fuels lag data on net generation, fuel consumption, fuel stocks, electricity sales, and average revenue per kilowatthour by 1 month. This difference in reporting appears in the US, Census division, and State level tables. However, for purposes of comparison, plant-level data are presented for the earlier month.

Not Available

1994-07-01T23:59:59.000Z

49

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: October 2011 Resource Use: October 2011 Supply and Fuel Consumption In this section, we look at what resources are used to produce electricity. Electricity supplied from the grid is consumed the moment it is produced. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below electricity generation output by generator type and fuel type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation Output by Region By generator type By fuel type Region map map showing electricity regions Consistent with the retail sales numbers, generation output rose in Texas, as well as the Central and Mid-Atlantic regions and declined or remained

50

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: October 2013 Resource Use: October 2013 Supply and Fuel Consumption In this section, we look at the resources used to produce electricity. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below, electricity generation output by fuel type and generator type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation Output by Region By fuel type By generator type Region map map showing electricity regions In October 2013, net generation in the United States increased 1.0 percent compared to the previous year. This increase in electricity generation occurred mainly in the Mid-Atlantic, Central, and Southeast regions, along

51

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: March 2012 Resource Use: March 2012 Supply and Fuel Consumption In this section, we look at what resources are used to produce electricity. Electricity supplied from the grid is consumed the moment it is produced. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below electricity generation output by generator type and fuel type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation Output by Region By generator type By fuel type Region map map showing electricity regions Generation output declined across much of the country in March due to unseasonably warm temperatures. The two regions that observed small

52

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: February 2012 Resource Use: February 2012 Supply and Fuel Consumption In this section, we look at what resources are used to produce electricity. Electricity supplied from the grid is consumed the moment it is produced. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below electricity generation output by generator type and fuel type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation Output by Region By generator type By fuel type Region map map showing electricity regions Generation output declined in almost all regions in February due to unseasonably warm temperatures. Following the same pattern as January,

53

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: December 2011 Resource Use: December 2011 Supply and Fuel Consumption In this section, we look at what resources are used to produce electricity. Electricity supplied from the grid is consumed the moment it is produced. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below electricity generation output by generator type and fuel type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation Output by Region By generator type By fuel type Region map map showing electricity regions Generation output declined in all regions, with the exception of the West and Texas, due to unseasonably warm temperatures in December. Fossil steam

54

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: November 2011 Resource Use: November 2011 Supply and Fuel Consumption In this section, we look at what resources are used to produce electricity. Electricity supplied from the grid is consumed the moment it is produced. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below electricity generation output by generator type and fuel type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation Output by Region By generator type By fuel type Region map map showing electricity regions Generation output declined or remained relatively flat in all regions except for Texas and the Southeast. Both of these regions saw generation

55

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: January 2012 Resource Use: January 2012 Supply and Fuel Consumption In this section, we look at what resources are used to produce electricity. Electricity supplied from the grid is consumed the moment it is produced. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below electricity generation output by generator type and fuel type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation Output by Region By generator type By fuel type Region map map showing electricity regions Generation output declined in all regions due to unseasonably warm temperatures in January. Fossil steam generation followed total generation

56

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Highlights: March 2012 Highlights: March 2012 Average natural gas prices at the Henry Hub declined for the eighth straight month leading to a nearly 40% increase in consumption for electricity during March 2012. The warmest March on record for much of the central U.S. drove a 5% decrease in residential retail sales when compared to March 2011. U.S. coal supplies as measured by days of burn were above 80 days for the third straight month in March as declining coal consumption drove coal stockpile increases. Key Indicators Mar 2012 % Change from Mar 2011 Total Net Generation (Thousand MWh) 309,709 -2.9% Residential Retail Price (cents/kWh) 11.76 1.5% Retail Sales (Thousand MWh) 282,453 -2.6% Heating Degree-Days 377 -36.4% Natural Gas Price, Henry Hub ($/MMBtu) 2.22 -45.7% Coal Stocks

57

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

March 2012 | Release Date: May 29, 2012 | Next March 2012 | Release Date: May 29, 2012 | Next Release Date: June 26, 2012 | Re-Release Date: November 28, 2012 (correction) Previous Issues Issue: November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 Previous issues Format: html xls Go Highlights: March 2012 Average natural gas prices at the Henry Hub declined for the eighth straight month leading to a nearly 40% increase in consumption for electricity during March 2012. The warmest March on record for much of the central U.S. drove a 5% decrease in residential retail sales when compared to March 2011. U.S. coal supplies as measured by days of burn were above 80 days for the third straight month in March as declining coal consumption drove

58

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Highlights: August 2011 Highlights: August 2011 Extreme heat in Texas, New Mexico, Colorado and Arizona drove significant increases in the retail sales of electricity in the Southwest. Wind generation increased in much of the United States, except the middle of the country where total generation declined. Bituminous coal stocks dropped 14% from August 2010. Key indicators Same Month 2010 Year to date Total Net Generation -1% 11% Residential Retail Price -6% 11% Cooling Degree-Days -3% 2% Natural Gas Price, Henry Hub -6% -9% Bituminous Coal Stocks -14% -14% Subbituminous Coal Stocks -10% -17% Heat wave drives record demand and wholesale prices in Texas A prolonged August heat wave in Texas stressed available generating capacity and produced very high wholesale prices in the Electric

59

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

January 2012 | Release Date: Mar. 27, January 2012 | Release Date: Mar. 27, 2012 | Next Release Date: Apr. 27, 2012 | Re-Release Date: November 28, 2012 (correction) Previous Issues Issue: November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 Previous issues Format: html xls Go Highlights: January 2012 Warm temperatures across much of the U.S. led to lower retail sales of electricity during January 2012. Coal-fired generation decreased in every region of the United States when compared to January 2011. Coal stocks recovered due to decreased consumption this January compared to the same month of 2011. Key Indicators Jan 2012 % Change from Jan. 2011 Total Net Generation (Thousand MWh) 340,743 -6.4%

60

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Highlights: January 2012 Highlights: January 2012 Warm temperatures across much of the U.S. led to lower retail sales of electricity during January 2012. Coal-fired generation decreased in every region of the United States when compared to January 2011. Coal stocks recovered due to decreased consumption this January compared to the same month of 2011. Key Indicators Jan 2012 % Change from Jan. 2011 Total Net Generation (Thousand MWh) 340,743 -6.4% Residential Retail Price (cents/kWh) 11.43 4.4% Retail Sales (Thousand MWh) 310,859 -6.5% Heating Degree-Days 751 -21.4% Natural Gas Price, Henry Hub ($/MMBtu) 2.75 -40.3% Coal Stocks (Thousand Tons) 181,621 10.2% Coal Consumption (Thousand Tons) 70,595 -21.7% Natural Gas Consumption (Mcf) 676,045 19.9% Nuclear Outages (MW) 9,567 2.1%

Note: This page contains sample records for the topic "monthly electric utility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

August 2011 | Release Date: October 25, August 2011 | Release Date: October 25, 2011 | Next Release Date: November 21, 2011 Previous Issues Issue: November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 Previous issues Format: html xls Go Highlights: August 2011 Extreme heat in Texas, New Mexico, Colorado and Arizona drove significant increases in the retail sales of electricity in the Southwest. Wind generation increased in much of the United States, except the middle of the country where total generation declined. Bituminous coal stocks dropped 14% from August 2010. Key indicators Same Month 2010 Year to date Total Net Generation -1% 11% Residential Retail Price -6% 11% Cooling Degree-Days -3% 2%

62

Electricity Monthly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and...

63

Electricity Monthly Update  

Annual Energy Outlook 2012 (EIA)

Update November 28, 2012 Map of Electric System Selected for Daily Peak Demand was replaced with the correct map showing Selected Wholesale Electricity and Natural Gas Locations....

64

Electricity Monthly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S....

65

Electricity Monthly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity...

66

Electricity Monthly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

by almost 10%, or just over 12 million tons, to 136 million tons. This is the largest month-to-month percentage increase since at least January 2009. In absolute terms,...

67

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Use: February 2014 Retail RatesPrices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based...

68

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: July 2014 Retail ratesprices and consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based...

69

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: August 2014 Retail ratesprices and consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based...

70

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: December 2011 End Use: December 2011 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

71

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: August 2011 End Use: August 2011 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by State regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average revenue per kWh by state Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

72

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: November 2011 End Use: November 2011 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

73

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: February 2012 End Use: February 2012 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by State regulators. However, a number of States have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

74

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: October 2011 End Use: October 2011 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

75

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: March 2012 End Use: March 2012 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by State regulators. However, a number of States have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

76

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: September 2011 End Use: September 2011 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by State regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

77

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: October 2013 End Use: October 2013 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by state Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

78

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: January 2012 End Use: January 2012 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

79

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

the country last July, while temperatures in July 2014 were closer to average. This led to a decrease in demand for electricity generation in July 2014, with total...

80

Electricity Monthly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

and fuel consumption In this section, we look at the resources used to produce electricity. Generating units are chosen to run primarily on their operating costs, of which...

Note: This page contains sample records for the topic "monthly electric utility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Electric Power Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Annual Technical Notes This appendix describes how the U.S. Energy Information Administration collects, estimates, and reports electric power data in the Electric Power Annual. Data Quality and Submission The Electric Power Annual (EPA) is prepared by the Office of Electricity, Renewables, and Uranium Statistics (ERUS), U.S. Energy Information Administration (EIA), U.S. Department of Energy (DOE). ERUS performs routine reviews of the data collection respondent frames, survey forms, and reviews the quality of the data received. Data are entered directly by respondents into the ERUS Internet Data Collection (IDC) system. A small number of hard copy forms are keyed into the system by ERUS personnel. All data are subject to review via interactive edits built into the IDC system, internal quality assurance reports, and review by ERUS

82

Electricity Monthly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. Retail rates and prices are not collected by EIA. EIA...

83

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Highlights: October 2011 Highlights: October 2011 Mixed temperatures led to flat retail sales of electricity during October 2011. Coal-fired generation decreased or was flat across the United States except for the Central region when compared to October 2010. October's electric system load remained in the mid-to-low section of the annual range in many electric systems across the United States. Key Indicators Oct. 2011 % Change from Oct. 2010 Total Net Generation (Thousand MWh) 309,400 0.5% Residential Retail Price (cents/kWh) 12.12 2.2% Retail Sales (Thousand MWh) 285,156 -0.9% Heating Degree-Days 259 8.8% Natural Gas Price, Henry Hub ($/MMBtu) 3.68 4.0% Coal Stocks (Thousand Tons) 156,880 -10.7% Coal Consumption (Thousand Tons) 69,627 -1.8% Natural Gas Consumption (Mcf) 603,724 1.6%

84

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

October 2011 | Release Date: Dec. 21, October 2011 | Release Date: Dec. 21, 2011 | Next Release Date: Jan. 30, 2012 | Re-Release Date: November 28, 2012 (correction) Previous Issues Issue: November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 Previous issues Format: html xls Go Highlights: October 2011 Mixed temperatures led to flat retail sales of electricity during October 2011. Coal-fired generation decreased or was flat across the United States except for the Central region when compared to October 2010. October's electric system load remained in the mid-to-low section of the annual range in many electric systems across the United States. Key Indicators Oct. 2011 % Change from Oct. 2010

85

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

December 2011 | Release Date: Feb. 29, December 2011 | Release Date: Feb. 29, 2012 | Next Release Date: Mar. 30, 2012 | Re-Release Date: November 28, 2012 (correction) Previous Issues Issue: November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 Previous issues Format: html xls Go Highlights: December 2011 Warm temperatures across the Eastern half of the continental U.S. led to lower retail sales of electricity during December 2011. Coal-fired generation decreased in every region of the United States when compared to December 2010. Electric system load ranged in the mid-to-low section of the annual range across all wholesale regions except the Bonneville Power Administration in the Northwest in December 2011.

86

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Highlights: February 2012 Highlights: February 2012 Warm temperatures across much of the U.S. led to lower retail sales of electricity during February 2012. Natural gas-fired generation increased in every region of the United States when compared to February 2011. Wholesale electricity prices remained in the low end of the annual range for most wholesale markets due to low demand and depressed natural gas prices Key Indicators Feb 2012 % Change from Feb. 2011 Total Net Generation (Thousand MWh) 310,298 -1.0% Residential Retail Price (cents/kWh) 11.55 3.9% Retail Sales (Thousand MWh) 285,684 -3.5% Heating Degree-Days 654 -12.0% Natural Gas Price, Henry Hub ($/MMBtu) 2.60 -38.1% Coal Stocks (Thousand Tons) 186,958 -13.6% Coal Consumption (Thousand Tons) 62,802 -14.6% Natural Gas Consumption

87

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

February 2012 | Release Date: Apr. 30, February 2012 | Release Date: Apr. 30, 2012 | Next Release Date: May 25, 2012 | Re-Release Date: November 28, 2012 (correction) Previous Issues Issue: November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 Previous issues Format: html xls Go Highlights: February 2012 Warm temperatures across much of the U.S. led to lower retail sales of electricity during February 2012. Natural gas-fired generation increased in every region of the United States when compared to February 2011. Wholesale electricity prices remained in the low end of the annual range for most wholesale markets due to low demand and depressed natural gas prices Key Indicators Feb 2012 % Change from Feb. 2011

88

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

November 2011 | Release Date: Jan. 30, November 2011 | Release Date: Jan. 30, 2012 | Next Release Date: Feb. 28, 2012 | Re-Release Date: November 28, 2012 (correction) Previous Issues Issue: November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 Previous issues Format: html xls Go Highlights: November 2011 Warm temperatures across the Eastern half of the continental U.S. led to flat or lower retail sales of electricity during November 2011. Coal-fired generation decreased in every region of the United States when compared to November 2010. Wholesale electricity prices set annual lows across the East coast as well as in the ERCOT portion of Texas in November 2011. Key Indicators Nov. 2011 % Change from Nov. 2010

89

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Highlights: November 2011 Highlights: November 2011 Warm temperatures across the Eastern half of the continental U.S. led to flat or lower retail sales of electricity during November 2011. Coal-fired generation decreased in every region of the United States when compared to November 2010. Wholesale electricity prices set annual lows across the East coast as well as in the ERCOT portion of Texas in November 2011. Key Indicators Nov. 2011 % Change from Nov. 2010 Total Net Generation (Thousand MWh) 304,268 -0.6% Residential Retail Price (cents/kWh) 11.88 2.2% Retail Sales (Thousand MWh) 273,053 -0.7% Heating Degree-Days 469 -10.3% Natural Gas Price, Henry Hub ($/MMBtu) 3.32 -13.8% Coal Stocks (Thousand Tons) 168,354 8.9% Coal Consumption (Thousand Tons) 66,789 -8.2% Natural Gas Consumption

90

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Highlights: December 2011 Highlights: December 2011 Warm temperatures across the Eastern half of the continental U.S. led to lower retail sales of electricity during December 2011. Coal-fired generation decreased in every region of the United States when compared to December 2010. Electric system load ranged in the mid-to-low section of the annual range across all wholesale regions except the Bonneville Power Administration in the Northwest in December 2011. Key Indicators Dec. 2011 % Change from Dec. 2010 Total Net Generation (Thousand MWh) 336,419 -7.1% Residential Retail Price (cents/kWh) 11.52 4.2% Retail Sales (Thousand MWh) 299,421 -6.1% Heating Degree-Days 713 -20.6% Natural Gas Price, Henry Hub ($/MMBtu) 3.24 -25.7% Coal Stocks (Thousand Tons) 175,100 -0.1% Coal Consumption

91

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Highlights: September 2011 Highlights: September 2011 Cooler temperatures drove down retail sales of electricity in the Southeast compared to September 2010. Fossil steam generation decreased in much of the United States, except in the ERCOT portion of Texas where total generation increased from September, 2010. Bituminous coal stocks dropped 18% from September 2010. Key Indicators Sept. 2011 % Change from Sept. 2010 Total Net Generation (Thousand MWh) 336,264 -3% Residential Retail Price (cents/Kwh) 12.26 2% Retail Sales (Thousand MWh) 324,357 -1% Cooling Degree-Days 184 -6% Natural Gas Price, Henry Hub ($/mmBtu) 4.04 0% Coal Stocks (Thousand Tons) 144,439 -11% Coal Consumption (Thousand Tons) 76,765 -3% Natural Gas Consumption (Mcf) 702,589 -2% Nuclear Outages (MW) 9,227 70%

92

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

September 2011 | Release Date: Nov. 21, September 2011 | Release Date: Nov. 21, 2011 | Next Release Date: Dec. 21, 2011  | Re-Release Date: November 28, 2012 (correction) Previous Issues Issue: November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 Previous issues Format: html xls Go Highlights: September 2011 Cooler temperatures drove down retail sales of electricity in the Southeast compared to September 2010. Fossil steam generation decreased in much of the United States, except in the ERCOT portion of Texas where total generation increased from September, 2010. Bituminous coal stocks dropped 18% from September 2010. Key Indicators Sept. 2011 % Change from Sept. 2010 Total Net Generation

93

Electric Utility Industry Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utility Industry Update Electric Utility Industry Update Steve Kiesner Director, National Customer Markets Edison Electric Institute FUPWG Spring 2012 April 12, 2012 Edison Electric Institute  Investor-Owned Electric Companies  Membership includes  200 US companies,  More than 65 international affiliates and  170 associates  US members  Serve more than 95% of the ultimate customers in the investor-owned segment of the industry and  Nearly 70% of all electric utility ultimate customers, and  Our mission focuses on advocating public policy; expanding market opportunities; and providing strategic business information Agenda Significant Industry Trends Utility Infrastructure Investments Generation and Fuel Landscape

94

Electric power monthly, June 1997 with data for March 1997  

SciTech Connect

The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. 63 tabs.

NONE

1997-06-01T23:59:59.000Z

95

INTRODUCTION Ukiah Electric Utility  

E-Print Network (OSTI)

INTRODUCTION Ukiah Electric Utility Renewable Energy Resources Procurement Plan Per Senate Billlx 2 renewable energy resources, including renewable energy credits, as a specified percentage of Ukiah's total,2011 to December 31, 2013, Ukiah shall procure renewable energy resources equivalent to an average of at least

96

Monthly/Annual Energy Review - electricity section  

Reports and Publications (EIA)

Monthly and latest annual statistics on electricity generation, capacity, end-use, fuel use and stocks, and retail price.

2015-01-01T23:59:59.000Z

97

Electric Power Monthly - Monthly Data Tables | OpenEI  

Open Energy Info (EERE)

Power Monthly - Monthly Data Tables Power Monthly - Monthly Data Tables Dataset Summary Description Monthly electricity generation figures (and the fuel consumed to produce it). Source information available at EIA. Source EIA Date Released July 20th, 2010 (4 years ago) Date Updated July 20th, 2010 (4 years ago) Keywords consumption EIA Electricity Electricity Consumption Electricity Generation Data application/vnd.ms-excel icon generation_state_mon.xls (xls, 32.5 MiB) application/vnd.ms-excel icon consumption_state_mon.xls (xls, 14.7 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Monthly Time Period License License Other or unspecified, see optional comment below Comment Work of the U.S. Federal Government Rate this dataset Usefulness of the metadata

98

Rural Utilities Service Electric Program  

Energy.gov (U.S. Department of Energy (DOE))

The Rural Utilities Service Electric Programs loans and loan guarantees finance the construction of electric distribution, transmission, and generation facilities, including system improvements...

99

Electrical Safety - Monthly Analyses of Electrical Safety Occurrences  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Analysis Office of Analysis Operating Experience Committee Safety Alerts Safety Bulletins Annual Reports Special Operations Reports Safety Advisories Special Reports Causal Analysis Reviews Contact Us HSS Logo Electrical Safety Monthly Analyses of Electrical Safety Occurrences 2013 September 2013 Electrical Safety Occurrences August 2013 Electrical Safety Occurrences July 2013 Electrical Safety Occurrences June 2013 Electrical Safety Occurrences May 2013 Electrical Safety Occurrences April 2013 Electrical Safety Occurrences March Electrical Safety Occurrence February Electrical Safety Occurrence January Electrical Safety Occurrence 2012 December Electrical Safety Occurrence November Electrical Safety Occurrence October Electrical Safety Occurrence September Electrical Safety Occurrence

100

Monthly Analysis of Electrical Safety Occurrences - February...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Monthly Analysis of Electrical Safety Occurrences - February 2012 February 2012 An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by...

Note: This page contains sample records for the topic "monthly electric utility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Monthly Analysis of Electrical Safety Occurrences - November...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Monthly Analysis of Electrical Safety Occurrences - November 2011 November 2011 An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by...

102

Electric Power Monthly - Energy Information Administration  

Annual Energy Outlook 2012 (EIA)

Electric Power Monthly Data for October 2014 | Release Date: December 23, 2014 | Next Release: January 26, 2015 | full report Previous Issues Issue: November 2014 October 2014...

103

Monthly Flash Estimates of Electric Power Data  

Gasoline and Diesel Fuel Update (EIA)

Burn Non-Lignite Coal Burn Non-Lignite Coal Page 7 8. Month-to-Month Comparisons: Electric Power Retail Sales and Average Prices Page 8 9. Retail Sales Trends Page 9 10. Average Retail Price Trends Page 10 11. Heating and Cooling Degree Days Page 11 12. Documentation Page 12 Monthly Flash Estimates of Data for: October 2010 Section 1. Commentary Electric Power Data In October 2010, the contiguous United States experienced temperatures that were above average. Accordingly, the total population-weighted heating degree days for the United States were 15.6 percent below the October normal. Retail sales of electricity remained relatively unchanged from October 2009. Over the same period, the average U.S. retail price of electricity increased 1.8 percent. For the 12-month period ending October 2010, the average U.S.

104

Monthly Flash Estimates of Electric Power Data  

Gasoline and Diesel Fuel Update (EIA)

January 2011 January 2011 Section 1. Commentary Electric Power Data The contiguous United States as a whole experienced temperatures that were below normal in January 2011. Accordingly, the total population-weighted heating degree days for the United States were 4.3 percent above the January normal. Retail sales of electricity increased 1.8 percent from January 2010. Over the same period, the average U.S. retail price of electricity increased 2.9 percent. For the 12-month period ending January 2011, the average U.S. retail price of electricity increased 1.1 percent over the previous 12-month period ending January 2010. In January 2011, total electric power generation in the United States increased 0.5 percent compared to January 2010 (the change in electric power generation does not necessarily coincide with the change in retail sales of electricity

105

Monthly Flash Estimates of Electric Power Data  

Gasoline and Diesel Fuel Update (EIA)

March 2011 March 2011 Section 1. Commentary Electric Power Data The contiguous United States experienced temperatures that were slightly above normal in March 2011. Accordingly, the total population-weighted heating degree days for the United States were 1.2 percent below the March normal. Retail sales of electricity decreased 0.2 percent from March 2010. Over the same period, the average U.S. retail price of electricity increased 1.1 percent. For the 12-month period ending March 2011, the average U.S. retail price of electricity increased 1.6 percent over the previous 12-month period ending March 2010. In March 2011, total electric power generation in the United States increased 1.2 percent compared to March 2010 (the change in electric power generation does not necessarily coincide with the change in retail sales of

106

MONTHLY UPDATE TO ANNUAL ELECTRIC GENERATOR REPORT  

U.S. Energy Information Administration (EIA) Indexed Site

REPORT REPORT INSTRUCTIONS|Year: 2013 No. 1905-0129 Approval Expires: 12/31/2015 Burden: 0.3 Hours| |PURPOSE|Form EIA-860M collects data on the status of: Proposed new generators scheduled to begin commercial operation within the subsequent 12 months; Existing generators scheduled to retire from service within the subsequent 12 months; and Existing generators that have proposed modifications that are scheduled for completion within one month. The data collected on this form appear in the EIA publication Electric Power Monthly. They are also used to monitor the current status and trends of the electric power industry and to evaluate the future of the industry.| |REQUIRED RESPONDENTS|Respondents to the Form EIA-860M who are required to complete this form are all Form EIA-860, ANNUAL ELECTRIC GENERATOR REPORT,

107

Monthly Flash Estimates of Electric Power Data  

Gasoline and Diesel Fuel Update (EIA)

7/22/2011 7/22/2011 Table of Contents 1. Commentary Page 1 2. Key Indicators of Generation, Consumption & Stocks Page 2 3. Month-to-Month Comparisons: Generation, Consumption and Stocks (Total) Page 3 4. Net Generation Trends Page 4 5. Fossil Fuel Consumption Trends Page 5 6. Fossil Fuel Stock Trends Page 6 7. Average Number of Days of Burn Non-Lignite Coal Page 7 8. Month-to-Month Comparisons: Electric Power Retail Sales and Average Prices Page 8 9. Retail Sales Trends Page 9 10. Average Retail Price Trends Page 10 11. Heating and Cooling Degree Days Page 11 12. Documentation Page 12 Monthly Flash Estimates of Data for: May 2011 Section 1. Commentary Electric Power Data The contiguous United States experienced temperatures that were slightly below normal in May 2011.

108

Monthly Flash Estimates of Electric Power Data  

Gasoline and Diesel Fuel Update (EIA)

6/24/2011 6/24/2011 Table of Contents 1. Commentary Page 1 2. Key Indicators of Generation, Consumption & Stocks Page 2 3. Month-to-Month Comparisons: Generation, Consumption and Stocks (Total) Page 3 4. Net Generation Trends Page 4 5. Fossil Fuel Consumption Trends Page 5 6. Fossil Fuel Stock Trends Page 6 7. Average Number of Days of Burn Non-Lignite Coal Page 7 8. Month-to-Month Comparisons: Electric Power Retail Sales and Average Prices Page 8 9. Retail Sales Trends Page 9 10. Average Retail Price Trends Page 10 11. Heating and Cooling Degree Days Page 11 12. Documentation Page 12 Monthly Flash Estimates of Data for: April 2011 Section 1. Commentary Electric Power Data The contiguous United States experienced temperatures that were above normal in April 2011.

109

Monthly Flash Estimates of Electric Power Data  

Gasoline and Diesel Fuel Update (EIA)

9/20/2011 9/20/2011 Table of Contents 1. Commentary Page 1 2. Key Indicators of Generation, Consumption & Stocks Page 2 3. Month-to-Month Comparisons: Generation, Consumption and Stocks (Total) Page 3 4. Net Generation Trends Page 4 5. Fossil Fuel Consumption Trends Page 5 6. Fossil Fuel Stock Trends Page 6 7. Average Number of Days of Burn Non-Lignite Coal Page 7 8. Month-to-Month Comparisons: Electric Power Retail Sales and Average Prices Page 8 9. Retail Sales Trends Page 9 10. Average Retail Price Trends Page 10 11. Heating and Cooling Degree Days Page 11 12. Documentation Page 12 Monthly Flash Estimates of Data for: July 2011 Section 1. Commentary Electric Power Data The contiguous United States experienced temperatures

110

Monthly Flash Estimates of Electric Power Data  

Gasoline and Diesel Fuel Update (EIA)

November 2010 November 2010 Section 1. Commentary Electric Power Data The contiguous United States experienced temperatures that were near normal in November 2010. Accordingly, the total population-weighted heating degree days for the United States were 3.0 percent below the November normal. In November 2010, retail sales of electricity increased 2.0 percent from November 2009. Over the same period, the average U.S. retail price of electricity increased 2.8 percent. For the 12-month period ending November 2010, the average U.S. retail price of electricity increased 0.3 percent over the previous 12-month period ending November 2009. Total electric power generation in the United States increased 3.6 percent compared to November 2009. Over the same period, coal generation remained relatively unchanged, while natural gas generation increased 8.8 percent and

111

Deregulating the electric utility industry  

E-Print Network (OSTI)

Many functions must be performed in any large electric power system. A specific proposal for a deregulated power system, based on a real-time spot energy marketplace, is presented and analyzed. A central T&D utility acts ...

Bohn, Roger E.

1982-01-01T23:59:59.000Z

112

"List of Covered Electric Utilities" under the Public Utility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory...

113

Monthly Analysis of Electrical Safety Occurrences - March 2011...  

Energy Savers (EERE)

Monthly Analysis of Electrical Safety Occurrences - March 2011 Monthly Analysis of Electrical Safety Occurrences - March 2011 March 2011 An analysis of the Occurrence Reporting and...

114

Studying the Communications Requirements of Electric Utilities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policies- Public Meeting Studying the Communications Requirements of Electric Utilities...

115

Electricity Monthly Update - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

all Electricity Reports all Electricity Reports Electricity Monthly Update With Data for October 2013 | Release Date: Dec. 20, 2013 | Next Release Date: Jan. 22, 2014 Previous Issues Issue: November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 Previous issues Format: html xls Go Highlights: October 2013 Thirty-one states saw the average cost of electricity increase by more than two percent, with fourteen states experiencing increases of at least five percent compared to a year ago. Texas (ERCOT) and the Midwest (MISO) experienced above average wholesale electricity prices for October due to unseasonable temperatures. The New York City (Transco Zone 6 NY) natural gas price was

116

Electric Power Monthly - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Electric Power Monthly Electric Power Monthly Data for October 2013 | Release Date: December 20, 2013 | Next Release: January 22, 2014 | full report Previous Issues Issue: November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 October 2012 September 2012 August 2012 July 2012 June 2012 May 2012 April 2012 March 2012 February 2012 January 2012(Nov) January 2012(Oct) December 2011 November 2011 October 2011 September 2011 August 2011 July 2011 June 2011 May 2011 April 2011 March 2011 February 2011 January 2011 issues prior to 2011 Format: pdf zip Go New Addition: Use EIA's new interactive Electricity Data Browser to find generation, fuel consumption, sales, revenue and average price time series,

117

Energy Efficiency and Electric Utilities  

SciTech Connect

The report is an overview of electric energy efficiency programs. It takes a concise look at what states are doing to encourage energy efficiency and how it impacts electric utilities. Energy efficiency programs began to be offered by utilities as a response to the energy crises of the 1970s. These regulatory-driven programs peaked in the early-1990s and then tapered off as deregulation took hold. Today, rising electricity prices, environmental concerns, and national security issues have renewed interest in increasing energy efficiency as an alternative to additional supply. In response, new methods for administering, managing, and delivering energy efficiency programs are being implemented. Topics covered in the report include: Analysis of the benefits of energy efficiency and key methods for achieving energy efficiency; evaluation of the business drivers spurring increased energy efficiency; Discussion of the major barriers to expanding energy efficiency programs; evaluation of the economic impacts of energy efficiency; discussion of the history of electric utility energy efficiency efforts; analysis of the impact of energy efficiency on utility profits and methods for protecting profitability; Discussion of non-utility management of energy efficiency programs; evaluation of major methods to spur energy efficiency - systems benefit charges, resource planning, and resource standards; and, analysis of the alternatives for encouraging customer participation in energy efficiency programs.

NONE

2007-11-15T23:59:59.000Z

118

Electric utility system master plan  

SciTech Connect

This publication contains the electric utility system plan and guidelines for providing adequate electric power to the various facilities of Lawrence Livermore National Laboratory in support of the mission of the Laboratory. The topics of the publication include general information on the current systems and their operation, a planning analysis for current and future growth in energy demand, proposed improvements and expansions required to meet long range site development and the site`s five-year plan.

Erickson, O.M.

1992-10-01T23:59:59.000Z

119

Joint Electrical Utilities (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Electrical Utilities (Iowa) Joint Electrical Utilities (Iowa) Joint Electrical Utilities (Iowa) < Back Eligibility Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Utilities Board Cities may establish utilities to acquire existing electric generating facilities or distribution systems. Acquisition, in this statute, is defined as city involvement, and includes purchase, lease, construction, reconstruction, extension, remodeling, improvement, repair, and equipping of the facility. This chapter does not limit the powers or authority of

120

Monthly Flash Estimates of Electric Power Data  

Gasoline and Diesel Fuel Update (EIA)

December 2010 December 2010 Section 1. Commentary Electric Power Data In December 2010, the contiguous United States as a whole experienced temperatures that were near normal. However, there was a significant contrast in temperatures across the country as the western United States experienced above average temperatures, while the more densely populated eastern part of the nation experienced temperatures that were significantly below average. Accordingly, the total population-weighted heating degree days for the United States were 9.9 percent above the December normal. Retail sales of electricity increased 2.9 percent from December 2009. Over the same period, the average U.S. retail price of electricity increased 1.3 percent. For the 12-month period ending December 2010, the average U.S. retail price of

Note: This page contains sample records for the topic "monthly electric utility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Electric Utilities and Electric Cooperatives (South Carolina) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utilities and Electric Cooperatives (South Carolina) Electric Utilities and Electric Cooperatives (South Carolina) Electric Utilities and Electric Cooperatives (South Carolina) < Back Eligibility Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Generating Facility Rate-Making Siting and Permitting Provider South Carolina Public Service Commission This legislation authorizes the Public Service Commission to promulgate regulations related to investor owned utilities in South Carolina, and addresses service areas, rates and charges, and operating procedures for

122

Power Sales to Electric Utilities  

SciTech Connect

The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

None

1989-02-01T23:59:59.000Z

123

Electric Utility Measurement & Verification Program  

E-Print Network (OSTI)

Abstract BC Hydro is an electric utility with a service area covering over 95% of the province of British Columbia in Canada. Power Smart is BC Hydro?s demand-side-management (DSM) division. Power Smart develops, operates and manages various DSM...) corporation. The province?s transmission assets are owned by a separate crown corporation, the BC Transmission Corporation. POWER SMART ? DEMAND SIDE MANAGEMENT PROGRAM RISK MITIGATION Power Smart is BC Hydro?s demand-side- management (DSM...

Lau, K.; Henderson, G.; Hebert, D.

124

"List of Covered Electric Utilities" under the Public Utility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Under Title I of the Public Utility Regulatory Policies Act of 1978...

125

"List of Covered Electric Utilities" under the Public Utility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2009 Under Title I, Sec. 102(c) of the Public Utility Regulatory Policies...

126

Electric Utility Demand-Side Evaluation Methodologies  

E-Print Network (OSTI)

"::. ELECTRIC UTILITY DEMAND-SIDE EVALUATION METHODOLOGIES* Nat Treadway Public Utility Commission of Texas Austin, Texas ABSTRACT The electric. util ity industry's demand-side management programs can be analyzed ?from various points... of view using a standard benefit-cost methodology. The methodology now in use by several. electric utilities and the Public Utility Commlsslon of Texas includes measures of efficiency and equity. The nonparticipant test as a measure of equity...

Treadway, N.

127

Lodi Electric Utility - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lodi Electric Utility - Residential Energy Efficiency Rebate Lodi Electric Utility - Residential Energy Efficiency Rebate Program Lodi Electric Utility - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Appliances & Electronics Sealing Your Home Ventilation Windows, Doors, & Skylights Maximum Rebate Energy Efficient Home Improvement Rebate Program: Maximum total rebate in a 12-month period is $500 per customer service address, PLUS, an additional $250 allowance for air duct repair, or an additional $800 allowance for air duct replacement, if eligible. Program Info State California Program Type Utility Rebate Program Rebate Amount Refrigerator: $50 Clothes Washer: $50 Dishwasher: $25 Air Duct Testing: $125

128

Electric Power Monthly ? March 2010 Data issue  

Annual Energy Outlook 2012 (EIA)

LFG IC Granger Electric Co ... IPP Granger Electric of South Jordan UT 56853 1 1.6 LFG IC Granger Electric Co ... IPP Granger...

129

Ak-Chin Electric Utility Authority | Open Energy Information  

Open Energy Info (EERE)

Ak-Chin Electric Utility Authority Ak-Chin Electric Utility Authority Jump to: navigation, search Name Ak-Chin Electric Utility Authority Place Arizona Utility Id 25866 Utility Location Yes Ownership S NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1010/kWh Commercial: $0.0815/kWh Industrial: $0.0550/kWh The following table contains monthly sales and revenue data for Ak-Chin Electric Utility Authority (Arizona).

130

Moreno Valley Electric Utility - Solar Electric Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moreno Valley Electric Utility - Solar Electric Incentive Program Moreno Valley Electric Utility - Solar Electric Incentive Program Moreno Valley Electric Utility - Solar Electric Incentive Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential systems 30 kW or less: $14,000 or 50% of cost, whichever is less Small commercial systems 30 kW or less: $50,000 or 50% of cost, whichever is less Program Info State California Program Type Utility Rebate Program Rebate Amount Systems 30 kW or less: $2.00 per W-AC Systems larger than 30 kW: $0.06 per kWh for 5 years Provider Moreno Valley Electric Utility Moreno Valley Electric Utility provides rebates to its electric customers for the purchase of photovoltaic (PV) systems. System must be on the same premises as the customer to qualify. Systems 30 kilowatts (kW) or less can

131

Definition: Electric utility | Open Energy Information  

Open Energy Info (EERE)

utility utility Jump to: navigation, search Dictionary.png Electric utility A corporation, agency, or other legal entity that owns and/or operates facilities for the generation, transmission, distribution or sale of electricity primarily for use by the public. Also known as a power provider.[1][2] View on Wikipedia Wikipedia Definition An electric utility is an electric power company that engages in the generation, transmission, and distribution of electricity for sale generally in a regulated market. The electrical utility industry is a major provider of energy in most countries. It is indispensable to factories, commercial establishments, homes, and even most recreational facilities. Lack of electricity causes not only inconvenience, but also economic loss due to reduced industrial production. Utility in the terms of power system,

132

Hudson Municipal Electric Utility | Open Energy Information  

Open Energy Info (EERE)

Municipal Electric Utility Municipal Electric Utility Jump to: navigation, search Name Hudson Municipal Electric Utility Place Iowa Utility Id 8966 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Residential Residential Residential All-Electric Residential School Rate Commercial Average Rates Residential: $0.0993/kWh Commercial: $0.0905/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Hudson_Municipal_Electric_Utility&oldid=410846

133

title Survey of Western U S Electric Utility Resource Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Survey of Western U S Electric Utility Resource Plans Survey of Western U S Electric Utility Resource Plans journal Energy Policy year month abstract p We review long term electric utility plans representing nbsp textquoteright of generation within the Western U S and Canadian provinces nbsp We nbsp address what utility planners assume about future growth of electricity demand and supply what types of risk they consider in their long term resource planning and the consistency in which they report resource planning related data The region is anticipated to grow by annually by before Demand Side Management nbsp About nbsp two thirds of nbsp the utilities that provided an annual energy forecast also nbsp reported energy efficiency savings projections in aggregate they anticipate an average reduction in energy and nbsp reduction in

134

Electricity Monthly Update - Energy Information Administration  

Annual Energy Outlook 2012 (EIA)

Electricity Glossary FAQS Overview Data Electricty Data Browser (interactive query tool with charting & mapping) Summary Sales (consumption), revenue, prices & customers...

135

Electric Utility Sales and Revenue - EIA-826 detailed data file  

U.S. Energy Information Administration (EIA) Indexed Site

Form EIA-826 detailed data Form EIA-826 detailed data The Form EIA-826 "Monthly Electric Utility Sales and Revenue Report with State Distributions" collects retail sales of electricity and associated revenue, each month, from a statistically chosen sample of electric utilities in the United States. The respondents to the Form EIA-826 are chosen from the Form EIA-861, "Annual Electric Utility Report." Methodology is based on the "Model-Based Sampling, Inference and Imputation." In 2003, EIA revised the survey to separate the transportation sales and reassign the other activities to the commercial and industrial sectors as appropriate. The "other" sector activities included public street and highway lighting, sales to public authorities, sales to railroads and railways, interdepartmental sales, and agricultural irrigations.

136

Electric Utility Energy Efficiency Programs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

energy efficiency programs for industrial customers, insights from investor-owned utilities, and national trendsdevelopments among electric cooperatives. Electric Utility...

137

Tipton Municipal Electric Util | Open Energy Information  

Open Energy Info (EERE)

Tipton Municipal Electric Util Tipton Municipal Electric Util Jump to: navigation, search Name Tipton Municipal Electric Util Place Indiana Utility Id 18942 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate A- Residential Electric Service Residential Rate B- Commercial Electric Service Commercial Rate C- General and Industrial Power Service, Single Phase Industrial Rate C- General and Industrial Power Service, Three Phase Industrial Rate CG- Cogeneration Commercial Rate D- Primary Power and Lighting Service

138

Tatitlek Electric Utility | Open Energy Information  

Open Energy Info (EERE)

Tatitlek Electric Utility Tatitlek Electric Utility Jump to: navigation, search Name Tatitlek Electric Utility Place Alaska Utility Id 18480 Utility Location Yes Ownership M NERC Location AK NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.5470/kWh Commercial: $0.4590/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Tatitlek_Electric_Utility&oldid=411647

139

Electricity Monthly Update - Energy Information Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

gigawatthours largely because of the recent, rapid growth in photovoltaic capacity. Solar electricity output in June is a good indicator of the recent growth of the solar...

140

POLITICAL INSTITUTIONS AND ELECTRIC UTILITY INVESTMENT  

E-Print Network (OSTI)

PWP-052 POLITICAL INSTITUTIONS AND ELECTRIC UTILITY INVESTMENT: A CROSS-NATION ANALYSIS Mario-5180 www.ucei.berkeley.edu/ucei #12;POLITICAL INSTITUTIONS AND ELECTRIC UTILITY INVESTMENT: A CROSS flows are surging to levels not witnessed since before the Great Depression, the evaluation of political

California at Berkeley. University of

Note: This page contains sample records for the topic "monthly electric utility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Critical links: The role of electric utilities in information infrastructure  

SciTech Connect

Electric utilities should seek out the role of providing {open_quotes}common infrastructure{close_quotes} for telecommunications services, some of which utilities need themselves. If they do so, in cooperation with cable and/or telephone companies, the public and utilities would be well served. After laboring for years to alert the industry and the public to the possibilities for electric utility involvement in advanced telecommunications networks and services, the author is thrilled by all the new alliances and demonstration projects that link power companies with information and telecommunications providers. But while a few electric utilities talk aggressively about entering competitive voice, data and video businesses, others still dread the very word `telecommunications.` By and large, no unanimity has emerged on how to capture the patent synergy of electricity and telecommunications while paving the way for a congenial, long-term fit between these two multi-faceted industries. Over the past several months, with assistance from the Office of Computational Sciences of the U.S. Department of Energy, the author has tried to fashion a model for the stable evolution of electric utilities into telecommunications and information. In this article, the author summarizes the findings of this inquiry as a `snapshot` of where U.S. electric utilities now stand vis-a-vis the nations`s telecommunications needs. Then he offers his own views about what utilities can and should do to help meet those needs to benefit themselves, their customers, and their shareholders.

Rivkin, S.R.

1995-10-01T23:59:59.000Z

142

Liberty Utilities (Electric) - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liberty Utilities (Electric) - Residential Energy Efficiency Rebate Liberty Utilities (Electric) - Residential Energy Efficiency Rebate Programs Liberty Utilities (Electric) - Residential Energy Efficiency Rebate Programs < Back Eligibility Construction Low-Income Residential Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Other Sealing Your Home Ventilation Commercial Lighting Lighting Maximum Rebate Home Performance with ENERGY STAR®: $4000 Program Info Funding Source NH Saves State New Hampshire Program Type Utility Rebate Program Rebate Amount Home Performance with ENERGY STAR®: up to $4,000 for improvements ENERGY STAR® Homes Qualification: custom incentives and technical support

143

Liberty Utilities (Electric) - Commercial Energy Efficiency Incentive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liberty Utilities (Electric) - Commercial Energy Efficiency Liberty Utilities (Electric) - Commercial Energy Efficiency Incentive Programs Liberty Utilities (Electric) - Commercial Energy Efficiency Incentive Programs < Back Eligibility Commercial Industrial Local Government Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Custom Incentives: amount that buys down the cost of the project to a 1 year simple payback Program Info State New Hampshire Program Type Utility Rebate Program Rebate Amount Custom Retrofits and Engineering Studies: 50% of project cost Fluorescent Lighting: $10-$50 High Bay: $70 or $100 (retrofit) Metal Halide: $50 or $70 LED Exit Signs: $12 LED Traffic Signals: $50

144

PPL Electric Utilities Corp | Open Energy Information  

Open Energy Info (EERE)

PPL Electric Utilities Corp PPL Electric Utilities Corp Jump to: navigation, search Name PPL Electric Utilities Corp Place Allentown, Pennsylvania Service Territory Pennsylvania Website www.pplelectric.com Green Button Reference Page pplweb.mediaroom.com/inde Green Button Committed Yes Utility Id 14715 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. PPL Electric Utilities Corp. Smart Grid Project was awarded $19,054,516 Recovery Act Funding with a total project value of $38,109,032.

145

Electricity Monthly Update - Energy Information Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Administration, Form EIA-923, Power Plant Operations Report Coal stockpiles at electric power plants totaled 136 million tons at the end of October, lower than in recent years for...

146

UGI Utilities Electric Division | Open Energy Information  

Open Energy Info (EERE)

Utilities Electric Division Utilities Electric Division Jump to: navigation, search Logo: UGI Utilities Electric Division Name UGI Utilities Electric Division Address 2525 North 12th Street, Suite 360 Place Reading, Pennsylvania Zip 19605 Sector Services Product Green Power Marketer Website http://www.ugi.com/electric/in Coordinates 40.3746587°, -75.9149578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3746587,"lon":-75.9149578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

147

Evolutionary Tuning of Building Models to Monthly Electrical Consumption  

E-Print Network (OSTI)

Evolutionary Tuning of Building Models to Monthly Electrical Consumption Aaron Garrett, PhD Joshua load and electrical data from a highly-instrumented and automated ZEBRAlliance research home consume 40% of the US primary energy (73% of the electrical energy). By 2030, it is estimated that 60

Wang, Xiaorui "Ray"

148

Electric Utility Industrial Conservation Programs  

E-Print Network (OSTI)

Electrical Machinery and Equip. 7.0 3.3 3 7.6 3.0 10 7 0 10.8 100.0 90 11.9 100.0 353,5 4 * Total of 12 Industry Maximum Demand s is 832 MW. *..', Total of 12 Industry Annual Electricity Consumption is 2,981,090 Mlm. 723 ESL-IE-83-04-114 Proceedings... Electrical Machinery and Equip. 7.0 3.3 3 7.6 3.0 10 7 0 10.8 100.0 90 11.9 100.0 353,5 4 * Total of 12 Industry Maximum Demand s is 832 MW. *..', Total of 12 Industry Annual Electricity Consumption is 2,981,090 Mlm. 723 ESL-IE-83-04-114 Proceedings...

Norland, D. L.

1983-01-01T23:59:59.000Z

149

Dublin Municipal Electric Util | Open Energy Information  

Open Energy Info (EERE)

Dublin Municipal Electric Util Dublin Municipal Electric Util Jump to: navigation, search Name Dublin Municipal Electric Util Place Indiana Utility Id 5392 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial General Power Rate OL: Outdoor Lighting (Security Lights) Lighting Rate SL: Street Lighting, All Public Street Lighting Lighting Rate SL: Street Lighting, State Highway Stoplight Lighting Residential Residential Residential: Space Heating and/or Air Conditioning Service Residential

150

Page Electric Utility | Open Energy Information  

Open Energy Info (EERE)

Page Electric Utility Page Electric Utility Jump to: navigation, search Name Page Electric Utility Place Arizona Utility Id 14373 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service with Demand Meter Commercial Commercial Service without Demand Meter Commercial Residential Service > 200 Amps Residential Residential Service < 200 Amps Residential

151

Wisconsin Dells Electric Util | Open Energy Information  

Open Energy Info (EERE)

Dells Electric Util Dells Electric Util Jump to: navigation, search Name Wisconsin Dells Electric Util Place Wisconsin Utility Id 20844 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Single Phase Commercial General Service- Three Phase Commercial Large General Service Commercial Large Power Service Industrial Large Power Service(Primary Metering & Transformer Ownership) Industrial Large Power Service(Primary Metering) Industrial Large Power Service(Transformer Ownership) Industrial

152

Whitehall Electric Utility | Open Energy Information  

Open Energy Info (EERE)

Whitehall Electric Utility Whitehall Electric Utility Jump to: navigation, search Name Whitehall Electric Utility Place Wisconsin Utility Id 20583 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Athletic Field Lighting- City of Whitehall Lighting Athletic Field Lighting- Whitehall Schools Lighting General Service- Single-Phase Commercial General Service- Three-Phase Commercial General Service- Time-of-Day- Single-Phase- Peak: 7am-7pm Commercial

153

Development of Baseline Monthly Utility Models for Fort Hood, Texas  

E-Print Network (OSTI)

Development of Baseline Monthly Utility Models for Fort Hood, Texas' T.A. Reddy, N.F Saman, D.E. Claridge, J.S. Haberl , W.D. Turner Energy Systems Laboratory, Texas A&M University System College Station, TX and Alan Chalifoux Army Corps..., Texas" by N.F.Saman, T.A. Reddy, J.S.Haberl, DEClaridge and W.D.Turner prepared by Energy Systems Laboratory report ESL-TR-95110-01, Department of Mechanical Engineering, Texas A&M University, College Station, TX, October 1995. Fort Hood is a large...

Reddy, T. A.; Saman, N. F.; Claridge, D. E.; Haberl, J. S.; Turner, W. D.; Chalifoux, A.

1996-01-01T23:59:59.000Z

154

Development of Baseline Monthly Utility Models for Fort Hood, Texas  

E-Print Network (OSTI)

Development of Baseline Monthly Utility Models for Fort Hood, Texas+ T.A. Reddy, N.F Saman, D.E. Claridge, J.S. Haberl, W.D. Tumer Energy Systems Laboratory, Texas A&M University System College Station, TX and Alan Chalifoux Army Corps... and development of metering plan and shopping types of energy modeling software- the Princeton list for Fort Hood, Texas" by N.F.Saman, TA Scorekeeping method (PRISM) and EModel- in Reddy, J.S.Haberl, D.E.Claridge and W.D.Turner prepared by Energy Systems...

Reddy, T. A.; Saman, N. F.; Claridge, D. E.; Haberl, J. S.; Turner, W. D.; Chalifoux, A.

155

Rate making for Electric Utilities  

E-Print Network (OSTI)

Water Works Company 5 f. R. C, E, 215, 281, May 14, 1910 Arkadelphia Electric Light Company v City of Arkadelphia 137 S, W. 1093, 96 Ark, May 1, 1911 Beloit v, Beloit Water, Gas and Electric Company 7 f , B, C. R. 187,239, July 19, 1911. Columbus... Railway and Light Company v. City of Columbus No, 1206 in Equity U. S. Cir. Ct. Southern District of Ohio Eastern Division. Report of Special Master T. P. Lynn January 8, 1906 Consolidated Gas Company v. City of New York Circuit Court of U. S...

Hanson, Carl Falster

1911-01-01T23:59:59.000Z

156

Grid Reliability- An Electric Utility Company's Perspective  

Energy.gov (U.S. Department of Energy (DOE))

Presentationgiven at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meetingcovers Southern Company's business continuity, North American Electric Reliability Corporation (NERC) cybersecurity, and homeland security as well as physical recovery after a major outage, and five questions to ask your local utility.

157

Virginia Electric Utility Regulation Act (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utility Regulation Act (Virginia) Electric Utility Regulation Act (Virginia) Virginia Electric Utility Regulation Act (Virginia) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Safety and Operational Guidelines Provider Virginia State Corporation Commission The Virginia Electric Utility Regulation Act constitutes the main legislation in Virginia that pertains to the regulation of the state's electric utilities. The Act directs the State Corporation Commission to construct regulations for electric utilities, and contains information on

158

American Municipal Power (Public Electric Utilities) - Residential  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Municipal Power (Public Electric Utilities) - Residential American Municipal Power (Public Electric Utilities) - Residential Efficiency Smart Program (Ohio) American Municipal Power (Public Electric Utilities) - Residential Efficiency Smart Program (Ohio) < Back Eligibility Residential Savings Category Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info Funding Source American Municipal Power Start Date 01/2011 Expiration Date 12/31/2013 State Ohio Program Type Utility Rebate Program Rebate Amount Ceiling Fan with Lights: $15 Dehumidifier: $25 Select Clothes Washer: $50 ENERGY STAR Refrigerator: $50 Refrigerator/Freezer Recycling: $50 Furnace Fan with ECM: $100 Heat Pump Water Heaters: $250 CFLs: up to 85% of cost Efficiency Smart (tm) provides energy efficiency incentives to the American

159

Updated Capital Cost Estimates for Utility Scale Electricity  

E-Print Network (OSTI)

Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants April 2013 Information Administration | Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants ii for Utility Scale Electricity Generating Plants ii Contents Introduction

160

An Updated Assessement of Copper Wire Thefts from Electric Utilities...  

Energy Savers (EERE)

An Updated Assessement of Copper Wire Thefts from Electric Utilities - October 2010 An Updated Assessement of Copper Wire Thefts from Electric Utilities - October 2010 The U.S....

Note: This page contains sample records for the topic "monthly electric utility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Gas and Electric Utilities Regulation (South Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas and Electric Utilities Regulation (South Dakota) Gas and Electric Utilities Regulation (South Dakota) Gas and Electric Utilities Regulation (South Dakota) < Back Eligibility Utility Commercial Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Retail Supplier Institutional Systems Integrator Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Generation Disclosure Provider South Dakota Public Utilities Commission This legislation contains provisions for gas and electric utilities. As part of these regulations, electric utilities are required to file with the

162

Evaluation of Heat Stress and Strain in Electric Utility Workers  

E-Print Network (OSTI)

exposures in electric utility line workers during work intwo broad classes: utility line workers/meter technicians3 different samples: utility line workers/meter technicians,

Brown, Eric Nicholas

2013-01-01T23:59:59.000Z

163

Cost and quality of fuels for electric utility plants 1991  

SciTech Connect

Data for 1991 and 1990 receipts and costs for fossil fuels discussed in the Executive Summary are displayed in Tables ES1 through ES7. These data are for electric generating plants with a total steam-electric and combined-cycle nameplate capacity of 50 or more megawatts. Data presented in the Executive Summary on generation, consumption, and stocks of fossil fuels at electric utilities are based on data collected on the Energy Information Administration, Form EIA-759, ``Monthly Power Plant Report.`` These data cover all electric generating plants. The average delivered cost of coal, petroleum, and gas each decreased in 1991 from 1990 levels. Overall, the average annual cost of fossil fuels delivered to electric utilities in 1991 was $1.60 per million Btu, a decrease of $0.09 per million Btu from 1990. This was the lowest average annual cost since 1978 and was the result of the abundant supply of coal, petroleum, and gas available to electric utilities. US net generation of electricity by all electric utilities in 1991 increased by less than I percent--the smallest increase since the decline that occurred in 1982.3 Coal and gas-fired steam net generation, each, decreased by less than I percent and petroleum-fired steam net generation by nearly 5 percent. Nuclear-powered net generation, however, increased by 6 percent. Fossil fuels accounted for 68 percent of all generation; nuclear, 22 percent; and hydroelectric, 10 percent. Sales of electricity to ultimate consumers in 1991 were 2 percent higher than during 1990.

Not Available

1992-08-04T23:59:59.000Z

164

Cost and quality of fuels for electric utility plants 1991  

SciTech Connect

Data for 1991 and 1990 receipts and costs for fossil fuels discussed in the Executive Summary are displayed in Tables ES1 through ES7. These data are for electric generating plants with a total steam-electric and combined-cycle nameplate capacity of 50 or more megawatts. Data presented in the Executive Summary on generation, consumption, and stocks of fossil fuels at electric utilities are based on data collected on the Energy Information Administration, Form EIA-759, Monthly Power Plant Report.'' These data cover all electric generating plants. The average delivered cost of coal, petroleum, and gas each decreased in 1991 from 1990 levels. Overall, the average annual cost of fossil fuels delivered to electric utilities in 1991 was $1.60 per million Btu, a decrease of $0.09 per million Btu from 1990. This was the lowest average annual cost since 1978 and was the result of the abundant supply of coal, petroleum, and gas available to electric utilities. US net generation of electricity by all electric utilities in 1991 increased by less than I percent--the smallest increase since the decline that occurred in 1982.3 Coal and gas-fired steam net generation, each, decreased by less than I percent and petroleum-fired steam net generation by nearly 5 percent. Nuclear-powered net generation, however, increased by 6 percent. Fossil fuels accounted for 68 percent of all generation; nuclear, 22 percent; and hydroelectric, 10 percent. Sales of electricity to ultimate consumers in 1991 were 2 percent higher than during 1990.

Not Available

1992-08-04T23:59:59.000Z

165

Standardized equipment labeling program for electrical utilities  

SciTech Connect

The purpose of this supporting document is to provide specific guidelines required for Electrical Utilities to implement and maintain a standard equipment and piping labeling program in accordance with WHC-SP-0708, Chapter 18, {open_quotes}Westinghouse Hanford Company Conduct of Operations Manual{close_quotes}. Specific guidelines include definition of program responsibilities.

Not Available

1994-07-19T23:59:59.000Z

166

Utility Sector Impacts of Reduced Electricity Demand  

SciTech Connect

This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

Coughlin, Katie

2014-12-01T23:59:59.000Z

167

Grid Reliability - An Electric Utility Company's Perspective  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Electric Utility Company's Perspective Marc Butts Southern Company Services 11/19/08 Topics * Business Continuity at Southern Company * NERC Cyber Security at Southern Company * Homeland Security at Southern Company * Physical recovery following a major outage * 5 questions to ask your local utility * Facing Realities 3 Service territory across four states: 120,000 square miles * Southern Linc * Southern Power * Southern Telecom * Southern Nuclear Other Subsidiaries: Serves approximately 4 million customers Business Continuity at Southern Company Southern Company Business Assurance Model Business Unit Management (Asset Owners) Southern Company Business Assurance Council Infrastructure Protection Business Continuity Incident Response * Identify critical assets * Design and implement

168

Ashland Electric Utility - Bright Way to Heat Water Loan | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ashland Electric Utility - Bright Way to Heat Water Loan Ashland Electric Utility - Bright Way to Heat Water Loan Ashland Electric Utility - Bright Way to Heat Water Loan < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate not specified Program Info State Oregon Program Type Utility Loan Program Rebate Amount not specified Provider Ashland Electric Utilities Department The City of Ashland Conservation Division offers a solar water heating program to residential electric customers who currently use an electric water heater. Under "The Bright Way to Heat Water Program," qualified home owners may take advantage of the City's zero-interest loan program or a cash rebate. Customers choosing a loan repay it as part of their monthly utility bill. Interested customers are provided site evaluations, consumer

169

Electric Power Monthly … December 2010 Data issue  

Gasoline and Diesel Fuel Update (EIA)

226 (2011/03) 226 (2011/03) Electric Power Monthly March 2011 With Data for December 2010 U.S. Energy Information Administration Office of Electricity, Renewables & Uranium Statistics U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. This report is available on the Web at: http://www.eia.gov/cneaf/electricity/epm/epm_sum.html

170

"List of Covered Electric Utilities" under the Public Utility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Under Title I of the Public Utility Regulatory Policies Act of 1978 (PURPA), the U.S. Department of Energy (DOE) is required to publish a list identifying each electric utility. "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) More Documents & Publications Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the Energy Policy Act of 2005 (EPACT 2005) - List of Covered Electric Utilities. Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the Energy Policy Act of 2005 (EPACT 2005) -List of Covered Electric Utilities - 2006 "List of Covered Electric Utilities" under the Public Utility

171

California Natural Gas % of Total Electric Utility Deliveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Electric Utility Deliveries (Percent) California Natural Gas % of Total Electric Utility Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

172

An electric utility's adventures in commercial refrigeration  

SciTech Connect

This article provides a look at the history of energy conservation efforts in supermarket refrigeration from World War II to the present and a goal for the future. A supermarket is a low profit margin business, typically netting 1 percent on annual sales. The typical supermarket's annual electric bill equals or exceeds the annual profits. With all of these data, it looked like energy conservation in the supermarket industry was going to be an easy task. Change the lighting to a more energy-efficient system and lower the head pressure and raise the suction pressure in the refrigeration. Any owner, CEO, or general manager who could easily increase his bottom-line profit by 10 to 30 percent would jump at the opportunity, especially when the electric utility was willing to support a portion of the cost for the changes.

Flannick, J.A. (Wisconsin Electric Co., Milwaukee, WI (United States)); Stamm, R.H. (Industrial Refrigeration, Sandy, OR (United States)); Calle, M.M. (Technical Resources, Inc., Milwaukee, WI (United States)); Gomolla, J.C. (Gomolla (Jerry C.), Milwaukee, WI (United States))

1994-10-01T23:59:59.000Z

173

Financial statistics of major publicly owned electric utilities, 1991  

SciTech Connect

The Financial Statistics of Major Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with data that can be used for policymaking and decisionmaking purposes relating to publicly owned electric utility issues.

Not Available

1993-03-31T23:59:59.000Z

174

"List of Covered Electric Utilities" under the Public Utility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Revised 6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory Policies Act of 1978 (PURPA), the U.S. Department of Energy (DOE) is required to publish a list identifying each electric utility. "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) More Documents & Publications "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the Energy Policy Act of 2005 (EPACT 2005) - List of Covered Electric Utilities. Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the

175

Farmington Electric Utility System - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farmington Electric Utility System - Net Metering Farmington Electric Utility System - Net Metering Farmington Electric Utility System - Net Metering < Back Eligibility Residential Savings Category Energy Sources Buying & Making Electricity Solar Home Weatherization Water Wind Program Info State New Mexico Program Type Net Metering Provider Farmington Electric Utility System Net metering rules developed by the New Mexico Public Regulation Commission (PRC) apply to the state's investor-owned utilities and electric cooperatives. Municipal utilities, which are not regulated by the commission, are exempt from the PRC rules but authorized to develop their own net metering programs. Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity.

176

Evolutionary Tuning of Building Models to Monthly Electrical Consumption  

SciTech Connect

Building energy models of existing buildings are unreliable unless calibrated so they correlate well with actual energy usage. Calibrating models is costly because it is currently an art which requires significant manual effort by an experienced and skilled professional. An automated methodology could significantly decrease this cost and facilitate greater adoption of energy simulation capabilities into the marketplace. The Autotune project is a novel methodology which leverages supercomputing, large databases of simulation data, and machine learning to allow automatic calibration of simulations to match measured experimental data on commodity hardware. This paper shares initial results from the automated methodology applied to the calibration of building energy models (BEM) for EnergyPlus (E+) to reproduce measured monthly electrical data.

Garrett, Aaron [Jacksonville State University] [Jacksonville State University; New, Joshua Ryan [ORNL] [ORNL; Chandler, Theodore [Jacksonville State University] [Jacksonville State University

2013-01-01T23:59:59.000Z

177

The Electric Utility Industry--Change and Challenge  

E-Print Network (OSTI)

The Electric Utility Industry? Change and Challenge MICHAEL H. WILLIAMS EXECUTIVE DIRECTOR TEXAS PUBLIC POWER ASSOCIATION AUSTIN, TEXAS The author retraces some of the principle changes in the electric utility industry. He suggests... is heading and help it get there. 420 ESL-IE-87-09-65 Proceedings from the Ninth Annual Industrial Energy Technology Conference, Houston, TX, September 16-18, 1987 For an electric utility to achieve excellence in today's environment, it must have a clear...

Williams, M. H.

178

Designing a Thermal Energy Storage Program for Electric Utilities  

E-Print Network (OSTI)

Electric utilities are looking at thermal energy storage technology as a viable demand side management (DSM) option. In order for this DSM measure to be effective, it must be incorporated into a workable, well-structured utility program. This paper...

Niehus, T. L.

1994-01-01T23:59:59.000Z

179

Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Avista Utilities (Electric) - Residential Energy Efficiency Rebate Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs (Idaho) Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs (Idaho) < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Incentives should not exceed 50% of the actual measure cost. Program Info State Idaho Program Type Utility Rebate Program Rebate Amount Replacement of Electric Straight Resistance: $750 Air Source Heat Pump: $100 Variable Speed Motor: $100 Refrigerator/Freezer Recycling: $30 Water Heater: $30 Floor and Wall Insulation: $0.50/sq. ft. Attic and Ceiling Insulation: $0.25/sq. ft.

180

Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Avista Utilities (Electric) - Residential Energy Efficiency Rebate Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs < Back Eligibility Construction Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Incentives will not exceed 50% of the actual measure cost Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Air Source Heat Pump: $100 Variable Speed Motor: $100 Water Heater: $30 Replacement of Electric Straight Resistance: $750 Floor and Wall Insulation: $0.50/sq. ft. Attic and Ceiling Insulation: $0.25/sq. ft.

Note: This page contains sample records for the topic "monthly electric utility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

PPL Electric Utilities- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

PPL Electric Utilities offers numerous rebates and incentives for its residential customers. Refer to the program web site for complete details.

182

PPL Electric Utilities- Commercial and Industrial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

PPL Electric Utilities offers rebates and incentives for commercial and industrial products installed in their service area. The program offers rebates for lighting, heat pumps, refrigeration...

183

Annual Electric Utility Data - Form EIA-906 Database  

Annual Energy Outlook 2012 (EIA)

Detailed data files > Historic Form EIA-906 Historic Form EIA-906 Detailed Data with previous form data (EIA-759) Historic electric utility data files include information on net...

184

Un Seminar On The Utilization Of Geothermal Energy For Electric...  

Open Energy Info (EERE)

Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Jump to: navigation, search...

185

Rising Electricity Costs: A Challenge For Consumers, Regulators, And Utilities  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the rising electricity costs and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

186

Norwich Public Utilities (Electric) - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Norwich Public Utilities (Electric) - Residential Energy Efficiency Norwich Public Utilities (Electric) - Residential Energy Efficiency Rebate Program Norwich Public Utilities (Electric) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Energy Star rebate: one rebate per appliance per residential utility customer Program Info Expiration Date 12/31/12 State Connecticut Program Type Utility Rebate Program Rebate Amount Refrigerators/Freezers: $60 Washing Machines: $60 Room AC: $60 Heat Pump Water Heater: $500 Central AC: $200 - $300/ton Dual Enthalpy Economizer Controls: $250 Air Source Heat Pump: $200 - $300/ton Geothermal Heat Pump: $150/ton

187

"List of Covered Electric Utilities under the Public Utility Regulatory Policies Act of 1978 (PURPA)- 2009  

Energy.gov (U.S. Department of Energy (DOE))

Under Title I, Sec. 102(c) of the Public Utility Regulatory Policies Act of 1978 (PURPA), the U.S. Department of Energy (DOE) is required to publish a list identifying each electric utility

188

Liberty Utilities (Electric) - Commercial New Construction Rebate Program  

Open Energy Info (EERE)

Utilities (Electric) - Commercial New Construction Rebate Program Utilities (Electric) - Commercial New Construction Rebate Program (New Hampshire) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Summary Last modified on March 13, 2013. Financial Incentive Program Place New Hampshire Name Liberty Utilities (Electric) - Commercial New Construction Rebate Program (New Hampshire) Incentive Type Utility Rebate Program Applicable Sector Commercial, Industrial, Local Government, Schools Eligible Technologies Central Air conditioners, Chillers, Compressed air, Custom/Others pending approval, Energy Mgmt. Systems/Building Controls, Heat pumps, Lighting, Lighting Controls/Sensors, Motor VFDs, Motors, Geothermal Heat Pumps, Control Sensors, Economizers

189

Ashland Electric Utility - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ashland Electric Utility - Residential Energy Efficiency Rebate Ashland Electric Utility - Residential Energy Efficiency Rebate Programs Ashland Electric Utility - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Sealing Your Home Ventilation Heat Pumps Water Heating Windows, Doors, & Skylights Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Washing Machines: $35 - $100 Dishwashers: $25 - $60 Refrigerators: $25 - $35 Refrigerator Recycling: $30 Water Heaters: $65 Ductwork: 80% of the cost up to $300 Insulation: Up to 70% of the cost Windows: $6.00 per square foot High-Efficiency Heat Pumps: $600

190

Lodi Electric Utility - PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lodi Electric Utility - PV Rebate Program Lodi Electric Utility - PV Rebate Program Lodi Electric Utility - PV Rebate Program < Back Eligibility Commercial Industrial Local Government Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $7,000 Non-residential: $40,000 Program Info Expiration Date January 1, 2018 State California Program Type Utility Rebate Program Rebate Amount 2013 Program Year: $1.94/W AC Incentives will be adjusted based on expected performance Provider Customer Programs Lodi Electric Utility offers rebates to its residential, commercial, industrial and municipal customers who install photovoltaic (PV) systems. The rebate program is funded with approximately $6 million to support systems installed between January 1, 2008 and January 1, 2018. The total

191

Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $5,000 Program Info Start Date 10/1/2010 State Florida Program Type Utility Rebate Program Rebate Amount Solar window of 80% or more: $1.00/watt Provider Gainesville Regional Utilities '''''NOTE: Application targets for fiscal year 2013 have been met for the GRU Solar PV Rebate Program. The next round of applications are scheduled to open on October 1, 2013 pending approval of the GRU budget by the Gainesville City Commission.''''' Gainesville Regional Utilities (GRU) offers its customers a rebate to install photovoltaic (PV) systems. Systems with solar windows of 80% or

192

Workforce Trends in the Electric Utility Industry | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Trends in the Electric Utility Industry Trends in the Electric Utility Industry Workforce Trends in the Electric Utility Industry Section 1101 of the U.S. Energy Policy Act of 2005 (EPACT)1 calls for a report on the current trends in the workforce of (A) skilled technical personnel that support energy technology industries, and (B) electric power and transmission engineers. It also requests that the Secretary make recommendations (as appropriate) to meet the future labor requirements. Workforce Trends in the Electric Utility Industry More Documents & Publications Statement of Patricia A. Hoffman, Deputy Director of Research and Development and Acting Chief Operating Officer, Office of Electricity Delivery & Energy Reliability, Department of Energy before the Committee on Energy and Natural Resources United States

193

Transmission access: The new factor in electric utility mergers  

SciTech Connect

This article deals with the effect of consideration of transmission access in whether a merger of electric utility is in the public interest. Cases examined are Southern California Edison and San Diego Gas and Electric, Utah Power and Light and Pacific Power and Light, Public Service Company of New Hampshire and Northeast Utilities Service Company, Kansas Gas and Electric and Kansas Power and Light, plus some holding company mergers.

Boiler, D.S.

1991-04-01T23:59:59.000Z

194

Annual Electric Utility Data - EIA-906/920/923 Data File  

Gasoline and Diesel Fuel Update (EIA)

923 detailed data with previous form data (EIA-906/920) 923 detailed data with previous form data (EIA-906/920) The survey Form EIA-923 collects detailed electric power data -- monthly and annually -- on electricity generation, fuel consumption, fossil fuel stocks, and receipts at the power plant and prime mover level. Specific survey information provided: Schedule 2 - fuel receipts and costs Schedules 3A & 5A - generator data including generation, fuel consumption and stocks Schedule 4 - fossil fuel stocks Schedules 6 & 7 - non-utility source and disposition of electricity Schedules 8A-F - environmental data Monthly data (M) - over 1,900 plants from the monthly survey Annual final data - approximately 1,900 monthly plants + 4,100 plants from the annual survey

195

NREL Webinar: Treatment of Solar Generation in Electric Utility Resource  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NREL Webinar: Treatment of Solar Generation in Electric Utility NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning January 14, 2014 2:00PM to 3:00PM EST Online Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV "ownership" are leading to increasing interest in solar technologies, especially PV. In this free webinar, you will hear how utilities are incorporating solar generation into their resource planning processes. Analysts from the National Renewable Energy Laboratory (NREL) and the Solar Electric Power

196

Risk Management Strategies for Electric Utilities  

E-Print Network (OSTI)

The Pacific Northwest has gone through an enormously expensive lesson in both the uncertainty and risk associated with power planning. The difficult lessons we have learned may benefit other parts of the country. In the 1970s, utility planners...

Sheets, E.

197

Operating a Major Electric Utility Today  

Science Journals Connector (OSTI)

...times of major load outages, and pro-vide support in times of transmission outages. In economic terms...ex-tra-high-voltage transmission (Fig. 3), was...of vital utility data both within and...transmission lines, circuit interrupters...

Theodore J. Nagel

1978-09-15T23:59:59.000Z

198

Alternative Regulation for North American Electric Utilities  

SciTech Connect

After a decade of favorable operating conditions, utilities find themselves faced with accelerating prices for key inputs and a growing need for new capacity. These pressures are likely to prompt increasingly frequent, and perhaps more contentious, rate cases. Steady progress in the development of alternative regulation provides hope that the utility industry will respond to these challenges much better than in 1975-85. (author)

Lowry, Mark Newton; Kaufmann, Lawrence

2006-06-15T23:59:59.000Z

199

Wonewoc Electric & Water Util | Open Energy Information  

Open Energy Info (EERE)

Wonewoc Electric & Water Util Wonewoc Electric & Water Util Jump to: navigation, search Name Wonewoc Electric & Water Util Place Wisconsin Utility Id 20924 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Single-Phase Commercial General Service- Three-Phase Commercial Large Power Commercial Off Peak Water Heating Residential Residential Single Phase Residential Residential Three Phase Residential Street Lighting- 100W HPS Lighting Street Lighting- 144W F Lighting Street Lighting- 150W HPS Lighting

200

U.S. electric utility demand-side management 1995  

SciTech Connect

The US Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternative Fuels; Energy Information Administration (EIA); US Department of Energy. The report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management``, presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

NONE

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "monthly electric utility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Electrolysis: Information and Opportunities for Electric Power Utilities  

SciTech Connect

Recent advancements in hydrogen technologies and renewable energy applications show promise for economical near- to mid-term conversion to a hydrogen-based economy. As the use of hydrogen for the electric utility and transportation sectors of the U.S. economy unfolds, electric power utilities need to understand the potential benefits and impacts. This report provides a historical perspective of hydrogen, discusses the process of electrolysis for hydrogen production (especially from solar and wind technologies), and describes the opportunities for electric power utilities.

Kroposki, B.; Levene, J.; Harrison, K.; Sen, P.K.; Novachek, F.

2006-09-01T23:59:59.000Z

202

Monthly Analysis of Electrical Safety Occurrences April 2013  

Energy.gov (U.S. Department of Energy (DOE))

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

203

Monthly Analysis of Electrical Safety Occurrences March 2013  

Energy.gov (U.S. Department of Energy (DOE))

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

204

Monthly Analysis of Electrical Safety Occurrences August 2013  

Energy.gov (U.S. Department of Energy (DOE))

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

205

Monthly Analysis of Electrical Safety Occurrences November 2012  

Energy.gov (U.S. Department of Energy (DOE))

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

206

Monthly Analysis of Electrical Safety Occurrences June 2012  

Energy.gov (U.S. Department of Energy (DOE))

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

207

Monthly Analysis of Electrical Safety Occurrences April 2012  

Energy.gov (U.S. Department of Energy (DOE))

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

208

Monthly Analysis of Electrical Safety Occurrences December 2012  

Energy.gov (U.S. Department of Energy (DOE))

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

209

Monthly Analysis of Electrical Safety Occurrences July 2013  

Energy.gov (U.S. Department of Energy (DOE))

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

210

Monthly Analysis of Electrical Safety Occurrences August 2012  

Energy.gov (U.S. Department of Energy (DOE))

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

211

Monthly Analysis of Electrical Safety Occurrences May 2012  

Energy.gov (U.S. Department of Energy (DOE))

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

212

Monthly Analysis of Electrical Safety Occurrences October 2012  

Energy.gov (U.S. Department of Energy (DOE))

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

213

Monthly Analysis of Electrical Safety Occurrences September 2011  

Energy.gov (U.S. Department of Energy (DOE))

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

214

Monthly Analysis of Electrical Safety Occurrences October 2011  

Energy.gov (U.S. Department of Energy (DOE))

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

215

Monthly Analysis of Electrical Safety Occurrences September 2013  

Energy.gov (U.S. Department of Energy (DOE))

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

216

Monthly Analysis of Electrical Safety Occurrences February 2013  

Energy.gov (U.S. Department of Energy (DOE))

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

217

Monthly Analysis of Electrical Safety Occurrences June 2011  

Energy.gov (U.S. Department of Energy (DOE))

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

218

Monthly Analysis of Electrical Safety Occurrences May 2013  

Energy.gov (U.S. Department of Energy (DOE))

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

219

Monthly Analysis of Electrical Safety Occurrences December 2011  

Energy.gov (U.S. Department of Energy (DOE))

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

220

Monthly Analysis of Electrical Safety Occurrences August 2011  

Energy.gov (U.S. Department of Energy (DOE))

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

Note: This page contains sample records for the topic "monthly electric utility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Monthly Analysis of Electrical Safety Occurrences March 2012  

Energy.gov (U.S. Department of Energy (DOE))

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

222

Monthly Analysis of Electrical Safety Occurrences July 2011  

Energy.gov (U.S. Department of Energy (DOE))

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

223

Monthly Analysis of Electrical Safety Occurrences September 2012  

Energy.gov (U.S. Department of Energy (DOE))

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

224

Monthly Analysis of Electrical Safety Occurrences January 2013  

Energy.gov (U.S. Department of Energy (DOE))

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

225

Monthly Analysis of Electrical Safety Occurrences July 2012  

Energy.gov (U.S. Department of Energy (DOE))

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

226

Monthly Analysis of Electrical Safety Occurrences June 2013  

Energy.gov (U.S. Department of Energy (DOE))

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

227

Monthly Analysis of Electrical Safety Occurrences January 2012  

Energy.gov (U.S. Department of Energy (DOE))

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

228

Austin Utilities (Gas and Electric) - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Austin Utilities (Gas and Electric) - Commercial and Industrial Austin Utilities (Gas and Electric) - Commercial and Industrial Energy Efficiency Rebate Program Austin Utilities (Gas and Electric) - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Manufacturing Commercial Weatherization Water Heating Maximum Rebate Electric Measures: $100,000 per customer location, per technology, per year Custom Gas Measures: $75,000 per commercial location per year, $5,000 per industrial location per year Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting Equipment: See Program Website Air Source Heat Pumps: $20-$25/ton, plus bonus rebate of $4/ton for each

229

Approaches to Electric Utility Energy Efficiency for Low Income Customers  

Open Energy Info (EERE)

Approaches to Electric Utility Energy Efficiency for Low Income Customers Approaches to Electric Utility Energy Efficiency for Low Income Customers in a Changing Regulatory Environment Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Approaches to Electric Utility Energy Efficiency for Low Income Customers in a Changing Regulatory Environment Focus Area: Energy Efficiency Topics: Best Practices Website: www.ornl.gov/~webworks/cppr/y2001/misc/99601.pdf Equivalent URI: cleanenergysolutions.org/content/approaches-electric-utility-energy-ef Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: Feebates This report, written for members of the Weatherization Assistance Program

230

Publicly-Owned Electric Utilities and the California Renewables  

E-Print Network (OSTI)

Publicly-Owned Electric Utilities and the California Renewables Portfolio Standard: A Summary Salazar Contract Manager Heather Raitt Project Manager Drake Johnson Acting Office Manager RENEWABLE ENERGY OFFICE Valerie Hall Deputy Director EFFICIENCY, RENEWABLES & DEMAND ANALYSIS DIVISION B. B

231

Innovative and Progressive Electric Utility Demand-Side Management Strategies  

E-Print Network (OSTI)

to as Demand-Side Management (DSM) and are extremely rigorous in scope. Electric utilities have pursued many different DSM policies and strategies during the past decade. These programs have addressed various technologies and have included rebates for efficient...

Epstein, G. J.; Fuller, W. H.

232

Operating a Major Electric Utility Today  

Science Journals Connector (OSTI)

...supply inter-reduce bloiting vell...interchange of power to reduce generation costs...councils, in turn, make up the National Electric...Southwest Power Pool Western Systems...adequate cool-ing-water supply for condensing...means ofrail or water transpor-tation...source to the consumption centers. These...

Theodore J. Nagel

1978-09-15T23:59:59.000Z

233

City of Burlington-Electric, Vermont (Utility Company) | Open Energy  

Open Energy Info (EERE)

Burlington-Electric, Vermont (Utility Company) Burlington-Electric, Vermont (Utility Company) Jump to: navigation, search Name City of Burlington-Electric Place Vermont Utility Id 2548 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large General (LG) Rate Demand is less than 25KW- Net Metered Renewable

234

An Updated Assessement of Copper Wire Thefts from Electric Utilities -  

NLE Websites -- All DOE Office Websites (Extended Search)

An Updated Assessement of Copper Wire Thefts from Electric An Updated Assessement of Copper Wire Thefts from Electric Utilities - October 2010 An Updated Assessement of Copper Wire Thefts from Electric Utilities - October 2010 The U.S. Department of Energy (DOE), Office of Electricity Delivery and Energy Reliability monitors changes, threats, and risks to the energy infrastructure in the United States. This report updates a previously published report on copper wire theft. The combined efforts of electric utilities, lawmakers, scrap metal dealers, and local law enforcement have succeeded in reducing the problem. Updated Assessment-Copper-Final October 2010.pdf More Documents & Publications Investigation Letter Report: I11IG002 Semiannual Report to Congress: for the first half of Fiscal Year (FY) 1998 Energy Infrastructure Events and Expansions Year-in-Review 2010

235

Electricity privatization : should South Korea privatize its state-owned electric utility?  

E-Print Network (OSTI)

The state-owned electric utility, Korea Electricity Power Cooperation (KEPCO), privatization has been a key word in South Korea since 1997, when the government received $55 billion from the International Monetary Fund in ...

Lim, Sungmin

2011-01-01T23:59:59.000Z

236

Avista Utilities (Electric) - Commercial Energy Efficiency Incentives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Water Heating Maximum Rebate 50% of cost See individual programs on Avista web site for incentive details Program Info Start Date 1/1/2011 State Idaho Program Type Utility Rebate Program Rebate Amount Clothes Washer: $200 Food Service Equipment: Varies Lighting: Varies Motors: Varies Power management for PC Networks: $10/controlled unit Retro-Commissioning Study: $0.10/conditioned sq. ft. (agents receive $0.02/kWh) VFD Fans: $80/HP VFD Cooling Pump: $85/HP VFD Heating Pump: $100/HP Insulation: $0.28--$0.35/sq. ft. New Windows: $1/sq. ft. Retrofit Windows: $3.50/sq. ft. Standby Generator Block Heater: $400 Custom: $0.08 - $0.20/kWh saved in first year Avista Utilities offers numerous incentives to commercial and industrial customers to increase the energy efficiency of customer facilities or

237

Avista Utilities (Electric) - Commercial Energy Efficiency Incentives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Lighting Commercial Lighting Lighting Water Heating Maximum Rebate 50% of cost See individual programs on Avista web site for incentive details Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Clothes Washer: $200 Food Service Equipment: Varies Lighting: Varies Motors: Varies Power management for PC Networks: $10/controlled unit Retro-Commissioning Study: $0.10/conditioned sq. ft. (agents receive $0.02/kWh) VFD Fans: $80/HP VFD Cooling Pump: $85/HP VFD Heating Pump: $100/HP Insulation: $0.28--$0.35/sq. ft. New Windows: $1/sq. ft. Retrofit Windows: $3.50/sq. ft. Standby Generator Block Heater: $400 Custom: $0.08 - $0.20/kWh saved in first year Avista Utilities offers numerous incentives to commercial and industrial customers to increase the energy efficiency of customer facilities or

238

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for November 2008. Monthly Electric Utility Sales...

239

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for December 2008. Monthly Electric Utility Sales...

240

Orange and Rockland Utilities (Electric) - Commercial Efficiency Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orange and Rockland Utilities (Electric) - Commercial Efficiency Orange and Rockland Utilities (Electric) - Commercial Efficiency Programs Orange and Rockland Utilities (Electric) - Commercial Efficiency Programs < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Prescriptive Rebates: 50% of cost Program Info Funding Source System Benefits Charge Start Date 4/1/2010 State New York Program Type Utility Rebate Program Rebate Amount Small Business Lighten Up Energy Savings Evaluation and CFLs: Free A/C A/C > 65 kBTU/h: $35/ton (11.5 EER); $55 (12 EER) Heat Pumps 14 SEER or 11.5 EER: $50-$65/ton

Note: This page contains sample records for the topic "monthly electric utility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Lodi Electric Utility - Commercial Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lodi Electric Utility - Commercial Energy Efficiency Rebate Program Lodi Electric Utility - Commercial Energy Efficiency Rebate Program Lodi Electric Utility - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Construction Design & Remodeling Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Manufacturing Windows, Doors, & Skylights Maximum Rebate G-1 Rebates: $250 G-1 AC/Lighting Improvement: $1,000 G-2 Rebates: $7,500 G-3 to I-1 Rebates: $25,000 Program Info State California Program Type Utility Rebate Program Rebate Amount G-1 Rebates: up to $250 G-1 AC/Lighting Improvement: 25% of cost G-2 Rebates: $0.13/kWh annual projected savings

242

PPL Electric Utilities - Custom Energy Efficiency Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PPL Electric Utilities - Custom Energy Efficiency Program PPL Electric Utilities - Custom Energy Efficiency Program PPL Electric Utilities - Custom Energy Efficiency Program < Back Eligibility Commercial Industrial Institutional Nonprofit Schools State Government Savings Category Other Maximum Rebate Custom Efficiency Rebates: 50% of incremental cost, $500,000 per customer site per year, or 2 million per parent company Technical Study: $100,000 annually Program Info Expiration Date 5/31/2013 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Custom Incentive: $0.10 per projected first year kWh savings Technical study: 50% of cost '''The available budget for Large C&I (Commercial and Industrial) customers has been fully committed. New funding for energy efficiency projects will be available when Phase 2 begins on June 1, 2013. However, Phase 2 funding

243

U.S. electric utility demand-side management 1996  

SciTech Connect

The US Electric Utility Demand-Side Management report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it related to the US electric power industry. The first chapter, ``Profile: U.S. Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

NONE

1997-12-01T23:59:59.000Z

244

Survey of Western U.S. Electric Utility Resource Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Survey of Western U.S. Electric Utility Resource Plans Survey of Western U.S. Electric Utility Resource Plans Title Survey of Western U.S. Electric Utility Resource Plans Publication Type Journal Article Year of Publication 2014 Authors Wilkerson, Jordan, Peter H. Larsen, and Galen L. Barbose Journal Energy Policy Date Published 2014 Abstract We review long-term electric utility plans representing "' 90% of generation within the Western U.S. and Canadian provinces. We address what utility planners assume about future growth of electricity demand and supply; what types of risk they consider in their long-term resource planning; and the consistency in which they report resource planning-related data. The region is anticipated to grow by 2% annually by 2020 before Demand Side Management. About two-thirds of the utilities that provided an annual energy forecast also reported energy efficiency savings projections; in aggregate, they anticipate an average 6.4% reduction in energy and 8.6% reduction in peak demand by 2020. New natural gas-fired and renewable generation will replace retiring coal plants. Although some utilities anticipate new coal-fired plants, most are planning for steady growth in renewable generation over the next two decades. Most planned solar capacity will come online before 2020, with most wind expansion after 2020. Fuel mix is expected to remain "' 55% of total generation. Planners consider a wide range of risks but focus on future demand, fuel prices, and the possibility of GHG regulations. Data collection and reporting inconsistencies within and across electric utility resource plans lead to recommendations on policies to address this issue.

245

Cost and Quality of Fuels for Electric Utility Plants  

Gasoline and Diesel Fuel Update (EIA)

1) 1) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 2001 March 2004 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Preface Background The Cost and Quality of Fuels for Electric Utility Plants 2001 is prepared by the Electric Power Divi- sion; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S.

246

U.S. Energy Information Administration/Electric Power Monthly June 2012  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Monthly June 2012 Electric Power Monthly June 2012 150 Appendix C Technical Notes The Energy Information Administration (EIA) periodically reviews and revises how it collects, estimates, and reports data pertaining to the electric power industry. These Technical Notes describe current data quality efforts and measures as well as each active survey form contributing to the data published in the Electric Power Monthly (EPM). Data Quality The EPM is prepared by the Electric Power Division, Office of Electricity, Renewables & Uranium Statistics (ERUS), Energy Information Administration (EIA), U.S. Department of Energy. Quality statistics begin with the collection of the correct data. To assure this, ERUS performs routine reviews of the data collected and the

247

New London Electric&Water Util | Open Energy Information  

Open Energy Info (EERE)

Util Util Jump to: navigation, search Name New London Electric&Water Util Place Wisconsin Utility Id 13467 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount with Parallel Generation(20kW or less) Industrial

248

The Michigan regulatory incentives study for electric utilities  

SciTech Connect

This is the final report of Phase I of the Michigan Regulatory Incentives Study for Electric Utilities, a three-phase review of Michigan's regulatory system and its effects on resource selection by electric utilities. The goal of Phase I is to identify and analyze financial incentive mechanisms that encourage selection of resources in accord with the principles of integrated resource planning (IRP) or least-cost planning (LCP). Subsequent study phases will involve further analysis of options and possibly a collaborative formal effort to propose regulatory changes. The Phase I analysis proceeded in three steps: (1) identification and review of existing regulatory practices that affect utilities; selection of resources, particularly DSM; (2) preliminary analysis of ten financial mechanisms, and selection of three for further study; (3) detailed analysis of the three mechanisms, including consideration of how they could be implemented in Michigan and financial modeling of their likely impacts on utilities and ratepayers.

Reid, M.W.; Weaver, E.M. (Barakat and Chamberlin, Inc., Oakland, CA (United States)) [Barakat and Chamberlin, Inc., Oakland, CA (United States)

1991-06-17T23:59:59.000Z

249

Effects of resource acquisitions on electric-utility shareholders  

SciTech Connect

The purpose of this study is to see how shareholders fare when the utility acquires different kinds of resources. The resources considered are utility-built, -operated, and -owned power plants with different combinations of construction and operation costs; purchases of power; and DSM programs. We calculated the net present value of realized (cash) return on equity as the primary factor used to represent shareholder interests. We examined shareholder returns for these resources as functions of public utility commission regulation, taxes, and the utility`s operating environment. Our treatment of regulation considers the frequency and type (future vs historic test year) of rate cases, inclusion of construction work in progress in ratebase vs allowance for funds used during construction, ratebase vs expensing of DSM programs, book and tax depreciation schedules, possible disallowances of ``excess`` power-plant or DSM capital costs, and possible lack of adjustment for ``excess`` fuel or purchased power costs. The tax policies we studied include the existence and rates for property, sales, and income taxes and the existence and regulatory treatment of deferred taxes. The utility`s operating environment includes the overall inflation rate, load-growth rate, escalation in nonproduction expenses, and nongeneration construction (capital) requirements. Finally, given the increasingly competitive nature of electricity markets, we briefly considered alternatives to traditional cost-of-service regulation. We examined shareholder returns for the resources described above in an environment where the utility competes with other suppliers solely on the basis of electricity price.

Hirst, E.; Hadley, S.

1994-05-01T23:59:59.000Z

250

Univariate time-series forecasting of monthly peak demand of electricity in northern India  

Science Journals Connector (OSTI)

This study forecasts the monthly peak demand of electricity in the northern region of India using univariate time-series techniques namely Multiplicative Seasonal Autoregressive Integrated Moving Average (MSARIMA) and Holt-Winters Multiplicative Exponential Smoothing (ES) for seasonally unadjusted monthly data spanning from April 2000 to February 2007. In-sample forecasting reveals that the MSARIMA model outperforms the ES model in terms of lower root mean square error, mean absolute error and mean absolute percent error criteria. It has been found that ARIMA (2, 0, 0) (0, 1, 1)12 is the best fitted model to explain the monthly peak demand of electricity, which has been used to forecast the monthly peak demand of electricity in northern India, 15 months ahead from February 2007. This will help Northern Regional Load Dispatch Centre to make necessary arrangements a priori to meet the future peak demand.

Sajal Ghosh

2008-01-01T23:59:59.000Z

251

Electric Utility Industrial DSM and M&V Program  

E-Print Network (OSTI)

BC Hydro is an electric utility with a service area covering over 95% of the province of British Columbia in Canada. Power Smart is BC Hydros demand-side-management (DSM) division. Power Smart develops, operates and manages various DSM programs...

Lau, K. P. K.

2008-01-01T23:59:59.000Z

252

The changing focus of electric utility merger proceedings  

SciTech Connect

The present article examines the changes over the past few years in the Federal Energy Regulatory Commission's (FERC) review of electric utility mergers. After a brief introduction to the subject, three recent developments in section 203 proceedings are reviewed: Northeast Utilities/Public Service Co. of New Hampshire, Entergy/Gulf States Utilities, and the Cincinnati Gas and Electric Co. and PSI Energy Inc. The vitality of the [open quotes]Commonwealth[close quotes] factors is examined. Several issues bearing on the scope of the FERC's section 203 jurisdiction are discussed. The changes which have taken place in the hearing process are described. The author concludes that section 203 proceedings will continue to be protean in nature, with the applicable standards shifting and the outcomes difficult to predict.

Moot, J.S. (Meagher Flom, Washington, DC (United States))

1994-01-01T23:59:59.000Z

253

Cost and Quality of Fuels for Electric Utility Plants 1997  

Gasoline and Diesel Fuel Update (EIA)

7 Tables 7 Tables May 1998 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration/Cost and Quality of Fuels for Electric Utility Plants 1997 Tables ii Contacts The annual publication Cost and Quality of Fuels for Electric Utility Plants (C&Q) is no longer published by the EIA. The tables presented in this document are intended to replace that annual publication. Questions

254

Cost and quality of fuels for electric utility plants, 1984  

SciTech Connect

Information on the cost and quality of fossil fuel receipts in 1984 to electric utility plants is presented, with some data provided for each year from 1979 through 1984. Data were collected on Forms FERC-423 and EIA-759. Fuels are coal, fuel oil, and natural gas. Data are reported by company and plant, by type of plant, and by State and Census Region, with US totals. This report contains information on fossil fuel receipts to electric utility plants with a combined steam capacity of 50 megawatts or larger. Previous reports contained data on all electric plants with a combined capacity of 25 megawatts or larger. All historical data in this publication have been revised to reflect the new reporting threshold. Peaking unit data are no longer collected. A glossary of terms, technical notes, and references are also provided. 7 figs., 62 tabs.

Not Available

1985-07-01T23:59:59.000Z

255

FORM EIA-860M MONTHLY UPDATE TO ANNUAL ELECTRIC GENERATOR REPORT  

U.S. Energy Information Administration (EIA) Indexed Site

PURPOSE Form EIA-860M collects data on the status of: a) Proposed new generators scheduled to begin commercial operation within the subsequent 12 months; b) Existing generators scheduled to retire from service within the subsequent 12 months; and c) Existing generators that have proposed modifications that are scheduled for completion within one month. The data collected on this form appear in the EIA publication Electric Power Monthly. They are also used to monitor the current status and trends of the electric power industry and to evaluate the future of the industry. REQUIRED RESPONDENTS Respondents to the Form EIA-860M who are required to complete this form are all Form EIA-860, ANNUAL ELECTRIC GENERATOR REPORT, respondents who have indicated in a previous filing to

256

Electric utility applications of hydrogen energy storage systems  

SciTech Connect

This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

Swaminathan, S.; Sen, R.K.

1997-10-15T23:59:59.000Z

257

Electric-utility DSM programs: Terminology and reporting formats  

SciTech Connect

The number, scope, effects, and costs of electric-utility demand-site management programs are growing rapidly in the United States. Utilities, their regulators, and energy policy makers need reliable information on the costs of, participation in, and energy and load effects of these programs to make informed decisions. In particular, information is needed on the ability of these programs to cost-effectively provide energy and capacity resources that are alternatives to power plants. This handbook addresses the need for additional and better information in two ways. First, it discusses the key concepts associated with DSM-program types, participation, energy and load effects, and costs. Second, the handbook offers definitions and a sample reporting form for utility DSM programs. The primary purpose in developing these definitions and this form is to encourage consistency in the collection and reporting of data on DSM programs. To ensure that the discussions, reporting formats, and definitions will be useful and used, development of this handbook was managed by a committee, with membership from electric utilities, state regulatory commissions, and the US Department of Energy. Also, this data-collection form was pretested by seven people from six utilities, who completed the form for nine DSM programs.

Hirst, E. (Oak Ridge National Lab., TN (United States)); Sabo, C. (Barakat and Chamberlin, Inc., Washington, DC (United States))

1991-10-01T23:59:59.000Z

258

Summary of interview survey of electric utility communication specialists  

SciTech Connect

The survey yielded a great deal of useful information. It provided the staff members of the Center for Evaluation and Assessment with a focus for their efforts with regard to developing guidelines and mechanisms for effective communication between electric utilities and their customers. Moreover, the interviews confirmed the staff's initial judgment that there are substantial problems that must be overcome if communication programs are to be effective; at the same time, these conversations with communication specialists in the utility industry reinforced a sense that these issues must be addressed, since effective, open communication has to be a key component in any comprehensive attack on large-scale energy related problems.

Ludwig, S.; Messe, L.A.; Crano, W.D.

1980-11-11T23:59:59.000Z

259

NETL: Publications - 2002 Conference Proceedings: Electric Utilities and  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL Publications NETL Publications 2002 Conference Proceedings Electric Utilities and Water: Emerging Issues and R&D Needs Table of Contents Disclaimer Front Matter and Workshop Summary [PDF-49KB] Appendix A - Workshop Brochure [PDF-274KB] Appendix B - Summary of Breakout Session A [PDF-19KB] Appendix C - Summary of Breakout Session B [PDF-27KB] Appendix D - Presentations Appendix E - List of Workshop Attendees [PDF-8KB] Electric Utilities and Water Brochure Cover Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

260

Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Updated Capital Cost Estimates Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants April 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies.

Note: This page contains sample records for the topic "monthly electric utility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

PPL Electric Utilities Corp. Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Corp. Smart Grid Project Corp. Smart Grid Project Jump to: navigation, search Project Lead PPL Electric Utilities Corp. Country United States Headquarters Location Allentown, Pennsylvania Recovery Act Funding $19,054,516.00 Total Project Value $38,109,032.00 Coverage Area Coverage Map: PPL Electric Utilities Corp. Smart Grid Project Coordinates 40.6084305°, -75.4901833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

262

Electrolysis: Information and Opportunities for Electric Power Utilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolysis: Electrolysis: Information and Opportunities for Electric Power Utilities B. Kroposki, J. Levene, and K. Harrison National Renewable Energy Laboratory Golden, Colorado P.K. Sen Colorado School of Mines Golden, Colorado F. Novachek Xcel Energy Denver, Colorado Technical Report NREL/TP-581-40605 September 2006 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Electrolysis: Information and Opportunities for Electric Power Utilities B. Kroposki, J. Levene, and K. Harrison National Renewable Energy Laboratory Golden, Colorado P.K. Sen Colorado School of Mines Golden, Colorado F. Novachek Xcel Energy Denver, Colorado Prepared under Task No. HY61.3620 Technical Report NREL/TP-581-40605 September 2006

263

Property:OpenEI/UtilityRate/FlatDemandMonth8 | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:OpenEI/UtilityRate/FlatDemandMonth8 Jump to: navigation, search This is a property of type Number. The allowed values for this property are: 1 2 3 4 5 6 7 8 9 Pages using the property "OpenEI/UtilityRate/FlatDemandMonth8" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 1 + 000e60f7-120d-48ab-a1f9-9c195329c628 + 1 + 00101108-073b-4503-9cd4-01769611c26f + 1 + 001361ca-50d2-49bc-b331-08755a2c7c7d + 1 + 0016f771-cda9-4312-afc2-63f10c8d8bf5 + 1 + 00178d3d-17cb-46ed-8a58-24c816ddce96 + 1 + 001d1952-955c-411b-8ce4-3d146852a75e + 1 + 001ea8be-7a59-4bcb-a923-e8f1015946ee + 1 + 001eaca9-6ce7-4c0f-8578-44fc29654e97 + 1 + 0022e9a5-942c-4e97-94d7-600f5d315ce8 + 1 +

264

Form EIA-860M MONTHLY UPDATE TO ANNUAL ELECTRIC GENERATOR REPORT  

U.S. Energy Information Administration (EIA) Indexed Site

INSTRUCTIONS INSTRUCTIONS Year: 2013 No. 1905-0129 Approval Expires: 12/31/2015 Burden: 0.3 Hours PURPOSE Form EIA-860M collects data on the status of: a) Proposed new generators scheduled to begin commercial operation within the subsequent 12 months; b) Existing generators scheduled to retire from service within the subsequent 12 months; and c) Existing generators that have proposed modifications that are scheduled for completion within one month. The data collected on this form appear in the EIA publication Electric Power Monthly. They are also used to monitor the current status and trends of the electric power industry and to evaluate the future of the industry. REQUIRED RESPONDENTS Respondents to the Form EIA-860M who are required to complete this form are all Form EIA-860,

265

Survey of Western U.S. electric utility resource plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Survey Survey of Western U.S. electric utility resource plans Jordan Wilkerson a,n , Peter Larsen a,b , Galen Barbose b a Management Science and Engineering Department, School of Engineering, Stanford University, Stanford, CA 94305, United States b Energy Analysis and Environmental Impacts Department, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 90-4000, Berkeley, CA 94720, United States H I G H L I G H T S  Anticipated power plant retirements are split between coal and natural gas.  By 2030, natural gas-fired generation represents 60% of new capacity followed by wind (15%), solar (7%) and hydropower (7%).  Utilities anticipate most new solar capacity to come online before 2020 with significant growth in wind capacity after 2020.  Utilities focus their uncertainty analyses on future demand, fuel prices,

266

Fuel cells for electric utility and transportation applications  

SciTech Connect

This review article presents: the current status and expected progress status of the fuel cell research and development programs in the USA, electrochemical problem areas, techno-economic assessments of fuel cells for electric and/or gas utilities and for transportation, and other candidate fuel cells and their applications. For electric and/or gas utility applications, the most likely candidates are phosphoric, molten carbonate, and solid electrolyte fuel cells. The first will be coupled with a reformer (to convert natural gas, petroleum-derived, or biomass fuels to hydrogen), while the second and third will be linked with a coal gasifier. A fuel cell/battery hybrid power source is an attractive option for electric vehicles with projected performance characteristics approaching those for internal combustion or diesel engine powered vehicles. For this application, with coal-derived methanol as the fuel, a fuel cell with an acid electrolyte (phosphoric, solid polymer electrolyte or super acid) is essential; with pure hydrogen (obtained by splitting of water using nuclear, solar or hydroelectric energy), alkaline fuel cells show promise. A fuel cell researcher's dream is the development of a high performance direct methanol-air fuel cell as a power plant for electric vehicles. For long or intermittent duty cycle load leveling, regenerative hydrogen-halogen fuel cells exhibit desirable characteristics.

Srinivasan, S.

1980-01-01T23:59:59.000Z

267

Treatment of Solar Generation in Electric Utility Resource Planning  

NLE Websites -- All DOE Office Websites (Extended Search)

Treatment of Solar Generation Treatment of Solar Generation in Electric Utility Resource Planning John Sterling Solar Electric Power Association Joyce McLaren National Renewable Energy Laboratory Mike Taylor Solar Electric Power Association Karlynn Cory National Renewable Energy Laboratory Technical Report NREL/TP-6A20-60047 October 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov

268

Rising Electricity Costs: A Challenge For Consumers, Regulators, And Utilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Update Update Steve Kiesner Director, National Customer Markets FUPWG Spring 2010 Meeting April 14, 2010 What's On the Minds of Your Utilities?  Transformation of the Electricity Industry  Emerging smart technology  Financial reform  Reliability  Major initiatives to address climate change  Gaps / Lack of Clarity in Federal / State Decisions on Infrastructure and Market Issues  Operating in a carbon constrained world EEI  Our members serve 95% of the ultimate customers in the shareholder-owned segment of the industry,  and represent approximately 70% of the U.S. electric power industry.  We also have more than 80 international electric companies as Affiliate Members  Organized in 1933, EEI works closely with all of its members, representing their interests and

269

Property:OpenEI/UtilityRate/FlatDemandMonth2 | Open Energy Information  

Open Energy Info (EERE)

FlatDemandMonth2 FlatDemandMonth2 Jump to: navigation, search This is a property of type Number. The allowed values for this property are: 1 2 3 4 5 6 7 8 9 Pages using the property "OpenEI/UtilityRate/FlatDemandMonth2" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 1 + 000e60f7-120d-48ab-a1f9-9c195329c628 + 1 + 00101108-073b-4503-9cd4-01769611c26f + 1 + 001361ca-50d2-49bc-b331-08755a2c7c7d + 1 + 0016f771-cda9-4312-afc2-63f10c8d8bf5 + 1 + 00178d3d-17cb-46ed-8a58-24c816ddce96 + 1 + 001d1952-955c-411b-8ce4-3d146852a75e + 1 + 001ea8be-7a59-4bcb-a923-e8f1015946ee + 1 + 001eaca9-6ce7-4c0f-8578-44fc29654e97 + 1 + 0022e9a5-942c-4e97-94d7-600f5d315ce8 + 1 + 002661b8-2e71-48b8-b657-44ff7372f757 + 1 + 0026b4d3-dd02-4423-95e1-56430d887b28 + 2 +

270

Property:OpenEI/UtilityRate/FlatDemandMonth4 | Open Energy Information  

Open Energy Info (EERE)

FlatDemandMonth4 FlatDemandMonth4 Jump to: navigation, search This is a property of type Number. The allowed values for this property are: 1 2 3 4 5 6 7 8 9 Pages using the property "OpenEI/UtilityRate/FlatDemandMonth4" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 1 + 000e60f7-120d-48ab-a1f9-9c195329c628 + 1 + 00101108-073b-4503-9cd4-01769611c26f + 1 + 001361ca-50d2-49bc-b331-08755a2c7c7d + 1 + 0016f771-cda9-4312-afc2-63f10c8d8bf5 + 1 + 00178d3d-17cb-46ed-8a58-24c816ddce96 + 1 + 001d1952-955c-411b-8ce4-3d146852a75e + 1 + 001ea8be-7a59-4bcb-a923-e8f1015946ee + 1 + 001eaca9-6ce7-4c0f-8578-44fc29654e97 + 1 + 0022e9a5-942c-4e97-94d7-600f5d315ce8 + 1 + 002661b8-2e71-48b8-b657-44ff7372f757 + 1 + 0026b4d3-dd02-4423-95e1-56430d887b28 + 2 +

271

Property:OpenEI/UtilityRate/FlatDemandMonth7 | Open Energy Information  

Open Energy Info (EERE)

FlatDemandMonth7 FlatDemandMonth7 Jump to: navigation, search This is a property of type Number. The allowed values for this property are: 1 2 3 4 5 6 7 8 9 Pages using the property "OpenEI/UtilityRate/FlatDemandMonth7" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 1 + 000e60f7-120d-48ab-a1f9-9c195329c628 + 1 + 00101108-073b-4503-9cd4-01769611c26f + 1 + 001361ca-50d2-49bc-b331-08755a2c7c7d + 1 + 0016f771-cda9-4312-afc2-63f10c8d8bf5 + 1 + 00178d3d-17cb-46ed-8a58-24c816ddce96 + 1 + 001d1952-955c-411b-8ce4-3d146852a75e + 1 + 001ea8be-7a59-4bcb-a923-e8f1015946ee + 1 + 001eaca9-6ce7-4c0f-8578-44fc29654e97 + 1 + 0022e9a5-942c-4e97-94d7-600f5d315ce8 + 1 + 002661b8-2e71-48b8-b657-44ff7372f757 + 1 + 0026b4d3-dd02-4423-95e1-56430d887b28 + 1 +

272

Property:OpenEI/UtilityRate/FlatDemandMonth1 | Open Energy Information  

Open Energy Info (EERE)

FlatDemandMonth1 FlatDemandMonth1 Jump to: navigation, search This is a property of type Number. The allowed values for this property are: 1 2 3 4 5 6 7 8 9 Pages using the property "OpenEI/UtilityRate/FlatDemandMonth1" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 1 + 000e60f7-120d-48ab-a1f9-9c195329c628 + 1 + 00101108-073b-4503-9cd4-01769611c26f + 1 + 001361ca-50d2-49bc-b331-08755a2c7c7d + 1 + 0016f771-cda9-4312-afc2-63f10c8d8bf5 + 1 + 00178d3d-17cb-46ed-8a58-24c816ddce96 + 1 + 001d1952-955c-411b-8ce4-3d146852a75e + 1 + 001ea8be-7a59-4bcb-a923-e8f1015946ee + 1 + 001eaca9-6ce7-4c0f-8578-44fc29654e97 + 1 + 0022e9a5-942c-4e97-94d7-600f5d315ce8 + 1 + 002661b8-2e71-48b8-b657-44ff7372f757 + 1 + 0026b4d3-dd02-4423-95e1-56430d887b28 + 2 +

273

Property:OpenEI/UtilityRate/FlatDemandMonth6 | Open Energy Information  

Open Energy Info (EERE)

FlatDemandMonth6 FlatDemandMonth6 Jump to: navigation, search This is a property of type Number. The allowed values for this property are: 1 2 3 4 5 6 7 8 9 Pages using the property "OpenEI/UtilityRate/FlatDemandMonth6" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 1 + 000e60f7-120d-48ab-a1f9-9c195329c628 + 1 + 00101108-073b-4503-9cd4-01769611c26f + 1 + 001361ca-50d2-49bc-b331-08755a2c7c7d + 1 + 0016f771-cda9-4312-afc2-63f10c8d8bf5 + 1 + 00178d3d-17cb-46ed-8a58-24c816ddce96 + 1 + 001d1952-955c-411b-8ce4-3d146852a75e + 1 + 001ea8be-7a59-4bcb-a923-e8f1015946ee + 1 + 001eaca9-6ce7-4c0f-8578-44fc29654e97 + 1 + 0022e9a5-942c-4e97-94d7-600f5d315ce8 + 1 + 002661b8-2e71-48b8-b657-44ff7372f757 + 1 + 0026b4d3-dd02-4423-95e1-56430d887b28 + 1 +

274

Property:OpenEI/UtilityRate/FlatDemandMonth5 | Open Energy Information  

Open Energy Info (EERE)

FlatDemandMonth5 FlatDemandMonth5 Jump to: navigation, search This is a property of type Number. The allowed values for this property are: 1 2 3 4 5 6 7 8 9 Pages using the property "OpenEI/UtilityRate/FlatDemandMonth5" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 1 + 000e60f7-120d-48ab-a1f9-9c195329c628 + 1 + 00101108-073b-4503-9cd4-01769611c26f + 1 + 001361ca-50d2-49bc-b331-08755a2c7c7d + 1 + 0016f771-cda9-4312-afc2-63f10c8d8bf5 + 1 + 00178d3d-17cb-46ed-8a58-24c816ddce96 + 1 + 001d1952-955c-411b-8ce4-3d146852a75e + 1 + 001ea8be-7a59-4bcb-a923-e8f1015946ee + 1 + 001eaca9-6ce7-4c0f-8578-44fc29654e97 + 1 + 0022e9a5-942c-4e97-94d7-600f5d315ce8 + 1 + 002661b8-2e71-48b8-b657-44ff7372f757 + 1 + 0026b4d3-dd02-4423-95e1-56430d887b28 + 1 +

275

Property:OpenEI/UtilityRate/FixedDemandChargeMonth1 | Open Energy  

Open Energy Info (EERE)

Fixed Demand Charge Month 1 Fixed Demand Charge Month 1 Pages using the property "OpenEI/UtilityRate/FixedDemandChargeMonth1" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 7 + 00101108-073b-4503-9cd4-01769611c26f + 1.71 + 0030a241-5084-4404-9fe4-ed558aad8b59 + 8.28 + 0049111b-fba2-46ba-827d-7ce95609a1d9 + 9.51 + 0055db46-f535-4dc9-a192-920d1bdf382b + 3.2 + 0070a37f-0d41-4331-8115-df40c62e00f3 + 13.24 + 007f7b1f-0cba-450c-9023-df962aa387a4 + 5.28 + 008960d4-14ad-4822-b293-140640cf0bcf + 4.924 + 00cdded9-47a1-49b6-a217-10941ffbefc6 + 1.468 + 00e0b930-90c6-43c2-971a-91dade33f76a + 3.35 + 010f37ad-90a9-4aa8-bbdf-c55e72ee1495 + 4.74 + 017a32a0-140a-4e0b-a10c-f6f67905829c + 4.5 + 019941c8-cc3b-452c-b12e-201301099603 + 11.95 +

276

Property:OpenEI/UtilityRate/FlatDemandMonth3 | Open Energy Information  

Open Energy Info (EERE)

FlatDemandMonth3 FlatDemandMonth3 Jump to: navigation, search This is a property of type Number. The allowed values for this property are: 1 2 3 4 5 6 7 8 9 Pages using the property "OpenEI/UtilityRate/FlatDemandMonth3" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 1 + 000e60f7-120d-48ab-a1f9-9c195329c628 + 1 + 00101108-073b-4503-9cd4-01769611c26f + 1 + 001361ca-50d2-49bc-b331-08755a2c7c7d + 1 + 0016f771-cda9-4312-afc2-63f10c8d8bf5 + 1 + 00178d3d-17cb-46ed-8a58-24c816ddce96 + 1 + 001d1952-955c-411b-8ce4-3d146852a75e + 1 + 001ea8be-7a59-4bcb-a923-e8f1015946ee + 1 + 001eaca9-6ce7-4c0f-8578-44fc29654e97 + 1 + 0022e9a5-942c-4e97-94d7-600f5d315ce8 + 1 + 002661b8-2e71-48b8-b657-44ff7372f757 + 1 + 0026b4d3-dd02-4423-95e1-56430d887b28 + 2 +

277

E-Print Network 3.0 - applying electrical utility Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sales of Green Energy through Utility Green Pricing Programs (Regulated Electricity Markets Only... Table D-2. UtilityMarketer Green Power Programs in Restructured...

278

Table 11.5 Electricity: Sales to Utility and Nonutility Purchasers...  

U.S. Energy Information Administration (EIA) Indexed Site

5 Electricity: Sales to Utility and Nonutility Purchasers, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Utility and Nonutility Purchasers;" " Unit:...

279

Electric Market and Utility Operation Terminology (Fact Sheet), Solar Energy Technologies Program (SETP)  

Energy.gov (U.S. Department of Energy (DOE))

This fact sheet is a list of electric market and utility operation terminology for a series of three electricity fact sheets.

280

Property:OpenEI/UtilityRate/FixedDemandChargeMonth11 | Open Energy  

Open Energy Info (EERE)

Name: Fixed Demand Charge Month 11 Pages using the property "OpenEI/UtilityRate/FixedDemandChargeMonth11" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 7 + 00101108-073b-4503-9cd4-01769611c26f + 1.71 + 0030a241-5084-4404-9fe4-ed558aad8b59 + 8.28 + 0049111b-fba2-46ba-827d-7ce95609a1d9 + 9.51 + 0055db46-f535-4dc9-a192-920d1bdf382b + 3.2 + 0070a37f-0d41-4331-8115-df40c62e00f3 + 13.24 + 007f7b1f-0cba-450c-9023-df962aa387a4 + 5.28 + 008960d4-14ad-4822-b293-140640cf0bcf + 4.924 + 00cdded9-47a1-49b6-a217-10941ffbefc6 + 1.468 + 00e0b930-90c6-43c2-971a-91dade33f76a + 3.35 + 010f37ad-90a9-4aa8-bbdf-c55e72ee1495 + 4.74 + 017a32a0-140a-4e0b-a10c-f6f67905829c + 4.5 + 019941c8-cc3b-452c-b12e-201301099603 + 11.95 +

Note: This page contains sample records for the topic "monthly electric utility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Property:OpenEI/UtilityRate/FixedDemandChargeMonth12 | Open Energy  

Open Energy Info (EERE)

Name: Fixed Demand Charge Month 12 Pages using the property "OpenEI/UtilityRate/FixedDemandChargeMonth12" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 7 + 00101108-073b-4503-9cd4-01769611c26f + 1.71 + 0030a241-5084-4404-9fe4-ed558aad8b59 + 8.28 + 0049111b-fba2-46ba-827d-7ce95609a1d9 + 9.51 + 0055db46-f535-4dc9-a192-920d1bdf382b + 3.2 + 0070a37f-0d41-4331-8115-df40c62e00f3 + 13.24 + 007f7b1f-0cba-450c-9023-df962aa387a4 + 5.28 + 008960d4-14ad-4822-b293-140640cf0bcf + 4.924 + 00cdded9-47a1-49b6-a217-10941ffbefc6 + 1.468 + 00e0b930-90c6-43c2-971a-91dade33f76a + 3.35 + 010f37ad-90a9-4aa8-bbdf-c55e72ee1495 + 4.74 + 017a32a0-140a-4e0b-a10c-f6f67905829c + 4.5 + 019941c8-cc3b-452c-b12e-201301099603 + 11.95 +

282

Property:OpenEI/UtilityRate/FixedDemandChargeMonth10 | Open Energy  

Open Energy Info (EERE)

Name: Fixed Demand Charge Month 10 Pages using the property "OpenEI/UtilityRate/FixedDemandChargeMonth10" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 7 + 00101108-073b-4503-9cd4-01769611c26f + 1.71 + 0030a241-5084-4404-9fe4-ed558aad8b59 + 10.59 + 0049111b-fba2-46ba-827d-7ce95609a1d9 + 9.51 + 0055db46-f535-4dc9-a192-920d1bdf382b + 3.2 + 0070a37f-0d41-4331-8115-df40c62e00f3 + 13.24 + 007f7b1f-0cba-450c-9023-df962aa387a4 + 5.28 + 008960d4-14ad-4822-b293-140640cf0bcf + 4.924 + 00cdded9-47a1-49b6-a217-10941ffbefc6 + 1.468 + 00e0b930-90c6-43c2-971a-91dade33f76a + 2.71 + 010f37ad-90a9-4aa8-bbdf-c55e72ee1495 + 4.74 + 017a32a0-140a-4e0b-a10c-f6f67905829c + 4.5 + 019941c8-cc3b-452c-b12e-201301099603 + 11.95 +

283

U.S. Electric Utility Companies and Rates: Look-up by Zipcode...  

Open Energy Info (EERE)

Ventyx U.S. Electric Utility ... Dataset Activity Stream U.S. Electric Utility Companies and Rates: Look-up by Zipcode (Feb 2011) This dataset, compiled by NREL and Ventyx,...

284

A methodology to develop monthly energy use models from utility billing data for seasonally scheduled buildings: application to schools  

E-Print Network (OSTI)

Day-types for Whole Building Electric Energy Use ( in W/ft*) for SES in FY93 . 60 7. 2 The C Values and Their Corresponding CV Values for Proposed Model for Sims . 66 7. 3 Monthly Data from Proposed Model for Sims for FY93 67 7. 4 Monthly Data... from Proposed Model for Sims for FY95 &, FY96 68 7. 5 Monthly Data from the 3P-mean Model for Sims for FY95 & FY96 70 7. 6 Daily Model Development for Ten Primary and Secondary Schools in Texas . 73 7. 7 Monthly Model Development for Ten Primary...

Wang, Wenyan

2012-06-07T23:59:59.000Z

285

Eighteen-Month Final Evaluation of UPS Second Generation Diesel Hybrid Electric Delivery Vans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Eighteen-Month Final Evaluation Eighteen-Month Final Evaluation of UPS Second Generation Diesel Hybrid-Electric Delivery Vans M. Lammert and K. Walkowicz National Renewable Energy Laboratory Technical Report NREL/TP-5400-55658 September 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Eighteen-Month Final Evaluation of UPS Second Generation Diesel Hybrid-Electric Delivery Vans M. Lammert and K. Walkowicz National Renewable Energy Laboratory Prepared under Task No. FC08.3000 Technical Report

286

Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities  

SciTech Connect

The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

Porter, K.; Rogers, J.

2009-12-01T23:59:59.000Z

287

Financial statistics of selected publicly owned electric utilities 1989. [Contains glossary  

SciTech Connect

The Financial Statistics of Selected Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide the Federal and State governments, industry, and the general public with data that can be used for policymaking and decision making purposes relating to publicly owned electric utility issues. 21 tabs.

Not Available

1991-02-06T23:59:59.000Z

288

A summary of the California Public Utilities Commission`s two competing electric utility restructuring proposals  

SciTech Connect

In May 1995, the California Public Utilities Commission (CPUC) released two proposals for restructuring the state`s electric power industry. The two proposals follow more than a year of testimony and public comment after the CPUC issued the ``Blue Book`` (CPUC 1994a) on April 20, 1994, which called for retail wheeling to be phased in to all customers over 5 years. The majority proposal, supported by three of the four CPUC commissioners (one seat was vacant when the proposals were released), calls for creating a central pool, or ``poolco``; setting electric prices to reflect true costs of service, or ``real-time pricing``; and allowing parties to negotiate ``contracts for differences`` between the pool price and the contract price. The minority proposal, sponsored by Commissioner Jesse Knight, calls for retail wheeling, or ``direct access,`` and for utilities to divest or spin off their generating assets. This paper presents a summary of the major provisions of the two CPUC proposals and the possible implications and issues associated with each. It is aimed at researchers who may be aware that various efforts to restructure the electric power industry are under way and want to known more about California`s proposals, as well as those who want to known the implications of certain restructuring proposals for renewable energy technologies. Presented at the end of the paper is a summary of alternative proposals promoted by various stakeholder in response to the two CPUC proposals.

Porter, K.

1995-11-01T23:59:59.000Z

289

Table N13.3. Electricity: Sales to Utility and Nonutility Purchasers, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

3. Electricity: Sales to Utility and Nonutility Purchasers, 1998;" 3. Electricity: Sales to Utility and Nonutility Purchasers, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Utility and Nonutility Purchasers;" " Unit: Million Kilowatthours." " "," ",,,," " " "," ","Total of",,,"RSE" "NAICS"," ","Sales and","Utility","Nonutility","Row" "Code(a)","Subsector and Industry","Transfers Offsite","Purchaser(b)","Purchaser(c)","Factors" ,,"Total United States"

290

Electric Utility Transmission and Distribution Line Engineering Program  

SciTech Connect

Economic development in the United States depends on a reliable and affordable power supply. The nation will need well educated engineers to design a modern, safe, secure, and reliable power grid for our future needs. An anticipated shortage of qualified engineers has caused considerable concern in many professional circles, and various steps are being taken nationwide to alleviate the potential shortage and ensure the North American power system's reliability, and our world-wide economic competitiveness. To help provide a well-educated and trained workforce which can sustain and modernize the nation's power grid, Gonzaga University's School of Engineering and Applied Science has established a five-course (15-credit hour) Certificate Program in Transmission and Distribution (T&D) Engineering. The program has been specifically designed to provide working utility engineering professionals with on-line access to advanced engineering courses which cover modern design practice with an industry-focused theoretical foundation. A total of twelve courses have been developed to-date and students may select any five in their area of interest for the T&D Certificate. As each course is developed and taught by a team of experienced engineers (from public and private utilities, consultants, and industry suppliers), students are provided a unique opportunity to interact directly with different industry experts over the eight weeks of each course. Course material incorporates advanced aspects of civil, electrical, and mechanical engineering disciplines that apply to power system design and are appropriate for graduate engineers. As such, target students for the certificate program include: (1) recent graduates with a Bachelor of Science Degree in an engineering field (civil, mechanical, electrical, etc.); (2) senior engineers moving from other fields to the utility industry (i.e. paper industry to utility engineering or project management positions); and (3) regular working professionals wishing to update their skills or increase their knowledge of utility engineering design practices and procedures. By providing graduate educational opportunities for the above groups, the T&D Program will help serve a strong industry need for training the next generation of engineers in the cost-effective design, construction, operation, and maintenance of modern electrical transmission and distribution systems. In addition to developing the on-line engineering courses described above, the T&D Program also focused significant efforts towards enhancing the training opportunities available to power system operators in the northwest. These efforts have included working with outside vendors to provide NERC-approved training courses in Gonzaga University's (GU) system operator training facility, support for an accurate system model which can be used in regional blackstart exercises, and the identification of a retired system operator who could provide actual regional training courses. The GU system operator training facility is also being used to recruit young workers, veterans, and various under-represented groups to the utility industry. Over the past three years students from Columbia Gorge Community College, Spokane Falls Community College, Walla Walla Community College, Central Washington University, Eastern Washington University, Gonzaga University, and various local high schools have attended short (one-day) system operator training courses free of charge. These collaboration efforts has been extremely well received by both students and industry, and meet T&D Program objectives of strengthening the power industry workforce while bridging the knowledge base across power worker categories, and recruiting new workers to replace a predominantly retirement age workforce. In the past three years the T&D Program has provided over 170 utility engineers with access to advanced engineering courses, been involved in training more than 300 power system operators, and provided well over 500 college and high school students with an experienc

Peter McKenny

2010-08-31T23:59:59.000Z

291

Coca-Cola Refreshments Class 8 Diesel Electric Hybrid Tractor Evaluation: 13-Month Final Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Coca-Cola Refreshments Coca-Cola Refreshments Class 8 Diesel Electric Hybrid Tractor Evaluation: 13-Month Final Report K. Walkowicz, M. Lammert, and P. Curran Technical Report NREL/TP-5400-53502 August 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Coca-Cola Refreshments Class 8 Diesel Electric Hybrid Tractor Evaluation: 13-Month Final Report K. Walkowicz, M. Lammert, and P. Curran Prepared under Task No. FC08.3000 Technical Report NREL/TP-5400-53502 August 2012 NOTICE

292

Using direct normal irradiance models and utility electrical loading to assess benefit of a concentrating solar power plant  

Science Journals Connector (OSTI)

The objective of this paper was to determine if three different direct normal irradiance (DNI) models were sufficiently accurate to determine if concentrating solar power (CSP) plants could meet the utility electrical load. DNI data were measured at three different laboratories in the United States and compared with DNI calculated by three DNI models. In addition, utility electrical loading data were obtained for all three locations. The DNI models evaluated were: the Direct Insolation Simulation Code (DISC), DIRINT, and DIRINDEX. On an annual solar insolation (e.g. kWh/m2) basis, the accuracy of the DNI models at all three locations was within: 7% (DISC), 5% (DIRINT), and 3% (DIRINDEX). During the three highest electrical loading months at the three locations, the monthly accuracy varied from: 0% to 16% (DISC), 0% to 9% (DIRINT), and 0% to 8% (DIRINDEX). At one location different pyranometers were used to measure GHI, and the most expensive pyranometers did not improve the DNI model monthly accuracy. In lieu of actually measuring DNI, using the DIRINT model was felt to be sufficient for assessing whether to build a CSP plant at one location, but use of either the DIRINT or DIRINDEX models was felt to be marginal for the other two locations due to errors in modeling DNI for utility peak electrical loading days especially for partly cloudy days.

Brian D. Vick; Daryl R. Myers; William E. Boyson

2012-01-01T23:59:59.000Z

293

Mercury Control Technologies for Electric Utilities Burning Lignite Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury control technologies for Mercury control technologies for electric utilities Burning lignite coal Background In partnership with a number of key stakeholders, the U.S. Department of Energy's Office of Fossil Energy (DOE/FE), through its National Energy Technology Laboratory (NETL), has been carrying out a comprehensive research program since the mid-1990s focused on the development of advanced, cost-effective mercury (Hg) control technologies for coal-fired power plants. Mercury is a poisonous metal found in coal, which can be harmful and even toxic when absorbed from the environment and concentrated in animal tissues. Mercury is present as an unwanted by-product of combustion in power plant flue gases, and is found in varying percentages in three basic chemical forms(known as speciation): particulate-bound mercury, oxidized

294

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for February 2009. Monthly Electric Utility Sales and Revenue Data Short Name 2009-02 Utility...

295

Applying electrical utility least-cost approach to transportation planning  

SciTech Connect

Members of the energy and environmental communities believe that parallels exist between electrical utility least-cost planning and transportation planning. In particular, the Washington State Energy Strategy Committee believes that an integrated and comprehensive transportation planning process should be developed to fairly evaluate the costs of both demand-side and supply-side transportation options, establish competition between different travel modes, and select the mix of options designed to meet system goals at the lowest cost to society. Comparisons between travel modes are also required under the Intermodal Surface Transportation Efficiency Act (ISTEA). ISTEA calls for the development of procedures to compare demand management against infrastructure investment solutions and requires the consideration of efficiency, socioeconomic and environmental factors in the evaluation process. Several of the techniques and approaches used in energy least-cost planning and utility peak demand management can be incorporated into a least-cost transportation planning methodology. The concepts of avoided plants, expressing avoidable costs in levelized nominal dollars to compare projects with different on-line dates and service lives, the supply curve, and the resource stack can be directly adapted from the energy sector.

McCoy, G.A.; Growdon, K.; Lagerberg, B.

1994-09-01T23:59:59.000Z

296

Ancillary-service costs for 12 US electric utilities  

SciTech Connect

Ancillary services are those functions performed by electrical generating, transmission, system-control, and distribution-system equipment and people to support the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission defined ancillary services as ``those services necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.`` FERC divided these services into three categories: ``actions taken to effect the transaction (such as scheduling and dispatching services) , services that are necessary to maintain the integrity of the transmission system [and] services needed to correct for the effects associated with undertaking a transaction.`` In March 1995, FERC published a proposed rule to ensure open and comparable access to transmission networks throughout the country. The rule defined six ancillary services and developed pro forma tariffs for these services: scheduling and dispatch, load following, system protection, energy imbalance, loss compensation, and reactive power/voltage control.

Kirby, B.; Hirst, E.

1996-03-01T23:59:59.000Z

297

A Case for Virtualizing the Electric Utility in Cloud Data Centers Position paper  

E-Print Network (OSTI)

that there exists a big gap in how electric utilities charge data centers for their energy con- sumption (on the oneA Case for Virtualizing the Electric Utility in Cloud Data Centers Position paper Cheng Wang- der Duke electric company's pricing scheme [12]. As shown, a 10MW data center with roughly 20K servers

Urgaonkar, Bhuvan

298

Liberty Utilities (Electric) Commercial New Construction Rebate Program (New Hampshire)  

Energy.gov (U.S. Department of Energy (DOE))

'''Liberty Utilities has assumed National Grid's customers base in the state of New Hampshire. Customers should contact Liberty Utilities for questions regarding incentive availability.'''

299

Deregulation and environmental differentiation in the electric utility industry  

E-Print Network (OSTI)

to purchase electricity from private generators, policy-behavior. Green electricity does not offer private benefitselectricity, lumber represents a case where it is difficult to bundle private

Delmas, M; Russo, M V; Montes-Sancho, M J

2007-01-01T23:59:59.000Z

300

City of Shasta Lake Electric Utility - PV Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Shasta Lake Electric Utility - PV Rebate Program City of Shasta Lake Electric Utility - PV Rebate Program City of Shasta Lake Electric Utility - PV Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $9,050 Commercial: $192,000 Program Info State California Program Type Utility Rebate Program Rebate Amount Residential: $1.81/W Commercial: $1.92/W Provider City of Shasta Lake Electric Utility '''''Note: This program is currently not accepting applications. Check the program web site for information regarding future solicitations. ''''' City of Shasta Lake Electric Utility is providing rebates to their customers for the purchase of photovoltaic (PV) systems. The rebate levels will decrease annually over the life of the program. For fiscal year

Note: This page contains sample records for the topic "monthly electric utility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Do You Buy Clean Electricity From Your Utility? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Do You Buy Clean Electricity From Your Utility? Do You Buy Clean Electricity From Your Utility? Do You Buy Clean Electricity From Your Utility? November 19, 2009 - 7:00am Addthis This week, John discussed buying clean electricity from your utility. If you can't set up a small renewable energy system of your own, buying clean electricity is a great way to support the use of renewable energy. Do you buy clean electricity from your utility? Tell us about your experience. Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. Addthis Related Articles You Can't Manage Energy Use That You Don't Measure Six Places to Find Help with Your Energy Costs Do You Drive a Hybrid Electric Vehicle?

302

International Benchmarking and Yardstick Regulation: An Application to European Electricity Utilities  

E-Print Network (OSTI)

. A., Stoft, S., Greene, N., Hill, L. J., 1995. Performance-based ratemaking for electric utilities: Review of plans and analysis of economic and resource planning issues, Volume I. Oak Ridge, Ten. Oak Ridge National Laboratory and University... utilities. Oak Ridge National Laboratory. Jamasb, T., Pollitt, M., 2000. Benchmarking and regulation: International electricity experience. Utilities Policy, Vol. 9, No. 3, 107-130. 35 Joskow, P. J., Schmalensee, R., 1986. Incentive regulation for electric...

Jamasb, Tooraj; Pollitt, Michael G.

2004-06-16T23:59:59.000Z

303

Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition  

SciTech Connect

The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

Rogers, J.; Porter, K.

2011-03-01T23:59:59.000Z

304

The Impacts of Utility-Sponsored Demand-Side Management Programs on Industrial Electricity Consumers  

E-Print Network (OSTI)

One of the most pressing issues in electric utility regulation today is the extent to which demand-side management (DSM) programs should be promoted by utilities. DSM refers to energy-efficiency or conservation measures, such as insulation, more...

Rosenblum, J. I.

305

The ICF, Inc. coal and electric utilities model : an analysis and evaluation  

E-Print Network (OSTI)

v.1. The Electric Power Research Institute (EPRI) is sponsoring a series of evaluations of important energy policy and electric utility industry models by the MIT Energy Model Analysis Program (EMAP). The subject of this ...

Wood, David O.

1981-01-01T23:59:59.000Z

306

Electric utilities, fuel use, and responsiveness to fuel prices  

Science Journals Connector (OSTI)

Abstract This research tests the impact of changes in fuel price to explain fuel use by electric utilities. We employ a three-stage least squares model that explains changes in fuel use as a function of changes in three fuel prices. This model is repeated across sub-samples of data aggregated at the plant level and operating holding company level. We expect that plants and holding companies reduce fuel use when fuel prices rise. Several fuel substitution effects within and across plants and holding companies are demonstrated, as well as several frictions. At the plant level, higher prices of natural gas lead to less natural gas consumption, less coal consumption, and more fuel oil consumption. At the operating holding company level, results demonstrate the inelasticity of coal use and the increases of natural gas in response to higher coal prices. Subsamples demonstrate heterogeneity of results across different plants. Results emphasize that technological, market, and regulatory frictions may hinder the performance of energy policies.

Daniel C. Matisoff; Douglas S. Noonan; Jinshu Cui

2014-01-01T23:59:59.000Z

307

Regulation and Measuring Cost-Efficiency with Panel Data Models: Application to Electricity Distribution Utilities  

Science Journals Connector (OSTI)

This paper examines the performance of panel data models in measuring cost-efficiency of electricity distribution utilities. Different cost frontier models are applied to a sample...

Mehdi Farsi; Massimo Filippini

2004-08-01T23:59:59.000Z

308

Table E13.3. Electricity: Sales to Utility and Nonutility Purchasers, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

3. Electricity: Sales to Utility and Nonutility Purchasers, 1998;" 3. Electricity: Sales to Utility and Nonutility Purchasers, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Utility and Nonutility Purchasers;" " Unit: Million Kilowatthours." ,"Total of",,,"RSE" "Economic","Sales and","Utility","Nonutility","Row" "Characteristic(a)","Transfers Offsite","Purchaser(b)","Purchaser(c)","Factors" ,"Total United States" "RSE Column Factors:",0.9,1,1.1 "Value of Shipments and Receipts"

309

Table 11.6 Electricity: Sales to Utility and Nonutility Purchasers, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity: Sales to Utility and Nonutility Purchasers, 2002;" Electricity: Sales to Utility and Nonutility Purchasers, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Utility and Nonutility Purchasers;" " Unit: Million Kilowatthours." ,"Total of",,,"RSE" "Economic","Sales and","Utility","Nonutility","Row" "Characteristic(a)","Transfers Offsite","Purchaser(b)","Purchaser(c)","Factors" ,"Total United States" "RSE Column Factors:",0.9,1.3,0.9 "Value of Shipments and Receipts" "(million dollars)"

310

Survey of Western U.S. Electric Utility Resource Plans  

E-Print Network (OSTI)

energy distribution, and storage assumptions Effective resource planning activities can inform long-term electric

Wilkerson, Jordan

2014-01-01T23:59:59.000Z

311

Methodology and results of the impacts of modeling electric utilities ; a comparative evaluation of MEMM and REM  

E-Print Network (OSTI)

This study compares two models of the U.S. electric utility industry including the EIA's electric utility submodel in the Midterm Energy Market Model (MEMM), and the Baughman-Joskow Regionalized Electricity Model (REM). ...

Baughman, Martin L.

1981-01-01T23:59:59.000Z

312

Ashland Electric Utility - Bright Way to Heat Water Rebate | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ashland Electric Utility - Bright Way to Heat Water Rebate Ashland Electric Utility - Bright Way to Heat Water Rebate Ashland Electric Utility - Bright Way to Heat Water Rebate < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,000 Program Info State Oregon Program Type Utility Rebate Program Rebate Amount $0.40/annual kWh saved (on average $800 to $1,000) Provider Ashland Electric Utilities Department The City of Ashland Conservation Division offers a solar water heating program to its residential electric customers who currently use an electric water heater. Under "The Bright Way to Heat Water Program," qualified home owners may choose either the cash rebate or a zero-interest loan. Cash rebates of up to $1,000 are available for approved systems. The rebate

313

Survey of Western U.S. Electric Utility Resource Plans  

E-Print Network (OSTI)

1992. The process of integrating DSM and supply resources incosts to target intensive DSM campaigns. Utilities Policy 5,Vollans, G.E. , 1994. With DSM, who needs IRP? Utilities

Wilkerson, Jordan

2014-01-01T23:59:59.000Z

314

Treatment of Solar Generation in Electric Utility Resource Planning (Presentation)  

SciTech Connect

Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. Through interviews and a questionnaire, the authors gathered information on utility supply planning and how solar is represented. Utilities were asked to provide their resource planning process details, key assumptions (e.g. whether DG is represented as supply or negative load), modeling methodology (e.g. type of risk analytics and candidate portfolio development), capacity expansion and production simulation model software, and solar project representation (project size, capacity value and integration cost adder). This presentation aims to begin the exchange of information between utilities, regulators and other stakeholders by capturing utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

Cory, K.; Sterling, J.; Taylor, M.; McLaren, J.

2014-01-01T23:59:59.000Z

315

Intelligent Control Systems for Futuristic Smart Grid Initiatives in Electric Utilities  

Science Journals Connector (OSTI)

Substation Automation Systems (SAS) provide reliable bedrock for future smart grid development in electric utilities. Implementation of high quality SAS system enables one to experience less outage rate using the state-of-the-art computerized functions ... Keywords: Intelligent Control Systems, Futuristic Smart Grid Initiatives, Electric Utilities

Hossein Zeynal, Mostafa Eidiani, Dariush Yazdanpanah

2013-12-01T23:59:59.000Z

316

Orange and Rockland Utilities (Electric)- Residential Appliance Recycling Program  

Energy.gov (U.S. Department of Energy (DOE))

Orange and Rockland Utilities provides rebates for residential customers for recycling older, inefficient refrigerators and freezers. All appliances must meet the program requirements listed on the...

317

New Ulm Public Utilities- Solar Electric Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

New Ulm Public Utilities provides solar photovoltaic (PV) rebates for residential, commercial, and industrial customers. Rebates are for $1 per nameplate watt, and customers must sign a net...

318

Deregulation and environmental differentiation in the electric utility industry  

E-Print Network (OSTI)

data on two types of renewables (hydroelectric facilitiesand non-hydroelectric facilities) for utilities in each ofdifference for hydroelectric facilities. However, for those

Delmas, M; Russo, M V; Montes-Sancho, M J

2007-01-01T23:59:59.000Z

319

Orange and Rockland Utilities (Electric)- Residential Efficiency Program (New York)  

Energy.gov (U.S. Department of Energy (DOE))

Orange and Rockland Utilities provides rebates for residential customers for recycling older, inefficient refrigerators and freezers. All appliances must meet the program requirements listed on the...

320

FORM EIA-826 MONTHLY ELECTRIC SALES AND REVENUE WITH STATE DISTRIBUTIONS REPORT  

U.S. Energy Information Administration (EIA) Indexed Site

MONTHLY ELECTRIC SALES AND REVENUE WITH STATE DISTRIBUTIONS REPORT OMB No. 1905-0129 Approval Expires: 12/31/2016 Burden: 1.37 hours NOTICE: This report is mandatory under the Federal Energy Administration Act of 1974 (Public Law 93-275). Failure to comply may result in criminal fines, civil penalties and other sanctions as provided by law. For further information concerning sanctions and data protections see the provision on sanctions and the provision concerning the confidentiality of information in the instructions. Title 18 USC 1001 makes it a criminal offense for any person knowingly and willingly to make to any Agency or Department of the United States any false, fictitious, or fraudulent statements as to any

Note: This page contains sample records for the topic "monthly electric utility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Rising Electricity Costs: A Challenge For Consumers, Regulators, And Utilities  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity: 30 Years of Electricity: 30 Years of Electricity: 30 Years of Electricity: 30 Years of Industry Change Industry Change David K. Owens Executive Vice President Edison Electric Institute 30 Years of Energy Information and Analysis April 7, 2008 EIA Key to Policy Development and EIA Key to Policy Development and Advocacy Activities Advocacy Activities EIA Has Kept Pace With an Evolving EIA Has Kept Pace With an Evolving Energy Industry Energy Industry n EIA clearly provides more with less budgetary support l 1979: $347 million l 2007: $91 million (both in Real $2007) n EIA staff resource distribution has tracked changing energy markets and information needs Resource Management Oil & Gas Coal, Nuclear, Electric, Alt Fuels Energy Markets & End Use Integrated Analysis / Forecasting Information Technology

322

Table A30. Quantity of Electricity Sold to Utility and Nonutility Purchasers  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Electricity Sold to Utility and Nonutility Purchasers" Quantity of Electricity Sold to Utility and Nonutility Purchasers" " by Census Region, Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Million Kilowatthours)" " "," "," "," "," ","RSE" "SIC"," "," ","Utility ","Nonutility","Row" "Code(a)","Industry Group and Industry","Total Sold","Purchaser(b)","Purchaser(c)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.9,1.1,1 , 20,"Food and Kindred Products",1829," W "," W ",28

323

Deregulation and environmental differentiation in the electric utility industry  

E-Print Network (OSTI)

Electricity from Renewable Resources: A Review of Utilityprovision of power from renewable resources, the end resultinvestments in renewable energy generating resources. Hence:

Delmas, M; Russo, M V; Montes-Sancho, M J

2007-01-01T23:59:59.000Z

324

Annual Public Electric Utility data - EIA-412 data file  

U.S. Energy Information Administration (EIA) Indexed Site

and Power Exchanges 9 Electric Generating Plant Statistics 10 Existing Transmission Lines 11 Transmission Lines Added Within Last Year 2003* XLS XLS XLS XLS XLS** XLS XLS**...

325

Implications for decision making: The electric utilities` perspective  

SciTech Connect

Implications for decision making in three areas related to policy towards greenhouse gas emissions are discussed from the perspective of the electric industry. The first area addresses economic factors in the electric industry. The second concerns the interrelationship of energy, electricity and the environment, and the global climate change issue. The third addresses the global context of the issue. It is concluded that a comprehensive examination of international implications of governmental policy should be made before implementation of carbon emissions limitations, and that limiting electricity demand could negatively affect economic growth and the environment.

Fang, W.L. [Edison Electric Inst., Washington, DC (United States)

1992-12-31T23:59:59.000Z

326

Battery Utilization in Electric Vehicles: Theoretical Analysis and an Almost Optimal Online Algorithm  

E-Print Network (OSTI)

powered vehicles [Kirsch, 2000, Anderson and Anderson, 2010]. Electric Vehicles (EVs) are currentlyBattery Utilization in Electric Vehicles: Theoretical Analysis and an Almost Optimal Online n current demands in electric vehicles. When serving a demand, the current allocation might be split

Tamir, Tami

327

Treatment of Solar Generation in Electric Utility Resource Planning  

SciTech Connect

Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

2013-10-01T23:59:59.000Z

328

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology  

SciTech Connect

Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuel economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.

Hopman, Ulrich,; Kruiswyk, Richard W.

2005-07-05T23:59:59.000Z

329

U.S. Electric Utility Companies and Rates: Look-up by Zipcode (Feb 2011) |  

Open Energy Info (EERE)

Utility Companies and Rates: Look-up by Zipcode (Feb 2011) Utility Companies and Rates: Look-up by Zipcode (Feb 2011) Dataset Summary Description This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011. Source NREL and Ventyx Date Released February 24th, 2012 (2 years ago) Date Updated Unknown Keywords electric rates rates US utilities Data text/csv icon IOU rates by zipcode (csv, 1.7 MiB)

330

TY JOUR T1 Survey of Western U S Electric Utility Resource Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Survey of Western U S Electric Utility Resource Plans Survey of Western U S Electric Utility Resource Plans JF Energy Policy A1 Jordan Wilkerson A1 Peter H Larsen A1 Galen L Barbose AB p We review long term electric utility plans representing nbsp of generation within the Western U S and Canadian provinces nbsp We nbsp address what utility planners assume about future growth of electricity demand and supply what types of risk they consider in their long term resource planning and the consistency in which they report resource planning related data The region is anticipated to grow by annually by before Demand Side Management nbsp About nbsp two thirds of nbsp the utilities that provided an annual energy forecast also nbsp reported energy ef ciency savings projections in aggregate they anticipate an average reduction in energy and nbsp reduction in peak demand by nbsp

331

Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility to Purchase Electricity from Innovative DOE-Supported Clean Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal Project Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal Project January 17, 2012 - 12:00pm Addthis Washington, DC - An innovative clean coal technology project in Texas will supply electricity to the largest municipally owned utility in the United States under a recently signed Power Purchase Agreement, the U.S. Department of Energy (DOE) announced today. Under the agreement - the first U.S. purchase by a utility of low-carbon power from a commercial-scale, coal-based power plant with carbon capture - CPS Energy of San Antonio will purchase approximately 200 megawatts (MW) of power from the Texas Clean Energy Project (TCEP), located just west of Midland-Odessa.

332

Electric Utility Strategic Planning at the PUCT: An Overview  

E-Print Network (OSTI)

the sponsorship of the Electric Power Research Institute (EPRI). Both econometric and end-use models rely upon forecasts of economic and demographic factors. Since such projections are cOllllllonly not available at the appropriate geographical level... Regulatory Research Institute's (NRRI) Capacity Expansion and Reliability Evaluation System (CERES) was implemented for the HL&P system. There are also plans to experiment with EPRI's Electric Generation Expansion Planning (EGEAS) model in the future...

Zarnikau, J.

333

YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL REVENUE ($1,000  

U.S. Energy Information Administration (EIA) Indexed Site

2,1,"AL",4958,"Decatur Utilities",0.148,0.124,0,0,0.272,5.55,4.65,0,0,10.2,20,2,0,0,22 2,1,"AL",4958,"Decatur Utilities",0.148,0.124,0,0,0.272,5.55,4.65,0,0,10.2,20,2,0,0,22 2012,1,"AL",6422,"City of Florence - (AL)",0.4,0,0,0,0.4,15,0,0,0,15,55,0,0,0,55 2012,1,"AL",9094,"City of Huntsville - (AL)",5.688,1.64,0,0,7.328,213.3,61.5,0,0,274.8,669,4,0,0,673 2012,1,"AL",9739,"Joe Wheeler Elec Member Corp",0.188,0,0,0,0.188,7.05,0,0,0,7.05,20,0,0,0,20 2012,1,"AR",14063,"Oklahoma Gas & Electric Co",0.488,0,0.058,0,0.546,67.739,0,8.333,0,76.072,60,0,1,0,61 2012,1,"AZ",16572,"Salt River Project",,5.372,,,5.372,,500,,,500,,6,,,6 2012,1,"AZ",19189,"Trico Electric Cooperative Inc",0.01,,,,0.01,0.25,,,,0.25,3,,,,3

334

The next gordian knot for state regulators and electric utilities: The unbundling of retail services  

SciTech Connect

Unbundling of retail electric services will accelerate competitive forces in a way that could radically change the future course of the electric power industry. Although simple in concept, unbundling raises a broad range of complex issues, many of which are fundamental to today`s concepts of regulation and utility management. This article addresses four questions: (1) What is retail unbundling? (2) What role might it play in the future electric power industry? (3) What lessons can be learned from retail unbundling in other regulated industries, specifically the natural gas industry? (4) What are the major issues associated with retail unbundling for electric utilities and state regulators?

Costello, K.W.

1995-11-01T23:59:59.000Z

335

Electric Utility Company Assigned to a Zip Code? | OpenEI Community  

Open Energy Info (EERE)

Electric Utility Company Assigned to a Zip Code? Electric Utility Company Assigned to a Zip Code? Home I have found an error in the utility company assigned to a zip code. I am not sure if the "assigned" utility company covers part of the zip code in question or not. How do I report an error like this for correction? Thanks. Submitted by Conroyt on 23 May, 2013 - 09:01 1 answer Points: 0 Thanks for submitting this. The Utilities Gateway (http://en.openei.org/wiki/Gateway:Utilities) uses the developer.nrel.gov service for zip-code lookups (http://developer.nrel.gov/doc/api/utility_rates/v3). This in turn uses Google for geocoding, and finds the centroid of the geographic region in question. This means that the result is based on the center of a zip code region, which may have no data. This question is timed well as we are

336

An Examination of Temporal Trends in Electricity Reliability Based on Reports from U.S. Electric Utilities  

SciTech Connect

Since the 1960s, the U.S. electric power system has experienced a major blackout about once every 10 years. Each has been a vivid reminder of the importance society places on the continuous availability of electricity and has led to calls for changes to enhance reliability. At the root of these calls are judgments about what reliability is worth and how much should be paid to ensure it. In principle, comprehensive information on the actual reliability of the electric power system and on how proposed changes would affect reliability ought to help inform these judgments. Yet, comprehensive, national-scale information on the reliability of the U.S. electric power system is lacking. This report helps to address this information gap by assessing trends in U.S. electricity reliability based on information reported by electric utilities on power interruptions experienced by their customers. Our research augments prior investigations, which focused only on power interruptions originating in the bulk power system, by considering interruptions originating both from the bulk power system and from within local distribution systems. Our research also accounts for differences among utility reliability reporting practices by employing statistical techniques that remove the influence of these differences on the trends that we identify. The research analyzes up to 10 years of electricity reliability information collected from 155 U.S. electric utilities, which together account for roughly 50% of total U.S. electricity sales. The questions analyzed include: 1. Are there trends in reported electricity reliability over time? 2. How are trends in reported electricity reliability affected by the installation or upgrade of an automated outage management system? 3. How are trends in reported electricity reliability affected by the use of IEEE Standard 1366-2003?

Eto, Joseph H.; LaCommare, Kristina Hamachi; Larsen, Peter; Todd, Annika; Fisher, Emily

2012-01-06T23:59:59.000Z

337

Estimating Monthly 1989-2000 Data for Generation, Consumption, and Stocks  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Energy Review, Section 7: Monthly Energy Review, Section 7: Estimating Monthly 1989-2000 Data for Generation, Consumption, and Stocks For 1989-2000, monthly and annual data were collected for electric utilities; however, during this time period, only annual data were collected for independent power producers, commercial plants, and industrial plants. To obtain 1989-2000 monthly estimates for the Electric Power, Commercial, and Industrial Sectors, electric utility patterns were used for each energy source (MonthX = MonthUtility * AnnualX / AnnualUtility). For example, to estimate "Electricity Net Generation From Coal: Electric Power Sector" in Table 7.2b, the monthly pattern for "Electricity Net Generation From Coal: Electric Utilities" was used. To estimate the

338

Black Hills/Colorado Electric Utility Co. Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Hills/Colorado Electric Utility Co. Smart Grid Project Hills/Colorado Electric Utility Co. Smart Grid Project Jump to: navigation, search Project Lead Black Hills/Colorado Electric Utility Co. Country United States Headquarters Location Pueblo, Colorado Recovery Act Funding $6,142,854.00 Total Project Value $12,285,708.00 Coverage Area Coverage Map: Black Hills/Colorado Electric Utility Co. Smart Grid Project Coordinates 38.2544472°, -104.6091409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

339

Un Seminar On The Utilization Of Geothermal Energy For Electric Power  

Open Energy Info (EERE)

Un Seminar On The Utilization Of Geothermal Energy For Electric Power Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Details Activities (3) Areas (1) Regions (0) Abstract: Unavailable Author(s): o ozkocak Published: Geothermics, 1985 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Modeling-Computer Simulations (Ozkocak, 1985) Observation Wells (Ozkocak, 1985) Reflection Survey (Ozkocak, 1985) Unspecified Retrieved from "http://en.openei.org/w/index.php?title=Un_Seminar_On_The_Utilization_Of_Geothermal_Energy_For_Electric_Power_Production_And_Space_Heating,_Florence_1984,_Section_2-_Geothermal_Resources&oldid=386949"

340

Climate change adaptation in the U.S. electric utility sector  

E-Print Network (OSTI)

The electric utility sector has been a focus of policy efforts to reduce greenhouse gas emissions, but even if these efforts are successful, the sector will need to adapt to the impacts of climate change. These are likely ...

Higbee, Melissa (Melissa Aura)

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "monthly electric utility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas or  

E-Print Network (OSTI)

UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas or a generator? NOTIFY the University Police. FOLLOW evacuation procedures. NOTIFY Building Safety personnel

Fernandez, Eduardo

342

UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas  

E-Print Network (OSTI)

UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas. . What should I do if the if the building does not have emergency lighting or a generator? NOTIFY

Fernandez, Eduardo

343

CO? abatement by multi-fueled electric utilities: an analysis based on Japanese data  

E-Print Network (OSTI)

Multi-fueled electric utilities are commonly seen as offering relatively greater opportunities for reasonably priced carbon abatement through changes in the dispatch of generating units from capacity using high emission ...

Ellerman, A. Denny.; Tsukada, Natsuki.

344

City of Statesville Electric Utility Department- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The City of Statesville Electric Utility Department offers rebates to its residential customers for installing new, energy efficient water heaters and heat pumps. To qualify for the heat pump...

345

Impact of Industrial Electric Rate Structure on Energy Conservation - A Utility Viewpiont  

E-Print Network (OSTI)

As the price of energy rises, changes in industrial electric rates will have an impact on energy usage and conservation. Utilities interested in reducing system peak demands may reflect this need in the rate structure as an incentive...

Williams, M. M.

1981-01-01T23:59:59.000Z

346

Electric Utilities' Role in Industrial Competitiveness: Going Beyond the Energy Audit  

E-Print Network (OSTI)

This paper describes EPRI's Partnership for Industrial Competitiveness. The Partnership, comprised of over 15 EPRI member utllities, was established to help electric utilities identify, develop; and implement competitiveness improvement...

Jeffress, R. D.

347

Interconnection of on-site photovoltaic generation to the electric utility. [Conference paper  

SciTech Connect

Electrical interconnection with the local electric utility of small, privately owned, on-site photovoltaic generating systems will be necessary. Legal guidelines exist through PURPA, administered by FERC, to establish interconnection, but economic viability will be the deciding factor in constructing photovoltaic generating systems. Although nationally recognized technical standards do not yet exist for interconnecting photovoltaic generation with an electric utility, most utilities have considered the need for developing cogeneration standards, and a few have developed such standards independently. Additional costs incurred by utilities in providing service interconnections to customers with cogeneration will be passed along to those customers, either as a direct assessment or as part of the applicable rate schedule. An economic-analysis methodology has been developed to allow comparing various possible photovoltaic-generating-system configurations under different utility rate structures and varying economic climates on a consistent basis.

Eichler, C.H.; Kilar, L.A.; Stiller, P.H.

1980-01-01T23:59:59.000Z

348

User's guide to SERICPAC: A computer program for calculating electric-utility avoided costs rates  

SciTech Connect

SERICPAC is a computer program developed to calculate average avoided cost rates for decentralized power producers and cogenerators that sell electricity to electric utilities. SERICPAC works in tandem with SERICOST, a program to calculate avoided costs, and determines the appropriate rates for buying and selling of electricity from electric utilities to qualifying facilities (QF) as stipulated under Section 210 of PURA. SERICPAC contains simulation models for eight technologies including wind, hydro, biogas, and cogeneration. The simulations are converted in a diversified utility production which can be either gross production or net production, which accounts for an internal electricity usage by the QF. The program allows for adjustments to the production to be made for scheduled and forced outages. The final output of the model is a technology-specific average annual rate. The report contains a description of the technologies and the simulations as well as complete user's guide to SERICPAC.

Wirtshafter, R.; Abrash, M.; Koved, M.; Feldman, S.

1982-05-01T23:59:59.000Z

349

" Electric Utilities",602076,"Florida","Rhode Island"  

U.S. Energy Information Administration (EIA) Indexed Site

Highest","Lowest" Highest","Lowest" "United States" "Primary Energy Source","Coal" "Net Summer Capacity (megawatts)",1039062,"Texas","District of Columbia" " Electric Utilities",602076,"Florida","Rhode Island" " Independent Power Producers & Combined Heat and Power",436986,"Texas","Alaska" "Net Generation (megawatthours)",4125059899,"Texas","District of Columbia" " Electric Utilities",2471632103,"Florida","New Jersey" " Independent Power Producers & Combined Heat and Power",1653427796,"Texas","District of Columbia" "Emissions (thousand metric tons)"

350

Electric-utility DSM programs: 1990 data and forecasts to 2000  

SciTech Connect

In April 1992, the Energy Information Administration (EIA) released data on 1989 and 1990 electric-utility demand-site management (DMS) programs. These data represent a census of US utility DSM programs, with reports of utility expenditures, energy savings, and load reductions caused by these programs. In addition, EIA published utility estimates of the costs and effects of these programs from 1991 to 2000. These data provide the first comprehensive picture of what utilities are spending and accomplishing by utility, state, and region. This report presents, summarizes, and interprets the 1990 data and the utility forecasts of their DSM-program expenditures and impacts to the year 2000. Only utilities with annual sales greater than 120 GWh were required to report data on their DSM programs to EIA. Of the 1194 such utilities, 363 reported having a DSM program that year. These 363 electric utilities spent $1.2 billion on their DSM programs in 1990, up from $0.9 billion in 1989. Estimates of energy savings (17,100 GWh in 1990 and 14,800 GWh in 1989) and potential reductions in peak demand (24,400 MW in 1990 and about 19,400 MW in 1989) also showed substantial increases. Overall, utility DSM expenditures accounted for 0.7% of total US electric revenues, while the reductions in energy and demand accounted for 0.6% and 4.9% of their respective 1990 national totals. The investor-owned utilities accounted for 70 to 90% of the totals for DSM costs, energy savings, and demand reductions. The public utilities reported larger percentage reductions in peak demand and energy smaller percentage DSM expenditures. These averages hide tremendous variations across utilities. Utility forecasts of DSM expenditures and effects show substantial growth in both absolute and relative terms.

Hirst, E.

1992-06-01T23:59:59.000Z

351

Risk-based bidding of large electric utilities using Information Gap Decision Theory considering demand response  

Science Journals Connector (OSTI)

Abstract The present study presents a new risk-constrained bidding strategy formulation of large electric utilities in, presence of demand response programs. The considered electric utility consists of generation facilities, along with a retailer part, which is responsible for supplying associated demands. The total profit of utility comes from participating in day-ahead energy markets and selling energy to corresponding consumers via retailer part. Different uncertainties, such as market price, affect the profit of the utility. Therefore, here, attempts are made to make use of Information Gap Decision Theory (IGDT) to obtain a robust scheduling method against the unfavorable deviations of the market prices. Implementing demand response programs sounds attractive for the consumers through providing some incentives in one hand, and it improves the risk hedging capability of the utility on the other hand. The proposed method is applied to a test system and effect of demand response programs is investigated on the total profit of the utility.

M. Kazemi; B. Mohammadi-Ivatloo; M. Ehsan

2014-01-01T23:59:59.000Z

352

Costs and effects of electric-utility DSM programs: 1989--1997  

SciTech Connect

All US electric utilities are required to report to the Energy Information Administration data on their demand-side management (DSM) programs. These data provide a comprehensive view of utility DSM-program costs and effects (energy savings and load reductions) for 1989, 1990, 1991, and 1992 as well as projections for 1993 and 1997.

Hirst, E.

1994-06-01T23:59:59.000Z

353

Proposal for M.Sc. Thesis Networks, Attention and Strategies of Electric Utilities  

E-Print Network (OSTI)

energy sector. While the share of renewable energy in the electricity mix has considerably increasedProposal for M.Sc. Thesis Networks, Attention and Strategies of Electric Utilities in the German Energy Transition Over the last two decades the `Energiewende' has led to profound changes in the German

354

A Methodology to Identify Monthly Energy Use Models from Utility Bill Data for Seasonally Scheduled Buildings: Application to K-12 Schools  

E-Print Network (OSTI)

of two separate models: a 3-P model for non-summer months, and a mean model for the summer months. (Landman, 1996). This paper proposes an improved methodology for identifying baseline models of energy use from utility billing data for buildings...

Wang, W.; Claridge, D. E.; Reddy, T. A.

1998-01-01T23:59:59.000Z

355

Utilization of Microbe-Derived Electricity for Practical Application  

Science Journals Connector (OSTI)

Moreover, by introducing other renewable energy sources, such as solar energy and salinity-gradient energy,(3) the productivity of BES could be further improved. ... For example, powering wireless sensors in remote off-grid locations, such as seas and lakes, would make the value of MFC unrivaled; Some mini-sized MFCs, which are readily implantable and typically offer a higher volumetric power density, might be well adapted to implantable medical devices; BES can even be utilized to in situ mitigate membrane biofouling through creating a negatively charged surface and producing hydroperoxide for foulant decomposition. ...

Wen-Wei Li; Han-Qing Yu

2013-12-17T23:59:59.000Z

356

Energy Conservation and Management for Electric Utility Industrial Customers  

E-Print Network (OSTI)

Figure 5 Steam/Organic Fluid Rankine-Cycle Power System Absorption Cooling Systems The absorpt i on cool i ng system mode 1ed for the EC&M computer mode 1 is a type of heat pump whd ch is driven directly by a thermal input without th~ need for a...&M Applications Identified from Plant Data EC&M Technology ? Heat Exchangers ? Waste heat boiler ? Rankine cycle ? Heat pump --Closed cycle --Open cycle ? Thermal energy storage ? GT/electric generator/chiller Industrial Application Process...

McChesney, H. R.; Obee, T. N.; Mangum, G. F.

357

Table A18. Quantity of Electricity Sold to Utility and Nonutility Purchasers  

U.S. Energy Information Administration (EIA) Indexed Site

8. Quantity of Electricity Sold to Utility and Nonutility Purchasers" 8. Quantity of Electricity Sold to Utility and Nonutility Purchasers" " by Census Region, Industry Group, and Selected Industries, 1991" " (Estimates in Million Kilowatthours)" " "," "," "," "," ","RSE" "SIC"," "," ","Utility ","Nonutility","Row" "Code(a)","Industry Groups and Industry","Total Sold","Purchaser(b)","Purchaser(c)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.9,1,1 , 20,"Food and Kindred Products",988,940,48,16.2 2011," Meat Packing Plants",0,0,0,"NF"

358

Table A21. Quantity of Electricity Sold to Utility and Nonutility Purchasers  

U.S. Energy Information Administration (EIA) Indexed Site

1. Quantity of Electricity Sold to Utility and Nonutility Purchasers" 1. Quantity of Electricity Sold to Utility and Nonutility Purchasers" " by Census Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Million Kilowatthours)" ,,,,"RSE" " "," ","Utility ","Nonutility","Row" "Economic Characteristics(a)","Total Sold","Purchaser(b)","Purchaser(c)","Factors" ,"Total United States",,, "RSE Column Factors:",1,1.1,1 "Value of Shipments and Receipts" "(million dollars)" " Under 20",188,122,66,35.6 " 20-49",2311,1901,410,39.5 " 50-99",2951,2721,230,9.6 " 100-249",6674,5699,974,7.1

359

Table A31. Quantity of Electricity Sold to Utility and Nonutility Purchasers  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Electricity Sold to Utility and Nonutility Purchasers by Census Region," Quantity of Electricity Sold to Utility and Nonutility Purchasers by Census Region," " Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Million Kilowatthours)" ,,,,"RSE" " "," ","Utility ","Nonutility","Row" "Economic Characteristics(a)","Total Sold","Purchaser(b)","Purchaser(c)","Factors" ,"Total United States",,, "RSE Column Factors:",0.9,1.1,1 "Value of Shipments and Receipts" "(million dollars)" " Under 20",222,164," Q ",23.3 " 20-49",1131,937,194,17.2

360

ESS 2012 Peer Review - Evaluating Utility Owned Electric ESS - Dhruv Bhatnagar, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluating Utility Owned Evaluating Utility Owned Electric Energy Storage Systems: A Perspective for State Electric Utility Regulators DOE Energy Storage Program Peer Review 2012 September 28, 2012 Dhruv Bhatnagar & Verne Loose Sandia National Laboratories Motivation for this Work  Many state utility regulatory bodies are unfamiliar with electric energy storage systems  The technology  The functional uses  The value of these uses to the grid  This leads to a handicap in their proper evaluation for rate base  May prevent the best (economic) technologies from system integration 2 Source: GE What we are doing  Developing a guidebook:  Inform regulators about the system benefits of energy storage  Identify regulatory challenges to increased

Note: This page contains sample records for the topic "monthly electric utility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Financial statistics of major U.S. publicly owned electric utilities 1995  

SciTech Connect

The 1995 Edition of the Financial Statistics of Major U.S. Publicly Owned Electric Utilities publication presents 5 years (1991 through 1995) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator (Tables 3 through 11) and nongenerator (Tables 12 through 20) summaries are presented in this publication. Five years of summary financial data are provided (Tables 5 through 11 and 14 through 20). Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided in Appendix C. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. 9 figs., 87 tabs.

NONE

1997-07-01T23:59:59.000Z

362

Electric-utility DSM-program costs and effects, 1991 to 2001  

SciTech Connect

For the past three years (1989, 1990, and 1991), all US electric utilities that sell more than 120 GWh/year have been required to report to the Energy Information Administration data on their demand-side management (DSM) programs. These data provide a rich and uniquely comprehensive picture of electric-utility DSM programs in the United States. Altogether, 890 utilities (of about 3250 in the United States) ran DSM programs in 1991; of these, 439 sold more than 120 GWh and reported details on their DSM programs. These 439 utilities represent more than 80% of total US electricity sales and revenues. Altogether, these utilities spent almost $1.8 billion on DSM programs in 1991, equal to 1.0% of total utility revenues that year. In return for these (and prior-year) expenditures, utility DSM programs cut potential peak demand by 26,700 MW (4.8% of the national total) and cut annual electricity use by 23,300 GWh (0.9% of the national total). These 1991 numbers represent substantial increases over the 1989 and 1990 numbers on utility DSM programs. Specifically, utility DSM expenditures doubled, energy savings increased by almost 50%, and demand reductions increased by one-third between 1989 and 1991. Utilities differed enormously in their DSM-program expenditures and effects. Almost 12% of the reporting utilities spent more than 2% of total revenues on DSM programs in 1991, while almost 60% spent less than 0.5% of revenues on DSM. Utility estimates of future DSM-program expenditures and benefits show continuing growth. By the year 2001, US utilities expect to spend 1.2% of revenues on DSM and to cut demand by 8.8% and annual sales by 2.7%. Here, too, expectations vary by region. Utilities in the West and Northwest plan to spend more than 2% of revenues on DSM that year, while utilities in the Mid-Atlantic, Midwest, Southwest, Central, and North Central regions plan to spend less than 1% of revenues on DSM.

Hirst, E.

1993-05-01T23:59:59.000Z

363

FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month...  

NLE Websites -- All DOE Office Websites (Extended Search)

ignition CO Carbon monoxide DOE U.S. Department of Energy DPF Diesel particulate filter gHEV Gasoline hybrid electric vehicle GVWR Gross vehicle weight rating HP...

364

Notices DEPARTMENT OF AGRICULTURE Rural Utilities Service Basin Electric Power Cooperative, Inc.:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

670 Federal Register 670 Federal Register / Vol. 76, No. 212 / Wednesday, November 2, 2011 / Notices DEPARTMENT OF AGRICULTURE Rural Utilities Service Basin Electric Power Cooperative, Inc.: Notice of Intent To Prepare an Environmental Impact Statement and Hold Public Scoping Meetings AGENCY: Rural Utilities Service, USDA. ACTION: Notice. SUMMARY: The Rural Utilities Service (RUS), an agency within the U.S. Department of Agriculture (USDA), intends to prepare an environmental impact statement (EIS) for Basin Electric Power Cooperative's (Basin Electric) proposed Antelope Valley Station (AVS) to Neset Transmission Project (Project) in North Dakota. RUS is issuing this Notice of Intent (NOI) to inform the public and interested parties about the proposed Project, conduct a public

365

DOE Report to Congress„Energy Efficient Electric and Natural Gas Utilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AND REGIONAL POLICIES THAT AND REGIONAL POLICIES THAT PROMOTE ENERGY EFFICIENCY PROGRAMS CARRIED OUT BY ELECTRIC AND GAS UTILITIES A REPORT TO THE UNITED STATES CONGRESS PURSUANT TO SECTION 139 OF THE ENERGY POLICY ACT OF 2005 MARCH 2007 U.S. DEPARTMENT OF ENERGY Sec. 139. Energy Efficient Electric and Natural Gas Utilities Study. a) IN GENERAL.-Not later than 1 year after the date of enactment of this Act, the Secretary, in consultation with the National Association of Regulatory Utility Commis- sioners and the National Association of State Energy Offi- cials, shall conduct a study of State and regional policies that promote cost-effective programs to reduce energy con- sumption (including energy efficiency programs) that are carried out by- (1) utilities that are subject to State regulation; and

366

Table 11.5 Electricity: Sales to Utility and Nonutility Purchasers, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5 Electricity: Sales to Utility and Nonutility Purchasers, 2010; 5 Electricity: Sales to Utility and Nonutility Purchasers, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Utility and Nonutility Purchasers; Unit: Million Kilowatthours. Total of NAICS Sales and Utility Nonutility Code(a) Subsector and Industry Transfers Offsite Purchaser(b) Purchaser(c) Total United States 311 Food 347 168 179 3112 Grain and Oilseed Milling 142 6 136 311221 Wet Corn Milling 14 4 10 31131 Sugar Manufacturing 109 88 21 3114 Fruit and Vegetable Preserving and Specialty Foods 66 66 0 3115 Dairy Products 22 0 22 3116 Animal Slaughtering and Processing 0 0 0 312 Beverage and Tobacco Products 1 1 * 3121 Beverages 1 1 * 3122 Tobacco 0 0 0 313 Textile Mills

367

PRE-STUDY COMMENTS OF IOWA UTILITIES BOARD ON DOE 2012 ELECTRIC TRANSMISSION CONGESTION STUDY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PRE-STUDY COMMENTS OF IOWA UTILITIES BOARD ON PRE-STUDY COMMENTS OF IOWA UTILITIES BOARD ON DOE 2012 ELECTRIC TRANSMISSION CONGESTION STUDY JANUARY 2012 The Iowa Utilities Board (Board) is pleased to provide these comments as the Department of Energy (DOE) commences its next transmission congestion study (2012). These comments are organized to give DOE a perspective on electric transmission issues in Iowa - transmission planning, congestion, and siting. Iowa has been a leader in wind generation installation as well as manufacturing of wind turbines. Iowa has the second most installed wind capacity of any state. Since the DOE 2009 congestion study, Iowa added 884 MW of wind generation in 2009 -2010. MidAmerican Energy Company (MidAmerican), an Iowa investor owned utility added 593.5 MW in 2011 and plans to

368

The Michigan regulatory incentives study for electric utilities. Phase 1, Final report  

SciTech Connect

This is the final report of Phase I of the Michigan Regulatory Incentives Study for Electric Utilities, a three-phase review of Michigan`s regulatory system and its effects on resource selection by electric utilities. The goal of Phase I is to identify and analyze financial incentive mechanisms that encourage selection of resources in accord with the principles of integrated resource planning (IRP) or least-cost planning (LCP). Subsequent study phases will involve further analysis of options and possibly a collaborative formal effort to propose regulatory changes. The Phase I analysis proceeded in three steps: (1) identification and review of existing regulatory practices that affect utilities; selection of resources, particularly DSM; (2) preliminary analysis of ten financial mechanisms, and selection of three for further study; (3) detailed analysis of the three mechanisms, including consideration of how they could be implemented in Michigan and financial modeling of their likely impacts on utilities and ratepayers.

Reid, M.W.; Weaver, E.M. [Barakat and Chamberlin, Inc., Oakland, CA (United States)] [Barakat and Chamberlin, Inc., Oakland, CA (United States)

1991-06-17T23:59:59.000Z

369

Electric Power Research Institute: Environmental Control Technology Center report to the Steering Committee. Final technical monthly report  

SciTech Connect

Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued this month with the Trace Element Removal (TER) test block as the Pilot was operated at baseline, forced oxidation, and inhibited oxidation conditions. As the NYSEG Kintigh Station conducted a test bum this month with Petroleum coke/coal fuel blends, a one-week trace element characterization test was performed across the Pilot unit testing this flue gas. Additionally, the mercury measurement (Method 29) studies continued this month as investigations into various activated carbons, metal amalgams, and impinger capture solutions were conducted. As a result of new directions received from EPRI, August was the last scheduled month for testing on the 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit at the ECTC. This month, the unit was isolated from the flue gas path and placed in a cold-standby mode for future test activities.

NONE

1995-09-01T23:59:59.000Z

370

Cost and quality of fuels for electric utility plants: Energy data report. 1980 annual  

SciTech Connect

In 1980 US electric utilities reported purchasng 594 million tons of coal, 408.5 million barrels of oil and 3568.7 billion ft/sup 3/ of gas. As compared with 1979 purchases, coal rose 6.7%, oil decreased 20.9%, and gas increased for the fourth year in a row. This volume presents tabulated and graphic data on the cost and quality of fossil fuel receipts to US electric utilities plants with a combined capacity of 25 MW or greater. Information is included on fuel origin and destination, fuel types, and sulfur content, plant types, capacity, and flue gas desulfurization method used, and fuel costs. (LCL)

Not Available

1981-06-25T23:59:59.000Z

371

What explains the increased utilization of Powder River Basin coal in electric power generation?  

SciTech Connect

This article examines possible explanations for increased utilization of Powder River Basin (PRB) coal in electric power generation that occurred over the last two decades. Did more stringent environmental policy motivate electric power plants to switch to less polluting fuels? Or, did greater use of PRB coal occur because relative price changes altered input markets in favor of this fuel. A key finding is that factors other than environmental policy such as the decline in railroad freight rates together with elastic demand by power plants were major contributors to the increased utilization of this fuel.

Gerking, S.; Hamilton, S.F. [University of Central Florida, Orlando, FL (United States)

2008-11-15T23:59:59.000Z

372

Twelve-Month Evaluation of UPS Diesel Hybrid Electric Delivery Vans  

SciTech Connect

Results of an NREL study of a parallel hybrid electric-diesel propulsion system in United Parcel Service-operated delivery vans show that the hybrids had higher fuel economy than standard diesel vans.

Lammert, M.

2009-12-01T23:59:59.000Z

373

Rate impacts and key design elements of gas and electric utility decoupling: a comprehensive review  

SciTech Connect

Opponents of decoupling worry that customers will experience frequent and significant rate increases as a result of its adoption, but a review of 28 natural gas and 17 electric utilities suggests that decoupling adjustments are both refunds to customers as well as charges and tend to be small. (author)

Lesh, Pamela G.

2009-10-15T23:59:59.000Z

374

A Primer on Electric Utilities, Deregulation, and Restructuring of U.S. Electricity Markets  

SciTech Connect

This primer is offered as an introduction to utility restructuring to better prepare readers for ongoing changes in public utilities and associated energy markets. It is written for use by individuals with responsibility for the management of facilities that use energy, including energy managers, procurement staff, and managers with responsibility for facility operations and budgets. The primer was prepared by the Pacific Northwest National Laboratory under sponsorship from the U.S. Department of Energy?s Federal Energy Management Program. The impetus for this primer originally came from the Government Services Administration who supported its initial development.

Warwick, William M.

2002-06-03T23:59:59.000Z

375

Industrial-Load-Shaping: The Practice of and Prospects for Utility/Industry Cooperation to Manage Peak Electricity Demand  

E-Print Network (OSTI)

INDUSTRIAL-LOAD-SHAPI1IG: TIlE PRACTICE OF AND PROSPECTS FOR UTILITY/INDUSTRY COOPERATION TO MAUGE PEAK ELECTRICITY DEMAND Donald J. BuIes and David E. Rubin Consultants, Pacific Gas and Electric Company San Francisco, California Michael F.... Maniates Energy and Resources Group, University of California Berkeley, California ABSTRACT Load-management programs designed to reduce demand for electricity during peak periods are becoming increasingly important to electric utilities. For a gf...

Bules, D. J.; Rubin, D. E.; Maniates, M. F.

376

Cost and Quality of Fuels for Electric Utility Plants 2000 Tables  

Gasoline and Diesel Fuel Update (EIA)

0) 0) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 2000 Tables August 2001 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts The annual publication Cost and Quality of Fuels for Electric Utility Plants (C&Q) is no longer published by the EIA. The tables presented in this document are intended to replace that annual publication. Questions

377

Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction Dataset  

Energy.gov (U.S. Department of Energy (DOE))

Excel file with dataset for Fact #843: Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction

378

Data and projections on US electric-utility DSM programs: 1989--1997  

SciTech Connect

All US electric utilities are required to report to the Energy Information Administration (EIA) data on their demand-side management (DSM) programs. These data provide a comprehensive view of utility DSM-program costs and effects (energy savings and load reductions) for 1989, 1990, 1991, and 1992 as well as projections for 1993 and 1997. For 1992, US utility DSM programs cost almost $2.4 billion, saved 31,800 GWh, and cut potential peak demand by 32,900 MW. Normalized by retail revenues, sales, and peak demand, utilities spent 1.3% of their revenues to achieve energy and demand reductions of 1.2 and 6.0%, respectively.

Hirst, E.

1994-12-01T23:59:59.000Z

379

Stimulating utilities to promote energy efficiency: Process evaluation of Madison Gas and Electric's Competition Pilot Program  

SciTech Connect

This report describes the process evaluation of the design and implementation of the Energy Conservation Competition Pilot (hereafter referred to as the Competition), ordered by the Public Service Commission of Wisconsin (PSCW) with a conceptual framework defined by PSCW staff for the Madison Gas and Electric (MGE) Company. This process evaluation documents the history of the Competition, describing the marketing strategies adopted by MGE and its competitors, customer service and satisfaction, administrative issues, the distribution of installed measures, free riders, and the impact of the Competition on MGE, its competitors, and other Wisconsin utilities. We also suggest recommendations for a future Competition, compare the Competition with other approaches that public utility commissions (PUCs) have used to motivate utilities to promote energy efficiency, and discuss its transferability to other utilities. 48 refs., 8 figs., 40 tabs.

Vine, E.; De Buen, O.; Goldfman, C.

1990-12-01T23:59:59.000Z

380

Electricity Industry Leaders U.S. Utilities, Grid Operators, Others Come Together  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is Focus of New Effort by is Focus of New Effort by Electricity Industry Leaders U.S. Utilities, Grid Operators, Others Come Together in National Effort to Tackle Important New Electricity Area (Washington, DC, July 1, 2004) A new group formed to work on the important new electricity area known as demand response was announced today in Washington, DC. The United States Demand Response Coordinating Committee (DRCC) will bring together a number of parties to focus on developing information and tools needed to allow demand response to be another option employed to address national, regional and state electricity issues and challenges. The DRCC's efforts are the U.S. part of a larger, global demand response effort announced recently by the International Energy Agency's

Note: This page contains sample records for the topic "monthly electric utility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The effect of the Fukushima nuclear accident on stock prices of electric power utilities in Japan  

Science Journals Connector (OSTI)

The purpose of this study is to investigate the effect of the accident at the Fukushima Daiichi nuclear power station, which is owned by Tokyo Electric Power Co. (TEPCO), on the stock prices of the other electric power utilities in Japan. Because the other utilities were not directly damaged by the Fukushima nuclear accident, their stock price responses should reflect the change in investor perceptions on risk and return associated with nuclear power generation. Our first finding is that the stock prices of utilities that own nuclear power plants declined more sharply after the accident than did the stock prices of other electric power utilities. In contrast, investors did not seem to care about the risk that may arise from the use of the same type of nuclear power reactors as those at the Fukushima Daiichi station. We also observe an increase of both systematic and total risks in the post-Fukushima period, indicating that negative market reactions are not merely caused by one-time losses but by structural changes in society and regulation that could increase the costs of operating a nuclear power plant.

Shingo Kawashima; Fumiko Takeda

2012-01-01T23:59:59.000Z

382

WATER AND BY-PRODUCT ISSUES IN THE ELECTRIC-UTILITY INDUSTRY  

NLE Websites -- All DOE Office Websites (Extended Search)

and Power Conference in conjunction with 2 and Power Conference in conjunction with 2 nd Joint U.S.-People's Republic of China Conference on Clean Energy, November 17-19, 2003, Washington, DC A DOE R&D RESPONSE TO EMERGING COAL BY-PRODUCT AND WATER ISSUES IN THE ELECTRIC-UTILITY INDUSTRY Thomas J. Feeley, III Technology Manager U.S. Department of Energy - Office of Fossil Energy National Energy Technology Laboratory Pittsburgh, PA ABSTRACT While the regulation and control of air emissions will continue to be of primary concern to the electric-utility industry over the next several decades, other environmental-related issues may also impact the operation of existing and new coal-based power systems. Coal by-products are one such issue. Coal-fired power plants generate nearly 118 million tons of fly ash, flue gas

383

Electric utility engineer`s FGD manual -- Volume 1: FGD process design. Final report  

SciTech Connect

Part 1 of the Electric Utility Engineer`s Flue Gas Desulfurization (FGD) Manual emphasizes the chemical and physical processes that form the basis for design and operation of lime- and limestone-based FGD systems applied to coal- or oil-fired steam electric generating stations. The objectives of Part 1 are: to provide a description of the chemical and physical design basis for lime- and limestone-based wet FGD systems; to identify and discuss the various process design parameters and process options that must be considered in developing a specification for a new FGD system; and to provide utility engineers with process knowledge useful for operating and optimizing a lime- or limestone-based wet FGD system.

NONE

1996-03-04T23:59:59.000Z

384

The Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic Systems  

Energy.gov (U.S. Department of Energy (DOE))

This analysis uses simulated building data, simulated solar photovoltaic (PV) data, and actual electric utility tariff data from 25 cities to better understand the impacts of different commercial rate structures on the value of solar PV systems. By analyzing and comparing 55 unique rate structures across the United States, this study seeks to identify the rate components that have the greatest effect on the value of PV systems.

385

IMPACTS ASSESSMENT OF PLUG-IN HYBRID VEHICLES ON ELECTRIC UTILITIES AND REGIONAL U.S. POWER GRIDS  

E-Print Network (OSTI)

IMPACTS ASSESSMENT OF PLUG-IN HYBRID VEHICLES ON ELECTRIC UTILITIES AND REGIONAL U.S. POWER GRIDS National Laboratory(a) ABSTRACT The U.S. electric power infrastructure is a strategic national asset with the emerging plug-in hybrid electric vehicle (PHEV) technology to meet the majority of the daily energy needs

386

Table 11.6 Electricity: Sales to Utility and Nonutility Purchasers, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

6 Electricity: Sales to Utility and Nonutility Purchasers, 2010; 6 Electricity: Sales to Utility and Nonutility Purchasers, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Utility and Nonutility Purchasers; Unit: Million Kilowatthours. Total of Economic Sales and Utility Nonutility Characteristic(a) Transfers Offsite Purchaser(b) Purchaser(c) Total United States Value of Shipments and Receipts (million dollars) Under 20 194 100 93 20-49 282 280 3 50-99 1,115 922 194 100-249 5,225 4,288 936 250-499 5,595 2,696 2,899 500 and Over 20,770 12,507 8,263 Total 33,181 20,793 12,388 Employment Size Under 50 395 177 218 50-99 3,412 3,408 5 100-249 6,687 3,088 3,599 250-499 5,389 4,175 1,214 500-999 7,082 3,635 3,447

387

Protection of energy efficiency and public goods in electric-utility restructuring in Brazil  

SciTech Connect

Brazil has initiated a rapid program of electric utility privatization and deregulation. This has led to the loss of sponsorship for the public-interest programs formerly undertaken by the state utilities. In particular, of significant concern are the programs for promotion of energy efficiency, renewable energy technologies, and environmental protection. The newly formed National Agency for Electrical Energy still has not defined its position and role in these important matters. The authors describe a project undertaken by the authors in Brazil to bring non-government organizations, utility officials, academics, and the media into the debate for public-interest advocacy in support of these public-interest programs. In particular, efforts have focused on the privatization efforts for the Manaus region, in the heart of the Amazonas, where power system expansion has had large adverse environmental consequences in the past. Under these projects, the authors held two workshops in Brazil, in the cities of Campinas and Manaus. They catalyzed new communication channels among various stakeholders and hold the possibility of generating some sustained public-interest advocacy efforts in the near future for energy efficiency, renewable technologies and environmental protection.

Jannuzzi, G.M.; Gadgil, A.; Chao, M.

1998-07-01T23:59:59.000Z

388

Recent Developments in the Regulation of Electric Utility Resource Planning in Texas  

E-Print Network (OSTI)

additional system reserves that will increase the cost to ratepayers. The biennial report provides a comprehensive summary of important planning issues and an outlook on resource planning for the industry as a whole. Projections of Demand The results... the year 2001 of TU Electric's two 75D megawatt lignite-fueled Twin Oak units, TNP's 149 megawatt lignite-fueled TNP One unit 3, and 1,242 megawatts of various utilities' unnamed gas-fueled units. Staffs recommendations are compatible with recent trends...

Totten, J.; Adib, P.; Matlock, R.; Treadway, N.

389

Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction  

Energy.gov (U.S. Department of Energy (DOE))

The first hybrid electric vehicle was introduced in December 1999 and for the next 45 months (through August 2003) there were a total of 95,778 hybrid vehicles sold. The first mass-marketed plug-in...

390

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

significantly lower temperatures this February compared to last February. This led to a significant increase in heating load compared to last year which, in turn, caused...

391

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

at work. The recent, more widespread implementation of energy efficiency and demand response programs in many markets has undoubtedly dampened peak demand levels compared to...

392

Electricity Monthly Update  

Annual Energy Outlook 2012 (EIA)

comes from thermal applications. These are distinct from PV applications in that solar energy is used to generate heat in a working fluid which is then converted to mechanical...

393

Electric Power Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

Other HY Hydroelectric Turbine (including turbines associated with delivery of water by pipeline) BT Turbines Used in a Binary Cycle (including those used for geothermal...

394

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

fuel type. Generator type categories include: Fossil Steam: Steam turbines powered by the combustion of fossil fuels Combined Cycle: Combined cycle generation powered by natural...

395

An Examination of Temporal Trends in Electricity Reliability Based on Reports from U.S. Electric Utilities  

E-Print Network (OSTI)

6 Year 7 Year 8 Year 9 Utility Effects R 2 Without MajorReported to State Public Utility Commissions. Berkeley CA:7 Figure 2. Number of Utilities with SAIDI and SAIFI

Eto, Joseph H.

2013-01-01T23:59:59.000Z

396

Dynamics of Electricity Markets with Unknown Utility Functions: AnExtremum Seeking Control Approach  

E-Print Network (OSTI)

time and schedule the electricity consumption and productionclearing price. The electricity consumption of the consumerswhere x i is the electricity consumption of consumer i ? N

Ma, Kai; Hu, Guoqiang; Spanos, Costas J

2014-01-01T23:59:59.000Z

397

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

Alaska) EIA Revenue and Sales - July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for July 2008. Monthly...

398

Reduction in tribological energy losses in the transportation and electric utilities sectors  

SciTech Connect

This report is part of a study of ways and means of advancing the national energy conservation effort, particularly with regard to oil, via progress in the technology of tribology. The report is confined to two economic sectors: transportation, where the scope embraces primarily the highway fleets, and electric utilities. Together these two sectors account for half of the US energy consumption. Goal of the study is to ascertain the energy sinks attributable to tribological components and processes and to recommend long-range research and development (R and D) programs aimed at reducing these losses. In addition to the obvious tribological machine components such as bearings, piston rings, transmissions and so on, the study also extends to processes which are linked to tribology indirectly such as wear of machine parts, coatings of blades, high temperature materials leading to higher cycle efficiencies, attenuation of vibration, and other cycle improvements.

Pinkus, O.; Wilcock, D.F.; Levinson, T.M.

1985-09-01T23:59:59.000Z

399

Mechanisms of electromagnetic interference between electrical networks and neighboring metallic utilities  

SciTech Connect

This paper examines the mechanisms of electromagnetic interference between a power line and a neighboring pipeline. An electromagnetic field theory approach is used to carry out the study. First, the field theory approach is used to model the complete conductor network under consideration as is. The inductive, capacitive and conductive interference effects between all the elements in the network are simultaneously taken into account in one single step. The computed results are then used to develop a network model whereby the inductive, capacitive and conductive interference effects can be separated. This approach allows one to better understand the effects of each individual component and compare the field-theory (inductive) based results with those obtained from a circuit model approach. The effects of a typical mitigation system on the interference levels are also studied. The results presented in this paper clearly illustrate the mechanisms of electromagnetic interference and mitigation between electrical networks and neighboring metallic utilities.

Dawalibi, F.P.; Ma, J.; Li, Y. [Safe Engineering Services and Technologies Ltd., Montreal, Quebec (Canada)

1999-11-01T23:59:59.000Z

400

Information Disclosure Policies: Evidence from the Electricity Industry  

E-Print Network (OSTI)

and its predecessor EIA-759), the monthly utility electricEIA data (EIA-906 and EIA-759) is imputed for smaller

Delmas, Magali A; SHIMSHACK, JAY P; Montes, Maria J.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "monthly electric utility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity  

SciTech Connect

Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations may cause some voltage control challenges or overloading problems, respectively. But when combined, there at least intuitively could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

2012-11-30T23:59:59.000Z

402

An examination of the costs and critical characteristics of electric utility distribution system capacity enhancement projects  

SciTech Connect

This report classifies and analyzes the capital and total costs (e.g., income tax, property tax, depreciation, centralized power generation, insurance premiums, and capital financing) associated with 130 electricity distribution system capacity enhancement projects undertaken during 1995-2002 or planned in the 2003-2011 time period by three electric power utilities operating in the Pacific Northwest. The Pacific Northwest National Laboratory (PNNL), in cooperation with participating utilities, has developed a large database of over 3,000 distribution system projects. The database includes brief project descriptions, capital cost estimates, the stated need for each project, and engineering data. The database was augmented by additional technical (e.g., line loss, existing substation capacities, and forecast peak demand for power in the area served by each project), cost (e.g., operations, maintenance, and centralized power generation costs), and financial (e.g., cost of capital, insurance premiums, depreciations, and tax rates) data. Though there are roughly 3,000 projects in the database, the vast majority were not included in this analysis because they either did not clearly enhance capacity or more information was needed, and not available, to adequately conduct the cost analyses. For the 130 projects identified for this analysis, capital cost frequency distributions were constructed, and expressed in terms of dollars per kVA of additional capacity. The capital cost frequency distributions identify how the projects contained within the database are distributed across a broad cost spectrum. Furthermore, the PNNL Energy Cost Analysis Model (ECAM) was used to determine the full costs (e.g., capital, operations and maintenance, property tax, income tax, depreciation, centralized power generation costs, insurance premiums and capital financing) associated with delivering electricity to customers, once again expressed in terms of costs per kVA of additional capacity. The projects were sorted into eight categories (capacitors, load transfer, new feeder, new line, new substation, new transformer, reconductoring, and substation capacity increase) and descriptive statistics (e.g., mean, total cost, number of observations, and standard deviation) were constructed for each project type. Furthermore, statistical analysis has been performed using ordinary least squares regression analysis to identify how various project variables (e.g., project location, the primary customer served by the project, the type of project, the reason for the upgrade, size of the upgrade) impact the unit cost of the project.

Balducci, Patrick J.; Schienbein, Lawrence A.; Nguyen, Tony B.; Brown, Daryl R.; Fathelrahman, Eihab M.

2004-06-01T23:59:59.000Z

403

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

August 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-08 Utility Company Alaska Electric Light&Power Co (Alaska) Place Alaska Start Date 2008-08-01 End Date...

404

Electric/Gas Utility-type Vehicle Page 1 of 5 Virginia Polytechnic Institute and State University No. 5501 Rev.: 0  

E-Print Network (OSTI)

-licensed gas- or electric-powered utility-type vehicles) that are operated on the main campus in Blacksburg, VAElectric/Gas Utility-type Vehicle Page 1 of 5 Virginia Polytechnic Institute and State University __________________________________________________________________________________ Subject: Electric/Gas Utility-type Vehicle

Beex, A. A. "Louis"

405

NRC review of Electric Power Research Institute's Advanced Light Reactor Utility Requirements Document - Program summary, Project No. 669  

SciTech Connect

The staff of the US Nuclear Regulatory Commission has prepared Volume 1 of a safety evaluation report (SER), NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Program Summary,'' to document the results of its review of the Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document.'' This SER provides a discussion of the overall purpose and scope of the Requirements Document, the background of the staff's review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

Not Available

1992-08-01T23:59:59.000Z

406

Reducing Pumping Related Electricity Costs - A Case Study of Three Water Utility Companies in Zambia.  

E-Print Network (OSTI)

?? Electric pumps are extensively used in many industrial and commercial applications worldwide and account for about twenty percent of the worlds electrical energy demand. (more)

Siyingwa, Bennet

2013-01-01T23:59:59.000Z

407

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

Electric Generation Technology Conventional Coal-Fired PowerPlants Advanced Coal-Electric Plants OperatingCharacteristics for Conventional Coal- Fired Power

Ferrell, G.C.

2010-01-01T23:59:59.000Z

408

Economic Assessment and Impacts Assessment of Plug-In Hybrid Vehicles on Electric Utilities And Regional U.S. Power Grids  

SciTech Connect

Part 2 provides an economic assessment of the impacts of PHEV adoption on vehicle owners and on electric utilities. The paper finds favorable impacts on LCC to vehicle owners, and average costs of power for both types of utilities.

Scott, Michael J.; Kintner-Meyer, Michael CW; Elliott, Douglas B.; Warwick, William M.

2007-01-31T23:59:59.000Z

409

Economic Assessment And Impacts Assessment Of Plug-In Hybrid Vehicles On Electric Utilities And Regional U.S. Power Grids  

SciTech Connect

Part 2 provides an economic assessment of the impacts of PHEV adoption on vehicle owners and on electric utilities. The paper finds favorable impacts on LCC to vehicle owners, and average costs of power for both types of utilities.

Scott, Michael J.; Kintner-Meyer, Michael CW; Elliott, Douglas B.; Warwick, William M.

2007-01-22T23:59:59.000Z

410

UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV (Thousand $)","RES_S  

U.S. Energy Information Administration (EIA) Indexed Site

10,1,6539.248,26227.516,0,8095.266,30902.977,0,1420.819,7702.417,0,0,0,0,16055.333,64832.91,0 10,1,6539.248,26227.516,0,8095.266,30902.977,0,1420.819,7702.417,0,0,0,0,16055.333,64832.91,0 213,"Alaska Electric Light&Power Co","AK",2010,1,1535.941,15011.6,13783,980.665,11721.382,2156,987.54,11255.996,91,0,0,0,3504.146,37988.978,16030 219,"Alaska Power Co","AK",2010,1,668.02,2319.376,4592,921.903,3261.675,2099,0,0,0,0,0,0,1589.923,5581.051,6691 599,"Anchorage Municipal Light and Power","AK",2010,1,1759.777,15111.366,24014,7807.31,87008.534,6284,0,0,0,0,0,0,9567.087,102119.9,30298 1651,"Bethel Utilities Corp","AK",2010,1,468,1127,1643,1135,2893,1060,0,0,0,0,0,0,1603,4020,2703 3522,"Chugach Electric Assn Inc","AK",2010,1,7333,57329,69482,5576,52475,8979,311,3086,5,0,0,0,13220,112890,78466

411

UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV (Thousand $)","RES_S  

U.S. Energy Information Administration (EIA) Indexed Site

8,1,6253.499,25151.849,0,8208.937,31991.364,0,1543.228,7550.664,0,,,0,16005.664,64693.877,0 8,1,6253.499,25151.849,0,8208.937,31991.364,0,1543.228,7550.664,0,,,0,16005.664,64693.877,0 213,"Alaska Electric Light&Power Co","AK",2008,1,2015.937,14801.591,13678,1251.812,10568.181,2133,586.169,5267.906,104,0,0,0,3853.918,30637.678,15915 219,"Alaska Power Co","AK",2008,1,671,2365,4469,920,3569,2025,0,0,0,0,0,0,1591,5934,6494 599,"Anchorage Municipal Light and Power","AK",2008,1,1651.456,16935.599,23989,6541.271,93233.067,6236,0,0,0,0,0,0,8192.727,110168.666,30225 1651,"Bethel Utilities Corp","AK",2008,1,487,1211,1569,1098,2861,1141,0,0,0,0,0,0,1585,4072,2710 3522,"Chugach Electric Assn Inc","AK",2008,1,7922,60443,69877,5884,54753,8839,290,3241,6,0,0,0,14096,118437,78722

412

UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV (Thousand $)","RES_S  

U.S. Energy Information Administration (EIA) Indexed Site

9,1,6604.695,26567.861,0,8336.99,32882.18,0,1345.301,7416.849,0,0,0,0,16286.986,66865.89,0 9,1,6604.695,26567.861,0,8336.99,32882.18,0,1345.301,7416.849,0,0,0,0,16286.986,66865.89,0 213,"Alaska Electric Light&Power Co","AK",2009,1,3587,16219,13713,2198,10943,2143,1053,5362,91,0,0,0,6838,32524,15947 219,"Alaska Power Co","AK",2009,1,676.033,2544.992,4478,879.743,3565.976,2065,0,0,0,0,0,0,1555.776,6110.968,6543 599,"Anchorage Municipal Light and Power","AK",2009,1,1829.997,17165.04,23948,7297.496,90566.855,6262,0,0,0,0,0,0,9127.493,107731.895,30210 1651,"Bethel Utilities Corp","AK",2009,1,597,1111,1622,1377,2655,1074,0,0,0,0,0,0,1974,3766,2696 3522,"Chugach Electric Assn Inc","AK",2009,1,9619,63056,69308,7256,55227,8987,340,2916,6,0,0,0,17215,121199,78301

413

The state of energy storage in electric utility systems and its effect on renewable energy resources  

SciTech Connect

This report describes the state of the art of electric energy storage technologies and discusses how adding intermittent renewable energy technologies (IRETs) to a utility network affects the benefits from storage dispatch. Load leveling was the mode of storage dispatch examined in the study. However, the report recommended that other modes be examined in the future for kilowatt and kilowatt-hour optimization of storage. The motivation to install storage with IRET generation can arise from two considerations: reliability and enhancement of the value of energy. Because adding storage increases cost, reliability-related storage is attractive only if the accruing benefits exceed the cost of storage installation. The study revealed that the operation of storage should not be guided by the output of the IRET but rather by system marginal costs. Consequently, in planning studies to quantify benefits, storage should not be considered as an entity belonging to the system and not as a component of IRETS. The study also indicted that because the infusion of IRET energy tends to reduce system marginal cost, the benefits from load leveling (value of energy) would be reduced. However, if a system has storage, particularly if the storage is underutilized, its dispatch can be reoriented to enhance the benefits of IRET integration.

Rau, N.S.

1994-08-01T23:59:59.000Z

414

Estimated Value of Service Reliability for Electric Utility Customers in the United States  

E-Print Network (OSTI)

Administration, Duke Energy, Mid America Power, Pacific Gas and Electric Company, Puget Sound Energy, Salt River

415

MSC Monthly Performance Report  

NLE Websites -- All DOE Office Websites (Extended Search)

rail car moves soon to be placed on this spur. Work involved blading, leveling, and compacting this material. Electrical Utilities provided support during the delivery of the...

416

An Examination of Temporal Trends in Electricity Reliability Based on Reports from U.S. Electric Utilities  

E-Print Network (OSTI)

R 2 Without Major Events II III ln SAIFI ln SAIDI Yes -5.51E-06 Yes ln SAIFI ln SAIDI Yes Yes Notes: Standard7 Figure 2. Number of Utilities with SAIDI and SAIFI

Eto, Joseph H.

2013-01-01T23:59:59.000Z

417

Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption  

Buildings Energy Data Book (EERE)

5 5 U.S. Electric Utility and Nonutility Net Summer Electricity Generation Capacity (GW) Coal Steam Other Fossil Combine Cycle Combustion Turbine Nuclear Pumped Total 1980 0.0 1981 0.0 1982 0.0 1983 0.0 1984 0.0 1985 0.0 1986 0.0 1987 0.0 1988 0.0 1989 18.1 1990 19.5 1991 18.4 1992 21.2 1993 21.1 1994 21.2 1995 21.4 1996 21.1 1997 19.3 1998 19.5 1999 19.6 2000 19.5 2001 19.7 2002 20.4 2003 20.5 2004 20.8 2005 21.3 2006 21.5 2007 21.9 2008 21.9 2009 22.2 2010 22.2 2011 22.2 2012 22.2 2013 22.2 2014 22.2 2015 22.2 2016 22.2 2017 22.2 2018 22.2 2019 22.2 2020 22.2 2021 22.2 2022 22.2 2023 22.2 2024 22.2 2025 22.2 2026 22.2 2027 22.2 2028 22.2 2029 22.2 285.6 87.9 211.3 161.19 114.7 882.9 285.6 87.9 205.3 159.30 114.7 875.0 285.6 88.6 201.8 159.01 114.7 871.8 285.6 88.9 199.6 158.22 114.7 869.2 285.6 89.0 194.5 154.88 114.7 860.8 285.6 89.0 191.9 153.01 113.9 855.6 285.6 89.0 189.2 150.00 113.2

418

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

Fluidized-Bed Steam-Electric Steam-Electric Combined-CycleCombined-Cycle Current (1974) Future Future a Source:steam plants. The combined-cycle versions of advanced

Ferrell, G.C.

2010-01-01T23:59:59.000Z

419

UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV (Thousand $)","RES_S  

U.S. Energy Information Administration (EIA) Indexed Site

OTH_REV (Thousand $)","OTH_SALES (MWh)","OTH_CONS","TOT_REV (Thousand $)","TOT_SALES (MWh)","TOT_CONS" OTH_REV (Thousand $)","OTH_SALES (MWh)","OTH_CONS","TOT_REV (Thousand $)","TOT_SALES (MWh)","TOT_CONS" 0,"State Level Adjustment","AK","2007R",1,5766,24179,0,7398,30009,0,1385.504,7829.663,0,,,0,14549.504,62017.663,0 213,"Alaska Electric Light&Power Co","AK","2007R",1,1479,14609,13602,981,11953,2118,390.496,5260.337,99,0,0,0,2850.496,31822.337,15819 219,"Alaska Power Co","AK","2007R",1,605,2282,4456,803,3397,2000,0,0,0,0,0,0,1408,5679,6456 599,"Anchorage Municipal Light and Power","AK","2007R",1,1488,16596,23880,5545,87869,6182,0,0,0,0,0,0,7033,104465,30062 1651,"Bethel Utilities Corp","AK","2007R",1,489,1180,1563,1171,2979,1121,0,0,0,0,0,0,1660,4159,2684

420

A Quantitative Assessment of Utility Reporting Practices for Reporting Electric Power Distribution Events  

E-Print Network (OSTI)

consider reporting of SAIDI and SAIFI both including and notInterruption Frequency Index (SAIFI) reported by utilities.Frequency Index (SAIFI). We pay special attention to the

Hamachi La Commare, Kristina

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "monthly electric utility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption  

Buildings Energy Data Book (EERE)

6 6 U.S. Renewable Electric Utility and Nonutility Net Summer Electricity Generation Capacity (GW) Conv. Hydropower Geothermal Municipal Solid Waste Biomass Solar Thermal Solar PV Wind 1980 81.7 0.9 0.0 0.1 0.0 N.A. N.A. 1981 82.4 0.9 0.0 0.1 0.0 N.A. 0.0 1982 83.0 1.0 0.0 0.1 0.0 N.A. 0.0 1983 83.9 1.2 0.0 0.2 0.0 N.A. 0.0 1984 85.3 1.2 0.0 0.3 0.0 N.A. 0.0 1985 88.9 1.6 0.2 0.2 0.0 N.A. 0.0 1986 89.3 1.6 0.2 0.2 0.0 N.A. 0.0 1987 89.7 1.5 0.2 0.2 0.0 N.A. 0.0 1988 90.3 1.7 0.2 0.2 0.0 N.A. 0.0 1989 73.6 2.6 1.7 1.1 0.2 N.A. 1.5 1990 73.3 2.7 2.1 1.2 0.3 N.A. 1.8 1991 75.4 2.6 2.5 1.3 0.3 N.A. 1.9 1992 74.2 2.9 2.5 1.4 0.3 N.A. 1.8 1993 76.8 2.9 2.6 1.5 0.3 N.A. 1.8 1994 76.9 3.0 2.7 1.7 0.3 N.A. 1.7 1995 77.4 3.0 3.0 1.8 0.3 N.A. 1.7 1996 75.3 2.9 2.9 1.7 0.3 N.A. 1.7 1997 78.3 2.9 2.9 1.8 0.3 N.A. 1.6 1998 78.0 2.9 3.0 1.8 0.3 N.A. 1.7 1999 78.3 2.8 3.0 1.8 0.4 N.A. 2.3 2000 78.2 2.8 3.3 1.7 0.4 N.A. 2.4 2001 77.9 2.2

422

Identification, definition and evaluation of potential impacts facing the US electric utility industry over the next decade. Final report  

SciTech Connect

There are numerous conditions of the generation system that may ultimately develop into system states affecting system reliability and security. Such generation system conditions should also be considered when evaluating the potential impacts on system operations. The following five issues have been identified to impact system reliability and security to the greatest extent: transmission access/retail wheeling; non-utility generators and independent power producers; integration of dispersed storage and generation into utility distribution systems; EMF and right-of-way limitations; Clean Air Act Amendments. Strictly speaking, some issues are interrelated and one issue cannot be completely dissociated from the others. However, this report addresses individual issues separately in order to determine all major aspects of bulk power system operations affected by each issue. The impacts of the five issues on power system reliability and security are summarized. This report examines the five critical issues that the US electric utility industry will be facing over the next decade. The investigation of their impacts on utility industry will be facing over the next decade. The investigation of their impacts on utility system reliability and security is limited to the system operation viewpoint. Those five issues will undoubtedly influence various planning aspects of the bulk transmission system. However, those subjects are beyond the scope of this report. While the issues will also influence the restructure and business of the utility industry politically, sociologically, environmentally, and economically, all discussion included in the report are focused only on technical ramifications.

Grainger, J.J.; Lee, S.S.H.

1993-11-26T23:59:59.000Z

423

Electric utility resource planning using Continuous-Discrete Modular Simulation and Optimization (CoDiMoSO)  

Science Journals Connector (OSTI)

Electric utility resource planning traditionally focuses on conventional energy supplies such as coal, natural gas, and oil. Nowadays, planning of renewable energy generation as well as its side necessity of storage capacities have become equally important due to the increasing growth in energy demand, insufficiency of natural resources, and newly established policies for low carbon footprint. In this study, we propose to develop a comprehensive simulation based decision making framework to determine the best possible combination of resource investments for electric power generation and storage capacities. The proposed tool involves a combined continuous-discrete modular modeling approach for processes of different nature that exist within this complex system, and will help the utility companies conduct resource planning via employed multiobjective optimization techniques in a realistic simulation environment. The distributed power system considered here has four major components including (1) energy generation via a solar farm, a wind farm, and a fossil fuel power station, (2) storage via compressed air energy storage system, and batteries, (3) transmission via a bus and two main substations, and (4) demand of industrial, commercial, residential and transportation sectors. The proposed approach has been successfully demonstrated for the electric utility resource planning at a scale of the state of Florida.

Juan Pablo Senz; Nurcin Celik; Shihab Asfour; Young-Jun Son

2012-01-01T23:59:59.000Z

424

Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System  

SciTech Connect

This report outlines the methods, data, and tools that could be used at different levels of sophistication and effort to estimate the benefits and costs of DGPV. In so doing, we identify the gaps in current benefit-cost-analysis methods, which we hope will inform the ongoing research agenda in this area. The focus of this report is primarily on benefits and costs from the utility or electricity generation system perspective. It is intended to provide useful background information to utility and regulatory decision makers and their staff, who are often being asked to use or evaluate estimates of the benefits and cost of DGPV in regulatory proceedings. Understanding the technical rigor of the range of methods and how they might need to evolve as DGPV becomes a more significant contributor of energy to the electricity system will help them be better consumers of this type of information. This report is also intended to provide information to utilities, policy makers, PV technology developers, and other stakeholders, which might help them maximize the benefits and minimize the costs of integrating DGPV into a changing electricity system.

Denholm, P.; Margolis, R.; Palmintier, B.; Barrows, C.; Ibanez, E.; Bird, L.; Zuboy, J.

2014-09-01T23:59:59.000Z

425

Electric power generation from a geothermal source utilizing a low-temperature organic Rankine cycle turbine  

SciTech Connect

A demonstration project to generate electricity with a geothermal source and low-temperature organic Rankine cycle turbine in a rural Alaskan location is described. Operating data and a set of conclusions are presented detailing problems and recommendations for others contemplating this approach to electric power generation.

Aspnes, J.D.; Zarling, J.P.

1982-12-01T23:59:59.000Z

426

Monthly/Annual Energy Review - nuclear section  

Reports and Publications (EIA)

Monthly and latest annual statistics on nuclear electricity capacity, generation, and number of operable nuclear reactors.

2015-01-01T23:59:59.000Z

427

Energy Department Works with Sacramento Municipal Utility District on Renewable Electricity Generation and Delivery  

Office of Energy Efficiency and Renewable Energy (EERE)

The Sacramento Municipal Utility District (SMUD) in Sacramento, California, is looking to local renewable resources to help meet its aggressive goal of supplying 37% of its power from renewables in 2020.

428

Electric utility forecasting of customer cogeneration and the influence of special rates  

E-Print Network (OSTI)

Cogeneration, or the simultaneous production of heat and electric or mechanical power, emerged as one of the main components of the energy conservation strategies in the past decade. Special tax treatment, exemptions from ...

Pickel, Frederick H.

1979-01-01T23:59:59.000Z

429

Pumped Hydroelectricity and Utility-Scale Batteries for Reserve Electricity Generation in New Zealand.  

E-Print Network (OSTI)

??Non-pumped hydroelectricity-based energy storage in New Zealand has only limited potential to expand to meet projected growth in electricity demand. Seasonal variations of hydro inflows (more)

Kear, Gareth

2011-01-01T23:59:59.000Z

430

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

431

Disability Employment Awareness Month  

Energy.gov (U.S. Department of Energy (DOE))

Utilizing the talents of all Americans is essential for our Nation to out-innovate, out-educate, and out-build the rest of the world. During National Disability Employment Awareness Month, we...

432

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales -  

Open Energy Info (EERE)

September 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for September 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-09 Utility Company 4-County Electric Power Assn (Mississippi) Place Mississippi Start Date 2008-09-01 End Date 2008-10-01 Residential Revenue(Thousand $) 4960 Residential Sales (MWh) 49913 Residential Consumers 35998 Commercial Revenue(Thousand $) 2510 Commercial Sales (MWh) 24408 Commercial Consumers 8569 Industrial Revenue (Thousand $) 1308 Industrial Sales (MWh) 17792 Industrial Consumers 19 Total Revenue (Thousand $) 8778 Total Sales (MWh) 92113 Total Consumers 44586 Source: Energy Information Administration. Form EIA-826 Database Monthly

433

2014 Electricity Form Proposals  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity and Renewable (Photovoltaic) Survey Form Changes Proposed for Electricity and Renewable (Photovoltaic) Survey Form Changes Proposed for 2014 The U.S. Energy Information Administration (EIA) is proposing changes to its electricity data collection in 2014. These changes involve the following surveys: Form EIA-63B, "Annual Photovoltaic Cell/Module Shipments Report," Form EIA-411, "Coordinated Bulk Power Supply Program Report," Form EIA-826, "Monthly Electric Utility Sales and Revenue Report with State Distributions," Form EIA-860, "Annual Electric Generator Report," Form EIA-860M, "Monthly Update to the Annual Electric Generator Report," Form EIA-861, "Annual Electric Power Industry Report," Form EIA-861S, "Annual Electric Power Industry Report (Short Form)," and

434

Natural gas monthly, October 1991  

SciTech Connect

The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia. 16 figs., 33 tabs.

Not Available

1991-11-05T23:59:59.000Z

435

Electricity from coal and utilization of coal combustion by-products  

SciTech Connect

Most electricity in the world is conventionally generated using coal, oil, natural gas, nuclear energy, or hydropower. Due to environmental concerns, there is a growing interest in alternative energy sources for heat and electricity production. The major by-products obtained from coal combustion are fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) materials. The solid wastes produced in coal-fired power plants create problems for both power-generating industries and environmentalists. The coal fly ash and bottom ash samples may be used as cementitious materials.

Demirbas, A. [Sila Science, Trabzon (Turkey)

2008-07-01T23:59:59.000Z

436

Development and utilization of new and renewable energy with Stirling engine system for electricity in China  

SciTech Connect

China is the largest developing country in the world. Self-supporting and self-sustaining energy supply is the only solution for development. Recently, fast economic development exposed gradually increasing pressure of energy demand and environment concern. In order to increase the production of electricity of China, the Stirling engine system should be developed. This paper provides an investigation of energy production and consumption in China. The main features of the energy consumption and the development objectives of China`s electric power industry are also described. The necessity and possibility of development of Stirling engine system is discussed.

Dong, W.; Abenavoli, R.I. [Univ. La Sapienza, Rome (Italy). Dipt. di Meccanica e Aeronautica; Carlini, M. [Univ. della Tuscia, Viterbo (Italy). Dipt. di Scienze dell` Ambiente Forestale e delle sue Risorse

1996-12-31T23:59:59.000Z

437

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a liquid flue gas conditioning system was completed at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Two cohesivity-specific additive formulations, ADA-44C and ADA-51, will be evaluated. In addition, ammonia conditioning will also be compared.

Kenneth E. Baldrey

2003-01-01T23:59:59.000Z

438

Investigation of Pulsed Electric Field (PEF) as an Intensification Pretreatment for Solvent Lipid Extraction from Microalgae, utilizing Ethyl Acetate as a Greener Substitute to Chloroform-based Extraction  

E-Print Network (OSTI)

. Moreover, the novel utilization of Pulsed Electric Field (PEF) as a membrane permeating technique for intensification of the lipid extraction is analyzed. When compared to inherently toxic chloroform-based solvent (Bligh & Dyer method), this work...

Antezana Zbinden, Mauricio Daniel R.

2011-02-16T23:59:59.000Z

439

Impact of Industrial Electric Rate Structure on Load Management - A Utility Viewpoint  

E-Print Network (OSTI)

A few years ago our response to an inquiry regarding availability of electric service for a large industrial load was something like: 'Let us put this into our production model to determine whether we will have adequate generating capacity to commit...

Richardson, J. A.

1984-01-01T23:59:59.000Z

440

Use of continuous emission monitoring in the electric utility industry. Paper 81. 48. 3  

SciTech Connect

Steam electric generating plants are subject to continuous monitoring regulations. Reliable emission data are recorded to be reported to regulatory agencies. The continuous monitor is being used as a diagnostic tool for optimizing operation of control equipment also. Monitored data identify the magnitude, duration, and time of any emissions exceeding compliance standards so that corrective actions may be taken.

Van Gieson, J.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "monthly electric utility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Utility Rate Discounts | Open Energy Information  

Open Energy Info (EERE)

Discounts Discounts Jump to: navigation, search A few electric utilities offer rate discounts to encourage residential energy efficiency. For homes that meet certain energy efficiency criteria, such as those established by the federal Energy Star program, the owner or tenant is awarded a percentage discount on each month’s electric bill. [1] Contents 1 Utility Rate Discount Incentives 2 References Utility Rate Discount Incentives CSV (rows 1 - 14) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Cleco Power - Power Miser New Home Program (Louisiana) Utility Rate Discount Louisiana Residential Building Insulation Central Air conditioners Clothes Washers Comprehensive Measures/Whole Building Doors Duct/Air sealing Furnaces Heat pumps

442

David and the Goliaths: How a small environmental group helps reform electric-utility regulation  

SciTech Connect

In 1991 the Land and Water Fund of the Rockies (LAW Fund), a regional environmental organization, started an Energy Project with two lawyers and a scientist to challenge the energy-efficiency, renewable-resource and environmental-protection practices of utilities in the vast six-state Rocky Mountain region. Within three years, Colorado and Utah had adopted comprehensive integrated resource planning (IRP) rules, and several utilities had developed plans to expand their demand-side management (DSM) activities. The authors discuss the role that this small band of lawyers and policy analysts played in stimulating these changes, based on their first-hand experience with the LAW Fund. They also comment on the substantial influence and valuable services that such a small group can provide.

Hirst, E. [Oak Ridge National Lab., TN (United States); Swanson, S. [New York State Dept. of Public Services, Albany, NY (United States)

1994-09-01T23:59:59.000Z

443

Wind Power for America: Rural Electric Utilities Harvest a New Crop  

Wind Powering America (EERE)

Independent Power Independent Power Producer Financing Co-op Financing Cost of Energy (cents /kWh) 8.0 7.0 6.0 5.0 4.0 3.0 Installed Wind Turbine Capacity 2 MW 10 MW 50 MW 50 MW Without Federal incentives (current $) With Federal incentives (current $) WIND ECONOMICS AT A GLANCE Wind power is one of mankind's oldest energy sources. In 1700, the most powerful machines in Europe were Dutch windmills. During the 1930s, half a million windmills pumped water on the Great Plains. Today's wind turbine is a far cry from the old water pumpers. By using state-of-the-art engineering, wind turbine manufacturers have produced sleek, highly efficient machines that produce inexpensive electricity, and lots of it. Depending on their size and location, wind farms can produce electricity for 4-6 cents per kilowatt-hour (kWh).

444

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - March  

Open Energy Info (EERE)

EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for March 2009. Monthly Electric Utility Sales and Revenue Data Short Name 2009-03 Utility Company 4-County Electric Power Assn (Mississippi) Place Mississippi Start Date 2009-03-01 End Date 2009-04-01 Residential Revenue(Thousand $) 4997 Residential Sales (MWh) 45336 Residential Consumers 36181 Commercial Revenue(Thousand $) 1847 Commercial Sales (MWh) 14202 Commercial Consumers 8631 Industrial Revenue (Thousand $) 1402 Industrial Sales (MWh) 14267 Industrial Consumers 18 Total Revenue (Thousand $) 8246 Total Sales (MWh) 73805 Total Consumers 44830 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1]

445

Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption  

Buildings Energy Data Book (EERE)

7 7 U.S. Electric Power Sector Cumulative Power Plant Additions Needed to Meet Future Electricity Demand (1) Typical New Number of New Power Plants to Meet Demand Electric Generator Plant Capacity (MW) 2015 2020 2025 2030 2035 Coal Steam 1,300 7 8 8 8 8 Combined Cycle 540 28 29 43 79 130 Combustion Turbine/Diesel 148 62 105 174 250 284 Nuclear Power 2,236 1 3 3 3 4 Pumped Storage 147 (2) 0 0 0 0 0 Fuel Cells 10 0 0 0 0 0 Conventional Hydropower 20 (2) 20 47 81 125 185 Geothermal 50 9 26 41 62 81 Municipal Solid Waste 50 1 1 1 1 1 Wood and Other Biomass 50 5 5 5 5 6 Solar Thermal 100 9 9 9 9 9 Solar Photovoltaic 150 11 11 13 23 52 Wind 100 123 124 153 182 262 Total 277 372 538 760 1,041 Distributed Generation 148 (3) Note(s): Source(s): 1) Cumulative additions after Dec. 31, 2010. 2) Based on current stock average capacity. 3) Combustion turbine/diesel data used.

446

Co-generation of electricity and heat from combustion of wood powder utilizing thermophotovoltaic conversion  

SciTech Connect

The development of a thermophotovoltaic converter that uses combustion of wood powder as energy source has started with development of the combustion source. During the last few months, we have constructed and tested a feeding mechanism and a combustion chamber that seem very promising. We manage to keep a 10 kW flame steadily burning for several minutes at the time, generating a temperature exceeding 1400 K. The plans for continued development of this and other components of the converter are discussed in the paper. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

Broman, L. [Solar Energy Research Center, University College of Falun/Borlaenge, P.O. Box 10044, S-781 10 Borlaenge, Sweden, Phone +46 2437 3747, fax 3750, e-mail lbratt.hfb.se (Sweden); Marks, J. [Department of Operational Efficiency, Swedish University of Agricultural Sciences S-776 98 Garpenberg, Sweden, Phone +46 2252 6068, fax 2162 (Sweden)

1995-01-05T23:59:59.000Z

447

Performance-based ratemaking for electric utilities: Review of plans and analysis of economic and resource-planning issues. Volume 1  

SciTech Connect

Performance-Based Ratemaking (PBR) is a form of utility regulation that strengthens the financial incentives to lower rates, lower costs, or improve nonprice performance relative traditional regulation, which the authors call cost-of-service, rate-of-return (COS/ROR) regulation. Although the electric utility industry has considerable experience with incentive mechanisms that target specific areas of performance, implementation of mechanisms that cover a comprehensive set of utility costs or services is relatively rare. In recent years, interest in PBR has increased as a result of growing dissatisfaction with COS/ROR and as a result of economic and technological trends that are leading to more competition in certain segments of the electricity industry. In addition, incentive regulation has been used with some success in other public utility industries, most notably telecommunications in the US and telecommunications, energy, and water in the United Kingdom. In this report, the authors analyze comprehensive PBR mechanisms for electric utilities in four ways: (1) they describe different types of PBR mechanisms, (2) they review a sample of actual PBR plans, (3) they consider the interaction of PBR and utility-funded energy efficiency programs, and (4) they examine how PBR interacts with electric utility resource planning and industry restructuring. The report should be of interest to technical staff of utilities and regulatory commissions that are actively considering or designing PBR mechanisms. 16 figs., 17 tabs.

Comnes, G.A.; Stoft, S.; Greene, N. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.; Hill, L.J. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.]|[Oak Ridge National Lab., TN (United States). Energy Div.

1995-11-01T23:59:59.000Z

448

Electric power annual 1997. Volume 1  

SciTech Connect

The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policy-makers, analysts, and the general public with data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Volume 1 -- with a focus on US electric utilities -- contains final 1997 data on net generation and fossil fuel consumption, stocks, receipts, and cost; preliminary 1997 data on generating unit capability, and retail sales of electricity, associated revenue, and the average revenue per kilowatthour of electricity sold (based on a monthly sample: Form EIA-826, ``Monthly Electric Utility Sales and Revenue Report with State Distributions``). Additionally, information on net generation from renewable energy sources and on the associated generating capability is included in Volume 1 of the EPA.

NONE

1998-07-01T23:59:59.000Z

449

Monthly Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

month. Should you have questions about the EM Monthly Reports please contact envmgt@nv.doe.gov or call (702) 295-3521. October 2012 November 2012 December 2012 January 2013...

450

Monthly Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

month. Should you have questions about the EM Monthly Reports please contact envmgt@nv.doe.gov or call (702) 295-3521. October 2013 November 2013 December 2013 January 2014...

451

CHP Modeling as a Tool for Electric Power Utilities to Understand Major Industrial Customers  

E-Print Network (OSTI)

for optimum rate design. REFERENCES 1. Kumana, J D and R Nath, "Demand Side Dispatching, Part 1 - A Novel Approach for Industrial Load Shaping Applications", IETC Proceedings (March 93) 2. R Nath, D A Cerget, and E T Henderson, "Demand Side... Dispatching, Part 2 - An Industrial Application", IETC Proceedings (March 93) 3. R Nath and J D Kumana, "NOx Dispatching in Plant Utility Systems using Existing Software Tools", IETC Proceedings (April 92) 4. R Nath, J D KUJIl3I13, and J F Holiday...

Kumana, J. D.; Alanis, F. J.; Swad, T.; Shah, J. V.

452

Global corporate governance and takeovers in electric utilities: the case of ENERSIS, ENDESA and DUKE Energy  

Science Journals Connector (OSTI)

In the 1990s, the success of the ENERSIS conglomerate in Latin America captured the attention of world electric conglomerates like ENDESA Spain (ES) and DUKE Energy from the USA. ES tried in 1997 to take over ENERSIS, which ended with a colossal commitment of investments. The friendly tender offer lasting for more than 100 days implied significant Cumulative Abnormal Returns (CAR) that favour minority shareholders, contrasting with the subsequent hostile ES takeover that implied the realisation of CAR on ENERSIS conglomerate stocks that vanished before 60 days. This paper describes the strategies and results of the takeover.

Ricardo Raineri

2006-01-01T23:59:59.000Z

453

Optimized Energy Management for Large Organizations Utilizing an On-Site PHEV fleet, Storage Devices and Renewable Electricity Generation  

SciTech Connect

Abstract This paper focuses on the daily electricity management problem for organizations with a large number of employees working within a relatively small geographic location. The organization manages its electric grid including limited on-site energy generation facilities, energy storage facilities, and plug-in hybrid electric vehicle (PHEV) charging stations installed in the parking lots. A mixed integer linear program (MILP) is modeled and implemented to assist the organization in determining the temporal allocation of available resources that will minimize energy costs. We consider two cost compensation strategies for PHEV owners: (1) cost equivalent battery replacement reimbursement for utilizing vehicle to grid (V2G) services from PHEVs; (2) gasoline equivalent cost for undercharging of PHEV batteries. Our case study, based on the Oak Ridge National Laboratory (ORNL) campus, produced encouraging results and substantiates the importance of controlled PHEV fleet charging as opposed to uncontrolled charging methods. We further established the importance of realizing V2G capabilities provided by PHEVs in terms of significantly reducing energy costs for the organization.

Dashora, Yogesh [University of Texas, Austin; Barnes, J. Wesley [University of Texas, Austin; Pillai, Rekha S [ORNL; Combs, Todd E [ORNL; Hilliard, Michael R [ORNL

2012-01-01T23:59:59.000Z

454

Monthly energy review, January 1998  

SciTech Connect

This report presents an overview of recent monthly energy statistics. Major activities covered include production, consumption, trade, stocks, and prices for fossil fuels, electricity, and nuclear energy.

NONE

1998-01-01T23:59:59.000Z

455

Madisonville Municipal Utils | Open Energy Information  

Open Energy Info (EERE)

Madisonville Municipal Utils Madisonville Municipal Utils Jump to: navigation, search Name Madisonville Municipal Utils Place Kentucky Utility Id 11488 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Service-less than 50 KW Commercial Demand Commercial Electric Service-50 KW per month or more Commercial Residential Electric Service Residential Security Lights Overhead Flood Light HPS 400 W Lighting Security Lights Overhead Flood Light MH 400 W Lighting Security Lights Overhead HPS 150 W Lighting

456

Energy, environmental, health and cost benefits of cogeneration from fossil fuels and nuclear energy using the electrical utility facilities of a province  

Science Journals Connector (OSTI)

A method is investigated for increasing the utilization efficiency of energy resources and reducing environmental emissions, focusing on utility-scale cogeneration and the contributions of nuclear energy. A case study is presented for Ontario using the nuclear and fossil facilities of the main provincial electrical utility. Implementation of utility-based cogeneration in Ontario or a region with a similar energy system and attributes is seen to be able to reduce significantly annual and cumulative uranium and fossil fuel use and related emissions, provide economic benefits for the province and its electrical utility, and substitute nuclear energy for fossil fuels. The reduced emissions of greenhouse gases are significant, and indicate that utility-based cogeneration can contribute notably to efforts to combat climate change. Ontario and other regions with similar energy systems and characteristics would benefit from working with the regional electrical utilities and other relevant parties to implementing cogeneration in a careful and optimal manner. Implementation decisions need to balance the interests of the stakeholders when determining which cogeneration options to adopt and barriers to regional utility-based cogeneration need to be overcome.

Marc A. Rosen

2009-01-01T23:59:59.000Z

457

Electric Power Monthly March 2003  

Gasoline and Diesel Fuel Update (EIA)

are lease condensate and liquid hydrocarbons produced from tar sands, gilsonite, and shale oil. Drip gases are also included, but topped crude oil (residual oil) and other...

458

JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal  

SciTech Connect

The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

2009-03-29T23:59:59.000Z

459

Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption  

Buildings Energy Data Book (EERE)

4 4 U.S. Electricity Net Generation, by Plant Type (Billion kWh) Renewables Growth Rate Hydr(1) Oth(2) Total CHP (3) Tot.(4) 2010-year 1980 276 6 282 N.A. 1981 261 6 267 N.A. 1982 309 5 314 N.A. 1983 332 6 339 N.A. 1984 321 9 330 N.A. 1985 281 11 292 N.A. 1986 291 12 302 N.A. 1987 250 12 262 N.A. 1988 223 12 235 N.A. 1989 269 28 297 42 1990 290 35 324 61 1991 286 38 324 72 1992 250 40 290 91 1993 278 42 320 108 1994 254 42 296 123 1995 305 39 345 141 1996 341 41 382 147 1997 351 41 392 148 1998 318 42 360 154 1999 315 44 359 155 2000 271 45 316 165 2001 214 39 253 170 2002 260 44 304 194 2003 272 45 317 196 2004 265 49 314 184 2005 267 53 320 180 2006 286 62 349 165 2007 246 71 317 177 2008 253 94 347 167 2009 272 113 384 159 2010 289 100 390 165 2011 296 172 468 159 2012 296 148 444 161 2013 297 172 469 158 2014 297 186 483 161 2015 297 197 494 160 2016 297 207 504 160 2017 297 212 510 161 2018 298 224 522 161 2019 298 230 528 161 2020 298 246 544 161 2021

460

Experimental Investigation on Energy Efficiency of Electrical Utilities in Process Industries through Standard Energy Conservation Practices  

Science Journals Connector (OSTI)

Abstract In this research paper energy uses and energy conservation opportunities for process industry is presented. It has been found that process industries consume a substantial amount of energy. Excessive use of energy is usually associated with many process plants in India. The study is based on the realization that enormous potential exists for cost effective improvements in the existing energy using equipments. Through the method of energy audit power rating, operation time, power factor and other important details of all the machines/equipments were collected for the selected industry. The measured data was analysed to find energy conservation opportunity. Energy saving techniques like, energy efficient pumps, stopping of air leakages, air compressor efficiency improvement was considered for energy conservation. Energy saving details was calculated with cost benefit analysis. Energy conservation implementation program was carried out for Centrifugal pumping system, Air compressor system, as per the management consent and requirement in the the selected industry. It has resulted in total saving of 2,29,369 electric units (kWh/year) and annual energy saving of Rs. 13,43,670 with an investment of Rs 2,45,000.

A. Vyas Pareshkumar; V. Bhale Purnanad

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "monthly electric utility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Mohave Electric Cooperative, Inc | Open Energy Information  

Open Energy Info (EERE)

Mohave Electric Cooperative, Inc Mohave Electric Cooperative, Inc Jump to: navigation, search Name Mohave Electric Cooperative, Inc Place Arizona Utility Id 21538 Utility Location Yes Ownership C NERC Location WECC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LS (100 W HPS Cooperative Owned-50 kWh Per Month) Lighting LS (100 W HPS Customer Owned-50 kWh Per Month) Lighting LS (175 W MVL Cooperative Owned-100kWh Per Month) Lighting LS (175 W MVL Customer Owned-100 kWh Per Month) Lighting LS (250 W HPS Cooperative Owned-129 kWh Per Month) Lighting

462

Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption  

Buildings Energy Data Book (EERE)

1 1 Buildings Share of U.S. Electricity Consumption/Sales (Percent) Buildings Delivered Total | Total Industry Transportation Total (10^15 Btu) 1980 | 60.9% 38.9% 0.2% 100% | 7.15 1981 | 61.4% 38.5% 0.1% 100% | 7.33 1982 | 64.1% 35.7% 0.2% 100% | 7.12 1983 | 63.8% 36.1% 0.2% 100% | 7.34 1984 | 63.2% 36.7% 0.2% 100% | 7.80 1985 | 63.8% 36.0% 0.2% 100% | 7.93 1986 | 64.8% 35.1% 0.2% 100% | 8.08 1987 | 64.9% 34.9% 0.2% 100% | 8.38 1988 | 65.0% 34.8% 0.2% 100% | 8.80 1989 | 64.8% 35.0% 0.2% 100% | 9.03 1990 | 65.0% 34.9% 0.2% 100% | 9.26 1991 | 65.6% 34.3% 0.2% 100% | 9.42 1992 | 64.6% 35.2% 0.2% 100% | 9.43 1993 | 65.7% 34.1% 0.2% 100% | 9.76 1994 | 65.5% 34.3% 0.2% 100% | 10.01 1995 | 66.2% 33.6% 0.2% 100% | 10.28 1996 | 66.5% 33.3% 0.2% 100% | 10.58 1997 | 66.8% 33.0% 0.2% 100% | 10.73 1998 | 67.6% 32.2% 0.2% 100% | 11.14 1999 | 67.9% 32.0% 0.2% 100% | 11.30 2000 | 68.7% 31.1% 0.2% 100% | 11.67 2001 | 70.5% 29.4% 0.2% 100% |

463

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, two cohesivity-specific additive formulations, ADA-44C and ADA-51, were evaluated in a full-scale trial at the American Electric Power Conesville plant. Ammonia conditioning was also evaluated for comparison. ADA-51 and ammonia conditioning significantly reduced rapping and non-rapped particulate re-entrainment based on stack opacity monitor data. Based on the successful tests to date, ADA-51 will be evaluated in a long-term test.

Kenneth E. Baldrey

2003-02-01T23:59:59.000Z

464

Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption  

Buildings Energy Data Book (EERE)

3 3 U.S. Electricity Generation Input Fuel Consumption (Quadrillion Btu) Renewables Growth Rate Hydro. Oth(2) Total Nuclear Other (3) Total 2010-Year 1980 2.87 0.06 2.92 2.74 (1) 24.32 1981 2.72 0.06 2.79 3.01 (1) 24.49 1982 3.23 0.05 3.29 3.13 (1) 23.95 1983 3.49 0.07 3.56 3.20 (1) 24.60 1984 3.35 0.09 3.44 3.55 (1) 25.59 1985 2.94 0.11 3.05 4.08 (1) 26.09 1986 3.04 0.12 3.16 4.38 (1) 26.22 1987 2.60 0.13 2.73 4.75 (1) 26.94 1988 2.30 0.12 2.43 5.59 (1) 28.27 1989 2.81 0.41 3.22 5.60 (1) 29.88 1990 3.01 0.51 3.52 6.10 (1) 30.51 1991 2.98 0.56 3.54 6.42 (1) 30.87 1992 2.59 0.60 3.19 6.48 (1) 30.74 1993 2.86 0.62 3.48 6.41 (1) 31.86 1994 2.62 0.63 3.26 6.69 (1) 32.41 1995 3.15 0.60 3.75 7.08 (1) 33.50 1996 3.53 0.63 4.15 7.09 (1) 34.50 1997 3.58 0.64 4.22 6.60 (1) 34.90 1998 3.24 0.63 3.87 7.07 (1) 36.24 1999 3.22 0.66 3.87 7.61 (1) 36.99 2000 2.77 0.66 3.43 7.86 (1) 38.08 2001 2.21 0.55 2.76 8.03 (1) 37.25

465

Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption  

Buildings Energy Data Book (EERE)

2 2 U.S. Electricity Generation Input Fuel Shares (Percent) Renewables Natural Gas Petroleum Coal Hydro. Oth(2) Total Nuclear Other (3) Total 1980 15.7% 10.8% 50.2% 11.8% 0.2% 12.1% 11.3% (1) 100% 1981 15.4% 9.0% 51.8% 11.2% 0.3% 11.4% 12.3% (1) 100% 1982 13.9% 6.6% 52.6% 13.6% 0.2% 13.8% 13.1% (1) 100% 1983 12.2% 6.3% 53.9% 14.3% 0.3% 14.6% 13.1% (1) 100% 1984 12.6% 5.1% 54.9% 13.2% 0.4% 13.5% 14.0% (1) 100% 1985 12.1% 4.2% 56.2% 11.3% 0.4% 11.8% 15.7% (1) 100% 1986 10.2% 5.6% 55.3% 11.7% 0.5% 12.1% 16.8% (1) 100% 1987 10.9% 4.7% 56.5% 9.7% 0.5% 10.2% 17.8% (1) 100% 1988 9.5% 5.6% 56.5% 8.2% 0.4% 8.6% 19.9% (1) 100% 1989 10.5% 5.7% 54.2% 9.4% 1.4% 10.8% 18.8% (1) 100% 1990 10.7% 4.2% 53.4% 9.9% 1.7% 11.6% 20.0% (1) 100% 1991 11.0% 3.9% 52.8% 9.7% 1.8% 11.5% 20.9% (1) 100% 1992 11.5% 3.2% 53.7% 8.4% 2.0% 10.4% 21.1% (1) 100% 1993 11.1% 3.5% 54.2% 9.0% 2.0% 11.0% 20.2% (1) 100% 1994 12.4% 3.3% 53.5%

466

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - November  

Open Energy Info (EERE)

November November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for November 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-11 Utility Company 4-County Electric Power Assn (Mississippi) Place Mississippi Start Date 2008-11-01 End Date 2008-12-01 Residential Revenue(Thousand $) 4227 Residential Sales (MWh) 35279 Residential Consumers 35982 Commercial Revenue(Thousand $) 2029 Commercial Sales (MWh) 15195 Commercial Consumers 8707 Industrial Revenue (Thousand $) 1178 Industrial Sales (MWh) 14250 Industrial Consumers 19 Total Revenue (Thousand $) 7434 Total Sales (MWh) 64724 Total Consumers 44708 Source: Energy Information Administration. Form EIA-826 Database Monthly

467

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February  

Open Energy Info (EERE)

February February 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for February 2009. Monthly Electric Utility Sales and Revenue Data Short Name 2009-02 Utility Company 4-County Electric Power Assn (Mississippi) Place Mississippi Start Date 2009-02-01 End Date 2009-03-01 Residential Revenue(Thousand $) 6100 Residential Sales (MWh) 57003 Residential Consumers 36097 Commercial Revenue(Thousand $) 2044 Commercial Sales (MWh) 16286 Commercial Consumers 8682 Industrial Revenue (Thousand $) 1219 Industrial Sales (MWh) 14517 Industrial Consumers 19 Total Revenue (Thousand $) 9363 Total Sales (MWh) 87806 Total Consumers 44798 Source: Energy Information Administration. Form EIA-826 Database Monthly

468

Monthly Energy Review - June 2008  

Gasoline and Diesel Fuel Update (EIA)

Monthly Publications: Other monthly EIA reports are Petroleum Supply Monthly Publications: Other monthly EIA reports are Petroleum Supply Monthly, Petroleum Marketing Monthly, Natural Gas Monthly, Electric Power Monthly, and Inter- national Petroleum Monthly. For more information, contact the National Energy Information Center at 202-586-8800 or InfoCtr@eia.doe.gov. Electronic Access The MER is available on EIA's Web site in a variety of formats at: http://www.eia.doe.gov/mer. Complete MER, and individual MER sections: Portable Document Format (PDF) files. Individual table and graph pages: PDF files. Data files for individual tables: Excel (XLS) files and ASCII comma-delimited (CSV) files. Note: PDF files display selected annual and monthly data. Excel and CSV files display all avail- able annual and monthly data, often at a greater level of precision than the PDF files.

469

A framework and review of customer outage costs: Integration and analysis of electric utility outage cost surveys  

SciTech Connect

A clear understanding of the monetary value that customers place on reliability and the factors that give rise to higher and lower values is an essential tool in determining investment in the grid. The recent National Transmission Grid Study recognizes the need for this information as one of growing importance for both public and private decision makers. In response, the U.S. Department of Energy has undertaken this study, as a first step toward addressing the current absence of consistent data needed to support better estimates of the economic value of electricity reliability. Twenty-four studies, conducted by eight electric utilities between 1989 and 2002 representing residential and commercial/industrial (small, medium and large) customer groups, were chosen for analysis. The studies cover virtually all of the Southeast, most of the western United States, including California, rural Washington and Oregon, and the Midwest south and east of Chicago. All variables were standardized to a consistent metric and dollar amounts were adjusted to the 2002 CPI. The data were then incorporated into a meta-database in which each outage scenario (e.g., the lost of electric service for one hour on a weekday summer afternoon) is treated as an independent case or record both to permit comparisons between outage characteristics and to increase the statistical power of analysis results. Unadjusted average outage costs and Tobit models that estimate customer damage functions are presented. The customer damage functions express customer outage costs for a given outage scenario and customer class as a function of location, time of day, consumption, and business type. One can use the damage functions to calculate outage costs for specific customer types. For example, using the customer damage functions, the cost experienced by an ''average'' customer resulting from a 1 hour summer afternoon outage is estimated to be approximately $3 for a residential customer, $1,200 for small-medium commercial and industrial customer, and $82,000 for large commercial and industrial customer. Future work to improve the quality and coverage of information on the value of electricity reliability to customers is described.

Lawton, Leora; Sullivan, Michael; Van Liere, Kent; Katz, Aaron; Eto, Joseph

2003-11-01T23:59:59.000Z

470

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, performance testing of flue gas conditioning was completed at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. The product was effective as a flue gas conditioner. However, ongoing problems with in-duct deposition resulting from the flue gas conditioning were not entirely resolved. Primarily these problems were the result of difficulties encountered with retrofit of an existing spray humidification system. Eventually it proved necessary to replace all of the original injection lances and to manually bypass the PLC-based air/liquid feed control. This yielded substantial improvement in spray atomization and system reliability. However, the plant opted not to install a permanent system. Also in this quarter, preparations continued for a test of the cohesivity additives at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative.

Kenneth E. Baldrey

2002-07-01T23:59:59.000Z

471

UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV (Thousand $)","RES_S  

U.S. Energy Information Administration (EIA) Indexed Site

MwH)","RES_CONS ","COM_REV (Thousand $)","COM_SALES (MwH)","COM_CONS","IND_REV (Thousand $)","IND_SALES (MwH)","IND_CONS","OTH_REV (Thousand $)","OTH_SALES (MwH)","OTH_CONS","TOT_REV (Thousand $)","TOT_SALES (MwH)","TOT_CONS" MwH)","RES_CONS ","COM_REV (Thousand $)","COM_SALES (MwH)","COM_CONS","IND_REV (Thousand $)","IND_SALES (MwH)","IND_CONS","OTH_REV (Thousand $)","OTH_SALES (MwH)","OTH_CONS","TOT_REV (Thousand $)","TOT_SALES (MwH)","TOT_CONS" 0,"State Level Adjustment","AK",2006,1,4505,21935,0,6801,28853,0,1284,11667,0,,,0,12590,62454,0 213,"Alaska Electric Light&Power Co","AK",2006,1,1424,13941,13422,961,11573,2086,349,4532,98,0,0,0,2734,30046,15606 219,"Alaska Power Co","AK",2006,1,603,2288,4345,823,3487,1956,0,0,0,0,0,0,1426,5775,6301 599,"Anchorage Municipal Light and Power","AK",2006,1,1643,16217,23865,6649,90110,6112,0,0,0,0,0,0,8292,106327,29977

472

Monthly Energy Review  

SciTech Connect

This publication presents an overview of the Energy information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. Two brief ``energy plugs`` (reviews of EIA publications) are included, as well.

NONE

1996-05-28T23:59:59.000Z

473

Imagine a day, you drove your car without spilling a dime from your pocket? A day, you pay just a dollar bill for your monthly electrical energy consumption? Yes, this is what renewable energy resources does! We  

E-Print Network (OSTI)

pay just a dollar bill for your monthly electrical energy consumption? Yes, this is what renewable Imagine a day, you drove your car without spilling a dime from your pocket? A day, you energy resources does! We have means to achieve this if we make use of the natural resources

Kostic, Milivoje M.

474

UAL -:,;..; Electric Utility  

E-Print Network (OSTI)

and helpful suggestions; and Michel Granger of Hydro-Quebec, Don A. Fagnan and Paul Sullivan of Philadelphia of diversifed EM, Leonard Bolduc of Institut de recherche d'Hydro- Quebec, Michel Granger of Hydro-Quebec, Don A

Schrijver, Karel

475

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, performance testing of flue gas conditioning was underway at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. This represents the first long-term full-scale testing of this class of products. Modifications to the flue gas conditioning system at Jim Bridger, including development of alternate injection lances, was also undertaken to improve chemical spray distribution and to avoid spray deposition to duct interior surfaces. Also in this quarter, a firm commitment was received for another long-term test of the cohesivity additives. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative.

Kenneth E. Baldrey

2002-05-01T23:59:59.000Z

476

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, further laboratory-screening tests of additive formulations were completed. For these tests, the electrostatic tensiometer method was used for determination of fly ash cohesivity. Resistivity was measured for each screening test with a multi-cell laboratory fly ash resistivity furnace constructed for this project. Also during this quarter chemical formulation testing was undertaken to identify stable and compatible resistivity/cohesivity liquid products.

Kenneth E. Baldrey

2001-09-01T23:59:59.000Z

477

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a flue gas conditioning system was completed at PacifiCorp Jim Bridger Power Plant. Performance testing was underway. Results will be detailed in the next quarterly and subsequent technical summary reports. Also in this quarter, discussions were initiated with a prospective long-term candidate plant. This plant fires a bituminous coal and has opacity performance issues related to fly ash re-entrainment. Ammonia conditioning has been proposed here, but there is interest in liquid additives as a safer alternative.

Kenneth E. Baldrey

2002-01-01T23:59:59.000Z

478

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. This quarterly report summarizes project activity for the period April-June, 2003. In this period there was limited activity and no active field trials. Results of ash analysis from the AEP Conesville demonstration were received. In addition, a site visit was made to We Energies Presque Isle Power Plant and a proposal extended for a flue gas conditioning trial with the ADA-51 cohesivity additive. It is expected that this will be the final full-scale evaluation on the project.

Kenneth E. Baldrey

2003-07-30T23:59:59.000Z

479

$18.8 Million Award for Power Systems Engineering Research Center Continues Collaboration of 13 Universities and 35 Utilities for Electric Power Research, Building the Nation's Energy Workforce  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy awarded a cooperative agreement on January 16, 2009, to the Arizona State University (ASU) Board of Regents to operate the Power Systems Engineering Research Center (PSERC). PSERC is a collaboration of 13 universities with 35 electricity industry member organizations including utilities, transmission companies, vendors and research organizations.

480

A & N Electric Coop (Maryland) EIA Revenue and Sales - February 2008 | Open  

Open Energy Info (EERE)

A & N Electric Coop (Maryland) EIA Revenue and Sales - February 2008 A & N Electric Coop (Maryland) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for A & N Electric Coop for February 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-02 Utility Company A & N Electric Coop (Maryland) Place Maryland Start Date 2008-02-01 End Date 2008-03-01 Residential Revenue(Thousand $) 26.62 Residential Sales (MWh) 219.596 Residential Consumers 281 Commercial Revenue(Thousand $) 6.541 Commercial Sales (MWh) 51.4 Commercial Consumers 48 Total Revenue (Thousand $) 33.161 Total Sales (MWh) 270.996 Total Consumers 329 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1] Previous | Next

Note: This page contains sample records for the topic "monthly electric utility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

A & N Electric Coop (Maryland) EIA Revenue and Sales - March 2008 | Open  

Open Energy Info (EERE)

A & N Electric Coop (Maryland) EIA Revenue and Sales - March 2008 A & N Electric Coop (Maryland) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for A & N Electric Coop for March 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-03 Utility Company A & N Electric Coop (Maryland) Place Maryland Start Date 2008-03-01 End Date 2008-04-01 Residential Revenue(Thousand $) 22.803 Residential Sales (MWh) 184.316 Residential Consumers 282 Commercial Revenue(Thousand $) 4.944 Commercial Sales (MWh) 37.174 Commercial Consumers 48 Total Revenue (Thousand $) 27.747 Total Sales (MWh) 221.49 Total Consumers 330 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1] Previous | Next

482

NSLS Utilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Utilities Utilities The Utilities Group, led by project engineer Ron Beauman, is responsible for providing Utilities Engineering and Technical services to NSLS, Users, and SDL including cooling water at controlled flow rates, pressures, and temperatures, compressed air and other gases. In addition, they provide HVAC engineering, technical, and electrical services as needed. Utilities systems include cooling and process water, gas, and compressed air systems. These systems are essential to NSLS operations. Working behind the scenes, the Utilities group continuously performs preventative maintenance to ensure that the NSLS has minimal downtime. This is quite a feat, considering that the Utilities group has to maintain seven very large and independent systems that extent throughout NSLS. Part of the group's

483

Comparing the Feasibility of Cutting Thin-Walled Sections from Five Commonly Used Metals Utilizing Wire Electric Discharge Machining.  

E-Print Network (OSTI)

??Wire Electric Discharge Machining (wire-EDM) is a non-traditional machining process. Controlled electric sparks are successively used to vaporize part of a workpiece along a programmed (more)

Stephenson, Richard C.

2007-01-01T23:59:59.000Z

484

Monthly energy review, August 1993  

SciTech Connect

This publication presents information for the month of August, 1993 on the following: Energy overview; energy consumption; petroleum; natural gas; oil and gas resource development; coal; electricity; nuclear energy; energy prices, and international energy.

Not Available

1993-08-26T23:59:59.000Z

485

monthly_peak_2003.xls  

U.S. Energy Information Administration (EIA) Indexed Site

O Form EIA-411 for 2005 Released: February 7, 2008 Next Update: October 2007 Table 3a . January Monthly Peak Hour Demand, Actual and Projected by North American Electric...

486

Innovative Utility Pricing for Industry  

E-Print Network (OSTI)

INNOVATIVE UTILITY PRICING FOR INDUSTRY James A. Ross Drazen-Brubaker &Associates, Inc. St. Louis, Missouri ABSTRACT The electric utility industry represents only one source of power available to industry. Al though the monopolistic... structure of the electric utility industry may convey a perception that an electric utility is unaffected by competition, this is an erroneous perception with regard to in dustry. Electric utilities face increased compe tition, both from other utilities...

Ross, J. A.

487

Natural gas monthly, September 1991. [Contains glossary  

SciTech Connect

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production distribution consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia.

Not Available

1991-10-18T23:59:59.000Z

488

Utilities | Open Energy Information  

Open Energy Info (EERE)

Utilities Utilities Jump to: navigation, search Utilities Electric Utility Rates The Utilities Gateway houses OpenEI's free, community-editable utility rate repository. OpenEI users may browse, edit and add new electric utility rates to OpenEI's repository. EIA provides the authoritative list of utility companies in the United States, and thus OpenEI limits utility rates to companies listed by EIA. 43,031 rates have been contributed for 3,832 EIA-recognized utility companies. Browse rates by zip code Browse rates by utility name Create or edit a rate Number of Utility Companies by State Click on a state to view summaries for that state. See a list of all U.S. utility companies and aliases Utility Rate Database Description The Utility Rate Database (URDB) is a free storehouse of rate structure

489

Monthly Energy Review - January 2007  

Gasoline and Diesel Fuel Update (EIA)

publications: Other monthly EIA reports are Petroleum Supply Monthly, Petroleum publications: Other monthly EIA reports are Petroleum Supply Monthly, Petroleum Marketing Monthly, Natural Gas Monthly, Electric Power Monthly, and International Petroleum Monthly. Readers of the MER may also be interested in EIA's Annual Energy Review, where many of the same data series are provided annually beginning with 1949. For more information, contact the National Energy Information Center at 202-586-8800 or InfoCtr@eia.doe.gov. Electronic Access The MER is available on EIA's Web site in a variety of formats at: http://www.eia.doe.gov/mer. Complete MER, and individual MER sections: Portable Document Format (PDF) files. Individual table and graph pages: PDF files. Data files for individual tables: Excel (XLS) files and ASCII comma-delimited (CSV) files.

490

Monthly energy review: April 1996  

SciTech Connect

This monthly report presents an overview of energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. A section is also included on international energy. The feature paper which is included each month is entitled ``Energy equipment choices: Fuel costs and other determinants.`` 37 figs., 59 tabs.

NONE

1996-04-01T23:59:59.000Z

491

Monthly Energy Review, February 1996  

SciTech Connect

This monthly publication presents an overview of EIA`s recent monthly energy statistics, covering the major activities of U.S. production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. Two brief descriptions (`energy plugs`) on two EIA publications are presented at the start.

NONE

1996-02-26T23:59:59.000Z

492

Monthly energy review, November 1996  

SciTech Connect

The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. 75 tabs.

NONE

1996-11-01T23:59:59.000Z

493

Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas "super-utility"  

E-Print Network (OSTI)

state-based renewable energy policies have significantlyin renewable electricity and energy-efficiency policy.s renewable energy sources and energy efficiency policy

Cappers, Peter

2010-01-01T23:59:59.000Z

494

Monthly energy review, March 1994  

SciTech Connect

The Monthly Energy Review provides information on production, distribution, consumption, prices, imports, and exports for the following US energy sources: petroleum; petroleum products; natural gas; coal; electricity; and nuclear energy. The section on international energy contains data for world crude oil production and consumption, petroleum stocks in OECD countries, and nuclear electricity gross generation.

Not Available

1994-03-29T23:59:59.000Z

495